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Introduction

This document compiles some theorems and proofs primarily related to measure-theory

and geometry in view of a part of my reading project done at TIFR CAM, in the context

of my MS Thesis at IISER Pune.

With the assumptions of the basic knowledge on Measure Theory, Functional Analysis,

and Linear Algebra, this document proves the extension of measures from a variety of

family of sets, Taylor’s formula, the Change of variables among the spaces of the same

dimension, some properties of functions which are absolutely continuous and the Inte-

gration by parts. It also gives an insight via a compilation of some theorems and proof,

of, the Fubini and Tonelli theorem( without the use of the monotone class lemma), the

Radon-Nikodym theorem and the Radon Nikodym derivative, some covering theorems

and some of the important properties of Lipschitz functions, namely the Rademacher

theorem. It also has information on the dimension of fractals ( going with the name of

Hausdor↵ dimension), the Isodiameteric inequality, which is further used to prove the

change of variables formula among spaces of a di↵erent dimensions, which goes by the

name of the Area and the Co-Area Formula.

Most of the materials in this document are taken from the references mentioned at the

end of this document.
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Some Notations and Conventions

Rn The n dimensional euclidean space.

dx ⌘ dx1.dx2 . . . dxn The n-dimensional lebesgue measure on Rn

Cn The n-dimensional complex space.

B̂ The ball with the center as that of B,

but with the radius 5 times of B

GLn(R) The group of n⇥ n invertible matrices with real entries.

A The topological closure of the set A.

A� The topological interior of the set A.

@A The boundary of the set A := A�A�

m Measure defined in the definition

(m|A) Measure restricted to the set A as in definition

Duv Density of v with respect to u

L
n Lebesgue measure on Rn

↵(n) Lebesgue measure of a unit ball in Rn

Card(K) Cardinality of the set K

MCT Monotone Convergence Theorem

DCT Dominated Convergence Theorem

XA Charecteristic function with respect to the set A

H
n The n dimensional Hausdor↵ measure.

diam(B) The diameter of B

Sa(A) Steiner symmetrisation of A w.r.t the plane Pa
R
⇤ f inf{

R
� ; � is simple and f  �}

[[L]] Jacobian of L

Cc(X) Real valued continuous functions with

compact support on X

Ck
c (X) Real valued k times di↵erentiable functions

with compact support on X

a.e almost everywhere
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Chapter 1

Pre-Requisites

1.1 Linear Algebra

• V is a Vector Space over a field F , generally considered over R or C,
if 8x, y 2 V and 8↵,� 2 F,

Denote ↵x+ �y 2 V as the joint binary operation on V

• Basis of a vector space V is defined as a collection of elements of the vector space

such that the collection of elements are linearly independent and spans the whole

V by finite linear combinations.

• V is a finite dimensional vector space if there exists a basis for V which is finite

by cardinality.

• If V and W are two vector spaces, T is a linear transformation from V to W if

T (↵x+ �y) = ↵T (x) + �T (y), with the usage of notations as in previous points.

• A subspace S is a subset of a vector space V and is a vector space itself, that is,

S ⇢ V and for all x, y 2 S, ↵,� 2 F, ↵x+ �y 2 S.

• ker(T ) := {x 2 V | T (x) = 0} and Range(T ) := {y 2 W | 9x 2 V, T (x) = y} are

examples for subspaces of V and W respectively.

• If V is finite dimensional vector space and given any two basis of it, one can

transform from one basis to another in matrix representation, by an invertible

matrix called change of basis matrix.

1
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• Rank-Nullity theorem : For a linear transform defined earlier on a finite dimen-

sional vector space V , we have

dim(V ) = dim(ker(T )) + dim(Im(T ))

• For a subspace W of V , W is said to be invariant under T if TW ⇢ W .

• A complex (Real) vector space H is called an inner product space if 8x, y 2 H,

there is an associated complex number (real number), denoted by < x, y > called

the inner product with the properties:

– < x, y >= < y, x >

– < x+ y, z >=< x, z > + < y, z >

– < ↵x, y >= ↵ < x, y > for all x, y 2 H,↵ 2 C

– < x, x > � 0 for all x 2 H

– < x, x >= 0 () x = 0

One can define norm on H by ||x||2 =< x, x > and hence, one can define distance

on H by d(x, y) = ||x� y||

• Cauchy Schwartz inequality: For a inner product space defined in the earlier point,

| < x, y > |  ||x|| ||y|| ; for all x, y 2 H

• H is a Hilbert space if it has an inner product structure and is complete by the

convergence of every cauchy sequence in H with respect to the metric defined

above.

• If H is a Hilbert space over R, then H is called real Hilbert space.

• Every linear map T over finite dimensional space V , spanned by the basis {e1, e2, . . . , en},

to a finite dimesional space W , spanned by the basis {f1, f2, . . . fm}, can be rep-

resented by a m⇥ n matrix which is given by

2

666664

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...

am1 am2 . . . amn

3

777775

m⇥n

where aij is defined by

T (ei) =
mX

j=1

ajifj for all 1  i  n
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• Let GLn(Rn) be the set of all invertible matrices over R. Any T 2 GLn(Rn) can

be written as product of finitely many elementary transformations of the types:

– I : T1(x1, x2, . . . , xi, . . . xn) = (x1, x2, . . . , cxi, . . . xn) ; c 6= 0

– II : T2(x1, x2, . . . , xi, . . . xn) = (x1, x2, . . . , xi + cxk, . . . xn), k 6= i

– III : T3(x1, x2, . . . , xi, . . . , xj . . . xn) = (x1, x2, . . . , xj , . . . , xi . . . xn)

• Let Sn denote all bijections from {1, 2, . . . n} to {1, 2, . . . n}. Sn forms a group

under composition. Any element of Sn, called as permutation, can be decomposed

as product of transpositions, where a transposition is defined as an element of Sn

which just interchanges two elements of {1, 2, . . . n}, keeping the other elements

fixed. For a � 2 Sn, we define sgn(�) = (�1)m ; where m is the number of

transpositions in the decomposition of �. Here,for an element of Sn, the sgn is

invariant of representation by composition of transpositions.

An important property of sgn is for any two elements � and ⌧ in Sn, we have

sgn(� � ⌧) = sgn(�)sgn(⌧)

• Determinant of a matrix A of order n ⇥ n : is a multinlinear map D from

Cn
⇥ Cn

⇥ . . .Cn
n times to C with the property : for all Ri, Li 2 Cn , 1  i  n

and for all ↵,� 2 C

– Multilinear : For all 1  i  n,

D(R1, R2, . . . ,↵Ri + �Li, . . . , Rn)

||

↵D(R1, R2, . . . , Ri, . . . , Rn) + �D(R1, R2, . . . , Li, . . . , Rn)

– Alternating : For all 1  i, j  n,

D(R1, R2, . . . , Ri, . . . , Rj , . . . , Rn) = (�1)D(R1, R2, . . . , Rj , . . . , Ri, . . . , Rn)

– Define Ei = (0, . . . , 0, 1ith place, 0, . . . , 0) 2 Cn, we have

D(E1, E2, . . . , En) = 1

• Some properties of determinant includes :

– Let A be a n⇥n matrix. The determinant of A, denoted by det(A), is defined

to be D(R1, R2, . . . , Rn), where Ri is the ith row of A.

– Let � 2 Sn, then

D(R�(1), R�(2), . . . , R�(n)) = sgn(�)D(R1, R2, . . . , Rn)
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– Let A ⌘ [aij ]n⇥n, then

det(A) =
X

�2Sn

sgn(�)
nY

i=1

ai,�(i)

–

det(AB) = det(A).det(B)

– For A to be invertible,

det(A�1) = det�1(A)

– If AT is the transpose of the matrix A ⌘ (aij) ,

given by (aji), then

detA = det(AT )

– For ↵ to be an element in the field,

det(↵A) = ↵ndet(A)

– Determinant of diagonal matrix, triangular matrix (upper triangular or lower

triangular matrix) is product of elements of the principle diagonal elements

of the matrix, that is, if the matrix of order n⇥ n is given by (aij)n⇥n, then

the determinant of it is
Qn

i=1 aii

– Invariance of determinant with regard to the basis:

For a linear transformation S and for a basis of the n�dimensional vector

space V , say {e1, e2, . . . , en}, denote the matrix representation by [S]. For

{f1, f2, . . . , fn} to be another basis, and [S0] to be the representation of S

in the new basis, then there exists an invertible matrix, P , such that [S] =

P � [S0] � P�1.

And hence, by the properties of determinant, mentioned earlier, we have

det([S]) = det([S0])

– For a linear transformation S and the basis {e1, e2, . . . , en}, denote the matrix

representation by [S]. Then the charecteristic polynomial of S is a polynomial

of degree n with the variable �, given by

det

✓
�.In⇥n � [S]

◆

The roots of the above polynomial are called the eigenvalues of [S] and det([S])

is precisely the product of eigenvalues. The trace of [S] denoted by Tr([S]) is
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given by
Pn

i=1[S]ii i.e the sum of the diagonal elements of [S] ⌘
�
[S]ij

�
n⇥n

,

which is precisely equal to the sum of the eigenvalues of [S].

• For an inner product space V , with the inner product defined by <,>, we say

a, b 2 V is orthogonal, denoted by a ? b if < a, b >= 0.

Two sets A and B are said to be orthogonal, if a ? b for all a 2 A, b 2 B.

• For a linear transformation T from H to H as defined earlier with H to be a finite

dimensional Hilbert space, we define the adjoint of T , denoted by T ⇤, as a linear

map which satisfies

< Tx, y >=< x, T ⇤y > 8 x, y 2 H

• Let {V,<,>} and {W, (, )} be two finite dimensional Hilbert spaces with the cor-

responding inner products <,>, (, ).

O is called an orthogonal transformation if for all v1, v2 2 V , we have

(O(v1), O(v2)) =< v1, v2 >

• Let O : V ! W be an orthogonal transformation and let v1, v2 2 V , then

< v1, v2 >= (O(v1), O(v2)) =< O⇤Ov1, v2 >

• Some properties of the orthogonal transformation :

– O⇤Ov1 = v1, for all v1 in V . Hence O⇤O = IV , where IV denote the identity

map from V to V .

– Let W be the range of O. Then there is a x 2 V such that w = O(x). Hence,

OO⇤(w) = OO⇤(Ox) = O(O⇤O(x)) = O(x) = w

Thus OO⇤ is precisely the identity map on the range of O.

– With the orthogonal basis of the vector space fixed, O represents a matrix

called the orthogonal matrix.

• Let H be a finite dimensional Hilbert space with the inner product <,>. Let the

dimension of H be n. Let V,W be finite dimensional subspaces of H such that

k = dim(V ) = dim(W ). Let T : V ! W be an orthogonal transformation. Then,

there is an orthogonal transformation Q : H ! H such that Q = T on V .

In order to prove this, let {e1, e2, . . . , en} and {f1, f2, . . . , fn} be 2 orthonormal

basis for H such that
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– span{e1, e2, . . . , ek} = V

– Tei = fi for 1  i  k.

Define Q : H ! H by Q(ei) = fi for all 1  i  n. Then Q is orthogonal and

Q(ei) = T (ei) for all 1  i  k. Hence, Q is the required orthogonal transforma-

tion.

• Spectral theorem : For V a finite dimensional Hilbert space with <,> as inner

product, let T be a linear, self adjoint operator i,e T ⇤ = T and p(�) be the

charecteristic polynomial of T , with �1, . . .�k having multiplicities m1,m2, . . .mk

be the distinct eigenvalues of T.

Let

The �i eigen space of T : V�i = {v 2 V | Tv = �iv}

then

– dim(V�i) = mi, 8i

– �i 2 R, 8i

– V�i ? V�j , i 6= j

– V = V�1

L
· · ·
L

V�k

• Remark to the above point: If A is a real symmetric matrix, the above theorem

holds for A and also that A is diagonalizable, that is, there is P orthogonal matrix

and D diagonal matrix such that A = P �D � P�1 .

• Riesz Representation theorem : Let
�
V,<,>

�
be a finite dimensional Hilbert space

and L : V ! V be a linear transformation.

Then 9!w 2 V s.t L(v) =< v,w >, 8v 2 V .

• Define (standard) inner product for x = (x1, . . . , xn) 2 Rn and y = (y1, . . . , yn) 2

Rn, called the dot product of x and y as

x.y =
nX

1

xiyi 2 R

1.2 Calculus involved in Linear Algebra

Theorem 1.1. Polar Decomposition :

For L : Rn
! Rm, linear transformation, L can be decomposed as the following, in the

cases given below :
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• n  m ,

L = O � S

where O : Rn
! Rm; orthogonal, S : Rn

! Rn Symmetric

• n � m ,

L = S �O⇤

where O : Rm
! Rn; orthogonal, S : Rm

! Rm Symmetric

Proof. Consider the case n  m. Consider C = L⇤
� L : Rn

! Rn

(Cx).y = (L⇤
� Lx).y = Lx.Ly = x.(Cy)

Hence C is symmetric.

(Cx).x = Lx.Lx � 0

And hence the eigenvalues of C are non negative. This concludes that C is symmetric and

non negative definite. Hence, there are �1, . . . ,�n positive and there is an orthonormal

basis {x1, . . . xn} of Rn with Cxi = �ixi

W.L.O.G assume that �i 6= 0 for i < s and �i = 0 for s  i  n.

For i < s, define

ui = +
p
�i

⇠i = L

✓
xi
ui

◆

Then, for 1  i, j < s,

⇠i.⇠j =
1

uiuj
L(xi).L(xj) =

1

uiuj
L⇤Lxi.xj =

ui
uj

xi.xj =
ui
uj

�ij

Hence, {⇠1, . . . , ⇠s�1} is an orthonormal set of Rm. Let {⇠s, . . . , ⇠m} ⇢ Rm be such that

{⇠1, . . . , ⇠m} forms the orthonormal basis of Rm.

Declare S on {xj} as

Sxj = ujxj

and O as

Oxj = ⇠j

Then O is orthogonal and S is symmetric. Furthermore, for 1  i < s,

(O � S)(xi) = O
�
uixi

�
= uiO(xi) = ui

Lxi
ui

= Lxi
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And, for i � s,
�
O � S

�
(xi) = O(0) = 0 = Lxi

Hence, L = O � S and this completes the proof for the case n  m.

For the case n � m, repeat the proof for L⇤ : Rm
! Rn to get the corresponding S and

O.

Definition 1.2. Assume that L : Rn
! Rm be linear.

• If n  m, declare L = O � S as above and we define the Jacobian of L to be

[[L]] = |detS|

• If n � m, declare L = S �O⇤ as above and we define the Jacobian of L to be

[[L]] = |detS|

Theorem 1.3.

• If n  m , then

[[L]]2 = det(L⇤
� L)

• If n � m , then

[[L]]2 = det(L � L⇤)

Proof. For the case n  m, declare L = O � S. Then L⇤ = S �O⇤ and hence

L⇤
� L = S �O⇤

�O � S = S2

Using the property of orthogonal maps, that is O⇤
�O = I, we get,

det(L⇤
� L) = det(S2) = [[L]]2

The case of n � m, is similar to the previous one, but consider L � L⇤ and repeat the

proof as above.

Remark 1.4. If L has another representation of S and O, then the previous theorem says

that the [[L]]2 is independent of the representations and [[L]] = [[L⇤]].

Definition 1.5. Let L be a linear map from Rn
! Rm,
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• If n  m, then define

⇤(m,n) := {� : {1, . . . , n} ! {1, . . . ,m} | � is increasing }

• For each � 2 �(m,n), declare P� : Rm
! Rn as

P�(x1, . . . , xm) := (x�(1) . . . x�(n))

Theorem 1.6. Binet - Cauchy Formula :

Assume n  m and L be a linear map from Rn
! Rm, Then

[[L]]2 =
X

�2⇤(m,n)

✓
det(P� � L)

◆2

Proof. With respect to the standard basis on Rn and Rm, write the matrix as

L =
�
(lij)

�
m⇥n

A = L⇤
� L =

�
(aij)

�
n⇥n

Hence, the (i, j)th element of A turns out to be precisely

aij =
mX

k=1

lkilkj

Thus, by the definition of determinant,

[[L]]2 = detA =
X

�2Sn

sgn(�)
nY

i=1

ai,�(i)

where Sn denotes the permutations of {1, 2, . . . , n}. Hence

[[L]]2 =
X

�2Sn

sgn(�)
nY

i=1

mX

k=1

lkilk�(i)

=
X

�2Sn

sgn(�)
nY

i=1

[l1il1�(i) + l2il2�(i) + · · ·+ lmilm�(i)]
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=
X

�2Sn

sgn(�)

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

[l11l1�(1) + l21l2�(1) + · · ·+ lm1lm�(1)]

⇥

[l12l1�(2) + l22l2�(2) + · · ·+ lm2lm�(2)]

⇥

...

⇥

[l1nl1�(n) + l2nl2�(n) + · · ·+ lmnlm�(n)]

9
>>>>>>>>>>>>>=

>>>>>>>>>>>>>;

=
X

�2Sn

sgn(�)[
X

�2�

nY

i=1

l�(i),il�(i),�(i) +
X

�/2�

nY

i=1

l�(i),il�(i),�(i)]

=
X

�2Sn

sgn(�)
X

�2�

nY

i=1

l�(i),il�(i),�(i) +
X

�2Sn

sgn(�)
X

�/2�

nY

i=1

l�(i),il�(i),�(i)

:= I1 + I2

where � :=
n
one - one mappings of {1, 2, . . . , n} into {1, 2, . . . ,m}

o
.

Finite sums can be interchanged and hence,

I2 =
X

�/2�

X

�2Sn

sgn(�)
nY

i=1

l�(i),il�(i),�(i)

=
X

�/2�

 
nY

i=1

l�(i),i
X

�2Sn

sgn(�)
nY

i=1

l�(i),�(i)

!

For � /2 �, denote the matrix A(�) =
�
(aij(�))

�
, where

aij(�) = l�(i),j

Then,

det(A(�)) =
X

�2Sn

sgn(�)a1,�(1) . . . an,�(n)

=
X

�2Sn

sgn(�)l�(1),�(1) . . . l�(n),�(n)

Now, since � /2 �, there is some i0 6= jo in {1, 2, . . . , n} such that �(i0) = �(j0). Hence,

if Ri denote the ith row of A(�), then

Ri0 = (ai0,1(�), . . . , ai0,n(�))

= (l�(i0),1, . . . , l�(i0),n)

(l�(j0),1, . . . , l�(j0),n) = Rj0
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Two rows are same implies the determinant, det(A(�)) = 0. Thus, I2 can be taken to

be zero and I1 only survives in the sum. Hence,

=
X

�2Sn

sgn(�)
X

�2�

nY

i=1

l�(i),il�(i),�(i)

Now we use the fact that for each � 2 �, it can be uniquely written as � = � � ✓ where

✓ 2 Sn and � 2 ⇤(m,n). So,

[[L]]2 =
X

�2Sn

sgn(�)
X

�2⇤(m,n)

X

✓2Sn

nY

i=1

l��✓(i),il��✓(i),�(i)

=
X

�2Sn

sgn(�)
X

�2⇤(m,n)

X

✓2Sn

nY

i=1

l�(i),✓�1(i)l�(i),��✓�1(i)

=
X

�2⇤(m,n)

X

✓2Sn

X

�2Sn

sgn(�)
nY

i=1

l�(i),✓(i)l�(i),��✓(i)

Letting ⇢ = � � ✓, we obtain,

=
X

�2⇤(m,n)

X

⇢2Sn

X

✓2Sn

sgn(✓)sgn(⇢)
nY

i=1

l�(i),✓(i)l�(i),⇢(i)

=
X

�2⇤(m,n)

(
X

✓2Sn

sgn(✓)
nY

i=1

l�(i),✓(i))
2

=
X

�2⇤(m,n)

(det(P� � L))2

Remark 1.7. To calculate [[L]]2, we compute the sum of squares of the determinants of

each n⇥ n - submatrices of the m⇥ n - matrix representing L.

Definition 1.8. Let U ⇢ Rn be an open set and f : U ! Rm be a map. Let x0 2 U .

f is said to be fréchet di↵erentiable at x0 if there exists A : Rn
! Rm, a linear map such

that, 8
>><

>>:

Given ✏ > 0, 9� > 0 such that

||f(x0 + h)� f(x0)�Ah|| < ✏|h|

whenever |h| < �

9
>>=

>>;

Here, ||.|| denoted the euclidean norm in Rm and |.| denoted the euclidean modulus in

Rn.
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Lemma 1.9. Let f = (f1, . . . , fm) be fréchet di↵erentiable, then dfi
dxj

(x0) exists and

A =

2

666664

df1
dx1

(x0)
df1
dx2

(x0) . . . df1
dxn

(x0)
df2
dx1

(x0)
df2
dx2

(x0) . . . df2
dxn

(x0)
...

...
. . .

...
dfm
dx1

(x0)
dfm
dx2

(x0) . . . dfm
dxn

(x0)

3

777775

Proof. Let

A =

2

666664

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...

an1 an2 . . . ann

3

777775

and ei = (0, 0, . . . , 1, . . . , 0) , i.e having 1 at the ith position.

Then

Aei =

2

666664

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...

an1 an2 . . . ann

3

777775

2

666666666664

0

0
...

1
...

0

3

777777777775

=

2

666664

a1i

a2i
...

ani

3

777775

Let h = ⌘ei , then ,

Ah = ⌘Aei = ⌘

2

666664

a1i

a2i
...

ani

3

777775

Hence,

||f(x0 + h)� f(x0)�Ah|| = ||f(x0 + ⌘ei)� f(x0)� ⌘

2

666664

a1i

a2i
...

ani

3

777775
||

=

�����������

f1(x0 + hei)� f1(x0)� ⌘a1n

f2(x0 + hei)� f2(x0)� ⌘a2n
...

fm(x0 + hei)� fm(x0)� ⌘amn

�����������

< ✏|⌘| ; 8|⌘| < �
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=) |fj(x0 + ⌘ei)� fj(x0)� ⌘aji| < ✏|⌘| ; 8|⌘| < �

=) |
fj(x0 + ⌘ei)� fj(x0)

⌘
� aji| < ✏ ; 8|⌘| < �

=) aji =
dfj
dxi

(x0)

This proves the lemma.

Definition 1.10. f : U ! Rm is said to be fréchet di↵erentiable in U if 8x 2 U , f 0(x)

exists and is given by

f 0(x) =

2

666664

df1
dx1

(x) df1
dx2

(x) . . . df1
dxn

(x)
df2
dx1

(x) df2
dx2

(x) . . . df2
dxn

(x)
...

...
. . .

...
dfm
dx1

(x) dfm
dx2

(x) . . . dfm
dxn

(x)

3

777775

which is called the gradient matrix of f at x.

Remark 1.11. For f linear map, i.e f(x) ⌘ A.x, f 0(x) is same as A for all x.

Definition 1.12. For f : Rn
! Rm, assume f to be fréchet di↵erentiable at x, then,

for the gradient matrix Df(x), defined as above, which is a m⇥n matrix, we define the

Jacobian of f at x, denoted by Jf(x), to be

Jf(x) = [[Df(x)]]

Remark 1.13. f is fréchet di↵erentiable at x0 implies that all the partial derivatives of

f exist at x0.

The converse is not true, in general.

Counter-example : Consider the following function,

f(x, y) =

(
xy

x2+y2 if (x, y) 6= (0, 0)

0 else

)

Here,
df

dx
(0, 0) =

f(⌘, 0)� f(0, 0)

⌘
= 0

df

dy
(0, 0) =

f(0, ⌘)� f(0, 0)

⌘
= 0



14

And hence, ( dfdx(0, 0),
df
dy (0, 0)) exists.

Suppose f is fréchet di↵erentiable at (0, 0), then ,

f 0(0, 0) = (
df

dx
(0, 0),

df

dy
(0, 0)) = (0, 0)

Declare 0⇤ := (0, 0) 2 R2, then

|f(0⇤ + h)� f(0⇤)� f 0(0⇤)h| < ✏|h| ; 8|h| < �

=) |f(h)| < ✏|h| ; |h| < �

Let h = ⌘(1, 1) = (⌘, ⌘). Then |h| =
p
(2)|⌘| < � =) |⌘| < �/

p
2

Thus, f(h) = f(h1, h2) = f(⌘, ⌘) = 1 and this implies 1 = |f(h)| < (
p
2)✏⌘.

Let ⌘ ! 0 to get a contradiction.

Theorem 1.14. Let f : U ⇢ Rn
! Rm be a map such that

•
dfj
dxi

(x) exist, 8 1  j  m, 8 1  i  n, 8 x 2 U

• x !
dfj
dxi

(x) is continuous.

Then f is fréchet di↵erentiable in U and as a m⇥ n matrix,

f 0(x) =


(
dfj
dxi

)

�

1jm,1in

Proof. Denote

G(x) =


(
dfj
dxi

)

�

1jm,1in

By the second point in the hypothesis of the theorem, G is continuous and hence, 8x 2 U ,

given ✏ > 0, 9� > 0 such that

||G(x+ h)�G(x)|| < ✏, 8 |h| < �

Now, it is enough to show that 8j, fj : U ! R is di↵erentiable. Hence, consider for

the case m = 1, i.e f : U ! R and ( df
dx1

, . . . df
dxn

)(x) exist and is continuous, as per the

hypothesis of the theorem.

Let x 2 U and � > 0 such that B(x, �) ⇢ U . Let |h| < �, then x + h 2 B(x, �) ⇢ U .
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Let h = (h1, . . . , hn) and G(x) = ( df
dx1

. . . df
dxn

)(x). Consider

f(x+ h)� f(x) = f(x1 + h1, . . . , xn + hn)� f(x1, . . . xn)

=


f(x1 + h1, x2 + h2, x3 + h3, . . . , xn + hn)� f(x1, x2 + h2, . . . , xn + hn)

+f(x1, x2 + h2, . . . , xn + hn)� f(x1, x2, x3 + h3 . . . , xn + hn)

+f(x1, x2, x3 + h3 . . . , xn + hn)� f(x1, x2, x3, . . . , xn + hn)

...

+f(x1, . . . , xn�1, xn + hn)� f(x1, . . . xn)

�

=
nX

i=1


f(x1, . . . , xi�1, xi+hi, xi+1+hi+1, . . . , xn+hn)�f(x1, . . . , xi�1, xi, xi+1+hi+1, . . . , xn+hn)

�

Thus,

f(x+ h)� f(x)�G(x).h

=
nX

i=1


f(x1, . . . , xi�1, xi + hi, xi+1 + hi+1, . . . , xn + hn)

�f(x1, . . . , xi�1, xi, xi+1 + hi+1, . . . , xn + hn)

�
df

dxi
(x1, . . . , xn)hi

�

=
nX

i=1

hi

Z 1

0


df

dxi
(x1, . . . , xi�1, xi + thi, xi+1 + hi+1, . . . , xn + hn)

�
df

dxi
(x1, . . . , xn)

�
dt

Now, since df
dxi

is continuous, for a given ✏ > 0, 9� > 0 such that

8|h| < �,

����
df

dxi
(x1, . . . , xi�1, xi + thi, xi+1 + hi+1, . . . , xn + hn)�

df

dxi
(x1, . . . , xn)

���� < ✏

=) |f(x+ h)� f(x)�G(x).h|  ✏(
nX

i=1

|hi|), 8

X
|hi| < �

This tells that f is fréchet di↵erentiable and f 0 = G

Theorem 1.15. Let U ⇢ Rn open, V ⇢ Rm open.

Let f : U ! V , g : V ! Rp be two fréchet di↵erentiable maps. Then g � f : U ! Rp is
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fréchet di↵erentiable and as linear maps,

(g � f)0(x) = g0(f(x)) � f 0(x)

Remark 1.16. For fixed x, f 0(x) : Rn
! Rm is a linear map and g0(f(x)) : Rm

! Rp is

a linear map. Hence,

g0(f(x)) � f 0(x) : Rn
! Rp

is a linear map.

Explicitly, let f = (f1, f2, . . . fm) , g = (g1, g2, . . . , gp).

Then, in their respective coordinates,

f 0(x) =

2

666664

df1
dx1

(x) df1
dx2

(x) . . . df1
dxn

(x)
df2
dx1

(x) df2
dx2

(x) . . . df2
dxn

(x)
...

...
. . .

...
dfm
dx1

(x) dfm
dx2

(x) . . . dfm
dxn

(x)

3

777775

g0(y) =

2

666664

dg1
dy1

(y) dg1
dy2

(y) . . . dg1
dym

(y)
dg2
dy1

(y) dg2
dy2

(y) . . . dg2
dym

(y)
...

...
. . .

...
dgp
dy1

(y) dgp
dy2

(y) . . . dgp
dym

(y)

3

777775

Hence,

g0(f(x))�f 0(x) =

2

666664

dg1
dy1

(f(x)) dg1
dy2

(f(x)) . . . dg1
dym

(f(x))
dg2
dy1

(f(x)) dg2
dy2

(f(x)) . . . dg2
dym

(f(x))
...

...
. . .

...
dgp
dy1

(f(x)) dgp
dy2

(f(x)) . . . dgp
dym

(f(x))

3

777775

2

666664

df1
dx1

(x) df1
dx2

(x) . . . df1
dxn

(x)
df2
dx1

(x) df2
dx2

(x) . . . df2
dxn

(x)
...

...
. . .

...
dfm
dx1

(x) dfm
dx2

(x) . . . dfm
dxn

(x)

3

777775

=


(

mX

j=1

dgi
dyj

(f(x))
dfj
dxl

)

�

1ip ; 1ln

Proof. Proof of the theorem :

Let

f(x+ h)� f(x)� f 0(x).h = e(h)

By the di↵erentiability criteria,

|e(h)|

|h|
! 0 as |h| ! 0
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Also, f(x+ h) = f(x) + f 0(x)h+ e(h) holds and hence,

g(f(x+ h)) = g(f(x) + f 0(x)h+ e(h))

Let

⌘ = f 0(x)h+ e(h)

Then,

g(f(x+ h)) = g(f(x) + ⌘)

So,

g(f(x+ h))� g(f(x))� g0(f(x))f 0(x)h

= g(f(x) + ⌘)� g(f(x))� g0(f(x))f 0(x)h

= g0(f(x))⌘ + b(⌘)� g0(f(x))f 0(x)h

= g0(f(x))(⌘ � f 0(x)h+ b(⌘))

where b(⌘)
|⌘| ! 0 as |⌘| ! 0.

Looking at ⌘ , ⌘ = f 0(x)h+ e(h) =) |⌘| ! 0 as |h| ! 0 and

|g(f(x+ h))� g(f(x))� g0(f(x))f 0(x)h|

= |g0(f(x))e(h) + b(⌘)|

 (||g0(f(x))||+ 1)(|e(h)|+ |b(⌘)|)

Thus,
|g(f(x+ h))� g(f(x))� g0(f(x))f 0(x)h|

|h|


||g0(f(x))||+ 1)(|e(h)|+ |b(⌘)|)

|h|

As |⌘| ! 0 as |h| ! 0, the RHS of the above inequality tends to 0.

Hence g � f is di↵erentiable and

(g � f)0(x) = g0(f(x))f 0(x)

Example 1.1. let T : Rn
! Rm be a linear map given by

T (x) = Tx ⌘

2

666664

t11 t12 . . . t1n

t21 t22 . . . t2n
...

...
. . .

...

tm1 tm2 . . . tmn

3

777775

2

666664

x1

x2
...

xn

3

777775
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Then

T 0 = T

Proof.

T (x+ h)� T (x) = T (x) + T (h)� T (x) = T (h)

T is linear and by above,

T (x+ h)� T (x)� T (h) = 0

This tells that by the definition of the di↵erential, T 0 = T

1.3 Taylor’s formula

Notations 1.17. • For ⌦ ⇢ Rn,

Ck(⌦) := {f : ⌦ ! R ; f is k times di↵erentiable for all points in ⌦}

• Closed line segment [a, b] := {ta+ (1� t)b; t 2 [0, 1]}

• For ↵ = (↵1, . . . ,↵n) 2 Nn, define

D↵ :=

✓
d

dx1

◆(↵1)✓ d

dx2

◆(↵2)

. . .

✓
d

dxn

◆(↵n)

↵! := ↵1!↵2! . . .↵n!

x↵ ⌘ (x1, x2, . . . , xn)
↵ := x↵1

1 .x↵2
2 . . . . .x↵n

n

|↵| := ↵1 + ↵2 · · ·+ ↵n

Theorem 1.18. Taylor’s formula:

Let ⌦ be open in Rn and f 2 Ck(⌦). If x, y 2 ⌦ and the closed line segment [x, y] joining

x to y is also in ⌦,then,

f(x) =
X

|↵|k�1

D↵f(y)

↵!
(x� y)↵ + k

X

|↵|=k

(x� y)↵

↵!

Z 1

0
(1� t)k�1D↵f(x+ t(y � x))dt
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Lemma 1.19. Let N be a neighbourhood of the closed interval 0  t  1 in R and let

g 2 Ck(N), then,

g(1) =
k�1X

�=0

g(�)(0)

�!
+

1

(k � 1)!

Z 1

0
(1� t)k�1g(k)(t)dt

where g(k)(x) denotes the k-th derivative of g at x.

Proof. Integrate by parts, k many times to get :

1

(k � 1)!

Z 1

0
(1� t)k�1g(k)(t)dt

= �
g(k�1)(0)

(k � 1)!
+

1

(k � 2)!

Z 1

0
(1� t)k�2g(k�1)(t)dt

= �

k�1X

j=1

g(j)(0)

j!
+

Z 1

0
g0(t)dt

= �

k�1X

j=0

gj(0)

j!
+ g(1)� g(0)

Hence,

g(1) =
k�1X

j=0

g(j)(0)

j!
+

1

(k � 1)!

Z 1

0
(1� t)k�1g(k)(t)dt

Lemma 1.20. Let n � 1 , k � 0, ⇠ := (⇠i, ⇠2, . . . , ⇠n) 2 Rn , with ⇠ 2 A
n, where A is a

commutative algebra, then,

(⇠1 + ⇠2 + · · ·+ ⇠n)
k = k!

X

|r|=k

⇠r

r!

Proof. of the lemma : Fix k and the proof is by induction on n. For n = 2, by the

binomial theorem,

(⇠1 + ⇠2)
k =

nX

r=1

k!

r!(k � r)!
⇠r1⇠

k�r
2

= k!
X

|↵|=k

⇠↵

↵!
; for ↵ ⌘ (r, k � r)

Assume now that the lemma holds upto n� 1 and let ⌘ = ⇠2 + ⇠3 + · · ·+ ⇠n, then,

(⇠1 + ⇠2 + · · ·+ ⇠n)
k = (⇠1 + ⌘)k = k!

X

a+b=k

1

a!b!
⇠a1⌘

b
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= k!
X

a+b=k

⇠a1
a!

1

b!
(⇠2 + . . . ⇠n)

b

= k!
X

a+b=k

⇠a1
a!

1

b!
b!

X

�2+···+�n=b

⇠�1
2 . . . ⇠�n

n

�2! . . .�n!

= k!
X

a+b=k

X

�2+···+�n=b

⇠a1⇠
�2
2 . . . ⇠�n

n

a!�1! . . .�n!

= k!
X

|�|=k

⇠n

�!

This proves the lemma.

Corollary 1.21. Let

L = (⇠1
@

@x1
+ · · ·+ ⇠n

@

@xn
)

be the first order di↵erential operator . Then

Lk = k!
X

|↵|=k

⇠↵

↵!
D↵

Proof. Let

⌘ = (
@

@x1
, . . . ,

@

@xn
)

Apply the lemma to (⇠1⌘1 + · · ·+ ⇠n⌘n) to get :

Lk = (⇠1⌘1 + · · ·+ ⇠n⌘n)
k

= k!
X

|↵|=k

⇠↵1
1 . . . ⇠↵n

n ⌘↵1
1 . . . ⌘↵n

n

↵1! . . .↵n!

= k!
X

|↵|=k

⇠↵

↵!
D↵

Proof. of the theorem. Let x, y 2 ⌦ such that ty + (1� t)x 2 ⌦ for all t 2 [0, 1]. Let

g(t) = f(ty + (1� t)x)

Then, g(0) = f(x), g(1) = f(y). Let ⇠i = yi � xi, then,

dg

dt
=

nX

i=1

@f

@xi
(x+ t(y � x))(yi � xi)
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= (⇠1
@

@x1
+ . . . ⇠n

@

@xn
)f(x+ t(y � x))

Hence, from the corollary, we have,

d(j)g

dtj
= (⇠1

@

@x1
+ . . . ⇠n

@

@xn
)jf(a+ t(y � x))

= j!
X

|↵|=j

⇠↵

↵!
D↵f(a+ t(y � x))

From the lemma 1.19 , we have,

f(y) =
k�1X

j=0

g(j)(0)

j!
+

1

(k � 1)!

Z 1

0
g(k)(t)(1� t)k�1dt

=
X

|↵|k�1

D↵f(x)

↵!
(y � x)↵ +

k!

(k � 1)!

Z 1

0

1

k!
g(k)(t)(1� t)k�1dt

=
X

|↵|k�1

D↵f(x)

↵!
(y � x)↵ + k

X

|↵|=k

(y � x)↵

↵!

Z 1

0
(1� t)k�1D↵f(x+ t(y � x))dt

This proves the taylor’s formula.

1.4 Some pre-requisite calculus.

1.4.1 Semi-continuity

Definition 1.22. Let
�
X, ||.||

�
be a normed space and f : X ! R be a function. f is

called lower semi-continuous at y if

8✏, 9� > 0 ; ||x� y|| < � =) f(x) > f(y)� ✏

Definition 1.23. Let
�
X(, ||.||

�
be a normed space and f : X ! R be a function. f is

called upper semi-continuous at y if

8✏, 9� > 0 ; ||x� y|| < � =) f(x) < f(y) + ✏

Theorem 1.24. f is lower semi-continuous at y () for all xn ! y, lim infn!1 f(xn) �

f(y).
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Proof. Let f be lower semi- continuous and let y 2 X. Let xn ! y, that is, ||xn�y|| ! 0

as n ! 1. Let ✏ > 0 be chosen and fixed for the argument.

