
F R O N T I E R S I N I N V E R S E R E I N F O R C E M E N T
L E A R N I N G

sayan sarkar

A thesis submitted for the partial fulfillment of the requirements for
the BS-MS Dual Degree Programme

Department of Mathematics
Indian Institute of Science Education and Research, Pune

Supervisor: Tomáš Gavenčiak
Department of applied mathematics, Charles University, Prague

October 2019

Sayan Sarkar : Frontiers in Inverse Reinforcement Learning
© October 2019
This thesis is published under a
Creative Commons Attribution-NonCommercial 4.0 International

License.
The entire license can be found at
https://creativecommons.org/licenses/by-nc/4.0/.

C E RT I F I C AT E

This is to certify that this dissertation entitled Frontiers in Inverse
Reinforcement Learning towards the partial fulfilment of the BS-
MS dual degree programme at the Indian Institute of Science
Education and Research, Pune represents study/work carried
out by Sayan Sarkar jointly at Indian Institute of Science Educa-
tion and Research, Pune and Charles University, Prague under
the supervision of Tomáš Gavenčiak, Department of Applied
Mathematics, Charles University, during the academic year 2019.

Tomáš Gavenčiak

committee

Tomáš Gavenčiak
Anup Biswas

Sayan Sarkar

“We understand the lights. We understand the lights above the
Arby’s. We understand so much. But the sky behind those
lights, mostly void, partially stars, that sky reminds us: we don’t
understand even more.”

Welcome to Night Vale
Episode 25 – One Year Later

Dedicated to the human quest for knowledge.

D E C L A R AT I O N

I hereby declare that the matter embodied in the thesis entitled
frontiers in inverse reinforcement learning is the
result of the work carried out by me at Department of Mathematics,
Indian Institute of Science Education and Research, Pune and De-
partment of Applied Mathematics, Charles University, Prague under
the supervision of Tomáš Gavenčiak and the same has not been
submitted elsewhere for any other degree.

Pune, India, October 2019

Sayan Sarkar

A B S T R A C T

How do we teach machines to do something that we can perform
reasonably well, but cannot easily express as a utility maximiza-
tion problem? Can machines learn underlying utility of a domain
from many human demonstrations?

The goal of the field of Inverse Reinforcement Learning (IRL) is
to infer the crux of the goal of a domain from expert (human)
demonstrations. This thesis categorically surveys the current
IRL literature with a formal introduciton and motivation for
the problem. We discuss the central challenges of the domain
and expound upon how different algorithms deal with the
challenges. We propose an reformulation of the IRL problem
by including ranked set of trajectories of different levels of
expert capability and discuss how that might lead towards a
new set of algorithms in the field, motivated by some very
recently developed approaches. We conclude with discussing
some broad advances in the research area and possibilities for
further extension.

6

P U B L I C AT I O N S

Some ideas and figures have appeared previously in the follow-
ing publications:

[1] Adria Garriga Alonso, Max Marian Daniel, Johannes Hei-
decke, Anton Osika, Sayan Sarkar. IRL Benchmark - A
Python Package for Benchmarking Inverse Reinforcement Learn-
ing Algorithms. url: https://github.com/JohannesHeidecke/
irl-benchmark.

[2] Arushi Majha, Sayan Sarkar, and Davide Zagami. “Cat-
egorizing Wireheading in Partially Embedded Agents.”
In: Artificial Intelligence Safety 2019, AISafety@IJCAI 2019,
Macao, China, August 11-12, 2019. 2019. url: http://ceur-
ws.org/Vol-2419/paper%5C_31.pdf.

7

Friends are those rare people who ask how we are,
and then wait to hear the answer.

— Ed Cunnigham

A C K N O W L E D G M E N T S

I am immensely grateful to the continued support, both aca-
demic and personal, of my thesis supervisor Tomáš Gavenčiak
throughout the project. I could not have completed the project
without the regular thoughtful discussions and pithy comments
from him. My thesis committee member Dr. Anup Biswas has
helped me extensively to align and ground the thesis in both
practicality and mathematical rigor.

Discussions with many people have helped me deconfuse my-
self about the domain. Many thanks go to Johannes Heidecke,
Adria Garriga Alonso, Max Marian Daniel, Anton Osika, Imran
Rashid, Jean Garcin, Darlene Moss, Davide Zagami, and Arushi
Majha. I extend my gratitude to my friends who have been
there for me in times good and bad.

The online communities at the subreddit /r/machinelearning
and /r/reinforcementlearning has helped me extensively to
understand the entire discipline of machine learning. I am in-
debted to Debarshi Mitra for helping with proofreading and
editing this document.

Finally, special thanks to Anindita Basu and Mr. Gollu.

8

C O N T E N T S

1 introduction 17
1.1 Goal and Scope . 17
1.2 Contributions . 17
1.3 Overview . 18

2 preliminaries 19
2.1 Reinforcement Learning 19
2.2 Motivation . 19
2.3 Reinforcement Learning Formalisation 20

2.3.1 Agent and Environment 20
2.3.2 Markov Decision Processes 21
2.3.3 Policy and Value Functions 22
2.3.4 Bellman Equations 23
2.3.5 Solving an MDP 25

3 inverse reinforcement learning 27
3.1 Motivation . 27
3.2 Problem Statement 28
3.3 Importance of IRL 28
3.4 Related Areas . 29
3.5 Challenges . 29

3.5.1 Underspecification 29
3.5.2 Generalizability 31
3.5.3 Correctness of Prior Knowledge 31
3.5.4 Solution Complexity 31

4 classical irl algorithms 33
4.1 Linear Programming IRL from Trajectories 33
4.2 Feature Matching 35

4.2.1 Featurization 36
4.2.2 Feature Matching 36

4.3 Support Vector Machines Formulation 37
4.4 Maximum Entropy Methods 37

4.4.1 Rationality Model 38
4.4.2 Boltzmann Rationality 38
4.4.3 Guided Cost Learning Formulation of Max-

imum Entropy IRL 39
4.4.4 Maximum Causal Entropy Methods 40

4.5 Bayesian Methods 41
4.5.1 Bayesian Inverse Reinforcement Learning . 41

5 modern irl algorithms 45
5.1 Deep Learning and IRL 45

9

10 contents

5.2 GANs and IRL . 46
5.3 Adversarial Methods 47

5.3.1 Empowerment Based Adversarial Inverse
Reinforcement Learning 47

6 towards new irl algorithms 51
6.1 Inverse Reinforcement Learning with Ranked Tra-

jectories . 51
6.1.1 Related Work 51
6.1.2 Definitions 53
6.1.3 Algorithm 1: Rank Difference as Reward

Function Proxy 55
6.1.4 Algorithm 2: Bayesian RWSD Matching . . 55
6.1.5 Experiments 56
6.1.6 Comments 59

6.2 Conditional GANs and Ranked IRL 59
7 conclusions 63

7.1 Discussions . 63
7.1.1 Breakthroughs 63
7.1.2 Shortcomings 64

7.2 Future Work . 64

Appendix
Acronyms 73

L I S T O F F I G U R E S

Figure 2.1 The Reinforcement Learning Setup. Im-
age by Lilian Weng. 20

Figure 2.2 A graphical representation of an MDP.
States are denoted by hexagones; actions
by circles, transition probabilities by green
arrows and action selections by orange
arrows. 22

Figure 3.1 The standard IRL problem. Reused under
a Creative Commons Attribution License
from [43] 28

Figure 4.1 A sample five-state MDP. Image courtesy
of the MAP-BIRL paper. 43

Figure 4.2 The corresponding recovered reward pos-
terior to the five-state MDP as obtained
by a MAP-BIRL algorithm. Image cour-
tesy of the MAP-BIRL paper. 43

Figure 5.1 The Deep MEIRL pipeline. Image ob-
tained from the original paper. 46

Figure 6.1 Violinplot for the reward function ob-
tained in the 40 runs of the algorithm. . . 58

Figure 6.2 Boxlplot of only the low reward values of
the frozen states vs all the zero reward
values of the hole cells. Frozen states
correspond to 0 and holes correspond to 1. 58

Figure 6.3 A comparison of the architectures of GANs
and Conditional GANs. Image courtesy:
Lilian Weng. 61

11

L I S T O F TA B L E S

Table 4.1 Various IRL algorithms as specific cases
of the MAP-BIRL framework. 44

Table 5.1 Comparision of various IRL algorithms
in terms of key properties 49

13

L I S T O F A L G O R I T H M S

Figure 1 Sarsamax (Q-Learning) 26
Figure 2 IRL from Sampled Trajectories 35
Figure 3 Maximum Margin Separating Hyperplane

Algorithm 37
Figure 4 EAIRL . 48

15

1
I N T R O D U C T I O N

This master’s thesis project is an overview of the nascent field
of Inverse Reinforcement Learning (IRL) - the algorithms, chal-
lenges, and applications. In the past two decades or so, IRL
has been used in diverse disciplines of artificial intelligence,
psychology, control theory, and machine learning. The appeal
of the field lies in the potential to use data recorded in a task to
build autonomous agents able to model other agents without
intervening in the continued performance of the task.

1.1 goal and scope

The goal of this project is two-fold. Firstly, this project introduces
and discusses the history of the field succinctly with a birds-eye-
view. Secondly, this thesis discusses paths forward to novel IRL
algorithms with a reformulation of the problem.

The scope of this project is both practical and theoretical - we
discuss and develop the intuitions and mathematics behind the
subject. We provide adequate proof and reasoning behind the
major milestones. Apart from that, we provide a full reference
implementation of a canonical algorithm.

1.2 contributions

This thesis makes several contributions that are summarized
below.

• Formally introducing the IRL problem and comparison of
the available methods with several examples.

• An investigation of the main difficulties that arise in the
paradigm of IRL and a systematic review of the partial
solutions offered so far.

• Discerning the key milestones and common shortcomings.

• Developing open avenues for future research with novel
IRL methodologies alongside a reformulation of the prob-
lem itself.

17

18 introduction

1.3 overview

This thesis is organized in an almost linear and chronological
fashion. The ordering of the chapters facilitates a reading that
unfolds the field historically but also provides the challenges
and motivations beforehand.

In chapter 2 we introduce the mathematical background nec-
essary for developing IRL. This includes the sufficient statistical
tooling and an ample description of the RL problem - the forward
counterpart of the IRL problem.

In chapter 3 we formally introduce the IRL problem and
delineate the main challenges associated with it.

Chapter 4 discusses the old algorithms from the classical era
of IRL - before the dawn of the success of the modern Deep
Learning. These algorithms, though inefficient and fragile in
hindsight, provided the bedrock of the discipline.

Chapter 5 introduces the modern algorithms that are almost
all dependent on the gigantic success of Deep Learning (DL).
We also briefly discuss Generative Adversarial Network (GAN)s
and develop the analogy with IRL.

Chapter 6 is a collection of work-in-progress IRL algorithms
and the motivations behind them. These algorithms are mostly
built around and similar to the recently developed approach
of using multiple expert demonstrations of variable optimality
such as the T-REX method [9]. Most of the chapter is in an in-
choate form and only a direction towards full-brown algorithms.

In chapter 7, we conclude the thesis with discussions and
future work.

