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Abstract

This thesis examines the symmetries in gravity and supergravity in four dimensions

in the light-cone gauge. The initial focus of the thesis is revisiting pure gravity in four

dimensions in the light-cone gauge. We describe how the light-cone Hamiltonian for

pure gravity can be expressed as a positive definite quadratic form. We also discuss

second-order corrections to residual reparametrizations, which leave the light-cone

Hamiltonian invariant. We comment on possible links this quadratic form structure

might have to hidden symmetries in gravity. This is in light of some recent studies

which suggest improved ultraviolet behaviour in pure gravity.

The second part of the thesis examines the symmetries in maximal supergravity

theories, which is our key focus. The maximal supergravity theory in four dimensions,

N = 8 supergravity, has excellent ultraviolet properties, not all of which can be

traced back to the known symmetries in the theory. We first study the symmetries

of N = 8 supergravity in the light-cone superspace. We then argue that the theory

possesses a larger symmetry than previously believed. The proof involves dimensional

reduction of the theory to three dimensions, a field redefinition in d = 3 and oxidation

back to d = 4. Finally, we extend our analysis to d = 11 to argue that there is a

hidden exceptional symmetry in eleven-dimensional supergravity. We explain how

the exceptional symmetries in these theories are as fundamental as supersymmetry

itself.
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Chapter 1

Introduction

1.1 Quantum field theory and the Standard Model

The Standard Model of Particle Physics which describes the electromagnetic, weak

and strong interactions between elementary particles, is the most successful quantum

field theory known to date. Experiments performed in various particle accelerators

and the discovery of the Higgs boson at the LHC validate the predictions made by this

model to a high degree of precision. Nevertheless, the Standard Model in its present

form cannot be the complete theory of all the fundamental interactions in Nature,

since it does not include gravity. Instead, the Standard Model should be viewed as a

low energy effective theory of an underlying bigger theory that also accounts for the

quantum behaviour of gravity at the Planck scale.

At the classical level, Einstein’s theory of general relativity provides an excellent

description of gravity as a force originating from the geometry of the spacetime. The

recent experimental detection of gravitational waves by LIGO, almost a century after

their prediction by general relativity, further consolidates our faith in this classical

picture of gravity. However, any attempts to reconcile general relativity with the

laws of quantum mechanics within the framework of quantum field theory are met

with intractable ultraviolet divergences. These divergences stem from positive length

dimension of the coupling constant in the theory of gravity. The coupling constant,

which is related to the Newton’s gravitational constant GN , has a length dimension

of one. Therefore in a perturbative expansion, there is an infinite series of interaction

terms where the dimensions of the fields can be compensated by an appropriate power

of the coupling constant, rendering the theory non-renormalizable. In [1], explicit loop
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calculations were performed to show that the theory diverges at two-loop order and

that there exists a non-vanishing counterterm in the gravity Lagrangian at this loop

order.

Over the past few decades, there have been many developments in search of a quantum

theory of gravity. The most promising approaches include string theory, higher spin

theories, higher derivative gravity and supergravity. In this context symmetries play

a central role, since divergence cancellations in quantum field theories can most often

be traced back to some symmetry in the theory. For example, loop diagrams in

QED, which appear to be quadratically divergent from naive power counting, turn

out to diverge only logarithmically due to the gauge symmetry of the photons. Also,

from Noether’s theorem, we know that symmetries lead to conservation laws, which

in turn put constraints on the physical observables of the theory. In quantum field

theories, symmetries can thus constrain and/or rule out possible counterterms in the

Lagrangian. Therefore in order to better understand the quantum nature of gravity

and fix the divergences, a precise knowledge of all the symmetries of the theory is

indispensable.

In this regard supersymmetry, which links a boson to a fermion, offers exciting

prospects for a theory of gravity with better ultraviolet properties, as it brings about

systematic divergence cancellations in quantum field theories.

1.2 Supersymmetry and ultraviolet divergences

The idea of supersymmetry has its origin in elementary particle Physics as one of the

possible resolutions to the “hierarchy problem” in the Standard Model, pertaining

to loop corrections to the mass of the Higgs boson. The mass of the scalar Higgs

boson, unlike that of the gauge bosons and fermions in the Standard Model, is not

protected from quantum corrections as it does not possess any gauge or chiral sym-

metry. Hence the Higgs boson will receive enormous loop contributions to its mass

from each particle that couples to it. This is in contradiction with the observed mass

of Higgs boson, mH ∼ 125 GeV. The two types of corrections that contribute to the

mass are [2]

• Contribution from a fermion of mass mf coupled to the Higgs boson with a

coupling λf :

∆m2
H ∼ −

λ2
f

8π2
Λ2
UV , (1.1)
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• Contribution from a boson (say, a scalar) of mass mb coupled to the Higgs boson

with a coupling λb:

∆m2
H ∼ +

λb
16π2

Λ2
UV . (1.2)

Supersymmetry proposes a resolution to this problem in a special way so that these

corrections cancel due to the relative minus sign between a fermionic and a bosonic

loop. For each particle in the Standard Model, supersymmetry predicts a superpart-

ner, which differs from it by spin one-half. As a result of this, the contribution to

mH from any particle cancels with that coming from its superpartner.

Supersymmetry transformations converts a fermion into a boson and vice-versa

Q |Fermion〉 = |Boson〉 ; Q |Boson〉 = |Fermion〉 .

Since it changes the spin of the particle by one-half, supersymmetry is fermionic in

nature, as opposed to the bosonic symmetries (Poincaré symmetry, gauge symmetry

etc.) usually encountered in Physics.

The first example of a supersymmetric interacting field theory was the Wess-Zumino

model in four dimensions involving a complex scalar and a fermion [3], where theN =

1 supersymmetry in the theory renders it renormalizable. Similarly, supersymmetric

gauge theories are found to be remarkably well-behaved in the ultraviolet regime1.

In fact, the maximally supersymmetric gauge theory in four dimensions, N = 4

superYang-Mills theory is an ultraviolet finite theory to all orders in perturbation

theory [4, 5]. This motivates us to study supersymmetric theories of gravity, that

have softer divergences in the ultraviolet than pure gravity.

The theory that is of most interest to us is the maximally supersymmetric theory of

gravity in four dimensions, N = 8 supergravity. As the name suggests, this theory

contains the maximum amount of supersymmetry allowed in four dimensions. Ow-

ing to its high degree of symmetry, this theory has the best ultraviolet behaviour of

any field theoretic extension of Einstein’s gravity in d = 4. Using some advanced

techniques developed in the recent years for computing higher loop amplitudes, the

four-graviton scattering amplitude for this theory was shown to be finite up to four

1It is important to mention that there has been no experimental evidence for supersymmetry so

far. Nevertheless, supersymmetry as a theoretical construct offers useful insights into the study of

ultraviolet divergences in quantum field theories
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loops [6]. Some recent studies based on on-shell superspace power-counting even

predict that the onset of divergences in this theory can be delayed to seven-loop or-

der [7]. Much of this improved behaviour can be traced back to the symmetries that

this theory possesses, namely Poincaré symmetry, maximal supersymmetry, SU(8)

R-symmetry and an exceptional symmetry, E7(7). Although at this point we cannot

definitively answer the question whether the N = 8 theory is finite or not, coun-

terterm arguments based on E7(7) and maximal supersymmetry suggest that the

perturbation series must be more finite than expected [8]. However, these higher

loop calculations show that there are unexpected cancellations between the divergent

pieces [6], which are not fully explained by all the known symmetries of the theory.

It was also observed that up to four-loop order the degree of divergence in the N = 8

theory is no worse than that of N = 4 superYang-Mills theory, which is a confor-

mally invariant and an ultraviolet finite theory. These observations suggest that the

remarkable ultraviolet properties of this theory might be a manifestation of some

hidden symmetry. It is crucial to understand what this symmetry could be and how

this symmetry appears in the theory.

At this point, we pose two important questions which constitute the primary theme

of this thesis.

• Some recent developments indicate that pure gravity is better behaved2 than

expected in the ultraviolet regime [6]. Also supersymmetry alone cannot ex-

plain all the nice properties of the N = 8 theory. This hints at an intriguing

possibility that these properties may be attributed to some hidden symmetry

or simple structures in pure gravity itself [10]. Given these facts, we ask :

Are there hidden symmetries in the theory of gravity in four dimensions, which

carries over to N = 8 supergravity and explains its ultraviolet properties?

• Since the known symmetries in the N = 8 theory can only partially account

for all the improved ultraviolet properties, we raise the following question :

Is there a larger hidden symmetry in N = 8 supergravity, which could be

responsible for the improved ultraviolet behaviour?

To address the first question, we look for simple structures in the Hamiltonian for

2For instance, gravity amplitudes fall off as 1
z2 , as opposed to a 1

z fall-off for gauge theory

amplitudes in on-shell recursion relations as complexified momentum p(z) goes to infinity [9].
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pure gravity, similar to the ones found in Yang-Mills theory. This idea is motivated

by the perturbative links between gravity and Yang-Mills amplitudes, namely the

KLT relations [11] and the color-kinematic duality [12] which roughly state that

(Gravity) = (Yang-Mills) × (Yang-Mills) . (1.3)

In order to answer the second question, we turn our attention to the exceptional

symmetry already present in N = 8 supergravity. We start with this E7(7) symmetry

in four dimensions and examine if this symmetry can be enhanced to a larger symme-

try. To motivate this idea, we consider the more general case of maximal supergravity

theories in different spacetime dimensions, where such exceptional symmetries occur

in abundance.

1.3 Maximal supergravity and exceptional sym-

metries

The largest spacetime dimensions allowed for supergravity involving fields of spin two

or lower, is eleven [13]. Maximal supergravity theories in all dimensions, d < 11 are

descendants of the eleven-dimensional N = 1 supergravity theory. Since there is only

one theory in eleven dimensions, maximal supergravity in any particular dimension is

unique. This eleven-dimensional theory first formulated in [14] is believed to be the

effective description of the M-theory in the low energy limit [15]. The large Poincaré

group in eleven dimensions on reduction to lower dimensions gives rise to interesting

internal symmetries, called R-symmetry in the dimensionally reduced supergravity

theories. In addition to this, the Lagrangian for the scalar fields in the theories

exhibits a non-linear sigma-model symmetry. Taking into account the sigma-model

symmetry of the scalars, the internal R-symmetry groups can be enhanced to Lie

algebras of the exceptional type [16].

N = 8 supergravity in four dimensions is one such theory in a series of maximal

supergravity theories obtained by dimensional reduction from the eleven-dimensional

parent. In any given spacetime dimension d, the maximal supergravity theory pos-

sesses an E11−d(11−d) exceptional symmetry3. Some recent studies suggest that on

reduction to two or lower dimensions, these symmetries can be further extended to

3Here the numeral in the brackets refers to the number of non-compact generators minus the

number of compact generators of the exceptional Lie group, which also happens to be 11− d.
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infinite-dimensional exceptional groups, E9 , E10 and E11, which may shed light on

the very origins of space [17, 18].

(N = 1, d = 11) supergravityy
(N = 8, d = 5) supergravity → E6(6)

(N = 8, d = 4) supergravity → E7(7)

(N = 16, d = 3) supergravity → E8(8)

↓

(N = 32, d = 1) supergravity → E10/E11 (?)

A striking feature of these dimensionally reduced supersymmetric theories is that

they retain a lot of information about the higher dimensional parent theories. We

notice that the exceptional symmetries become larger as we go down in dimensions

and ask the following question : Are these enhanced symmetries indicative of a larger

symmetry in the parent theory itself?

This is the central idea of this thesis : to realize a larger symmetry, that originally

manifests itself in a lower-dimensional theory, in the higher-dimensional parent theory

as well. We start with a theory in d-dimensions and reduce it to a lower dimensional

theory, where there is a larger symmetry present ( as shown in the flowchart above).

The next step is to carefully lift this lower dimensional theory back to d-dimensions

such that the symmetry is not affected.

Our plan of action is depicted schematically in the diagram below.

Higher dimensional theory

Lower dimensional theory

with larger symmetry

Dimensional

reduction

Enhanced

symmetry
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We first implement this idea to enhance the E7(7) symmetry in four dimensions to an

E8(8) symmetry, which originally appears in the three-dimensional theory. We then

extend our method to look for similar symmetry enhancement in dimensions other

than four.

1.4 Outline of the thesis

Here, we present an overview of the results discussed in the thesis. A suitable choice

of the light-cone gauge brings out many nice features of a theory, which may be

difficult to appreciate in the covariant formalism. While working in the light-cone

gauge, we can describe the theory using the physical fields only. Thus, there is no

need to introduce ghost or auxiliary fields. Moreover, many scattering amplitude

structures appear in the light-cone field theories at the level of the Lagrangian, for

example the KLT relations and MHV amplitude structures [19, 20]. In the light-cone

field theories, the symmetries are non-linearly realized on the physical fields, which

makes this formulation ideal to look for new structures or symmetries, as we will

demonstrate with several examples.

In chapter 2, we review the basics of light-cone formulation of Yang-Mills theory

and gravity. We discuss the light-cone representation of the Poincaré algebra in four

dimensions. We also briefly mention how the non-linear realization of the Poincaré

symmetry offers a unique framework for deriving interacting theories in the light-cone

gauge.

In chapter 3, we discuss some interesting aspects of pure gravity in d = 4 when

studied in the light-cone gauge. We describe how the light-cone Hamiltonian for

pure gravity, in four dimensions, can be expressed as a positive definite quadratic

form to second order in the coupling constant in analogy to pure Yang-Mills theory

in four dimensions. We also present the corrections to residual reparametrization

transformations to second order in the coupling constant.

In chapter 4, we first introduce the light-cone superspace formalism, which make

the supersymmetry of the theory manifest . This superspace formalism adapted to

N = 4 superYang-Mills theory was used to prove the all-order finiteness of this

theory [4, 5]. Next, we formulate the N = 8 supergravity theory in d = 4 in the

light-cone superspace and study its symmetries.

In chapter 5, we argue that N = 8 supergravity shows signs of an E8(8) symmetry
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enhanced from the original E7(7) symmetry. The proof involves a series of three steps,

including dimensional reduction to d=3, a field redefinition in d=3 and oxidation back

to d=4 preserving the E8(8) symmetry. We comment on some possible implications

this enhanced symmetry might have for the ultraviolet behaviour of theN = 8 theory.

In the next chapter, we generalize this idea for symmetry enhancement to uncover an

E7(7) symmetry in eleven-dimensional supergravity. We show that we must choose

between maximal supersymmetry and E7(7) symmetry to “oxidize” the (N = 8, d = 4)

supergravity to d = 11. Thus, there exist two equivalent formulations of the d = 11

theory with one of the two symmetries manifest and these must be related by a

field redefinition. This analysis can offer insights into the origin of the exceptional

symmetries in maximal supergravity.

We summarize our results in the last chapter. We conclude with some remarks about

our findings and frame some questions that need to be addressed in future.
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Chapter 2

Field theories in the light-cone

gauge

We present a short review of Yang-Mills theory and gravity in four dimensions in the

light-cone gauge. There are two different approaches to constructing light-cone field

theories : gauge-fixing the covariant Lagrangian to the light-cone gauge and deriving

interacting field theories from symmetry principles. Both the approaches greatly

rely on the fact that the theory can be described using only the physical degrees of

freedom. In this chapter, we mainly focus on the first approach for both gravity and

Yang-Mills theory. We close the chapter with a brief note on the second approach to

deriving Lagrangians, the details of which are presented in appendix A.

2.1 Poincaré algebra in the light-cone gauge

Dirac proposed in his famous paper [21] that for a relativistically invariant theory, any

direction within the light-cone can be chosen as the “time” or evolution parameter.

In particular, one can choose one of the light-cone directions to be the time, which

came to be known as the “light-cone frame” or “infinite momentum frame”.

With the metric signature (−,+,+,+), the light-cone coordinates are defined as

x± =
1√
2

(x0±x3 ) ; x =
1√
2

(x1 + i x2 ) ; x̄ =
1√
2

(x1 − i x2 ) , (2.1)
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and introduce the following light-cone derivatives

∂± =
1√
2

(−∂0± ∂3 ) ; ∂̄ =
1√
2

( ∂1 − i ∂2 ) ; ∂ =
1√
2

( ∂1 + i ∂2 ) , (2.2)

with

∂−x+ = ∂+x− = −1 ; ∂x̄ = ∂̄x = 1 . (2.3)

The coordinate x+ is taken to be time and the corresponding derivative ∂+ = −∂−

becomes the time derivative. The light-cone metric thus takes a completely off-

diagonal form

ηµν =


0 −1 0 0

−1 0 0 0

0 0 0 1

0 0 1 0

 . (2.4)

Any scalar product AµB
µ in the light-cone coordinates reads AB̄ + ĀB − A+B− −

A−B+.

We now consider the Poincaré algebra in covariant notation

1

i
[Jµν , P ρ] = ηµρP ν − ηνρP µ ,

1

i
[Jµν , Jρσ] = ηµρJνσ − ηνρJµσ − ηνσJµσ + ηνσJµρ .

The momenta P µ given as

P µ = −i∂µ (2.5)

satisfy the massless condition P 2 = 0. In the light-cone language, we can use this

condition to solve for the momentum conjugate to time, P− in the following way

P 2 = PµP
µ = (P+P− − PP̄ ) = 0

⇒ P− =
PP̄

P+
. (2.6)
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This expression does not involve any square roots, unlike in the covariant formalism

where we find

P 0 = ±
√

(P 1)2 + (P 2)2 + (P 3)2 . (2.7)

Note that for the purpose of this thesis we will consider massless fields only.

The Lorentz generators Jµν are decomposed into an orbital part Lµν

Lµν = −i(xµ∂ν − xν∂µ) (2.8)

and a spin part Sµν , which specifies the correct representation of the Poincaré algebra

for a particle of a given spin λ. In case of massless fields, this part of the generator

is given in terms of the helicity of the field.

The Poincaré generators in the light-cone coordinates are the momenta [22]

P− = − i ∂∂̄
∂+

= − P+ ; P+ = − i ∂+ = − P−

P = − i ∂ ; P̄ = −i ∂̄ . (2.9)

For the Lorentz generators, we first define

J+ =
J+1 + i J+2

√
2

; J− =
J−1 + i J−2

√
2

; J = J12 .