Then, there is N 2 N such that, for n � N , ||xn � y|| < �, where � is chosen as per the

definition of lower semi-continuity, i.e 9�, for the fixed ✏, with f(xn) > f(y) � ✏. Thus

for all n > N , f(xn) > f(y)� ✏ and hence,

inf
k�N

f(xk) > f(y)� ✏

=) lim
n!1

inf
k�n

f(xk) � f(y)� ✏

=) lim inf
n!1

f(xn) � f(y)

Coversely, suppose that f is not lower semi-continuous at y, then, there is ✏ > 0 such

that for any � > 0, there is x� with

||x� � y|| < � =) f(x�)  f(y)� ✏

Let � = 1
n and denote xn = x�.

=) lim inf
n!1

f(xn)  f(y)� ✏  f(y)

There is N 2 N, such that for all n � N , ||xn � y|| < � and thus,

=) inf
n>N

f(xn)  f(y)� ✏

=) lim inf
n

f(xn)  f(y)� ✏

This contradicts the fact that :

lim inf
n!1

f(xn) � f(y)

Remark 1.25. f is upper semi-continuous at y () for all xn ! y, lim infn!1 f(xn) 

f(y).

The proof is similar to that of the previous theorem, but it has to be applied to the class

upper semicontinuous functions.

Theorem 1.26. f is lower semi- continuous () 8t, Ut := {x 2 X ; f(x) > t} is

open.
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Proof. Let f be lower semi-continuous and let y 2 Ut, then f(y) > t. For ✏ su↵eciently

small, we have f(y) > t+ ✏. By the assumption , there is � > 0 such that

||x� y|| < � =) f(x) > f(y)� ✏ > t

Thus,

B(y, �) ⇢ Ut

Thus Ut is open.

Conversely, suppose that f is not lower semi-continuous at y, then, there is an ✏ > 0

so that 8� > 0, there is x� such that ||x� � y|| < � and f(x�)  f(y) � ✏. Denote

� = 1
n , x� = xn and t = f(y)� ✏

2 . Then there is a sequence {xn} such that xn ! y with

f(xn)  f(y)� ✏ = 1� ✏
2 . But f(y) = t+ ✏

2 > t =) y 2 Ut. Thus, there is some r > 0

such that B(y, r) ⇢ Ut. Now, xn ! y as n ! 1 and hence 9N 2 N such that, for all

n > N , ||xn � y|| < r and f(xn) > t. This contradicts the fact that f(xn)  t� ✏
2 .

Remark 1.27. f is upper semi- continuous () 8t, Ut := {x 2 X ; f(x) < t} is open.

The proof is similar to the above theorem.

Remark 1.28. This theorem tells that f is either upper or lower semi-continuous implies

that it is measurable, where the definition of measurable functions is given in the next

section.

1.5 Measure Theory

1.5.1 Some set theoretic measure theory.

Let X be a non empty set and P(X) denote the set of all subsets of X.

Definition 1.29. m : P(X) ! R+
⌘ [0,1) is called a measure if for all A,B,Ai 2 P(X)

( ; i = 1, 2, . . . ), m satisfies

• m(�) = 0

• Monotone property : If A ⇢ B , then m(A)  m(B)

• Countable sub-additivity : If A =
S

1

i=1Ai, then m(A) 
P

1

i=1m(Ai)

Here (X,m) is called a measure space.
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Definition 1.30. Consider (X,m) to be the measure space as defined in the earlier

point. A set A ⇢ X is called measurable set ( or m - measurable set ) if for all E ⇢ X,

m(E) = m(E \A) +m(E \Ac)

Definition 1.31. A measure m on X is called regular if for all sets A ⇢ X, there is a

m� measurable set B such that A ⇢ B and m(A) = m(B)

Definition 1.32. A measure m on Rn is called borel if every borel set is m� measur-

able,i.e every borel set B satisfies

8A ⇢ Rn , m(A) = m(A \B) +m(A \Bc)

Definition 1.33. A measure m is borel regular if

• m is Borel

• For all A ⇢ Rn there is a borel set B such that A ⇢ B and m(A) = m(B)

Example : For a measure on a topological space to be borel, but not borel regular.

Consider the space to be R with the topology given by just {�,R}. Associate counting

measure m to the above space. Observe that since, m(R) = 1, m(�) = 0, m({0}) = 1,

there is no borel set B, open in the prescribed topology such that m{0} ⌘ mB, in measure.

Example : For a measure on a topological space such that , there is some borel set

such that it cannot be approximated by open sets.

Consider the space to be R and associate it with the counting measure m along with the

standard topology, generated by open intervals. Note that any open sets can be written

as disjoint union of open intervals. Since, each intervals contain infinitley many point,

counting measure of any open set is by default 1. Also, clearly {0} is a borel set. As

m({0}) = inf{m(U) ; {0} ⇢ U , U is open.}

LHS = 1. But RHS is always infinity. Hence, {0}, which is a borel set, cannot be ap-

proximated by open sets from the outside in measure.

Definition 1.34. A measure m on Rn is a radon measure if m is borel regular and

m(K) < 1 for all compact sets K ⇢ Rn

Definition 1.35. For X a set and P(X) to be it’s power set, we define F ⇢ P(X) to be

sigma-algebra (� - algebra) of X if
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• �, X 2 S

• {Ai}
1

i=1 2 F =)
S

1

i=1Ai 2 F

• A 2 F =) Ac
2 F

Definition 1.36. For X a set and P(X) to be it’s power set, we define S ⇢ P(X) to be

semi-algebra of X if

• �, X 2 S

• A,B 2 S =) A \B 2 S

• A 2 S =) Ac =
S

finiteBi ; such that Bi’s are disjoint and are elements of S

Definition 1.37. For the before defined X and P(X), A ⇢ P(X) is called an algebra of

sets if

• A is a semi algebra.

• A,B 2 A =) A
S
B 2 A

Theorem 1.38. Caratheodory theorem:

Let (X,m) be a measure space and define A 2 P(X) is said to be measurable if for all

E 2 P(X),

m(E) = m(E \A) +m(E \Ac)

Let

F = { all measurable sets as defined earlier}

Then

• F 6= �.

• F is a �� algebra.

• Countable additivity : If A =
S

1

i=1Ai, with A,Ai 2 F , Ai’s are disjoint, then

m(A) =
1X

i=1

m(Ai)

• Complete measure space : For a set N 2 P(X), it is called a null set if m(N) = 0.

Here all the null sets belong to F for the above definiton of m,F .

Lemma 1.39. If A and B are in F , then A
S
B,Ac, Bc

2 F , i.e if A and B are

measurable, then A
S
B and Ac, Bc is measurable.
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Proof. Clearly, A 2 F implies Ac
2 F , by the definition of measurable sets. Any set (

in particular , here A ) is measurable implies for any C 2 P(X), we have

m(C) = m(C \A) +m(C \Ac)

Notice that it is su�cient that m(C) � m(C \ A) +m(C \ Ac) holds, is equivalent to

saying that the set A is measurable, as the other inequality follows from sub additive

property. In particular, we have for C ⌘ C \Bc,

m(C \Bc) = m(C \Bc
\A) +m(C \Bc

\Ac)

Notice that

C \ (A [B) = (C \B) [ (C \A \Bc)

Hence,

m(C \ (A [B))  m(C \B) +m(C \A \Bc)

Thus, from the above 2 equations,

m(C \ (A [B)) +m(C \Bc
\Ac)  m(C \B) +m(C \A \Bc) +m(C \Ac

\Bc)

= m(C \B) +m(C \Bc)

= m(C)

This proves the lemma.

Lemma 1.40. For any set A 2 P(X) and E1, E2, . . . , En, finite sequence of disjoint

measurable sets , we have

m

✓
A \

⇥ n[

i=1

Ei
⇤◆

=
nX

i=1

m(A \ Ei)

Proof. The proof proceeds by the induction on n. This is clearly true for n = 1. Assume

that the statement is true upto the case n � 1. For the case of n, notice that Ei’s are

disjoint and hence,

A \

 n[

i=1

Ei

�
\ En = A \ En

A \

 n[

i=1

Ei

�
\ Ec

n = A \

 n�1[

i=1

Ei

�
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Hence,

m

✓
A \

⇥ n[

i=1

Ei
⇤◆

= m(A \ En) +m

✓
A \

⇥ n�1[

i=1

Ei
⇤◆

By the process of induction, we have

= m(A \ En) +
n�1X

i=1

m(A \ Ei)

=
nX

i=1

m(A \ Ei)

This proves the lemma.

Proof. of the theorem 1.38:

• F is not empty as trivially X,� 2 F i.e they satisfy the formula for the measura-

bility of sets, as mentioned in the hypothesis of the theorem.

• F is a sigma algebra :

– Clearly, X,� 2 F .

– Lemma 1.39 tells that F is an algebra of sets. If {Ai}
1

i=1 2 F , then it is

required to show
S

1

i=1Ai is in F .

Declare

Bn =

8
><

>:

An if n = 1.

An �

Sn�1
i=1 Ai

�
else.

9
>=

>;

Hence, [

i

Ai =
[

i

Bi , say , it is equal to E

and

Bi’s are pairwise disjoint, by construction.

Let

Gn =
n[

i=1

Bi

Then Gn’s are measurable for all n and Ec
⇢ Gc

n for all n.

So, for any arbitrary set A, we have

m(A) = m(A \Gn) +m(A \Gc
n) � m(A \Gn) +m(A \ Ec)
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By the lemma 1.40,

m(A \Gn) =
nX

i=1

m(A \Bi)

Thus, combining the above 2 equations , we have

m(A) �
nX

i=1

m(A \Bi) +m(A \ Ec)

Note that the LHS of the above is independent of n and hence,

m(A) �
1X

i=1

m(A \Bi) +m(A \ Ec)

� m(A \ E) +m(A \ Ec)

This proves that the countable union of measurable sets is measurable.

– If A is measurable, i.e it satisfies the formula mentioned in the hypothesis,

Ac also satisfy the same formula as for A and hence Ac
2 F .

• To prove the additivity of measure of countable disjoint sets {Ai}.

n[

i=1

Ai ⇢

1[

i=1

Ai

Hence,

m

✓ 1[

i=1

Ai

◆
� m

✓ n[

i=1

Ai

◆

With the use of A = X in lemma 1.40,

=
nX

i=1

m(Ai)

The left hand side is independent of n. And hence,

m(
1[

i=1

Ai) �
1X

i=1

m(Ai)

The other inequality follows form the subadditivity.

• If N is a set of measure 0, then for any A 2 P(X), m(N \ A)  m(N) = 0 =)

m(N \A) = 0. Hence,

m(N \A) +m(A \N c) = m(A \N c)  m(A)
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Hence all null sets are measurable.

Lemma 1.41. Let S ⇢ P(X) be a semi algebra. Let

A =
nSk

i=1Ai;Ai 2 S

o

Then A is an algebra.

Proof. A,B 2 A =) A =
Sk

i=1Ai and B =
Sl

j=1Bj . Hence,

• A \B =
S

i,j(Ai \Bj) 2 A as S is closed under finite intersection.

• A 2 S =) Ac =
Sk

i=1Ai, Ai 2 S, by the property of semi algebra and hence

Ac
2 A.

• Let A =
Sk

i=1Ai 2 A, then Ac = \
k
i=1A

c
i ;A

c
i 2 A =) Ac

2 A

Hence A is an algebra.

Definition 1.42. A is called the algebra generated by S, constructed as in the previous

lemma.

Theorem 1.43. Let m be a regular measure on X. If

A1 ⇢ A2 ⇢ · · · ⇢ An ⇢ . . .

then

lim
k!1

m(Ak) = m(
1[

k=1

Ak)

Proof. Sincem is regular, there are measurable sets {Ck}
1

k=1 with Ak ⇢ Ck andm(Ak) =

m(Ck) for all k. Declare

Bk = \j�kCj

Then, Ak ⇢ Bk ⇢ Ck and each Bk is m� measurable. Also, m(Ak) = m(Bk). Thus,

lim
k!1

m(Ak) = lim
k!1

m(Bk) = m

✓ 1[

k=1

Bk

◆
� m

✓ 1[

k=1

Ak

◆
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Note that Ak ⇢
S

1

j=1Aj . Hence,

lim
k!1

m(Ak)  m

✓ 1[

k=1

Ak

◆

Remark 1.44. Here Ak’s need not be measurable.

Definition 1.45. Let m be a measure on X and A ⇢ X. Then m restricted to A,

written as

(m|A)

is the measure defined by

(m|A)(B) := m(A \B) ; for all B ⇢ X

Lemma 1.46. Let m be a borel, regular measure on Rn. Suppose A ⇢ Rn is m�

measurable and m(A) < 1. Then (m|A) is radon measure.

Proof. Declare

m = (m|A)

Since every m� measurable set is m� measurable, m is a borel measure.

Claim: m is borel regular.

Proof of the claim : Since m is borel regular, there exist a borel set B such that A ⇢ B

and m(A) = m(B) < 1. Since A is m� measurable,

0 = m(B)�m(A) = m(B �A)

Choose C ⇢ Rn, then,

(m|B)(C) = m(C \B)

= m(C \B \A) +m((C \B)�A)

 m(C \A) +m(B �A)

= (m|A)(C)

Thus, by subadditivity and above result,

(m|B) = (m|A)

And hence, one can assume A is a borel set.

Consider C ⇢ Rn. It is required to show the existence of a borel set D such that
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• C ⇢ D

• m(C) = m(D)

Since, m is borel, regular measure, there is a borel set E such that

A \ C ⇢ E

m(E) = m(A \ C)

Declare

D := E [ (Rn
�A)

Since A and E are borel, so is D. Also,

C ⇢ (A \ C) [ (Rn
�A) ⇢ D

Finally, since D \A = E \A holds, we now have

m(D) = m(D \A) = m(E \A)  m(E) = m(A \ C) = m(C)

Clearly m(K) < 1 , for all compact sets K.

Remark 1.47. If A is a borel set, then (m|A) is borel regular, irrespective of finiteness

of m(A).

Lemma 1.48. Let (X, d) be a metric space and m be a measure on X.

Let H denote the set of all m� measurable sets.

(A) Assume that

• m(X) < 1

• B ⇢ H, where B is the �� algebra of borel sets.

Let A 2 B and ✏ > 0, then there is a closed set F and an open set U such that

• F ⇢ A ⇢ U

• m(A� F )  ✏
2

• m(U �A) < ✏
2

(B) Assume that



32

• m is borel.

• There is a sequence of open sets {Uk}
1

k=1 such that

– m(Uk) < 1

– X =
S

1

k=1 Uk

Let A be a borel set, then

m(A) ⌘ inf{m(U) ; A ⇢ U,U is open}

Proof. (A) : Let

F =
n
A 2 H ; For each ✏ > 0, there is a closed set C ⇢ A such that m(A� C) < ✏

o

Notice that, by definition, all closed sets are in F .

Claim 1: If {Ai}
1

i=1 ⇢ F , then A := \
1

i=1Ai 2 F .

Proof of the claim 1 : Fix ✏ > 0. Since, Ai 2 F , there is a closed set Ci ⇢ Ai with

m(Ai � Ci) <
✏

2i
(i = 1, 2, . . . )

Let C := \
1

i=1Ci. Then C is clearly closed and

m(A� C) = m(\1

i=1Ai � \
1

i=1Ci)

 m(
1[

i=1

(Ai � Ci))



1X

i=1

m(Ai � Ci) < ✏

And hence, A 2 F . This proves the claim 1.

Claim 2 : If {Ai}
1

i=1 ⇢ F , then A :=
S

1

i=1Ai 2 F .

Proof of the claim 2 : Fix ✏ > 0. Choose Ci as above and since m(A)  m(X) < 1,

lim
m!1

m(A�

m[

i=1

Ci) = m(
1[

i=1

Ai �

1[

i=1

Ci)

 m(
1[

i=1

(Ai � Ci))



1X

i=1

m(Ai � Ci) < ✏
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Thus, by the convergence of the tail of the series to 0, there is an integer m such that

m(A�

m[

i=1

Ci) < ✏

But
Sm

i=1Ci is closed and hence, A 2 F . This proves the claim 2.

Claim 3 : Every open set of X, can be written as the countable union of closed sets.

Proof of the claim 3 : If @U = �, then U = X which is both open and closed. Hence,

consider the case @U 6= �. Let

Fn : {x 2 U ; d(x, @U) �
1

n
}

Fn’s are clearly closed and U =
S

1

n=1 Fn.

This proves the claim 3.

Thus, by the claim 1, U 2 F . By the claim 3, we have F contains all the open sets as

well. Now declare

G := {A 2 F ; Rn
�A 2 F}

The purpose of construction of G is that if A 2 G , then Ac
2 G . Also, notice that G

contains all the open sets.

Claim 4 : If {Ai}
1

i=1 ⇢ G, then A :=
S

1

i=1Ai 2 G.

Proof of the claim 4 : Claim 4 is a trivial consequence of the claim 2 and the fact of

demovier’s inequality that is (
S

Ai)c = \(Ac
i ) and (\Ai)c =

S
(Ac

i ). This proves the

claim 4.

Thus G is a sigma algebra containing all the open sets and by the definition of the borel

sigma algebra, i.e the smallest sigma algebra containing the open sets, G contains the

borel sigma algebra. In particular, B 2 G and hence by the construction of F and G,

given ✏ > 0, there is a closed set C ⇢ B such that

m(B � C) < ✏

Now, C ⇢ X � E () E ⇢ X � C = U , where U is open.

=) m(U � E) = m
�
(X � C)� E

�
= m

�
(X � E)� C

�
< ✏

=) m(E) = inf{m(U) ; U is open and E ⇢ U}

This proves (A).

(B) : Let D be a borel set and mn := (m|Un), then mn is a finite borel measure and

hence, by the earlier part of this lemma, for every ✏ > 0, there is an open set V 0
n such

that
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• Un \D ⇢ V 0
n

• m
�
(Un \ V 0

n)� (Un \D)
�
< ✏

2n

Declare Vn := V 0
n \ Un, then

Un \D ⇢ Vn ⇢ V 0

n

Vn ⇢ Un

m
�
Vn � (Un \D)

�
= m

�
(V 0

n \ Un)� (Un \D)
�
<

✏

2n

Let V =
S

1

n=1 Vn, then

D =
1[

n=1

Un \D ⇢ V

m(V �D) = m

✓ 1[

n=1

Vn �

1[

n=1

(Un \D)

◆


1X

i=1

m

✓
Vi � (Ui \D)

◆
< ✏

=) m(D) = inf{m(V ) ; D ⇢ V }

This proves the (B) part and hence the lemma.

Corollary 1.49. Let m be a borel measure on Rn and A be a borel set such that m(A) <

1. Then,

•

m(A) = sup{m(F ) ; F ⇢ A,F is closed. }

m(A) = inf{m(U) ; A ⇢ U,U is open. }

• Let m be a radon measure. Then, for all sets A ⇢ Rn,

m(A) = inf{A ⇢ U ; U is open. }

Proof. Identify Rn as a metric space with the usual euclidean metric, i.e

d(x, y) ⌘ d
�
(x1, x2, . . . , xn), (y1, y2, . . . , yn)

�
=

vuut
nX

i=1

|xi � yi|2

Let m1(C) = m(A \ C), then, from the previous lemma, (1) follows. Let m be a radon

measure. Then, for every compact set K ⇢ Rn, m(K) < 1.

=) m(Uk) = m
�
B(0, k)

�
 m

�
B(0, k)

�
< 1

where Uk := B(0, k) is a ball around 0 with radius k. Note that Rn =
S

1

k=1B(0, k).

Let A ⇢ Rn. Case 1 : m(A) = 1 : Take U = Rn.
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Case 2 : m(A) < 1. By the borel regularity, there is a borel set E such that A ⇢ E

and m(A) = m(E) < 1. From the previous lemma,

m(A) = m(E) = inf{m(U) ; E ⇢ U,U is open. }

Since A ⇢ W , W is open, it implies that m(A)  m(W ) and thus,

m(A)  inf{m(W ) ; W is open, A ⇢ W}  inf{m(U) ; E ⇢ U,U is open } = m(E) = m(A)

This proves the corollary.

Theorem 1.50. Caratheodory’s criterion:

Let m be a measure on Rn as defined earlier. If m(A
S
B) = m(A) + m(B) for all

A,B ⇢ Rn with dist(A,B) := inf{|a� b| ; a 2 A, b 2 B} to be strictly positive, then m

is borel measure.

Proof. It is su�cient to show that all closed sets are measurable. Suppose C ⇢ Rn is

closed, it is required to show that for any A ⇢ Rn,

m(A) � m(A \ C) +m(A� C)

If m(A) = 1, then the above inequality is obvious. Now assume m(A) < 1.

Declare

Ck = {x 2 Rn ; dist(x,C) 
1

k
} ; for all k 2 N

Then, dist(A� Ck, A \ C) � 1
k > 0. From the hypothesis, we have

m(A� Ck) +m(A \ C) = m((A� Ck) [ (A \ C))  m(A)

Claim : limn!1m(A� Cn) = m(A� C).

Suppose that the claim is true, then taking limit n ! 1 on both the sides, we get,

m(A� C) +m(A \ C)  m(A)

This proves the theorem.

Proof of the claim : Declare

Rk := {x 2 A ;
1

k + 1
< dist(x,C) 

1

k
} ; for all k 2 N

Let x 2 A�C. Suppose that d(x,C)  1
k , for all k, then d(x,C) = 0. Hence, x 2 C = C,

which is a contradiction.
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Thus d(x,C) > 0.

Now, for k 6= l,

R2k \R2l = �

R2k+1 \R2l+1 = �

=)
kX

l=1

m
�
R2l

�
= m

✓ k[

l=1

R2l

◆
 m(A)

and

kX

l=1

m
�
R2l+1

�
= m

✓ k[

l=1

R2l+1

◆
 m(A)

=)
2k+1X

l=1

m(Rl) 
kX

l=1

m(R2l) +
kX

l=1

m(R2l+1)  2m(A) < 1

Letting k ! 1, we get
1X

l=1

m(Rl)  m(A) < 1

=) lim
k!1

1X

l=k

m(Rl) = 0

Now, for k > 0,

A� Ck ⇢ A� C ⇢
�
A� Ck

�
[

1[

l=k

Rl

=) m
�
A� Ck

�
 m(A� C)  m

�
A� Ck

�
+

1X

l=k

m(Rl)

Letting k ! 1,

=) lim sup
k!1

m
�
A�Ck

�
 m(A�C)  lim inf

k!1

m
�
A�Ck

�
+ lim

k!1

1X

l=k

m(Rl) = lim inf
k!1

m(A�Ck)

This proves the claim.

Definition 1.51. Let S ⇢ P(X) be a semi algebra and m : S ! R+ is called a measure

if

• m(A) � 0, for all A 2 S.

• A ⇢ B =) m(A)  m(B).

• If A =
S

1

i=1Ai with A,Ai 2 S , Ai’s are disjoint , then m(A) =
P

1

i=1m(Ai).
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Lemma 1.52. Let m be a measure on the semi algebra S ⇢ P(X). Let A be the algebra

generated by S. Define,

m : A ! R+

m(A) =
kX

i=1

m(Ai); for A =
k[

i=1

Ai, where Ai’s are disjoint elements of A.

Then m is well defined and satisfies

• m(A) � 0 for all A 2 A.

• A =
S

1

i=1Ai with A,Ai 2 A, Ai’s are disjoint. Then m(A) =
P

1

i=1m(Ai).

Proof. (Step 1) : Let A =
Sn

i=1Bi ; Bi 2 S. Define

C1 = B1

C2 = Bc
1 \B2

C3 = Bc
1 \Bc

2 \B3

...

Cn = Bc
1 \Bc

2 \ . . . \Bc
n�1 \Bn

This gives Ci’s to be disjoint and Bi 2 S =) Bc
i =

niS
ji=1

Siji with Siji 2 S and are

disjoint. Hence,

C1 = B1 2 S

C2 = B2 \ ([n1
j1=1S1j1) =

n1[

j1=1

(S1j1 \B2)

C3 = B3 \ ([n1
j1=1S1j1) \ ([n2

j2=1S2j2) =
n1[

j1=1

n1[

j2=1

S1j1 \ S2j2 \B3

...

Cn = Bn \ ([n1
j1=1S1j1) \ ([n2

j2=1S2j2) \ . . . \ ([nn
jn=1Snjn)

=
n1[

j1=1

n2[

j2=1

. . .
nn[

jn=1

(Bn \ S1j1 \ S2j2 \ . . . \ Snjn)

Hence, define :

B2,j1 = B2 \ S1j1 for 1  j1  n1

And similarly define,

B3j1,j2 = B3 \ S1j1 \ S2,j2
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...

Bn,j1,...,jn�1 = Bn \ S1,j1 . . . Sn�1,jn�1

Then,

C1 = B1

C2 =
n2[

j=1

B2j

...

Cn =
n1[

j1=1

. . .
nn[

jn�1=1

Bn,j1,...,jn�1

Since Ci’s are disjoint elements of S, we have {B1, B2,j1 , B3j1,j2 , . . . , Bn,j1,...,jn�1} to be

disjoint elements and

A =
N[

i=1

Bi =
N2[

i=1

Ci

for some N2 i.e every element of A 2 A is written as the disjoint union of elements from

S , which may not be unique.

(Step 2) : Let A =
SN1

i=1Ai =
SN2

i=1Bi , Ai, Bi 2 S with Ai’s disjoint and Bi’s disjoint.

Hence,

Ak =
N2[

i=1

(Bi \Ak) ; Bj =
N1[

i=1

(Bj \Ai)

Hence,

m(Ak) =
N2X

i=1

m(Bi \Ak)

N1X

k=1

m(Ak) =
N1X

k=1

N2X

i=1

m(Bi \Ak)

Summing over leads to

=
N2X

i=1

m([(Bi \Ak)) =
N2X

i=1

m(Bi)

Hence m(A) =
P

m(Ak) is independent of representation and hence is well defined.

(Step 3) : Let A =
SN

i=1Ai , A,Ai 2 A with Ai’s disjoint. Then,

m(A) =
NX

i=1

m(Ai)
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From step (1),

Ai =
Ni[

j=1

Sij , Sij 2 S with Sij ’s to be disjoint.

A =
N[

i=1

Ni[

j=1

Sij

Since Ai’s are disjoint , Sij ’s are disjoint and hence,

m(A) =
NX

i=1

NiX

j=1

m(Sij) =
NX

i=1

m(Ai)

(Step 4) : Let A =
S

1

i=1Ai with Ai’s to be disjoint and A,Ai 2 A and Ai’s are disjoint.

Let

A =
N[

i=1

Si, Si 2 S =) m(A) =
NX

l=1

m(Sl)

Ai =
Ni[

j=1

Sij ; Sij 2 S ; Sij ’s are disjoint =) m(Ai) =
NiX

j=1

m(Sij)

Then,
N[

i=1

Si = A =
1[

i=1

Ni[

j=1

Sij

Sl =
1[

i=1

Ni[

j=1

(Sij \ Sl) for all 1  l  N

Since Sjk \ Sl 2 S, (Sij \ Sl) \ (Spr \ Sl) = (Sij \ Spr) \ Sl = � is (i, j) 6= (p, r). Now,

by the definition of m, we have

m(Sl) =
1X

i=1

NiX

j=1

m(Sij \ Sl)

m(A) =
NX

l=1

m(Sl) =
NX

l=1

1X

i=1

NiX

j=1

m(Sij \ Sl)

Sl \Ai =
Ni[

j=1

(Sl \ Sij) =) m(Sl \Ai) =
NiX

j=1

m(Sl \ Sij)

Hence,

m(Ai) =
NX

l=1

m(Sl \ Sij) =
NX

l=1

NiX

j=1

m(Sl \Ai) =
NX

l=1

NiX

j=1

m(Sl \ Sij)
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=)
1X

i=1

m(Ai) =
1X

i=1

NX

l=1

NiX

j=1

m
�
Sl \ Sij) = m(A).

1.5.2 Construction of measure on X for a given measure on Algebra.

Let S ⇢ P(X) be a semi algebra and m be a measure on S. Let A be the algebra

generated by S and m is the extension of m on A. For E ⇢ X, define

m⇤(E) = inf
nP

1

i=1m(Ai) ; E ⇢
S

1

i=1Ai , Ai 2 A

o

For E ⇢ F , and if F =
S

1

i=1Ai, then E ⇢
S

1

i=1Ai =) m⇤(E)  m⇤(F ).

Hence, by the caratheodory’s extension theorem, there is a complete �� algebra F ⇢

P(X) of measurable sets.

Theorem 1.53.

S ⇢ F

Proof. We need to show that if A 2 S, then A is measurable and m⇤(A) = m(A).

Since A ⇢ A 2 S , m⇤(A)  m(A)

Fix ✏ > 0 and choose Ai ⇢ A such that A 2
S

1

i=1Ai and

m⇤(A) �
1X

i=1

m(Ai)� ✏

Declare

Bi =

(
Ai if i = 1

Ai \Ac
1 \ . . . \Ac

i�1 else

)

Thus Bi’s are disjoint and
S
Ai =

S
Bi =) A ⇢

S
1

i=1Bi.

Also note that Bi ⇢ Ai =) m(Bi)  m(Ai).

Note A 2 S, A ⇢
S

iBi =) A =
S

i(A \Bi) ; A \Bi 2 A with (A \Bi)’s are disjoint.

Hence,

m(A) =
1X

i=1

m(A \Bi) 
1X

i=1

m(Bi) 
1X

i=1

m(Ai)

Hence,

m(A) 
1X

i=1

m(Ai)  m⇤(A) + ✏
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=) m⇤(A) = m(A)

Claim: A 2 S implies A is measurable.

Let E ⇢ X be any set and let ✏ > 0 such that E ⇢
S

1

i=1Ai with Ai 2 A.

m⇤(E) �
1X

i=1

m(Ai)� ✏

Let
S

1

i=1Ai =
S

1

i=1Bi with Bi 2 A and Bi’s are disjoint with Bi ⇢ Ai implies

m(Bi)  m(Ai). Hence,

m⇤(E) �
1X

i=1

m(Ai)� ✏ �
1X

i=1

m(Bi)� ✏

Now A \ E ⇢
S

i(A \Bi) and Ac
\ E ⇢

S
i(A

c
\Bi).

Hence, Bi = (Bi \ A)
S
(Bi \ Ac) and this implies m(Bi) = m(Bi \ A) + m(Bi \ Ac).

Also, by the previous part of the proof, m⇤(Bi) = m(Bi) and thus,

1X

i=1

m(Bi) �
1X

i=1

m(Bi \A) +
1X

i=1

m(Bi \Ac)

Since E ⇢ A ⇢
S

i(Bi \A) with Bi \A 2 A, by the definition of m⇤,

m⇤(E \A) 
X

i

m⇤(Bi \A)

Similarly

m⇤(E \Ac) 
X

i

m⇤(Bi \Ac)

Hence,

m⇤(E) �
1X

i=1

m⇤(Bi)� ✏ =
1X

i=1

m(Bi \A) +
1X

i=1

m(Bi \Ac)� ✏

= m⇤(E \A) +m⇤(E \Ac)� ✏

✏ was arbitrary and hence sending ✏ ! 0 we get the result of the theorem, i.e,

m⇤(E) � m⇤(E \A) +m⇤(E \Ac)

=) m⇤(A) = m(A)

Hence, A 2 F and m⇤ = m on A.

• Let X 6= � and F1,F2 be 2 sigma algebras in P(X). Assume:
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– F1 ⇢ F2

– There are measures m1 and m2 on F1 and F2 respectively such that m1 = m2

on F1.

Let F1 and F2 be the caratheodory completion of F1 and F2 with respect to m1

and m2 and denote the extenxion of measures to be m⇤

1 and m⇤

2 respectively. Then,

– If A ⇢ F1 and m⇤

1(A) = 0, then m⇤

2(A) = 0.

– m⇤

1 = m⇤

2 on F1

– F1 ⇢ F2

Proof. Let A ⇢ X, then, for j = 1, 2,

m⇤

j (A) ⌘ inf{
1X

i=1

mj(Bi) ; A ⇢

1[

i=1

Bi , Bi 2 Fj}

Then m⇤

2(A)  m⇤

1(A). Hence, m⇤

1(A) = 0 =) m⇤

2(A) = 0. But A 2 F1 implies

A 2 F2. This shows that F1 ⇢ F2.

Lemma 1.54. Some applications include

• Lebesgue measure on R :

Let

S = {(a, b] ; a, b 2 R}
[

{(a,1) ; a 2 R}
[

{(�1, b) ; b 2 R }

m((a, b]) = b� a

Claim : S is a semi algebra and m is a measure.

Proof.

(a1, b1] \ (a2, b2] =

(
� if b1  a2 or b2  a1

(max(a1, a2),min(b1, b2)] otherwise

)
2 S

Now,

R� (a, b] = (�1, a]
[

(b,1) 2 S

Let [a, b] =
S

1

i=1(ai, bi] with (ai, bi] disjoint. Let ✏ > 0 such that a+ ✏ < b. Then

[a+ ✏, b] ⇢
1[

i=1

(ai, bi +
✏

2i
)
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By compactness, 9 n(✏) ⌘ N 2 N such that

[a+ ✏, b] ⇢
N[

i=1

(ai, bi +
✏

2i
)

Hence,

b� a� ✏ 
NX

i=1

(bi � ai) + ✏
NX

i=1

1

2i



NX

i=1

(bi � ai) + ✏

b� a 

1X

i=1

(bi � ai)� 2✏

✏ > 0 was arbitrary and hence,

m((a, b]) = b� a 

1X

i=1

m((ai, bi])

Now, 8N > 0, ( SN
i=1(ai, bi] ⇢ (a, b]

{(ai, bi]} are disjoint.

)

Choose ✏ > 0 such that ai < bi �
✏
2i 81  i  N . Then

N[

i=1

(ai, bi �
✏

2i
) ⇢

[
[ai, bi] ⇢ (a, b]

And (ai, bi �
✏
2i )’s are mutually disjoint. Hence,

NX

i=1

(bi � ai)� ✏
NX

i=1

1

2i
 b� a

let ✏ ! 0 to get
NX

i=1

(bi � ai)  b� a

Let N ! 1 to get

1X

i=1

m(ai, bi] 
1X

i=1

(bi � ai)  b� a = m(a, b]

Hence,

m(a, b] =
1X

i=1

m(ai, bi]
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Thus , m is a measure on S. Hence, by the theorem, there is a complete ��

algebra F ⇢ P(R) and a measure m⇤ on F such that

– S 2 F

– m⇤ = m on S

�(S) ⇢ F and �(S) is Borel �� algebra on R. F is called the lebesgue measure

space with m⇤ = dx to be the lebesgue measure.

• Lebesgue measure on Rn :

Let

S =
nQn

i=1(ai, bi] ; a1 = �1 , bi = 1 are included and if bi = 1, then (ai, bi] = (ai,1)
o

Claim : S is a semi algebra.

Proof of the claim :

 
nY

i=1

(ai, bi]

!
\

 
nY

i=1

(ci, di]

!
=

nY

i=1

((ai, bi] \ (ci, di])

=
nY

i=1

(↵i,�i] 2 S

Let P(n) denote the power set of {1, 2 . . . , n}. Then, by induction,

✓ nY

i=1

(ai, bi]

◆c

=
Y

J2P(n)
DJ

where, DJ is the disjoint collection of sets in of the form : Let J ⌘ (j1, j2, . . . , jk),

then

DJ = A1 ⇥A2 ⇥ . . .⇥An, where

Ai = (ai, bi] if i /2 J

Ai = (ai, bi]
c
⌘ (�1, ai] [ (bi,1) if i 2 J

Hence, S is a semi algebra.

Claim : m is a measure on S.

Proof of the claim : For

nY

i=1

(ai, bi] =
1[

j=1

nY

i=1

(cji , d
j
i ]
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they are disjoint and thus

nY

i=1

X(ai,bi](xi) =
1X

j=1

nY

i=1

X(cji ,d
j
i ]
(xi)

Now, in each variable, dxi is the lebesgue measure.

Apply DCT to get
nY

i=1

(bi � ai) =
nX

j=1

nY

i=1

(dji � cji )

Hence, there is a complete �� algebra F0 and a measure m denoted by dx ⌘

dx1.dx2 . . . dxn such that S ⇢ F0 and m = m on S.

Here m = dx is called the n-dimensional lebesgue measure.

• Let (X,A, µ) and (Y,B, v) be 2 measure spaces and Z = X ⇥ Y . Let

S = {A⇥B ; A 2 A , B 2 B} ⇢ P(Z)

�(A⇥B) = µ(A).v(B)

Then S is a semi algebra and � is a measure on S.

Proof.

(A1 ⇥B1) \ (A2 ⇥B2) = (A1 \A2)⇥ (B1 ⇥B2)

(A⇥B)c = (Ac
⇥B) [ (A⇥Bc) [ (Ac

⇥Bc)

Thus S is a semialgebra. Let

A⇥B =
1[

i=1

(Ai ⇥Bi)

for Ai, A 2 A, Bi, B 2 B and Ai ⇥Bi’s are disjoint.

Then, for x 2 X, y 2 Y , we have,

XA(x)XB(y) = XA⇥B(x, y) =
1X

i=1

XAi⇥Bi(x, y)

=
1X

i=1

XAi(x).XBi(y)

Hence, by MCT, we have 8y 2 Y , we have

µ(A)XB(y) =
1X

i=1

µ(Ai)XBi(y)
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=) µ(A)v(B) =
1X

i=1

µ(Ai)v(Bi)

=) �(A⇥B) =
1X

i=1

�(Ai ⇥Bi)

Hence there is a complete �� algebra F ⇢ P(Z) and a measure �⇤ on F such that

– S ⇢ F

– �⇤ = � on S

�⇤ is called the product measure and sometimes denoted by µ⇥ v.