In the appendix, we present a reference implementation of
one of the IRL algorithms in Python.

2
P R E L I M I N A R I E S

That all of what we mean by goals and
purposes can be well thought of as
maximization of the expected value of
the cumulative sum of a received scalar
signal (reward).

Richard Sutton

2.1 reinforcement learning

Reinforcement Learning (RL), along with Supervised and Unsu-
pervised Learning, is a major branch of contemporary machine
learning approaches. Instead of giving the agent labeled or
unlabeled data points to learn from, the RL approach uses a
reward signal, which the agent must cleverly use to achieve its
goals in the environment, whatever that might be. RL differs
from traditional supervised and unsupervised learning paradigms
in several aspects. Firstly, in RL, there is no supervisor, that
provides information about how ’successful’ the learning is.
Secondly, feedback is not instantaneous, but rather delayed.
Thirdly, RL deals with non-i.i.d. data, as the observation of the
agent depends on its actions. All these differences make RL an
interesting and challenging subfield of study. However, in recent
times, RL has been successfully applied to problems like Go,
Chess, and Shogi [44] ; Protein Folding [42]; Graph Coloring
[24], Atari video games [35] etc.

2.2 motivation

The idea of Reinforcement Learning is to formalize and to learn
by trial-and-error. Rather than explicitly assigning to the agent
what the optimal behavior is, this framework allows the agent
to experiment by itself, and learn from the environment, not
much unlike how human children learn. [47]

In any RL problem, we have an agent, which exerts control
over its future by making decisions. The agent acts inside an

19

20 preliminaries

environment that it can interact with, but cannot control. The
agent usually has a goal of achieving something - which is for-
malized by changing the state of the environment. The learning
happens when the agent figures out a strategy to achieve its
goals with high confidence.

RL achieves the goal, or ’learns’ the solution, by defining a
scalar feedback signal called the reward 1 that quantifies how1 some related

fields use the no-
tion of cost which
is just the negative
of the reward
and conceptually
similar. However,
another similar
concept is that of
reward, but we
should be careful
to not conflate
these two. [25]

well the agent is doing at a particular step at achieving a specific
task. The agent’s job is to maximize cumulative total reward. The
entire field of RL is based on the following hypothesis:

reward hypothesis: All goals can be described by the
maximization of expected cumulative reward.

Various real-world problems are easy to model with the re-
ward framework. For example, in case of learning the game of
Chess, we might design the environment in a way that the agent
receives positive rewards for winning the game and a negative
reward for losing it. In this manner, the reward framework
makes itself conducive to learning in complex domains where
the goal is easy to specify but a solution is pretty convoluted to
write down via expert systems.

2.3 reinforcement learning formalisation

2.3.1 Agent and Environment

Figure 2.1: The Reinforcement Learning Setup. Image by Lilian Weng.

In an informal sense, the agent is something that exerts con-
trol over the environment. At any time-step, the agent has

2.3 reinforcement learning formalisation 21

information about itself and the environment, which we call
observations. Observation may not capture everything about
the environment - we cannot expect the agent to know every-
thing about the world. The environment usually consists of
a continuous or discrete state-space. The agent, at any step,
can usually choose an action from the action-space, which can
again be discrete or continuous. At each step, once the agent
chooses an action, the environment provides a numerical feed-
back signal, the reward. Also, the state of the environment
changes according to the transition dynamics function, given
the current state and the chosen action.

We capture all of this information into a framework called
Markov Decision Process (MDP).

2.3.2 Markov Decision Processes

Definition 1: Markov Decision Process

A Markov Decision Process is a tuple (S ,A,R,P , γ).

- S is the discrete or continuous state-space.

- A is the discrete or continuous action-space, available
for each state.

- R : S ×A× S → [0, ∞] is the reward function.
R(s, a, s�) determines the numerical reward obtained
when taking a particular action a in a particular state
s which leads the agent to the next state s�.

- P : S ×A× S → [0, 1] is the transition probability. If
the state and actions are discrete, this can be repre-
sented as a tensor. P(s, a, s�) determines the probabil-
ity of reaching state s�, when taken action a in state s.

- γ ∈ [0, 1] is the discount factor, which quantifies the
value of future rewards in current time-step.

We can equivalently define the reward function to be state
only as R(s) providing the reward obtained for being in state
s, or state-action only as R(s, a) codifying the reward obtained
when taking action a in state s.

22 preliminaries

It is easy to note that both the transition probability and the
reward function depend only on the current state, and the action,
hence it respects the Markov Property.

Figure 2.2: A graphical representation of an MDP. States are denoted
by hexagones; actions by circles, transition probabilities by
green arrows and action selections by orange arrows.

2.3.3 Policy and Value Functions

A policy is a mapping from states to actions that guide the agent
to take actions while in a state. The agent chooses which action
to take in what state based on a deterministic or stochastic
policy function. The goal of Reinforcement Learning is to make
the agent come up with an optimal policy by interaction with
the environment.

It is often useful to use a discount factor, γ, to simplify the
summation of infinite series in value functions. It quantifies the
value of future rewards in the current time-step. There are several
reasons to use the discount factor, which we will not discuss
here.

A useful tool for arriving at a policy is to attach some numer-
ical ’value’ to each state, or state-action pairs. In this way, the
agent can quantify which states are desirable or what action at
which state is better than others. An intuitive way of defining
the value of a state or state-action pair is to calculate the ex-
pected cumulative reward. In a reinforcement learning setup,
we define the cumulative reward as total return of an episode
GT = ∑T

k=1 γk−1R(sk) and we define the value functions of a
policy π as:

2.3 reinforcement learning formalisation 23

Definition 2: Value Functions

The state-only value function in an MDP with ri = R(si) for
state s while following policy π is defined as

vπ(s) = E[
T

∑
i=t

γi−1ri] (2.1)

The state-action value function in an MDP for state s and
action a while following policy π is defined as

qπ(s, a) = E[
T

∑
i=t

γi−1ri | at = a] (2.2)

Definition 3: Optimal Value Functions

In an MDP, under a policy π the optimal state-value function
is defined as

v∗(s)
.
= max

π
vπ(s) ∀s ∈ S (2.3)

In an MDP, under a policy π the optimal action-value
function is defined as

q∗(s, a) .
= max

π
qπ(s, a) ∀s ∈ S and a ∈ A(s)

(2.4)

2.3.4 Bellman Equations

Unless the agent has taken every possible action in every possi-
ble state, it does not know the rewards or the value functions.
It turns out there’s an efficient way to estimate and update the
value function recursively. These are known as the Bellman
Equations [7].

Under a policy π, with transition function P, value of the
current step depends on the next step s� like this:

24 preliminaries

Theorem 1: Bellman Expectation Equations

vπ(s) = ∑
a∈A(s)

π(a|s) ∑
s�∈S

p(s, a, s�)(r(s�) + γvπ(s�))

qπ(s, a) = ∑
s�∈S

p(s, a, s�)(r(s�) + γ ∑
a�∈A(s�)

π(a�|s�)qπ(s�, a�))

Similarly, we can derive the Bellman equations for the optimal
value functions.

Theorem 2: Bellman Optimality Equations

v∗(s) = maxa∈A(s) ∑s�∈S P(s, a, s�)(r(s�) + γv∗(s�))

q∗(s, a) = ∑s�∈S P(s, a, s�)(r + γ maxa�∈A(s�) q∗(s�, a�))

We provide a proof of one of the Bellman equations 2.3.4 for
completenesss. Proving the other equations are mostly similar.

Gt is the total return starting from time t. Gt = ∑∞
k=t γk−1R(sk)

Note: Convergence of the sum depends on whether the MDP
is episodic or infinite, and whether γ is < 1 or not. In most RL
setups, there is usually some way to convert an infinite MDP
into an episodic one, so this doesn’t prevent us from using
undiscounted (γ = 1) MDPs.

2.3 reinforcement learning formalisation 25

Proof.

qπ(s, a) .
= Eπ[Gt|St = s, At = a] (1)
= ∑

s�∈S
P(St+1 = s�|St = s, At = a)Eπ[Gt|St = s, At = a, St+1 = s�] (2)

= ∑
s�∈S

p(s, a, s�)Eπ[Gt|St = s, At = a, St+1 = s�] (3)

= ∑
s�∈S

p(s, a, s�)Eπ[Gt|St+1 = s�] (4)

= ∑
s�∈S

p(s, a, s�)Eπ[Rt+1 + γGt+1|St+1 = s� (5)

= ∑
s�∈S

p(s, a, s�)(r(s�) + γEπ[Gt+1|St+1 = s�]) (6)

= ∑
s�∈S

p(s, a, s�)(r(s�) + γvπ(s�)) (7)

The reasoning for the above is as follows:

• (1) by definition (qπ(s, a) .
= Eπ[Gt|St = s, At = a])

• (2) Law of Total Expectation

• (3) by definition (p(s, a, s�) .
= P(St+1 = s�|St = s, At = a))

• (4) Eπ[Gt|St = s, At = a, St+1 = s�] = Eπ[Gt|St+1 = s�]

• (5) Gt = Rt+1 + γGt+1

• (6) Linearity of Expectation

• (7) vπ(s�) = Eπ[Gt+1|St+1 = s�]

2.3.5 Solving an MDP

If we can come up with a policy that takes actions that maxi-
mizes the value function, then say that the MDP is solved, and
learning is done. A simple way to do that would be to calculate

26 preliminaries

the state-action value function is each step and then choose the
action with maximum q-value.

π(a|s) = argmaxa∈Aq(s, a) (2.5)

The entire field of RL deals with estimating and evaluating
these policies and value functions in an efficient manner, with a
plethora of algorithms.

For reference purposes, we provide a standard RL algorithm
known as Q-learning or SARSAMAX [47].

Algorithm 1 Sarsamax (Q-Learning)
policy π, positive integer num_episodes, small positive fraction
α, GLIE {�i} value function Q (≈ qπ if num_episodes is large
enough) Initialize Q arbitrarily (e.g., Q(s, a) = 0 for all s ∈ S
and a ∈ A(s), and Q(terminal-state, ·) = 0)
i ← 1 to num_episodes � ← �i
Observe S0
t ← 0
St is terminal Choose action At using policy derived from Q
(e.g., �-greedy)
Take action At and observe Rt+1, St+1
Q(St, At) ← Q(St, At) + α(Rt+1 + γ maxa Q(St+1, a) −
Q(St, At))
t ← t + 1 Q

3
I N V E R S E R E I N F O R C E M E N T L E A R N I N G

After all, the entire field of
reinforcement learning is founded on
the presupposition that the reward
function, rather than the policy, is the
most succinct, robust, and transferable
definition of the task.

Andrew Ng & Stuart Russell

3.1 motivation

Reinforcement Learning has seen some astonishing success in
recent years in domains where the reward function is easy to
obtain, for example, games like Chess and Go. What happens
when we do not have the reward function in an explicit manner
but have some vague understanding of it? What if we have ac-
cess to demonstrations of what we may call desirable examples,
and want our agent to learn the reward function itself? In the
real-world, reward functions are not easy to obtain [27]. For ex-
ample, a human driver optimizes between safety, speed, comfort,
fuel usage, traffic laws, and various other aspects of everyday
commute. It is enormously challenging to hand-design a reward
function that takes into account all of it in a robust manner.