The explicit form of the Lorentz generators are given by

J = i (x∂̄ − x̄∂ − λ) ,

J+ = i (x ∂+ − x+∂) ,

J+− = i (x−∂+ − x+∂∂̄

∂+
) ,

J− = i (x
∂∂̄

∂+
− x−∂ − λ ∂

∂+
) ,

J̄+ = (J+)∗ , J̄− = (J−)∗ . (2.10)

Here λ denotes the helicity of the field the generators act on.
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We choose to work on the surface of constant time, x+ = 0 which simplifies our

calculations. The Poincaré generators that do not involve time derivatives, ∂− are

called the kinematical generators

P− , P , P̄ , J , J+ , J̄+ and J+− (2.11)

and those that depend on time derivatives are the dynamical generators

P− ≡ H , J− , J̄− . (2.12)

These generators pick up corrections order by order, in the coupling constant when

we include interactions in the theory. The non-linear dependence of these dynamical

generators on the fields may seem to be an unnecessary complication in light-cone

field theories. On the contrary, this non-linear representation of the Poincaré algebra

turns out to be a boon. It leads the way to a very powerful framework for deriving

interacting theories in the light-cone gauge just from the symmetries of the theory,

as discussed in section 2.4.

Following is the list of the non-vanishing commutators of the Poincaré algebra in the

light-cone notation [22]

[H, J+−] = −iH , [H, J+] = −iP , [H, J̄+] = −iP̄ ,

[P+, J+−] = iP+ , [P+, J−] = −iP , [P+, J̄−] = −iP̄ ,

[P, J̄−] = −iH , [P, J̄+] = −iP+ , [P, J ] = P ,

[P̄ , J−] = −iH , [P̄ , J+] = −iP+ , [P̄ , J ] = −P̄ ,

[J−, J+−] = −iJ− , [J−, J̄+] = iJ+− + J , [J−, J ] = J− ,

[J̄−, J+−] = −iJ̄− , [J̄−, J+] = iJ+− − J , [J̄−, J ] = −J̄− ,

[J+−, J+] = −iJ+ , [J+−, J̄+] = −iJ̄+ ,

[J+, J ] = J+ , [J̄+, J ] = −J̄+ . (2.13)
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1
∂+

operator :

The 1
∂+

= − 1
∂−

is an artifact of the light-cone frame. We can see from (2.6) that such

an operator arises naturally in this choice of coordinates. This operator is formally

defined in terms of the Heaviside step function ε(x− − x′−). Consider two functions

g(x) and f(x) such that

∂−g(x) = f(x) .

The 1
∂−

allows us to solve for g(x) in terms of f(x) up to an arbitrary function h(x),

which is independent of x−

g(x) =
1

∂−
f(x) + h(x) =

∫ ∞
−∞

ε(x− − x′−)f(x′−)dx′− + h(x) .

The function h(x) can be removed using suitable boundary conditions. Thus the 1
∂−

is interpreted as an integral operator, not a differential operator. We can use partial

integrations with ∂− without having to worry about boundary terms. While working

in the momentum space, we make use of the well-defined pole prescription for 1
p−

following [5].

2.2 Yang-Mills theory in the light-cone gauge

In this section, we discuss non-abelian gauge theories in the light-cone gauge. Yang-

Mills theory is at the core of the Standard model, in which case the relevant gauge

group is U(1)× SU(2)× SU(3). The U(1) corresponds to the electromagnetic force,

SU(2) to the weak interactions and the SU(3) is the gauge group for strong interac-

tions. We start with the Lagrangian for pure Yang-Mills theory in four dimensions.

S = −1

4

∫
d4x F a

µν F
µνa . (2.14)

The anti-symmetric field strength is defined as

F a
µν = ∂µA

a
ν − ∂νA

a
µ + g fabc AbµA

c
ν , (2.15)

the indices a, b, c, . . . run from 1 to N2−1 for the corresponding gauge group SU(N),

since the gauge fields transform under the adjoint representation.
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The Euler-Lagrange equations of motion for the Yang-Mills action is

∂µF
µνa + g fabcAbµ F

µνc = 0 . (2.16)

The action is invariant under the gauge transformation

Aa → A′aµ = Aaµ + ∂µΛa − i g fabcAbµ Λc , (2.17)

which allows us to choose one gauge parameter Λa. We choose the light-cone gauge

by setting

A+a = −A−a = 0 . (2.18)

As a result of this gauge choice, the equations of motion splits into two kinds: con-

straint relations which do not contain time derivatives and dynamical equations of

motion which contain time derivatives. The ν = + equation in (2.16) becomes such

a constraint relation, which can be used to eliminate the Aa+ component from the

theory in favour of the two transverse components Ai, (i = 1, 2)

Aa+ =
∂i
∂−

Aai + g fabc
1

∂−
2 (Abi ∂−A

c
i ) . (2.19)

Thus we can express the Yang-Mills Lagrangian solely in terms of the two remaining

degrees of freedom, A1 and A2. We further combine these two components in a

helicity basis

Aa =
1√
2

(A1
a + iA2

a) ;

Āa =
1√
2

(A1
a − iA2

a) . (2.20)

Under the little group SO(2), these combinations Aa and Āa have helicity +1 and

−1 respectively.
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In terms of these helicity states, the Yang-Mills Lagrangian takes the form

L = Āa�Aa − 2 g fabc
(
∂

∂−
Āa ∂−A

b Āc +
∂̄

∂−
Aa ∂− Ā

bAc
)

− 2 g fabc fade
1

∂−
(∂−A

bĀc)
1

∂−
(∂−Ā

dAe) . (2.21)

The same Lagrangian can alternatively be derived starting from the closure of the

Poincaré algebra in four dimensions, as we will discuss in section 2.4.

2.3 Gravitation in the light-cone gauge

In this section, we discuss the light-cone formulation of gravity in four dimensions.

We present a detailed account of how we obtain the light-cone Lagrangian for pure

gravity by gauge-fixing the Einstein-Hilbert action.

On a Minkowski background with vanishing cosmological constant Λ, the Einstein-

Hilbert action reads

SEH =

∫
d4x L =

1

2κ2

∫
d4x
√
−g R , (2.22)

where g is the determinant of the metric. R is the curvature scalar and the coupling

constant is derived from the Newton’s gravitational constant, κ =
√

8πG .

Einstein’s field equations derived from the action principle reads

Rµν −
1

2
gµνR = 0 . (2.23)

The Einstein-Hilbert action enjoys a symmetry under general coordinate transforma-

tions

xµ → x′µ = xµ + αµ(x) , (2.24)

which allows us to make four gauge choices corresponding to the 4-vector, αµ.

We use the light-cone gauge, where out of the four gauge choices we impose the

following three [23, 24]

g−− = g−i = 0 , i = 1, 2 . (2.25)
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These choices are made keeping in mind that η−− = η−i = 0. We parametrize the

metric as

g+− = − eφ ,
gi j = eψ γij .

(2.26)

φ, ψ are real parameters and γij is a 2 × 2 real, symmetric matrix with unit de-

terminant. Just like in the case of Yang-Mills theory, Einstein’s field equations

(2.23) also split into constraint relations and dynamical equations of motion. The

µ=ν=− equation becomes a constraint equation which reads

2 ∂−φ ∂−ψ − 2 ∂2
−ψ − (∂−ψ)2 +

1

2
∂−γ

ij ∂−γij = 0 . (2.27)

At this point we make our fourth gauge choice

φ =
ψ

2
, (2.28)

which allows us to solve for ψ in (2.27)

ψ =
1

4

1

∂2
−

(∂−γ
ij ∂−γij) . (2.29)

The other constraint relations help us eliminate some of the remaining metric com-

ponents. For example, µ = i, ν =− in (2.23) gives

g−i = e−φ
1

∂−

[
γij eφ− 2ψ 1

∂−

{
eψ
( 1

2
∂− γ

kl ∂j γkl − ∂− ∂j φ

− ∂− ∂j ψ + ∂jφ ∂− ψ
)

+ ∂l

(
eψ γkl ∂− γjk

)}]
. (2.30)

Thus we have expressed all the non-zero components of the metric in terms of γij,

which has two degrees of freedom.

All the metric components are now substituted into the Einstein-Hilbert action to

obtain [24]

S =
1

2κ2

∫
d4x eψ

(
2 ∂+∂−φ + ∂+∂−ψ −

1

2
∂+γ

ij∂−γij

)
−eφγij

(
∂i∂jφ+

1

2
∂iφ∂jφ− ∂iφ∂jψ −

1

4
∂iγ

kl∂jγkl +
1

2
∂iγ

kl∂kγjl

)
−1

2
eφ−2ψγij

1

∂−
Ri

1

∂−
Rj , (2.31)
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where

Ri ≡ eψ
(

1

2
∂−γ

jk∂iγjk − ∂−∂iφ− ∂−∂iψ + ∂iφ∂−ψ

)
+ ∂k(e

ψ γjk∂−γij) .

This is the closed form expression for the action for gravity in the light-cone gauge,

in terms of the two physical degrees of freedom in the theory. In the next chapter,

we present a perturbative expansion of the above closed form expression and discuss

some interesting properties of the resulting Hamiltonian.

2.4 Deriving interacting theories from symmetries

It is evident from our earlier analysis of the Yang-Mills theory and gravity that

Poincaré invariance is not manifest in the light-cone gauge. Thus in light-cone field

theories one needs to explicitly check invariance under the Poincaré group. However,

we can use this fact in our favour and devise a method to derive interaction vertices

in light-cone field theories that respect Poincaré symmetry. The key point is that

the Hamiltonian itself appears as an element of the Poincaré algebra. Constraints

obtained from the closure of the Poincaré algebra can thus be used to determine the

Hamiltonian. This offers a unique framework for deriving interacting theories from a

first-principles approach.

This approach was first present in [22], where cubic interaction vertices for arbitrary

spin fields were derived to first order in coupling constant. The action, to cubic order

was found to be

S =

∫
d4x

(
1

2
φ̄�φ+ α

λ∑
n=0

(−1)n
(
λ

n

)
φ̄(∂+)

λ

[
∂̄(λ−n)

∂+(λ−n)
φ
∂̄n

∂+n
φ

]
+ c.c.

)
, (2.32)

for even integer spin λ and

S =

∫
d4x

(
1

2
φ̄a�φa + αfabc

λ∑
n=0

(−1)n
(
λ

n

)
φ̄a(∂+)

λ

[
∂̄(λ−n)

∂+(λ−n)
φb

∂̄n

∂+n
φc
]

+ c.c.

)
,

(2.33)

for odd integer spin λ.

Here φ and φ̄ represent the positive and negative helicity components of a field of

arbitrary spin λ. At cubic order,we notice that the algebra enforces the introduction

of an antisymmetric constant fabc in case of odd spin fields. This approach was then

26



applied to derive cubic interactions in supersymmetric field theories in the light-cone

gauge in [25]. In appendix A, we demonstrate how this framework when extended to

the quartic order for the specific case of spin-1 fields naturally leads to the emergence

of a gauge group in the theory [26], which serves as a proof of concept for this

powerful approach. We describe an entire method, where we start with an ansatz

for the interaction vertices and fix the ansatz using just the closure of the Poincaré

algebra. For the case of spin-2 fields, this framework yields the light-cone Lagrangian

for pure gravity which matches exactly with the one obtained previously (3.9) by

gauge-fixing the Einstein-Hilbert action.

This approach when adapted to curved spacetimes, could potentially lead to a La-

grangian formulation for arbitrary higher spin fields, where we expect to uncover the

higher spin symmetry as a consequence of closure of the isometry algebra. A similar

endeavour in six spacetime dimensions might give us a better handle on the elusive

N = (2, 0) superYang-Mills theory [27]. Although very exciting, these topics are

outside the scope of this thesis.
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Chapter 3

Perturbative gravity, in d = 4, in

the light-cone gauge

The material presented here is primarily based on work done by the author in [28].

In this chapter, we present a perturbative expansion of gravity in the light-cone gauge.

We then discuss some properties of the light-cone Hamiltonian for gravity to second

order in perturbation theory. We conclude the chapter with some brief remarks about

our results.

3.1 Perturbative expansion

We start with the light-cone action for gravity obtained in the previous chapter.

S =
1

2κ2

∫
d4x eψ

(
2 ∂+∂−φ + ∂+∂−ψ −

1

2
∂+γ

ij∂−γij

)
−eφγij

(
∂i∂jφ+

1

2
∂iφ∂jφ− ∂iφ∂jψ −

1

4
∂iγ

kl∂jγkl +
1

2
∂iγ

kl∂kγjl

)
−1

2
eφ−2ψγij

1

∂−
Ri

1

∂−
Rj , (3.1)

where

Ri ≡ eψ
(

1

2
∂−γ

jk∂iγjk − ∂−∂iφ− ∂−∂iψ + ∂iφ∂−ψ

)
+ ∂k(e

ψ γjk∂−γij) .

We now consider a perturbative expansion of the above closed form result. The

matrix γij is parametrized as [24]

γij = (eH)ij , (3.2)
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where H is a traceless matrix since det ( γij) = 1. We make the choice

H =

(
h11 h12

h12 −h11

)
. (3.3)

We define the following linear combinations of h11 and h12

h =
(h11 + i h12)√

2
, h̄ =

(h11 − i h12)√
2

, (3.4)

which correspond to the positive and negative helicity states of a graviton respectively.

From (2.29), ψ now takes the form

ψ = − 1

∂2
−

(∂−h ∂−h̄) + O(h4) . (3.5)

The fields are rescaled by

h → h

κ
. (3.6)

The Lagrangian can be now perturbatively expanded around the flat spacetime as

L ∼ L(0) + L(κ) + L(κ2) + · · · (3.7)

Unlike in case of Yang-Mills theory where the perturbation series terminates at sec-

ond order in the coupling constant, the gravity Lagrangian is an infinite series of

interaction terms where the increasing power of the dimensionful coupling constant

κ appropriately compensates for the dimensions of the fields at each order.

The Lagrangian (density) at lowest order reads

L(0) =
1

2
h̄�h , (3.8)

where the d’Alembertian � = 2 ( ∂ ∂̄ − ∂+ ∂− ). At order κ, the Lagrangian reads

L(κ) = 2κ h̄ ∂2
−

[
−h ∂̄

2

∂2
−
h +

∂̄

∂−
h
∂̄

∂−
h

]
+ complex conjugate , (3.9)

where the d’Alembertian � = 2 ( ∂ ∂̄ − ∂+ ∂− ). The Lagrangian at order κ2 was

first presented in [24] while the order κ3 results were derived in [29].
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3.2 The Hamiltonian - first order in the coupling

constant

In this section, we discuss some properties of light-cone gravity to first order in the

coupling constant. We shall discuss similar results for light-cone gravity at order κ2

in the next section.

3.2.1 Quadratic form

With x+ as the time coordinate, the conjugate momenta are given as

π =
δL

δ(∂+h)
; φ̄ =

δL
δ(∂+h̄)

. (3.10)

The corresponding Hamiltonian (density) is defined as

H = π ∂+h + φ̄ ∂+h̄ − L . (3.11)

When expanded to order κ, the Hamiltonian

H(κ) = ∂h̄ ∂̄h + 2 κ ∂̄h
1

∂2
−

(
∂̄

∂−
h ∂3
−h̄ − h ∂2

−∂̄h̄

)
− 2κ ∂h̄

(
∂

∂−
h̄ ∂3
−h − h̄ ∂2

−∂h

)
,

(3.12)

after some simplifications can be be written in a compact form [30]

H =

∫
d3x Dh̄ D̄h (3.13)

with

Dh̄ = ∂h̄ + 2κ
1

∂2
−

( ∂̄
∂−
h ∂3
−h̄ − h ∂2

−∂̄h̄
)
, (3.14)

where D̄h is just the complex conjugate of the expression above.

3.2.2 Residual reparametrization invariance

After fixing the gauge to the light-cone gauge and eliminating all the unphysical de-

grees of freedom, there remains an infinitesimal reparametrization invariance in the
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theory. In [30], the framework discussed in Appendix A, was extended to derive all

possible counterterms that can be added to the light-cone Hamiltonian. Such an

analysis requires precise knowledge of all the symmetries of the theory. The residual

reparametrization symmetry was found to be crucial in classifying all the countert-

erms and choosing the correct ones that satisfy this invariance. Such a reparametriza-

tion invariance when correctly taken into account, reproduces the well-known two-

loop counterterm present in the theory of gravity [1].

We now study the invariance of the light-cone Hamiltonian under these reparametriza-

tions1,

x→ x + ξ(x̄) , x̄→ x̄ + ξ̄(x) . (3.15)

From the transformation of the metric under the shift in coordinates given above, we

can find how h and h̄ transform to lowest order in κ [30]

δh =
1

2κ
∂ξ + ξ∂̄h + ξ̄∂h , (3.16)

δh̄ =
1

2κ
∂̄ξ̄ + ξ∂̄h̄ + ξ̄∂h̄ , (3.17)

where the parameter ξ satisfies the following constraints

∂−ξ = 0 , ∂̄ ξ = 0 . (3.18)

The variation of the Hamiltonian to the zeroth order in the coupling constant is given

by2

δH(κ0) = δκ
0

(∂h̄ ∂̄h)+ 2κ δκ
−1

{
h̄ ∂−

2

(
h
∂̄2

∂−
2h −

∂̄

∂−
h
∂̄

∂−
h

)
+ c.c.

}
. (3.19)

The variation of the first term in (3.19) gives

− ∂ξ h̄ ∂̄2h − ∂̄ξ̄ h ∂2h̄ , (3.20)

whereas the contribution from the second term in (3.19) and its complex conjugate

is exactly equal and opposite to the terms above, proving that

δH(κ0) = 0 . (3.21)

1Here we consider only a special class of reparametrizations for simplicity. However, our analysis

holds for any generic form of residual reparametrizations as well.
2We use the notation δκ

0

to denote variation of the Hamiltonian at order κ0.
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Thus the residual reparametrizations in (3.15) leave the Hamiltonian invariant to

order κ0. We also note that the derivative, Dh introduced in (3.14) transforms

“covariantly”

δ(D̄h) = (ξ∂̄ + ξ̄∂ ) D̄ h , (3.22)

which is in agreement with a similar analysis for Yang-Mills theories done in [?].

3.3 The Hamiltonian - second order in the cou-

pling constant

We now move on to the next order in perturbation theory and examine if the theory

still exhibits some nice features similar to the ones described in the last section.