Let {(Xi,Fi,mi)}i2I be a family of probability spaces, i.e, mi(Xi) = 1 for all i 2 I.

Let

X =
Y

i2I

Xi := {(xi)i2I ; xi 2 Xi}

Let

S =

(
Y

i2I

Ai ; Ai 2 Fi, Ai = Xi for all but finitely many i

)

�

 
Y

i2I

Ai

!
:=
Y

i2I

mi(Ai)

Claim : S is a semi algebra and � is a measure.

Proof of the claim :

Y

i2I

Ai \
Y

i2I

Bi =
Y

i2I

(Ai \Bi) 2 S ; for
Y

i2I

Ai,
Y

i2I

Bi 2 S

Since Ai \Bi = Xi for all, but finitely many i. Let ↵ =
Q

i2I Ai , let

J0 := J0(↵) = {i 2 I ; Ai 6= Xi}

The clearly Card(J0) < 1. Hence, for J ⇢ J0, define

�J =
Y

i2I

CJ
i

where

CJ
i =

(
Xi if i /2 J

Ac
i if i 2 J

)

Thus �J \ �L = �, if J 6= L and

↵ =
[

J⇢J0

�J =
[

J⇢J0

Y

i2J

CJ
i
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And hence S is a semi algebra.

Define m : S ! [0, 1] as

m

✓Y
Ai

◆
=
Y

mi(Ai) =
Y

i2I;Ai 6=Xi

mi(Ai)

Claim : m defined as above, is a measure on the semi algebra.

Proof of the claim : Suppose

Y

i2I

Ai =
1[

j=1

 
Y

i2I

Cj
i

!
, for

Y

i2I

Cj
i \

Y

i2I

Ck
i = � , if j 6= k

Then, for x ⌘ (xi)i2I ,

Y

i2J0

XAi(xi) = X
Q

Ai
(x) =

1X

j=1

XQ
Cj

i
(x)

=
1X

j=1

Y

i2Jj

XCj
i
(xi)

where

J0 = {i 2 I ; Ai 6= Xi}

Jj = {i 2 I ; Cj
i 6= Xi}

Then, clearly Card(J0) < 1, Card(Jj) < 1. By DCT,

Y

i2I

XAi(xi) =
1X

j=1

Y

i2Jj

XCj
i
(xi)

Y

i2J0

mi(Ai) = m

 
Y

i2I

Ai

!
=

1X

j=1

0

@
Y

i2Jj

mi(C
j
i )

1

A =
1X

j=1

 
Y

i2I

Cj
i

!

Hence, m is a measure on S. Thus there is a complete ��algebra F0 � S and a

measure m on F0 such that m = m on S. Here m is called the product measure.

Lemma : Let X be a non-empty set and g : X ! [0,1] be a function. Define Ak For

k 2 N [ {0} as ,

(k = 0) , A0 := �

(k = 1) , A1 := {x ; g(x) � 1}
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( For k � 2) , Ak := {x ; g(x) �
1

k
+

k�1X

i=1

1

i
XAi(x)}

Then,

g(x) ⌘
1X

i=1

1

i
XAi(x)

Furthermore, if g is a measurable function, then Ai’s are measurable sets.

Proof. Suppose that g(x) = 1, then x 2 Ai, for all i. Hence,

1X

i=1

1

i
XAi(x) =

1X

i=1

1

i
= 1

Let 0  g(x) < 1. Since, for any k > 0,
P

1

i=k
1
i = 1, there are infinite sets K,L ⇢ N

such that K \ L = � and N = K [ L.

x /2 Ai for i 2 K and a 2 Al, for all l 2 L, define S : K ! L [ {0} as

S(j) = 0 if x /2 Ai , 8i < j

S(j) = max{i ; i < j , x 2 Ai}

Hence, for all j 2 K, x /2 Aj and x 2 AS(j), if S(j) 6= {0}.

=)
1

S(j)
+

S(j)�1X

i=1

1

i
XAi(x)  g(x) 

1

j
+

j�1X

i=1

1

i
XAi(x)

(i.e)
X

i<j

1

i
XAi(x)  g(x) 

1

j
+

X

{i<j ; i/2K}

1

i
XAi(x)

Since K is an infinite set, letting j ! 1, we get

g(x) =
1X

{i=1 ; i/2K}

1

i
XAi(x) =

1X

i=1

1

i
XAi(x)

Remark : In more generality, if ri > 0,
P

1

i=1 ri = 1, define

A0 := �

A1 := {x 2 X ; f(x) � r1}
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For k � 2, Ak := {x 2 X ; f(x) � rk +
k�1X

i=1

riXAi(x)}

Then,

f(x) ⌘
1X

i=1

riXAi(x)

Proof of the remark follows the same proof as in the previous lemma with ri =
1
i .

1.5.3 Geometry and measure theory on R

Denote m⇤ to be the outer lebesgue measure on R, that is

m⇤(A) = inf
nP

1

i=1 l(Ii) ; A ⇢
S

1

i=1 Ii

o

Ii := (ai, bi) , l(Ii) = bi � ai

Lemma 1.55. Vitali :

Let E be a set of finite outer measure and I be a collection of intervals which cover E in

the sense of vitali i.e given ✏ > 0 and x 2 E, 9I 2 I such that x 2 I and l(I) < ✏. Then

given ✏ > 0 there is a finite set of disjoint intervals {I1, . . . , In} of intervals in I such

that

m⇤


E �

n[

i=1

Ii

�
< ✏

Proof. Since, the endpoints of an interval is of measure zero, W.L.O.G we can assume

the intervals in I are closed. Also, since E is a set of finite outer measure, we can assume

that E ⇢ O , for some open set O of finite measure. The collection of intervals from I
which are contained in O, also form a vitali cover. Consider this new set to be I. Let

I 2 I, then I ⇢ O and thus l(I)  m(O) < 1 =) sup{l(I) ; I 2 I}  m(O) < 1.

Algorithm for choosing the disjoint intervals:

Let I1 be any interval of choice from I.
If E ⇢ I1, then nothing is to be done. Else, let

F2 := {I 2 I ; I \ I1 = �}

k2 := sup{l(I) ; I 2 F2}
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Now, choose I2 2 F2 such that l(I2) �
k2
2 .

By induction, suppose that I1, I2, . . . Ij�1 are chosen, then define

Fj := {I 2 I ; I \ Ik = �, 8k  j � 1}

kj := sup{l(I) ; I 2 Fj}

Choose Ij 2 Fj such that l(Ij) �
kj
2 .

This way, we generate a sequence of intervals {In} and kn < m(O) < 1, 8n.

Now [In ⇢ O implies
P

l(In)  m(O) < 1. Hence, given ✏ > 0, 9N such that
P

1

N+1 l(In) <
✏
5 .

Declare

R = E �

N[

n=1

In

Note that kn ! 0 as it is a tail of a convergent series.

Claim : m⇤R < ✏ which is the exact conclusion that is needed for the theorem.

Proof of the claim : Let x 2 R implies x 2 E and x 62 [
N
i=1Ii, which is a closed set by

assumption and hence, d(x,[N
i=1Ii) > 0.

Since the cover is vitali, there is an I 2 I such that x 2 I and I \ Ij = �, for all

j = 1, 2, . . . , N .

Suppose that I \ Ij = �, 8j, then l(I)  kj for all j and as kn !n!1 0, l(I) = 0 which

is a contradiction.

Hence, let n � N + 1 be the smallest integer such that I \ Ij = � for all j  n� 1 and

I \ In 6= �. Hence, I 2 Fn and thus l(I)  kn  2l(In). Let z 2 I \ In and m be the

midpoint of In, then for a 2 I,

dist(a,m)  dist(a, z) + dist(z,m)  l(I) +
l(In)

2
 2l(In) +

l(In)

2
=

5

2
l(In)

Let Jn be the interval around m , but with 5 times the radius of In. Hence, Jn covers

I, In, x,m. This implies x 2 Jn . Hence R ⇢

1S
n=N+1

Jn.

m⇤R 

1X

N+1

l(Jn)  5
1X

N+1

l(In)  5.
✏

5
= ✏

Theorem 1.56. For f : [a, b] ! R to be increasing monotone function,

• f 0 = df
dx exists for almost every x 2 [a, b].

• f 0 is measurable.
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•
R b
a f 0(x)dx  f(b)� f(a).

Proof. Define 4 quantities as follows :

D+f(x) = lim sup
h!0+

f(x+ h)� f(x)

h

D�f(x) = lim sup
h!0�

f(x+ h)� f(x)

h

D+f(x) = lim inf
h!0+

f(x+ h)� f(x)

h

D�f(x) = lim inf
h!0�

f(x+ h)� f(x)

h

And f is said to be di↵erentiable at x if all of the 4 quantities are same. Clearly,

D+f(x) � D+f(x) and D�f(x) � D�f(x)

The idea is to show that the set where the 2 derivatives are unequal is of measure zero,

i.e we want the set {x : D+f(x) > D�f(x)} and {x : D+f(x) > D�f(x)} to have

measure zero. Then, outside this set, all the derivatives are equal.

Consider the set E = {x : D+f(x) > D�f(x)}. The other case is similar.

E =
[

u,v2Q
Eu,v :=

[

u,v2Q

n
x : D+f(x) > u > v > D�f(x)

o

where Q is the set of rationals. It is good enough to show that m⇤(Eu,v) = 0. Since [a, b]

has finite measure, let s = m⇤(Eu,v). Note, it is not yet known if Eu,v is measurable,

hence the outer measure. Now, get an open set O such that Eu,v ⇢ O and m(O) < s+ ✏,

by the outer regularity.

Now, x 2 Eu,v ⇢ O =) 9h0 > 0 such that B(x, h0) ⇢ O. Modify with the condition

with D�(f) < v to get, for small h < h0 , f(x)�f(x�h) < v.h. Thus all, Ix = [x�h, x]

forms vitali cover for Eu,v.

By the previous theorem , there are finite intervals I1 . . . IN such that

m⇤(Eu,v �
SN

i=1 Ii) < ✏ and as a consequence,

NX

i=1

⇥
f(xi)� f(xi � hi)

⇤


NX

i=1

v.hi  v.m(O) < v(s+ ✏)
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Let the interior of these intervals cover a set A along with A \ Eu,v ⇢ A. Since,

A =
[

i

I�i

Eu,v = (Eu,v \A) \ (Eu,v �A)

we have

s = m⇤(Eu,v)  m⇤(Eu,v \A) +m⇤(Eu,v �A)  m⇤(Eu,v \A) + ✏

Hence,

m⇤(Eu,v \A) � s� ✏

Repeating the above logic of generating vitali cover for A \ Eu,v and looking at the

corresponding sum of images of f , with respect to D+(f) > u, we get J1, . . . JM which

covers a set B of A \ Eu,v with the properties :

• m⇤(A \ Eu,v �
SM

i=1 Ji) < ✏.

• Ji’s are disjoint and Ji is of the from [yi, yi + ki].

• Given i, 9l such that Jl ⇢ I�i .

• [f(yi + ki)� f(yi)] � uki.

Now,

Eu,v \A =

✓
Eu,v \A \

� M[

j=1

Jj
�◆[✓

Eu,v \A�
� M[

j=1

Jj
�◆

Hence,

s� ✏  m⇤(Eu,v \A)  m⇤

✓
Eu,v \A \

� M[

j=1

Jj
�◆

+ ✏

=) m⇤

✓
Eu,v \A \

� M[

j=1

Jj
�◆

� s� 2✏

Now,
MX

i=1

⇥
f(yi + ki)� f(yi)

⇤
> u

MX

i=1

ki = u
MX

j=1

l(Jj)

= u m

✓ M[

j=1

Jj

◆

� u m⇤

✓
Eu,v \A \

� M[

j=1

Jj
�◆
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> u(s� 2✏)

Summing over those i for which Ji ⇢ In,

f(xn)� f(xn � hn) �
X

i

f(yi + ki)� f(yi)

NX

n=1

f(xn)� f(xn � hn) �
X

i

f(yi + ki)� f(yi)

The above is got with the usage of f being non-decreasing function.

Hence, v(s+ ✏) > u(s� 2✏).

Now u > v =) s = 0 which also shows that Eu,v is measurable.

This gives that

h(x) = lim
h!0

f(x+ h)� f(x)

h

is defined almost everywhere and f is di↵erentiable when h is finite.

Set hn(x) = n[f(x+ 1/n)� f(x)] with declaration of f(x) = f(b) for x � b.

Now, hn ! f a.e and hence h is measurable. Thus,

Z b

a
f 0(x)dx  lim inf

k!1

Z b

a
hn(x)dx

= lim
n!1

n

 Z b+ 1
n

a+ 1
n

f(x)dx�

Z b

a
f(x)dx

�

= lim
n!1

n

 Z b+ 1
n

b
f(x)dx�

Z a+ 1
n

a
f(x)dx

�

= f(b)� f(a+)

where f(a+) := limx#a f(x). Since f(a)  f(a+), the theorem is proved.

Definition 1.57.

• For f : R ! R define f+ = max(f, 0) and �f� = min(f, 0).

• For f : [a, b] ! R and partition a = x0  x1  . . . xn�1  xn = b of [a, b] define

p =
nX

i=1

[f(xi)� f(xi�1)]
+

n =
nX

i=1

[f(xi)� f(xi�1)]
�
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t = n+ p =
nX

i=1

|f(xi)� f(xi�1)|

• Define P,N, T to be sup p , sup n and sup t, supremum taken over all partitions

of [a, b] respectively.

• Sometimes, the above P,N, T are also denoted by P b
a , N

b
a, T

b
a , referring the interval

[a, b].

• f : [a, b] ! R is said to be bounded variate over [a, b] if T is finite.

Remark 1.58. For notations as above, t = p+ n and P,N  T  P +N

Lemma 1.59. If f is bounded variate over [a, b], then T = P+N and f(b)�f(a) = P�N

.

Proof. For any subdivision of [a, b],

p = n+ f(b)� f(a)  N + f(b)� f(a)

and hence,

P  N + f(b)� f(a)

Reversing p and n, we get P �N = f(b)� f(a) . Hence,

T � p+ n = p+ p� [f(b)� f(a)] = 2p+N � P

And so,

T � 2P +N � P = P +N

Along with T  P +N , we get T = P +N

Theorem 1.60. f : [a, b] ! R is bounded variate i↵ f is a di↵erence of 2 monotone

functions.

Proof. Define P x
a to be the P for the interval [a, x] and similarly define, Nx

a and T x
a .

By the supremum property, they are increasing real valued. By the previous lemma,

f(x) = P x
a �Nx

a + f(a) which is the one way result needed.

Conversely, if f = g � h on [a, b] with g, h be increasing, then for any subdivision,

X

i

��f(xi)�f(xi�1)
�� 

X

i

⇥
g(xi)�g(xi�1)

⇤
+
X

i

⇥
h(xi)�h(xi�1)

⇤
= g(b)�g(a)+h(b)�h(a)

and hence T is bounded.
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Corollary 1.61. If f , for f : [a, b] ! R is bounded variate, then f is di↵erentiable

almost everywhere in [a, b].

Proof. Monotone functions are di↵erentiable almost everywhere by the earlier theorem

and sum of 2 di↵erenctiable functions is di↵erentiable.

Lemma 1.62. For f to be non negative integrable function over a set E. Then given

✏ > 0, there is a � > 0 such that

for every A ⇢ E, m(A) < � =)

Z

A
f < ✏

Proof. If f is bounded, say image of f is in [0,M ], then,
R
A f < M m(A). Choosing �

be ✏
M will do the job.

If f is not bounded, Truncate f as sequence with fn(x) = f(x) if f(x)  n and fn(x) = n

elsewhere. Then fn converges to f pointwise monotonically. Hence by MCT,
R
E f �

R
E fN < ✏/2. Letting � < ✏

2N , we get

Z

A
f =

Z

A
(f � fN ) +

Z

A
fN <

✏

2
+N m(A) < ✏

for all A with m(A) < �.

Lemma 1.63. If f is integrable on [a, b] , then the function F defined as

F (x) =

Z x

a
f(t)dt

is a continuous function of bounded variation on [a, b].

Proof. By the previous lemma, F is continuous.

It is just left to show that F is bounded variate.

For this consider any partition of [a, b] by a = x0 < x1 < · · · < xn = b then,

nX

i=1

��F (xi)� F (xi�1)
�� 

X

i

Z xi�1

xi

|f(t)|dt =

Z b

a
|f(t)|dt < 1

This is true for all partitions of [a, b] and T is thus bounded by
R b
a |f(t)|dt.

Lemma 1.64. If f is integrable on [a, b] and

Z x

a
f(t)dt = 0



56

for all x 2 [a, b], then f(t) = 0 a.e in [a, b].

Proof. (Proof by contradiction.) Suppose f is not 0 a.e, then assume W.L.O.G f > 0

on E which has a strict positive measure. By the inner regularity, there is a compact

set K ⇢ E such that
R
K f > 0. Now Kc = [(ai, bi) disjoint intervals. By hypothesis,

R bi
ai

f =
R bi
a f �

R ai
a f = 0. Let U = (a, b)�K. Then

0 =

Z b

a
f =

Z

K
f +

Z

U
f

=)

Z

U
f = �

Z

K
f

Now, Z

K
f 6= 0 =)

Z

U
f =

X

i

Z bi

ai

f 6= 0

But, for all i, Z bi

ai

f = 0 =)

Z

U
f = 0

This is a clear contradiction.

Lemma 1.65. If f is bounded and measurable on [a, b] and

F (x) =

Z x

a
f(t)dt+ F (a)

then, F 0(x) = f(x) for a.e x 2 [a, b].

Proof. By the lemma 1.63, F is bounded variate on [a, b] and hence f 0 exists for almost

all x 2 [a, b].

Declare

fn(x) =
F (x+ h)� F (x)

h
=

1

h

Z x+h

x
f(t)dt ; for h = 1/n

Now, |f | < M =) |fn|  M . And Bounded Convergence Theorem along with fn ! F 0

for a.e x implies that for any c 2 [a, b],

Z c

a
F 0(x)dx = lim

n!1

Z c

a
fn(x)dx = lim

h!0

1

h

Z c

a
[F (x+ h)� F (x)]dx

= lim


1

h

Z c+h

c
F (x)dx�

1

h

Z a+h

a
F (x)dx

�
= F (c)� F (a) =

Z c

a
f(x)dx
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The above uses that F is continuous. So,
R c
a [F

0(x)� f(x)]dx = 0, 8c 2 [a, b].

By the previous lemmas, we have F 0(x) = f(x) a.e.

Lemma 1.66. Let f be an integrable function on [a, b] and if

F (x) = F (a) +

Z x

a
f(t)dt

then, F 0(x) = f(x) for a.e x 2 [a, b].

Proof. W.L.O.G assume f � 0. Note that F is an increasing monotone function. Trun-

cate f as sequence with fn(x) = f(x) if f(x)  n and fn(x) = n elsewhere. Then

f �fn � 0 and so, hn(x) =
R x
a (f �fn) is an increasing function. Hence, it has derivative

a.e. Note that this derivative will be positive. Now by the previous lemma,

d

dx

Z x

a
fn = fn(x) a.e

and hence,

F 0(x) =
d

dx
hn +

d

dx

Z x

a
fn � fn(x) a.e

Now n was arbitrary. This tells that

F 0(x) � f(x) a.e

Also, Z b

a
F 0

�

Z b

a
f = F (b)� F (a)

Since F is continuous and increasing, by the theorem 1.56,

Z b

a
F 0(x)dx  F (b)� F (a)

=)

Z b

a
F 0 = F (b)� F (a) =

Z b

a
f ;

Z b

a
[F 0

� f ] = 0

Since, F 0
� f � 0, it tells that F 0

� f = 0 a.e and so F 0(x) = f(x) a.e

Definition 1.67. f : [a, b] ! R is said to be absolutely continuous, if given ✏ > 0, 9� > 0

such that for every collection of finite disjoint intervals {(xi, x
0
i)}

n
i=1 with

nX

i=1

|xi � x
0
i| < � =)

nX

i=1

|f(xi)� f(x
0
i)| < ✏
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Lemma 1.68. If f is absolutely continuous on [a, b], then it is of bounded variation on

[a, b].

Proof. Fix ✏ = 1. By the definition of absolute continuity, there exists �. Now for any

subdivision of [a, b], we can split the division further into L set of intervals with each of

length less than � ; where L is the largest natural number less than �+b�a
� .

Therefore, t is always less than L for any subdivision. Hence, f is bounded variate.

Corollary 1.69. If f is absolutely continuous, then f 0 exists almost everywhere

Proof. By the previous lemma, absolute continuous functions are bounded variate and

hence sum of 2 monotone functions and hence di↵erentiable almost everywhere.

Lemma 1.70. If f is absolutely continuous on [a, b] and it is given that f 0(x) = 0 a.e,

then f is identically a constant function.

Proof. The main idea is to show f(a) = f(c) 8c 2 [a, b]. By the hypothesis, let E ⇢ (a, c)

be the set of measure c� a in which f 0 = 0. Let ✏, ⌘ be any 2 positive real numbers. Let

� be the corresponding one for ✏ in the definition of absolute continuity. For each x 2 E

, there is a small interval [x, x+ h] ⇢ [a, c] such that

|f(x+ h)� f(x)| < ⌘h

Now, these {[x, x + h]} form a vitali cover for E. By the vitali lemma, we can get

{[xk, yk]} such that they are disjoint and cover whole of E except for a set of measure

less than �. Label the intervals such that xk  xk+1. We have

y0 = a  x1 < y1  x2 < y2  · · ·  yn  c = xn+1

and
nX

k=0

|xk+1 � yk| < �

nX

k=1

|f(yk)� f(xk)|  ⌘
nX

k=1

(yk � xk) < ⌘.(c� a)

By the construction of the intervals and absolute continuity of f ,

nX

k=0

|f(xk+1)� f(yk)| < ✏
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Hence,

|f(c)� f(a)| =

����
nX

k=0

[f(xk+1)� f(yk)] +
nX

k=1

[f(yk)� f(xk)]

����  ✏+ ⌘(b� a)

Now, the constants ✏, ⌘ were random. Hence, f(c)� f(a) = 0.

Theorem 1.71. A function g is an indefinite integral i↵ it’s an absolutely continuous

function.

Proof. By the lemma 1.62, F is indefinite integral implies it is absolutely continuous.

Conversely, if F is absolutely continuous on [a, b], then it is bounded variateand hence

sum of 2 monotone functions, say F = F1�F2, where F1, F2 are monotonously increasing.

Hence, by theorem 1.56,

Z
|F 0(x)|  F1(b) + F2(b)� F1(a)� F2(a)

And F 0 is integrable. Declare

H(x) =

Z x

a
F 0(t)dt

Here H is absolutely continuous and so is F � H = f . By the lemma 1.66, f 0(x) =

F 0(x)�H 0(x) = 0 a.e and hence by the previous lemma, f is constant. Thus,

F (x) =

Z x

a
F 0(t)dt+ F (a)

Corollary 1.72. Every absolutely continuous function is an indefinite integral of it’s

derivative.

• As an immediate consequence, we have the integration by parts, which is used in

proving the Rademacher’s theorem in this document.

Let f be absolutely continuous function on [a, b] and � 2 C1
c (a, b). Then,

�

Z b

a
f(x)�0(x)dx =

Z b

a
f 0(x)�(x)dx

Proof.

LHS ⌘ �

Z b

a
f(x)�0(x)dx = �

Z b

a
�0(x)


f(a) +

Z x

a
f 0(t)dt

�
dx
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= �f(a)

Z b

a
�0(x)dx�

Z b

a
�0(x)

✓Z x

a
f 0(t)dt

◆
dx

= �f(a)

✓
�(b)� �(a)

◆
�

Z b

a
�0(x)

✓Z b

a
X[a,x](t)f

0(t)dt

◆
dx

= �

Z b

a
f 0(t)

✓Z b

a
�0(x)X[a,x](t)dx

◆
dt

= �

Z b

a
f 0(t)

✓Z t

a
�0(x)dx

◆
dt

=

Z b

a
f 0(t)�(t)dt ⌘ RHS

Here, we have used the fact that �(a) = �(b) = 0 and this proves the integration

by parts.

Definition 1.73. A function � : (a, b) ! R is said to be convex if 8x, y 2 (a, b), c 2 [0, 1]

we have,

�(cx+ (1� c)y)  c�(x) + (1� c)�(y)

Lemma 1.74. If f is convex on (a, b) and if a  x1 < x2 < x3 < x4  b, then

f(x2)� f(x1)

x2 � x1


f(x3)� f(x1)

x3 � x1


f(x4)� f(x2)

x4 � x2


f(x4)� f(x3)

x4 � x3

Proof. x1 < x2 < x3 =) 9t 2 [0, 1] such that

x2 = tx3 + (1� t)x1 ⌘ x1 + t(x3 � x1)

=) t =
x2 � x1
x3 � x1

, (1� t) =
x3 � x2
x3 � x1

=) x2 =
x2 � x1
x3 � x1

x3 +
x3 � x2
x3 � x1

x1

=) f(x2) 
x2 � x1
x3 � x1

f(x3) +
x3 � x2
x3 � x1

f(x1)

=) f(x2)� f(x1) 
x2 � x1
x3 � x1

�
f(x3)� f(x1)

�

=)
f(x2)� f(x1)

x2 � x1


f(x3)� f(x1)

x3 � x1

Also

f(x2) 

✓
1�

x3 � x2
x3 � x1

◆
f(x3) +

x3 � x2
x3 � x1

f(x1)

= f(x3) +
x3 � x2
x3 � x1

✓
f(x1)� f(x3)

◆
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=)
f(x3)� f(x1)

x3 � x1


f(x3)� f(x2)

x3 � x2

Thus
f(x2)� f(x1)

x2 � x1


f(x3)� f(x2)

x3 � x2


f(x3)� f(x2)

x3 � x2

Similarly,
f(x3)� f(x2)

x3 � x2


f(x4)� f(x2)

x4 � x2


f(x4)� f(x3)

x4 � x3

This proves the lemma.

Corollary 1.75. At all x 2 (a, b),

f 0

�(x) := lim
h!0

f(x)� f(x� h)

h

f 0

+(x) := lim
h!0

f(x+ h)� f(x)

h

exists and the properties are

• x ! f 0
�(x) is non-decreasing.

• x ! f 0
+(x) is non-decreasing.

• f 0
�(x)  f 0

+(x).

• For almost every x 2 (a, b) that is, at the points of continuity of f 0
� or f 0

+,

f 0

�(x) = f 0

+(x)

Proof. Let 0 < h1 < h2 with x�h2 2 (a, b), then x�h1 2 (a, b) and x�h2 < x�h1 < x.

Now, by the convexity of f , we have

f(x)� f(x� h2)

h2


f(x)� f(x� h1)

h1

=) h !
f(x)� f(x� h)

h
is non increasing, bounded function.

Hence

f 0

�(x) = lim
h!0

f(x)� f(x� h)

h
exists.

Let x < y and choose 0 < h1 < h2 such that x � h1 2 (a, b) and x < y � h2. Then,

x� h1 < x < y � h2 < y and by the convexity,

f(x)� f(x� h1)

h1


f(y)� f(y � h2)

h2
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Let h1, h2 ! 0 to get

f 0

�(x)  f 0

�(y)

This proves the first part of the corollary. The second part of the corollary involves the

same proof as the first part.

Let h1, h2 > 0 such that x � h1, x + h2 2 (a, b), then x � h1 < x < x + h2. By the

convexity of f ,
f(x)� f(x� h1)

h1


f(x+ h2)� f(x)

h2

Letting h1, h2 ! 0 gives the third point of the corollary.

Let x, y 2 (a, b) with x < y and h1 > 0 , h2 > 0 such that

x < x+ h1 < y � h2 < y

By the convexity of f ,

f(x+ h1)� f(x)

h1


f(y)� f(y � h2)

h2

Let h1, h2 ! 0 to get

f 0

+(x)  f 0

�(y)

=) f 0

�(x)  f 0

+(x)  f 0

�(y) , 8x < y

Noting that f 0
� is monotone and every monotone function is continuous except on a

countable set, which has measure zero, let x be the point of continuity of f 0
�,

=) lim
h!0

f 0

�(x+ h) = f 0

�(x)

Since x < x+ h, we have

f 0

�(x)  f 0

+(x)  f 0

�(x+ h)

Since, limh!0 f 0
�(x+ h) = f 0

�(x), letting h ! 0,

f 0

�(x)  f 0

+(x)  lim
h!0

f 0

�(x+ h) = f 0

�(x)

=) f 0

�(x) = f 0

+(x) ; for all x where f 0

� is continious

As the complement of the set where f 0
� is continuous is of measure zero, this proves the

corollary’s fourth point.

Definition 1.76. Let � be a convex function on (a,b) and let ex 2 (a, b).

The line {(x, y) ; y = m(x� ex) + �(ex)} through
�
ex,�(ex)

�
is called the supporting line
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at ex if it always lies below the graph of � that is, �(x) � m(x� ex) + �(ex).

Remark 1.77. Existence of a supporting line.

Let f : (a, b) ! R be a convex function and x0 2 (a, b). Then there is a m
⇥
⌘ f 0

±(x0)
⇤

such that

f(x) � f(x0) +m.(x� x0)

Proof. Let L(x) := f(x0) + f 0
�(x0)(x� x0).

Case (1) :

a  x < x0

Let h > 0 be such that a  x < x0 � h < x0. Then, by the convexity of f ,

f(x0)� f(x)

x0 � x


f(x0)� f(x0 � h)

h

Letting h ! 0, we have

f(x0)� f(x)

x0 � x
 lim

h!0

f(x0)� f(x0 � h)

h
⌘ f 0

�(x0)

=) f(x) � f(x0) + f 0

�(x0)(x� x0)

Case (2) : Let x0 < x  b. Let h > 0 be such that a  x0 � h. Then x0 � h < x0 < x

and the convexity of f gives

f(x0)� f(x0 � h)

h


f(x)� f(x0)

x� x0

Letting h ! 0,

=) f 0

�(x0) 
f(x)� f(x0)

x� x0

=) f(x) � f(x0) + f 0

�(x0)(x� x0)

Combining the above 2 cases, we have

f(x) � f(x0) + f 0

�(x0)(x� x0) 8x 2 (a, b)

Similarly,

f(x) � f(x0) + f 0

+(x0)(x� x0) 8x 2 (a, b)

This shows the existence of a supporting line and hence the remark is proved.
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Lemma 1.78. Jensen Inequality :

Let � be a convex function on R. For f an integrable function on [0, 1],

Z

[0,1]
�(f(t))dt � �

✓Z

[0,1]
f(t)dt

◆

Proof. Let ↵ =
R
f(t)dt and y = m(x� ↵) + �(↵) be the equation of a supporting line

at ↵. Then, clearly,

�(f(t)) � m(f(t)� ↵) + �(↵)

Now integrate both the sides to conclude.

Lemma 1.79. The generalised Jensen’s inequality:

Let � : R ! R be a convex function. Let (X,A, µ) be a probablitistic measure space,

i.e µ(X) = 1. Let f 2 L1(X,A, µ), i.e f : X ! R measurable along with the property
R
X |f(v)|dµ(v) < 1, then

Z

X
�(f(t))dt � �

✓Z

X
f(t)dt

◆

Proof. Given that � is convex on R, let y,m 2 R such that 8z 2 R,

�(z) � �(y) +m(z � y)

Let z = f(v), then

�(f(v)) � �(y) +m(f(v)� y)

Integrate to get

Z

X
�(f(v))dµ(v) � �(y) +m(

Z

X
f(v)dµ(v)� y)

Choose y =
R
X f(v)dµ(v), then

Z

X
�(f(v))dµ(v) � �(

Z

X
f(v)dµ(v))

Remark 1.80. Let � 2 C2(a, b). � is convex i↵ it’s second derivative is globally non

negative i.e �00
� 0.
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Proof. of the remark: Given that � 2 C2(a, b) =) �0 exists and by the previous theo-

rem, �0(x) is increasing. Hence �00(x) � 0.

Conversely, to show if �00
� 0 =) � is convex.

Let a < x1 < x2 < b and for t 2 [0, 1], define

F (t) = �(tx1 + (1� t)x2)� t�(x1)� (1� t)�(x2)

Hence,

F (0) = �(x2)� �(x2) = 0 = �(x1)� �(x1) = F (1)

F 0(t) = �0(tx1 + (1� t)x2)(x1 � x2)� �(x1) + �(x2)

F 00(t) = �00(tx1 + (1� t)x2)(x1 � x2)
2

Claim : F (t)  0 8t 2 [0, 1]

Proof of the claim : If the claim is not true, then 9t0 2 (0, 1) such that

F (t0) = max
t2[0,1]

F (t) > 0

Hence,

F 0(t0) = 0

F 00(t0)  0

Subclaim : Suppose that �00(x) > 0, for all x, then F (t)  0 for all t 2 (0, 1).

Proof of the subclaim: If not, by the hypothesis,�00(x) > 0, 8x 2 (a, b) which implies

F 00(t) > 08t 2 [0, 1]. Hence at t0, F 00(t0) > 0 which is a contradiction.

Now, let ✏ > 0. Define

�✏(x) = �(x) +
✏

2
x2

Then �00
✏ (x) = ✏ > 0. Hence, by the subclaim, �✏ is convex. i.e

�✏
�
tx1 + (1� t)x2

�
 t�✏(x1) + (1� t)�✏(x2)

So,

�

✓
tx1 + (1� t)x2

◆
+

✏

2

✓
tx1 + (1� t)x2

◆2

 t


�(x1) +

✏

2
x1

2

�
+ (1� t)


�(x2) + tx2

2

�

Tend ✏ ! 0 to get � is convex.
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1.5.4 Fubini and Tonelli theorem.

Let (X,A, µ) and (Y,B, v) be 2 complete measure spaces. Consider the product of the

2 spaces, denoted by X ⇥ Y := {(x, y) ; x 2 X, y 2 Y }.

Definition 1.81.

• A⇥B is called a rectangle if A ⇢ X and B ⇢ Y .

• A⇥B is called a measurable rectangle if A 2 A and B 2 B.

Remark 1.82. The collection of measurable rectangles R is a semi algebra as

(A⇥B) \ (C ⇥D) = (A \ C)⇥ (B \D)

(A⇥B)c = (Ac
⇥B) [ (A⇥Bc) [ (Ac

⇥Bc)

Definition 1.83. For a measurable rectangle A⇥B, declare the product measure

�(A⇥B) = µ(A).v(B)

Lemma 1.84. Let {Ai ⇥ Bi} be countable disjoint collection of measurable rectangles

whose union is a measurable rectangle A⇥B. Then

�(A⇥B) =
X

�(Ai ⇥Bi)

Proof. {Ai ⇥Bi} are disjoint and hence,

XA(x)XB(x) = XA⇥B(x, y) =
1X

i=1

XAi⇥Bi(x, y) =
1X

i=1

XAi(x)XBi(y)

Fix x 2 A.

y ! XAi(x)XBi(y) is measurable

Then for each y 2 B, (x, y) 2 Ai ⇥ Bi for exactly one Ai ⇥ Bi This tells that B is a

disjoint union of those Bi such that the corresponding Ai has x. Thus, as v is countable

additive, X
vBi.XAi(x) = vB.XA(x)

By MCT, XZ
vBi.XAi(x)dµ =

Z
vB.XA(x)dµ
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Hence, X
vBi.µAi = vB.µA

Remark 1.85. This lemma implies that there is a unique extension of � to a measure on

the algebra R
0 which contains all finite disjoint union of sets in R. Now extend � to a

complete measure on a sigma algebra S containing R and denote it by µ⇥ v.

Definition 1.86. For any E ⇢ X ⇥ Y , x 2 X, y 2 Y ,

• Define Ex = {y 2 Y : (x, y) 2 E}.

• Define Ey = {x 2 X : (x, y) 2 E}.

Remark 1.87. XEx(y) = XE(x, y) and XEy(x) = XE(x, y).

Remark 1.88. Note that proving a statement for Ex is similar to proving the analogous

statement for Ey and hence, for the following lemmas and theorems in this subsection,

only one case ( say Ex ) will be proved.

Lemma 1.89. Let x 2 X and E ⇢ R��. Then Ex is a measurable subset of Y and Ey

is a measurable subset of X.

Proof. Case 1 : If E 2 R , then by the definition, Ex is measurable.

Case 2 : If E 2 R�, then E = [
1

i=1Ei such that each Ei is a measurable rectangle. Now

Ex =
�
[
1

i=1 Ei
�
x
= [

1

i=1(Ei)x

Now (Ei)x is measurable for all i and hence, Ex is measurable.

Case 3: If E 2 R��, then E = \
1

i=1Ei such that each Ei 2 R�. Now

Ex =
�
\
1

i=1 Ei
�
x
= \

1

i=1(Ei)x

Now (Ei)x is measurable for all i, by the case 2, and hence, Ex is measurable.

Lemma 1.90. For E 2 R�� with µ⇥ v(E) < 1, g defined by

g(x) = vEx

is a measurable function of x and

Z
gdµ = µ⇥ v(E)
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Proof. Case 1 : If E = A⇥B is a measurable rectangle, then g(x) = v(B) if x 2 A, else,

it is an empty set and hence measurable. Also
R
gdµ = µ(A)v(B) = µ⇥ v(E).

Case 2 : If E is in R�. W.L.O.G, assume that E = [Ei where Ei’s are disjoint. Declare

gi(x) = v
⇥
(Ei)x

⇤

g is thus measurable and is a positive function. Also note that g =
P

gi and hence g is

measurable. By M.C.T,

Z
gdµ = lim

n!1

nX

i=1

Z
gidµ =

XZ
gidµ =

X
µ⇥ v(Ei) = µ⇥ v(E)

Case 3 : If E is in R��. W.L.O.G, assume that E = \Ei where Ei ⇢ Ei+1 and Ei 2 R�.