The goal of Inverse Reinforcement Learning is to infer the
reward function from expert demonstrations or policy. The idea
is to show the agent a bunch of demonstrations of how an expert
in the real world solves a certain problem, so that it learns what
problem the expert is trying to solve. The catch is that by doing
so we withdraw ourselves from the messy task of specifying the
exact goal in math.

One can imagine, if we can solve the problem of IRL effi-
ciently, we can teach an AI even extremely complex reward
functions such as human value systems, without explicitly hand-
designing rules (which immediately results into several goal-
misspecification or reward-hacking problems [16, 34]). This

27

28 inverse reinforcement learning

is the open problem of value-learning using IRL, sometimes
known as ambitious value learning [17].

3.2 problem statement

We consider a Markov Decision Process without Rewards, MDP/R,
which is the tuple �S ,A,P , γ�. Along with that, we assume that
we have access to a set of expert demonstration trajectories in
the form of state-action pairs (st, at). We denote each trajectory
as τ1 = (s1, a1), τ = (s2, a2), . . . , τ = (s1, aT))).

One fundamental assumption in early IRL algorithms is that
the expert is entirely rational, and the trajectories are gener-
ated from an optimal policy. As we shall see, this is a strong
assumption in the setting of the real world.

The goal of IRL is to estimate a reward function R, which ex-
plains these trajectories as generated from following an optimal
policy. More formally, we are interested in finding a reward
function under which the optimal policy in the MDP results into
the expert trajectories.

Figure 3.1: The standard IRL problem. Reused under a Creative Com-
mons Attribution License from [43]

3.3 importance of irl

The field’s co-founder Stuart Russell’s original idea behind intro-
ducing IRL was to computationally model human and animal
behavior to mitigate the problems in supplying those. In the
recent past, there have been interesting progress in this direction.
For example, Inverse Reinforcement Learning (IRL) has recently
been used to model theory of mind [29].

Two broad areas of application of IRL are

3.4 related areas 29

• Learning from expert to create an agent with the expert’s
preferences. An early and well-known application that
brought attention to IRL is helicopter flight control [14].

• Learning from another agent to predict its behavior. One of
the first attempts in this direction was route prediction for
taxis [54]. Other applications include footstep prediction
for planning legged locomotion [55].

3.4 related areas

Inverse Reinforcement Learning (IRL) is a specific sub-domain
in the field of Learning from Demonstrations (LfD) - where the
goal of the agent is to learn some function (for example, the
reward function) from expert demonstrations [5].

One of the closely related areas in LfD is Imitation Learning -
where the agent tries to infer the expert policy given the expert
trajectories. Recent success in autonomous vehicles [28] has
highly depended on methods from Imitation Learning. However,
IRL is a much more challenging task than Imitation Learning,
as noted in the following sections. Besides, IRL is much more
robust to distributional shift than Imitation Learning, given the
portable nature of the reward function.

3.5 challenges

3.5.1 Underspecification

Representational and Experimental

The quintessential challenge in the domain of IRL is the under-
specified nature of the problem itself. As identified by Abbeel
and Ng [1], many reward functions can explain the same policy,
and many policies may lead to the same trajectories. Hence, it
is theoretically impossible, to come up with a unique reward
function that explains the behavior of the expert. Amin and
Singh [4] classifies two kinds of unindentifiability of reward
functions. It is easy to show that the optimal policy is invariant
under any affine transformation of the reward function.

Hence,
R ≡ λR + c, for λ, c ∈ R.
This leads to the representational unidentifiabilty - the found

reward function may look totally different. This challenge has
an easy solution - normalize all reward functions to [0, 1] with

30 inverse reinforcement learning

the following transformation so that it is feasible to compare
two seemingly different reward functions.

R −→ R − max R
max R − min R

(3.1)

The second kind of unidentifiabilty is harder to tackle. The
same trajectories can imply various policies. For example, con-
sider a small grid world where the expert has followed a partic-
ular path. We note that it has traversed a particular cell before
the final one. It is impossible to tell whether this is because this
cell has some rewards or if this is simply because the agent just
traversed it on its way to the final cell. This kind of ambiguity is
experimental - it is possible to perform enough experiments and
extract more information, in order to mitigate the degeneracy.

We need to change the transition probability P and create a set
of MDPs with everything else being the same. For example, if
we artificially introduce a ’wall’ around the final cell in the grid
world example, we will be able to know whether our cell under
consideration actually contains any reward.

Though formally sounding plausible, this is impractical in
real-world settings. We cannot expect to arbitrarily change the
MDP or perform multiple experiments with the expert. Even if
possible, this becomes enormously computationally expensive,
with the introduction of multiple different subroutines.

Insufficiency of Occam’s Razor

A very recent paper [6] has identified a third kind of reward
function, which is fundamentally much more challenging, as
it comes in the form of a No-Free Lunch theorem. In real life,
we cannot assume complete rationality of the expert agent, as
multiple research has shown that humans are systematically and
predictably irrational [49]. Previously, this has been dealt with
proxies like Boltzmann Rationality [41] and Occam’s Razor [26]
(we will discuss the algorithms in the next sections). However,
Armstrong and Minderman showed that it is impossible to infer
both the ’planning algorithm’ and reward function from data
from irrational experts, with the help of Occam’s Razor or the
Solomonoff Prior [46].

3.5 challenges 31

3.5.2 Generalizability

Though the reward function is the most ’succinct, robust, and
transferable’ [47] definition of the task or the goal, there is still
no guarantee of the reward function generalizing in an unknown
or bigger environment. This problem is closely related to the
problem of generalization in Reinforcement Learning, and one
can expect that tools from recent research efforts in One-Shot
RL or Meta RL can be applied back to IRL problems.

3.5.3 Correctness of Prior Knowledge

Most IRL algorithms compress the large state-space information
into much smaller tractable ’feature space’ via the approach of
’feature engineering.’ For most of history, these features are
hand-designed and thus prone to human bias and insufficiency.
It turns out that most IRL algorithms are sensitive to the correct-
ness of this prior knowledge about the environment. One way
to address this problem is to form a completely end-to-end IRL
solution with the help of mordern deep neural networks so that
the so-called feature functions are automatically computed as
part of the algorithm black box from the complete state-space
information.

3.5.4 Solution Complexity

Until very recently, all IRL algorithms relied on solving an entire
MDP using some RL algorithm in the inner loop of its iteration.
This is computationally super expensive and almost untractable
in the case of real-world state spaces. Very recent methods
like Guided Cost Learning has proposed a possible solution to
this challenge by designing the algorithm in a fundamentally
different way - it solves the MDP only once.

4
C L A S S I C A L I R L A L G O R I T H M S

It appears to be a quite general principle
that, whenever there is a randomized
way of doing something, then there is a
nonrandomized way that delivers better
performance but requires more thought.

E T Jaynes

4.1 linear programming irl from trajectories

The first concrete method for IRL was introduced by Abbeel and
Ng [2] in 2004 in three different contexts - small state space with
access to expert policy, large/ infinite state space with access to
expert policy, and with access to expert trajectory only. Abbeel
and Ng formally derived the criteria for solving an IRL problem
as well. The first two approaches are almost trivial in hindsight.
We will go through the theorem for IRL and also discuss the
third non-trivial algorithm.

Theorem 1: Reward Satisfiability Region in IRL

With access to the expert policy and state transition prob-
ability, the solution set for the IRL problem is any reward
function that satisfies

∀Pi ∈ P¬πE : (PπE − Pi)(In − γPπE)−1R � 0 (4.1)

where � denotes the inequality x � y ⇐⇒ ∀i : xi ≥ yi.

33

34 classical irl algorithms

Proof. To prove the theorem, we start with the idea that the
expert’s observed policy must be optimal under the estimated
reward.

∀s : πE(s) = argmaxa ∑
s�∈S

P(s, a, s�)VπE(s�) (4.2)

which is same as

∀s, a : ∑
s�∈S

P(s, πE(s), s�)VπE(s�) ≥ ∑
s�∈S

P(s, a, s�)VπE(s�) (4.3)

We can rewrite this in more compressed vector notation. Let
PπE be the policy transition matrix of size n × n containing the
state transition probabilities for choosing πE(s) in all states.

For each state, there are k − 1 actions that are not chosen
by the expert. We can construct k − 1 policy transition matrix
like above and have the set P¬πE) = {P1, . . . , Pk−1}. Estimated
state-value functions and estimated reward functions can also
be expressed as vectors.

Let � denote the inequality - x � y ⇐⇒ ∀i : xi ≥ yi. Then

VπE = R + γPπEVπE ⇐⇒ VπE = (In − γPπE)−1R (4.4)

and
∀Pi ∈ P¬πE : PπEVπE � PiVπE (4.5)

Finally leading to

∀Pi ∈ P¬πE : (PπE − Pi)(In − γPπE)−1R � 0 (4.6)

Ng and Russell’s third algorithm 2 from the paper is the
first non-trivial algorithm in the field. This algorithm does not
explicitly require access to the expert policy and can work with
trajectories only. The algorithm starts with a random reward
function and random a policy. We can write the reward function
as a dot product of parameters, and formulate the value function
of a trajectory in terms of these parameters. Our goal is to
estimate these parameters. To do that, we generate trajectories
based on the current policy, and then calculate the coefficients

4.2 feature matching 35

of the value of the trajectory based current reward function
estimate. Finally, we solve the linear programming problem to
find the new reward parameters.

λ is a hyperparameter, Russell-Ng chose it to be 2.

Algorithm 2 IRL from Sampled Trajectories

1. Initialize random reward function R(s) = w · φ(s) and
random policy π.

2. Generate trajectories based on current policy and calcu-
late the value of the policy based on the current reward
function estimate.

3. Until converged.

a) Using Linear Programming, maximize for all policies

k

∑
i=1

p(vπ∗(s0)− vπi(s0)) (4.7)

such that |αi| ≤ 1.

p(x) =

x if x ≥ 0

λx otherwise
(4.8)

b) Return new reward function.

c) Calculate optimal policy wrt the new reward add that
to the list of policies

4. Return final reward function.

We get a new policy that is optimal wrt this new reward
function and add that to the list of policies. We repeat this
procedure multiple times until some criterion is satisfied and
return the parameters.

4.2 feature matching

The idea of feature matching, originally borrowed from the fields
of early supervised learning, can be used to simplify the IRL
process, as detailed in the next few subsections. Rather than
dealing with huge state or state-action spaces, we can extract

36 classical irl algorithms

the essential ’features’ of the space. Similar to calculating the
state-visitation frequency of the expert, we can calculate which
features are collected by the expert - feature expectation. We
can then try to come up with a reward function, and an optimal
policy that ’matches’ this expert feature expectation.