At the next order in the coupling constant, we find that time derivatives appear

in the Lagrangian, which can be removed by suitable field redefinitions as shown

in [24, 31]. The Hamiltonian corresponding to the field-redefined Lagrangian to order

κ2 reads [24]

H = ∂h̄ ∂̄h − 2κ h̄ ∂2
−

{
−h ∂̄

2

∂2
−
h +

∂̄

∂−
h
∂̄

∂−
h

}
− 2κh ∂2

−

{
− h̄ ∂

2

∂2
−
h̄ +

∂

∂−
h̄
∂

∂−
h̄

}

− 4κ2

{
− 2

1

∂2
−

(
∂̄

∂−
h ∂3
−h̄ − h ∂2

−∂̄h̄

)
1

∂2
−

(
∂

∂−
h̄ ∂3
−h − h̄ ∂2

−∂h

)

+
1

∂2
−

(∂̄h ∂2
−h̄ − ∂−h ∂−∂̄h̄)

1

∂2
−

(∂h̄ ∂2
−h − ∂−h̄ ∂−∂h) − 3

1

∂−
(∂̄h ∂−h̄)

1

∂−
(∂−h ∂h̄)

+
1

∂−
(∂̄h ∂−h̄ − ∂−h ∂̄h̄)

1

∂−
(∂h̄ ∂−h − ∂−h̄ ∂h) + 3

1

∂−
(∂−h ∂−h̄)

1

∂−
(∂̄h ∂h̄)

+

[
1

∂2
−

(∂−h ∂−h̄) − h h̄

]
(∂̄h ∂h̄ + ∂h ∂̄ h̄ − ∂−h

∂ ∂̄

∂−
h̄ − ∂−h̄

∂ ∂̄

∂−
h)

}
. (3.23)

We shall now investigate the properties of this Hamiltonian at order κ2. We discuss

how the quadratic form structure and the residual reparametrization invariance work

at this order.
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3.3.1 Quadratic form

In this section, we demonstrate how the quadratic form structure of the Hamiltonian

at order κ (3.13) also extends to the next order. The Hamiltonian in (3.23), to order

κ2 may indeed be expressed as a quadratic form

H =

∫
d3x Dh̄ D̄h , (3.24)

where Dh̄ now contains terms of order κ2, which are explicitly computed below.

Computation of Dh̄ at order κ2

We need to compute contributions to Dh̄ from each line of the Hamiltonian. Dh̄ is

already known to order κ. The product Dh̄ (κ) D̄h (κ) accounts for one-half of the

second line in (3.23). This computation then shows that (the remaining) half of the

second line and all the other terms, of order κ2, in (3.23) may be put together in the

form

Dh̄ (κ2) ∂̄h + ∂h̄ D̄h (κ2) . (3.25)

After some partial integrations and simple 1
∂−

manipulations, we can categorize all

the order κ2 terms in the Hamiltonian in the following way.

In expression (3.23) :

from line 2

Contribution to Dh̄

+2κ2 1

∂−
{∂2
−h̄

1

∂3
−

(∂3
−h

∂

∂−
h̄− ∂2

−∂hh̄ ) } + 2κ2 1

∂−
{ ∂
∂4
−

(h̄∂2
−h)∂3

−h̄}

Extra terms ( that cannot be written in the form X∂̄h or Y ∂h̄)

−2κ2 h∂2
−h̄

∂̄

∂4
−

(∂2
−∂hh̄) + c.c.
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from line 3

Contribution to Dh̄

−2κ2 ∂2
−h̄

1

∂4
−

(∂2
−h∂h̄− 2∂−∂h∂−h̄ )

Extra terms

−4κ2 1

∂2
−

(∂−h∂−∂̄h̄)
1

∂2
−

(∂−∂h∂−h̄)

from line 4

Contribution to Dh̄

+2κ2 ∂−h̄
1

∂2
−

(∂−h∂h̄− 2∂h∂−h̄)

Extra terms

−4κ2 1

∂−
(∂−h ∂̄h̄)

1

∂−
(∂h∂−h̄)

from line 5

Contribution to Dh̄

+6κ2 1

∂2
−

(∂−h∂−h̄) ∂h̄ − 6κ2 ∂−h̄
1

∂2
−

(∂−h∂h̄)

from line 6

Contribution to Dh̄

−2κ2 1

∂2
−

(∂−h∂−h̄)∂h̄ + 4κ2 hh̄ ∂h̄ + 4κ2 ∂

∂−
{∂−h̄ (

1

∂2
−

(∂−h∂−h̄)− hh̄) }

Extra terms

−4κ2 1

∂2
−

(∂−h∂−h̄)∂h∂̄h̄

The “Extra terms” from each line when combined together yield the desired struc-

tures, X∂̄h or Y ∂h̄, which simply add factors of X or Y to Dh̄ or D̄h.
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Thus, we find that at order κ2, Dh̄ reads

+2κ2 1

∂−
{∂2
−h̄

1

∂3
−

(∂3
−h

∂

∂−
h̄− ∂2

−∂hh̄ ) }+ 2κ2 1

∂−
{ ∂
∂4
−

(h̄∂2
−h)∂3

−h̄}

−2κ2 ∂2
−h̄

1

∂4
−

(∂2
−h∂h̄− 2∂−∂h∂−h̄ ) + 2κ2 ∂−h̄

1

∂2
−

(∂−h∂h̄− 2∂h∂−h̄)

+6κ2 1

∂2
−

(∂−h∂−h̄) ∂h̄− 6κ2 ∂−h̄
1

∂2
−

(∂−h∂h̄)− 2κ2 1

∂2
−

(∂−h∂−h̄)∂h̄

+4κ2 hh̄ ∂h̄+ 4κ2 ∂

∂−
{∂−h̄ (

1

∂2
−

(∂−h∂−h̄)− hh̄) }+ 2κ2 ∂2
−h̄

1

∂4
−

(∂2
−∂hh̄)

−2κ2 ∂−{∂−h̄
1

∂2
−

(h̄∂h)} − 2κ2 ∂{h̄ 1

∂2
−

(∂−h̄∂−h)} − 2κ2 ∂2
−h̄

1

∂3
−

(∂−∂hh̄)

+2κ2∂−∂{h̄
1

∂3
−

(h∂2
−h̄)}+ 2κ2∂{∂−h̄

1

∂3
−

(h̄∂2
−h)}+ 2κ2∂2

−{h̄
1

∂3
−

(∂−h̄∂h)} .

(3.26)

Thus we show that the light-cone Hamiltonian for pure gravity in d = 4 can be

expressed as a quadratic form up to order κ2. This is an interesting results because

in four dimensions very few special theories show such quadratic form structures. We

shall revisit this point in the last chapter.

3.3.2 Residual reparametrization invariance

We now turn our attention to residual reparametrization invariance of the light-cone

Hamiltonian. We find that the quartic interaction terms in (3.23) spoil the invariance

of the Hamiltonian under the reparametrizations introduced in the previous section.

To illustrate this, we first consider how the cubic and quartic interaction vertices

transform at order κ.

δH(κ)
c,q = δκ

0

(cubic terms) + δκ
−1

(quartic terms) (3.27)
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Contributions from cubic terms

δκ
0

(cubic terms)

= 2κ(ξ̄∂h̄ + ξ∂̄h̄)∂−
2

(
h
∂̄2

∂−
2h −

∂̄

∂−
h
∂̄

∂−
h

)

+ 2κh̄ ∂−
2

(
(ξ∂̄h + ξ̄∂h)

∂̄2

∂−
2h + h

∂̄2

∂−
2 (ξ∂̄h + ξ̄∂h)

− 2
∂̄

∂−
(ξ∂̄h + ξ̄∂h)

∂̄

∂−
h

)

= 2κ ξ̄ ∂h̄ ∂−
2

(
h
∂̄2

∂−
2h −

∂̄

∂−
h
∂̄

∂−
h

)

+ 2κh̄ ∂−
2

(
ξ̄∂h

∂̄2

∂−
2h + h

∂̄2

∂−
2 (ξ̄∂h) − 2

∂̄

∂−
(ξ̄∂h)

∂̄

∂−
h

)
+W (ξ)

= X + Y + W(ξ) . (3.28)

W contains all the ξ-dependent terms

W = 2κ ξ∂̄h̄ ∂2
−

(
h
∂̄2

∂2
−
h − ∂̄

∂−
h
∂̄

∂−
h

)

+ 2κ h̄ ∂2
−

(
ξ∂̄h

∂̄2

∂2
−
h + h

∂̄2

∂2
−

(ξ∂̄h) − 2
∂̄

∂−
(ξ∂̄h)

∂̄

∂−
h

)
= 0 . (3.29)

On partially integrating the ∂̄ in the first line, it easily follows that all the terms in

(3.29) cancel among each other. Similarly, the variation of the other cubic term in

the Hamiltonian will have no ξ̄ terms. After some partial integrations, X and Y take

the form

X = −2κ ξ̄ h̄ ∂−
2∂

(
h
∂̄2

∂−
2h

)
+ 2κ ξ̄ h̄ ∂−

2∂

(
∂̄

∂−
h
∂̄

∂−
h

)
(3.30)

and

Y = 2κh̄ ξ̄∂−
2 ∂

(
h
∂̄2

∂−
2h

)
− 2κh̄ξ̄∂−

2 ∂

(
∂̄

∂−
h
∂̄

∂−
h

)

− 4κ ∂̄ξ̄
∂

∂−
h
∂̄

∂−
h ∂2
−h̄ + 2κ ∂̄2ξ̄

∂

∂2
−
h h ∂2

−h̄ + 4κ ∂̄ξ̄
∂∂̄

∂2
−
h h ∂2

−h̄ .

(3.31)
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Finally, we find that the net contribution from the cubic vertex at order κ is as follows

δκ
0

(cubic term) = X + Y

= 4κ ∂̄ξ̄
∂

∂−
h
∂̄

∂−
h ∂2
−h̄ − 2κ ∂̄2ξ̄

∂

∂2
−
h h ∂2

−h̄ − 4κ ∂̄ξ̄
∂∂̄

∂2
−
h h ∂2

−h̄ .

(3.32)

Contribution from quartic terms

We now consider the κ−1 variation of the quartic terms in (3.23). We restrict our-

selves to the ξ̄ terms only since the ξ−dependent terms simply follow from complex

conjugation. It can be seen from (3.18) that only those terms, where h̄ appears

without any derivative or with only a ∂̄ will contribute.

δκ
−1

(quartic) = −8κ2 1

∂−
2

(
∂̄

∂−
h ∂−

3 h̄ − h ∂−
2∂̄h̄

)
1

∂−
2 (δh̄ ∂−

2∂h)

+ 4κ2 1

∂−
(∂−h ∂̄δh̄)

1

∂−
(∂h̄ ∂−h − ∂−h̄ ∂h)

+ 4κ2h δh̄

(
∂̄h ∂h̄ + ∂h ∂̄h̄ − ∂−h̄

∂∂̄

∂−
h − ∂−h

∂∂̄

∂−
h̄

)
− 4κ2

(
1

∂−
2 (∂−h ∂−h̄) − h h̄

)
∂h ∂̄ (δh̄)

= A + B + C + D (3.33)

Let us focus on A and D first.

A = − 4κ ∂̄ξ̄ ∂h
1

∂−
2

(
∂̄

∂−
h ∂−

3 h̄ − h ∂−
2∂̄h̄

)
= 4κ ∂̄ξ̄

∂

∂−
h
∂̄

∂−
h ∂2
−h̄ − 4κ ∂̄2ξ̄

∂

∂2
−
h h ∂2

−h̄ − 4κ ∂̄ξ̄
∂∂̄

∂2
−
h h ∂2

−h̄(3.34)

D = − 2κ2 ∂h ∂̄2ξ̄

(
1

∂−
2 (∂−h ∂−h̄) − h h̄

)
= − 2κ ∂̄2ξ̄

∂

∂−
h ∂−h h̄ + 2κ ∂̄2ξ̄

∂

∂2
−
h h ∂2

−h̄ (3.35)

We immediately note that the terms in (3.34) along with the second term in (3.35)

exactly cancel against the terms in (3.32). So, we are left with the following terms
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B + C − 2κ ∂̄2ξ̄
∂

∂−
h ∂−h h̄ . (3.36)

These terms can be further simplified as

B − 2κ ∂̄2ξ̄
∂

∂−
h ∂−h h̄ = −2κ ∂̄2ξ̄

1

∂−
h (∂h̄ ∂−h − ∂−h̄ ∂h) − 2κ ∂̄2ξ̄

∂

∂−
h ∂−h h̄

= − 2κ∂̄2ξ̄ h h̄ ∂h , (3.37)

C = 2κh ∂̄ξ̄

(
∂̄h ∂h̄ + ∂h ∂̄h̄ − ∂−h̄

∂∂̄

∂−
h − ∂−h

∂∂̄

∂−
h̄

)
. (3.38)

Consider the last term in (5.22)

−2κ h ∂̄ξ̄ ∂−h
∂∂̄

∂−
h̄ = −κ ∂̄ξ̄ ∂−(hh)

∂∂̄

∂−
h̄ = −κ ∂̄ξ̄ ∂(hh) ∂̄h̄ = −2κ ∂̄ξ̄ h ∂h ∂̄h̄ .

(3.39)

This cancels with the second term in (5.22), which simplifies C to

C = 2κh ∂̄ξ̄ ∂̄h ∂h̄ − 2κh ∂̄ξ̄ ∂−h̄
∂∂̄

∂−
h . (3.40)

Finally, from (3.37) and (5.22), we are left with

− 2κ∂̄2ξ̄ h h̄ ∂h + 2κh ∂̄ξ̄ ∂̄h ∂h̄ − 2κh ∂̄ξ̄ ∂−h̄
∂∂̄

∂−
h . (3.41)

Thus, the variation of the Hamiltonian to order κ so obtained is

δH(κ) = − 2κ∂̄2ξ̄ h h̄ ∂h + 2κh ∂̄ξ̄ ∂̄h ∂h̄ − 2κh ∂̄ξ̄ ∂−h̄
∂∂̄

∂−
h + c.c. (3.42)

Evidently, the Hamiltonian is not invariant under the transformations in (3.16) at

this order. In order to restore the invariance, we introduce new terms of order κ, to

the r.h.s of (3.16). We find the correction terms to be

δh =
1

2κ
∂ξ + ξ∂̄h + ξ̄∂h − κ ∂̄ξ̄ hh + 2κ ∂ξ

1

∂−
(h̄ ∂−h) (3.43)
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and

δh̄ =
1

2κ
∂̄ξ̄ + ξ∂̄h̄ + ξ̄∂h̄ − κ ∂ξ h̄h̄ + 2κ ∂̄ξ̄

1

∂−
(h ∂−h̄) . (3.44)

These new corrections terms, when substituted in the kinetic term of (3.23), con-

tribute at the same order as those in (3.42). On varying the kinetic term δκ(∂h̄ ∂̄h)

we find that it cancels exactly against the terms in (3.42), confirming that

δH(κ) = 0 . (3.45)

This proves that the light-cone Hamiltonian to order κ2 is invariant under the “cor-

rected” residual reparametrizations (3.43) and (3.44).

We can easily check that two such transformations at order κ close on another trans-

formation at the same order

[ δ1(ξ1) , δ2(ξ2) ]h = δ12(ξ12)h (3.46)

with the parameter

ξ12 = ξ2∂ξ1 − ξ1∂ξ2 , (3.47)

which shows that this is indeed a residual reparametrization symmetry, albeit an in-

finitesimal one. From the discussion above, it is evident that we must keep on adding

correction terms to the transformations (3.43) and (3.44) at every order in perturba-

tion to maintain the invariance of the Hamiltonian, thus forming an infinite series of

terms which represents the full symmetry. The fact that this symmetry constrains

the possible counterterms in the Hamiltonian suggests that it might be possible to

integrate this infinitesimal symmetry to a finite one. Such a finite symmetry can

have important implications for the macroscopic properties of the theory. We wish

to return to this question in future and examine possible links to the work of [32].

3.4 Transformation properties of the quadratic form

Given that the Hamiltonian at order κ2 is invariant under residual reparametrization

transformations, we now examine the transformation properties of the Dh̄ operator

under these transformations. Unlike at order κ, we find that Dh̄ does not transform

“covariantly” at this order, that is, the derivative does not transform like the field.
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Explicitly varying the derivative (3.26) we obtain

δ ( ∆h̄ )κ = +κ ∂ξ ∂{ ∂−h̄
1

∂−
h̄ }

+ 2κ ∂̄ξ̄ h ∂ h̄ + κ ∂̄ ξ̄ ∂ ∂− h̄
1

∂−
h − κ ∂̄ ξ̄

1

∂−
{ ∂− ∂ h̄ h } (3.48)

and it can be easily verified that

δHκ =

∫
d3x [ δ(∆h̄) D̄h + ∆h̄ δ(D̄h) ]

κ
= 0 . (3.49)

In this section, we argue on general grounds, why this transformation property in

(3.49) is justified.

We start with the most general ansatz for δ(D̄h) and δ(Dh̄) from (3.43) and (3.44)

(we ignore all the ξ-dependent terms)

δ(D̄h) = 0 + ( ξ∂̄ + ξ̄∂ ) D̄h − κ ∂̄ξ̄
∑
i

αi Âi (B̂ih Ĉih)

+ 2κ ∂ξ
∑
j

βj P̂j(Q̂jh̄ R̂jh) (3.50)

and

δ(Dh̄) = 0 + ( ξ∂̄ + ξ̄∂ )Dh̄ − κ ∂ξ
∑
i

αi
¯̂
Ai (

¯̂
Bih̄

¯̂
Cih̄ )

+ 2κ ∂̄ξ̄
∑
j

βj
¯̂
Pj(

¯̂
Qjh

¯̂
Rjh̄) , (3.51)

where the α and β are constants and the Âi, . . . are operators to be determined later.

It is easy to note that this ansatz transforms “covariantly” (like the field) for one

particular choice of operators

α = 1 , Â = ∂̄ , B̂ = Ĉ = 1 ,

β = 1 , P̂ =
1

∂−
, Q̂ = 1 , R̂ = ∂−∂̄ . (3.52)

From the invariance of the Hamiltonian under (3.43) and (3.44), we have

δH = 0 =⇒
∫
d3x [ δ(∆h̄) D̄h + ∆h̄ δ(D̄h) ] . (3.53)
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At order κ0, (3.53) yields

δH =

∫
d3x [ (δ(∆h̄))κ

0

∂̄h + ∂h̄(δ(D̄h))κ
0

]

=

∫
d3x [ ξ̄∂2h̄∂̄h + ∂h̄ξ̄∂∂̄h ] . (3.54)

Integrating a ∂ from the h̄ in the first term gives us (δH)κ
0

= 0.