By approximation, we can assume µ⇥ v(E1) < 1. Let gi(x) = v[(Ei)x].

Hence, g = lim gi and hence g is measurable. Since
R
g1dµ = µ⇥ v(E) < 1, g1(x) < 1

can be concluded for a.e x . Now {(Ei)x} is a decreasing sequence of finite measurable

sets and their intersection gives Ex. From the knowledge of measure theory, since the

first set in the intersection has finite measure, we can have

g(x) = v(Ex) = lim v
⇥
(Ei)x

⇤
= lim gi(x)

And thus

gi ! g

a.e. which also implies g is measurable.

Since g1 � gi � 0 , the D.C.T tells

Z
gdµ = lim

Z
gidµ = limµ⇥ v(Ei) = µ⇥ v(E)

which is true form the limit of the intersection property.

Lemma 1.91. For E with µ ⇥ v(E) = 0, we have for µ almost every x , v(Ex) = 0.

Remark : Note that the product measure is defined only for rectangles until now. To

make sense of µ ⇥ v(E) with E ⇢ X ⇥ Y , define C to be the algebra generated by the

semi algebra R and hence define,

�⇤(E) := inf
nP

1

i=1 µ⇥ v(Ai) ; E ⇢
S

1

i=1Ai , {Ai}
1

i=1 ⇢ C

o
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By the Caratheodory’s theorem, there is a complete sigma algebra containing R( as well

as C) and a measure � on the sigma algebra, such that � matches with the µ⇥ v on R.

Hence, from now on, if the set is not mentioned to be in R and is a subset of X ⇥ Y ,

then µ⇥ v is to be taken as �⇤.

Proof. Using the approximations dictated by the infimum property of �⇤, by the unions

and intersections and controlling measure with it, we can get a G 2 R�� such that

E ⇢ G and µ⇥ v(G) = 0. And by the previous lemma, we get,

0 = µ⇥ v(G) =

Z
v(Gx)dµ(x)

As x ! v(Gx) is a positive function, the above implies that for µ almost every x,

v(Gx) = 0. Also Ex ⇢ Gx and so v(Ex) = 0 for µ� a.e x.

Lemma 1.92. For E to be a measurable subset of X⇥Y with µ⇥v(E) < 1, for almost

every x, Ex is a measurable subset of Y . Also,

g(x) = v(Ex)

is measurable function for µ almost every x and

Z
g(x)dµ(x) = µ⇥ v(E)

Proof. By the approximations by the unions and intersections and controlling measure

with it, 9G 2 R��, E ⇢ G with µ⇥ v(E) = µ⇥ v(G). Now, look at F = G� E. Since

E and G are measurable, so is F .

µ⇥ v(G) = µ⇥ v(E) + µ⇥ v(F )

Since µ⇥ v(E) is finite and is equal to µ⇥ v(G), we can conclude

µ⇥ v(F ) = 0

Thus by the previous lemma, we can conclude, v(Fx) = 0 for µ almost all x. Hence

Ex ⇢ Gx = Fx [ Ex =) v(Ex)  v(Gx)  v(Fx) + v(Ex) = v(Ex) for µ a.e x



70

=) g(x) := v(Ex) = v(Gx) for µ a.e x

This tells that g is a measurable function, by the lemma 1.90. And also, by the same

lemma (1.90), we have Z
gdµ = µ⇥ v(G) = µ⇥ v(E)

Theorem 1.93. (Fubini theorem) :

For (X,A, µ) and (Y,B, v) be 2 complete measure spaces as before and f is an integrable

function on X ⇥ Y , we have

• For almost every x, the function fx defined by fx(y) = f(x, y) is an integrable

function on Y.

• For almost every y, the function fx defined by fy(x) = f(x, y) is an integrable

function on X.

•
R
Y f(x, y)dv(y) is an integrable function on X.

•
R
X f(x, y)dµ(x) is an integrable function on Y .

• Z

X

 Z

Y
fdv

�
dµ =

Z

X⇥Y
fd(µ⇥ v) =

Z

Y

 Z

X
fdµ

�
dv

Proof. It su�ces to prove the theorem for one of the cases, because of the symmetry

involved between x and y. Also note that for any f , it can be decomposed as f+
� f�

and if the conclusion of the theorem holds for 2 functions implies it holds even for

their di↵erence. Hence, W.L.O.G assume f is positive. Now f can be approximated by

increasing simple functions {�n} such that it take finite values in the image and vanished

outside a set of finite meaasure. If the theorem is true for charecteristic function over a

set of finite measure, by M.C.T we can conclude for the positive f . The previous lemma

tells that the theorem is true for a charecteristic function over a set of finite measure.

Hence by M.C.T, we have

Z

Y
f(x, y)dv(y) = lim

n!1

Z

Y
�n(x, y)dv(y)

Also, by M.C.T,

Z

X

 Z

Y
fdv

�
dµ = lim

n!1

Z

X

 Z

Y
�ndv

�
dµ = lim

n!1

Z

X⇥Y
�nd(µ⇥ v) =

Z

X⇥Y
fd(µ⇥ v)
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Remark 1.94. Here, the sigma finiteness of the spaces are not required.

Theorem 1.95. (Tonelli theorem) :

For (X,A, µ) and (Y,B, v) be two ��finite measure spaces and f is a non-negative

measurable function on X ⇥ Y , we have

• For almost every x, the function fx defined by fx(y) = f(x, y) is an non-negative

measurable function on Y.

• For almost every y, the function fx defined by fy(x) = f(x, y) is an non-negative

measurable function on X.

•
R
Y f(x, y)dv(y) is an measurable function on X.

•
R
X f(x, y)dµ(x) is an measurable function on Y .

• Z

X

 Z

Y
fdv

�
dµ =

Z

X⇥Y
fd(µ⇥ v) =

Z

Y

 Z

X
fdµ

�
dv

Proof. As the spaces are ��finite , any non negative function can be approximated by

simple integrable functions and hence the similar proof like that in the fubini theorem

works.

1.5.5 Change of Variables

Let T : Rn
! Rn be a linear map and {e1, e2 . . . , en} be the standard basis of Rn.

Then T is represented by a matrix with the elements as Ti,j = < Tej , ei >. By the

property of determinant, determinant is the product of the eigenvalues. Let GLn(R) to
be the group of all n⇥ n invertible matrices.

Theorem 1.96. Let T 2 GLn(R), then

• If f is measurable and either f � 0 or f 2 L1(Rn), then so is f � T and

Z

Rn
f(x)dx = |detT |

Z

Rn
(f � T )(x)dx

• If E be a measurable subset, then T (E) is lebesgue measurable and

L
n(T (E)) = |detT |Ln(E)
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Proof. Note : Any T 2 GLn(R) can be written as product of finitely many transforma-

tions of elementary matrices of the type:

• I : T1(x1, x2, . . . , xi, . . . xn) = (x1, x2, . . . , cxi, . . . xn) ; c 6= 0

• II : T2(x1, x2, . . . , xi, . . . xn) = (x1, x2, . . . , xi + cxk, . . . xn), k 6= i

• III : T3(x1, x2, . . . , xi, . . . , xj . . . xn) = (x1, x2, . . . , xj , . . . , xi . . . xn)

Now, Since T is continuous , f is borel measurable implies f � T is Borel measurable.

For the case (I), with the usage of fubini’s theorem,

Z

Rn
f � T (x)dx =

Z

R

Z

R
· · ·

Z

R
f(x1, x2, . . . , cxi, . . . , xn)dx1dx2 . . . dxi�1dxidxi+1 . . . dxn

=

Z

R

Z

R
· · ·

Z

R

✓Z

R
f(x1, x2, . . . , cxi, . . . , xn)dxi

◆
dx1dx2 . . . dxi�1dxi+1 . . . dxn

=
1

|c|

Z

Rn
f(x)dx

And

|c|

Z

Rn
f � T (x)dx =

Z

Rn
f(x)dx

Where |detT | = |c|. For the case (II), W.L.O.G assume, that the change is happening

at the nth place.

Z

Rn
f � T (x)dx =

Z

R

Z

R
· · ·

Z

R
f(x1, x2, . . . , xn + cxi)dx1dx2 . . . dxn

=

Z

R

Z

R
. . .

 Z

R
f(x1, x2, . . . , xn + cxi)dxn

�
dxn�1 . . . dx1

xi is constant for the integration over xn and
R
g(a+ t)dt =

R
g(t)dt due to translation

invariant lebesgue measure. Hence

=

Z

R

Z

R
. . .

 Z

R
f(x1, x2, . . . xn)dxn

�
dxn�1 . . . dx1 =

Z

Rn
f(x)

Also note that |detT2| = 1. This implies the justification of the first point of the

hypothesis for the case (II). For the case (III): Similar calculations as the previous

cases, but with detT3 = �1 and hence |detT3| = 1.

For the general case of T 2 GLn(R),

T = T1 � · · · � Tk
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where Ti’s are like in one of the cases. So

Z
f(x)dx = |detT1|

Z
f � T1(x)dx

= |detT1||detT2|

Z
f � T1 � T2(x)dx

...

= |detT |

Z
f � Tdx

To prove the second point of the theorem, consider f = XT (E).

Theorem 1.97. Change of variables formula: Suppose ⌦ is an open subset of Rn

and g : ⌦ ! g(⌦), a C1- di↵eomorphism.

• If f is lebesgue measurable on g(⌦), then f � g is lebesgue measurable on ⌦ and if

f � 0 or f 2 L1 then

Z

g(⌦)
f(x)dx =

Z

⌦
(f � g)(x)|detDxg|dx

• If E ⇢ ⌦ is lebesgue measurable, so is g(E) and

m(g(E)) =

Z

E
|detDxg|dx

where m(A) denotes the lebesgue measure of A ⇢ Rn.

Proof. First we prove the result for the borel measurable functions and borel sets. Since

g and g�1 are both continuous , f � g is borel measurable and g(E) is a borel set.

Let Q be a cube with center x and side 2h such that Q ⇢ ⌦, Q = {y ; ||x� y||1  h}.

Here

||x� y||1 = max
1jn

|xj � yj |

Now, gj(y)� gj(x) = Dgj(z).(y � x) where z is in the line joining x and y.

So for any y 2 Q,

||gj(y)� gj(x)||1  h

✓
sup
z2Q

||Dg(z)||

◆

i.e g(Q) is contained in a cube of side length
�
supz2Q ||Dg(z)||

�
times that of Q.

Therefore

m

✓
g(Q)

◆


✓
sup
z2Q

||Dg(z)||

◆n

m(Q)
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Let T 2 GLn(Rn). Now apply the previous change of variables formula to get

m

✓
g(Q)

◆
= m

✓
T � T�1

� g(Q)

◆

= |detT |m

✓
T�1

� g(Q)

◆

 |detT | sup
z2Q


||D(T�1

� g)(z)||1

�n
m(Q)

Since g�1
� g(x) = x and D(g�1

� g) = I i.e Dg�1(g(x)).Dg(x) = I

Fix ✏ > 0. Subdividing Q into subcubes Q1, Q2, . . . Qr whose centres are x1, x2, . . . , xr

and their interiors are disjoint with side length less than �, where � corresponds to

"
||Dg�1

�
g(xi)

�
Dg(y)||n < 1 + ✏

whenever ||y � x||1 < �

#
; by the continuity of Dg and Dg�1

By the previous estimate on each Qi with T = Dg(xi), we get

m(g(Qi))  |det(Dg(xi))|


sup
y2Qi

||Dg�1(xi).Dg(y)||1

�n
m(Qi)

Then,

m(g(Q)) 
rX

i=1

m

✓
g(Qi)

◆

= (1 + ✏)
rX

i=1

��det
�
Dg(xi)

���m(Qi)

Note that
Pr

i=1 |detDg(xi)|.m(Qi) is Riemann sum corresponding to the integral
R
Q |detDg|

corresponding to the partition Q =
Sr

i=1Qi.

Therefore as � ! 0, we get

m

✓
g(Q)

◆
 (1 + ✏)

Z

Q
|detDg|

Now ✏ > 0 was arbitrary. Hence

m

✓
g(Q)

◆


Z

Q
|detDg|dx

The above, now holds for any open cube contained in ⌦. Noting that any open set is a

disjoint union of countable cubes. And hence,

m

✓
g(U)

◆


Z

U
|detDg|dx ; 8U ⇢ ⌦ , U is open.
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Let E be a borel set of finite measure, there is a sequence of open sets by the outer

regularity such that

• U1 � U2 � U3 � . . .

• E ⇢
T

1

i=1 Ui

• m
�
\
1

i=1 (Ui � E)
�
= 0

Now,

m

✓
g(E)

◆
 m

✓
g(\1

i=1Ui)

◆
= lim

n!1
m

✓
g(Un)

◆

= lim
n!1

Z

Un

|detDg| =

Z

\Un

|detDg|dx

=

Z

E
|detDg|dx

Now if E is borel , then E can be decomposed as

• E =
S

1

n=1En

• m(En) < 1

• E1 ⇢ E2 ⇢ E3 ⇢ . . .

Then,

m

✓
g(E)

◆


Z

E
|detDg|dx ; 8E ⇢ ⌦, E is Borel.

Consider the function,

f =
nX

i=1

↵iXAi ; ↵i � 0

to be simple function on g(⌦), then

Z

g(⌦)
f(x)dx =

nX

i=1

↵im(Ai)



nX

i=1

↵i

Z

g�1(Ai)
|detDg| ; as Ai = g � g�1(Ai)

=

Z

⌦

X
↵iXg�1(Ai)|detDg|

=

Z

⌦
(f � g)(x)|detDg|

By MCT, for any f � 0 and borel measurable,

Z

g(⌦)
f(x)dx 

Z

⌦
(f � g)(x)|detDg|dx ; for all f borel
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Applying this result to f replaced by f � g and for g to be g�1, we have,

Z

⌦
(f � g)(x)|detDg|dx 

Z

g(⌦)
(f � g � g�1) |detD(g � g�1)(x)| |detg�1(x)|

=

Z

g(⌦)
f(x)dx

This proves the result for f � 0.

For the case, f 2 L1, decompose f as f+
� f� and do the same for f+ and f�,

individually to get the desired result.

For the part (b), consider f ⌘ XE .



Chapter 2

Geometric measure theory.

2.1 Covering theorems

In this chapter, a ball generally refers to a closed ball until mentioned otherwise.

Also,in this chapter, until otherwise mentioned, measure of a set is same as the outer

measure of that set.

Definition 2.1. • If B is a closed ball in Rn, say around x, denote B̂ to be that ball

around x but with radius 5 times that of B

• A collection F of closed balls in Rn is said to be a cover for a set A ⇢ Rn if

A ⇢

[

B2F

B

• F is said to be a fine cover for A if in addition from being a cover for A, the

following holds :

inf{diamB ; x 2 B,B 2 F} = 0 ; for each x 2 A

2.1.1 Vitali’s Covering lemma .

Theorem 2.2. Vitali’s covering theorem :

Let F be any collection of non-degenerate ( radius to be non zero) closed balls in Rn

along with the criteria that

sup{diamB ; B 2 F} < 1

77
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Then there exists a countable family G of disjoint closed balls in F such that

{

[

B2F

B} ⇢ {

[

B2G

B̂}

Proof. Declare

D ⌘ sup{diamB ; B 2 F}

For the D defined as above, which is finite by the hypothesis, declare

Fj ⌘ {B 2 F ;
D

2j
< diamB 

D

2j�1
} ; for all j = 1, 2 . . .

Algorithm to construct Gi :

(step 1) : Choose G1 to be the maximal disjoint set of closed balls from F1.

(Step 2) : Choose G2 to be the maximal collection of disjoint sets from F2 such that

8 B 2 G1 , 8 B0
2 G2 , B \B0 = �

(Step 3) : For a general N 2 N, assume that G1,G2, . . . ,GN�1 has been chosen.

Choose GN to be the maximal disjoint subcollection of

{B 2 FN ; B \B0 = � , for all B0
2

N�1[

j=1

Gj}

Once, Gi’s are chosen as above, declare

G =
1[

i=1

Gi

Clearly G is a collection of disjoint balls and

G 2 F

Claim : For each B 2 F , there is a ball B0
2 G such that

• B \B0
6= �

• B ⇢ B̂0

Proof of the claim : Fix B 2 F . If B 2 Gi for some i, the claim is trivially true.

Suppose that B /2 Gi, for any i. By the definition of {Fj}
1

j=1, there is a number j such

that B 2 Fj . By the construction of Gj , that is, the maximality of Gj , B /2 Gj and thus,
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there is a ball B0
2 Gi with B \ B0

6= �, for some i  j � 1 or it violates the maximal

disjointness of Gj , that is, there is some B0
2 Gj such that B \B0

6= �.

=) 9B0
2 Gi with B \B0

6= �, for some i  j

Now

diam(B) 
D

2j�1


2D

2i�1
< 2 diam(B0)

So, diamB  2 diamB0 =) B ⇢ B̂0. The claim and hence the theorem is true.

Corollary 2.3. Assume that F is a fine cover of A by closed balls and

sup{diamB ; B 2 F} < 1

Then there is a countable family of disjoint balls G in F such that for each finite subset

{B1, B2, . . . , Bn} ⇢ F ,

{A�

n[

k=1

Bk} ⇢ {

[

B2G�{B1,B2,...,Bn}

B̂}

Proof. Choose G as in the proof of the previous theorem.

Fix a finite collection {B1, B2, . . . , Bn} ⇢ G as in the hypothesis.

Case 1 : If A ⇢
Sn

k=1Bk, then there is nothing to show.

Case 2 : Else, let y 2 A �
Sn

k=1Bk. Note that the balls Bi’s are closed and hence

the point y is at a finite, non-zero distance from the boundary of all balls from the set

{B1, B2 . . . , Bn}. F is given to be a fine cover for A. Hence, for that finite, non zero

distance, say d, there is an element B in F such that

• diamB < d

• B \Bj = � ; for all j = 1, 2 . . . , n

By the proof of the claim in the proof of the previous theorem, there is B0
2 G such that

B \B0
6= �, which tells that B0 /2 {B1, B2, . . . , Bn}. Also, note by the proof of the same

claim that y 2 B, B ⇢ B̂0. This proves the corollary.
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Corollary 2.4. Let U ⇢ Rn be open . Fix � > 0. Then there is a countable collection

G of disjoint closed balls in U such that diamB  � , for all B 2 G and

L
n

 
U �

[

B2G

B

!
= 0

Proof. Choose and fix ✓ such that 1� 1
5n < ✓ < 1.

Case 1 : Assume L
n(U) < 1.

Claim : There is a finite collection {Bi}
M1
i=1 of disjoint closed balls in U such that

diam(Bi) < � for i = 1, 2 . . . ,M1, along with the criteria that

L
n

 
U �

M1[

i=1

Bi

!
 ✓Ln(U)

Proof of the claim : Declare

F1 := {B is a closed ball ; B ⇢ U , diamB < �}

F1 is clearly a fine cover and hence, by the vitali’s covering theorem, there is a countable

disjoint family G1 ⇢ F1 such that

U ⇢

[

B2G1

B̂

Thus

L
n(U) 

X

B2G1

L
n(B̂) = 5n

X

B2G1

L
n(B)

The above is true by the translation invariant property of the lebesgue measure. Now,

because of the disjointness of the elements of G1,

= 5nLn

0

@
[

B2G1

B

1

A

And thus,

L
n

✓ [

B2G1

B

◆
�

1

5n
L
n(U)

Subtracting L
n(U) from both the sides,

L
n

✓
U �

[

B2G1

B

◆


✓
1�

1

5n

◆
L
n(U)
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Since G1 is countable, there are balls B1, B2, . . . , BM1 such that

L
n

 
U �

M1[

i=1

Bi

!
 ✓Ln(U)

Now, declare

U2 = U �

M1[

i=1

Bi

F2 = {B is a closed ball ; B ⇢ U2, diamB < �}

F2 is a fine cover and thus applying the same logic as above , we getBM1+1, BM1+2, . . . , BM2

such that

L
n

 
U2 �

M1[

i=1

Bi

!
 ✓Ln(U2)

Hence,

L
n

 
U �

M2[

i=1

Bi

!
= L

n

0

@U2 �

M2[

i=M1+1

Bi

1

A  ✓Ln(U2)  ✓2Ln(U)

Inductively we get disjoint balls such that

L
n

 
U �

Mk[

i=1

Bi

!
 ✓kLn(U) ; (k = 1, 2, . . . )

Noting that ✓ < 1 implies ✓k ! 0, the corollary is true for finite measure sets.

Case 2 : If Ln(U) = 1, then the trick is to look at

Ul = {x 2 U ; l < |x| < l + 1} ; (l = 0, 1, 2, . . . )

Note that Ul’s are open and by the previous step, denote Bli to be the balls generated

as per the corollary within Ul. Thus, by the disjointness of sets and noting that the

measure of the boundary of Ul, is 0,

L
n

0

@U �

1[

l,i=1

Bli

1

A = L
n

✓ 1[

l=1

�
Ul �

1[

i=1

Bli

�◆
+ L

n

✓ 1[

l=1

�
@Ul �

1[

i=1

Bli

�◆

= L
n

✓ 1[

l=1

�
Ul �

1[

i=1

Bli

�◆
=

1X

l=1

L
n

 
Ul �

1[

i=1

Bli

!
= 0

This proves the corollary.
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2.1.2 Besicovitch covering lemma .

Theorem 2.5. If for any collection, say F , consisting of non-degenerate closed balls in

Rn with the criteria

sup{ diamB ; B 2 F} < 1

and if A is the centers of the balls from F , then there is a dimensional constant N such

that there are families of disjoint balls from F , say G1,G2, . . . ,GN ,(note that the balls

within each Gi are disjoint, but may not be disjoint from a ball from some other family

Gj) such that

A ⇢

N[

i=1

[

B2Gi

B

Proof. As before, assume for now that A is bounded. Declare

D := sup{diamB ; B 2 F}

By the sup property, choose B1 := B(a1, r1) 2 F such that 3
4
D
2  r1.

Given that B1 is chosen, choose B2 as :

Case 1 : If A2 := A�B1 is empty, then stop and set J = 1.

Case 2 : If A2 := A�B1 is not empty , then by the sup property choose B2 = B(a2, r2) 2

F with a2 2 A2 such that

3

4
sup{r ; B(a, r) 2 F , a 2 A2}  r2 < sup{r ; B(a, r) 2 F , a 2 A2}

Inductively with B1, B2, . . . , Bj�1 chosen earlier, choose Bj as

Case 1 : If Aj := A�
Sj�1

i=1 Bi is empty, then stop and set J = j � 1.

Case 2 : If Aj := A �
Sj�1

i=1 Bi is not empty , then by the sup property choose Bj =

B(aj , rj) 2 F with aj 2 Aj such that

3

4
sup{r ; B(a, r) 2 F , a 2 Aj}  rj < sup{r ; B(a, r) 2 F , a 2 Aj}

With the above logic, if Ak 6= � for all k , then declare J = 1.

Claim 1 : Suppose i > j , then ri 
4
3rj .

Proof of the claim 1 : Suppose i > j , then observe that ai 2 Aj and aj /2 Ai. Thus

3

4
ri 

3

4
sup{r ; B(a, r) 2 F , a 2 Aj}  rj
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This proves the claim 1.

Claim 2 : The balls {B(aj ,
rj
3 )}

J
j=1 are disjoint.

Proof of the claim 2 : Let i > j. Then, as observed before, ai 2 Aj and aj /2 Ai. Hence

ai /2 Bj . So

|aj � ai| > rj =
rj
3

+
2rj
3

�
rj
3

+

✓
2

3

◆✓
3

4

◆
ri >

rj
3

+
ri
3

This tells that the radius of any 2 balls in the set considered , is strictly greater than

sum of the individual radii and hence, the balls are disjoint. This proves the claim 2.

Claim 3 : If J = 1 , then limj!1 rj = 0.

Proof of the claim 3 : By the claim 2, the balls {B(aj ,
rj
3 )}

J
j=1 are disjoint. Now, since aj

is in A which is bounded as per the assumption,that is, A ⇢ B(0,M) for some M > 0.

Hence, by summing the measures of disjoint balls,
P

j ↵(n)
� rj
3

�n
< M , where ↵(n) de-

notes the lebesgue measure of the unit ball in Rn. Since the tail of the convergent series

goes to 0, we can conclude that rj ! 0. This proves the claim 3.

Claim 4 : A ⇢
SJ

j=1Bj .

Proof of the claim 4 : If J < 1, then, by the construction of Bi, the inclusion is trivial.

Hence, assume J = 1.

Let a 2 A. Then, by the definition of A, there is some r > 0 such that B(a, r) 2 F . If

a /2
S

1

j=1Bi =) a 2 Aj , for all j. Thus, by construction, for all j,

3

4
r <

3

4
sup{r ; B 2 F , a 2 Aj}  rj

By the claim 3, rj ! 0. which contradicts the non-degeneracy of the balls, that is r 6= 0.

This proves the claim 4.

Fix k > 1 and set

I := {j ; 1  j  k,Bj \Bk 6= �}

K := I \ {j ; rj  3rk}

I ⌘ K [ (I �K)

Claim 5 : Cardinality of K constructed above is less than or equal to 20n ( which

is independent of k).

Proof of the claim 5 : Let j 2 K . Then,by the construction of K, Bj \ Bk 6= � and
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rj  3rk. Choose any x 2 B(aj ,
rj
3 ). Then,as Bj \Bk 6= �,

|x� ak|  |x� aj |+ |aj � ak| 
rj
3

+ rj + rk =
4

3
rj + rk  4rk + rk = 5rk

Thus

B(aj ,
rj
3
) ⇢ B(ak, 5rk)

Claim 2 tells that the balls with 1/3rd radius are disjoint and hence integrating, we get

↵(n)5nrnk = L
n
�
(B(ak, 5rk)

�
�

X

j2K

L
n
�
B(aj ,

rj
3
)
�
=
X

j2K

↵(n)
⇣rj
3

⌘n
. . .

By the claim 1 and noting that j < k in the definiton of K,

· · · �

X

j2K

↵(n)
⇣rk
4

⌘n
= Card(K)↵(n)

✓
rnk
4n

◆

This proves the claim 5.

Estimate on Card(I �K):

Let i, j 2 I �K with i 6= j.

Then

• 1  i, j < k.

• Bi \Bk 6= � , 3rk < ri.

• Bj \Bk 6= � , 3rk < rj .

For simplicity, let ak = 0 and ai, aj be seen as the vectors with magnitude |ai � ak| and

|aj � ak| respectively from 0 and preserving the direction. Let 0  ✓  2⇡ be the angle

between ai and aj .

The idea is to find the lower bound on ✓.

Some observations to be noted :

Since i, j < k and 0 = ak /2 Bi [Bj ,

• ri < |ai| and rj < |aj |.

• Bi \Bk 6= � and Bj \Bk 6= � =) |ai|  ri + rk and |aj |  rj + rk.

• W.L.O.G , assume |ai|  |aj |.
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Putting this in a compact form, we have the following:

3rk < ri < |ai|  ri + rk

3rk < rj < |aj |  rj + rk

|ai|  |aj |

We prove that there is a constant ✓0 > 0 such that it depends only on the dimension of

the space and for i 6= j, 1  i, j  k with Bi \Bk 6= �, Bj \Bk 6= �, the angle between

ai � ak and aj � ak is greater than ✓0.

Claim 6 : { If cos(✓) > 5
6 , then ai 2 Bj} ⌘ {ai /2 Bj =) cos(✓)  5

6}.

Proof of the claim 6 :

Case 1 : |ai � aj | > |aj |

The law of cosines gives

cos(✓) =
|ai|2 + |aj |2 � |ai � aj |2

2|ai||aj |


|ai|2

2|ai||aj |
=

|ai|

2|aj |


1

2
<

5

6

Thus ai /2 Bj and |ai�aj | is greater than the radius of Bj . The contra-positive statement

requires that cos(✓)  5
6 which is got by the law of cosines as above.

Case 2 : If ai /2 Bj and |ai � aj |  |aj |. Then, as rj < |ai � aj | , we have

cos(✓) =
|ai|2 + |aj |2 � |ai � aj |2

2|ai||aj |

=
|ai|

2|aj |
+

(|aj |� |ai � aj |)(|aj |+ |ai � aj |)

2|ai||aj |


1

2
+

(|aj |� |ai � aj |)(2|aj |)

2|ai||aj |


1

2
+

rj + rk � rj
ri

=
1

2
+

rk
ri

<
1

2
+

1

3


5

6

This proves the claim 6.
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Claim 7 : If ai 2 Bj , then

0  |ai � aj |+ |ai|� |aj |  |aj |g(✓)

where

g(✓) =
8

3

�
1� cos(✓)

�

Proof of the claim 7 : Since ai 2 Bj , we must have i < j and hence aj /2 Bi and so

|ai � aj | > ri. Thus

0 
|ai � aj |+ |ai|� |aj |

|aj |

As |ai|  |aj | =) |ai � aj |� |ai|+ |aj | � |ai � aj | =) |ai�aj |�|ai|+|aj |
|ai�aj |

� 1,

|ai � aj |+ |ai|� |aj |

|aj |


|ai � aj |+ |ai|� |aj |

|aj |
.
|ai � aj |� |ai|+ |aj |

|ai � aj |

=
|ai � aj |2 � (|ai|� |aj |)2

|aj ||ai � aj |

=
|ai|2 + |aj |2 � 2|ai||aj | cos(✓)� |ai|2 � |aj |2 + 2|ai||aj |

|aj ||ai � aj |

=
2|ai|(1� cos(✓))

|ai � aj |


2(ri + rk)(1� cos(✓))

ri


2(1 + 1
3)ri(1� cos(✓))

ri
⌘ g(✓)

This proves the claim 7.

Claim 8 : If ai 2 Bj , then cos(✓)  61
64 .

Proof of the claim 8 : Since ai 2 Bj and aj /2 Bi, we have ri < |ai � aj |  rj . Since

i < j and rj 
4
3ri,

|ai � aj |+ |ai|� |aj | � ri + ri � rj � rk

�
3

2
rj � rj � rk

=
1

2
rj � rk

�
1

6
rj

=
1

6
.
3

4
.

✓
rj +

1

3
rj

◆

�
1

8
(rj + rk)

�
1

8
|aj |
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Thus by the previous claim,

1

8
|aj |  |ai � aj |+ |ai|� |aj |  |aj |g(✓)

Hence ,

cos(✓) 
61

64

This proves the claim 8.

Claim 9 : For all i, j 2 I � K with i 6= j, let ✓ be the angle between ai � ak and

aj � ak. Then,

✓ � cos�1

✓
61

64

◆
⌘ ✓0 > 0

Proof of the claim 9 : From the claim 6, 7 and 8,

cos(✓) 
61

64
or cos(✓) 

5

6

Since, 5
6 < 61

64 , and observe that cos is a decreasing function in [0, ⇡2 ],

0 < ✓0 ⌘ cos�1

✓
61

64

◆
 ✓  cos�1

✓
5

6

◆

This proves the claim 9.

Claim 10: There is a constant Ln depending only on the dimension of the space such

that Card(I �K)  Ln.

Proof of the claim 10: Fix r0 > 0 such that if x0 2 @B(0, 1) and for y, z 2 B(x0, r0),

the angle between y and z from the origin is less than ✓0, where ✓0 is defined in claim

9. The idea involved is considering sectors of the circles dictated on the boundary as

above. By compactness of the boundary, choose Ln so that @B(0, 1) can be covered by

Ln many balls with radius r0 and centers lying on @B(0, 1), but cannot be covered by

Ln�1 balls.

That is, for any y, z in one of the Ln balls,

< y, z >

|y||z|
< cos(✓0) ⌘

61

64

Consider B(0, t) and x0 2 @B(0, t).

y 2 B(x0, tr0) ()
y

t
2 B

�x0
t
, r0
�
with

x0
t

2 @B(0, 1)

Therefore, @B(0, 1) is covered by Ln ( not Ln�1) many balls of radius r0 if and only if

@B(0, t) is covered by Ln (not Ln�1) many balls of radius tr0. Now, with the same logic,
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for the above fixed k, B(xk, rk), treating xk ⌘ 0 and rk ⌘ t, we have @B(xk, rk) can

be covered by Ln many balls of radius rkr0 and not by Ln�1 many balls of radius rkr0.

Also, by the claim 9, if i, j 2 I �K and i 6= j, the angle between ai � ak and aj � ak is

greater than or equal to ✓0 and @Bk is covered by Ln (not Ln�1) many balls implies the

rays ai � ak and aj � ak cannot go through the same ball on @Bk.

Thus Card(I �K)  Ln , which is independent of k. This proves the claim 10.

Now , set

Mn := 20n + Ln + 1

Thus, clearly

Card(I) < Mn

Claim 11 : Let

G := {Bi ⌘ B(ai, ri) ; 1  i  J}

For k � Mn + 1 and define Gik for 1  i  Mn as :

• Bi 2 Gik ; 8k, 1  i  Mn.

• Gik consists of disjoint balls from G such that if B 2 Gik and B 6= Bi, then there is

some j such that Mn + 1  j  k such that B = Bj .

• If B 2 Gik then B /2 Gjk , for all j  i� 1.

Let

Gi :=
1[

k=Mn+1

Gik

Then, A ⇢

[

B2G

B =
Mn[

i=1

✓ [

B2Gi

B

◆

Proof of the claim 11 : (Existence of {Gij}.) The proof for the existence of the family

of sets follows by induction on k.

Declare, for 1  i  Mn and for any k > Mn that

Gik consists of Bi and hence non empty.

For k = Mn + 1, by the previous calculation, the estimate on the cardinality of I gives

Card{1  i  k ⌘ Mn + 1 ; Bi \Bk 6= �} < Mn

Thus, by the strict inequality as above, there is an i  Mn such that Bk \ Bi = �.

Choose a minimal i such that Bk \Bi = � and Bk \Bj 6= �, 8j  i�1. Hence Bk 2 Gik.

Now, assume the statement is true upto k ( which is greater than Mn + 1 ).
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As Card{i  k ; Bi\Bk+1 6= �}  Mn, there is one 1  i  Mn such that Bk+1\Bi = �,

for all B 2 Gik. Hence, by taking the minimum i such that the above happens,

=) Bk+1 2 Gi,k+1

This proves the existence of {Gij} and by claim 4,

A ⇢

[

B2G

B ⌘

Mn[

i=1

✓ [

B2Gi

B

◆

This proves the claim 11.

We proved the result under the assumption that A is bounded.

Relaxing that condition and assume A is unbounded. Partition A as follows:

For l � 1, declare,

Al := A \ {x ; 3D(l � 1)  |x| < 3Dl}

Fl := {B(a, r) 2 F ; a 2 Al}

Since Al is bounded, by the previous step, there is finite family of countable collection

of disjoint closed balls,say G
l
1,G

l
2, . . . ,G

l
Mn

in Fl such that

Al ⇢

1[

i=1

[

B2G
l
i

B

Declare

G
1
j =

1[

l=1

G
2l�1
j for 1  j  Mn

G
2
j =

1[

l=1

G
2l
j for 1  j  Mn

=) A ⇢

"
Mn[

j=1

✓ [

B2G
1
j

B

◆#[
"

Mn[

j=1

✓ [

B2G
2
j

B

◆#

Re-labelling the balls, we get that the required dimensional constant for the theorem

N is 2Mn and the family Gi consists of countable disjoint closed balls. This proves the

theorem.

Corollary 2.6. Let m be a borel, regular measure on Rn and F be any collection of

non degenerate closed balls. Let A denote the set of centers of the balls in F . Assume

m(A) < 1 and

inf{r ; B(a, r) 2 F} = 0 for each a 2 A
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Then, for each open set U ⇢ Rn, there is a countable collection G of disjoint balls in F

such that [

B2G

B ⇢ U

and

m

 
(A \ U)�

[

B2G

B

!
= 0

Remark 2.7. Here, A need not be m� measurable.

Proof. Fix 1 �
1
N < ✓ < 1, where N is the dimensional constant as in the Besicovitch

theorem.

Claim : There is a set of finite disjoint closed balls B1, B2, . . . , BM1 in U such that

m

 
(A \ U)�

M1[

i=1

Bi

!
 ✓m(A \ U)

Proof of The claim : Let

F1 := {B ; B 2 F , diamB  1, B ⇢ U}

Note that the centers of the balls in F1 are precisely A \ U . This is true as

• Clearly B ⇢ U . By the defintion of F , B ⇢ A \ U

• Let a 2 A \ U . Then, there is r, such that 0 < r < 1 and B(a, r) ⇢ U and

B(a, r) 2 F . This is by the infimum property mentioned in the hypothesis. Thus

a is centre of some ball in F1.

Thus, by the Besicovitch theorem, there are families of disjoint balls G1,G2, . . .GN from

F1 such that

(A \ U) ⇢
N[

i=1

[

B2Gi

B

And thus,

m(A \ U) 
NX

i=1

m

0

@(A \ U) \ (
[

B2Gi

B)

1

A

Thus there is a j such that

• 1  j  N

• m

✓
(A \ U) \

S
B2Gj

B

◆
�

1
Nm(A \ U)
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If not, there m
�
(A \ U) \ (

S
B2Gi

B)
�
< 1

Nm(A \ U), for all i and thus summing it,

m(A \ U) 
NX

i=1

m

0

@(A \ U) \ (
[

B2Gi

B)

1

A <
N

N
m(A \ U) =) m(A \ U) < m(A \ U)

Now, as per theorem 1.43 there are balls B1, B2, . . . BM1 2 Gj such that

m

 
(A \ U) \ (

M1[

i=1

B)

!
� (1� ✓)m(A \ U)

Now
S
Bi is measurable, implies

m(A \ U) = m

 
(A \ U) \

M1[

i=1

B

!
+m

 
(A \ U)�

M1[

i=1

B

!