4.2.1 Featurization

We compress the state space (small, large, or infinite) into a
vector φ(s) ∈ [0, 1]k of k feature functions φi : S → [0, 1]. If the
reward is linear in features, we write it as

R(s) = w · φ(s) =
k

∑
i=1

wi · φi(s)

4.2.2 Feature Matching

Assume that the true reward is bounded in [−1, 1] and can be
expressed as

R∗(s) = w∗ · φ(s)

Total Expected Value of a policy is

Vπ(s0) = w · E[
∞

∑
t=0

γtφ(st) | π] (4.9)

Define, for each feature, the function

µi(π) = E[
∞

∑
t=0

γtφ(st) | π]

and then write µ(π) as the vector of all µi(π), and call this
vector feature expectation of π

The value of a policy is

Vπ(s0) = w · µ(π)

Given that the value of expert policy is more than any other
policy

VπE(s0) ≥ Vπ(s0)

which is equivalent to

w · (µE − µ(π)) ≥ 0

4.3 support vector machines formulation 37

If trajectory, instead of policy, is available, we can easily es-
timate the empirical feature expectation from the empirical
return.

Feature matching is simply the idea that the algorithm should
learn such a representation of the reward function that the
optimal policy under it matches the expert’s empirical feature
expectation.

Many algorithms have been developed with the idea od match-
ing features. We discuss one that is one of the earliest ones, and
use Support Vector Machines [48] as the core engine of the
algorithm.

4.3 support vector machines formulation

In this algorithm the intuition is to start with a random guess
of w, and then iteratively reduce the difference using s support
vector machine approach. [1]

Algorithm 3 Maximum Margin Separating Hyperplane Algorithm

1. Randomly choose w(0). Compute optimal policy π(0) and
µ(0) = µ(π(0))

2. Compute t(i) = maxw:�w�2≤1 minj∈{w·(µE−µ(j))} and let w(i)

be the value that attains the maximum.

3. If t(i) ≤ �, then terminate.

4. Using RL, compute π(i) wrt R(i) = w(i) · φ. This part is the
bottleneck.

5. Compute µ(i).

6. i = i + 1 and repeat.

4.4 maximum entropy methods

Perhaps the most significant development in the IRL paradigm
was the introduction of the Maximum Entropy IRL algorithm
by Brian Ziebart [53]. This method is essentially based on the
Maximum Entropy Principle [31], which suggests choosing the
probability distribution that has maximum information entropy

38 classical irl algorithms

amongst all distributions that satisfy the data. This is a system-
atic and tractable way to tackle ambiguity and has seen strong
empirical support in physics and machine learning both.

4.4.1 Rationality Model

Rationality Model is a function that defines the probability
P(b | R) that the agent will show behavior (for example, policy),
given the reward function R.

If we know the rationality model of the expert agent, we can
use Bayes Rule to update our belief about the reward function.

P(R | b) =
P(b | R)P(R)

(∑R� P(b | R)P(R))
(4.10)

In this sense, the IRL problem for a completely rational expert
is equivalent to just maximizing the posterior.

R̄ = argmaxR[P(R | b)] (4.11)

We know the Max Entropy distribution over trajectories with
the constraints of features should have the form

P(τ) =
eµ·φ(τ)

Z(µ)

4.4.2 Boltzmann Rationality

An alternative formulation of the sub-optimal behavior of the
expert is to assume Boltzmann Rationality - which basically
assumes that stupid experts are exponentially less likely.

πw(τ) =
eβw·φ(τ)

Z(w)
(4.12)

where β is the rationality parameter ∈ [0, ∞)
For each of the demonstrated trajectories, we update our

posterior P(w | τi) and be left with the beliefs ∏n
i=1 P(w | τi).

We can then maximize

w̄ = argmax
w∈[0,1]k

n

∏
i=1

P(w | τi) (4.13)

4.4 maximum entropy methods 39

The literature notes that sometimes we get better results with
a Beta prior (the rationale behind this being that the rewards are
incredibly sparse with respect to the state-space in real world),
than a uniform prior.

The gradient of the log-likelihood becomes

∇L(w) = µD − ∑
τ∈D

P(τ | w)φ(τ) (4.14)

We already have the first term from the expected feature count.
To get the second term, we use the current estimate of w(i) to
simulate the trajectories using the assumed rationality model.

4.4.3 Guided Cost Learning Formulation of Maximum Entropy IRL

In the paper on Guided Cost Learning [18]), Finn et al. pro-
vide a slightly more structured approach to the Maximum En-
tropy IRL algorithm. Once again, the assumption here is that
experts take actions that are exponentially more likely to gen-
erate higher rewards. For a parameterized reward function
Rψ(τ) = ∑t rψ(st, at)

p(τ) =
1
Z

eRψ(τ)with Z = ∑
τ

eRψ(τ)dτ (4.15)

We want to parameterize the reward function in the way that
maximizes the log-likelihood

L(ψ) = ∑
τ∈D

log prψ(ψ) (4.16)

= ∑
τ∈D

(log
1
Z
+ Rψ(τ)) (4.17)

= ∑
τ∈D

(Rψ(τ))− M log Z (4.18)

= ∑
τ∈D

(Rψ(τ))− M log ∑
τ

eRψ(τ) (4.19)

So the gradient wrt the parameters is

∇ψL(ψ) = ∑
τ∈D

dRψ(τ)

dψ
− M

1

∑τ eRψ(τ)dτ
∑ τ(eRψ(τ)

dRψ(τ)

dψ
)

= ∑
τ∈D

dRψ(τ)

dψ
− M ∑

τ

eRψ(τ)

∑τ eRψ(τ)

dRψ(τ)

dψ
)

40 classical irl algorithms

= ∑
τ∈D

dRψ(τ)

dψ
− M ∑

τ

p(τ | ψ)
dRψ(τ)

dψ
)

Optimizing for p(τ | ψ) is same as p(s|ψ) - otherwise known
as state-visitation frequency.

Finally

L(ψ) =
1

| D | ∑
τd∈D

drψ(τd)

dψ
− ∑

s
p(s | ψ)

drψ(s)
dψ

)

4.4.4 Maximum Causal Entropy Methods

The maximum entropy method described before provides an ap-
proximation of the probability distribution of trajectories when
the transition dynamics of the environment are stochastic in na-
ture. In any case, if the transition dynamics is irregular enough
so that it influences the decisionmaking of the expert, this ap-
proximation does not fit anymore. The approach assumes that
agents choose actions and not trajectories. In the case of stochas-
tic MDPs, the outcome of any action is not predetermined. For
an intuition pump, let us consider the following scenario. Sup-
pose there is one state that has a very high reward but extremely
low chances of getting reached. In the previous method, tra-
jectories containing this state would be highly preferred. In
the real world, most rational agents would not choose trajec-
tories leading to high reward but low probability of reaching.
The maximum entropy model takes into account the reward
exponentially and the transition probability only linearly. In ex-
periments as well, [3] MEIRL perform significantly worse when
there is high enough stochasticity in the transition dynamics.

To alleviate this issue, the same author proposed an extension
to the MEIRL framework by incorporating causal information
from the previous steps. This method, called the Maximum
Causal Entropy Inverse Reinforcement Learning (MCEIRL) [52]
maximizes the causal entropy.

For a state sequence s1:T and action sequence a1:T, causal
entropy is defined as

H(a1:T || s1:T) =
T

∑
t=1

H(at | s1:t, a1:t−1) (4.20)

which is the sum of action entropy at all times steps up to the
current one, given only the previous states and actions.

4.5 bayesian methods 41

With this function to maximize while matching the features
leads to the following distribution of actions which uses the
q-values in the exponent.

πθ(a | s) ∝ e[qθ(s,a)] (4.21)

and the exact probability of action after normalization be-
comes

πθ(a | s) = e[qθ(s,a)−v(s)] (4.22)

The probability of a trajectory finally becomes

Pr(τ | θ, T) = ∏
st,at,st+1∈τ

e[qθ(s,a)−v(s)] · T(st+1 | st, at) (4.23)

This probability expression can be used to maximize the likeli-
hood of expert trajectories as done in the previous section. Cru-
cially, the gradient does not depend on the transition dynamics
as the reward parameters θ do not influence the dynamics.

4.5 bayesian methods

Almost all classical IRL approaches assume the expert to be an
optimal rational decision-maker, an assumption that is rarely
the case in the real-world [30]. Apart from that, as the problem
is itself under-specified, they rely on heuristics (albeit principled,
for example, in case of MEIRL) to choose the best estimate of the
reward function. These heuristics induce a bias in the estimate
nonetheless.

4.5.1 Bayesian Inverse Reinforcement Learning

The Bayesian Inverse Reinforcement Learning (BIRL) approach
[37] aims to alleviate these two drawbacks by reframing the IRL
problem as a problem of Bayesian inference. This approach aims
to calculate the posterior over all possible reward functions with
the expert demonstrations as evidence. This also offers a full
detailed picture of the reward function as it allows us to infer
about the uncertainty about the reward function as well.

42 classical irl algorithms

Applying Bayes Theorem to model the posterior probability
from a prior Pr(R̂ over reward functions

Pr(R̂ | D) =
Pr(D | R̂)

Pr(D (4.24)

The likelihood Pr(D | R̂) is based on the model of Boltzman
Rationality [45]. We model an imperfect agent choosing actions

Pr(a | s, R̂) =
eα·Q̂∗(s,a)

Z
(4.25)

α here is the rationality hyperparameter that we can tune
with estimates of how perfect the expert is.

The complete likelihood of a data set D of trajectories with
state-action pairs then is

Pr(D | R̂) =
eα·(∑τ∈D ∑(s,a)∈τ Q̂∗(s,a))

Z
(4.26)

It is interesting to note that we need not choose a uniform
prior for the reward function - indeed, there is no strong rea-
son to suspect that the reward functions in real-life RL tasks
are independently identically distributed (i.i.d.). The authors
instead propose different kinds of priors for the reward function.
For example, a beta distribution would be suitable if we know
that most states have low or negligible rewards, and only a few
states have large enough rewards.

Computing the normalization term Pr(D) in the denomina-
tor is not scalable with just several states. The authors use
Markov Chain Monte Carlo (MCMC) method to approximate
the posterior distribution.

Maximum A Posteriori BIRL

An extension of the BIRL framework [12] showed that we could
formulate almost all previous IRL algorithms in the BIRL form
by carefully choosing the likelihood function, and doing the
inference via a maximum a posteriori (MAP) method, rather
than using the posterior mean.

This subsumes all previous methods in IRL to a broader
generality and ability to have a Bayesian inference position.

4.5 bayesian methods 43

Figure 4.1: A sample five-state MDP. Image courtesy of the MAP-BIRL
paper.

Figure 4.2: The corresponding recovered reward posterior to the five-
state MDP as obtained by a MAP-BIRL algorithm. Image
courtesy of the MAP-BIRL paper.

44 classical irl algorithms

Table 4.1: Various IRL algorithms as specific cases of the MAP-BIRL
framework.

Algorithm Likelihood Prior
Linear Programming IRL vE(R)− v∗(R) Uniform
Maximum Margin Planning (vE(R)− v∗(R))2 Gaussian
Maximum Entropy IRL logPmaxent(D | T, R) Uniform

5
M O D E R N I R L A L G O R I T H M S

In recent years (2010 - 2019), there have been some extraordinary
developments in the field of Inverse Reinforcement Learning
(IRL), mostly thanks to insights gained from other subfields
of machine learning. The astonishing success of Deep Learn-
ing [32] in supervised machine learning tasks around the year
2012 has contributed significantly towards the development of
modern IRL algorithms. Most of these algorithms benefit from
the universal capability of deep neural networks to estimate
arbitrary functions [23]. With the advantage of hindsight, we
can safely suggest that almost all papers in the field since then
use deep neural networks in some form or the other.