At order O(κ), we start with

(δH)κ =

∫
d3x [ (δ(∆h̄))κ∂̄h + (δ(∆h̄))κ

0

(D̄h)κ + (∆h̄)κ(δ(D̄h))κ
0

+ ∂h̄(δ(D̄h))κ ]

= κ

∫
d3x { [ ξ̄∂(∆h̄)κ + 2∂̄ξ̄

∑
j

βj
¯̂
Pj(

¯̂
Qjh

¯̂
Rjh̄) ]∂̄h + ξ̄∂2h̄(D̄h)κ

+ [ ξ̄∂(D̄h)κ − ∂̄ξ̄
∑
i

αi Âi (B̂ih Ĉih)] ∂h̄ + (∆h̄)κξ̄∂∂̄h } . (3.55)

On integrating a ∂ from h̄ in the last term of (3.55) it cancels against the first term

in (3.55). Similarly, the last term in (3.55) cancels against the first term in (3.55) by

integrating a ∂. So, we are left with

(δH)κ = κ

∫
d3x [ 2∂̄ξ̄

∑
j

βj
¯̂
Pj(

¯̂
Qjh

¯̂
Rjh̄)∂̄h − ∂̄ξ̄

∑
i

αi Âi (B̂ih Ĉih) ∂h̄] .

(3.56)

Substituting (3.52) into (3.56) , we see that

(δH)κ = +2κ

∫
d3x ∂̄ξ̄

1

∂−
( ∂−h ∂h̄ ) ∂̄h + c.c. 6= 0 . (3.57)

Thus the Hamiltonian for gravity is indeed a quadratic form but not the square of a

“covariant derivative”. In fact, if we substitute (3.48) into (3.56), the invariance is

restored

(δH)κ = 0 . (3.58)

Hence we learn from this analysis that the residual reparametrization invariance of

the Hamiltonian forces Dh̄ to have transformation properties different from that of a

“covariant derivative”.
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This point is clearly in stark contrast with Yang-Mills theory. Both the pure and max-

imally supersymmetric Yang-Mills theory admit quadratic form Hamiltonian which

transform “covariantly’ under the residual gauge transformations [33]. This mismatch

points to the fact that the non-trivial dissimilarities between Yang-Mills theory and

gravity show up first at the quartic order. The tree-level amplitudes in Yang-Mills

theory can be written solely in terms of the “square” or “angular” brackets. The

cubic amplitude in gravity does have the same property, but the quartic and higher

vertices involve a mixture of both kinds of brackets. Thus the fact that the derivative

introduced in gravity does not transform like that in Yang-Mills theory is in keeping

with the MHV amplitude structures [20].

With this chapter, we conclude our discussion on pure gravity in the light-cone gauge.

In the last chapter, we briefly comment on some of the results presented here. In the

rest of the thesis, our focus lies on theories of gravity with supersymmetry.
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Chapter 4

Supergravity, in d = 4, in the

light-cone gauge

In this chapter, we review some relevant results for N = 8 supergravity in four

dimensions from existing literature, which will be used extensively for the discussions

in the subsequent chapters. We begin with a brief review of the supersymmetry

algebra and then introduce the light-cone superspace in context of the N = 8 theory.

4.1 The supersymmetry algebra

In a relativistic field theory, the symmetries of the S-matrix include the Poincaré

symmetry (Pµ and Mµν) and some internal symmetries, T a. The Coleman-Mandula

theorem states that the spacetime and internal symmetries can be combined only in

a trivial manner through a direct product of the Poincaré group with the internal

symmetry group [34]. All the corresponding conserved quantities are Lorentz scalars

and the internal symmetry generators trivially commute with the Poincaré generators.

However, there is a possible extension of the Poincaré group without violating this

no-go theorem by including generators, Qα and Qα̇ that transform as spinors under

the Lorentz group. The Lie algebra of the Poincaré group is thus enlarged to the

superPoincaré algebra, which now includes anticommutators between the spinorial

generators.

The Qα transforms in the (1
2
, 0) representation of the Lorentz group and the Qα̇ in

the (0, 1
2
) representation. Therefore, the anticommutator of these generators must

transform as a four-vector in the (1
2
, 1

2
) representation, i e. the translation generator
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in the Poincaré group. This defines the supersymmetry algebra.

{Qα,Qα̇} = 2(σµ)αα̇ Pµ . (4.1)

The commutation relations of the supersymmetry generators with momenta Pµ are

[Pµ,Qα ] = 0 ,

[Pµ,Qβ̇ ] = 0

and with the Lorentz generators Mµν are

[ Mµν , Qα] = i (σµν)α
β Qβ ,

[ Mµν , Q
α̇
] = i (σµν)

α̇
β̇ Q

β̇
,

where the symbols have their usual meaning. The spinor indices (dotted and undot-

ted) are raised and lowered using the Levi-Civita tensors, εαβ and εα̇β̇. The com-

mutation relations with Mµν clearly show that Q and Q transform in the spinor

representation of the Lorentz group.

In the case of extended supersymmetry where the number of supersymmetries N
is greater than one, the supersymmetry generators are written as Qαm (and Qmα̇),

which transform as the representation N (and N ) under the internal R-symmetry

group SU(N ).

So far we have discussed the concept of supersymmetry as a global symmetry. Super-

symmetric gauge theories involving spin-1 fields are based on global supersymmetry.

Now we consider the case when the supersymmetry is local, such that the supersym-

metry transformation parameters εm and ε̄m depend on spacetime coordinates. The

underlying supersymmetry algebra (4.1) implies that two such local transformations

will close on a local translation. Thus, local supersymmetry naturally leads to a the-

ory of gravity, namely supergravity. The spin-2 graviton field in supergravity theory

are accompanied by a spin-3
2

superpartner, called the gravitino. The gravitino is the

gauge field associated with local supersymmetry. Hence the number of gravitinos in

a supergravity theory is equal to the number of supersymmetries, N .
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4.2 N = 8 supergravity in the light-cone gauge

The N = 8 theory is the maximally supersymmetric extension of Einstein’s gravity

in four dimension [16]. This theory possesses eight supersymmetries, which is the

most any theory in four dimensions involving no fields of spin greater than two, can

have. The R-symmetry group in this case is SU(8). The supermultiplet contains 128

bosonic and 128 fermionic degrees of freedom, together forming 256 physical states.

In table (4.1) we categorize all the physical states according to their helicity.

Table 4.1: The N = 8 supermultiplet

Spin 2 3
2

1 1
2

0 −1
2

−1 −3
2
−2

Field h ψm Amn χmnp Cmnpq χmnp Amn ψm h

1 8 28 56 70 56 28 8 1

Here, h and h̄ denote the two degrees of freedom of the graviton, ψ̄m correspond

to the 8 spin-3
2

gravitinos, Āmn are the 28 abelian gauge fields with χ̄mnp being the

corresponding 56 gauginos and C̄mnpq represents the 70 scalar fields in the theory.

The SU(8) indices m,n, p, q... take values from 1 through 8.

Now we introduce some basic tools that we use to study the properties of this theory

in the light-cone gauge.

4.2.1 Light-cone superspace

In appendix B, we show how a spinor in the light-cone frame can be split into “+” and

“-” components using suitable projection operators. Similarly, the supersymmetry

generators Qα and Qβ̇ can be decomposed into two two-component complex spinors

Qα = Q+α + Q−α ; Qβ̇ = Q+β̇ + Q−β̇ .
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The light-cone supersymmetry algebra then follows directly from (4.1)

{ Qm+ , Q+n } = −
√

2 δmn P+ , (4.2)

{ Qm− , Q−n } = −
√

2 δmn P− , (4.3)

{ Qm+ , Q−n } = −
√

2 δmn P . (4.4)

The indices m,n run from 1 to N . Except for the complex conjugate of the last

commutator listed above, all other anticommutators are zero. Note that we have

suppressed the spinor indices (α, β̇) on the generators for simplicity. From the al-

gebra, we can see that the Q+ generators are kinematical supersymmetries, which

generate the spectrum and the Q− generators are the dynamical ones, which close on

the Hamiltonian P−. Thus, the dynamical supersymmetries take the fields forward

in light-cone time.

Supersymmetric field theories can be described elegantly using the superspace for-

malism. In this approach, the supersymmetry operators are treated as the generators

of translation in anticommuting coordinates θm, just as momentum P µ generates

translation in ordinary spacetime coordinates xµ.

In the rest of the section we discuss the light-cone superspace adapted to N = 8

supergravity in four dimensions first presented in [35]. The light-cone superspace is

spanned by eight Grassmann variables θm and their complex conjugates θ̄m (m =

1, . . . , 8), which transform as a 8 and a 8̄ of SU(8) respectively. These variables

follow the relations

{ θm , θn } = { θ̄m , θ̄n } = { θm , θ̄n } = 0 . (4.5)

An alternative choice would be to define the superspace with just θ’s and no θ̄’s, but

that makes the notion of complex conjugation more complicated. The advantage of

working in a superspace with both θ and θ̄ is that it makes the SU(8) R-symmetry

of the theory manifest. We can define chiral derivatives anticommuting with the Q’s,

such that the theory can be described by just one constrained superfield as we will

show below.

The kinematical supersymmetries can be represented on this superspace as

qm+ = − ∂

∂ θ̄m
+

i√
2
θm ∂+; q̄+n =

∂

∂ θn
− i√

2
θ̄n ∂

+ (4.6)
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and the dynamical ones as

qm− =
∂̄

∂+
qm+ , q̄−n =

∂

∂+
q̄+n . (4.7)

(Note that we use the notation with the lower case letters when working with the

explicit form of operators.)

We also define the following chiral derivatives in the superspace

dm = − ∂

∂ θ̄m
− i√

2
θm ∂+ ; d̄n =

∂

∂ θn
+

i√
2
θ̄n ∂

+ . (4.8)

The chiral derivatives satisfy the anticommutation relation

{ dm , d̄n } = − i
√

2δmn ∂+ . (4.9)

These derivatives anticommute with the supercharges qm and q̄n.

The superfield

All the 256 physical degrees of freedom in the N = 8 theory listed before can be

encaptured in a single superfield [25, 35] in terms of θm

φ ( y ) =
1

∂+2 h (y) + i θm
1

∂+2 ψ̄m (y) +
i

2
θm θn

1

∂+
Āmn (y) ,

− 1

3!
θm θn θp

1

∂+
χ̄mnp (y) − 1

4!
θm θn θp θq Cmnpq (y) ,

+
i

5!
θm θn θp θq θr εmnpqrstu χ

stu (y) ,

+
i

6!
θm θn θp θq θr θs εmnpqrstu ∂

+Atu (y) ,

+
1

7!
θm θn θp θq θr θs θt εmnpqrstu ∂

+ ψu (y) ,

+
4

8!
θm θn θp θq θr θs θt θu εmnpqrstu ∂

+2
h̄ (y) .

(4.10)

The superfield by construction makes the SU(8) decomposition of the fields manifest.

For instance, the graviton which appears with no θ is a singlet under SU(8), the spin-
3
2

fields being a 8 of SU(8) appear with a θm and so on. The superfield can thus be

viewed as a representation of SU(8) in the following way.

256 = 1 + 8 + 28 + 56 + 70 + 56 + 28 + 8 + 1 (4.11)
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All the fields are all local in the coordinates

y = (x, x̄, x+, y− ≡ x− − i√
2
θm θ̄m ) . (4.12)

This follows from the “chirality” condition satisfied by the superfield φ and its con-

jugate φ̄

dm φ ( y ) = 0 ; d̄n φ̄ ( y ) = 0 . (4.13)

φ and φ̄ are further related through the “inside-out” constraint,

φ =
1

4

(d )8

∂+4 φ̄ , (4.14)

where (d )8 = d1 d2 . . . d8. This constraint is unique to maximally supersymmetric

theories. which is a consequence of the self-duality of the scalar fields in the theory

Cmnpq =
1

4!
εmnpqrstu Crstu . (4.15)

4.2.2 SuperPoincaré algebra in the light-cone gauge

We now construct the lowest order representation of the superPoincaré algebra in

four dimensions by augmenting the Lorentz generators with θ-terms. We choose to

work on the constant time surface x+ = 0.

We first consider the kinematical generators.

• The three kinematical momenta remain the same

p+ = − i ∂+ , p = − i ∂ , p̄ = − i ∂̄ . (4.16)

• The transverse space rotation is given by

j = x ∂̄ − x̄ ∂ + S12 , (4.17)

where the spin part gets θ-corrections

S12 =
1

2
( θα ∂̄α − θ̄α ∂

α ) +
i

4
√

2 ∂+
( dα d̄α − d̄α dα ) (4.18)
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such that

[ j , dα ] = [ j , d̄β ] = 0 . (4.19)

• The kinematical rotations read

j+ = i x ∂+ , j̄+ = i x̄ ∂+ , (4.20)

j+− = i x− ∂+ − i

2
( θα∂̄α + θ̄α ∂

α ) , (4.21)

which obey

[ j+− , y− ] = − i y− ,

[ j+− , dα ] =
i

2
dα , [ j+− , d̄β ] =

i

2
d̄β .

(4.22)

The dynamical generators at the free order are listed below.

• The light-cone Hamiltonian is

p− = − i∂∂̄
∂+

. (4.23)

• The dynamical boosts

j− = i x
∂∂̄

∂+
− i x− ∂ + i

(
θα∂̄α +

i

4
√

2 ∂+
( dα d̄α − d̄α dα )

) ∂
∂+

,

j̄− = i x̄
∂∂̄

∂+
− i x− ∂̄ + i

(
θ̄β∂

β +
i

4
√

2 ∂+
( dβ d̄β − d̄β dβ )

) ∂̄
∂+

, (4.24)

satisfy the following commutation relations

[ j− , j̄+ ] = − i j+− − j , [ j− , j+− ] = i j− . (4.25)

• The dynamical supersymmetries constructed from the kinematical ones read

qm− ≡ i [ j̄− , qm+ ] =
∂̄

∂+
qm+ ,

q̄−n ≡ i [ j− , q̄+n ] =
∂

∂+
q̄+n .

(4.26)

This completes the light-cone representation of the superPoincaré algebra in d = 4

to the lowest order. At higher orders, all the dynamical generators will pick up

corrections.
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4.3 N = 8 supergravity action

The light-cone action for N = 8 supergravity to order κ in terms of the superfield φ

and its conjugate φ̄ reads [25]

− 1

64

∫
d4x

∫
d8θ d8θ̄L , (4.27)

where

L = −φ̄ �
∂+4

φ − 2κ (
1

∂+2 φ ∂̄ φ ∂̄ φ+
1

∂+2 φ ∂ φ ∂ φ) . (4.28)

The Grassmann integration is normalized such that∫
d8θ (θ)8 = 1 . (4.29)

The dynamical generators get non-linear corrections at order κ accordingly. In par-

ticular, the dynamical supersymmetry generator at this order reads

q̄−m
(κ)φ =

1

∂+
(∂̄q̄mφ∂

+2
φ− ∂+q̄mφ∂

+∂̄φ). (4.30)

Note that we have suppressed the + index on the kinematical supersymmetries to

simplify our notation. The complex conjugate of this formula yields qm−
(κ)φ̄. We can

then derive qm(κ)φ and q̄m
(κ)φ̄ by using the “inside-out” constraint (4.14). From the

anticommutation relation (4.2), we can obtain P−φ at order κ. The corrections to

the other dynamical generators follow similarly.

4.4 The Hamiltonian as a quadratic form

In the light-cone superspace, the Hamiltonian of the theory can similarly be con-

structed as a perturbative expansion in κ. This has been done up to the four-point

coupling [31]. In this section, we show how the light-cone Hamiltonian for N = 8

supergravity can be written as a quadratic form [31] to order κ2, similar to the case

of pure gravity discussed in the previous chapter. We show the proof of the quadratic

form only to the lowest order and avoid some of the technical details in our discussion.

At lowest order, the light-cone Hamiltonian reads

H0 =

∫
d4x d8θ d8θ̄ φ̄

2 ∂∂̄

∂−
4 φ . (4.31)
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We claim that this Hamiltonian can be written in a compact form

H =
1

4
√

2
(Wm , Wm ) , (4.32)

with

Wm = Q̄−m φ , (4.33)

where the inner product defined as

(φ , ξ ) ≡ − 2i

∫
d4x d8θ d8 θ̄ φ̄

1

∂−
3 ξ . (4.34)

To prove this, we start with (4.32) at the lowest order

H0 =
1

4
√

2
(W0

m , W0
m ) = − 2i

4
√

2

∫
d4x d8θ d8 θ̄ Qm

− φ̄
1

∂−
3 Q̄−m φ , (4.35)

and rewrite it as

H0 = − i

4
√

2

∫
d4x d8θ d8 θ̄

(
Qm
− φ̄

1

∂−
3 Q̄−m φ + Qm

− φ̄
1

∂−
3 Q̄−m φ

)
. (4.36)

We now make use of the “inside-out” constraint (4.14), which is unique to maximally

supersymmetric theories. The second term in (4.36) yields

H0 = − i

4
√

2

∫
d4x d8θ d8 θ̄

(
Qm
− φ̄

1

∂−
3 Q̄−m φ +

1

∂−
4 Q

m
− φ ∂− Q̄−m φ̄

)
. (4.37)

Using (4.26), we substitute for Qm
− in terms of kinematical supersymmetries

H0 = − i

4
√

2

∫
d4x d8θ d8 θ̄

( ∂̄

∂−
qm+ φ̄

∂

∂−
4 q̄+m φ +

∂̄

∂−
5 q

m
+ φ ∂ q̄+m φ̄

)
.

After some integration by parts and 1
∂−

manipulations, we find

H0 = − i

4
√

2

∫
d4x d8θ d8 θ̄

∂ ∂̄

∂−
5 φ̄ { q

m
+ , q̄+m }φ

=

∫
d4x d8θ d8θ̄ φ̄

2 ∂∂̄

∂−
4 φ .
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In the last step, we use the anticommutation relation { qm+ , q̄+m }φ = − i 8
√

2 ∂− φ.

Hence, we proved that the free Hamiltonian can be expressed as a quadratic form.