Thus ,

m

 
(A \ U)�

M1[

i=1

Bi

!
 ✓m(A \ U)

Now, Declare

U2 := U �

M1[

i=1

Bi

F2 := {B; B 2 F , diamB  1, B ⇢ U2}

Clearly, the centers of F2 are precisely A\U2, by the same logic as before. Hence, There

are disjoint balls BM1+1, . . . , BM2 2 F2 such that

m

 
(A \ U)�

M2[

i=1

Bi

!
= m

0

@(A \ U2)�
M2[

i=M1+1

Bi

1

A

 ✓m(A \ U2)  ✓2m(A \ U)

This process gives a countable collection of disjoint balls from F , within U such that

m

 
(A \ U)�

Mk[

i=1

Bi

!
 ✓km(A \ U)

✓k ! 0 as k ! 1 concludes the corollary.
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2.2 Di↵erentiation of Radon measures.

Definition 2.8. Let u, v be two radon measures on Rn. For each x 2 Rn, define

Duv =

(
lim supr!0

v(B(x,r))
u(B(x,r)) if u(B(x, r)) > 0 for all r > 0

+1 if u(B(x, r)) = 0 for some r > 0

)

Duv =

(
lim infr!0

v(B(x,r))
u(B(x,r)) if u(B(x, r)) > 0 for all r > 0

+1 if u(B(x, r)) = 0 for some r > 0

)

Definition 2.9. If Duv(x) = Duv(x) < +1, we say that v is di↵erentiable with respect

to u at x and denote

Duv(x) ⌘ Duv(x) = Duv(x)

Duv is called the derivative of v with respect to u. It is also called as density of v with

respect to u.

Lemma 2.10. Fix 0 < ↵ < 1. Then

• A ⇢ {x 2 Rn ; Duv(x)  ↵} =) v(A)  ↵u(A) . . . . . . . . . (i)

• A ⇢ {x 2 Rn ; Duv(x) � ↵} =) v(A) � ↵u(A) . . . . . . . . . (ii)

Proof. Assume u(Rn) and v(Rn) are finite. Fix ✏ > 0. Let U be open and A ⇢ U , where

A satisfies the hypothesis of (i) . Declare

F := {B ; B ⌘ B(x, r), x 2 A,B ⇢ U, v(B)  (↵+ ✏)u(B)}

Then

Claim : For all x 2 A, inf{r ; B(x, r) 2 F} = 0

Proof of the claim : Notice that A ⇢ {x 2 Rn ; Duv(x)  ↵}

=) lim inf
r!0

v(B(x, r))

u(B(x, r))
 ↵ , for x 2 A

=) lim
✏0!0

inf
|r|<✏0

v(B(x, r))

u(B(x, r))
 ↵

There is ✏0 > 0, small enough such that

inf
|r|<✏00

v(B(x, r))

u(B(x, r))
< ↵+

✏

2
; 8✏00 < ✏0

and

As U is open, B(x, r) ⇢ U , for all |r| < ✏0
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Thus there is r0 < ✏0 such that

v(B(x, r0))

u(B(x, r0))
< ↵+ ✏

=) v(B(x, r0)) < u(B(x, r0))(↵+ ✏)

This is true for all ✏00 < ✏0. Thus sending ✏00 to 0 and hence, r to 0, concludes the claim.

This proves the claim.

By the corollary 2.6 (the corollary to the besicoivitch theorem), there is countable col-

lection G of disjoint balls in F such that

v

 
A�

[

B2G

B

!
= 0

Since
S

B2G
B is measurable,

v(A) = v

✓
A \ (

[

B2G

B)

◆
+ v

✓
A�

[

B2G

B

◆



X

B2G

v(B)



X

B2G

(↵+ ✏)u(B)

 (↵+ ✏)u(U)

This estimate is valid for each U such that A ⇢ U .

Regularity result of the radon measures says that any measurable set can be approx-

imated by the open sets from the outside. That is, for m to be radon measure, we

have

m(A) = inf { m(U) ; A ⇢ U, U is open }

Thus, taking infimum on the estimate obtains,

v(A)  (↵+ ✏)u(A)

Noting that ✏ > 0 was arbitrary, (i) is proved, for the case of finite measure on the whole

space, as per the assumption.

For the non finite case, let Uk ⌘ B(0, k) ⇢ B(0, k).

=) v(Uk) < 1 , v(Uk) < 1

Declare

uk := (u|Uk)
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vk := (v|Uk)

Clearly, uk and vk are finite radon measures and now, let Ak = A \ Uk.

Since, Uk’s are open and

Ak ⇢ {x 2 Uk ; Dukvk(x)  ↵} ; Ak ⇢ Ak+1 ; A =
1[

k=1

Ak

=) v(A \ Uk) = vk(Ak)  ↵uk(Ak) = ↵u(A \ Uk)  ↵u(A)

Let k ! 1 to get

v(A) = lim
k!1

v
�
A \ Vk

�
 ↵u(A)

This proves (i) of the lemma.

(ii) of the lemma has the same steps as for the first part and the proof follows.

Definition : Let X be a set and Y be a topological set. Assume that m is (an outer)

measure on X.

A function f : X ! Y is said to be m� measurable if for every open set U ⇢ Y , f�1(U)

is m� measurable.

Theorem 2.11. Let u, v be radon measures on Rn. Then Duv exists and is finite u

almost everywhere. Furthermore, Duv is u� measurable.

Proof. Assume that v(Rn) and u(Rn) are finite.

Claim 1 : Duv exists and is finite u almost everywhere.

Proof of the claim 1 : Let

I := {x ; Duv(x) = +1}

and for all 0 < a < b, let

R(a, b) := {x ; Duv(x) < a < b < Duv(x) < 1}

For each ↵ > 0, I ⇢ {x ; Duv(x) � ↵}. By the previous lemma,

u(I) 
1

↵
v(I)

Let ↵ ! 1, we see that u(I) = 0 and so Duv is finite u almost everywhere.

Now,

R(a, b) ⇢ {x ; Duv(x) � b}

and
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R(a, b) ⇢ {x ; Duv(x)  a}

Thus,by the previous lemma,

b u(R(a, b))  v(R(a, b))  a u(R(a, b))

Since b > a, we have u(R(a, b)) = 0. Also,

{x ; Duv(x) < Duv(x) < 1} =
[

0<a<b ; a,b2Q
R(a, b)

As a consequence, Duv exists and is finite u almost everywhere. This proves the claim 1.

Claim 2 : For each x 2 Rn and r > 0,

lim sup
y!x

u(B(y, r))  u(B(x, r))

lim sup
y!x

v(B(y, r))  v(B(x, r))

Proof of the claim 2 : Choose {yk} in Rn such that yk ! x. Set

fk := XB(yk,r)

f := XB(x,r)

Then,

(S) : lim sup
k!1

fk  f

This is true as :

Case 1 : f ⌘ 1. Since fk = 0 or 1, the statement (S) is true for this case.

Case 2 : If f(y) = 0, i.e y is not in B(x, r). Say y /2 @B(x, r) . Clearly, |x� y| > r and

there is a k0 > 0 such that for all k � k0 we have that |yk � x| < min{|y � x|, r2} and

thus B(yk, r)\ {y} = �. Hence, fk(y) = 0 for all k � k0. This proves the statement (S)

for this special case.

Case 3 : Same conditions as in case 2, but, if y is on the boundary. Note that, as per

the assumption made earlier, the balls are closed if nothing is mentioned about them.

So, y /2 B(x, r) implies y /2 @B(x, r) and hence, only case 2 is possible.

Thus, combining all the 3 cases, the statement (S) is true.

Now,

lim inf
k!1

(�fk) � �f

=) lim inf
k!1

(1� fk) � 1� f
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Thus, by the fatou’s lemma,

Z

B(x,2r)
(1� f)du 

Z

(B(x,2r)
lim inf
k!1

(1� fk)du  lim inf
k!1

Z

B(x,2r)
(1� fk)du

Hence,

u(B(x, 2r))� u(B(x, r))  lim inf
k!1


u(B(x, 2r))� u(B(yk, 2r))

�

Now, as u is a radon measure and B(x, 2r) is compact implies

u(B(x, 2r))  u(B(x, 2r)) < 1

Thus

lim sup
y!x

u(B(y, r))  u(B(x, r))

The same result holds for v as well and this proves claim 2.

Claim 3 : Duv is measurable with respect to u.

Proof of the claim 3 : By the claim 2,

x ! u(B(x, r))

x ! v(B(x, r))

are upper semi-continuous and thus borel measurable. As a consequence, for every r > 0,

fr(x) =

(
v(B(x,r))
u(B(x,r)) if u(B(x, r)) > 0

+1 if u(B(x, r)) = 0

)

fr defined above is u� measurable.

Note that

Duv = lim
r!0

fr = lim
k!1

f1/k

The above is true for u almost everywhere as per the claim 1. So Duv is u measurable.

This proves the claim 3.

Suppose that u, v are not finite, observing that u, v are radon, we have, for k 2 N,

u
�
B(0, k)

�
 u

✓
B(0, k)

◆
< 1

v
�
B(0, k)

�
 v

✓
B(0, k)

◆
< 1
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As before, declare

uk :=
�
u|B(0, k)

�

vk :=
�
v|B(0, k)

�

Thus, for x 2 B(0, k),

Dukvk(x) = Duv(x)

Dukvk(x) = Duv(x)

Hence, if Ik := I \ B(0, k), then u(Ik) = uk(Ik) = 0 =) u(I) = limk!1 u(Ik) = 0.

Similarly, if a < b, let

Rk(a, b) := {x 2 B(0, k) ; Dukvk(x) < a < b < Dukvk(x)}

=) Rk(a, b) ⇢ B(0, k) , uk
�
Rk(a, b)

�
= u

�
Rk(a, b)

�
= 0

=) u
�
R(a, b)

�
= lim

k!1

u
�
Rk(a, b)

�
= 0

Hence,Duv(x) = Duv(x) exist for u� almost everywhere and x ! Duv(x) is a uk�measurable

function for all k implies for an open set U ⇢ Rn,
�
Duv�1(U)

�
is uk� measurable for

all k. That is, for any set B ⇢ Rn,

uk(B) = uk
�
B \Duv

�1(U)
�
+ uk

�
B �Duv

�1(U)
�

The above is true for all k and hence, taking the limit k ! 1, we see that x ! Duv(x)

is u measurable.

2.2.1 Radon-Nikodym Derivative

Definition 2.12. The measure v is absolutely continuous with respect to u, written as

v ⌧ u

if

For all A ⇢ Rn, with u(A) = 0, then v(A) = 0
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Definition 2.13. The measures u and v are mutually singular, denoted as

v ? u

if

If there is a B ⇢ Rn, borel, such that u(Rn
�B) = v(B) = 0

Theorem 2.14. Radon-Nikodym Theorem/ Di↵erentiation theorem for Radon

Measures

Let u, v be radon measures on Rn with v ⌧ u. Then, for all A which are u� measurable

subsets of Rn,

v(A) =

Z

A
Duv du

Proof. Let A be u� measurable. This implies there is a borel set B such that u(A) =

u(B).

=) u(A�B) = 0

=) v(A�B) = 0

This tells that A is also v�measurable. Set

Z := {x 2 Rn ; Duv(x) = 0}

I := {x 2 Rn ; Duv(x) = +1}

Let

Zk := Z \B(0, k) , k 2 N

Then, for any ↵ > 0, we have Zk ⇢ {x 2 B(0, k) ; Duv(x)  ↵}.

From the previous lemma, we therefore have v(Zk)  ↵u(Zk). Letting ↵ ! 0,

=) v(Z) = lim
k!0

v(Zk) = 0

Note that this also gives that Z is v measurable, as v is a complete measure.

Case 1 : The case for Z.

v(Z) = 0
Z

Z
Duv du =

Z

Z
0 du = 0

This tells that the theorem is true for Z.

Case 2 : The case for I. It is noted that v(I) = 0. And by the previous theorem, Duv
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is finite u�almost everwhere and hence,

Z

I
Duv du = 0

This proves the theorem for I.

Case 3: For any other u�measurable set A. Choose and fix 1 < t < 1. Define , for

m 2 Z,
Am := A \ {x 2 Rn ; tm  Duv(x) < tm+1

}

A is u� measurable and {x 2 Rn ; tm  Duv(x) < tm+1
} = Duv�1

�
[tm, tm+1)

�
is also

u� measurable as per the previous theorem and hence, Am is u� measurable and thus

v� measurable.

Also

A�

+1[

�1

Am ⇢

✓
Z [ I [ {x ; Duv(x) 6= Duv(x)}

◆

Thus,

v

✓
A�

+1[

�1

Am

◆
= 0

As a consequence,

v(A) =
+1X

�1

v(Am)



+1X

�1

tm+1u(Am)

= t
+1X

�1

tmu(Am)

 t
X

m

Z

Am

Duv du

As, Ai’s are disjoint,

= t

Z

A
Duvdu

Also

v(A) =
+1X

m=�1

v(Am)

�

+1X

m=�1

tmv(Am)

=
1

t

+1X

m=�1

tm+1u(Am)
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�
1

t

+1X

m=�1

tm+1u(Am)

�
1

t

1X

m=�1

Z

Am

Duv du

As, Ai’s are disjoint,

=
1

t

Z

A
Duv du

Hence,
1

t

Z

A
Duv du  v(A)  t

Z

A
Duv du

Notice that t was arbitrarily greater than 1. Thus taking t ! 1+, we can conclude that

v(A) =

Z

A
Duv du

This proves the thoerem.

Theorem 2.15. Lebesgue Decomposition theorem :

Let u, v be radon measures on Rn.

• Then

v = vac + vs

vac ⌧ u

vs ? u

• Furthermore, for u� almost everywhere,

Duv = Duvac

Duvs = 0

and

v(A) =

Z

A
Duv du+ vs(A)

Definition 2.16. vac is the absolutely continuous part of v with respect to u.

vs is the singular of v with respect to u.

Proof. Assume v(Rn) is finite.

Let

✏ := {A ⇢ Rn ; A is borel , u(Rn
�A) = 0}
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Clearly, ✏ is not empty as Rn
2 ✏. By the infimum property, choose Bk 2 ✏ such that

v(Bk)  inf
A2✏

v(A) +
1

k

Set

B =
1\

k=1

Bk

Since,

u(Rn
�B) 

1X

k=1

u(Rn
�Bk) = 0

=) u(Rn
�B) = 0 =) B 2 ✏

So,

v(B) = inf
A2✏

v(A)

Declare

vac := (v|B)

vs := (v|(Rn
�B))

Clearly, vs(B) = 0, u(Rn
�B) = 0 and thus vs ? u.

Let A be a borel set such that u(A) = 0.

Case 1 : If A \B = �, then clearly, vac(B) = 0.

Case 2 : If A ⇢ B with u(A) = 0.

Claim : v(A) = 0.

Suppose not, say v(A) > 0. Since A is a borel set

=) B �A 2 ✏ , as u
�
Rn

� (B �A)
�
= u

�
(Rn

�B) [A
�
= u

�
Rn

�B
�
+ u(A) = 0.

=) inf
C2✏

v(C)  v(B �A) = v(B)� v(A) < v(B) = inf
C2✏

v(C)

This is a contradiction and thus proves the claim.

If A ⇢ B and not borel, but with u(A) = 0, then, by the borel regularity, choose A1, a

borel set such that

• A ⇢ A1

• u(A1) = 0

Declare A2 := A1 \B.

=) A ⇢ A2 ⇢ B

A2 is a borel set and u(A2) = 0. Hence, by the claim, v(A2) = 0 and therefore,

vac(A) = v(A) = 0. This proves that vac ⌧ u and vac = v on every subset of B.
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Finally, fix ↵ > 0 and set

C := {x 2 B ; Duvs(x) � ↵} ⇢ B

By the earlier lemma 2.10,

↵ u(C)  vs(C) = 0

=) u(C) = 0 as ↵ > 0

Thus Duvs ⌘ 0, u� almost everywhere. Now,

Duv(x) =

(
limr!0

v(B(x,r))
u(B(x,r)) if, for all r > 0, u(B(x, r)) > 0

+1 else.

)

v = vac + vs implies,

Duv(x) =

(
limr!0

vac(B(x,r))
u(B(x,r)) + limr!0

vs(B(x,r))
u(B(x,r)) if, for all r > 0, u(B(x, r)) > 0

+1 else.

)

Hence,

Duv = Duvac +Duvs

Duvs is zero u� almost everywhere and hence,

Duv = Duvac, u� almost everywhere

Therefore, for A, a borel set ,

vac(A) =

Z

A
Duv(x)du(x)

Since v = vac + vs,

=) v(A) = vac(A) + vs(A) =

Z

A
Duv(x)du(x) + vs(A)

Thus,

v(A) =

Z

A
Duv du+ vs(A)

For the case when v(Rn) is not finite, let {Kl} be an increasing sequence of compact

sets covering Rn, that is

• Rn =
S

1

l=1Kl

• Kl ⇢ Kl+1
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By the assumption, since v is a radon measure, v(Kl) < 1, for all l. Let vl := (v|Kl).

Then, by the previous case of the finite radon measure, there are borel sets fBl 2 ✏ such

that

vl(fBl) = inf
B2✏

vl(B)

Define

Bl :=
1\

j=l

fBj

=) Bl ⇢ Bl+1 , Bl is borel. , Bl ⇢
fBl and

Rn
�Bl = Rn

�

✓ 1\

j=l

fBj

◆
⇢

1[

j=l

✓
Rn

� fBj

◆

=) u
�
Rn

�Bl

�


1X

j=l

u
�
Rn

� fBj
�
= 0

=) Bl 2 ✏ and inf
B2✏

vl(B)  vl(Bl)  vl(fBl) = inf
B2✏

vl(B)

=) vl(Bl) = vl(fBl) = inf
B2✏

vl(B)

Let

B0 :=
1[

l=1

Bl

vac := (v|B0)

vs := (v|Rn
�B0)

Then, for any borel set A,

v(A) = v(A \B0) + v
�
A \ (Rn

�B0)
�
= vac(A) + vs(A)

Clearly, vs(B0) = u(Rn
�B0) = 0 =) vs ? u.

Claim : vac ⌧ u.

Proof of the claim : Let u(A) = 0, A is a borel set. Then

A \B0 = � =) vac(A) = v(A \B0) = 0

Now, consider the case A ⇢ B0.

Suppose that vac(A) > 0, then v(A \ B0) > 0. Since A = [
1

n=1

�
A \ Kn

�
, we have

v
�
[
1

m=1[
1

l=1(A\Km\Bl)
�
> 0. Hence, there are n0, l0 such that v(A\Kn0 \Bl0) > 0.

Since, Km ⇢ Km+1, Bl ⇢ Bl+1,

=) 8m � n0, l � l0, v
�
A \Km \Bl

�
> 0
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Choose p � max{n0, l0}, then v
�
A \Kp \Bp

�
> 0.

u

✓
Rn

�
�
Bp � (A \Bp)

�◆
= u

�
Rn

�Bp
�
+ u(A \Bp)  u

�
Rn

�Bp
�
+ u(A) = 0

=) Bp � (A \Bp) 2 ✏

=) inf
B2✏

vp(B)  vp

✓
Bp�(A\Bp)

◆
= vp(Bp)�vp(A\Bp) = inf

B2✏
vp(B)�v

�
A\Kp\Bp

�

< inf
B2✏

vp(B)

This is a clear contradiction. Hence, vac(A) = 0 and thus vac ⌧ u.

Since, vs(B0) = 0 , u
�
Rn

�B0
�
= 0, we have, as noted earlier, Duvs(x) = 0 for u a.e x.

Hence, for u a.e x,

Duv(x) = Duvac(x) +Duvs(x) = Duvac(x)

=) v(A) = vac(A) + vs(A) =

Z

A

�
Duvac

�
(x)du(x) + vs(A)

=

Z

A
Duv(x)du(x) + vs(A)

Definition 2.17.

• Denote the average of f over the set E, with respect to u as

-

Z
-
E
f du :=

1

u(E)

Z

E
f du

The definition is valid provided 0 < u(E) < 1 and the intergal on the R.H.S is

defined.

• L
1
loc(Rn, u) := {f : Rn

! R ;
R
K |f |du < 1, for all compact sets, K ⇢ Rn

}

Theorem 2.18. Lebesgue Besicovitch Di↵erentiation theorem

Let u be a radon measure on Rn, f 2 L
1
loc(Rn, u). Then,

lim
r!0

-

Z
-
B(x,r)

f du = f(x), for u� a.e x 2 Rn

Proof. For Borel B ⇢ Rn, define

v±(B) :=

Z

B
f± du
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Then, by MCT, v± are �� finite measures on the �� algebra of borel sets. For an

arbitrary set A ⇢ Rn, define

v±(A) ⌘ inf{v±(B) ; A ⇢ B,B is borel}

From the construction of measures from semi-algebras, it follows that v± are regular,

borel measures. Now for any compact set K,

v±(K) =

Z

K
f±du(x) 

Z

K
|f |du < 1

Thus v± are radon measrues as well.

Also, note that v± ⌧ u. Thus, by the Radon-Nikodym theorem, for all u� measurable

set A, Z

A
f+ du = v+(A) =

Z

A
Duv

+ du

Z

A
f� du = v�(A) =

Z

A
Duv

� du

Thus

Duv
± = f± ; u� almost everywhere

Consequently,

lim
r!0

-

Z
-
B(x,r)

f du = lim
r!0

-

Z
-
B(x,r)

f+ du� lim
r!0

-

Z
-
B(x,r)

f� du

= lim
r!0

1

u(B(x, r)

⇥
v+(B(x, r))� v�(B(x, r))

⇤

= Duv
+(x)�Duv

�(x) , u� almost everywhere

= f+(x)� f�(x)

= f(x) for all x, u� almost everywhere

Remark 2.19. The same result holds for f to be in L
p
loc(Rn, u), where

L
p
loc(R

n, u) := {f : Rn
! R ;

Z

K
|f |pdu < 1, for all compact sets, K ⇢ Rn

}

Corollary 2.20. Let u be a radon measure on Rn, 1  p < 1 and f 2 L
p
loc(Rn, u)

where

L
p
loc(R

n, u) := {f : Rn
! R ;

Z

K
|f |pdu < 1, for all compact sets, K ⇢ Rn

}
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Then

lim
r!0

-

Z
-
B(x,r)

|f(y)� f(x)|p du(y) = 0 ; for u� almost every x

Definition 2.21. x is a lebesgue point with respect to u, if

lim
r!0

-

Z
-
B(x,r)

|f(y)� f(x)|p du(y) = 0

Proof of the corollary: Let {ri}1i=1 be countable dense set in R .

Claim 1 : f(x)� ri 2 L
p
loc(Rn, u)

Proof of the claim 1 : Fix a compact set K ⇢ Rn. Then, by the minikowski’s inequality,

✓Z

K
|f � ri|

p du

◆ 1
p



✓Z

K
|f |p du

◆ 1
p

+

✓
|ri|

p u(K)

◆ 1
p

< 1

This proves the claim 1.

By the Lebesgue-Besicovitch di↵erentiation theorem 2.18,

lim
r!0

-

Z
-
B(x,r)

|f(y)� ri|
p du(y) = |f(x)� ri|

p ; for u� almost every x.

This implies that there are {Ai ⇢ Rn
}
1

i=1 such that, for A =
S

1

i=1Ai, we have u(A) = 0

and satisfy the property: 8x /2 A, 8ri,

=) lim
r!0

-

Z
-
B(x,r)

|f(y)� ri|
p du(y) = |f(x)� ri|

p

Let x /2 A and by the dense property, choose ri such that

|f(x)� ri|
p <

✏

2p

Then, by the hölder’s inequality,

lim sup
r!0

-

Z
-
B(x,r)

|f(y)� f(x)|p du(y)

 2p�1

"
lim sup

r!0
-

Z
-
B(x,r)

|f(y)� ri|
p du(y) + -

Z
-
B(x,r)

|f(x)� ri|
p du(y)

#

= 2p�1


|f(x)� ri|

p + |f(x)� ri|
p

�

< ✏

✏ was arbitrarily greater than zero. This concludes the corollary.
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Corollary 2.22. If f 2 L
p
loc for some 1  p < 1, then

lim
B#{x}

-

Z
-
B
|f(y)� f(x)|p dy = 0 for L

n a.e x

Remark 2.23. Here lim
B#{x}

means the limit is taken over all closed balls containing x with

diam(B) ! 0.

Note that the balls need not be centered at x in this kind of limit.

Proof. Let B be a ball with diam(B) = d and x 2 B with x being the lebesgue point.

Then, B ⇢ B(x, d) and hence,

L
n
�
B(x, d)

�

Ln(B)
=

↵(n)dn

↵(n)
�
d
2

�n = 2n

Hence,

-

Z
-
B
|f(y)� f(x)|pdy 

L
n
�
B(x, d)

�

Ln(B)
-

Z
-
B(x,d)

|f(y)� f(x)|pdy  2n -

Z
-
B(x,d)

|f(y)� f(x)|pdy

As x is a lebesgue point, d ! 0 =) RHS ! 0 and this proves the corollary.

Corollary 2.24. Let E ⇢ Rn be L
n
� measurable, then

lim
r!0

L
n(B(x, r) \ E)

Ln(B(x, r))
= 1 for L

n
� almost every x 2 E

lim
r!0

L
n(B(x, r) \ E)

Ln(B(x, r))
= 0 for L

n
� almost every x 2 Ec

Proof. Let f ⌘ XE . As E is L
n
� measurable, f is locally integrable as u(E \ K) 

u(K) < 1. By the above corollary,

lim
r!0

-

Z
-
B(x,r)

f(y) dy = f(x) for Ln
� almost every x.

As per the hypothesis,

L.H.S ⌘ lim
r!0

L
n(B(x, r) \ E)

Ln(B(x, r))
= 0 or 1 ⌘ R.H.S accordingly a.e.

This proves the corollary.
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Definition 2.25. Points of density :

Let E be a L
n
� measurable set of Rn. x 2 Rn is called a point of density for E if

lim
r!0

L
n
�
B(x, r) \ E

�

Ln
�
B(x, r)

� = 1

Remark 2.26. From the previous corollary, for almost every x 2 E, x is a point of

density.

2.2.2 Riesz Representation Theorem.

Definition :

Cc(Rn;Rm) := {f : Rn
! Rm ; f is continous and has compact support in Rn

}

Theorem 2.27. Let L : Cc(Rn;Rm) ! R be a linear functional satisfying, for each

compact set K ⇢ Rn,

sup{L(f) ; f 2 Cc(Rn;Rm) ; |f |  1 , support(f) ⇢ K} < 1 ��(⇤)

Then there is a radon measure u on Rn and a u� measurable function � : Rn
! Rm

such that for all f 2 Cc(Rn;Rm),

• |�(x)| = 1 for u� almost every x

• L(f) =
R
Rn f� du

Definition 2.28. u is called the variational measure which is defined for each open set

V ⇢ Rn as

u(V ) := sup{L(f) ; f 2 Cc(Rn;Rm) ; |f |  1 , support(f) ⇢ V }

Proof. Firstly observe that L(f) < 0 =) L(�f) > 0. Hence, for an open set, define u

on open sets V as above and set and for an arbitrary set A ⇢ Rn

u(A) ⌘ inf{u(V ) ; A ⇢ V ;V is open}

Claim 1 : u is a measure ( i.e, subadditivity is satisfied ).

Proof of the claim 1 : Let V , {Vi}
1

i=1 be open sets in Rn with V ⇢ [
1

i=1Vi. Choose

g 2 Cc(Rn;Rm) such that |g|  1 and support(g) ⇢ V .

By the compactness, support(g) ⇢ [
k
j=1Vj . By the partitions of unity, let {⇠j}kj=1 be

a finite sequence of smooth, non negative functions such that support(⇠j) ⇢ Vj and
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Pk
j=1 ⇠j ⌘ 1 on support(g). Then, clearly, g ⌘

Pk
j=1 g⇠j and hence,

|L(g)| =

������

kX

j=1

L(g⇠j)

������


kX

j=1

|L(g⇠j)| 
1X

j=1

u(Vj)

Taking supremum over g, we get

u(V ) 
1X

j=1

u(Vj)

Now let {Aj}
1

j=1 be arbitrary sets with A ⇢ [
1

j=1Aj . Fix ✏ > 0. Choose open sets Vj

such that Aj ⇢ Vj and u(Aj) +
✏
2j � u(Vj). Then

u(A)  u

0

@
1[

j=1

Vj

1

A 

1X

j=1

u(Vj) 
1X

j=1

u(Aj) + ✏

This proves the claim 1 as ✏ was arbitrarily positive.

Claim 2 : u is a radon measure.

Proof of the claim 2: Let U, V be two open sets with dist(U, V ) > 0.

Let g 2 Cc

✓
U [ V,Rm

◆
and |g|  1. Then g1 := g|U and g2 := g|V are in Cc(U,Rm)

and Cc(V,Rm) respectively. Also, g = g1 + g2 with |g1|  1 and |g2|  1. Hence,

L(g) = L(g1) + L(g2)  u(U) + u(V )

Taking supremum over g =) u

✓
U [ V

◆
 u(U) + u(V )

Let ✏ > 0. Choose g1, g2 with g := g1+g2 and u(U)  L(g1)+✏/2 and u(V )  L(g2)+✏/2

=) u

✓
U [ V

◆
� L(g) = L(g1) + L(g2) � u(U) + u(V )� ✏

Letting ✏ ! 0,we have

u(U [ V ) = u(U) + u(V )

The above is true for open sets. Now, for arbitrary 2 sets with strict positive distance

between them, we have :

Let A,B be subsets of Rm and dist(A,B) = r > 0.

Let ✏ = r
4 and U✏ := {x 2 Rn ; d(x,A) < ✏} and V✏ := {x 2 Rn ; d(x,B) < ✏}. Then

d(U✏, V✏) �
r
2 . Let A[B ⇢ W✏, where W✏ is an open set such that u

�
A[B

�
� u

�
W✏
�
�

✏
2 .

Declare W1,✏ := W✏ \ U✏ and W2,✏ = W✏ \ V✏, then dist(W1,✏,W2,✏) � dist(U✏, V✏) �
r
2

=) u
�
A [B

�
� u(W✏)�

✏

2
� u

�
W1,✏ [W2,✏

�
�

✏

2
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� u(W1,✏) + u(W2,✏)�
✏

2
� u(A) + u(B)�

✏

2

Letting ✏ ! 0, we have

u(A) + u(B)  u(A [B)  u(A) + u(B)

=) u(A [B) = u(A) + u(B)

Thus, by the caratheodory’s criteria, we have u to be a borel measure. Also, by the defi-

nition of u, it is also borel regular, i.e, given A ⇢ Rn, there is Vk, open such that A ⇢ Vk

and u(Vk)  u(A)+ 1
k , for all k 2 N. Thus u(A) = u(\1

k=1Vk). Now, (⇤) condition of the

hypothesis implies that u(K) < 1, for all K, compact subsets of Rn. This proves the

claim 2.

Now, let

C+
c (Rn) := {f 2 Cc(Rn,R) ; f � 0}

For f 2 C+
c (Rn), set

�(f) := sup{|L(g)| ; g 2 Cc(Rn,Rm) , |g|  f}

Some observations include :

• If f, g 2 C+
c (Rn) and f  g, then �(f)  �(g).

• For f 2 C+
c (Rn),�(cf) = c�(f), for all c � 0.

Claim 3 : For all f, g 2 C+
c (Rn), we have �(f + g) = �(f) + �(g).

Proof of the claim 3 : If h1, h2 2 Cc(Rn,Rm) with |h1|  f and |h2|  g,

then |h1+h2|  f+g. We can, without loss of generality, assume that L(h1), L(h2) � 0.

Thus

|L(h1)|+ |L(h2)| = L(h1) + L(h2) = L(h1 + h2) = |L(h1 + h2)|  �(f + g)

Taking supremum over h1 and h2 in Cc(Rn,Rm), we get

�(f) + �(g)  �(f + g)

Now fix h 2 Cc(Rn,Rm) with the criteria that |h|  f + g. Set

h1 ⌘

(
f.h
f+g if f + g > 0

0 if f + g = 0

)



111

h2 ⌘

(
g.h
f+g if f + g > 0

0 if f + g = 0

)

Then, clearly, h1, h2 2 Cc(Rn,Rm). Also h = h1 + h2 and |h1|  f and |h2|  g.Thus

|L(h)|  |L(h1)|+ |L(h2)|  �(f) + �(g)

As a consequence,

�(f + g)  �(f) + �(g)

This proves the claim 3.

Claim 4 : �(f) =
R
Rn f du ; for all f 2 C+

c (Rn).

Proof of the claim 4 : First observe that f�1({t}) is a closed set in Rn and

f�1({t}) \ f�1({s}) = � if t 6= s. Let 0 < s < t and K ⇢ Rn be a compact set. For

every l > 0, define

Sl(K) := {✓ 2 [s, t] ; u
�
f�1(✓) \K

�
�

1

l
}

S(K) := {✓ 2 [s, t] ; u
�
f�1(✓) \K

�
> 0}

Clearly,

S(K) =
1[

l=1

Sl(K)

Since u is a radon measure, u
�
f�1(✓) \K

�
 u(K) < 1

=)
card

�
Sl(K)

�

l


X

✓2Sl(K)

u
�
f�1(✓) \K

�
= u

✓ [

✓2Sl(K)

f�1(✓) \K

◆
 u(K)

=) card
�
Sl(K)

�
 l u(K) < 1

Hence, for every K compact, S(K) is countable. Let S := {✓ 2 [s, t] ; u
�
f�1(✓)

�
> 0},

then S =
S

1

l=1 S(Kl), where Kl ⇢ Kl+1, Rn =
S

1

l=1Kl. Hence S is countable and

S ⇢ [s, t]. Therefore, for almost every ✓ 2 [s, t], u
�
f�1(✓)

�
= 0. Let ✏ > 0. Choose

0 = t0 < t1 < t2 < . . . tN such that tN = 2 ||f ||L1 , 0 < ti � ti�1 < ✏ , u
�
f�1

{ti}
�
= 0

for j = 1, 2 . . . , N . Declare

Uj := f�1((tj�1, tj))

Uj ’s are clearly open and since support of f is compact, u(Uj) < 1. By the ap-

proximation by the compact sets for radon measure, there is Kj ⇢ Uj such that

u(Uj � Kj) < ✏
N , for all j = 1, 2, . . . , N . Also, there are functions gj 2 Cc(Rn,Rm)

with |gj |  1, support(gj) ⇢ Uj and |L(gj)| � u(Uj) �
✏
N . Also, observe that there are

functions hj 2 C+
c (Rn) such that support(hj) ⇢ Uj and 0  hj  1, and hj ⌘ 1 on
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Kj [ support(gj). Then,

�(hj) � |L(gj)| � u(Uj)�
✏

N

and

�(hj) = sup{|L(g)| ; g 2 Cc(Rn,Rm) , |g|  hj}

 sup{|L(g)| ; g 2 Cc(Rn,Rm) , |g|  1 , support(g) ⇢ Uj}

= u(Uj)

whence

u(Uj)�
✏

N
 �(hj)  u(Uj)

Since {Uj} are disjoint and support(hj) ⇢ Uj =) f
�
1�

PN
j=1 hj

�
� 0, declare

A := {x ; f(x)

 
1�

NX

i=1

hi(x)

!
> 0}

Here, A is clearly open. Now, we compute

�

0

@f � f
NX

j=1

hj

1

A = sup{|L(g)| ; g 2 Cc(Rn,Rm) , |g| 
�
f � f

NX

j=1

hj
�
XA}

 sup{|L(g)| ; g 2 Cc(Rn,Rm) , |g|  ||f ||L1 XA}

= ||f ||L1 sup{|L(g)| ; g 2 Cc(Rn,Rm) , |g|  XA}

= ||f ||L1 u(A)

= ||f ||L1 u

0

@
N[

j=1

(Uj � {hj = 1})

1

A

 ||f ||L1

NX

j=1

u(Uj �Kj)

 ✏||f ||L1

Hence,

�(f) = �

0

@f � f
NX

j=1

hj

1

A+ �

0

@f
NX

j=1

hj

1

A

 ✏||f ||L1 +
NX

j=1

�(f.hj)

 ✏||f ||L1 +
NX

j=1

tj .u(Uj)
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and

�(f) �
NX

j=1

�(f.hj)

�

NX

j=1

tj�1

⇣
u(Uj)�

✏

N

⌘

�

NX

j=1

tj�1u(Uj)� tN ✏

Since u
�
f�1({tj})

�
= 0,

NX

j=1

tj�1u(Uj) 

Z

Rn
f du 

NX

j=1

tju(Uj)

we have

|�(f)�

Z

Rn
f du| 

NX

j=1

(tj � tj�1)u(Uj) + ✏||f ||L1 + ✏tN

 ✏ u(support(f)) + 3 ✏||f ||L1

This proves the claim 4.

Claim 5 : There is a u� measurable function � : Rn
! Rm such that L(f) =

R
Rn f.� du

for all f 2 Cc(Rn,Rm).

Proof of the claim 5 : Fix a ⌘ (a1, a2, . . . , am) 2 Rm such that |a| = 1. Define

�a(f) ⌘ L(fa)

Note that (f a)(x) ⌘ f(x).(a1, a2, . . . , am) ⌘ (a1f(x), a2, f(x), . . . , f(x)am) 2 Rm and is

compactly supported, for f 2 Cc(Rn). Then �a is linear and

|�a(f)| = |L(f a)|  sup{|L(g)| ; g 2 Cc(Rn,Rm) , |g|  |f |}

= �(|f |) =

Z

Rn
|f | du

Thus,by the Hanhn-Banach theorem, we can extend �a to a bounded linear functional

on L1(Rn, u). Hence, there is �a 2 L1(u) such that

�a(f) =

Z

Rn
f�a du ; for f 2 Cc(Rn)
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Let e1, e2, . . . em be the standard basis of Rm. Define

� ⌘

1X

j=1

�ejej

Then if f 2 Cc(Rn,Rm), we have

L(f) =
mX

j=1

L((f.ej)ej)

=
mX

j=1

Z
(f.ej)�ej du

=

Z
f.� du

This proves the claim 5.