5.1 deep learning and IRL

The first paper to use deep neural networks to approximately de-
termine the reward function is Maximum Entropy Deep Inverse
Reinforcement Learning [51]. The authors used a simplified,
fully connected network on top of the framework of Maximum
Entropy IRL to estimate complex and nonlinear reward function.

As DNNs are conducive to gradient methods via backprop-
agation [22], the reward estimation is effectively similar to the
maximum entropy IRL method. The crucial difference is that
that there is no need to assume the linearity of the reward func-
tion in the features, as DNNs are generally able to estimate
highly nonlinear functions [47].

This approach begins with defining the reward function as
a deep neural network (DNN) over the features and unknown
weights. The number of hidden layers and the number of neu-
rons in each layer are hyperparameters that can be tuned.

The log-likelihood function, given some demonstrations D,
and model parameters θ

L(θ) = log P(D, θ | r) = log P(D|r) + log P(θ) (5.1)

45

46 modern irl algorithms

The first term (dependent on the demonstrations) can be
differentiated as

∂LD

∂θ
=

∂LD

∂r
∂r
∂θ

(5.2)

Now, from the maximum entropy framework, we already
know that

∂LD

∂r
= µD − E[µ] (5.3)

Then, we can construct the whole network loss and update
the reward function estimate using backpropagation.

Figure 5.1: The Deep MEIRL pipeline. Image obtained from the origi-
nal paper.

5.2 gans and irl

A Generative Adversarial Network (GAN) is an adversarial
(two subsections of the unit compete with each other) approach
towards solving various generative (in opposition with discrimi-
native) machine learning tasks. A GAN consists of two separate
artificial neural networks (discriminator and generator) that are
trained together. In the original formulation of the GAN, given
a true data distribution, the generator learns to generate real-
looking samples, as an adversary to the discriminator that tries
to discern whether a sample is true or generated. 55 Though the

primary success of
GAN have been in
image generation
(for example,
https://www.

thispersondoesnotexist.

com/, the frame-
work itself is
general and
domain agnostic.

Two almost similar approaches (cite GAIL and GAN-GCL)
have formulated IRL as a GAN-like problem.

5.3 adversarial methods 47

In the maximum entropy IRL framework, estimating the par-
tition function does not scale with the complexity of the envi-
ronment. Guided Cost Learning (GCL) [18] uses importance
sampling to approximate this partition function.

5.3 adversarial methods

5.3.1 Empowerment Based Adversarial Inverse Reinforcement Learn-
ing

As of April 2019, perhaps the state-of-the-art IRL method is the
EAIRL algorithm [36].

This method learns simultaneously nearly optimal rewards
and policy, in contrast to the previous Generative Adversarial
Imitation Learning (GAIL) method. Being an imitation learning
approach GAIL recovers policy only, not transferrable rewards.
In this approach, the authors make use of Empowerment - an
information-theoretic measure somewhat similar to the KL diver-
gence. Empowerment is a mutual information based potential
function, like value functions, which intuitively quantifies for a
state the extent to which an agent can influence its environment.
Empowerment acts as a regularizer in policy updates, apart
from resolving the reward function.

Empowerment is a maximal of mutual information between a
sequence of K actions a and the final state s� reached after the
execution of those actions, conditioned on current state s.

Φ(s) = max I(a, s�|s) = max Ep(s�|a,s)w(a|s)[log(
p(a, s�|s)

w(a|s)p(s�|s))]

The authors approximate Empowerment and finally optimize it
using the loss function

lI(s, a, s�) = |β log qφ(a|s�, s)− (log πθ(a|s) + Φϕ(s))|
The algorithm has four models that are trained simultane-

ously. This model is inherently dependent on the Generative
Adversarial Network (GAN) framework, as a derivative of GAIL.

1. inverse model (maxmium log-likelihood supervised learn-
ing problem) that, given a set of trajectories, minimizes the
mean-square error between its predicted action q(a|s�, s)
and the action a according to the generated trajectory.

lq(s, a, s�) = (qφ(.|s, s�)− a)2

48 modern irl algorithms

2. empowerment optimization as noted before

3. reward function first compute the Discriminator as

Dζ,ϕ(s, a, s�) =
exp[rζ(s, a) + γΦϕ�(s�)− Φϕ(s)]

exp[rζ(s, a) + γΦϕ�(s�)− Φϕ(s)] + πθ(a|s)

Finally train the parameters /zeta by binary logistic re-
gression to discriminate between expert and generated
trajectories via

min
G

max
D

Eτ[log Dζ,ϕ(s, a, s�)] + EτE [(1 − log Dζ,ϕ(s, a, s�))]

4. policy optimization

train the policy πθ(a|s) to mazimize the discriminative re-
ward r̂(s, a, s�) = log D(s, a, s�)− log(1 − D(s, a, s�)) and to
minimize the loss function lI(s, a, s�) =| β log qφ(a|s, s�)−
(log πθ(a|s) + Φϕ(s)) | which accounts for empowerment
regularization overall training obejective becomes

Eπ[log πθ(a|s)r̂(s, a, s�)] + λIEτ[lI(s, a, s�)]

Algorithm 4 EAIRL

1. Initialize parameters of policy πθ, and inverse model qψ

2. Initialize parameters of target φψ� and training φψ� empow-
erment, and reward rξ functions

3. Obtain expert demonstrations τE

4. for i in range(N)

a) Collect trajectories

b) Update all four models with respective gradients.

c) After n epoch sync with target.

5.3 adversarial methods 49

Ta
bl

e
5.

1:
C

om
pa

ri
si

on
of

va
ri

ou
s

IR
L

al
go

ri
th

m
s

in
te

rm
s

of
ke

y
pr

op
er

ti
es

M
et

ho
d

Ex
pe

rt
R

ew
ar

d
Fu

nc
ti

on
H

eu
ri

st
ic

s
So

lv
in

g
M

D
P

Tr
an

si
ti

on
D

yn
am

ic
s

Li
ne

ar
Pr

og
ra

m
m

in
g

O
pt

im
al

Li
ne

ar
D

is
ta

nc
e

IR
L

It
er

at
io

n
K

no
w

n
M

ax
im

um
M

ar
gi

n
O

pt
im

al
Li

ne
ar

Fe
at

ur
e

M
at

ch
in

g
IR

L
It

er
at

io
n

K
no

w
n

Ba
ye

si
an

So
ft

m
ax

Ta
bu

la
r

Po
st

er
io

r
M

ea
n

M
C

M
C

U
nk

no
w

n
M

A
P

Ba
ys

ei
an

Fl
ex

ib
le

Fl
ex

ib
le

Po
st

er
io

r
M

od
e

IR
L

It
er

at
io

n
Fl

ex
ib

le
M

ax
im

um
En

tr
op

y
So

ft
m

ax
Li

ne
ar

En
tr

op
y

IR
L

It
er

at
io

n
K

no
w

n
M

ax
im

um
C

au
sa

lE
nt

ro
py

So
ft

m
ax

Li
ne

ar
C

au
sa

lE
nt

ro
py

IR
L

It
er

at
io

n
K

no
w

n
G

ui
de

d
C

os
t

Le
ar

ni
ng

So
ft

m
ax

N
on

lin
ea

r
M

EI
R

L
+

G
A

N
s

O
nc

e
U

nk
no

w
n

Em
po

w
er

m
en

t
IR

L
So

ft
m

ax
N

on
lin

ea
r

M
C

EI
R

L
+

G
A

N
s

O
nc

e
U

nk
no

w
n

6
T O WA R D S N E W I R L A L G O R I T H M S

6.1 inverse reinforcement learning with ranked
trajectories

We have already discussed in 3.5.1 the underspecified nature of
the IRL problem. Though there are systematic ways to deal with
this, such as 4.4, all of those are heuristics and exploit regularity
in the common IRL tasks, and do not offer any domain-agnostic
theoretical guarantee.

How could we try to go about solving this issue? From a
mathematical standpoint, the classic formulation of the IRL
problem is bound to have this problem, pretty much by def-
inition itself. Can we reformulate the problem to reduce the
underdefinedness somehow? It seems that we must include
more information in the problem statement in order to have
more precise solutions.

The standard IRL formulation uses a set of expert demonstra-
tions to infer about the reward function. Even if, in reality, the
demonstrations are not optimal, almost all algorithms assume
that these are indeed near-optimal 7. 7 One interesting

exception is 4.5.1,
which uses a ratio-
nality parameter to
make room for sub-
optimal experts but
there is only one
class of trajectories
with same implied
rationality.

In any real-world scenario, we are likely to obtain expert
demonstrations that vary in quality - trajectories that range over
the various degree of capability. Even if we only have optimal
demonstrations, we can add noise to it to generate suboptimal
ones. Can we provide an IRL algorithm some idea about how
good or bad a trajectory is? One way to go about that would be
to rank the trajectories. An approximation to that would binning
the trajectories into several classes - like star ratings of one star
to five stars.

The core motivation for the approach is, ‘how can we extract
the maximum amount of information about the reward function if we
are given a ranked set of ’good’ and ’bad’ trajectories?’

6.1.1 Related Work

Using suboptimal demonstrations for IRL is a relatively recent
direction in the field. Previously there have been attempts at
using failed demonstrations in the LfD community. However, this

51

52 towards new irl algorithms

approach required explicit labelling of failed attempts and the
algorithm learns from two clusters of failed and successful at-
tempts [21]. Another method tries to identify anamolous demon-
strations from a small number of suboptimal demonstrations
[13].

Trajectory-Ranked Reward Extrapolation

Using suboptimal demonstrations and ranking simultaneously
to extrapolate to better-than-human performance has been first
shown in the T-REX algorithm. [9]. The goal of the algorithm
is to find a parametrized reward function r̂θ which explains the
ordering of the trajectory, and potentially extrapolates to near-
optimal ground truth reward function, even if the trajectories
are far from optimal. This algorithm compares two trajectories
along with there ranks to learn a reward function that explains
the ranking, considering a comparison between the total return
of two trajectories under various reward function estimates.
It reprensents the reward of a state as a neural network and
constructs a trainable loss function as follows.

1. approximate r̂θ by a neural network such that

∑s∈τi
r̂θ(s) < ∑s∈τj

r̂θ(s) whenever τi ≺ τj

2. use the generalized loss function

L(θ) = E
τi,τj∼D

[ξ(P(Ĵθ(τi) < Ĵθ(τj), τi ≺ τj))] (6.1)

where ξ is a binary classification loss function (the paper
uses cross-entropy) and

Ĵθ(τ) = ∑
s∈τ

γtr(s) (6.2)

3. represent the probability P as a softmax-normalized distri-
bution

P(Ĵθ(τi) < Ĵθ(τj)) =
e∑s∈τj

r̂θ(s)

e∑s∈τj
r̂θ(s) + e∑s∈τi

r̂θ(s)
(6.3)

6.1 inverse reinforcement learning with ranked trajectories 53

4. the loss function becomes

L(θ) = − ∑
τi≺τj

log
e∑s∈τj

r̂θ(s)

e∑s∈τj
r̂θ(s) + e∑s∈τi

r̂θ(s)
(6.4)

This loss function trains a classifier that can predict whether
one trajectory is preferable to another based on the predicted
returns of each trajectory.