This property extend to the next order as well. We do not show the details here but

simply present the results. At order κ the operator Wm, which is nothing but the

dynamical supersymmetry, reads

Wm = − ∂

∂−
q̄+m φ − κ

1

∂−

(
∂̄ d̄m φ ∂−

2 φ − ∂− d̄m φ ∂− ∂̄ φ
)

+ O(κ2) , (4.38)

Wm
= − ∂̄

∂−
qm+ φ̄ − κ

1

∂−

(
∂ dm φ̄ ∂−

2 φ̄ − ∂− d
m φ̄ ∂− ∂ φ̄

)
+ O(κ2) . (4.39)

We can now compute the quadratic form with these operators and find the Hamilto-

nian to order κ

1

4
√

2
(W , W ) = − 2 i

4
√

2

∫
d4x d8θ d8 θ̄ W 1

∂−
3 W . (4.40)

The existence of a quadratic form structure is different from the statement that the

Hamiltonian is the anticommutator of the supersymmetries

{Qm
− , Q−n } = −

√
2 δmn P− ,

since the above relation is a sum of two products, unlike the expression in (4.40). The

key ingredient in the proof of the quadratic form structure is the “inside-out” relation,

which is special to maximally supersymmetric theories. The only other supersym-

metric theory in four dimensions, which admits such a quadratic form Hamiltonian is

the N = 4 superYang-Mills theory in the light-cone gauge as was shown in [33]. The

superfield in this case also satisfies a similar “inside-out” constraint which is crucial

for the quadratic form structure to work.

4.5 E7(7) symmetry

The non-linear E7(7) was discovered by Cremmer and Julia [16], which turned out

to play a pivotal role in the construction of the N = 8 supergravity theory in the

52



covariant formalism. The E7(7) symmetry in this formulation acts only on the scalar

and vector fields of the theory. It is a symmetry at the level of equations of motion

and not the action. E7(7) is a non-compact 133-dimensional exceptional Lie group.

The E7(7) can be understood in the following way.

E7(7) = SU(8) ×
E7(7)

SU(8)
; 133 = 63 + 70 (4.41)

The SU(8) is the R-symmetry group, which rotate the supersymmetries into each

other. It is important to note that SU(8) is the maximal compact subgroup of

E7. The ‘(7)’ in the E7(7), stands for 70 − 63 = 7, which is the number of non-

compact generators minus the number of compact generators in the group. The

70 coset transformations are related to a duality symmetry of the vector fields and

a sigma-model symmetry of the 70 scalar fields in the theory. Two of these coset

transformations close on a SU(8) transformation

[ δE7(7)/SU8 , δE7(7)/SU8 ] = δSU(8) . (4.42)

E7(7) symmetry in the light-cone superspace

The E7(7) symmetry was formulated in the light-cone superspace in [36], where some

important differences from the covariant description were observed. We start with the

Lagrangian and the E7(7)/SU(8) coset transformations in the covariant formulation.

After light-cone gauge-fixing the Lagrangian and eliminating time derivatives from the

resulting Lagrangian using field redefinitions, we find that the coset transformation

for the scalars involves terms quadratic in the vector fields. This sort of mixing does

not occur in the covariant formalism. This indicates that the E7(7)/SU(8) variations

are incomplete. We must include the variation of the other fields in the supermultiplet

for the E7(7) algebra to close properly. We find the variation of the other fields from

the requirement that the kinematical supersymmetries must commute with the coset

variations

[δkinq̄ , δE7(7)/SU8] φ = 0 . (4.43)

The kinematical supersymmetries1 are given by the linear action of q̄m, qm on φ

δkins̄ φ(y) = ε̄mq
mφ(y) , δkins φ(y) = εmq̄mφ(y) . (4.44)

1We use the notation ‘s’ for εmq̄m and ‘s̄’ for ε̄mq
m.
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The non-linear E7(7)/SU(8) transformations for all the fields to order κ can be written

in the superfield language as [36]

δφ = − 2

κ
θklmn Ξklmn

+
κ

4!
Ξmnpq 1

∂+2

(
dmnpq

1

∂+
φ ∂+3φ − 4 dmnpφ dq∂

+2φ + 3 dmn∂
+φ dpq∂

+φ

)
,

(4.45)

where

θklmn = θkθlθmθn , dm1...mn = d̄m1 ....d̄mn

and

Ξklmn =
1

2
εklmnpqrs Ξpqrs

are 70 real parameters. Note that only the scalars C
mnpq

have an order κ−1, which is

in keeping with the fact that these fields exhibit a sigma-model like symmetry.

The SU(8) generators are given in terms of the kinematical supersymmtries

Tmn =
i

2
√

2 δ+

(
qmq̄n −

1

8
δmn q

pq̄p

)
, (4.46)

which satisfy the algebra

[Tmn , T
p
q ] = δpn T

m
q − δmq T pn . (4.47)

The chiral superfield transform linearly under the SU(8)

δSU(8) φ(y) = ωj i T
i
j φ(y)

where ωj i are the 63 SU(8) parameters. These transformations along with the 70

non-linear coset transformations constitute the entire E7(7) algebra.

The coset transformation (4.45) can be expressed in a compact coherent-state like

notation2

δφ = − 2

κ
θmnpq Ξmnpq +

κ

4!
Ξmnpq

(
∂

∂η

)
mnpq

1

∂+2

(
eη

ˆ̄d∂+3
φ e−η

ˆ̄d∂+3φ
) ∣∣∣∣∣

η=0

+O(κ2),

(4.48)

2In this notation,
∣∣
η=0

means we differentiate with respect to η four times and then set η to zero.
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where

η ˆ̄d = ηm
d̄m
∂+
, and

(
∂

∂η

)
mnpq

≡ ∂

∂ηm
∂

∂ηn
∂

∂ηp
∂

∂ηq
. (4.49)

In this formalism, the E7(7) symmetry transforms all the physical fields in the super-

multiplet including the graviton. This is an important point of difference from the

covariant formulation of N = 8 supergravity, where this symmetry only affects the

vector and scalar fields in the theory. It can be checked that the E7(7) symmetry leaves

the light-cone action invariant at least up to order κ2. Therefore, in the light-cone

frame it is a symmetry at the level of the action and not just the equations of motion.

In that sense, the E7((7) symmetry is as genuine a symmetry as is the supersymme-

try. Another important point to note is that in the covariant formalism, the process

of upgrading the SU(8) to the E7(7) involves invoking the duality symmetry of the

vector fields. There are no such duality transformations in the light-cone formalism

as we have to deal with the real degrees of freedom of the theory only. The effect of

the duality transformations is thus achieved by a field redefinition in the light-cone

superspace.

Dynamical supersymmetry

We can now exploit the E7(7) symmetry to derive interaction terms that appear

in the light-cone Hamiltonian. This is achieved by extending the commutativity

of E7(7)/SU(8) coset with the supersymmetries to the dynamical generators. By

requiring that the dynamical supersymmetries commute with the coset variation of

the superfield

[ δdynq̄ , δE7(7)/SU(8) ]φ = 0 , (4.50)

we can fix the form of δdynq φ. Here, the non-linearity of the E7(7) transformations

turns out to be an advantage because these transformations link interaction terms

of different order in κ. Hence, we can start from the lowest order and build up

the interactions with higher powers of κ by closing the commutator (4.50) at the

appropriate order in perturbation.

The action of the dynamical supersymmetries on the superfield reads

δdyns φ = δdyn(0)
s φ + δdyn(1)

s φ + δdyn(2)
s φ +O(κ3) (4.51)

= εm
{
∂

∂+
q̄mφ + κ

1

∂+

(
∂̄d̄mφ ∂

+2
φ − ∂+d̄mφ ∂

+∂̄φ
)

+ O(κ2)

}
.
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The order κ terms were derived from the light-cone action [25], but the commutator

(4.50) also leads to the same expression. Note that in (4.30), the dynamical super-

symmetry generator is written in terms of q̄m, instead of d̄m. But it can be checked

that both the forms are equivalent.

Next we derive the interaction terms of O(κ2) from the E7(7) symmetry by closing

the commutator (4.50) to order κ

[ δ
(−1)
E7(7)/SU(8) , δ

dyn(2)
s ]φ + [ δ

(1)
E7(7)/SU(8) , δ

dyn(0)
s ]φ = 0 . (4.52)

The above relation completely fixes the form of δ
dyn(2)
s φ. Thus the dynamical super-

symmetry to order κ2 written in the coherent-state like notation reads [36]

δdyns φ =
∂

∂a

∂

∂b

{
ea∂̂ebε

ˆ̄q∂+φ +
κ

2

1

∂+

(
ea∂̂+bεˆ̄q∂+2

φ e−a∂̂−bε
ˆ̄q∂+2

φ
)

(4.53)

+
κ2

2.4!

(
∂

∂η

)
ijkl

1

∂+4

(
ea∂̂+bεˆ̄q+η ˆ̄d∂+5

φ e−a∂̂−bε
ˆ̄q−η ˆ̄dZijkl

)
+ O(κ3)

}∣∣∣∣∣
a=b=η=0

.

We can now invoke the quadratic form property of the light-cone Hamiltonian, which

was explicitly shown to hold to order κ2 [31].

H =
1

4
√

2
(W , W ) = − 2 i

4
√

2

∫
d4x d8θ d8 θ̄ Wm 1

∂−
3 Wm , (4.54)

where

δdyns φ = εmWm . (4.55)

Using this quadratic form structure the Hamiltonian to order κ2 was found to be

Hκ2 = i
κ2

4
√

2

∫
d8θ d8θ̄ d4x

∂

∂a

∂

∂b{
1

2

∂

∂r

∂

∂s

1

∂+5

(
ea∂̂+bq̂∂+2

φ̄ e−a∂̂−bq̂∂+2
φ̄
) (

er
ˆ̄∂+sˆ̄q∂+2

φ e−r
ˆ̄∂−sˆ̄q∂+2

φ
)

−
[

1

4!

∂̄

∂+4 q
mdijklφ̄

(
ea∂̂+bˆ̄qm∂+φ̄ e−a∂̂−b

ˆ̄qm
1

∂+4Zijkl

)
+ c.c.

]}∣∣∣∣∣
a=b=r=s=0

.

(4.56)
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This completes our discussion of (N = 8, d = 4) supergravity in the light-cone for-

malism up to second order in the coupling constant. This formalism is particularly

suitable for the study of the symmetries, since both the supersymmetry and the E7(7)

symmetry are non-linearly realized on the light-cone superfield. In the next chap-

ter, we show how this exceptional symmetry can be enhanced to a larger symmetry

group.
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Chapter 5

Enhancing the symmetry in

(N = 8, d = 4) supergravity

The material presented here primarily based on work done by the author in [37].

In this chapter, we explore the key idea of realizing a larger symmetry in the four-

dimensional theory, which is originally present in d = 3. We describe how the E7(7)

symmetry in N = 8 supergravity in four dimensions can be enhanced to an E8(8)

symmetry. We devise a three-step method, which involves dimensional reduction to

d = 3, a field redefinition in three dimensions and subsequent dimensional ‘oxidation’

to d = 4 with manifest E8(8). Our analysis leads us to an action for the maximal

supergravity in four dimensions, which shows an E8(8) invariance at least up to second

order in the coupling constant.

5.1 Maximal supergravity in d = 3 : Version 1

We dimensionally now reduce this d = 4 theory to three dimensions by removing

the dependence on one of the transverse derivatives, ∂2. As a result, we are left

with ∂ = ∂̄ = ∂1 by definition. Thus we obtain the three-dimensional action for the

maximal supergravity theory.

S =

∫
d3x d8θ d8θ̄ L , (5.1)

where

L = −φ̄ �

∂+4 φ +
4

3
κ

(
1

∂+4 φ̄ ∂
2φ ∂+2

φ − 1

∂+4 φ̄ ∂
+∂φ ∂+∂φ + c.c.

)
+ · · · ,

(5.2)
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where the d’Alembertian in three dimensions is given by

� = 2(∂2 − ∂+∂−) . (5.3)

Although this action looks similar to the four-dimensional action, the important dif-

ference here is that there is only one transverse derivative, ∂ in the theory now. Ac-

cordingly, this formulation inherits a cubic interaction vertex from its four-dimensional

parent theory and shows no manifest E8(8) symmetry.

5.2 Maximal supergravity in d = 3 : Version 2

We shall now discuss the maximal supergravity theory in three dimensions, N = 16

supergravity originally constructed by Marcus and Schwarz [38], which exhibits a full

E8(8) symmetry. The supermultiplet for this theory contains 128 scalars and 128 spin

one-half fermions, which form two inequivalent spinor representations under SO(16),

the R-symmetry group. As a consequence, the Lagrangian for this theory does not

have vertices of odd order in κ (κ, κ3 etc.), since we cannot form invariants from an

odd number of such 128-dimensional spinors.

In [39], this theory was formulated in the light-cone superspace. The virtue of the

light-cone superspace is that the same chiral superfield φ introduced in four dimen-

sions for N = 8 supergravity can now be used to describe all the degrees of freedom

in the three-dimensional theory

256 = 128b + 128f . (5.4)

As mentioned above, the action for this theory does not admit a three-point coupling.

Thus in the light-cone formalism the Lagrangian takes the form

L = − φ̄
�

∂+4 φ + O(κ2) . (5.5)

5.2.1 SO(16) symmetry

We start with the Grassmann variables, θm and θ̄m in the N = 8 superspace, which

now form a 16 of SO(16)

SO(16) ⊃ SU(8) × U(1) , 16 = 8 + 8 .

The quadratic action of the qm, q̄m generators on φ yield the SO(16) transformations.
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The SO(16) is split in terms of SU(8)× U(1) as follows

120 = 630 + 28−1 + 281 + 10 . (5.6)

The subscripts stand for the U(1) charges. The 63 SU(8) generators discussed in

context of N = 8 supergravity, are given in (4.46).

The U(1) generator is [39]

T =
i

4
√

2 ∂+
[ qm , q̄m ] , [T , Tmn ] = 0 . (5.7)

The quadratic operators

Tmn =
1

2

1

∂+
qmqn , Tmn =

1

2

1

∂+
q̄mq̄n , (5.8)

generate the remaining part of SO(16), i.e. the coset SO(16)/(SU(8)× U(1)).

The generators Tmn and Tmn form the 28 and the 28 representation of SU(8) and

close on (SU(8)× U(1))

[Tmn , Tpq ] = δnpT
m
q − δmpT

n
q − δmqT

n
p + δmqT

n
p + 2 ( δnpδ

m
q − δnqδ

m
p )T .

Thus the 120 linear SO(16) transformations can be listed as

δSU8
ϕ = ωnm T

m
n ϕ , δU(1) ϕ = T ϕ ,

δ28 ϕ = αmn
qmqn

∂+
ϕ , δ28 ϕ = αmn

q̄mq̄n
∂+

ϕ , (5.9)

where ωnm, αmn, and αmn are the corresponding transformation parameters.

5.2.2 E8(8) symmetry

This theory, which is obtained by dimensional reduction from the eleven-dimensional

supergravity theory, shows an E8(8) symmetry, similar to the E7(7) in the four-

dimensional theory. E8(8) is a non-compact 248-dimensional exceptional Lie group.

The 120-dimensional R-symmetry group, SO(16) is the maximal compact subgroup

of E8. Hence, the ‘(8)’ in the E8(8), stands for 128− 120 = 8, which is the number of

non-compact generators minus the number of compact generators in the group.
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The E8(8) symmetry can be constructed in a way similar to the E7(7)

E8(8) = SO(16) ×
E8(8)

SO(16)
; 248 = 120 + 128 . (5.10)

The 128 E8(8)/SO(16) coset transformations are related to a sigma-model symmetry

of the 128 scalar fields in the theory.

Two of these non-linear coset transformations close on a linear SO(16) transformation

[ δE8(8)/SO(16) , δE8(8)/SO(16) ] = δSO(16) . (5.11)

The coset E8(8)/SO(16) can also be decomposed in terms of SU(8)× U(1) represen-

tations

128 = 1′2 + 28′1 + 700 + 28
′
−1 + 1̄′−2 . (5.12)

The 700 is identified with the representation in E7(7)/SU(8); the rest of the coset

contains two U(1) singlets 1′2 and 1̄′−2 , a twenty-eight dimensional representation

28′1 and its complex conjugate 28′−1.

Note that these representations are not the same as the 28 and 28 of the linearSO(16).

In the light-cone superspace, the 128 E8(8)/SO(16) coset transformations written in

the coherent-state notation reads [39]

δE8(8)/SO(16) φ =
1

κ
F + κ εm1m2...m8

2∑
c=−2

(
d̂m1m2···m2(c+2)

∂+c F
)

×

{(
δ

δ η

)
m2c+5···m8

∂+(c−2)
(
eη·

ˆ̄d ∂+(3−c)φ e−η·
ˆ̄d∂+(3−c)φ

) ∣∣∣∣
η=0

+ O(κ2)

}
, (5.13)

where the sum runs over the U(1) charges c = 2, 1, 0− 1,−2 of the bosonic fields and

d̂m1m2···m2(c+2)
≡ d̂m1 d̂m2 · · · d̂2(c+2) . (5.14)

Since the bosons in this theory are scalars with a sigma model-like symmetry, all the

bosonic components in φ contain a constant term in the coset variation at the lowest

order. This is reflected in the explicit form of the parameter F

61



F =
1

∂+2 β (y−) + i θmn
1

δ+
βmn (y−)− θmnpq βmnpq (y−) +

+ iθ̃ mn δ
+ βmn (y−) + 4 θ̃ δ+2

β̄ (y−) , (5.15)

F is a collection of all the 128 transformation parameters, which can be further de-

composed into SU(8) representations as shown in the expression above. For instance,

the parameters β and β̄ correspond to the 1′2 and 1̄′−2 in (5.12).

Thus we learn that in the light-cone superspace the same N = 8 supermultiplet can

be used to represent both the E8(8) as well as the E7(7) symmetry.

Dynamical supersymmetry in d = 3

The non-linear E8(8) symmetry can now be used to construct the dynamical super-

symmetry, δdyns φ in three dimensions. The corrections to δdyns φ up to order κ2 were

derived in [39]

δdyns φ = εm
∂

∂+
q̄m φ

+
κ2

2

2∑
c=−2

1

∂+(c+4)

{
δ

δa

δ

δb

(
δ

δη

)
m1m2...m2(c+2)

(
E∂+(c+5)

φ E−1

)∣∣∣∣∣
a=b=η=0

×ε
m1m2...m8

(4− 2c)!

(
δ

δη

)
m2c+5...m8

∂+2c

(
E∂+(4−c)

φE−1 ∂+(4−c)
φ

)∣∣∣∣∣
η=0

}
,

(5.16)

where

E ≡ ea∂̂+ bεˆ̄q+ η ˆ̄d and E−1 ≡ e−a∂̂− bε
ˆ̄q− η ˆ̄d ,

with

a ∂̂ = a
∂

∂+
, b εˆ̄q = b εm

q̄m
∂+
, η ˆ̄d = ηm

d̄m
∂+

.