Claim 6 : |�| = 1 u� a.e.

Proof of the claim 6 : Let U ⇢ Rn be open and u(U) < 1. Then, by definition,

u(U) = sup{

Z
f.� du ; f 2 Cc(Rn,Rm) , |f |  1 , support(f) ⇢ U} (⇤⇤)

Take gk 2 Cc(Rn,Rm) such that |gk|  1 and support(gk) ⇢ U and gk.� ! |�| ; u�

almost everywhere. Then, by the (⇤⇤),

Z

U
|�| du = lim

k!1

Z
gk.� du  u(U)

Also, if f 2 Cc(Rn,Rm) with |f |  1 and support(f) ⇢ U , then

Z
f.� du 

Z

U
|�| du

By (**),

u(U) 

Z

U
|�| du

Thus

u(U) =

Z

U
|�| du

for all open sets U ⇢ Rn and hence,

|�| = 1 ; u� almost everywhere
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Corollary 2.29. Let L : Cc(Rn) ! R be linear and non-negative, so that

L(f) � 0 for all f 2 C1

c (Rn), f � 0

Then there is a radon measure u on Rn such that

L(f) =

Z

Rn
f du for all f 2 C1

c (Rn)

Proof. Choose any compact set K in Rn and select smooth function ⇠ such that ⇠ has

compact support, ⇠ ⌘ 1 on K and 0  ⇠  1. Then, for any f 2 C1
c (Rn) with

support(f) ⇢ K, set g ⌘ ||f ||L1⇠ � f � 0. The hypothesis of the corollary implies

0  L(g) = ||f ||L1L(⇠)� L(f)

and so

L(f)  C||f ||L1

where C ⌘ L(⇠) . Thus L extends to a linear mapping from Cc(Rn) to R such that it

satisfies the condition of the Reisz representation theorem. Hence, there is u,� as before

such that

L(f) =

Z

Rn
f.� du f 2 C1

c (Rn)

with � = ±1 u� a.e. The hypothesis of the corollary forces � = 1 , u� a.e.

Remark 2.30. There is a generalised version of the Riesz representation theorem in Real

and Complex analysis, W.Rudin which says the following :

Let X be a locally compact Hausdor↵ space, � be a positive linear functional on Cc(X),

i.e if f � g, then �(f) � �(g). Then, there is a �� algebra M which contains all the

borel sets in X and there is a unique positive measure u on M which represents � such

that

• �(f) =
R
X f du for all f 2 Cc(X) := {f : X ! R ; support(f) is compact in X}

• u(K) < 1 for all K compact subset of X

• For all E 2 M,

u(E) ⌘ inf{u(V ) ; E ⇢ V , V is open.}

• For all E open and in M, with u(E) < 1,

u(E) := sup{u(K) ; K ⇢ E , K is compact.}

• If E 2 M, A ⇢ E, u(E) = 0 =) A 2 M
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2.3 Hausdor↵ Measures

.

2.3.1 Definition and some elementary properties.

Definition 2.31. Let A ⇢ Rn , 0  s < 1 , 0  � < 1. Define

H
s
� ⌘ inf{

1X

j=1

↵(s).

✓
diam(Cj)

2

◆s

; A ⇢

1[

j=1

Cj , diam(Cj)  �}

where

↵(s) :=
⇡

s
2

�( s2 + 1)

�(s) :=

Z
1

0
e�xxs�1dx ; 0 < s < 1

From the definition, ↵(0) = 1 and ↵(1) = ⇡
1
2

�( 12 )
. Now,

�(
1

2
) =

Z
1

0
e�tt

�1
2 dt = 2

Z
1

0
e�x2

dx

=) �(
1

2
)2 = 4

Z
1

0

Z
1

0
e�(x2+y2)dx dy = 4

Z ⇡
2

0

✓Z
1

0
re�r2dr

◆
d✓ = ⇡

1
2

=) ↵(1) = 2

Definition 2.32. For A and s as above, define

H
s(A) := lim

�!0
H

s
�(A) ⌘ sup

�>0
H

s
�(A)

We call Hs to be the s� dimensional Hausdor↵ measure on Rn.

Remark 2.33. Here ‘supremum’ is the ‘limit’ as Hs
� increases as � ! 0, by the infimum

property.

Theorem 2.34. H
s is a Borel - regular measure. ( 0  s < 1)

Remark 2.35. Hs need not be a radon measure as for H0 is counting measure, H0([0, 1])

is not finite.
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Proof. Claim 1 : Hs
� is a measure.

Proof of the claim 1 : Let {Ak}
1

k=1 ⇢ Rn and suppose that Ak ⇢
S

1

j=1C
k
j , for all k with

diam(Ck
j )  �, then {Ck

j }
1

j,k=1 becomes a cover for
S

1

k=1Ak.

Thus

H
s
�

 
1[

k=1

Ak

!


1X

k=1

1X

j=1

↵(s)

 
diam(Ck

j )

2

!s

Taking the infimum, we get

H
s
�

 
1[

k=1

Ak

!


1X

k=1

H
s
�(Ak)

And clearly, if A ⇢ B, then,

H
s
�(A)  H

s
�(B) and H

s
�(�) = 0

This proves the claim 1.

Claim 2 : Hs is a measure.

Proof of the claim 2 : Let {Ak}
1

k=1 ⇢ Rn. Then, by the claim 1,

H
s
�

 
1[

k=1

Ak

!


1X

k=1

H
s
�(Ak) 

1X

k=1

H
s(Ak)

The second part of the inequality is due to the supremum property. The above is true

for all � > 0 and hence, taking � ! 0, we get

H
s

 
1[

k=1

Ak

!


1X

k=1

H
s(Ak)

Clearly H
s(�) = 0 as Hs

�(�) = 0. Also, for A ⇢ B, Hs
�(A)  H

s
�(B)  H

s(B). hence, by

letting � ! 0, we have H
s(A)  H

s(B).

This proves the claim 2.

Claim 3 : Hs is a Borel measure.

Proof of the claim 3 : ( idea is to use the caratheodory criteria ).

ChooseA,B ⇢ Rn with dist(A,B) > 0. Let 0 < � < dist(A,B)
4 . SupposeA[B ⇢

S
1

k=1Ck

and diam(Ck)  �, then , set

eA := {Cj ; Cj \A 6= �}

eB := {Cj ;Cj \B 6= �}
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Clearly, if Cj 2
eA and Ck 2 eB, then,

�
Cj \A

�
\
�
Ck \B

�
= �,

diam(Cj \A)  diam(Ck)  � , diam(Ck \B)  diam(Ck)  �, by the construction of

�.

Hence,

1X

j=1

↵(s).

✓
diam(Cj)

2

◆s

�

X

Cj2
eA

↵(s).

✓
diam(Cj \A)

2

◆s

+
X

Cj2
eB

↵(s).

✓
diam(Cj \B)

2

◆s

� H
s
�(A) +H

s
�(B)

This is true for all covers {Cj} of A [B and thus

H
s
�(A [B) � H

s
�(A) +H

s
�(B)

provided 0 < � < dist(A,B)
4 .

Let � ! 0, then,

H
s(A [B) � H

s(A) +H
s(B)

By the sub-additivity, we have

H
s(A [B) = H

s(A) +H
s(B)

provided dist(A,B) > 0.

By the caratheodory criteria, Hs is borel.

This proves the claim 3.

Claim 4 : Hs is Borel-regular.

Proof of the claim 4 : Observe that diam(C) = diam(C), for all subsets C of Rn. Hence

H
s
�(A) ⌘ inf{

1X

j=1

↵(s).

✓
diam(Cj)

2

◆s

; A ⇢

1[

j=1

Cj , diam(Cj)  �, Cj ’s are closed.}

Let A ⇢ Rn.

Case 1 : Hs(A) = 1 :

As A ⇢ Rn, Hs(Rn) = 1.

Case 2 : Hs(A) < 1

=) H
s
�(A) < 1, for all � > 0. For k � 1, choose {Ck

j }
1

j=1 such that

• diam(Ck
j ) 

1
k

• A ⇢
S

1

j=1C
k
j

• By the infimum property,
P

1

j=1 ↵(s).

✓
diam(Ck

j )

2

◆s

 H
s
1/k(A) +

1
k
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Let Ak := [
1

j=1C
k
j and B := \

1

k=1Ak

Then A ⇢ Ak for all k =) A ⇢ B =) H
s(A)  H

s(B).

Also, for all k, B ⇢ Ak =
S

1

j=1C
k
j , hence

H
s
1/k(B) 

1X

j=1

↵(s).

 
diam(Ck

j )

2

!s

 H
s
1/k(A) +

1

k
; for all k

Sending k ! 1, we get

H
s(A) � H

s(B)

And hence, for all A, there is B Borel subset of Rn,

H
s(A) = H

s(B)

This proves the claim 4 and thus the theorem.

Remark: For G� to be the collection of sets which are H
s
� measurable, note that in

general, for � > 0, Gs
� need not contain the Borel sigma algebra.

Counter-Example : Let X = R , d(x, y) = |x � y| and 0 < s < 1. Let H
s
� and

H
s
⌘ lim�!0H

s
� be the corresponding hausdor↵ measures as defined earlier.

As

✓ 1X

i=1

↵i

◆s



1X

i=1

↵s
i , if 0 < s  1

=) for any [a, b] with b� a  (� ⌘ 1),

H
s
1

�
[a, b]

�
= H

s
1

�
(a, b]

�
= H

s
1

�
[a, b)

�
= H

s
1

�
(a, b)

�
= (b� a)s

Hence,

H
s
1

�
[0,

1

2
]
�
=

1

2s

H
s
1

�
(
1

2
, 1]
�
=

1

2s

But,

H
s
1

�
[0, 1]

�
6= H

s
1

�
[0,

1

2
]
�
+H

s
1

�
(
1

2
, 1]
�

Hence, the intervals are not measurable with respect to the measure H
s
1.
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Theorem 2.36. Elementary properties of Hausdor↵ measures.

• H
0 is counting measure.

• H
1 = L

1 on R

• H
s
⌘ 0 on Rn , for all s > n

• H
s(�A) = �s

H
s(A), for all � > 0, A ⇢ Rn

• H
s(L(A)) = H

s(A), for all isometries L : Rn
! Rn , that is, distance preserving maps

from Rn to itself, with A ⇢ Rn

Proof. • Observe that ↵(s = 0) = 1
�(1) ⌘ 1.

Thus H0 ({a}) = 1 and this proves that H0 is a counting measure.

• Let A ⇢ Rn and � > 0. Note that �
�
3
2

�
=
p

⇡
4 . Hence ↵(1) = 2. Also, if C ⇢ R,

then there is an interval I with C ⇢ I such that diam(C) = diam(I). Thus

L
1(A) = inf{

X

j

diam(Ij) ; A ⇢

1[

j=1

Ij ; Ij are intervals.}

= inf{
X

j

diam(Cj) ; A ⇢

1[

j=1

Cj}

 inf{
X

j

diam(Cj) ; A ⇢

1[

j=1

Cj ; diam(Cj)  �}

= inf{
X

j

✓
diam(Cj)

2

◆
.↵(1) ; A ⇢

1[

j=1

Cj ; diam(Cj)  �} = H
1
�(A)

Conversely, set, for k 2 Z
Ik := [k�, (1 + k)�]

Then diam(Cj \ Ik)  � and

+1X

k=�1

diam(Cj \ Ik)  diam(Cj)

Hence,

L
1(A) = inf{

1X

j=1

diam(Cj) ; A ⇢

1[

j=1

Cj}

� inf{
1X

j=1

+1X

k=�1

diam(Cj \ Ik) ; A ⇢

1[

j=1

1[

k=1

(Cj \ Ik)} � H
1
�(A)

Thus

L
1(A) = H

1
�(A) ; for all � > 0
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=) L
1
⌘ H

1 on Rn

• Fix m � 1, an integer.

The unit cube in Rn which is Q ⌘ [0, 1]n := [0, 1]⇥ [0, 1]⇥ . . .⇥ [0, 1]n times can be

decomposed into cubes of side 1
m and diameter n1/2

m . Therefore,

H
s
n1/2

m

(Q) 
mnX

i=1

↵(s)

 
n1/2

m

!s

= ↵(s)
ns/2

ms
mn = ↵(s) ns/2 mn�s

Now, if s > n, and letting m ! 1 tells that H
s
⌘ 0 on Q , for all s > n on unit

cube Q. Now Rm
⇢
S
Qi, where Qi’s are unit cubes spanning the space. Thus

H
s(Rn) 

X
H

s(Qi) = 0

concludes that Hs(Rn) = 0.

• For L to be an isometry,

H
s
�(A) = inf{

1X

j=1

↵(s).

✓
diam(Cj)

2

◆s

; A ⇢

1[

j=1

Cj , diam(Cj)  �}

= inf{
1X

j=1

↵(s).

✓
diam(Cj)

2

◆s

; L(A) ⇢
1[

j=1

L(Cj) , diam(L(Cj))  �}

Let Dj = L(Cj), then,

= inf{
1X

j=1

↵(s).

✓
diam(Dj)

2

◆s

; L(A) ⇢
1[

j=1

Dj , diam(Dj)  �} = H
s
�(L(A))

Sending � ! 0, we get

H
s(A) = H

s(L(A))

This also implies Hs is translational invariant.

Lemma 2.37. A convinient way to verify that H
s vanishes on a set:

Suppose A ⇢ Rn and H
s
�(A) = 0 for some 0 < �  1, then H

s(A) = 0

Proof. Case 1 : s ⌘ 0 . Given that H0
�(A) = 0 for some 0 < �  1,

Claim : A = �.

Proof of the claim : Suppose not, then, there is some x 2 A. Consider Cj of diameter �
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( say a ball of radius �
2 at x). Note that ↵(s = 0) = 1 and

✓
diam(Cj)

2

◆s=0

⌘ 1

and hence, Hs
�(A) � 1 for s = 0 =) 0 � 1. This is a contradiction and thus proves the

claim and hence the case 1.

Case 2 : s > 0 and H
s
�(A) = 0 for some 0 < �  1.

Fix ✏ > 0. Then there is {Cj}
1

j=1 such that diam(Cj) < �. Note that the choice of Cj

depends on ✏ as
X

j

↵(s).

✓
diam(Cj)

2

◆s

< ✏

=) diam(Cj) 

✓
✏

↵(s)

◆ 1
s

⇥ 2

=) diam(Cj)  min

⇢
� ,

⇣
✏

↵(s)

⌘ 1
s
⇥ 2

�
⌘ �(✏)

Hence,

H
s
�(✏)  ✏

Sending ✏ ! 0, we have

H
s(A) = 0

Lemma 2.38. Let S ⇢ Rn and 0  s < t < 1.

• If Hs(A) < 1, then H
t(A) = 0

• If Ht(A) > 0, then H
s(A) = 1

Proof. Note that the above 2 points are contrapositive to one another and hence, it

su�ces to prove just one of them, say the first one.

Let Hs(A) < 1 and 0 < � < 1. It is needed to be shown that Ht(A) = 0.

=) 9{Cj}
1

j=1 such that diam(Cj)  � ; A ⇢

1[

j=1

Cj

And

H
s
�(A) 

1X

j=1

↵(s).

✓
diam(Cj)

2

◆s

 H
s
�(A) + 1

Then

H
t
�(A) 

1X

j=1

↵(t).

✓
diam(Cj)

2

◆t

; as s  t
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=
↵(t)

↵(s)
2s�t

1X

j=1

↵(s).

✓
diam(Cj)

2

◆s

diam(Cj)
t�s


↵(t)

↵(s)
(Hs(A) + 1) .�t�s

As � ! 0, we have

H
t
�(A) ! H

t(A) = 0

Note that ↵(s) 6= 0, for all s.

Definition 2.39. The hausdor↵ dimension of a set A ⇢ Rn is defined to be

Hdim(A) ⌘ inf{0  s < 1 ; H
s(A) = 0}

Remark 2.40. • For A ⇢ Rn, Hdim(A)  n ; by the elementary property (3) men-

tioned in theorem 2.36.

• Let Hdim(A) = s, then

H
t(A) =

8
>><

>>:

0 for all t > s

a real number ⌘ s for t = s

+1 for all t < s

9
>>=

>>;

• Hdim need not be an integer, in general.

2.3.2 Examples and calculation of Hausdor↵ measures for some sets.

• Hausdor↵ dimension of the Cantor set.

The hausdor↵ dimension of the cantor set is log2
log3 .

Proof. Declare

s =
log2

log3

The cantor set , as defined as the removal of the middle 1/3rd length spaces at each

iteration, it can be denoted as C := \k2NCk, where each Ck is the finite union of

the 2k intervals of length 1
3k
. Now, given � > 0, choose K > 0 such that 1

3K
< �.

Observe that CK covers C and consists of 2K intervals of length 1
3K

< �. Thus

H
s
�(C)  ↵

✓
log2

log3

◆✓
2

3s

◆K
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Note that s satisfies 3s = 2,

=) H
s(C)  ↵

✓
log2

log3

◆

Definition 2.41. A function f on a subset E of Rn satisfies a lipshitz/Hölder

condition with exponent � if there is a constant M > 0, such that for all x, y 2 E,

|f(x)� f(y)|  M |x� y|�

Lemma 2.42. Suppose that f is a function defined on a compact set E and satisfies

the Hölder condition with the exponent �, then, for some M 0 > 0,

– For � = s
� , H

�
�
f(E)

�
 M 0

H
s(E)

– dim
�
f(E)

�


1
�dim(E)

Proof. Suppose that {Fk}k is a countable family of sets that cover E, then {f(E \

Fk)} covers f(E) and diam
�
f(E \ Fk)

�
 M

�
diam(Fk)

��
, where M is defined as

in the definition 2.41. Thus,

1X

k=1

✓
diam

�
f(E \ Fk)

�◆ s
�

 M
s
�

1X

i=1

�
diam(Fi)

�s

Now, for diam(Fk) less than � and as � ! 0, we have diam(f(E \ Fk)) ! 0 and

hence, for � ⌘
s
� ,

H
�
�
f(E)

�
 M 0

H
s(E)

where

M 0 =
M�2s

�
1� 1

�

�
↵(�)

↵(s)

This proves the first part of the lemma. The second part of the lemma follows from

that fact that first part implies Hs(E) = 0 =) H
�(E) = 0.

Remark 2.43. Construction of the cantor function :

As defined earlier, C ⌘ \
1

k=1Ck, with Ck to be the union of disjoint intervals of

length 2k.

Iteration :

C1 ⌘ [0, 13 ] [ [23 , 1] : Define f1 continuous, on [0, 1] as

8
>>>>><

>>>>>:

0 x = 0
1
2

1
3  x 

2
3

1 x = 1

A straight line joining the end points elsewhere

9
>>>>>=

>>>>>;



125

C2 ⌘ [0, 19 ] [ [29 ,
1
3 ] [ [23 ,

7
9 ] [ [89 , 1] : Define f2 continuous, on [0, 1] as

8
>>>>>>>>>><

>>>>>>>>>>:

0 x = 0
1
4

1
9  x 

2
9

1
2

1
3  x 

2
3

3
4

7
9  x 

8
9

1 x = 1

A straight line joining the end points elsewhere

9
>>>>>>>>>>=

>>>>>>>>>>;

And so on for each i 2 N.
Each fi takes the value atmost 1 and fi’s are increasing. It also has the property

that |fn+1(x) � fn(x)| 
1

2n+1 . Hence, fi converges uniformly to a continuous

function called the cantor function defined as

f(x) := lim
i!1

fi(x)

and satisfy

|f(x)� fn(x)| 
1

2n

.

Lemma 2.44. The cantor function f defined on C satisfies the Hölder condition

with the exponent � = log2
log3 .

Proof. Note that fn is piecewise continuous linear function and hence it is absolute

continuous with the existence of f 0
n(x) a.e. Also, observe that f 0

n(x) is bounded by
�
3
2

�n
. Therefore, for x, y 2 [0, 1],

|fn(x)� fn(y)| =

����
Z y

x
f 0

n(t)dt

���� 
✓
3

2

◆n

|x� y|

Let x 6= y and choose n � 1 such that 1
3n  |x� y|  1

3n�1 .

=) |f(x)� f(y)|  |f(x)� fn(x)|+ |fn(x)� fn(y)|+ |fn(y)� f(y)|


2

2n
+

✓
3

2

◆n

|x� y|


2

2n
+

3

2n

=
5

2n

 5

✓
1

3n

◆�

 5|x� y|�
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where � = s ⌘ log2
log3

For the other inequality in the calculation of the dimension of the cantor set, let

E = C, f be the cantor function defined as above and s = � = log2
log3 . The above 2

lemmas give H
1
�
[0, 1]

�
 M 0

H
s(C). Thus Hs(C) > 0 =) dim(C) � log2

log3 . Thus

dim(C) =
log2

log3

• Hausdor↵ dimension of a general fractal :

Theory :

Consider (X, d) to be a metric space. Let A,B ⇢ X, x 2 X, � > 0.

Define:

d(x,A) := inf{d(x, a) ; a 2 A}

A� := {x 2 X ; d(x,A) < �}

d(A,B) := inf{� ; A ⇢ B� , B ⇢ A�
}

Lemma (*1) : Let A,B,C be closed subsets of X. Then,

– d(A,B) = d(B,A)

– d(A,B) = 0 () A = B

– d(A,B)  d(A,C) + d(C,B)

– A ⇢ B =) A�
⇢ b�

Proof. From the definition, d(A,B) = d(B,A).

Clearly, A = B =) d(A,B) = 0. Conversely, if d(A,B) = 0, then for all � > 0,

A ⇢ B� and B ⇢ A�. Hence, for every a 2 A, there is a b� 2 B such that

d(a, b�) < �. Let � = 1
n , bn = b�. Then, bn ! a as n ! 1. Hence, a 2 B = B and

thus A ⇢ B. Similarly, B ⇢ A and this concludes that A = B.

Let �1 > 0 and �2 > 0 such that d(A,C) < �1 and d(B,C) < �2. Let a 2 A, then

there is a c1 2 C and b1 2 B such that d(a, c1) < �1 and d(c1, b1) < �2.

=) d(a,B)  d(a, b1)  d(a, c1) + d(c1, b1) < �1 + �2

=) A ⇢ B�1+�2

Similarly, B ⇢ A�1+�2 .

=) d(A,B)  �1 + �2

Letting �1 ! d(A,C) and �2 ! d(B, c), we have the third point of the lemma

proved.

Let x 2 A�. Then, d(x,A) < � and hence, d(x,B) < �. thus x 2 B� and hence,
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A�
⇢ B�.

This proves the lemma.

Definition:

Let S : X ! X be a map. S is said to be a similarity map with ratio 0 < r < 1, if

d(S(x), S(y)) = r d(x, y), for all x, y 2 X.

Definition :

Let S1, S2, . . . , Sl be similarity maps with the same ratio r. Let A ⇢ X. Define,

L(A) := S1(A) [ · · · [ Sl(A)

Definition :

A ⇢ X is said to be self similar with respect to {S1, . . . , Sl} if L(A) = A.

Lemma (*2):

Let S1, S2, . . . , Sl be similarity maps on X with the same similarity constant. Let

A,B be subsets of X and for k � 0, define

F0(A) := A

Fk(A) := L
�
Fk�1(A)

�

I(k, l) :=
n
J ; J : {1, 2, . . . , k} ! {1, 2, . . . , l}

o

Then,

– diam(S(A))  r diam(A)

– For J 2 I(k, l),

diam

✓
SJ(1) � · · · � SJ(k)

�
A
�◆

 rk diam(A)

– For J 2 I(k, l), denote

SJ := SJ(1) � SJ(2) � · · · � SJ(k)

Then

Fk(A) =
[

J2I(k,l)

SJ(A)

–

dist

✓
L(A), L(B)

◆
 r dist(A,B)
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Proof. Since, d
�
S(x), S(y)

�
= r diam(A,B), we have that diam

�
S(A)

�
 r diam(A).

Repeat this k many times to get,

diam
�
SJ(A)

�
= diam

�
SJ(1)�SJ(2)�· · ·�SJ(k)(A)

�
 r diam

�
SJ(2)�SJ(3)�· · ·�SJ(k)(A)

�

 rk diam(A)

Now, for the third point of the lemma. This is true by induction on k. For k = 1,

it is true by the definition. Assume that the statement is true upto k � 1. Then,

Fk(A) = S1(Fk�1(A)) [ · · · [ Sl(Fk�1(A))

=
l[

i=1

[

J2I(k�1,l)

SJ(A)

=
[

J2I(k,l)

SJ(A)

Let � > d(A,B), then A ⇢ B� and B ⇢ A�.

Claim 1: S(A) ⇢ S(B)r�, S(B) ⇢ S(A)r�.

Proof of the claim 1: For x 2 S(A), y 2 S(B), then there is a 2 A, b 2 B such that

S(a) = x and S(b) = y. Hence,

d(x, y) = d
�
S(a), S(b)

�
= r d(a, b)

And hence,

d
�
x, S(B)

�
 r d(a, b) , for all x 2 S(A)

Now, taking infimum over A and B, we get

d(x, S(B))  r inf
a2A,b2B

d(a, b) = r d(A,B) < r�

Hence, S(A) ⇢ S(B)r� and similarly, the same kind of proof gives S(B) ⇢ S(A)r�.

From the claim 1, we have for 1  i  l, Si(A) ⇢ Si(B)r� and Si(B) ⇢ Si(A)r�.

Thus, from the lemma(*1) as mentioned before,

L(A) = S1(A) [ · · · [ Sl(A)

⇢ S1(B)r� [ · · · [ Sl(B)r�

⇢

✓
S1(B) [ · · · [ Sl(B)

◆r�

= L(B)r�
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Similarly, we also have L(B) ⇢ L(A)r�. Hence,

dist

✓
L(A), L(B)

◆
 r � , 8� > dist(A,B)

By letting � # d(A,B), we get

dist

✓
L(A), L(B)

◆
 r dist(A,B)

This proves the lemma.

Lemma(*3):

Let S1, S2, . . . , Sl be similarity maps with the same ratio 0 < r < 1. Then,

– Let A ⇢ X such that Si(A) ⇢ A, for all 1  i  l. Then

Fk+1(A) ⇢ Fk(A)

– For i  l, let Si(A) ⇢ A and F (A) = \
1

k=1Fk(A), Then,

L

✓
F (A)

◆
= F (A)

– Let x0 2 X, ↵ := max

⇢
dist

✓
Si(x0), x0

◆
; 1  i  l

�
and R > ↵

1�r , then,

L

✓
B(x0, R)

◆
⇢ B(x0, R)

Proof. Given, for all 1  i  l, Si(A) ⇢ A. Thus, for all J 2 I(k, l),

SJ(A) = SJ(1) � · · · � SJ(k)(A) ⇢ SJ(1) � · · · � SJ(k�1)(A) ⇢ Fk�1(A)

Hence, Fk(A) =
S

J2I(k,l) SJ(A) ⇢ Fk�1(A). Now,

L
�
F (A)

�
=

1\

k=0

L
�
Fk(A)

�
=

1\

k=0

Fk+1(A) =
1\

k=1

Fk(A) = F (A)

Since, Fk+1(A) ⇢ Fk(A).

Now, let R > ↵
1�r and x 2 B(x0, R), then for 1  i  l,

d
�
Si(x), x0

�
 d
�
Si(x), Si(x0)

�
+ d
�
Si(x0), x0

�
 r d(x, x0) + ↵  rR+ ↵  R

This proves the lemma.
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Lemma(*4) :

Assume that there is x0 2 X and for all R > 0, B(x0, R) is compact. Then, there

is a unique invariant compact set in X for S1, S2, . . . , Sl.

Proof. Uniqueness : Let E,F be two compact invariant sets for the family S1, . . . , Sl.

Then, L(E) = E and L(F ) = F , and from the lemma (*2),

d(E,F ) = d
�
L(E), L(F )

�
 r d(E,F )

Since r < 1, we have d(E,F ) = 0 and hence, E = F .

Existence : Let ↵ = max
n
d
�
Si(x0), x0

�
; 1  i  l

o
and R �

↵
1�r and A =

B(x0, R). Then, from the lemma (*3), we have Si(A) ⇢ A, Fk+1(A) ⇢ Fk(A)

and Fk(A) is compact for all k � 0. Hence, F (A) 6= � and is an invariant set to

the family {S1, . . . , Sl}.

Lemma (*5):

Let X = Rn and d be the euclidean distance. Let S1, S2, . . . Sl be similarity maps

with the same constant 0 < r < 1. Let F be the invariant set for {S1, S2, . . . , Sl}.

Then, for s = log l
log 1/r , we have H

s(F ) < 1.

Proof. Hypothesis of the lemma (*4) is satisfied with x0 = 0. Hence, for A =

B(x0, R), Fk+1(A) = L
�
Fk(A)

�
, we have

F = F (A) =
1\

k=0

Fk(A) to be the invariant set.

From the lemma(*2), for all J 2 I(k, l), we have

diam
�
SJ(A)

�
= diam

✓
SJ(1) � · · · � SJ(k)(A)

◆

 r diam

✓
SJ(2) � · · · � SJ(k)(A)

◆

 rk diam(A)

= 2Rrk

Since, F = F (A) ⇢ Fk(A) = [J2I(k,l)SJ(A), let �  2Rrk, then, as lrs = 1, i.e,

s = log l
log 1

r

,

H
s
�

�
F (A)

�
 ↵(s)

X

J2I(k,l)

✓
diam(SJ(A))

2

◆s
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 ↵(s)
�
Rrk

�s
card

�
I(k, l)

�

= ↵(s)
�
Rrk

�s
lk

= ↵(s)Rs
�
lrs
�k

 ↵(s)Rs

Since, r < 1, as k ! 1, � ! 0 and therefore,

H
s(F ) = H

s(F (A))  ↵(s)Rs < 1

This proves the lemma.

Definition :

Let S1, S2, . . . , Sl be similarities with the same ratio r. Then, S1, S2, . . . , Sl are

seperated if there is an open bounded set O such that

Si(O) \ Sj(O) = � if i 6= j

l[

i=1

Si(O) ⇢ O

Remark: Let S1, S2, . . . , Sl be seperated as above with the existence of O. Then,

for any J,K 2 I(k, l), J 6= K,

– SJ(O) ⇢ O

– SJ(O) \ SK(O) = �

Proof. Since J 6= K, choose l0 such that

J(i) = K(i) for all i  i0 � 1

J(i0) 6= K(i0)

Since Si � Sj(O) ⇢ Si(O),

SJ(O) =

✓
SJ(1) � · · · � SJ(i0) � · · · � SJ(k)

◆
(O) ⇢

✓
SJ(1) � · · · � SJ(i0)

◆
(O)

Similarly,

SK(O) ⇢ SK(1) � · · · � SK(i0)(O)
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Claim :

✓
SJ(1) � · · · � SJ(i0)(O)

◆
\

✓
SK(1) � · · · � SK(i0)(O)

◆
= �

Proof of the claim : For, if x is in the intersection, then there is z1 and z2 such that

SJ(1) � · · · � SJ(i0)(z1) = x = SK(1) � · · · � SK(i0)(O)(z2)

Hence, by the choice of i0, we have

SJ(i0)(z1) = SK(i0)(z2)

This is clearly a contradiction and hence the claim is proved. Hence,

SJ(O) \ SK(O) = � for J 6= K

This proves the remark.

Lemma(*6) :

Let A ⇢ Rn be a compact set and 0 < s  n with H
s(A) < 1. Then,

H
s
�(A) = inf

nPp
j=1

⇣
diam Uj

2

⌘s
; diam(Uj) < � , A ⇢

Sp
j=1 Uj

o

Proof. Since H
s(A) < 1, we have that Hs

�(A) < 1 for all � > 0.

Let ✏ > 0, 0 < � < 1 and A ⇢
S

1

j=1Cj , with Cj ’s closed and diam(Cj) < � with

the property that
1X

j=1

↵(s)

✓
diam Cj

2

◆s

< H
s
�(A) + ✏

Choose ✏j > 0 such that 0 < ✏j < diam(Cj) , diam(Cj) + 2✏j < 2� and
P

1

j=1 ✏
min{1,s}
j < ✏. Then, for some � > 0 which depends on s, we have

1X

j=1

↵(s)

✓
diam(Cj)

2
+ ✏j

◆s



1X

j=1

↵(s)

✓
diam Cj

2

◆s

+ �
1X

j=1

↵(s)✏min{1,s}
j

 H
s
�(A) + ✏+ �↵(s)✏

= H
s
�(A) + (1 + �↵(s))✏

Let

Uj := {x ; d(x,Cj) < ✏j}



133

=) diam(Uj)  diam(Cj) + 2✏j < � , A ⇢

1[

j=1

Cj ⇢

1[

j=1

Uj

Now, as A is compact, there is N such that A ⇢
SN

j=1 Uj . Then,

NX

j=1

↵(s)

✓
diam Uj

2

◆s



1X

j=1

↵(s)

✓
diam Cj

2
+ ✏j

◆s

= H
s
�(A) +

�
1 + �↵(s)

�
✏

This proves the lemma as ✏ > 0 was arbitrary.

Let {S1, S2, . . . , Sl} be a seperating family of similarity transformations with the

same ratio 0 < r < 1, with the bounded open set to be O, as in the definition of

the seperability. Let R0 > 0 and F ⇢ B(0, R0) be the invariant set. Let � < 1

and F ⇢
Sp

i=1 Ui with diam Ui < �. Since F ⇢ B(0, R0), we can assume that

Ui ⇢ B(0, R0) for all i. Let

⇤ := sup
n
|v � z| ; v 2 O , z 2 B(0, R0)

o

Let k � 1 be such that

rk  min{diam(Ui)} < rk�1

Let x 2 F and 1  p  k.

Define :

Gp := {Ui ; rp  diam(Ui) < rp�1
}

Gp,i :=

(
J ⌘

�
J(1), . . . , J(q)

�
; 1  J(t)  l , 8 1  t  q , 8 q � l � 1

SJ(x) 2 Ui , Ui 2 Gp

)

Lemma (*7):

With the above definitions valid, there is a c0 > 0 that depend on n,R0, O such

that

card(Gp,i)  c0l
k�p

Proof. For J 2 Gp,i, declare J :=
�
J(1), J(2), . . . , J(p� 1)

�
.

Claim : There is a c0 > 0 such that it depends on n,R0, O and

card{J ; J 2 Gp,i}  c0

Proof of the claim : Let J 2 Gp,i. Then, for v 2 O,

|J(x)� J(v)|  rp�1
��SJ(p) � · · · � SJ(q)(x)� v

��  ⇤rp�1
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Since, J(x) 2 Ui and diam(Ui)  rp�1, we have, for all v 2 O and for all z 2 Ui,

|J(v)� z|  |J(v)� J(x)|+ |J(x)� z|

 ⇤rp�1 + diam(Ui)

 (⇤+ 1)rp�1

=) J(O) ⇢ B
�
z, (⇤+ 2)rp�1

�

Since diam
�
J(O)

�
= rp�1diam(O) and {J(O)} are disjoint,

if T = card{J(O) ; J 2 Gp,i}, then,

T L
n(O)rn(l�1)

 (⇤+ 2)nLn
�
B(0, 1)

�
rn(l�1)

=) T  c0 with co =
(⇤+ 2)nLn

�
B(0, 1)

�

Ln(O)

For each J , there are atmost lk�p elements in Gp,i and hence the cardinality of Gp,i

is atmost c0lk�p. This proves the lemma.

Theorem :

Let {S1, S2, . . . , Sl} be a seperating family of similarity transformations with the

common ratio to be 0 < r < 1. Let s = log l
log 1/r and F be the invariant set. Then,

there exist ↵,� > 0 such that ↵  H
s(F )  �. This concludes that the hausdor↵

dimension of F is log l
log 1/r .

Proof. From the lemma (*5), we have that Hs(F )  � for some � > 0. Also, from

the lemmas (*6) and (*7), we prove the lower bound for Hs(F ). Let 0 < � < 1 and

F ⇢

N[

i=1

Ui ; with diam(Ui) < �.

Let k � 1 be such that

rk  min{diam(Ui)} < rk�1

For 1  p  k, define

A(p) := {i ; rp  diam(Ui) < rp�1
}

N(p) := card

✓
A(p)

◆
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Then, from the lemma (*7), there is a constant c0 > 0 such that it is dependent on

O and R0 such that the following holds.

card

✓ k[

p=1

[

i2A(p)

Gp,i

◆
 c0

k�1X

p=0

N(p)mk�p

Since for J 2 I(k, l), J(x) 2 F ⇢
SN

i=1 Ui. And hence J(x) 2 Ui for some i with

rp  diam(Ui) < rp�1. Hence for c1 =
1
c0
,

=) lk  c0
X

N(p)lk�p or equivalently,
X

p

N(p)

lp
� c1

Now,
NX

i=1

↵(s)

✓
diam(Ui)

2

◆s

� ↵(s)
X

p

N(p)rps

= ↵(s)
X

p

N(p)

lp
(rsl)p

� ↵(s)
X

p

N(p)

lp

� c1

Hence,

H
s(F ) = lim

�!0
H

s
�(F ) � c1

This proves the theorem.

• Examples as facts with the application of the previous theorem :

As seen earlier, the cantor set has dimension log2
log3 .

The van Koch curve has dimension log4
log3 , where the similarities and the details are

given by

– S1(x) =
x
3

– S2(x) = ⇢x
3 + ↵

– S3(x) =
1
⇢
x
3 + �

– S4(x) =
x
3 + �

– Here ⇢ is the rotation centered at the origin and of angle ⇡
3 , that is (say) e

i.⇡3

– Here, m = 4, r = 1/3

– Refer the diagram for the fractal as well as the definition of ↵,�, �.