Given the learned reward function r̂θ(s), T-REX then seeks to
optimize a policy with better-than-demonstrator performance
through reinforcement learning using the learned reward func-
tion, thus performing imitation learning as well.

T-REX differs from our approach in several aspects. Firstly,
T-REX uses comparison between two trajectories as ranks, rather
than a full ranking of all m trajectories into 1, . . . , m. It is essen-
tially training a classifier to distinguish between two trajectories
by proxying for the total return of the trajectories under some
reward function. Secondly, it uses a neural network to estimate
the reward function and tunes it to minimize the loss func-
tion, while our approach is more general where potentially any
representation of the reward function can be trained.

Inverse Reinforcement Learning with Multiple Ranked Experts

A more general approach than T-REX is the framework of Inverse
Reinforcement Learning with Multiple Ranked Experts [10] which
is also similar to our approach. It obtains demonstrations from
a set of ranked experts of several ranked experts of variable
optimality. Using ideas from ordinal regression, it strives to
obtain to maximize the margin between to trajectories of different
ranks.

Our approach is slightly different in the sense that we don’t es-
sentially maximize the margin between two trajectories. Rather,
we try to match the distribution of states in different qualities
of demonstrations. Our goal is similar to the idea of feature
matching described in section 4.2.

6.1.2 Definitions

We define a couple of new functions required for the algorithms.
Like the original formulation of the problem, we assume we

are given a set of m unranked trajectories D.

54 towards new irl algorithms

We use a metric d that calculates ‘distance’ between two tra-
jectories (with same starting state), defined as

d(τi, τj) =

0 τi = τj

max{len(τi), len(τj)}− 2 si
1 = sj

1, si
T = sj

T, si �= sjotherwise

max{len(τi), len(τj)}− 1 si
1 = sj

1, si �= sjotherwise

d(τi1, τj1) + d(τi2, τj2) + · · ·+ d(τiv, τjv) piecing τ1 and τ2 accordingly

(6

This metric calculates how different two trajectories are in
terms of the states belonging to them, even when they are
different in length, and even when they have different final state.
This metric lets us assign a low value when most of the states are
same and a very high value when most of states are different.

The choice of this metric is just a preliminary one. There
might be better options such as the existing and well-known
distance measure edit-distance [38].

Definition 1: Auxiliary Functions

ρH(τ) is a ranking function that assigns a rank between 1
and m to each trajectory. (this can be considered as a human
ranking good vs. bad trajectories.)

A simple scaling function lH(τ) = 1 − ρH(τ)−1
m .

G(τ) = ∑s∈τ r(s) is the total return of a trajectory. (Can
be modified to include discount factor.)

ρA(τ) is another function that assigns ranking when Re-
ward function is via ordering the trajectories by total return
G(τ).

Similarly another function lA(τ) = 1 − ρA(τ)−1
m .

Definition 2: Rank Weighted State Distribution (RWSD)

For a particular choice of dataset D and ranking function l,
we define the rank-weighted state distribution as

φD
l (s) =

1
m ∑

s∈τ

l(τ) ∀s ∈ S

6.1 inverse reinforcement learning with ranked trajectories 55

6.1.3 Algorithm 1: Rank Difference as Reward Function Proxy

This is a fairly simple algorithm where we are motivated by
the fact that if two very similar trajectories have a large rank
gap, the states that are different between those two must be
responsible for that

For all states s ∈ S ,

r(s) = ∑
τi,τj
s∈τi
s/∈τj

lH(τi)− lH(τj)

d(τi, τj)

This is essentially using the rank difference (scaled to com-
parable domains using the scaling function) as a proxy for the
reward function. For any state, we consider all trajectory pairs
(complexity of order O(m2) where one contains the state and
the other does not. We calculate the difference between their
ranks and divide by the distance between the trajectories. As a
result of this, if two trajectories differ hugely in rank and just
few state, then those states get reward proportional to their
rank difference, scaled by the amount of difference between the
trajectories.

6.1.4 Algorithm 2: Bayesian RWSD Matching

This algorithm is Bayesian in nature and can provide richer
information about the reward function. This also has the ma-
chinery to deal with the possibility of a sub-optimal human
ranker, using the concept of Boltzman rationality.

The essential idea is similar to that of feature matching as
described in section 4.2. We strive to train the agent in a manner
that it matches the RWSD between the original demonstrations
and the RWSD calculated using its reward estimate.

As the definition of φD
l depends on the choice of the ranking

function l, our goal is to learn a reward function that makes
φ similar for the human ranking lH (or the empirical one) and
lA the ranking calculated from the current reward function
estimate.

Likelihood

We model the expert’s (human) ranking capability as a Boltzman
Rationality [41] distribution with rationality parameter β.

56 towards new irl algorithms

We model the likelihood of a particular rank weighted state
distribution, given a reward function estimate R is

P(φ | R) ∝ e−
η
β (6.6)

where η = JS(φlH || φlA) is the Jensen-Shannon divergence
[33] between these two distributions.

Posterior

Apply Bayes Rule to get the Posterior

P(R | φ) =
1
Z

P(φ | R)P(R) (6.7)

It is to be noted that finding the normalization constant can
be challenging. However, as it depends on the reward function
distribution only, it is as challenging as the previous formulation
of Bayesian IRL which solves the RL problem in the inner loop
of each MCMC step in the IRL problem.

6.1.5 Experiments

Setup

We experimented on the first algorithm using the FrozenLake-v0
8 reinforcement learning environment from OpenAI Gym [8],8 The original doc-

umentation builds
a story around this
environment as
following. There
is a frisbee located
somewhere in
a frozen lake.
There is significant
amount of wind
and the surface is
slippery.

using 20000 trajectories generated by a value iteration RL algo-
rithm, ranked by trajectory length and total reward gained.

The FrozenLake environment is a basic toy-text reinforcement
learning setup. It comes in two variants of 4x4 and 8x8 grids of
16 and 64 states. We used the first variant for our experiments.

The agent controls the movement in the gridworld described
above. There are a few ‘holes’ that ends the episode and the rest
of the cells are walkable. The movement direction of the agent
is uncertain and only partially depends on the chosen direction.
The probability of going to a particular direction is determined
by the transition dynamics matrix. The agent receives a reward
only for reaching the goal state.

The 4x4 grid can be described like the following.

6.1 inverse reinforcement learning with ranked trajectories 57

S F F F
F H F H
F F F H
H F F G

(S: starting point, safe)
(F: frozen surface, safe)
(H: hole, fall to your doom)
(G: goal, where the frisbee is located)

Results

We ran the algorithm 40 times with 20000 trajectories every
run. In each run, we ranked the expert trajectories (obtained by
a value iteration RL algorithm) by total reward collected and
length of trajectory (thus incentivizing for learning to reach the
goal as soon as possible). We normalized the learned reward
function to [0, 1]. Below we report the mean reward function
and the standard deviation.

We can clearly assert that the very low standard deviation
indicates that the algorithm converges well.

If we compare the reward value for each state, it is evident
that the algorithm correctly identifies the ‘holes’ as of being zero
reward. The ‘frozen’ cells are of non-zero reward indicating that
a forward learner must walk through them. The first starting
state is assigned a reward of 1 since it belongs to every trajectory.

The first algorithm obtained the following reward estimate.

mean_reward =

[[1. , 0.02, 0.05, 0.04],

[0.75, 0. , 0.02, 0.],

[0.54, 0.31, 0.11, 0.],

[0. , 0.28, 0.24, 0.09]]

reward_std =

[[0, 5.87e-04, 1.28e-03, 1.46e-03],

[3.07e-03, 9.10e-05, 4.37e-04, 0],

[3.60e-03, 2.53e-03, 1.09e-03, 0],

[0, 2.74e-03, 2.51e-03, 8.53e-04]]

Though this reward function looks different from the original
one, it would logically induce the same behavior (policy) and
incur low inverse learning error.

58 towards new irl algorithms

Figure 6.1: Violinplot for the reward function obtained in the 40 runs
of the algorithm.

Figure 6.2: Boxlplot of only the low reward values of the frozen states
vs all the zero reward values of the hole cells. Frozen states
correspond to 0 and holes correspond to 1.

Figures 6.1 and 6.2 illustrates that though the reward values
of the frozen states are positive albeit highly distributed (which
does not matter due to the reward satisfiability condition - a
forward RL algorithm would make use of the this reward values
to find the shortest path to the goal, irrespective of how small an

6.2 conditional gans and ranked irl 59

individual reward value is, as long as it is more than zero), the
hole states are all assigned clearly distinguishable being zero
without any variance.

Obviously, this method can fail and not scale in more complex
environments as the size of the state-space grows and transition
dynamics affects the behavior heavily.

6.1.6 Comments

The scaling function, in contrast to the pairwise comparisons
such as T-REX, provides a ground for comparison of all the
trajectories in a normalized setting. We essentially consider all
the trajectory ranks, irrespective of the total number of trajec-
tories, into the segment [0, 1]. This scaling function might fail
significantly if we do not have a set of demonstrations that are
uniformly drawn from a continuously varying expert optimality.

6.2 conditional gans and ranked irl

As discussed in the previous chapter, the recent advances in
Generative Adversarial Network (GAN)s have opened a new
avenue for using generative algorithms in problems of under-
specification leading to an adversarial formulation that alleviates
many of the traditional challenges of the field, of course also
thanks to modern GPU compute capabilities.

There is a natural way to augment ranked or ‘binned’ trajecto-
ries into the GAN framework as detailed below. Currently, this
is an untested new idea only, and not a full-fledged algorithm,
either theoretically or experimentally.

Conditional GANs are an extension to the GAN framework
where the data is labeled into different classes. The discriminator
tries to identify both the realness and label of a sample, and the
generator tries to generate data in specific classes.

We propose to setup a conditional GAN with an architecture
that can parameterize the trajectories with the reward function
as a deep neural network. The generators goal is to generate tra-
jectories that look very much like the expert trajectories, labeled
with the class or rank of the expert. The discriminator’s job is to
discern whether a labeled sample is true or generated. We can
construct a loss based on the different ranks or classes. Essen-
tially we will be able to backpropagate to the reward parameters

60 towards new irl algorithms

itself and thus the reward function. This method will again
allow extrapolation of sub-optimal demonstrations beyond the
expert’s capability.

To implement an algorithm like this, one has to go through
the following steps. Being a nascent idea only, there are crucial
steps that need to be figured out, as mentioned below.

1. Input ground truth data of m classes of expert demonstra-
tion trajectories. Expert optimality for each class is con-
sistent but there is a order among the classes themselves
from worst to best.

Current conditional GANs treat data classes without any
ordinal relationships, and we need to figure out how to
integrate this information meaningfully.