It is apparent from the absence of an order κ term in the dynamical supersymmetry

transformation that there cannot be a three-point coupling in the Lagrangian for this

theory.
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5.3 Relating the two versions : The field redefini-

tion

It may seem puzzling that there exist two different forms of maximal supergravity

in three dimensions, one obtained from dimensionally reducing (N = 8, d = 4) su-

pergravity and the E8(8) invariant one without a three-point coupling. We will now

discuss how the two versions can be related by a field redefinition. We will show that

the dimensionally reduced version also possesses an SO(16) symmetry, albeit in a

non-linearly realized manner.

The Lagrangian for the E8(8) invariant theory reads

L = − φ̄
�

∂+4 φ + O(κ2) . (5.17)

We wish to find a suitable field redefinition that reproduces in (5.17) the order κ terms

present in (5.2). As a starting point, we make the following ansatz on dimensional

grounds

φ = φ′ + α κ ∂+A (∂+Bφ′ ∂+Cφ′) + β κ ∂+D (∂+Eφ′∂+F φ̄′) , (5.18)

where α, β are some arbitrary constants and the integers A, B, C, D, E, F satisfy the

following constraints

A+B + C = 2 , D + E + F = 2 . (5.19)

We find that the field redefinition [37]

φ→ φ = φ′ +
1

3
κ (∂+φ′ ∂+φ′) +

2

3
κ ∂+4

(
1

∂+3 φ
′ ∂+φ̄′

)
, (5.20)

correctly reproduces the cubic terms present in (5.2). The (φ′φ̄′) term in the field

redefinition achieves the action of replacing the time derivative ∂− by ∂2

∂+
in the

interaction terms using the free equation of motion.
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Verification of the field redefinition

Under the above field redefinition (5.20), the kinetic term in (5.2) takes the form

− φ̄
�

∂+4φ = − 2 φ̄
(∂2 − ∂+∂−)

∂+4 φ

= − 2

{
φ̄′ +

1

3
κ (∂+φ̄′ ∂+φ̄′) +

2

3
κ ∂+4

(
1

∂+3 φ̄
′ ∂+φ′

)}
×

(∂2 − ∂+∂−)

∂+4

{
φ′ +

1

3
κ (∂+φ′ ∂+φ′) +

2

3
κ ∂+4

(
1

∂+3 φ
′ ∂+φ̄′

)}
.

The lowest order term just reproduces the kinetic term. At order κ we only focus on

the terms of the form φ̄′φ′φ′.

− 2

3
κ φ̄′

(∂2 − ∂+∂−)

∂+4 (∂+φ′ ∂+φ′)− 4

3
κ ∂+4

(
1

∂+3 φ̄
′ ∂+φ′

)
(∂2 − ∂+∂−)

∂+4 φ′ = A+ B

The remaining terms of the kind φ̄′φ̄′φ′ are simply the complex conjugate of these

terms, which reproduce the other cubic vertex, κ φ̄′φ̄′φ′ vertex in (5.2).

We further simplify A and B as follows.

A = − 2

3
κ

1

∂+4 φ̄
′ (∂2 − ∂+∂−) (∂+φ′ ∂+φ′)

= − 4

3
κ

1

∂+4 φ
′ (∂+∂2φ′ ∂+φ′ + ∂+∂φ′ ∂+∂φ′) +

4

3
κ

1

∂+4 φ̄
′ ∂+(∂+∂−φ′ ∂+φ′)

B = − 4

3
κ

(
1

∂+3 φ̄
′ ∂+φ′

)
(∂2 − ∂+∂−) φ′

= +
4

3
κ

1

∂+4 φ̄
′ ∂+ (∂2φ′ ∂+φ′) − 4

3
κ

1

∂+4 φ̄
′ ∂+ (∂+∂−φ′ ∂+φ′)

= +
4

3
κ

1

∂+4 φ̄
′ (∂+∂2φ′ ∂+φ′ + ∂2φ′ ∂+2

φ′) − 4

3
κ

1

∂+4 φ̄
′ ∂+ (∂+∂−φ′ ∂+φ′)

Hence, we find that the field redefinition yields the following O(κ) terms

A + B =
4

3
κ

(
1

∂+4 φ̄
′ ∂2φ′ ∂+2

φ′ − 1

∂+4 φ̄
′ ∂+∂φ′ ∂+∂φ′

)
.
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The new Lagrangian in terms of the redefined field φ′ reads

L′ = −φ̄′ �

∂+4 φ
′ +

4

3
κ

(
1

∂+4 φ̄
′ ∂2φ′ ∂+2

φ′ − 1

∂+4 φ̄
′ ∂+∂φ′ ∂+∂φ′ + c.c.

)
,

(5.21)

which is identical to (5.2), since at lowest order φ′ is trivially equal to φ.

Thus the the dimensionally reduced action with a cubic vertex can be related to the

SO(16)-invariant action sans a cubic vertex by means of a field redefinition.

5.3.1 SO(16) symmetry revisited

We studied the linear realized SO(16) transformations on the superfield φ (5.9). The

E8(8)-symmetric Lagrangian (5.17) is invariant under these transformations. At the

free order, this implies

δL = − (δφ̄)
�

∂+4 φ − φ̄
�

∂+4 (δφ) = 0 . (5.22)

(Note that we use the notation δSO(16)φ ≡ δφ for simplicity.)

To examine the action of SO(16) on the new superfield φ′, we invert the field redefi-

nition (5.20) and express φ in terms of φ′

φ′ = φ − 1

3
κ (∂+φ ∂+φ) − 2

3
κ ∂+4

(
1

∂+3φ ∂
+φ̄

)
, (5.23)

δφ′ = δφ− 2

3
κ (∂+(δφ) ∂+φ)− 2

3
κ ∂+4

(
1

∂+3 (δφ) ∂+φ̄

)
− 2

3
κ ∂+4

(
1

∂+3φ ∂
+(δφ̄)

)
.

We start with the variation of L′ under the SO(16) transformations

δL′ = δL′kinetic + δL′cubic , (5.24)

where

δL′kinetic = − (δφ̄′)
�

∂+4 φ
′ − φ̄′

�

∂+4 (δφ′) (5.25)

and
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δL′cubic = +
4

3
κ

(
1

∂+4 (̄δφ′) ∂2φ′ ∂+2
φ′ +

1

∂+4 φ̄
′ ∂2(δφ′) ∂+2

φ′

+
1

∂+4 φ̄
′ ∂2φ′∂+2

(δφ′) − 1

∂+4 (δφ̄′) ∂+∂φ′ ∂+∂φ′

− 2
1

∂+4 φ̄
′ ∂+∂(δφ′) ∂+∂φ′

)
+ c.c. . (5.26)

Using (5.23) and retaining the terms only up to order κ, we find

δL′kinetic =

{
− (δφ̄)

�

∂+4 φ − φ̄
�

∂+4 (δφ)

}

+

{
1

3
κ (δφ̄)

�

∂+4 (∂+φ ∂+φ) +
2

3
κ φ̄

�

∂+4 (∂+(δφ) ∂+φ)

+
2

3
κ ∂+4

(
1

∂+3 (δφ̄) ∂+φ

)
�

∂+4φ +
2

3
κ ∂+4

(
1

∂+3 φ̄ ∂
+(δφ)

)
�

∂+4φ

+
2

3
κ ∂+4

(
1

∂+3 φ̄ ∂
+φ

)
�

∂+4 (δφ)

}
+ c.c. . (5.27)

The free order terms cancel against each other, just like in eq. (5.22). Note that we

have again considered the (φ̄φφ) terms in our discussion, as the other type (φφ̄φ̄) are

contained in the complex conjugate. Some simple manipulations lead us to

δL′kinetic = − 4

3
κ

(
1

∂+4 (̄δφ′) ∂2φ′ ∂+2
φ′ +

1

∂+4 φ̄
′ ∂2(δφ′) ∂+2

φ′

+
1

∂+4 φ̄
′ ∂2φ′∂+2

(δφ′) − 1

∂+4 (δφ̄′) ∂+∂φ′ ∂+∂φ′

− 2
1

∂+4 φ̄
′ ∂+∂(δφ′) ∂+∂φ′

)
+ c.c. , (5.28)

which exactly cancels against (5.26). This proves that the Lagrangian with a three-

point coupling also possesses an SO(16) symmetry, which is now non-linearly realized.

Before moving on to the E8(8), we would like to comment on this non-linear represen-

tation of the SO(16). Supersymmetric theories in general have R-symmetry groups,
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which are manifest and are linearly realized on the supermultiplet. However, we find

that the Lagrangian we obtained from the crude dimensional reduction of the d = 4

Lagrangian, does not have a manifest SO(16) symmetry to start with. In order to

‘see’ this symmetry, we must resort to the field redefinition (5.20) which itself is non-

linear in nature. Thus in the light-cone superspace approach we can study the same

theory using different versions and examine how the symmetries of the theory are

manifested with the help of (non-linear) field redefinitions.

5.3.2 E8(8) symmetry revisited

We now turn our attention to the E8(8) symmetry of the new Lagrangian L′. We

start with the 128 E8(8)/SO(16) coset transformations given in (5.13). Two of these

coset transformations should close on SO(16)

[δ′1, δ
′
2]φ = δSO(16) φ . (5.29)

(We denote the coset transformations δE8(8)/SO(16) here by δ′φ for simplicity.)

We can use the inverse field redefinition (5.23) to express δ′φ′ in terms of δ′φ. Next

we consider two coset transformations, δ′1 and δ′2 on φ′

[δ′1, δ
′
2] φ′ = [δ′1, δ

′
2] φ − 1

3
κ [δ′1, δ

′
2](∂+φ ∂+φ)

2

3
κ [δ′1, δ

′
2]

{
∂+4

(
1

∂+3φ ∂
+φ̄

)}
= δSO(16)φ + X + Y .

(5.30)

X and Y can be further simplified as follows.

X = − 1

3
κ [δ′1, δ

′
2](∂+φ ∂+φ)

= −2

3
κ [∂+(δ′1δ

′
2φ)∂+φ + ∂+(δ′2φ)∂+(δ′1φ) − ∂+(δ′2δ

′
1φ)∂+φ − ∂+(δ′1φ)∂+(δ′2φ)]

= −2

3
κ (∂+[δ′1, δ

′
2]φ ∂+φ)

= −1

3
κ δSO(16)(∂

+φ ∂+φ)

and

Y = −2

3
κ [δ′1, δ

′
2]

{
∂+4

(
1

∂+3φ ∂
+φ̄

)}
= −2

3
κ δSO(16)

{
∂+4

(
1

∂+3φ ∂
+φ̄

)}
.
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Using (5.23) we find

[δ′1, δ
′
2] φ′ = δSO(16)φ −

1

3
κ δSO(16)(∂

+φ ∂+φ)− 2

3
κ δSO(16)

{
∂+4

(
1

∂+3φ ∂
+φ̄

)}
= δSO(16)φ

′ ,

(5.31)

where the r.h.s. is simply the non-linear SO(16) on the new superfield φ′. This

renders L′ invariant under the non-linear E8(8) symmetry.

Thus we have established a link between the dimensionally reduced Lagrangian with

a cubic vertex and the Lagrangian without a cubic coupling, showing that the two

versions are in fact equivalent at least up to order κ2. Further, using the field redefi-

nition we have proved that both the versions have SO(16) and E8(8) symmetries, the

only subtle difference being that the SO(16) in one of the cases acts non-linearly on

the fields.

5.4 Enhanced symmetry in four dimensions

Having discussed the two forms of the maximal supergravity Lagrangian in d = 3,

we now move on to the third step in our analysis - to lift the theory back to d = 4

preserving the E8(8) symmetry. This is accomplished by carefully reintroducing the

transverse derivative, ∂2 in the theory.

We go back to the dynamical supersymmetry in three dimensions discussed before

δdyns φ = εm
∂

∂+
q̄m φ

+
κ2

2

2∑
c=−2

1

∂+(c+4)

{
∂

∂a

∂

∂b

(
∂

∂η

)
m1m2...m2(c+2)

(
E∂+(c+5)

φ E−1

)∣∣∣∣∣
a=b=η=0

×ε
m1m2...m8

(4− 2c)!

(
∂

∂η

)
m2c+5...m8

∂+2c

(
E∂+(4−c)

φE−1 ∂+(4−c)
φ

)∣∣∣∣∣
η=0

}
.

(5.32)

We ‘oxidize’ the above expression to four dimensions by introducing a generalized

derivative, in the spirit of [40, 41]

∇ ≡ ∂1 + i ∂2 , (5.33)
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which replaces the transverse derivative ∂ ( = ∂1) in all the places, such that

[
δdyns φ (∂, ∂+, q̄m, d̄m, φ)

]
d=3
−→

[
δdyns φ(∇, ∂+, q̄m, d̄m, φ)

]
d=4

.

Once we have obtained the expression for the dynamical supersymmetry in four

dimensions, it is straightforward to write down the light-cone Hamiltonian using the

quadratic form structure (4.40) discussed in the previous chapter.

H =
1

4
√

2
(Wm,Wm) ≡ 2i

4
√

2

∫
d8θ d8θ̄ d3x Wm 1

∂+3 Wm , (5.34)

where

δdyns φ ≡ εmWm . (5.35)

In order to construct the Hamiltonian, we need to consider the complex conjugate of

Wm, which further introduces a “new” derivative in theory

∂1 − i ∂2 ≡ ∇ . (5.36)

The exact form of these derivatives, ∇ and ∇ are uniquely fixed from the requirement

that the superPoincaré algebra closes in four dimensions.

This method of oxidation evidently preserves both the SO(16) and the full E8 sym-

metry in four dimensions. The generalized derivatives do not involve any qm, q̄m (or

dm, d̄m) operators, which can affect invariance of the theory under these symmetry

transformations. We thus arrive at a Lorentz invariant Hamiltonian for maximal su-

pergravity in d = 4 with the same field as in (4.56), but with manifest E8(8) symmetry

at least up to the second order in the coupling constant. Since maximal supergravity

theories in any given dimension is unique, these two formulations of (N = 8, d = 4)

supergravity must be related via a field redefinition.

The reason why we chose to go down to three dimensions to achieve this symmetry

enhancement is that this procedure allows us to render the larger E8 symmetry man-

ifest in the three-dimensional theory, which is not present in four dimensions. After

studying the symmetry in the lower-dimensional theory, we can oxidize the theory in

a careful manner preserving this enhanced symmetry in d = 4. In order to see the

E8 symmetry manifestly in the original (N = 8, d = 4) supergravity Lagrangian, we
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must figure out a way to interpret the physical states of the theory as 128-dimensional

SO(16) spinors which mix fields with different spins, instead of the usual SU(8) rep-

resentations where this mixing does not occur. Such an interpretation is crucial, if

we wish to look for signatures of this E8 symmetry in the scattering amplitudes of

the four-dimensional theory. We shall return to this point in the last chapter and

make some remarks regarding the possible implications of this enhanced symmetry.
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Chapter 6

Exceptional symmetries in

eleven-dimensional supergravity

The material presented here is primarily based on work done by the author in [42]

In this chapter, we extend the idea for symmetry enhancement to a more general

case, in order to realize an exceptional symmetry in eleven-dimensional supergravity.

In [14], the classical action for (N = 1, d = 11) supergravity was constructed, which

is the only known theory in eleven dimensions with local supersymmetry containing

no fields of spin higher than two. We first discuss how the eleven-dimensional theory

on reduction to four dimensions leads to N = 8 supergravity. With the N = 8

theory as a starting point, we then present two approaches to ‘oxidize’ the theory to

its eleven-dimensional parent, making either the maximal supersymmetry or an E7(7)

symmetry manifest in the process.

6.1 Eleven-dimensional supergravity

The field content of N = 1 supergravity in eleven dimensions consists of a gravi-

ton GMN , an antisymmetric rank three tensor AMNP and a spin three-half Rarita-

Schwinger field ΨM , where the M,N,P.. = 1, 2...9 are SO(9) indices. The fields are

in the irreducible representations of the transverse little group SO(9). The bosonic

part of the supermultiplet corresponds to a 128 of SO(9)

128 = 44 + 84 (6.1)

with the graviton transforming as a 44 and the 3-form as a 84. Similarly, the

fermionic field ΨM transforms as a spinorial 128 under the SO(9). Together these

71



form the 256 physical degrees of freedom of the theory.

The covariant action for N = 1 supergravity was first presented in [16]. In [43], the

theory was constructed in the light-cone gauge in component form by gauge-fixing

this covariant action. We do not present the explicit form of this action, as the details

are not relevant for the purpose of this thesis. Instead, we focus on an alternative

description of the theory formulated in the N = 8 light-cone superspace discussed

before. Intuitively a superspace formulation for the d = 11 theory with N = 1

supersymmetry may seem unnecessary at this point. However, we will illustrate how

this superspace formulation helps us unveil some rich structures in the theory.

6.1.1 Dimensional reduction to d = 4

The dimensional reduction of N = 1 supergravity to four dimensions leads to the

N = 8 supergravity theory. This approach of dimensional reduction was instrumental

in the discovery of the E7(7) symmetry in four dimensions, which subsequently led

to the elegant N = 8 supergravity Lagrangian in the covariant formalism [16]. On

reduction to four dimensions, the SO(9) little group in d = 11 decomposes as

SO(9) ⊃ SO(2)× SO(7) . (6.2)

The SO(2) is the little group in four dimensions and the SO(7) part now forms an

internal symmetry. Under the SO(7), the eleven-dimensional states split as

• GMN : 44 of SO(9) → 1 graviton, 7 vectors and 28 scalars

44 = [1× 2] + [7× 2] + [28× 1]

• AMNP : 84 of SO(9) → 21 vectors and 7 + 35 scalars

84 = [21× 2] + [7× 1] + [35× 1]

• ΨM : 128 of SO(9) → 8 spin three-half and 56 spin one-half fermions

128 = [8× 2] + [56× 2] .

The SO(7) can be upgraded to an SU(8), under which the vectors and scalars in

the SO(7) representations recombine and form a 28 and a 70 of SU(8). The SU(8)

72



along with the sigma-model like symmetry of these 70 scalar fields further leads to

the E7(7) symmetry as we discussed in chapter 4. Thus the 44 + 84 + 128 in eleven

dimensions now describes the 256-dimensional supermultiplet in (N = 8, d = 4)

supergravity theory. In the subsequent sections, we will show how we can turn the

argument around and describe the eleven-dimensional theory in terms of these four-

dimensional states. The advantage of working in the light-cone gauge is that we do not

have to include any auxiliary fields in our analysis and describe the dynamics solely

in terms of the 256 physical degrees of freedom in any given spacetime dimension.

With the (N = 8, d = 4) supergravity theory as a starting point, we now present

two different approaches to construct the eleven-dimensional theory in the light-cone

superspace.