136

Fig(a) : Figures of the iteration of the Van Koch curve - fractal.

Fig(b) : Figures of the similarities of both the van Koch curve and the Sierpinski

triangle.

Fig(c) : Figures of the iteration of the Sierpinski triangle - fractal.
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The Sierpinski triangle has dimension log3
log2 . The similarities and the details are

given by

– S1(x) =
x
2

– S2(x) =
x
2 + ↵

– S3(x) =
x
2 + �

– Here, m = 3 and r = 1
2 . Refer the diagram for the fractal and the definition

of ↵ and � which are basically midpoints of the sides on the triangle as shown

above.

2.3.3 Isodiametric Inequality

Goal : To show that Hn = L
n on Rn.

Lemma 2.45. Let f : Rn
! [0,1) be L

n measurable. Then, “the region under the

graph of f” which is

A := {(x, y) ; x 2 Rn, y 2 R, 0  y  f(x)}

is L
n+1 measurable.

Proof. Let g(x, y) := f(x)� y. Note that, by setting h(x, y) = f(x) and ↵(x, y) = y, for

any � 2 R,

{(x, y) 2 Rn
⇥ R ; h(x, y) < �} = {x 2 Rn ; f(x) < �}⇥ R

{(x, y) 2 Rn
⇥ R ; ↵(x, y) = y < �} = Rn

⇥ {y 2 R ; y < �} = Rn
⇥ (�1,�)

Both the above sets belong to the L
n+1

� �� algebra and thus g is L
n+1 measurable

and

A = {(x, y) 2 Rn
⇥ R ; y � 0} \ {(x, y) 2 Rn

⇥ R ; g(x, y) � 0}

Thus A is Ln+1 measurable.

Definition 2.46. Define for a, b 2 Rn,

La
b := {b+ t.a ; t 2 R} ⌘ The line through b in the direction of a.

Pa := {x 2 Rn ; x.a = 0} ⌘ Plane through the origin perpendicular to a.
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Definition 2.47. Steiner Symmetrization of A.

Choose a 2 Rn with ||a|| = 1. Let A ⇢ Rn. We define the steiner symmetrization of A

with respect to Pa to be the set

Sa(A) ⌘
[

{b2Pa ; A\La
b 6=�}

{b+ ta ; |t| 
1

2
H

1(A \ La
b )}

Lemma 2.48. Properties of Steiner symmetrization :

• diam(Sa(A))  diam(A).

• If A is L
n measurable, so is Sa(A) and L

n(Sa(A)) = L
n(A).

Proof. Part (a) :

Case 1 : If diam(A) = 1, then the first part is trivial in conclusion.

Case 2 : diam(A) < 1.

Since, the diameter is independent of the closures, we may assume that A is closed.

Fix ✏ > 0 and let x, y 2 Sa(A) such that by the supremum property,

diam(Sa(A))  |x� y|+ ✏

Set

b = x� (x.a)a

c = y � (y.a)a

Then, clearly,

b.a = 0 = c.a =) b, c 2 Pa

Set

r = inf{t ; b+ ta 2 A}

s = sup{t ; b+ ta 2 A}

u = inf{t ; c+ ta 2 A}

v = sup{t ; c+ ta 2 A}

Note that all the 4 above defined quantities are finite as diam(A) < 1. W.L.O.G assume

that v � r � s� u. Then,

v � r �
1

2
(v � r) +

1

2
(s� u) =

1

2
(s� r) +

1

2
(v � u) �

1

2
H

1(A \ La
b ) +

1

2
H

1(A \ La
c )
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The above estimate is true because

A \ La
b ⇢ I = {b+ ta ; |t| 

s� r

2
}

=) H
1
�
A \ La

b

�
 H

1(I) = H
1
�
{t.e1 ; |t| 

s� r

2
}
�
= L

1


r � s

2
,
s� r

2

�
⌘ s� r

Now, b+ (x.a)a 2 Sa(A) and c+ (y.a)a 2 Sa(A) and hence,

|x.a| 
1

2
H

1(A \ La
b )

|y.a| 
1

2
H

1(A \ La
c )

Thus

v � r �
1

2
H

1
�
A \ La

b

�
+

1

2
H

1
�
A \ La

c

�
� |x.a|+ |y.a| � |x.a� y.a|

Therefore,

(diam(Sa(A)� ✏))2  |x� y|2 = |b� c|2 + |x.a� y.a|2

 |b� c|2 + |v � r|2 = |(b+ ra)� (c+ va)|2  diam(A)2

This concludes that

diam(Sa(A))  diam(A)

Part (b) :

Observe that Ln is rotation invariant and thus assume a = en ⌘ (0, 0, . . . , 1) and Pa =

Pen ⌘ Rn�1. Now L
1 = H

1 on R.
A is Ln measurable implies

L
n(A) =

Z

Rn
XA

=

Z

Rn�1

✓Z

R
XA(x1, x2, . . . , xn)dxn

◆
dx2. . . . .dxn�1

=

Z

Rn�1

✓Z

R
XA(b, xn)dxn

◆
db

Notice that fixing b, xn can be on the line joining b, en in A, and thus

=

Z

Rn�1
L
1(XA\La

b
)db

=) f(b) = L
1(XA\La

b
) = H

1(XA\La
b
) is Ln�1 measurable a.e.

Now,

Sa(A) = {(b, y) ;
�f(b)

2
 y 

f(b)

2
}� {(b, 0) ; La

b \A = �}
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By the previous lemma, {(b, y) ; �f(b)
2  y 

f(b)
2 } is Ln measurable and

{(b, 0) ; La
b \ A = �} ⇢ Rn�1

⇥ {0}, which has measure 0, in L
n measure. Thus Sa(A)

is Ln measurable and so

L
n(Sa(A)) = L

n
{(b, y) ; |y| 

f(b)

2
}+0 =

Z

Rn�1

 Z f(b)
2

�f(b)
2

dy

!
db =

Z

Rn�1
f(b)db = L

n(A)

Theorem 2.49. Isodiametric inequality :

For all sets A ⇢ Rn,

L
n(A)  ↵(n).

✓
diam(A)

2

◆n

Remark 2.50. Note that A need not be contained in a ball of diameter ⌘ diam(A).

Proof. Case 1 : diam(A) = 1 , then there is nothing more to be shown.

Case 2 : diam(A) < 1.

Let e1, e2, . . . , en be the standard basis of Rn. Define

A1 = Se1(A)

A2 = Se2(A1)

...

A⇤
⌘ An = Sen(An�1)

Claim 1 : A⇤ is symmetric around the origin.

Proof of the claim 1 : A1 is symmetric with respect to Pe1 . As

Se1(A) =
[

{b2Pe1 ; A\L
e1
b 6=�}

{b+ te1 ; |t| 
1

2
H

1(A \ Le1
b )}

Let x ⌘ (x1, x2, . . . , xn) 2 Se1(A) =) x = b + te1, for some b 2 Pe1 and A \ Le1
b 6= �

and |t|  H
1(A \ Le1

b ). Noting that b1 = 0, x ⌘ (t, b2, . . . , bn). Now, the reflection

of x ⌘ (x1, x2, . . . xn) around e1 would be (�x1, x2, . . . xn), i.e (�t, b2, . . . , bn). Since

|t|  1
2H

1
�
A \ Le1

b

�
and hence (�t, b2, . . . , bb) 2 Se1(A).

Now, let 1  k  n and suppose that Ak is symmetric with respect to Pe1 , . . . , Pek .

It is required to show that Ak+1 is symmetric with respect to Pe1 , . . . Pek+1 .

Ak+1 ⌘ Sek+1(Ak) =
[

{b2Pek+1 ; Ak\L
ek+1
b 6=�}

{b+ tek+1 ; |t| 
1

2
H

1(Ak \ L
ek+1

b )}



141

By the similar logic that A1 is symmetric with Pe1 , Ak+1 is symmetric with respect to

Pek+1 . Now, fix 1  j  k. Let Sj : Rn
! Rn be the reflection around Pj . Let b 2 Pk+1.

By the induction hypothesis,

Sj(Ak) = Ak

Here, the fact that reflection is an isometry is getting used and that hausdor↵ measures

are invariant under the isometries. Thus

H
1(Ak \ L

ek+1

b ) = H
1(Sj(Ak \ L

ek+1

b )) = H
1(Ak \ L

ek+1

Sj(b)
)

Thus

Sj(Ak+1) = Ak+1

Thus Ak+1 is symmetric with respect to Pej . And, hence, A⇤ = An is symmetric with

respect to Pe1 , Pe2 , . . . Pen .

This proves the claim 1.

Claim 2: Ln(A⇤)  ↵(n)
⇣
diam(A⇤)

2

⌘2
.

Proof of the claim 2 : By the claim 1, x 2 A⇤
() �x 2 A⇤. So diam(A⇤) � 2|x| and

thus

A⇤
⇢ B

✓
0,

diam(A⇤)

2

◆

L
n(A⇤)  L

n

✓
B

✓
0,

diam(A⇤)

2

◆◆

L
n(A⇤)  ↵(n).

✓
diam(A⇤)

2

◆n

This proves the claim 2.

Claim 3 : Ln(A)  ↵(n)
⇣
diam(A)

2

⌘n
.

Proof of the claim 3 : Observe that if A is Ln measurable, then A is also L
n measurable.

The previous lemma, thus tells that

• L
n((A)⇤) = L

n(A)

• diam((A)⇤)  diam(A)

Hence,

L
n(A)  L

n(A) = L
n((A)⇤)

 ↵(n)

✓
diam(A)⇤

2

◆n
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 ↵(n)

✓
diam(A)

2

◆n

= ↵(n)

✓
diam(A)

2

◆n

This proves the claim 3 and hence, the isodiamteric inequality.

Theorem 2.51. H
n = L

n on Rn.

Proof. Claim 1 : For all A ⇢ Rn, Ln(A)  H
n(A).

Proof of the claim 1 : Fix � > 0. Choose sets {Cj}
1

j=1 such that

• A ⇢
S
Cj .

• diam(Cj)  �.

By the isodiametric inequality,

L
n(A) 

X

j

L
n(Cj) 

X

j

↵(n)

✓
diam(Cj)

2

◆n

Taking infima over the values, we get

L
n(A)  H

n
� (A)

Note that � was arbitrary and hence,

L
n(A)  H

n(A)

This proves the claim 1.

By the definition of Ln
⌘ L

1
⇥ . . .n times ⇥ L

1, for A ⇢ Rn and � > 0,

L
n(A) = inf{

1X

i=1

L
n(Qi) ; Qi are cubes , A ⇢

1[

i=1

Qi , diam(Qi)  �}

Claim 2 : Hn is absolutely continuous with repsect to L
n.

Proof of the claim 2 : Set

Cn := ↵(n)

✓p
n

2

◆n

For all cubes Q ⇢ Rn,

Cn.L
n(Q) = ↵(n)

✓p
n

2

◆n✓diam(Q)
p
n

◆n
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=) CnL
n(Q) = ↵(n)

✓
diam(Q)

2

◆n

Thus,

H
n
� (A)  inf{

1X

i=1

↵(n)

✓
diam(Qi)

2

◆n

; Qi are cubes , A ⇢

1[

i=1

Qi , diam(Qi) < �}

= inf{
1X

i=1

CnL
n(Qi) ; Qi are cubes , A ⇢

1[

i=1

Qi , diam(Qi) < �}

= CnL
n(A)

Let � ! 0, to get

H
n(A)  CnL

n(A)

Thus, Ln(A) = 0 =) H
n
� (A)  0 =) H

n(A) = 0.

This proves the claim 2.

Claim 3 : Hn(A)  L
n(A), for all A ⇢ Rn.

Proof of the claim 3 : Fix �, ✏ > 0 and select cubes {Qi}
1

i=1 such that A ⇢
S
Qi ,

diam(Qi) < � and
1X

i=1

L
n(Qi)  L

n(A) + ✏

By the second corollary, following the vitalli covering lemma, there is {Bi
k}

1

k=1, disjoint

closed balls in Q�

i such that

diam(Bi
k)  �

L
n

 
Qi �

1[

k=1

Bi
k

!
= L

n

 
Q�

i �

1[

k=1

Bi
k

!
= 0

By the claim 2,

H
n
�

 
Q�

i �

1[

k=1

Bi
k

!
= 0

Thus

H
n
� (A) 

1X

i=1

H
n
� (Qi)



1X

i=1

H
n
�

 
1[

i=1

Bi
k

!



1X

i=1

1X

k=1

H
n
� (B

i
k)
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1X

i,k=1

↵(n).

✓
diam(Bi

k)

2

◆n

=
1X

i,k=1

L
n(Bi

k)

=
1X

i=1

L
n

 
1[

k=1

Bi
k

!

=
1X

i=1

L
n(Qi)

 L
n(A) + ✏

Thus,

H
n
� (A)  L

n(A) + ✏

Let � ! 0 and then ✏ ! 0, we get

H
n(A)  L

n(A)

Along with the claim 1, we can conclude that

H
n = L

n on Rn

Remark 2.52. Assume for the rest of the type-up, unless mentioned that 0 < s < n.

Theorem 2.53. Assume E ⇢ Rn, E is H
s measurable and H

s(E) < 1. Then,

lim
r!0

H
s

✓
B(x, r) \ E

◆

↵(s) rs
= 0

for H
s
� a.e x 2 Rn

� E.

Proof. Fix t > 0. Define

At := {x /2 E ; lim sup
r!0

H
s

✓
B(x, r) \ E

◆

↵(s) rs
> t}

Want to show that Hs(At) = 0, for all t > 0.

Now, E is Hs measurable and H
s(E) < 1 implies that (Hs

|E) is a radon measure and

finite.

So, given ✏ > 0, there is a compact set K ⇢ E such that Hs(E�K) < ✏. Let U = Rn
�K
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be an open set. This implies that as Rn
� E ⇢ Rn

�K, At ⇢ Rn
� E ⇢ Rn

�K = U.

Fix � > 0 and consider

F :=

⇢
B(x, r) ; B(x, r) ⇢ U , 0 < r < � ,

H
s
�
B(x,r)\E

�

↵(s) rs > t

�

Clearly, F covers At. Hence, by the vitali covering theorem (2.2), there is countable

disjoint family of balls {Bi}
1

i=1 such that

At ⇢

1[

i=1

B̂i

Let Bi ⌘ B(xi, ri), then,

H
s
10�(At) 

1X

i=1

↵(s)(5ri)
s


5s

t

1X

i=1

H
s(Bi \ E)


5s

t
H

s(U \ E)

=
5s

t
H

s(E �K)


5s

t
✏

Noting that � > 0 was arbitrary,

=) H
s(At) 

5s

t
✏

Note, that if the proof was started with t = 0, then the previous step would not have

been justified in this proof. Let ✏ ! 0,

=) H
s(At) = 0

Theorem 2.54. Assume E ⇢ Rn and is H
s measurable.

Also it is given that Hs(E) < 1. Then,

1

2s
 lim sup

r!0

H
s

✓
B(x, r) \ E

◆

↵(s) rs
 1

for all Hs almost every x 2 E.
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Proof. Claim 1 : lim supr!0
H

s
�
B(x,r)\E

�

↵(s) rs  1 for Hs almost every x 2 E.

Proof of the claim 1 : Fix ✏ > 0 and t > 1. Define

Bt := {x 2 E ; lim sup
r!0

H
s

✓
B(x, r) \ E

◆

↵(s) rs
> t}

Now, (Hs
|E) is radon measure and finite. This implies there is an open set U such that

• Bt ⇢ U

• H
s(U)  H

s(Bt) + ✏.

This implies that Hs(U \ E)  H
s(U)  H

s(Bt) + ✏. Define,

F := {B(x, r) ; B(x, r) ⇢ U , 0 < r < � ,

H
s

✓
B(x, r) \ E

◆

↵(s) rs
> t}

Clearly, F covers Bt. By the corollary (2.3) to the vitali covering theorem, there are

disjoint balls {Bi} in F such that for a fixed m 2 N,

Bt �

m[

i=1

Bi ⇢

1[

i=m+1

B̂i

=) Bt ⇢

 
m[

i=1

Bi

!
[
 

1[

i=m+1

B̂i

!

For Bi ⌘ B(xi, ri),

H
s
10�(Bt) 

mX

i=1

↵(s)rsi +
1X

i=m+1

↵(s)(5ri)
s


1

t

mX

i=1

H
s(Bi \ E) +

5s

t

1X

i=m+1

H
s(Bi \ E)


1

t
H

s(U \ E) +
5s

t
H

s

 
1[

i=m+1

Bi \ E

!

The above is true for all m and hence as H
s([Bi \ E)  H

s(E) < 1, taking m ! 1

and by the convergence of the tail of convergent sequence,to 0, we have

H
s
10�(Bt) 

1

t
H

s(U \ E) 
1

t

✓
H

s(Bt) + ✏

◆
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Let � ! 0 and then ✏ ! 0, then

H
s(Bt) 

H
s(Bt)

t

Now, noting that Hs(Bt)  H
s(E) < 1, and if Hs(Bt) 6= 0, we have 1 

1
t , which is a

contradiction.

This proves the claim 1.

Claim 2 : lim supr!0
H

s
1

�
B(x,r)\E

�

↵(s) rs �
1
2s , for H

s almost every x 2 E.

Proof of the claim 2 : Fix � > 0 and 0 < t < 1. Define

E(�, t) :=
n
x 2 E ; x 2 C , C ⇢ Rn , diam(C) < � =) H

s
�(C \ E)  t ↵(s)

⇣
diam(C)

2

⌘so

Therefore, if {Ci}
1

i=1 are subsets or Rn such that diam(Ci)  � , E(�, t) ⇢
S

1

i=1Ci ,

Ci \ E(�, t) 6= �,

H
s
�

�
E(�, t)

�


1X

i=1

H
s
� (Ci \ E(�, t)) 

1X

i=1

H
s
�(Ci \ E)  t

1X

i=1

↵(s)

✓
diam(Ci)

2

◆s

By the infimum property,

H
s
�(E(�, t))  t Hs

�(E(�, t))

By the same logic as before, since H
s
�(E(�, t))  H

s
�(E)  H

s(E) < 1, if Hs
�(E(�, t)) 6=

0, then 1  t, which is a contradiction.

In particular, Hs(E(�, 1� �)) = 0.

Now, if x 2 E and lim supr!0
H

s
1

�
B(x,r)\E

�

↵(s) rs < 1
2s , then there is a � > 0 such that

H
s
1

�
B(x,r)\E

�

↵(s) rs 
1��
2s for all 0 < r < �. Thus , if x 2 C and diam(C)  �,

H
s
�(C \ E) = H

s
1(C \ E)  H

s
1

✓
B
�
x, diam(C)

�
\ E

◆
 (1� �) ↵(s)

✓
diam(C)

2

◆s

Thus, x 2 E(�, 1� �). But then

⇢
x 2 E ; lim supr!0

H
s
1

�
B(x,r)\E

�

↵(s).rs < 1
2s

�
⇢

1[

j=1

E

✓
1

j
, 1�

1

j

◆

This proves the claim 2.

Now, Hs

✓
B(x, r) \ E

◆
� H

s
1

✓
B(x, r) \ E

◆
�

1
2s , H

s a.e.

Remark 2.55. It is possible to have lim sup < 1 and lim inf = 0.

Consider E = {x} and consider H1 on it.
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2.3.4 Relations to lipshitz mappings

Definition 2.56. • f : Rn
! Rm is lipshitz if there is a constant C > 0 such that

8x, y 2 Rn ; |f(x)� f(y)|  C.|x� y|

•

Lip(f) = sup
n

|f(x)�f(y)|
|x�y| ; x 6= y in Rn

o

• f : A ⇢ Rn
! Rm is locally lipshitz if for all compact sets K ⇢ A, there is a

constant depending on K , C(K) such that

|f(x)� f(y)|  C(K)|x� y| , for all x, y 2 K

Theorem 2.57. Let f : Rn
! Rm be lipshitz. A ⇢ Rn. 0  s < 1. Then,

H
s(f(A))  Lip(f)sHs(A)

Proof. Fix � > 0. Choose {Ci}
1

i=1 such that diam(Ci)  � and A ⇢
S

1

i=1Ci. Then,

diam(f(Ci))  Lip(f) diam(Ci)  Lip(f).�

f(A) ⇢
1[

i=1

f(Ci)

Thus,

H
s
Lip(f) �(f(A)) 

1X

i=1

↵(s)

✓
diam(f(Ci))

2

◆s

 Lip(f)s
1X

i=1

↵(s)

✓
diam(Ci)

2

◆s

And hence,

H
s
Lip(f).�(f(A))  H

s
�(A) Lip(f)s

Letting � ! 0 gives that

H
s(f(A))  H

s(A) Lip(f)s

Corollary 2.58. Suppose that n > k. Let P : Rn
! Rk be the usual projection, i.e

P (x1, x2, . . . xn) = (x1, x2, . . . , xk). Let A ⇢ Rn. Let 0  s < 1. Then,

H
s(P (A))  H

s(A)
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Proof. Projection maps are lipshitz with Lip(f)  1, that is

Pk
i=1 |xi � yi|Pn
i=1 |xi � yi|

 1

The previous theorem 2.57, now concludes the corollary.

Definition 2.59. For f : Rn
! Rm, A ⇢ Rn, define the graph of f to be the set

G(f ;A) := {(x, f(x)) x 2 A} ⇢ Rn
⇥ Rm

⌘ Rn+m

Theorem 2.60. Assume that f : Rn
! Rm and L

n(A) > 0. Then,

• Hdim(G(f ;A)) � n

• If f is lipshitz, then Hdim(G(f ; a)) = n.

Proof. • Let P : Rn+m
! Rn be a projection. Thus, by the corollary,

H
n(G(f ;A)) � H

n(A) > 0

=) Hdim(G(f ;A)) � n

• Let Q be a cube of length 1 in Rn. Sub-divide Q into kn many sub-cubes each

having the length 1
k . Call these cubes by the index Q1, Q2, . . . Qkn .

Observe that the diam(Qi) =
p
n
k . Let, for f ⌘ (f1, f2, . . . , fm),

aij := min
x2Qj

f i(x)

bij := max
x2Qj

f i(x)

As f is lipshitz, we have, for aj = (a1,j , a2,j , . . . , an,j) and bj = (b1,j , b2,j . . . , bn,j),

|bj � aj |  Lip(f) diam(Qj) = Lip(f)

p
n

k

Now, let

Cj ⌘ Qj ⇥

mY

i=1

(aij , bij)

Then,

{
�
x, f(x)

�
; x 2 Qj \A} ⇢ Cj
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And

diam(Cj) 
Lip(f)

p
n

k

Since, G(f ;A \Q) ⇢
Skn

j=1Cj ,

H
np
n.Lip(f)/k

✓
G(f ;A \Q)

◆


knX

j=1

✓
diam(Cj)

2

◆n

↵(n) =

✓
Lip(f)

p
n

2k

◆n

kn↵(n)

=

✓
Lip(f)

p
n

2

◆n

↵(n)

Now, let k ! 1,

=) H
n(G(f ;A \Q)) < 1

=) Hdim(G(f ;A \Q))  n

Since the above is true for all cubes in Rn of side length 1 and Rn can be covered

by countable unit cubes, we have the conclusion for the theorem.

Theorem 2.61. Let f 2 L
1
loc(Rn) and suppose that 0  s < n, define

⇤s := {x 2 Rn ; lim sup
r!0

1

rs

Z

B(x,r)
|f | dy > 0}

Then

H
s(⇤s) = 0

Proof. Assume that f 2 L
1
loc(Rn). Thus, for all compact sets K ⇢ Rn,

R
K |f | < 1.

Declaring the value to be 0 outside that compact set, we can assume that f 2 L
1(Rn).

By the Lebesgue Besicovitch di↵erentiation theorem (2.18),

lim
r!0

-

Z
-
B(x,r)

|f | dy = |f(x)|

Thus,

lim
r!0

1

rs

Z

B(x,r)
|f | dy = 0

The above is true for Ln almost every x.

Hence, Ln(⇤s) = 0. Now fix ✏, �,� > 0, f 2 L
1 =) 9⌘ > 0 such that, for all A ⇢ Rn,

L
n(A) < ⌘ and

R
A |f | dx < �. Define

⇤✏
s := {x 2 Rn ; lim sup

r!0

1

rs

Z

B(x,r)
|f | dy > ✏}
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Thus ⇤✏
s ⇢ ⇤s =) L

n(⇤✏
s) = 0. Thus there is an open set U such that

• ⇤✏
s ⇢ U

• L
n(U) < ⌘

Set

F := {B(x, r) ; x 2 ⇤✏
s , 0 < r < � , B(x, r) ⇢ U ,

Z

B(x,r)
|f | dy > ✏ rs}

Observe that F covers ⇤✏
s. Thus, by the vitali covering theorem, there are disjoint balls

{Bi}
1

i=1 ⇢ F such that

⇤✏
s ⇢

1[

i=1

B̂i

Let Bi ⌘ B(xi, ri),

H
s
10�(⇤

✏
s) 

1X

i=1

↵(s)(5ri)
s


↵(s)5s

✏

1X

i=1

Z

Bi

|f | dy 
↵(s)5s

✏

Z

U
|f | dy 

↵(s)5s

✏
�

Sending � ! 0 and the � ! 0, we have

H
s(⇤✏

s) = 0.

2.3.5 Rademacher’s Theorem.

Theorem 2.62. Extension theorem:

Let f : A ⇢ Rn
! Rm be lipshitz. Then, there is f : Rn

! Rm such that

• f = f on A.

• Lip(f) 
p
mLip(f)

Proof. Assume for now that m = 1. Define

f(x) = inf{f(a) + Lip(f) |x� a| ; a 2 A}

ef(x) = sup{f(a) + Lip(f) |x� a| ; a 2 A}

Note that ef defined as above is another extension of f , need not be same as f .

Continuing the proof for f , if b 2 A , then clearly, f(b) = f(b). If x, y 2 Rn, then,
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f(x) = inf{f(a) + Lip(f) |x� a| ; a 2 A}

 inf{f(a) + Lip(f) (|y � a|+ |y � x|) ; a 2 A}

 inf{f(a) + Lip(f) |y � a| ; a 2 A}+ Lip(f) |x� y|

= f(y) + Lip(f) |x� y|

Similarly,

f(y)  f(x) + Lip(f) |x� y|

Thus
|f(y)� f(x)|

|x� y|
 Lip(f)

In the general case, f : A ⇢ Rn
! Rm, let f ⌘ (f1, f2, . . . , fm) with

fi : A ! R for all 1  i  m. By the previous steps, there are f i such that f i = f on A

and Lip(f i)  Lip(f). Thus

|f(x)� f(y)|2 =
mX

i=1

|f i(x)� f i(y)|
2



mX

i=1

Lip(f)2|x� y|2 = m Lip(f)2 |x� y|2

=) Lip(f) 
p
mLip(f)

Theorem 2.63. Rademacher’s theorem :

Let f : Rn
! Rm be locally lipshitz. Then f is di↵erentiable L

n almost everywhere.

Proof. Assume that m = 1. Also, since the di↵erentiablity is a local property, assume

the f is globally lipshitz. Fix v 2 Rn such that |v| = 1. Define, provided the limit exist,

Dvf(x) := lim
t!0

f(x+ tv)� f(x)

t
; x 2 Rn

Claim 1 : Dvf(x) exist for Ln almost every x 2 Rn.

Proof of the claim 1 : Since f is continuous,

Dvf(x) := lim sup
t!0

f(x+ tv)� f(x)

t
= lim

k!1

sup
{0<|t|< 1

k , t2Q}

f(x+ tv)� f(x)

t

is also borel measurable. Similarly,

Dvf(x) ⌘ lim inf
t!0

f(x+ tv)� f(x)

t
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is borel measurable. Thus

Av ⌘ {x 2 Rn ; Dvf(x) does not exist }

= {x 2 Rn ; Dvf(x) 6= Dvf(x)}

is borel measurable. For each x, v 2 Rn with |v| = 1, define g : R ! R by

g(t) := f(x+ tv) for t 2 R

Then g is lipshitz and thus absolutely continuous and thus di↵erentiable L
1 almost

everywhere. Hence,

H
1(Av \ L) = 0

for each line L parallel to v. By the fubini’s theorem,

L
n(Av) = 0

This proves the claim 1.

Consequently,

rf(x) ⌘

✓
@f

@x1
,
@f

@x2
, . . . ,

@f

@xn

◆
(x) exist for Ln almost every x

Note that sometimes rf(x) is also written as Df(x).

Claim 2 : Dvf(x) = v.rf(x) Ln a.e x.

Proof of the claim 2 : Let ⇠ 2 C1
c (Rn). Then,

Z

Rn

✓
f(x+ tv)� f(x)

t

◆
⇠(x)dx = �

Z

Rn
f(x)

✓
⇠(x)� ⇠(x� tv

t

◆
dx

Let t = 1
k , k = 1, 2, . . . . Thus the above equality gives that

�����
f(x+ 1

kv)� f(x)
1
k

�����  Lip(f)|v| = Lip(f)

Thus, the D.C.T implies,

Z

Rn
Dvf(x)⇠(x)dx = �

Z

Rn
f(x)Dv⇠(x)dx

= �

1X

i=1

Z

Rn
f(x)

@⇠

@xi
(x)⇠(x)dx

=
1X

i=1

vi

Z

Rn

@f

@xi
(x)⇠(x)dx
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=

Z

Rn

�
v.rf(x)

�
⇠(x)dx

The above is true as per the theorem of Fubini and the note after corollary 1.72 that says

the integration by parts holds for absolutely continuous functions. The above holds for

all ⇠ 2 C1
c (Rn). Hence by the density of the smooth functions with compact support,

we have

Dvf = v.rf for Ln a.e

This proves the claim 2.

Let {vk}1k=1 be countable dense subset of @B(0, 1). Define

Ak := {x 2 Rn ; Dvkf(x) exist , rf(x) exist ,Dvkf(x) = vk.rf(x)}

A :=
1\

k=1

Ak

Note that, from the claim 1 and 2, Ln(Rn
�A) = 0.

Claim 3 : f is di↵erentiable at each x 2 A.

Proof of the claim 3 : Choose and fix x 2 A. Choose v 2 @B(0, 1), t 2 R, t 6= 0. Define

Q(x, v, t) :=
f(x+ tv)� f(x)

t
� v.rf(x)

Then, if u 2 @B(0, 1), we have

|Q(x, v, t)�Q(x, u, t)| 

����
f(x+ tv)� f(x+ tu)

t

����+ |(v � u).rf(x)|

 Lip(f)|v � u|+ |rf(x)||v � u|

 (
p
n+ 1)Lip(f)|v � u|

Let ✏ > 0 and ✏1 := ✏

2
�
p
n+1
�
Lip(f)

. Then, by the compactness of @B(0, 1) and dense

property of {vk}, choose N such that

@B(0, 1) ⇢
N[

k=1

B(vk, ✏1)

Therefore, for each v 2 @B(0, 1), we can find k 2 {1, 2, . . . , N} such that |v � vk|  ✏1.

Since, limt!0Q(x, vk, t) = 0 , 8k = 1, 2, . . . , N . Hence, choose � > 0 such that

0 < |t| < �, k = 1, 2, . . . , N and

|Q(x, vk, t)| 
✏

2
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As a consequence, for each v 2 @B(0, 1), there is a k 2 {1, 2, . . . N} such that, if

0 < |t| < �,

|Q(x, v, t)|  |Q(x, vk, t)|+ |Q(x, v, t)�Q(x, vk, t)| < ✏

By the compactness argument, the same � > 0 works for all v 2 @B(0, 1). Now, choose

y 2 Rn such that y 6= x. Declare

v =
y � x

|y � x|

y = x+ tv

t ⌘ |x� y|

Then,

f(y)� f(x)�rf(x).(y � x) = f(x+ tv)� f(x)� tv.rf(x)

= o(t) ⌘ o(|x� y|), as y ! x

Hence, f is di↵erentiable at x with Df(x) = rf(x).

Corollary 2.64.

• Let f : Rn
! Rm be locally lipshitz and

Z := {x 2 Rn ; f(x) = 0}. Then Df(x) = 0 for L
n a.e x 2 Z.

• Let f, g : Rn
! Rn be locally lipshitz and Y := {x 2 Rn ; g � f(x) = x}. Then

Dg(f(x)) Df(x) = I for L
n a.e x 2 Y

Proof. Assume that m = 1. Let x 2 Z be a point of density and Df(x) exist, that is,

lim
r!0

L
n
�
B(x, r) \ Z

�

Ln
�
B(x, r)

� = 1

Then,

f(y) = Df(x).(y � x) + o(|y � x|) as y ! x

Now, assume that Df(x) ⌘ b 6= 0 and declare

S := {v 2 @B(0, 1) ; b.v >
1

2
|b|}

V (r, b) := {tv ; 0 < t < r , v 2 S}

Then S is open neighbourhood of b
|b| and V (r, b) is an open set with V (r, b) ⇢ B(x, r)

and

↵ =
L
n
�
V (1, b)

�

Ln
�
B(x, 1)

� =
rnLn

�
V (1, b)

�

rnLn
�
B(x, 1)

� =
L
n
�
V (r, b)

�

Ln
�
B(x, r)

� < 1
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For each v 2 S and t > 0, set y = x+ tv to get

f(x+ tv) = b.tv + o(|tv|) �
t|b|

2
+ o(t) as t ! 0

Hence, there is t0 > 0 such that

f(x+ tv) > 0 , for 0 < t < t0 , v 2 S.

Hence, for 0 < r < t0, V (r, b) \ Z = �.

=)
L
n
�
Z \B(x, r)

�

Ln
�
B(x, r)

� =

L
n

✓
Z \

�
B(x, r)� V (r, b)

�◆

Ln
�
B(x, r)

� 
L
n
�
B(x, r)

�
� L

n
�
V (r, b)

�

Ln
�
B(x, r)

�

= 1� ↵ < 1

Letting r ! 0, to get a contradiction, as x is a point of density.

To prove the second part of the corollary, declare

S(Df) := {x ; Df(x) exists}

S(Dg) := {x ; Dg(x) exists}

X := Y \ S(Df) \ f�1

✓
S
�
Dg
�◆

Then,

x 2 Y � f�1(S(Dg)) =) f(x) 2 Rn
� S(Dg) =) x = g � f(x) 2 g(Rn

� S(Dg)

=) Y �X ⇢

✓
Rn

� S(Df)

◆
[ g

✓
Rn

� S(Dg)

◆

By the Rademacher’s theorem,

L
n(Y �X) = 0

Thus, if x 2 X, then Df(x) exists , Dg(f(x)) exists and so,

Dg(f(x)) Df(x) = D(g � f)(x) exist

Observing that g � f ⌘ I on Y , and the previous part of this corollary tells that

D(g � f) ⌘ I , Ln a.e on Y .
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2.4 Area formula

2.4.1 Theorem and proofs.

Throughout this section (2.4) , assume that n  m.

Lemma 2.65. Suppose that L : Rn
! Rm is linear, then

H
n(L(A)) = [[L]]Ln(A) for all A ⇢ Rn

Proof. Write L = O � S.

Case 1 : If [[L]] = 0. Then dim(S(Rn))  n� 1 and hence, dim(L(Rn))  n� 1. Thus

as a consequence, Hn(L(Rn)) = 0.

Case 2 : Let [[L]] > 0, , then by the change of variables formula and the fact from the

isodiametric inequality, proved earlier that Hn = L
n on Rn,

H
n
�
L(B(x, r)

�

Ln
�
B(x, r)

� =

H
n

✓
O⇤

� L
�
B(x, r)

�◆

Ln
�
B(x, r)

�

=

H
n

✓
O⇤

�O � S
�
B(x, r)

�◆

Ln
�
B(x, r)

�

=

H
n

✓
S
�
(B(x, r)

�◆

Ln
�
B(x, r)

�

=

L
n

✓
S(
�
B(x, r)

�◆

Ln
�
B(x, r)

�

=
L
n(S(B(0, 1)))

↵(n)

= |detS|

= [[L]]

Define v(A) := H
n(L(A)) for A ⇢ Rn. Then clearly,

v is a radon measure

v ⌧ L
n
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DLnv(x) = lim
r!0

v(B(x, r))

Ln(B(x, r))
= [[L]]

Hence, for all borel sets B ⇢ Rn , by the Radon- Nikodym theorem 2.14,

H
n(L(B)) = [[L]]Ln(B)

Noting that v and L
n are radon measures, the same formula holds for all sets A ⇢ Rn.

Henceforth, for this section, it shall be assumed that f is lipshitz mapping.

Lemma 2.66. Let A ⇢ Rn be L
n measurable. Then

• f(A) is H
n measurable

• Multiplicity function : y ! H
0(A \ f�1

{y}) is H
n measurable on Rm

•
R
Rm H

0(A \ f�1
{y})dHn

 (Lip(f))nLn(A)

Proof. W.L.O.G, assume that A is bounded,i.e L
n(A) < 1. By the approximation of

sets by compact sets from the inside, there are Ki ⇢ A such that, for all i 2 N,

L
n(A�Ki) = L

n(A)� L
n(Ki) 

1

i

=) L
n(Ki) � L

n(A)�
1

i

Since, f is continuous, f(Ki) is compact and thus is Hn measurable. Thus

f

 
1[

i=1

Ki

!
=

1[

i=1

f(Ki) is H
n measurable.

Furthermore,

H
n

 
f(A)� f

 
1[

i=1

Ki

!!
 H

n

 
f

 
A�

1[

i=1

Ki

!!

 (Lip(f))nLn

 
A�

1[

i=1

Ki

!
= 0

thus f(A) is Hn measurable and this proves the first part of the lemma.