2. The generator is tasked to generate labeled trajectories
which resemble the ground truth data. Specifically it out-
puts a trajectory and the class it belongs to, as realistically
as possible. So, it not only needs to emulate real-looking
trajectories, it needs to do that in-class for all classes.

The generator is a neural network that has its parameters
which is also the parameter for the reward function. We
need to find the best way to parametrize the reward function
with the same weights for the neural network. One way to
do that might be to construct a reward function from the
neural network weights themselves, and then use that re-
ward function to train a forward RL algorithm to generate
trajectories for each optimality class. While this is a simple
approach, this does not avoid the problem of solving the
forward RL problem in the inner loop, and there might be
a better clever solution to this.

3. The discriminator tries to discern between real and gener-
ated data just like the original GAN problem and returns
a discriminator loss.

4. The gradient of the loss for both the networks are differen-
tiable just like the original setup. Update rules and other
hyperparameters also are alike.

6.2 conditional gans and ranked irl 61

Figure 6.3: A comparison of the architectures of GANs and Condi-
tional GANs. Image courtesy: Lilian Weng.

7
C O N C L U S I O N S

In this chapter, the materials of this thesis are reviewed and put
into the context of previous academic work in the field. This is
followed by a discussion of potential future extensions to what
has been achieved.

7.1 discussions

The primary objective of this thesis to evaluate and extend the
field of Inverse Reinforcement Learning (IRL) has been dealt
with in detail in the last six chapters. Here we discuss a birds-
eye-view of the breakthroughs of the field as a whole and the
yet-to-solve shortcomings.

7.1.1 Breakthroughs

Through the use of principles-based techniques, such as the
optimization of maximum entropy, maximum margin, and the
regression in the Gaussian process, solution methods have made
significant progress in addressing the primary challenge of
being a problem of poorly restricted learning. The machine
learning problem due to its large hypothesis space has been
significantly mitigated by choosing a reward function linear
in features. Although this imposed structure limits the class
of hypotheses, it often finely expresses the reward function in
many real-world domains. Importantly, it allowed the use of
feature expectations as sufficient statistics to represent the value
of the trajectories or the value of an expert’s policy. This has
contributed significantly to the success of the first methods, such
as the SVM-IRL. This is also observed in approaches based on
maximum probability, such as MEIRL. Maxent distributes the
probability mass based on entropy but under the restriction of
the matching of feature expectations.

63

64 conclusions

7.1.2 Shortcomings

During my yearlong journey of studying the domain of IRL,
several distinct but essential shortcomings of the field have
surfaced. These are not shortcomings of the algorithm or theory
of the field, but rather shortcomings of how the field is practiced.
I want to expound upon a few of these operational challenges
in the next couple of paragraphs.

Despite being a field that has been around for about twenty
years, there is no standard benchmark set of problems for IRL.
There is no standard framework for implementing IRL algo-
rithms or an environment. For the forward problem of Rein-
forcement Learning (RL), there exists many frameworks [20,
11, 50, 40, 15] and environments [8] making it one of the most
happening sub-field of machine learning. 1010 One partial

solution is the
Python package
irl-benchmark

co-developed by
the current author
of this thesis. For
more informa-
tion, see https:

//github.com/

JohannesHeidecke/

irl-benchmark.

Also, so far, very few efforts have been made to analyze the
time-complexity or other standard machine learning efficiency
comparisons in this domain. While very incremental progress
in any of these in the case of deep Reinforcement Learning
(RL) makes regular headlines, the scene for IRL research is
parsimonious.

Finally, although the vision of the co-founder of the field,
Stuart Russell is to apply IRL to reformulate the whole domain
of machine learning to a framing that is conducive to solving the
AI Alignment problems 11, this effort is limited to a small circle11 more precisely

the problem of
value learning but
it is not unimagin-
able that it can be
extended to other
problems such as
wireheading [34]

of researchers. Hopefully, Russell’s very recently published book
on the subject — Human Compatible - Artificial Intelligence and the
Problem of Control [39] can focus more light on this and bring a
diverse and extensive effort towards solving this problem.

7.2 future work

Firstly, we intend to finish the nascent ideas introduced in chap-
ter 6 and investigate more about the properties and implications
of such a formulation.

Secondly, and more importantly, we need a new language
to talk about problems where underspecification is the crux.
Currently, we have no way to classify and quantify underspecifi-
cation more than the very basics. It seems apt that an expressive
language can help researchers formulate the problems and reach
the epitome much more effectively. Methods of applied category
theory, such as generative effects [19] may be potent here, but

7.2 future work 65

along with that, better experimental abstractions of functional
programming might also come handy.

Thirdly, can we find a bound or condition on number or type
of the expert trajectories relating to ≤ � inverse learning error?

Fourthly, it would be useful and interesting to create a unified
framework for all types of IRL algorithms incorporating ranked
trajectories.

Lastly, can we create a human-in-the-loop algorithm which
queries an expert to rank a few trajectories at each step? This
will readily reduce the number of trajectories an expert has to
actually perform and make the whole procedure more efficient.
If we can come up with some ‘confidence’ parameter for the
reward of each state (or the reward parameters), the algorithm
can query the human to rank trajectories which have a disparity
between the states it is least confident about. Using that infor-
mation, the algorithm can use methods of divergence with the
samples to efficiently use the ranking information.

A P P E N D I X

67

7.2 future work 69

This is a sample implementation of the 4.4 algorithm for reference purpose. This algorithm
is part of the Python IRL benchmarking suite irl-benchmark co-implemented by the current
author. More details can be found at https://github.com/JohannesHeidecke/irl-benchmark.

a python meirl implementaion

"""Module for maximum entropy inverse reinforcement learning."""

from typing import Callable, Dict, List

import gym

import numpy as np

from irl_benchmark.config import IRL_CONFIG_DOMAINS, IRL_ALG_REQUIREMENTS

from irl_benchmark.irl.algorithms.base_algorithm import BaseIRLAlgorithm

from irl_benchmark.irl.feature.feature_wrapper import FeatureWrapper

from irl_benchmark.irl.reward.reward_wrapper import RewardWrapper

from irl_benchmark.metrics.base_metric import BaseMetric

from irl_benchmark.rl.algorithms.base_algorithm import BaseRLAlgorithm

from irl_benchmark.rl.model.model_wrapper import BaseWorldModelWrapper

from irl_benchmark.utils.wrapper import unwrap_env

class MaxEntIRL(BaseIRLAlgorithm):

"""Maximum Entropy IRL (Ziebart et al., 2008).

Not to be confused with Maximum Entropy Deep IRL (Wulfmeier et al., 2016)

or Maximum Causal Entropy IRL (Ziebart et al., 2010).

"""

def __init__(self, env: gym.Env, expert_trajs: List[Dict[str, list]],

rl_alg_factory: Callable[[gym.Env], BaseRLAlgorithm],

metrics: List[BaseMetric], config: dict):

"""See :class:`irl_benchmark.irl.algorithms.base_algorithm.BaseIRLAlgorithm`."""

super(MaxEntIRL, self).__init__(env, expert_trajs, rl_alg_factory,

metrics, config)

get transition matrix (with absorbing state)

self.transition_matrix = unwrap_env(

env, BaseWorldModelWrapper).get_transition_array()

self.n_states, self.n_actions, _ = self.transition_matrix.shape

get map of features for all states:

feature_wrapper = unwrap_env(env, FeatureWrapper)

self.feat_map = feature_wrapper.feature_array()

def expected_svf(self, policy: np.ndarray) -> np.ndarray:

"""Calculate the expected state visitation frequency for the trajectories

under the given policy. Returns vector of state visitation frequencies.

70 conclusions

Uses self.transition_matrix.

Parameters

policy: np.ndarray

The policy for which to calculate the expected SVF.

Returns

np.ndarray

Expected state visitation frequencies as a numpy array of shape (n_states,).

"""

get the length of longest trajectory:

longest_traj_len = 1 # init

for traj in self.expert_trajs:

longest_traj_len = max(longest_traj_len, len(traj['states']))

svf[state, time] is the frequency of visiting a state at some point of time

svf = np.zeros((self.n_states, longest_traj_len))

for traj in self.expert_trajs:

svf[traj['states'][0], 0] += 1

svf[:, 0] = svf[:, 0] / len(self.expert_trajs)

for time in range(1, longest_traj_len):

for state in range(self.n_states):

total = 0

for previous_state in range(self.n_states):

for action in range(self.n_actions):

total += svf[

previous_state, time - 1] * self.transition_matrix[

previous_state, action, state] * policy[

previous_state, action]

svf[state, time] = total

sum over all time steps and return SVF for each state:

return np.sum(svf, axis=1)

def train(self, no_irl_iterations: int,

no_rl_episodes_per_irl_iteration: int,

no_irl_episodes_per_irl_iteration: int):

"""Train algorithm. See abstract base class for parameter types."""

calculate feature expectations

expert_feature_count = self.feature_count(self.expert_trajs, gamma=1.0)

start with an agent

agent = self.rl_alg_factory(self.env)

reward_wrapper = unwrap_env(self.env, RewardWrapper)

theta = reward_wrapper.reward_function.parameters

7.2 future work 71

irl_iteration_counter = 0

while irl_iteration_counter < no_irl_iterations:

irl_iteration_counter += 1

if self.config['verbose']:

print('IRL ITERATION ' + str(irl_iteration_counter))

compute policy

agent.train(no_rl_episodes_per_irl_iteration)

policy = agent.policy_array()

compute state visitation frequencies, discard absorbing state

svf = self.expected_svf(policy)[:-1]

compute gradients

grad = (expert_feature_count - self.feat_map.T.dot(svf))

update params

theta += self.config['lr'] * grad

reward_wrapper.update_reward_parameters(theta)

evaluation_input = {

'irl_agent': agent,

'irl_reward': reward_wrapper.reward_function

}

self.evaluate_metrics(evaluation_input)

return theta

IRL_CONFIG_DOMAINS[MaxEntIRL] = {

'verbose': {

'type': bool,

'default': True

},

'lr': {

'type': float,

'default': 0.02,

'min': 0.000001,

'max': 50

}

}

IRL_ALG_REQUIREMENTS[MaxEntIRL] = {

'requires_features': True,

'requires_transitions': True,

}

A C R O N Y M S

BIRL Bayesian Inverse Reinforcement Learning. 41, 42

DL Deep Learning. 18, 45

GAIL Generative Adversarial Imitation Learning. 47
GAN Generative Adversarial Network. 18, 46, 47, 59, 60
GCL Guided Cost Learning. 47

i.i.d. independently identically distributed. 19, 42
IRL Inverse Reinforcement Learning. 6, 9, 17, 18, 27–29, 33, 41,

42, 45–47, 51, 56, 63–65, 69

LfD Learning from Demonstrations. 51

MAP maximum a posteriori. 42
MCEIRL Maximum Causal Entropy Inverse Reinforcement Learn-

ing. 40
MCMC Markov Chain Monte Carlo. 42
MDP Markov Decision Process. 21, 24, 40
MEIRL Maximum Entropy Inverse Reinforcement Learning. 40,

41, 63

RL Reinforcement Learning. 18–20, 26, 37, 42, 56, 64

73

B I B L I O G R A P H Y

[1] Pieter Abbeel and Andrew Y. Ng. “Apprenticeship learn-
ing via inverse reinforcement learning.” In: Twenty-first in-
ternational conference on Machine learning - ICML ’04 (2004).
doi: 10.1145/1015330.1015430. url: http://dx.doi.
org/10.1145/1015330.1015430.