6.2 Oxidation from d = 4 to d = 11 : Method 1

In this section, we discuss a method to restore the N = 8 theory to its eleven-

dimensional parent without altering the superfield. This is achieved by enlarging

the superPoincaré algebra by introducing an SO(7) corresponding to seven ‘new’

coordinates xm and their derivatives ∂m. This SO(7) part of the superPoincaré

algebra on reduction from d = 11 to d = 4 was upgraded to an SU(8). However,

when ‘oxidizing’ the four-dimensional theory back to d = 11, it is the SO(7) that is

relevant. This SO(7) along with the SO(2) little group in four dimensions form the

SO(9) transverse little group in eleven dimensions.

SO(9) ⊃ SO(2)× SO(7) . (6.3)

So, we give up the notion of manifest SU(8) and switch to SO(7) in our discussion.

To implement this, we now interpret the superspace coordinates θ as spinors, θα under

the SO(2)× SO(7). Henceforth, we use α, β indices for the spinors and m,n, p, q =

4, . . . , 7 for the vector indices of SO(7) (not to be confused with the SU(8) indices

used previously). The explicit form of the superfield remains unchanged. However,

all the fields now depend on the extra coordinates as well.

φ (x, x̄, xm, y−) =
1

∂+2 h(x, x̄, xm, y−) + · · · (6.4)
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6.2.1 SuperPoincaré algebra in d = 11

We now discuss the light-cone representation of the superPoincaré algebra in d = 11.

The SO(9) can be constructed in terms of the (SO(2)× SO(7)) as follows [40].

SO(9) = (SO(2) × SO(7) ) × SO(9)

(SO(2) × SO(7) )
.

The SO(2) generator, J does not get modified. The SO(7) generators are given by

Jmn = − i (xm ∂n − xn ∂n ) − 1

2
√

2
qα (γmn)αβ q̄β. (6.5)

We need to introduce the generators for the coset SO(9)/(SO(2)× SO(7))

Jm = − i (x ∂m − xm ∂ ) +
i

4
√

2 ∂+
qα ( γm)αβ qβ ,

J̄ n = − i ( x̄ ∂n − xn ∂̄ ) +
i

4
√

2 ∂+
q̄α ( γn)αβ q̄β , (6.6)

which satisfy

[
J , Jm

]
= Jm ,

[
J , J̄n

]
= − J̄n ,[

Jpq , Jm
]

= δpm Jq − δqm Jp ,[
Jm , J̄n

]
= i Jmn + δmn J . (6.7)

Thus the entire SO(9) transverse algebra is spanned by J , Jmn , Jm and J̄n. The

action of these rotations preserve the chirality of the superfield φ and its conjugate

φ̄. The rest of the kinematical generators remain the same

J+ = j+ , J+− = j+− . (6.8)

Also, there are new kinematical generators in the theory

J+m = i xm ∂+ ; J̄+n = i x̄n ∂+ . (6.9)

The free part of the dynamical boosts get modified in the following way
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J− = i x
∂∂̄ + 1

2
∂m ∂m

∂+
− i x− ∂ + i

∂

∂+

{
θα ∂̄α +

i

4
√

2 ∂+
(dα d̄α − d̄α dα)

}
− 1

4

∂m
∂+

{
∂+ θα ( γm)αβ θ

β − 2

∂+
∂α ( γm)αβ ∂

β +
1

∂+
dα ( γm)αβ d

β

}
.

(6.10)

The SO(9)/(SO(2)× SO(7)) rotations yield the remaining boost operators

J−m = [ J− , Jm ] ; J̄−n = [ J̄− , J̄n ] . (6.11)

Therefore, the dynamical supersymmetries now read

[ J− , q̄+ η ] ≡ Qη = − i ∂
∂+

q+ η −
i√
2

( γn ) η ρ q
ρ

+

∂n

∂+
,

[ J̄− , qα+ ] ≡ Qα = i
∂̄

∂+
q+

α +
i√
2

( γm )αβ q̄+β

∂m

∂+
, (6.12)

satisfying

{Qα , qη+ } = − ( γm )αη ∂m . (6.13)

Finally, the supersymmetry algebra takes the form

{Qα , Q η } = i
√

2 δαη
1

∂+

(
∂ ∂ +

1

2
∂m ∂m

)
= −

√
2P− . (6.14)

Note that we have suppressed the ‘-’ indices on the dynamical supersymmetries to

keep our notations simple.

6.2.2 Dynamical supersymmetry in d = 11

We now focus on constructing the dynamical supersymmetry in d = 11 to first or-

der in κ preserving the superPoincaré symmetry. Once we derive the explicit from

of the dynamical supersymmetry transformations on the superfield, the Hamiltonian

for the theory simply follows from the supersymmetry algebra (6.14). We start with

a most general ansatz for Qα φ and fix the ansatz by closing the commutators of
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superPoincaré algebra in d = 11. Since we are interested only in two-derivative in-

teraction terms,the dynamical supersymmetry generator must be linear in transverse

derivatives at any given order in κ. Hence we consider the following three kinds of

terms [42] :

• Terms with ∂̄ : These must remain the same as in four dimensions.

• Terms with ∂n : These terms take into account the dependence on the new

dimensions 4 . . . 10.

• Terms with ∂ : These terms do not appear in d = 4. But since in d = 11, there

is a SO(7) R-symmetry now instead of SU(8), such a term can exist.

The last kind of terms can occur in d = 11 because the tranverse derivatives ∂, ∂̄ and

∂m now form an SO(9) vector, instead of the SO(2) vector in d = 4. The existence of

these terms suggests that we cannot simply reduce the eleven-dimensional to the d = 4

theory with an SU(8) R-symmetry. We need non-trivial duality transformations (or

field redefinitions in the light-cone language) to realize the SU(8) in four dimensions.

Schematically, the ansatz for the dynamical supersymmetry contains the following

three pieces.

Qα

(κ)
φ = Qα

∂̄
+ Qα

∂n

+ Qα

∂
. (6.15)

We begin by observing that these three kinds of terms do not mix when we check

chirality and supersymmetry, since the spacetime derivatives trivially commute with

the supersymmetries qm, q̄m and the chiral derivatives dm, d̄m. The mixing occurs

only when we consider the rotations with Jm and J̄n. The first type of terms are the

known ones from (4.30) (at order κ).

Qα
∂̄φ =

1

∂+
(∂̄q̄αφ∂

+2
φ− ∂+q̄αφ∂

+∂̄φ) (6.16)

=
1

∂+
(E∂+∂̄φE−1∂+2

φ)|ρα , (6.17)

where

E = exp(
q̄ · ρ
∂+

) . (6.18)

This expression stands for

Qα
∂̄φ =

∂

∂ρα
1

∂+
(E∂+∂̄φE−1∂+2

φ)|ρα . (6.19)
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In this notation,
∣∣
ρα

means we differentiate with respect to ρ once and then set

ρ to zero. Using this technique to write the expressions makes the commutation

relation with qα straightforward. Since we use q̄’s only, chirality is also automatically

maintained. Further, the commutation relations with other kinematical generators

are trivially satisfied. The only crucial commutators that remain to be explicitly

checked are the rotations with Jm and J̄n. We start with the commutator

[J̄m, Qα] = −
√

2(γm)αβQ
β, (6.20)

where

J̄ n = − i ( x̄ ∂n − xn ∂̄ ) +
i

4
√

2 ∂+
q̄α ( γn)αβ q̄β . (6.21)

For the ∂̄- piece, the only non-trivial contribution comes from the q̄ terms in J̄n

[
i

4
√

2 ∂+
q̄β ( γn)β γ q̄γ,

1

∂+
(E∂+∂̄φE−1∂+2

φ)|ρα ]

=
i

4
√

2 ∂+2
( γn)βγ (E∂+2

∂̄φE−1∂+3
φ)|ρβ ργ ρα . (6.22)

We now move on to the ∂n-piece. In Appendix B, we discuss the gamma matrices γm

in the SO(7) space and prove some useful identities, which are liberally used in the

calculation shown below. Using some gamma matrix manipulations (C.3), we also

prove that any term with three SO(7) spinors can be expressed either as a |8〉 or a

|48〉 of SO(7) . We thus consider the most general expression by mixing the |8〉 and

the |48〉 while keeping two free parameters, c1 and c2

Qα
∂nφ = c1(γn)βγ

1

∂+2 [E∂+A∂nφE−1∂+Bφ)|ρβ ,ργ ,ρα

+ c2(γnγm)αδ(γm)βγ
1

∂+2 [E∂+A∂nφE−1∂+Bφ)|ρβ ,ργ ,ρδ , (6.23)

where A+B = 5 on dimensional grounds and c1 and c2 are arbitrary constants to be

determined by the algebra. We choose A = 2 and B = 3.
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We now consider

[− i ( x̄ ∂n − xn ∂̄ ) , c1(γm)β γ
1

∂+2 [E∂+2
∂mφE−1∂+3

φ)|ρβ ,ργ ,ρα

+ c2(γmγp)αδ(γp)βγ
1

∂+2 [E∂+2
∂mφE−1∂+3

φ)|ρβ ,ργ ,ρδ ]

=
ic1

∂+2 (γn)β γ[E∂+2
∂̄φE−1∂+3

φ)|ρβ,ργ ,ρα

+
ic2

∂+2 (γnγp)αδ(γp)βγ[E∂+2
∂̄φE−1∂+3

φ)|ρβ ,ργ ,ρδ . (6.24)

We then add (6.22) and (6.24). We notice that the term with a |8〉 is of the correct

form in (6.20) and hence the terms with |48〉 must cancel against each other. This

requirement gives us the relation

1

4
√

2
+ c1 = 0 . (6.25)

Next we focus on the commutator with the q̄ part of J̄n

[
i

4
√

2 ∂+
q̄β ( γn)β γ q̄γ, c1(γm)δ ε

1

∂+2 (E∂+2
∂mφE−1∂+3

φ)|ρδ,ρε,ρα ]

=
ic1

4
√

2 ∂+3
( γn)βγ (γm)δ ε(E∂+3

∂mφE−1∂+4
φ)|ρβ ργ ρδ ρε ρα (6.26)

and

[
i

4
√

2 ∂+
q̄β ( γn)β γ q̄γ, c2(γmγp)αδ(γp)εη

1

∂+2 [E∂+A∂mφE−1∂+Bφ)|ρε,ρη ,ρδ ]

=
ic2

4
√

2 ∂+3
( γn)βγ (γmγp)αδ(γp)εη(E∂+3

∂mφE−1∂+4
φ)|ρβ ργ ρδ ρε ρη .

(6.27)

We now turn to the third possible term : the ∂-dependent piece. We make the ansatz

Qα
∂φ = c3(γn)β γ(γn)δ ε

1

∂+3 [E∂+3
∂φE−1∂+4

φ]|ρβ ,ργ ,ρδ,ρε,ρα , (6.28)

where the free parameter c3 is to be determined. Its commutator with first part of

J̄n will contribute
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[− i ( x̄ ∂n − xn ∂̄ ) , c3(γm)β γ(γm)δ ε
1

∂+3 [E∂+3
∂φE−1∂+4

φ]|ρβ ,ργ ,ρδ,ρε,ρα

= −i c3 (γm)β γ(γm)δ ε
1

∂+3 [E∂+3
∂nφE−1∂+4

φ]|ρβ ,ργ ,ρδ,ρε,ρα . (6.29)

Finally we add the three expressions (6.26), (6.27) and (6.29) and demand that the

resulting expression reduces to the form in (C.9). The details of the calculation are

presented in Appendix B. The value of coefficients are found to be

c1 = − 1

4
√

2
,

c2 =
1

36
√

2
,

c3 = − 1

288
. (6.30)

The q̄ part of J̄n contributes one more term which contains seven γ-matrices

[
i

4
√

2 ∂+
q̄β ( γn)β γ q̄γ, c3(γm)δ ε(γm)η κ

1

∂+3 [E∂+3
∂φE−1∂+4

φ]|ρδ,ρε,ρη ,ρκ,ρα

=
i c3

4
√

2 ∂+4
(γn)β γγm)δ ε(γm)η κ [E∂+4

∂φE−1∂+5
φ]|ρβ ,ργ ,ρδ,ρε,ρη ,ρκ,ρα .

(6.31)

Using (C.14) from the Appendix, we find that the term with seven q’s has the correct

form. We thus put together all the three pieces and obtain the correct form for Qα

in d = 11 [42]

Qαφ =
1

∂+
(E∂+∂̄φE−1∂+2

φ)|ρα

− 1

4
√

2
(γn)βγ

1

∂+2 [E∂+2
∂nφE−1∂+3

φ)|ρβ ,ργ ,ρα

+
1

36
√

2
(γnγm)αδ(γm)βγ

1

∂+2 [E∂+2
∂nφE−1∂+3

φ)|ρβ ,ργ ,ρδ

− i

288
(γn)β γ(γn)δ ε

1

∂+3 [E∂+3
∂φE−1∂+4

φ]|ρβ ,ργ ,ρδ,ρε,ρα . (6.32)
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From (6.20), we can readily read off the explicit form of Qα

Qαφ =
i

72 ∂+2 (γp)αβ(γp)γδ[E∂+2
∂̄φE−1∂+3

φ)|ρβ ,ργ ,ρδ

+
i

288
√

2∂+3
(γr)αβ(γr)γδ(γm)εη

1

∂+2 [E∂+3
∂mφE−1∂+4

φ)|ρβ ,ργ ,ρδ,ρε,ρη

+
i

16128 ∂+4 (γr)αβ(γr)γδ(γm)εη(γm)κρ[E∂+4
∂φE−1∂+5

φ]|ρβ ,ργ ,ρδ,ρε,ρη ,ρκ,ρρ .

(6.33)

Once we have constructed the dynamical supersymmetries to order κ, we can now

construct the d = 11 Hamiltonian to that order. By construction, this formulation

makes the maximal supersymmetry of the theory manifest. We can also check if the

dynamical supersymmetry still commutes with the E7(7) transformations in (4.45).

We immediately see that it will not since there is a bare field φ in the last term in

(6.32), which transforms under the constant term in (4.45). There is no other term

to cancel against it. Hence we arrive at the conclusion that this version of the eleven-

dimensional theory is not invariant under the E7 variations (4.45). In principle we

should also derive the corrections to the other dynamical generators J−, J̄−, Jn− and

J̄n−. However, it is not necessary for our discussion as our main focus here is on

maximal supersymmetry.

6.3 Oxidation from d = 4 to d = 11 : Method 2

In this section, we discuss an alternative approach to “oxidize” the four-dimensional

theory to d = 11 keeping the derivative structure of the d = 4 theory intact [40], with

the hope of uncovering an E7(7) symmetry in the theory. The key ingredient in this

approach is the ‘generalized derivative’ introduced in the same spirit as in the case

of “oxidation” from d = 3 to d = 4 described in the last chapter. We start with the

following ansatz for the derivative, which incorporates the extra seven derivatives ∂m

∇ = ∂̄ +
σ

16
d̄α ( γm )αβ d̄β

∂m

∂+
, (6.34)

where σ is an arbitrary constant to be determined by the algebra. The commutator

with Jm introduces some new derivatives
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[ ∇ , Jm ] ≡ ∇m = − i ∂m +
i σ

16
d̄α ( γm )αβ d̄β

∂

∂+
. (6.35)

Note that the derivative ∂ is not introduced. These new derivatives ∇ and ∇m form

a vector under the SO(9) little group in d = 11. The key idea here is to keep the form

of the cubic vertex same as that in d = 4 and to obtain the eleven-dimensional vertex

by simply replacing the transverse derivatives in the four-dimensional expression by

the generalized derivatives. The cubic vertex in d = 11 thus reads

V =− 3

2
κ

∫
d11x

∫
d8θ d8θ̄

1

∂+2 φ ∇φ ∇φ+ c.c. . (6.36)

The SO(2) invariance remains unaffected, while the SO(7) part is covariantly realized

in eleven dimensions. So the only part left to be checked explicitly is the invariance

under the coset SO(9)/(SO(7)× SO(2)) .

Under the Jm rotation, we find

δJm φ =
i

2
√

2
ωm

1

∂+
qα ( γm)αβ q

β φ ≡ K(q) . (6.37)

The “inside-out” constraint (4.14) yields

δJm φ =
1

4

(d)8

∂+4 (δJm φ) ≡ 1

4

(d)8

∂+4 K(q) . (6.38)

We now consider

δJm ∇ = −ωm∇m , (6.39)

where ωm are the SO(9)/(SO(7)× SO(2)) coset parameters. It is straightforward to

verify that the relevant contribution comes from the terms that involve one SO(2)

derivative and one ∂m. The net variation is given by

δJ V ∝
∫ (

1√
2
iσ + i

)
1

∂+2φ ∂̄φ ∂
mφ . (6.40)
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The invariance under the coset group determines the value of σ by demanding that

the above term vanish

σ = −
√

2 . (6.41)

This completes fixes the form of the generalized derivative. In this light-cone frame,

the Lorentz invariance in eleven dimensions follows directly from the invariance under

the little group.

Thus, the light-cone (N = 1, d = 11) supergravity action to order κ reads

β

∫
d11x

∫
d8θ d8θ̄L , (6.42)

where β = − 1
64

and

L = −φ̄ �
∂+4

φ − 2κ (
1

∂+2 φ̄ ∇φ ∇φ+
1

∂+2 φ∇ φ̄∇ φ̄) , (6.43)

with the eleven-dimensional d’Alembertian operator being

� = 2 ( ∂ ∂̄ +
1

2
∂m ∂m − ∂+ ∂− ) . (6.44)

6.3.1 An E7(7) symmetry in eleven dimensions

We are now in a position to investigate a possible E7(7) symmetry of the Hamilto-

nian corresponding to the eleven-dimensional Lagrangian (6.43). The first check to

perform is the invariance under the maximal subgroup SU(8) of E7(7). Keeping in

mind that the light-cone superspace is built on the underlying SU(8) symmetry, the

eleven-dimensional Hamiltonian can be considered to be function of θ which is a 8

of SU(8). Thus the Hamiltonian in terms of the superfield φ, which is inherently a

representation of SU(8), respects the invariance under SU(8) by construction. The

E7(7)/SU(8) coset transformations (4.45) read

δφ = − 2

κ
θklmn Ξklmn

+
κ

4!
Ξmnpq 1

∂+2

(
dmnpq

1

∂+
φ ∂+3φ − 4 dmnpφ dq∂

+2φ + 3 dmn∂
+φ dpq∂

+φ

)
.
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From the structure of these transformations it is evident that the eleven-dimensional

Hamiltonian is invariant under the E7(7), since there are no ∂ mixed up with ∂̄ in the

cubic interaction term in (6.42). Also, ∇ contains only d̄m derivatives which trivially

anti-commute with the d̄ derivatives in the coset transformations. Thus, we arrive at

an action for N = 1 supergravity in d = 11 which shows E7(7) invariance at least to

order κ.