Declare

Bk := {Q | Q ⌘ (a1, b1]⇥ . . .⇥ (an, bn] , ai =
ci
k

, bi =
ci + 1

k
, ci 2 Z , i 2 {1, 2, . . . , n}}

Observe that Rn =
S

Q2Bk
Q. Now, define gk :=

P
Q2Bk

Xf(A\Q). By the first part of

this lemma, gk is H
n measurable. Observe that gk(y) is the number of cubes Q 2 Bk
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such that f�1(y) \ (A \ Q) 6= �. Thus gk(y) " H
0(A \ f�1(y)) as k ! 1, for each

y 2 Rm. This proves the second point of this lemma.

By MCT, Z

Rm
H

0(A \ f�1
{y})dHn = lim

k!1

Z

Rm
gkdH

n

= lim
k!1

X

Q2Bk

H
n(f(A \Q))

 lim sup
k!1

X

Q2Bk

(Lip(f))nLn(A \Q)

= Lip(f)nLn(A)

Lemma 2.67. Let

t > 1

B := {x ; Df(x) exists , Jf(x) > 0}

Then, there is a countable collection {Ek}
1

k=1 of borel subsets of Rn such that

• B =
S

1

k=1Ek

• f is injective on Ek.

• for each k 2 N, there are symmetric automorphisms Tk : Rn
! Rn such that

Lip

✓
(f |Ek) � T

�1
k

◆
 t

Lip

✓
Tk � (f |Ek)

�1

◆
 t

1

tn
|detTk|  Jf |Ek  tn|detTk|

Proof. Fix ✏ > 0 such that 1
t + ✏ < 1 < t � ✏. Let S be a countable dense subset of B

and let T be a countable dense set of symmetric automorphisms of Rn. Then for each

s 2 S, T 2 T , define for i 2 N,

E(s, T, i) :=

8
><

>:

b 2 B \B(s, 1i )

���� (1)
�
1
t + ✏

�
|Tv|  |Df(b)v|  (t� ✏)|Tv|, 8v 2 Rn ,

(2) |f(a)� f(b)�Df(b).(a� b)|  ✏|T (a� b)|, 8a 2 B(b, 2i )

9
>=

>;

Note that b ! Df(b) and v ! Df(b)v are Borel measurable as f is lipshitz. Further

calculations of (1), (2) lead to the fact that

1

t
|T (a� b)|  |f(a)� f(b)|  t|T (a� b)| , for all b 2 E(s, T, i), a 2 B(b,

2

i
)
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Claim :

b 2 E(s, T, i) =)

✓
1

t
+ ✏

◆n

|detT |  Jf(b)  (t� ✏)n|detT |

Proof of the claim : Declare Df(b) = L = O � S Then,

Jf(b) = [[Df(b)]] = |detS|

By (1), ✓
1

t
+ ✏

◆
|Tv|  |O � S(v)| = |Sv|  (t� ✏)|Tv| , for v 2 Rn

=)

✓
1

t
+ ✏

◆
|v|  |S � T�1(v)|  (t� ✏)|v| , for v 2 Rn

=) S � T�1
�
B(0, 1)

�
⇢ B(0, t� ✏)

=) |det
�
S � T�1

�
|↵(n)  L

n
�
B(0, t� ✏)

�
= ↵(n)(t� ✏)n

The other inequality is similar in proof. This proves the claim,

Relabel E(s, T, i) as {Ek}k2N. Select any b 2 B and write Df(b) = O � S as above

and choose T 2 T such that

Lip
�
T � S�1

�


✓
1

t
+ ✏

◆
�1

Lip
�
S � T�1

�
 t� ✏

Now select i 2 N and c 2 S so that

|b� c| 
1

i

|f(a)� f(b)�Df(b).(a� b)| 
✏

Lip (T�1)
|a� b|  ✏|T (a� b)|, for all a 2 B(b,

2

i
)

Then, b 2 E(c, T, i). This proves the first part of the lemma, i.e , B =
S
Ek.

Now, choose any Ek ⌘ E(c, T, i). Thus by the observation,

1

t
|T (a� b)|  |f(a)� f(b)|  t.|T (a� b)| , for all b 2 Ek, a 2 B(b,

2

i
)

As, Ek ⇢ B(b, 2i ), we have

1

t
|T (a� b)|  |f(a)� f(b)|  t.|T (a� b)| , for all a, b 2 Ek
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This tells the second point of the lemma,i.e f is injective on each Ek.

Finally the above inequality gives

Lip

✓
(f |Ek) � T

�1

◆
 t

Lip

✓
T � (f |Ek)

�1

◆
 t

Now, for all a 2 B(b, 2i ), we have

|f(a)� f(b)|  t|T (a� b)|

let v 2 Rn, non zero, and a = b+ sv such that |v||s| < 2
i , then

|f(b+ sv)� f(b)|  t|s||T (v)|

and hence, ����
f(b+ sv)� f(b)

s

����  t|Tv|

Letting s ! 0,

=) |Df(b)v|  t|Tv|

|S � T�1(v)| = |O � S � T�1(v)| = |Df(b) � T�1(v)|  t|v|

=) (S � T�1)B(0, 1) ⇢ B(0, t)

=) |detS||detT�1
|  tn

That is

|Jf(b)|  tn|detT |

Similarly, considering the other inequality , we get

|Jf(b)| �
1

tn
|detT |

This proves the lemma.

Theorem 2.68. Area formula :

Let f : Rn
! Rm be lipshitz ,n  m, then for each L

n measurable subset A ⇢ Rn,

Z

A
Jfdx =

Z

Rm
H

0

✓
A \ f�1

{y}

◆
dHn(y)
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Proof. In the view of the Rademacher’s theorem, we may assume that Df(x) and Jf(x)

exists on whole of A. Also, assume that Ln(A) < 1.

Case 1 :

A ⇢ {Jf > 0}

Choose and fix t > 1. Now choose borel sets Ek as in the previous lemma. Make

them disjoint by the usual strategy of declaring F1 = E1 and for all i > 1, declare

Fi = Ei �
Si�1

j=1Ej .

Define, as in one of the earlier lemmas,

Bk := {Q | Q ⌘ (a1, b1]⇥ . . .⇥ (an, bn] , ai =
ci
k

, bi =
ci + 1

k
, ci 2 Z , i 2 {1, 2, . . . , n}}

Now, set

Fij = Fj \Qi \A , for Qi 2 Bk, j 2 N

By the construction, Fij ’s are disjoint. Also,

A =
1[

i,j=1

Fij

Claim 1:

lim
k!1

1X

i,j=1

H
n

✓
f(Fij)

◆
=

Z

Rm
H

0

✓
A \ f�1({y}

◆
dHn

Proof of the claim 1: Declare

gk :=
1X

i,j=1

Xf(Fij)

Observe that gk(y) is the exact number of the sets Fij such that Fij \ f�1
{y} 6= �. As

the cubes gets finer as k ! 1, by the MCT,

gk(y) " H
0

✓
A \ f�1

{y}

◆

This concludes the claim.

Now, by the previous lemma,

H
n

✓
f(Fij)

◆
= H

n

✓
f |Ej � T

�1
j � Tj(Fij)

◆
 tnLn

✓
Tj(Fij)

◆

L
n

✓
Tj(Fij)

◆
= H

n

✓
Tj �

�
f |Ej

�
�1

� f
�
Fij
�◆

 tnHn

✓
f(Fij)

◆

Thus
1

t2n
H

n

✓
f(Fij)

◆


1

tn
L
n

✓
Tj(Fij)

◆
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=
1

tn
|detTj |L

n(Fij)



Z

Fij

Jfdx

 tn|detTj |L
n(Fij)

= tnLn

✓
Tj(Fij)

◆

 t2nHn

✓
f(Fij)

◆

Summing the above over i, j,

1

t2n

1X

i,j=1

H
n

✓
f(Fij)

◆


Z

A
Jfdx  t2n

1X

i,j=1

H
n

✓
f(Fij)

◆

By the claim 1, as k ! 1,

1

t2n

Z

Rm
H

0

✓
A \ f�1

{y}

◆
dHn



Z

A
Jfdx  t2n

Z

Rm
H

0

✓
A \ f�1

{y}

◆
dHn

Sending t ! 1+, proves the theorem for the Case 1.

Case 2 :

A ⇢ {Jf = 0}

Choose and fix 0 < ✏  1. Write f as f = p � g , where

g : Rn
! Rm

⇥ Rn ; x !
�
f(x), ✏.x

�

p : Rm
⇥ Rn

! Rm ; (y, z) ! y

Claim 2 : There is a constant C such that

0 < Jg(x)  C✏ for x 2 A

Proof of the claim 2 : Write g = (f1, f2, . . . , fm, ✏x1, ✏x2, . . . , ✏xn), then

Dg(x) ⌘

"
Df(x)

✏I

#

(n+m)⇥n

Note that, by the Binet-Cauchy formula, the Jf2(x) is equal to the sum of the deter-

minant of all the n ⇥ n sub-matrices of Df(x). Thus Jg2(x) � ✏2n > 0. Furthermore,

since, |Df |  Lip(f) < 1, by the Binet-Cauchy formula, Jg2(x) = Jf2(x) + { sum of

squares of terms involving atleast one ✏}  C.✏2, for each x 2 A. Since p is a projection,
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by the case 1 ,

H
n

✓
f(A)

◆
 H

n

✓
g(A)

◆



Z

Rn+m
H

0

✓
A \ g�1

{y, z}

◆
dHn(y, z)

=

Z

A
Jg(x)dx

 ✏.C.Ln(A)

Let ✏ ! 0 to conclude that H
n

✓
f(A)

◆
= 0. Thus, as support

✓
H

0
�
A \ f�1

{y}
�◆

⇢

f(A), Z

Rm
H

0

✓
A \ f�1

{y}

◆
dHn(y) = 0

In the general case, split any set A as union of Ak = A \

✓
B(0, k) � B(0, k � 1)

◆
,

A1 = A \B(0, 1) and split Ak as Ak,1
S

Ak,2 where

Ak,1 ⇢ {Jf > 0}

Ak,2 ⇢ {Jf = 0}

Apply the case (1) and (2), to conclude the theorem.

Theorem 2.69. Change of Variables :

Let f : Rn
! Rm, be lipshitz, n  m, then, for each L

n integrable function g : Rn
! R,

Z

Rn
g(x)Jf(x)dx =

Z

Rm

✓ X

x2f�1{y}

g(x)

◆
dHn(y)

Proof. Idea is to prove it for simple functions and then use the limit. Consider g =
P

finiteCiXAi . Thus

Z

Rn
g(x)Jf(x)dx =

XZ

Rn
CiXAiJf(x)dx

=
X

Ci

Z

Ai

Jf(x)dx

=
X

Ci

Z

Rm
H

0

✓
Ai \ f�1

{y}

◆
dHn(y)

=

Z

Rm

X

i

Ci

X

x2f�1{y}

XAi(x)dH
n(y)
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=

Z

Rm

✓ X

x2f�1{y}

g(x)

◆
dHn(y)

Now, g is integrable implies it can be approximated by simple functions which are

integrable and hence, by DCT, the theorem is proved.

2.4.2 Applications:

• Length of a Curve.

Here n = 1,m � 1. Assume that f : R ! Rm is lipshitz and one-one.

Note that if f = (f1, f2, . . . , fm), then

Df = (f 0

1, f
0

2, . . . f
0

m)

Jf = |Df | = |f 0
| =

vuut
mX

i=1

|f 0

i |
2

For �1 < a < b < 1, define the curve S ⌘ f
�
[a, b]

�
⇢ Rm. Note that the

summand in the area formula is just one term due to the injectiveness of the f .

Then the Length of the curve S is

H
1(S) =

Z b

a
|f 0(t)|dt

• Surface area of a graph :

Here , n � 1,m = n+ 1. Assume g : Rn
! R is lipshitz and define, f : Rn

! Rn+1

by

f(x) = (x, g(x))

Then we have the following

Df =

2

666666664

1 0 0 . . . 0

0 1 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
@g
@x1

@g
@x2

@g
@x3

. . . @g
@xn

3

777777775

(n+1)⇥n

And

(Jf)2 = 1 + |Dg|2

For each open subset of Rn, define the graph of g over U

G ⌘ G(g, U) = {(x, g(x) ; x 2 U} ⇢ Rn+1
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Then, the surface area of the graph of g, that is surface area of G is

H
n(G) =

Z

U

p
1 + |Dg|2dx

• Surface area of a parametric hypersurface.

Here n � 1,m = n+1. Assume that f : Rn
! Rn+1 is lipshitz and one-one. Write

f = (f1, f2, . . . , fn+1), then

Df =

2

664

@f1
@x1

. . . @f1
@xn

...
. . .

...
@fn+1

@x1
. . . @fn+1

@xn

3

775

Let

Tk :=

2

666666666664

@f1
@x1

. . . @f1
@xn

...
. . .

...
@fk�1

@x1
. . . @fk�1

@xn
@fk+1

@x1
. . . @fk+1

@xn
...

. . .
...

@fn+1

@x1
. . . @fn+1

@xn

3

777777777775

=) (Jf)2 =
n+1X

k=1

det(Tk)
2

For each U , open subset of Rn, let the hypersurface be A = f(U) ⇢ Rn+1. Then,

the surface area of A is,

H
n(A) =

Z

U

vuut
n+1X

k=1

✓
det(Tk)2

◆

• Submanifolds:

Let M ⇢ Rm be a lipshitz , n� dimensional embedded submanifold. Suppose that

U ⇢ Rn and f : U ! M is a chart . Let A ⇢ f(U), A is borel, B = f�1(A), define,

gij =
@f

@xi
.
@f

@xj

g = det
�
gij
�

Then,

(Df)⇤ � (Df) =
�
gij
�
n⇥n

Jf =
p
g
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Thus the volume of A in submanifold M is

H
n(A) =

Z

B

p
gdx

2.5 Co-Area Formula

2.5.1 Theorems and Proofs.

Throughout this section (2.5), it is assumed that n � m

and

f : Rn
! Rm

is a lipshitz mapping.

Lemma 2.70. Suppose that L : Rn
! Rm is linear, n � m and A ⇢ Rn is L

n measur-

able, then

• y ! H
n�m

�
A \ L�1

{y}
�
is L

m measurable

•
R
Rm H

n�m
�
A \ L�1

{y}
�
dy = [[L]]Ln(A)

Proof. Case 1 :

dim(L(Rn) < m

Then,

A \ L�1
{y} = � =) H

n�m
�
A \ L�1

{y}
�
= 0 , for Lm a.e y 2 Rm

If, L is decomposed as S �O⇤ as in the polar decomposition, then

L(Rn) = S(Rm)

Thus dim
�
S(Rm)

�
< m and thus

[[L]] = |detS| = 0

Case 2:

L = P = orthogonal projection of Rn onto Rm

Then for each y 2 Rm, P�1
{y} is some translated n�m dimensional subspace of Rn

�

a translate of P�1
{0}. Thus, by the fubini’s theorem,

Z

Rm
H

n�m
�
A \ P�1

{y}
�
dy = L

n(A)
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and thus

y ! H
n�m

�
A \ P�1

{y}
�
is Lm measurable.

Case 3 :

L : Rn
! Rm , dim

�
L(Rn)

�
= m

By the polar decomposition, L = S �O⇤ such that [[L]] = |detS| > 0.

Claim :

O⇤ = P �Q

where

P : Rn
!onto Rm , orthogonal projection

Q : Rn
! Rn , orthogonal

Proof of the claim : Choose Q : Rn
! Rn, orthogonal such that

Q⇤(x) = O(x) , for all x 2 Rm

Noting that

P ⇤(x1, x2, . . . , xm) = (x1, x2, . . . , xm, 0, 0 . . . , 0) 2 Rn , for all x 2 Rm

Thus, we have

O = Q⇤
� P ⇤

=) O⇤ = P �Q

Observe that L�1
{0} is a n�m dimensional subspace of Rn and as before, L�1

{y} is a

translate of L�1
{0}. By the fubini’s theorem,

L
n(A) = L

n
�
Q(A)

�
=

Z

Rm
H

n�m

✓
Q(A) \ P�1

{y}

◆
dy

=

Z

Rm
H

n�m

✓
A \Q�1

� P�1
{y}

◆
dy

By the area formula’s change of variables , let z = Sy, then

|detS|Ln(A) =

Z

Rm
H

n�m

✓
A \Q�1

� P�1
� S�1

{y}

◆
dy

Noting that L = S �O⇤ = S � P �Q,

=) [[L]]Ln(A) =

Z

Rm
H

n�m

✓
A \ L�1

{z}

◆
dz
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Thus

y ! H
n�m

✓
A \ L�1

{y}

◆
is Lm measurable.

Lemma 2.71. Let A ⇢ Rn be L
n- measurable, n � m. Then,

• A \ f�1
{y} is H

n�m measurable, for L
m almost every y in Rm.

• y ! H
n�m

�
A \ f�1

{y}
�
is L

m measurable

• Z

Rm
H

n�m

✓
A \ f�1

{y}

◆
dy 

↵(n�m)↵(m)

↵(n)

✓
Lip(f)

◆m

L
n(A)

Proof. Assume A is bounded. Else, do it for A \B(0, k), k 2 N. For each j 2 N,by the

definition of Ln, there are closed balls {Bij}
1

i=1 such that

• A ⇢
S

1

i=1Bij

• diam
�
Bij
�


1
j

•
P

1

i=1 L
n
�
Bij
�
 L

n(A) + 1
j

Define gij as

gij(x) := ↵(n�m)

✓
diam(Bij

2

◆n�m

Xf(Bij)(x)

By the first part of the lemma, gij is measurable. Now, observe that for all y 2 Rm,

H
n�m
1
j

�
A \ f�1

{y}
�


1X

i=1

gij(y)

Note, that it is not yet clear that y ! H
n�m

�
A\ f�1((y)

�
is measurable, as of now, in

this proof. Denote the upper lebesgue integral as

Z
⇤

Rm
h(y)dy := inf{

Z

Rm
�(y)dy ; � is simple , h(y)  �(y)}

Thus, Z
⇤

Rm
H

n�m
�
A \ f�1

{y}
�
dy

=

Z
⇤

Rm
lim
j!1

H
n�m
1
j

�
A \ f�1

{y}
�
dy



Z
⇤

Rm
lim
j!1

1X

i=1

gijdy
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By the fatou’s lemma and since gij is measurable,

 lim inf
j!1

1X

i=1

Z

Rm
gijdy

= lim inf
j!1

1X

i=1

↵(n�m)

✓
diam(Bij)

2

◆n�m

L
m
�
f(Bij)

�

By the isodiamteric property,

 lim inf
j!1

1X

i=1

↵(n�m)

✓
diam(Bij)

2

◆n�m

↵(m)

✓
diam

�
f(Bij)

�

2

◆m

=
↵(n�m)↵(m)

↵(n)

�
Lip(f)

�m
lim inf
j!1

1X

i=1

L
n(Bij)


↵(n�m)↵(m)

↵(n)

�
Lip(f)

�m
L
n(A)

And thus

Z
⇤

Rm
H

n�m
�
A \ f�1

{y}
�
dy 

↵(n�m)↵(m)

↵(n)

�
Lip(f)

�m
L
n(A) (⇤)

Thus the idea is the prove the first point. Once the first point is proved, then Fubini and

Fatou’s lemma implies the second and the third point as per the previous calculations!

Now to show the first point of the theorem.

Case 1 :

A is compact.

Choose and fix t � 0. For each i 2 N, let Ui consist of all y 2 Rm such that, there are

finitely many open sets Si, say i = 1, 2, . . . , l with the property that

• A \ f�1
{y} ⇢

Sl
i=1 Si

• diam(Sk) 
1
i , for all k = 1, 2, . . . , l

•
Pl

k=1 ↵(n�m)

✓
diam(Sk)

2

◆n�m

< t+ 1
i

Claim 1 :

Ui is open.

Proof of the claim 1 : It is equivalent to show the following

W = {y ; A \ f�1(y) ⇢ U} is open with f to be continuous and A is compact.
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Let y0 2 W . It is required to show the existence of ✏ > 0 such that B(y0, ✏) ⇢ W .

Suppose not, then there is sequences {yk}, {✏k} such that

• yk 2 B(y0, ✏k)

• yk /2 W

• ✏k ! 0 as k ! 1

• yk ! y0

Thus,

A \ f�1(yk) 6⇢ U =) 9xk 2 A \ f�1(yk) , xk /2 U , xk 2 A

Note that xk ! x0 in A, because of the compactness. Also, observe that f(xk) = yk

and continuity of f implies f(x0) = y0 with x0 2 U c.

=) xo 2 A \ f�1(y0) ⇢ U

This is a contradiction and hence the claim 1 is true.

Claim 2 :

{y ; H
n�m

�
A \ f�1(y)

�
 t} =

1\

i=1

Ui

Proof of the claim 2 : By the definiton of supremum of theHn�m, ifHn�m
�
A\f�1(y)

�


t, then for all � > 0, Hn�m
�

�
A \ f�1(y)

�
 t. So, given i 2 N, choose � 2 (0, 1i ). Then,

by the definition of Hn�m , there are sets {Sj}
1

j=1 such that

• A \ f�1(y) ⇢
S

1

j=1 Sj

• diamSj < � < 1/i

•
P

1

j=1 ↵(n�m)

✓
diamSj

2

◆n�m

< t+ 1
i

Since diam(Sj) = diam(Sj), we can consider Sj ’s to be closed and let ⌘ > 0, Sj⌘ :=

{x 2 Rn ; d(x, Sj) < ⌘}. Then, Sj ⇢ Sj⌘, Sj⌘ is open and diam(Sj⌘) ! diam(Sj) as

⌘ ! 0. Hence, by choosing ⌘ small and replacing Sj by Sj⌘, we can assume that Sj ’s

are open.

Now,since, A \ f�1(y) is compact, there are finite subcollection, {Si}
l
i=1 such that it

covers A \ f�1(y) and hence, y 2 Ui. This proves one way inequality, that is

{y ;Hn�m
�
A \ f�1(y)

�
 t} ⇢

1\

i=1

Ui

For the other side inequality, if y 2 \
1

i=1Ui, then, for each i 2 N,

H
n�m
1
i

�
A \ f�1(y)

�
 t+

1

i
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=) H
n�m

�
A \ f�1(y)

�
 t

=)
1\

i=1

Ui ⇢ {y ; H
n�m

�
A \ f�1(y)

�
 t}

This proves the claim 2.

The claim 2 also tells that the mapping

y ! H
n�m

�
A \ f�1(y)

�
is a borel function.

Case 2 :

A is open.

By the inner approximation by the compact sets, there are compact sets K1 ⇢ K2 ⇢

K3 ⇢ · · · ⇢ A such that

A =
1[

i=1

Ki

=) 8y 2 Rm , H
n�m

�
A \ f�1(y)

�
= lim

i!1

H
n�m

�
Ki \ f�1(y)

�

=)

✓
y ! H

n�m(A \ f�1(y)
�◆

is a borel function.

Case 3 :

L
n(A) < 1

By the outer regularity of Ln, there are open sets V1 � V2 � V3 � · · · � A such that

L
n(V1) < 1 ; L

n
�
\
1

i=1 Vi �A
�
= 0

Note that Ln(Vi �A) ! 0 as i ! 1. Hence,

H
n�m

�
Vi \ f�1(y)

�
 H

n�m
�
A \ f�1(y)

�
+H

n�m
�
(Vi �A) \ f�1(y)

�

=) lim sup
i!1

Z
⇤

Rm

��Hn�m
�
Vi \ f�1(y)

�
�H

n�m
�
A \ f�1(y)

���dy

 lim sup
i!1

Z
⇤

Rm
H

n�m

✓
(Vi �A) \ f�1(y)

◆
dy

By (*),

 lim sup
i!1

↵(n�m)↵(m)

↵(n)

�
Lip(f)

�m
L
n(Vi �A) = 0

As a consequence,

H
n�m

✓
Vi \ f�1(y)

◆
! H

n�m

✓
A \ f�1(y)

◆
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Since, y ! H
n�m

�
Vi \ f�1(y)

�
is L

m measurable and hence,y ! H
n�m

�
A \ f�1(y)

�
is

L
m measurable.

Claim 3 : A \ f�1(y) is Hn�m measurable.

Proof of the claim 3 : Since L
n(Vi �A) ! 0 as i ! 1,

=) H
n�m

✓
(Vi �A) \ f�1(y)

◆
! 0 ; as i ! 1 , for Lm a.e y 2 Rm

Let

W :=
1\

i=1

Vi

Then A ⇢ W and W �A ⇢ Vi �A. Thus

H
n�m

�
(W �A) \ f�1(y)

�
 H

n�m
�
(Vi �A) \ f�1(y)

�
! 0 as i ! 1

Hence, for Lm a.e y 2 Rm,

H
n�m

✓
(W �A) \ f�1(y)

◆
= 0

Therefore, for Lm a.e y 2 Rm,y !
�
W �A

�
\ f�1(y) is Hn�m measurable. Now,

A \ f�1(y) =
�
W \ f�1(y)

�
�

✓
(W �A) \ f�1(y)

◆
and W \ f�1(y) is a borel set.

Hence, for Lm a.e y 2 Rm, A \ f�1(y) is Hn�m measurable. This proves the claim 3.

Case 4 :

L
n(A) = 1

Write

A =
1[

k=1

Ak

where Ak = A \B(0, k) , k 2 N

Apply case 3 to Ak to get:

A \ f�1(y) = [
1

i=1Ak \ f�1(y) and hence, it is H
n�m measurable for Lm almost every

y. Since Ak ⇢ Ak+1 and H
n�m is borel regular,

H
n�m

�
A \ f�1(y)

�
= lim

k!1

H
n�m

�
Ak \ f�1(y)

�

And thus, y ! H
n�m

�
A \ f�1(y)

�
is Lm measurable.
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Remark 2.72. The same calculations also show that for each A ⇢ Rn,

Z

Rm
H

k
�
A \ f�1(y)

�
dHl


↵(k)↵(l)

↵(k + l)

�
Lip(f)

�l
H

k+l(A)

Lemma 2.73. Let

t > 1

Assume that h : Rn
! Rn, and set

B := {x ; Dh(x) exists , Jh(x) > 0}

Then, there are countable collection of disjoint borel subsets of Rn,say {Dk}
1

k=1, such

that

• L
n(B �

S
1

k=1Dk) = 0

• h is injective on Dk for k 2 N.

• For each k 2 N, there exists symmetric automorphism Sk : Rn
! Rn, such that

– Lip
�
S�1
k � (h|Dk)

�
 t

– Lip
�
(h|Dk)

�1
� Sk

�
 t

–
1
tn |detSk|  Jh|Dk  tn|detSk|

Proof. By the lemma 2.67, with h in place of f , we have existence of disjoint borel sets

{Ek}k2N and symmetric automorphisms {Tk : Rn
! Rn

}k2N such that

• B =
S

1

k=1Ek

• h is injective on Ek.

• Lip(h|Ek � T
�1
k )  t

• Lip(Tk � h|
�1
Ek

)  t

•
1
tn |detTk|  Jh|Ek  tn|detTk|

Observe that the above also tells that h|�1
Ek

is lipshitz and thus by the lipshitz extension

theorem, there is lipshitz mapping hk : Rn
! Rn such that, on h(Ek), hk ⌘

�
h|�1

Ek

�
.

Claim 1 : Jhk > 0 for Ln almost every point in h(Ek).

Proof of the claim 1 : Observe that on Ek ,

hk � h = identity

By the corollary of the Rademacher’s theorem, we have

Dhk
�
h(x)

�
�Dh(x) = I for Ln almost every x on Ek
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=) Jhk
�
h(x)

�
Jh(x) = 1 for Ln almost every x on Ek

This tells that Jhk
�
h(x)

�
> 0 for L

n a.e x 2 Ek. Since the function h is lipshitz, the

claim follows.

Applying the lemma 2.67 for hk, we have the existence of disjoint borel sets {Fjk}
1

j=1

and symmetric automorphisms {Rjk}
1

j=1 such that

• L
n

✓
h(Ek)�

S
1

j=1 Fjk

◆
= 0

• hk is injective on Fjk

• Lip
�
(hk|Fjk) �R

�1
jk

�
 t

• Lip
�
Rjk � hk|

�1
Fjk

�
 t

•
1
tn |detRjk|  Jhk|Fjk  tn|detRjk|

Declare

Djk := Ek \ h�1
�
Fjk

�

Sjk := R�1
jk

Claim 2 :

L
n

✓
B �

1[

j,k=1

Djk

◆
= 0

Proof of the claim 2 : Observe that

hk

✓
h(Ek)�

1[

j=1

Fjk

◆
= h�1

✓
h(Ek)�

1[

j=1

Fjk

◆
= Ek �

1[

j=1

Djk

Thus the by the construction, we have

L
n

✓
Ek �

1[

j=1

Djk

◆
= 0

This proves the claim 2.

By the construction, clearly, h is injective on Djk.

Claim 3 : For j, k 2 N,

• Lip
�
S�1
jk � h|Djk

�
 t

• Lip
�
h|�1

Djk
� Sjk

�
 t

•
1
tn |detSjk|  Jh|Djk  tn|detSjk|

Proof of the claim 3 :

Lip
�
S�1
jk � h|Djk

�
= Lip

�
Rjk � h|Djk

�
 Lip

�
Rjk � hk|

�1
Fjk

�
 t
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Similarly the other lipshitz inequality follows. Also, as noted above,

Jhk
�
h(x)

�
Jh(x) = 1 L

n almost everywhere on Djk

=)
1

tn
|detSjk| =

1

tn
|detRjk|

�1
 Jh|Djk  tn|detRjk|

�1 = tn|detSjk|

This proves the claim 3 and hence the lemma.

Theorem 2.74. Co-Area formula :

Let f : Rn
! Rm be lipshitz mapping, n � m. Then for each L

n measurable set A ⇢ Rn,

Z

A
Jfdx =

Z

Rm
H

n�m

✓
A \ f�1(y)

◆
dy

Proof. Again, as per the Rademacher’s theorem, we can assume that Df(x) and thus

Jf(x) exists for all x 2 A and also that Ln(A) < 1. As before, splitting the proof into

2 cases :

Case 1 :

A ⇢ {Jf > 0}

For each � 2 ⇤(n, n�m) write f = q � h�, where

h� : Rn
! Rm

⇥ Rn�m ; x !
�
f(x), P�(x)

�

q : Rm
⇥ Rn�m

! Rm ; (y, z) ! y

Declare

A� := {x 2 A ; det
�
Dh�

�
6= 0} ⌘ {x 2 A ; P�|�

Df(x)
��1

(0)
is one-one}

Now,

A =
[

�2⇤

A�

Therefore, assume for now that A is some A�. Fix t > 1 and apply the previous lemma

to h� to get disjoint borel sets {Dk} and symmetric automorphisms {Sk} as in the

hypothesis of the previous lemma. Set

Gk := A \Dk

Claim 1 :
1

tn
[[q � Sk]]  Jf |Gk  tn[[q � Sk]]
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Proof of the claim 1 : Since f = q � h, for Ln almost everywhere,

Df = q �Dh = q � Sk � S
�1
k �Dh = q � Sk �D

�
S�1
k � h

�
= q � Sk � C

where

C := D
�
S�1
k � h

�

By the previous lemma, on Gk,

1

t
 Lip

�
S�1
k � h

�
= Lip(C)  t

Declare the following by the polar decomposition:

Df = S �O⇤

q � Sk = T � P ⇤

where

S, T : Rm
! Rm symmetric

O,P : Rm
! Rn orthogonal

Then

S �O⇤ = T � P ⇤
� C

As a consequence,

S = T � P ⇤
� C �O

By the assumption of the case Gk ⇢ {Jf > 0} , detS 6= 0 =) detT 6= 0. Hence, for

v 2 Rm,

|T�1
� Sv| = |P ⇤

� C �O(v)|  |C �O(v)|  t|O(v)| = t|v|

Thus

T�1
� S

✓
B(0, 1)

◆
⇢ B(0, t)

=) Jf = |detS|  tn|detT | = tn[[q � Sk]]

Similarly, we have the other inequality :

[[q � Sk]] = |detT |  tn|detS| = tnJf

Now,

t�3n+m
Z

Rm
H

n�m

✓
Gk \ f�1(y)

◆
dy
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= t�3n+m
Z

Rm
H

n�m

✓
h�1

�
h(Gk)

�
\ q�1(y)

◆
dy

 t�2n
Z

Rm
H

n�m

✓
S�1
k

�
h(Gk) \ q�1(y)

�◆
dy

= t�2n
Z

Rm
H

n�m

✓
S�1
k � h(Gk) \

�
q � Sk

�
�1

(y)

◆
dy

By the lemma 2.70,

t�2n[[q � Sk]]L
n

✓
S�1
k � h(Gk)

◆

 t�n[[q � Sk]]L
n(Gk)



Z

Gk

Jfdx

Similar proof shows that

Z

Gk

Jfdx  t3n�m
Z

Rm
H

n�m

✓
Gk \ f�1(y)

◆
dy

Using the fact that A is same as the set
S
Gk in L

n measure, summing on k and letting

t ! 1+, we have Z

Rm
H

n�m

✓
A \ f�1(y)

◆
dy =

Z

A
Jfdx

Case 2 :

A ⇢ {Jf = 0}

Fix 0 < ✏  1. Define

g : Rn
⇥ Rm

! Rm , (x, y) ! f(x) + ✏y

p : Rn
⇥ Rm

! Rm , (x, y) ! y

Then,

Dg =
h
Df ✏I

i

m⇥(n+m)

Also, ✏m  Jg = [[Dg]] = [[Dg⇤]]  C✏.

Note that Z

Rm
H

n�m

✓
A \ f�1(y)

◆
dy

=

Z

Rm
H

n�m

✓
A \ f�1

{y � ✏w}

◆
dy , 8w 2 Rn

=
1

↵(m)

Z

B(0,1)

Z

Rm
H

n�m

✓
A \ f�1

{y � ✏w}

◆
dydw
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Claim 2 : Fix y 2 Rm, w 2 Rm. Set

B := A⇥B(0, 1) ⇢ Rn+m

Then

B \ g�1(y) \ p�1(w) =

(
� w /2 B(0, 1)

�
A \ f�1

{y � ✏w
�
⇥ {w} w 2 B(0, 1)

)

Proof of the claim 2 :

(x, z) 2 B \ g�1(y) \ p�1(w) () x 2 a, z 2 B(0, 1), f(x) + ✏z = y, z = w

() x 2 A, z = w 2 B(0, 1), f(x) = y � ✏w

() w 2 B(0, 1), (x, z) 2
�
A \ f�1

{y � ✏w}
�
⇥ {w}

This proves the claim 2 .

Now, the intergral equality becomes,

Z

Rm
H

n�m
�
A \ f�1

{y}
�
dy

=
1

↵(m)

Z

Rm

Z

Rm
H

n�m
�
B \ g�1

{y} \ p�1
{w}

�
dw dy

By the remark 2.72,


↵(n�m)

↵(n)

Z

Rm
H

n
�
B \ g�1

{y}
�
dy

By the case 1,

=
↵(n�m)

↵(m)

Z

B
Jgdx dz


↵(n�m)↵(m)

↵(n)
L
n(A) sup

B
Jg

 CL
n(A)✏

Now ✏ > 0 was arbitrary and hence the theorem holds for the case 2. For the general

case, split the set A as A1 [ A2, where A1 ⇢ {Jf > 0} and A2 ⇢ {Jf = 0} and apply

the above 2 cases to conclude the theroem.

Theorem 2.75. Change of Variables :

Let f : Rn
! Rm be lipshitz and n � m. Then , for all g : Rn

! R, integrable function,

g|f�1{y} is H
n�m integrable for L

m almost every y 2 Rm

Z

Rn
g(x)Jf(x)dx =

Z

Rm

✓Z

f�1{y}
gdHn�m

◆
dy
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Proof. Let g :=
Pn

i=1CiXAi be a simple function. Then

Z

Rn
g Jf dx =

nX

i=1

Ci

Z

Ai

Jf dx

=
nX

i=1

Ci

Z

Rm
H

n�m

✓
Ai \ f�1

{y}

◆
dy

=

Z

Rm

nX

i=1

CiH
n�m

✓
Ai \ f�1

{y}

◆
dy

Z

Rm

✓Z

f�1{y}
gdHn�m

◆
dy

Since this is true for simple functions, as done in the area’s change of variables, by DCT

and MCT, one can conclude the theorem for all integrable functions.

2.5.2 Applications

• Polar Co-ordinates :

Let g : Rn
! R be L

n integrable function. Then

Z

Rn
g dx =

Z
1

0

✓Z

@B(0,r)
gdHn�1

◆
dr

In particular,
d

dr

✓Z

B(0,r)
g dx

◆
=

Z

@B(0,r)
gdHn�1

Proof. Declare

f(x) := |x| ⌘

vuut
nX

i=1

x2i

Then,

Df(x) =
x

|x|
; Jf(x) = 1

The change of variables formula concludes the above statement.

• Level Sets :

Let f : Rn
! R be lipshitz. Then,

Z

Rn
|Df |dx =

Z

R
H

n�1
�
{f = t}

�
dt

This follows form the fact that Jf = |Df |.
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• Let f : Rn
! R be lipshitz with ess inf |Df | > 0. Assume that g : Rn

! R is Ln

integrable. Then,

Z

{f>t}
gdx =

Z
1

t

✓Z

{f=s}

g

|Df |
dHn�1

◆
ds

In particular,

d

ds

Z

{f>s}
fdx = �

Z

{f=s}

g

|Df |
dHn�1 for L1 almost every s

Proof. As before, let

Jf = |Df |

Declare

Es := {f > s}

By the Co-Area formula,

Z

{f>s}
gdx =

Z

Rn
XEs

g

|Df |
Jfdx

=

Z

R

✓Z

@Et

g

|Df |
XEtdH

n�1

◆
dt

=

Z
1

t

✓Z

@Et

g

|Df |
XEtdH

n�1

◆
dt
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