[2] Pieter Abbeel and Andrew Y. Ng. “Inverse Reinforcement
Learning.” In: Encyclopedia of Machine Learning and Data
Mining (2016), pp. 1–5. doi: 10.1007/978-1-4899-7502-
7_142-1. url: http://dx.doi.org/10.1007/978-1-4899-
7502-7_142-1.

[3] Adria Garriga Alonso, Max Marian Daniel, Johannes Hei-
decke, Anton Osika, Sayan Sarkar. IRL Benchmark - A
Python Package for Benchmarking Inverse Reinforcement Learn-
ing Algorithms. url: https://github.com/JohannesHeidecke/
irl-benchmark.

[4] Kareem Amin and Satinder Singh. Towards Resolving Uniden-
tifiability in Inverse Reinforcement Learning. 2016. arXiv: 1601.
06569v1 [cs.AI].

[5] Brenna D Argall et al. “A survey of robot learning from
demonstration.” In: Robotics and autonomous systems 57.5
(2009), pp. 469–483.

[6] Stuart Armstrong and Sören Mindermann. Occam’s razor
is insufficient to infer the preferences of irrational agents. 2017.
arXiv: 1712.05812v6 [cs.AI].

[7] Richard Bellman et al. “The theory of dynamic program-
ming.” In: Bulletin of the American Mathematical Society 60.6
(1954), pp. 503–515.

[8] Greg Brockman et al. OpenAI Gym. 2016. eprint: arXiv:
1606.01540.

[9] Daniel S Brown et al. “Extrapolating Beyond Suboptimal
Demonstrations via Inverse Reinforcement Learning from
Observations.” In: arXiv preprint arXiv:1904.06387 (2019).

[10] Pablo Samuel Castro, Shijian Li, and Daqing Zhang. In-
verse Reinforcement Learning with Multiple Ranked Experts.
2019. arXiv: 1907.13411 [cs.LG].

75

76 bibliography

[11] Pablo Samuel Castro et al. “Dopamine: A Research Frame-
work for Deep Reinforcement Learning.” In: (2018). url:
http://arxiv.org/abs/1812.06110.

[12] Jaedeug Choi and Kee-Eung Kim. “Map inference for
bayesian inverse reinforcement learning.” In: Advances in
Neural Information Processing Systems. 2011, pp. 1989–1997.

[13] Sungjoon Choi, Kyungjae Lee, and Songhwai Oh. “Robust
learning from demonstrations with mixed qualities using
leveraged gaussian processes.” In: IEEE Transactions on
Robotics 35.3 (2019), pp. 564–576.

[14] Adam Coates, Pieter Abbeel, and Andrew Y Ng. “Appren-
ticeship learning for helicopter control.” In: Communica-
tions of the ACM 52.7 (2009), pp. 97–105.

[15] Yan Duan et al. “Benchmarking deep reinforcement learn-
ing for continuous control.” In: International Conference on
Machine Learning. 2016, pp. 1329–1338.

[16] Tom Everitt and Marcus Hutter. Avoiding Wireheading with
Value Reinforcement Learning. 2016. arXiv: 1605.03143v1
[cs.AI].

[17] Tom Everitt, Gary Lea, and Marcus Hutter. AGI Safety
Literature Review. 2018. arXiv: 1805.01109v2 [cs.AI].

[18] Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided
Cost Learning: Deep Inverse Optimal Control via Policy Opti-
mization. 2016. arXiv: 1603.00448v3 [cs.LG].

[19] Brendan Fong and David I Spivak. An Invitation to Applied
Category Theory: Seven Sketches in Compositionality. Cam-
bridge University Press, 2019.

[20] Vincent François-Lavet et al. DeeR. https://deer.readthedocs.
io/. 2016.

[21] Daniel H Grollman and Aude Billard. “Donut as I do:
Learning from failed demonstrations.” In: 2011 IEEE Inter-
national Conference on Robotics and Automation. IEEE. 2011,
pp. 3804–3809.

[22] Robert Hecht-Nielsen. “Theory of the backpropagation
neural network.” In: Neural networks for perception. Elsevier,
1992, pp. 65–93.

[23] Kurt Hornik, Maxwell Stinchcombe, and Halbert White.
“Multilayer feedforward networks are universal approxi-
mators.” In: Neural networks 2.5 (1989), pp. 359–366.

bibliography 77

[24] Jiayi Huang, Mostofa Patwary, and Gregory Diamos. Col-
oring Big Graphs with AlphaGoZero. 2019. arXiv: 1902.10162v2
[cs.AI].

[25] Evan Hubinger et al. “Risks from Learned Optimiza-
tion in Advanced Machine Learning Systems.” In: CoRR
abs/1906.01820 (2019). arXiv: 1906.01820. url: http://
arxiv.org/abs/1906.01820.

[26] Marcus Hutter. A Theory of Universal Artificial Intelligence
based on Algorithmic Complexity. 2000. arXiv: cs/0004001v1
[cs.AI].

[27] Alex Irpan. Deep Reinforcement Learning Doesn’t Work Yet.
https://www.alexirpan.com/2018/02/14/rl-hard.html.
2018.

[28] Joel Janai et al. “Computer vision for autonomous vehicles:
Problems, datasets and state-of-the-art.” In: arXiv preprint
arXiv:1704.05519 (2017).

[29] Julian Jara-Ettinger. “Theory of mind as inverse reinforce-
ment learning.” In: Current Opinion in Behavioral Sciences
29 (2019), pp. 105–110.

[30] Daniel Kahneman. Thinking, fast and slow. Macmillan, 2011.

[31] Karmeshu and N. R. Pal. “Uncertainty, Entropy and Max-
imum Entropy Principle — An Overview.” In: Studies in
Fuzziness and Soft Computing (2003), pp. 1–53. issn: 1860-
0808. doi: 10.1007/978-3-540-36212-8_1. url: http:
//dx.doi.org/10.1007/978-3-540-36212-8_1.

[32] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep
learning.” In: nature 521.7553 (2015), p. 436.

[33] Jianhua Lin. “Divergence measures based on the Shannon
entropy.” In: IEEE Transactions on Information theory 37.1
(1991), pp. 145–151.

[34] Arushi Majha, Sayan Sarkar, and Davide Zagami. “Cat-
egorizing Wireheading in Partially Embedded Agents.”
In: Artificial Intelligence Safety 2019, AISafety@IJCAI 2019,
Macao, China, August 11-12, 2019. 2019. url: http://ceur-
ws.org/Vol-2419/paper%5C_31.pdf.

[35] Volodymyr Mnih et al. “Human-level control through
deep reinforcement learning.” In: Nature 518.7540 (2015),
p. 529.

78 bibliography

[36] Ahmed H. Qureshi, Byron Boots, and Michael C. Yip.
Adversarial Imitation via Variational Inverse Reinforcement
Learning. 2018. arXiv: 1809.06404v3 [cs.LG].

[37] Deepak Ramachandran and Eyal Amir. “Bayesian Inverse
Reinforcement Learning.” In: IJCAI. Vol. 7. 2007, pp. 2586–
2591.

[38] Eric Sven Ristad and Peter N Yianilos. “Learning string-
edit distance.” In: IEEE Transactions on Pattern Analysis and
Machine Intelligence 20.5 (1998), pp. 522–532.

[39] Stuart J. Russell. Human compatible: artificial intelligence and
the problem of control. Viking, 2019.

[40] Daniel Salvadori. huskarl. https://github.com/danaugrs/
huskarl. 2019.

[41] Davide Secchi. “Bounded Rationality.” In: Extendable Ra-
tionality (Sept. 2010), pp. 19–25. doi: 10.1007/978- 1-
4419-7542-3_3. url: http://dx.doi.org/10.1007/978-
1-4419-7542-3_3.

[42] Andrew Senior, John Jumper, and Demis Hassabis. “Al-
phaFold: Using AI for scientific discovery.” In: DeepMind
(2018). url: https://deepmind.%20com/blog/alphafold.

[43] Helene Seyr and Michael Muskulus. “Use of Markov Deci-
sion Processes in the Evaluation of Corrective Maintenance
Scheduling Policies for Offshore Wind Farms.” In: Energies
12.15 (2019), p. 2993.

[44] David Silver et al. Mastering Chess and Shogi by Self-Play
with a General Reinforcement Learning Algorithm. 2017. arXiv:
1712.01815v1 [cs.AI].

[45] Herbert A Simon. “Theories of bounded rationality.” In:
Decision and organization 1.1 (1972), pp. 161–176.

[46] Peter Sunehag and Marcus Hutter. Principles of Solomonoff
Induction and AIXI. 2011. arXiv: 1111.6117v1 [cs.AI].

[47] Richard S Sutton and Andrew G Barto. Reinforcement learn-
ing: An introduction. MIT press, 2018.

[48] Johan AK Suykens and Joos Vandewalle. “Least squares
support vector machine classifiers.” In: Neural processing
letters 9.3 (1999), pp. 293–300.

bibliography 79

[49] Amos Tversky and Daniel Kahneman. “Judgment under
uncertainty: Heuristics and biases.” In: Judgment under
uncertainty (). Ed. by Daniel Kahneman, Paul Slovic, and
AmosEditors Tversky, pp. 3–20. doi: 10.1017/cbo9780511809477.
002. url: http://dx.doi.org/10.1017/cbo9780511809477.
002.

[50] Laura Graesser Wah Loon Keng. SLM Lab. https : / /

github.com/kengz/SLM-Lab. 2017.

[51] Markus Wulfmeier, Peter Ondruska, and Ingmar Posner.
“Maximum entropy deep inverse reinforcement learning.”
In: arXiv preprint arXiv:1507.04888 (2015).

[52] Brian D Ziebart, J Andrew Bagnell, and Anind K Dey.
“Modeling interaction via the principle of maximum causal
entropy.” In: (2010).

[53] Brian D Ziebart et al. “Maximum entropy inverse rein-
forcement learning.” In: Aaai. Vol. 8. Chicago, IL, USA.
2008, pp. 1433–1438.

[54] Brian D Ziebart et al. “Navigate like a cabbie: Probabilis-
tic reasoning from observed context-aware behavior.” In:
Proceedings of the 10th international conference on Ubiquitous
computing. ACM. 2008, pp. 322–331.

[55] Brian D Ziebart et al. “Planning-based prediction for
pedestrians.” In: 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE. 2009, pp. 3931–3936.

colophon

This document was typeset on a modified version of the ty-
pographical look-and-feel classicthesis developed by André
Miede and Ivo Pletikosić. The style was inspired by Robert
Bringhurst’s seminal book on typography “The Elements of Ty-
pographic Style”. The typography on Aaron Turon’s PhD thesis
has also influenced the design choices significantly.

It had been written on both Emacs Org-mode and LATEX and
was converted using pandoc.

Final Version as of June 30, 2020 ().