6.4 Exceptional versus superPoincaré symmetry

There exists only one theory of supergravity in eleven dimensions. So different ver-

sions of this theory must be related to each other by means of suitable field redefi-

nitions. With this understanding, we now present a comparative analysis of the two

methods of oxidation discussed in this chapter, which lead to two distinct supergravity

actions in d = 11.

In the first method, the maximal supersymmetry of the theory is apparent as the

explicit form of the dynamical supersymmetry generator is fixed from the requirement

that the superPoincaré algebra closes in d = 4. The action derived using this method

shows no signs of an exceptional symmetry in the theory.

The other method involves deriving the higher-dimensional action by replacing the

transverse derivatives in d = 4 with “generalized derivatives”. This method unveils a

hidden exceptional symmetry, E7(7) in eleven dimensions, which is not obvious in the

previous formulation. In order to relate the E7-invariant action to the other action,

we need to perform a field redefinition which will in effect conceal the exceptional

symmetry and make the superPoincaré invariance manifest in the theory. Although

one single formulation packed with all the symmetries is difficult to find, we can make

a particular symmetry visible in one formulation and relate it to the others using field

redefinitions.

The key point of our analysis is that both maximal supergravity and the exceptional

symmetry are present in eleven dimensions. We have to choose one of the two sym-

metries to be made manifest while constructing the theory. Both the symmetries are

non-linearly realized on the physical fields and can be exploited to find the Hamilto-

nian of the theory. Thus, we learn that in the light-cone formulation both maximal

supersymmetry and the exceptional symmetry are equally important, which leaves

us pondering over the question : which one is more fundamental?
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Chapter 7

Outlook and future directions

We now discuss briefly a few remarks about the results presented in the thesis. We

present some relevant open questions and research directions that we wish to pursue

in future. We begin with enumerating some of the important lessons learnt from our

study of gravity and maximal supergravity in the light-cone gauge. The key aspect

of the light-cone formulation is that only physical degree of freedom appear in the

theory. This leads to a lot of simplification and in the process brings out many nice

features of the theories. For example,

• Symmetries are non-linearly realized on the physical fields which makes this

formulation ideal for studying symmetries, both known and unknown.

• Interacting theories can be derived order by order in perturbation by demanding

the closure of (super)Poincaré algebra.

• Exceptional symmetries in light-cone supergravity act on all the physical fields

of the theory as opposed to the covariant formalism, where only the scalars and

vector fields are affected. These are symmetries of the action and not just the

equations of motion.

• In the light-cone superspace, we can use the same superfield φ to construct

maximal supergravity in all the dimensions. In this sense, the superfield should

be viewed as a collection of 256 physical states, which can be broken up into

representations of the relevant R-symmetry group in a particular dimension.

• The light-cone superspace puts the exceptional symmetries on an equal footing

as supersymmetry. Both the symmetries can be used to construct the interact-

ing Hamiltonian by virtue of their non-linear action on the fields.
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In these ways the light-cone formalism offers some useful insights into field theories.

We shall now focus on some specific results discussed in the text.

Quadratic form Hamiltonian

In chapter 3, we showed the light-cone Hamiltonian for pure gravity in four dimensions

can be expressed as a quadratic form up to order κ2

H =

∫
d3x Dh̄ D̄h . (7.1)

We also examined how the Dh̄ operator transforms under residual reparameteriza-

tions to this order. The existence of a quadratic form Hamiltonian puts gravity in a

very special class of theories which admit such Hamiltonians . In Table (7.1), we list

down all such theories which show this feature.

Table 7.1: Field theories with a quadratic form Hamiltonian in four dimensions

Theory Quadratic form Hamiltonian

Yang-Mills Yes

Gravity Yes (up to O(κ2))

N = 4 superYang-Mills Yes

N = 8 supergravity Yes (up to O(κ))

Non-maximally supersymmetric theories No

In four dimensions pure Yang-Mills theory, which is the basis of the Standard Model

of particle Physics, and its maximally supersymmetric cousin, N = 4 superYang-

Mills theory which happens to be an ultraviolet finite theory, have such quadratic

form Hamiltonians. The fact that gravity and N = 8 supergravity Hamiltonians

also share a similar feature, might be an indication of some hidden symmetry in the

theory of gravity. In order to fully appreciate the quadratic form structure, we must

understand what is the physical significance of the Dh̄ operator. The quadratic form

could also hint at some deeper links between gravity with gauge theories.

Interestingly, the quadratic form structure breaks down for theories with less than

maximal supersymmetry. One possible explanation is that the supersymmetric trun-

cation [44] ∫
d4x d8θ d8θ̄L =

1

16

∫
d4x d7θ d7θ̄ d̄4 d

4 L
∣∣∣∣
θ8 = θ̄8 =0

, (7.2)
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spoils the quadratic form structure. This point strongly suggests that maximal super-

gravity and superYang-Mills theories have rich structures, which could be responsible

for their unique quantum properties.

Exceptional symmetry in eleven dimensions

In the previous chapter, we discussed how we can see the signs of an E7(7) symmetry in

eleven-dimensional supergravity, starting form the N = 8 theory in four dimensions.

Apart from teaching us about the origin of exceptional symmetries in supergravity

theories, the d = 11 theory is interesting in its own right. The study of symmetries

in (N = 1, d = 11) supergravity might offer new insights into M-theory whose actual

structure eludes our understanding . Although we do not discuss any particular

consequence of the E7 symmetry for M-theory in our work, we believe that our

analysis of exceptional symmetries in eleven dimensions could open up a new window

to look into the underlying structure of M-theory.

Finiteness analysis for N = 8 supergravity

We began our search for hidden symmetries in N = 8 supergravity with the hope that

such a symmetry could explain the improved ultraviolet behavior of the theory. Using

our method of dimensional reduction to d = 3, field redefinition and dimensional

oxidation, we were able to uncover an E8 symmetry enhanced from the E7 already

present in four dimensions. It is important to note that the manifestly E8 symmetric

formulation is proven to be Lorentz invariant. Thus, we must further investigate the

possible implications of this symmetry for N = 8 supergravity.

In the light-cone superspace, there exists a powerful finiteness analysis framework [4,

5, 45, 46], which was originally devised to prove that the N = 4 superYang-Mills

theory finite to all orders. When we apply this analysis to N = 8 supergravity at the

cubic order, the chirality constraint on the superfield (4.13) rules out the existence of

a three-point counterterm in the theory [30], which is in keeping with the well-known

results of [47]. Thus the first appearance of a counterterm could be at the four-point

level. At this point, we must take into account the non-linear exceptional symmetries

since these relate terms of different order in κ.

So, our immediate next step in this direction will be to incorporate these exceptional
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symmetries in this well established finiteness analysis for N = 8 supergravity, which

is crucial for understanding the role of the E7 and the new E8 symmetry in the

ultraviolet properties of this theory.

In this context, it is important to mention that a very recent paper on five-loop

amplitudes in N = 8 supergravity [48] reaffirms the possibility of a seven-loop four-

point counterterm in the theory, which is compatible with the E7 symmetry [7].

An all-order finiteness analysis in the light-cone superspace (in light of the new E8

symmetry) may prove to be useful in settling this issue - whether or not this seven-

loop counterterm exists in (N = 8, d = 4) supergravity.
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Appendix A

Deriving interacting theories from

symmetry principles

The material presented here is primarily based on the work done by the author in [26].

Deriving spin-1 interaction vertices : An example

In this appendix, we briefly discuss the procedure for constructing the light-cone

action for a theory of massless interacting spin-1 fields by demanding the closure of

Poincaré algebra. Any massless field in four dimensions has two physical degrees of

freedom φ and φ̄ , which correspond to the + and − helicity states respectively.In

the light-cone frame, the kinematical Poincaré generators that do not involve time

derivatives are

P+ , P , P̄ , J , J+ , J̄+ and J+− . (A.1)

The dynamical ones which involve time derivatives are

P− ≡ H , J− , J̄− , (A.2)

These generators pick up corrections when interactions are switched on. We also

introduce the Hamiltonian variation

δHφ ≡ ∂−φ = {φ,H} =
∂∂̄

∂+
φ , (A.3)
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where the second equality only holds for the free theory. In an interacting theory,we

must add corrections to the the δH operator order by order, in the coupling constant.

The main idea is to start with an ansatz for the operator δH φ, close all the commuta-

tors of the light-cone Poincaré algebra listed before (2.13) to fix the ansatz completely

and thus determine the interacting part of the Hamiltonian variation..

Cubic interaction vertices

Cubic interaction vertices for fields of any arbitrary integer λ were derived in [22].

At order α, we start with a δHφ that is proportional to two fields, since a cubic vertex

in the Hamiltonian involves three fields, φ̄φφ.

δαHφ = αK ∂+µ

[
∂̄B ∂C ∂+ρ φ ∂̄D ∂E ∂+σφ

]
, (A.4)

where K is an arbitrary constant and µ, ρ, σ B,C,D,E are integers that will be fixed

by the algebra1. On closing the commutator of this ansatz with δJ+− , we get [22]

µ+ ρ+ σ = −1 . (A.5)

The commutator with δJ yields

B +D = 1 ; C = E = 0 . (A.6)

The rest of the commutators determine the values of the remaining integers µ, ρ and

σ. We thus obtain the cubic interaction vertices [22]

δαHφ = α

λ∑
n=0

(−1)n
(
λ

n

)
(∂+)

(λ−1)

[
∂̄(λ−n)

∂+(λ−n)
φ
∂̄n

∂+n
φ

]
, (A.7)

for even λ.

Appearance of the “structure constant”

Surprisingly, it was found that there exists a non-trivial solution for odd-helicity fields

if and only if we introduce an antisymmetric three-index object fabc [22],

1The ansatz involving one φ and one φ̄ works in a similar way.
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δαHφ
a = αfabc

λ∑
n=0

(−1)n
(
λ

n

)
(∂+)

(λ−1)

[
∂̄(λ−n)

∂+(λ−n)
φb

∂̄n

∂+n
φc
]
. (A.8)

The same procedure can now be repeated to determine δHφ corresponding to the

α φ̄φ structure, which leads to the other cubic vertex of the form φ̄φ̄φ.

The action, to this order, then directly follows from (A.7) and (A.8)

S =

∫
d4x

(
1

2
φ̄�φ+ α

λ∑
n=0

(−1)n
(
λ

n

)
φ̄(∂+)

λ

[
∂̄(λ−n)

∂+(λ−n)
φ
∂̄n

∂+n
φ

]
+ c.c.

)
, (A.9)

for even λ and

S =

∫
d4x

(
1

2
φ̄a�φa + αfabc

λ∑
n=0

(−1)n
(
λ

n

)
φ̄a(∂+)

λ

[
∂̄(λ−n)

∂+(λ−n)
φb

∂̄n

∂+n
φc
]

+ c.c.

)
,(A.10)

for odd λ. These results, when applied to the cases of λ = 2 and λ = 1, match

the gravity and Yang-Mills actions, obtained by light-cone gauge-fixing the covariant

actions.

Quartic interaction vertices

We now extend this formalism to order α2 for the specific case of λ = 1. We denote

the two fields in the Yang-Mills theory by A and Ā, which have helicity +1 and

−1 respectively. The perturbation constant in this case, 2α is identified with the

dimensionless Yang-Mills coupling constant g . We start with the results discussed

in the previous section,

δgHA
a = +g fabc

{
−Ac ∂̄

∂+
Ab +

1

∂+2 (∂+2
Ab

∂

∂+
Āc)− 1

∂+2 (∂∂+Ab Āc)

}
. (A.11)

The key commutator in this case involves the Hamiltonian variation and J−

[δJ− , δH ]Aa = 0 . (A.12)
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In this computation, we focus on the terms of the form AAĀ only2. We first consider

the order g2 contributions to this commutator from [δgJ− , δH
g]Aa. This calculation

involves the following two pieces : orbital part, L− and the spin part, S−. The orbital

part is straightforward.

[δgL− , δH
g]Aa = [x δH

g , δH
g]Aa = −g fabcAc 1

∂+
(δH

g Ab) , (A.13)

For the spin part, we need to use the corrections to the spin generator at order g [22]

δg
S̄−A

a = −g fabc 1

∂+2

(
1

∂+
Āc ∂+2

Ab + 3 Āc∂+Ab
)
, (A.14)

δgS−A
a = +g fabc

1

∂+
AbAc . (A.15)

Hence the spin part of the commutator (A.12) yields

[δgS− , δ
g
H ]Aa =+ g2 fabc

{
f bde

1

∂+2

(
∂+2

(
1

∂+
AdAe)

∂

∂+
Āc
)
−f bde 1

∂+2

(
∂∂+(

1

∂+
AdAe)Āc

)
−f cde 1

∂+2

(
∂+2

Ab
∂

∂+3 (
1

∂+
Ae ∂+2

Ād + 3Ae∂+Ād)

)
+f cde

1

∂+2

(
∂∂+Ab

1

∂+2 (
1

∂+
Ae ∂+2

Ād + 3Ae∂+Ād)

)}
−g fabc δgHA

c 1

∂+
Ab − g fabcAc 1

∂+
(δgH A

b) . (A.16)

There are contributions to (A.12), which comes from commutators with one generator

at order g0 and one at order g2. To evaluate these contributions, we need to construct

an ansatz for δg
2

H .

We begin with a general structure of the form 3

δg
2

HA
a = +g2K fabc f cde ∂+µ

[
∂̄B ∂C ∂+ρAb ∂+σ

(
∂̄D ∂E ∂+ηAd ∂̄F ∂G ∂+δ Āe

) ]
,

(A.17)

2It can be checked that the terms of the form AAA vanish independently
3We may write down other combinations with the derivatives put in different places. But it can

be shown that all such structures can be traced back to the form in (A.17).
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with the constant K and integers µ, ρ, σ, η, δ, B,C,D,E, F,G to be fixed by the

algebra.

We consider the commutator with δJ , which gives the following constraints

B +D + F = C + E +G = λ− 1 . (A.18)

Thus for λ = 1 no transverse derivatives are allowed. So, our ansatz reduces to

δg
2

HA
a = +g2K fabc f cde ∂+µ

[
∂+ρAb ∂+σ

(
∂+ηAd ∂+δ Āe

) ]
. (A.19)

The commutator with δJ+− put the following condition on the undetermined constants

µ+ ρ+ σ + η + δ = −1 . (A.20)

Finally, we consider the last piece of the computation which involves

[δg
2

L− , δ
0
H ]Aa + [δ0

J− , δ
g2

H ]Aa , (A.21)

Here, we have taken the correction to the spin generator at order g2 to be zero in the

first commutator (which is explained in details in the next section).

We find that the following solution which satisfies the commutator (A.12)

(µ = −1 ; ρ = +1 ; σ = −2 ; η = 0 ; δ = +1)

+ (µ = 0 ; ρ = 0 ; σ = −2 ; η = +1 ; δ = 0) , (A.22)

Thus our solution is a sum of two terms with the constants µ , ρ... taking these two

sets of values.We may try to consider a more general case, but such a computation

is far more lengthy and unnecessary for our discussion.
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We present the explicit computation of (A.21) for the aforementioned set of values.

fabcf cde[− 1

∂+2
(∂+∂Ab

1

∂+2
(Āe∂+Ad)) +

1

∂+2
(∂+∂Ab

1

∂+2
(∂+Ā

e
Ad))

+
1

∂+2
(
∂

∂+
AbĀe∂+Ad) + 2

1

∂+2
(∂+Ab

1

∂+2
(Āe∂∂+Ad))− 1

∂+2
(∂+Ab

1

∂+
(∂+Āe

∂

∂+
Ad))

−2
1

∂+2
(∂+Ab

1

∂+
(
∂

∂+
Āe∂+Ad)) +

1

∂+2
(∂+Ab

1

∂+2
(∂+∂ĀeAd))

−2
1

∂+2
(∂+2Ab

1

∂+3
(∂+Āe∂Ad)) + 4

1

∂+2
(∂+2Ab

1

∂+3
(∂Āe∂+Ad))

+2
1

∂+2
(∂+2Ab

1

∂+3
(Āe∂∂+Ad))− 1

∂+2
(∂+2Ab

1

∂+2
(∂+Āe

∂

∂+
Ad))

− 1

∂+2
(∂+2Ab

1

∂+2
(
∂

∂+
Āe∂+Ad))− 1

∂+2
(Ab

∂

∂+
Āe∂+Ad)

− 1

∂+2
(∂+Ab

1

∂+2
(∂+Āe∂Ad)) + 4

1

∂+2
(∂+Ab

1

∂+2
(∂Āe∂+Ad))] . (A.23)

Emergence of a gauge group

The important point here is that the two expressions in (A.13) and (A.16) beautifully

cancel against the huge mass of terms in (A.23), if and only if the fabc introduced in

(A.8) are assumed to satisfy the Jacobi identity,

fabc f bde + fabd f bec + fabe f bcd = 0 . (A.24)

Also in order to prove that the terms of the form AAA vanish, the Jacobi identity is

indispensable.

This requirement signals the emergence of a gauge group in theory. Thus the fields

Aa and Āa describe a non-abelian gauge theory, namely the Yang-Mills theory.

Thus, we obtain the expression for the Hamiltonian variation at O(g2)

δg
2

HA
a = g2 fabc f cde

[
1

∂+

(
∂+Ab

1

∂+2 (∂+ĀeAd)

)
− Ab 1

∂+2 (Āe ∂+Ad)

]
, (A.25)

which eventually leads to the same quartic interaction terms in the action as those

obtained by light-cone gauge-fixing the covariant Yang-Mills action.
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The spin generator at order g2

We now prove that δg
2

S− = 0. We first list below the helicities and dimensions of the

objects involved in the analysis.

Quantity Helicity Dim [L]

x +1 +1

x̄ −1 +1

∂ +1 −1

∂̄ −1 −1

A +1 −1

Ā −1 −1

∂+ 0 −1

At lowest order, the spin generators given by

δ0
S−Aa = − ∂

∂+
Aa . (A.26)

It has helicity +2 and a length-dimension of −1. On these grounds, we make an

ansatz at order g2 which is of the form

δg
2

S−A
a ∼ g2AA∂

1

∂+3 Ā . (A.27)

The commutator with δJ+− , however puts a rigid constraint on the structure of δg
2

S−Aa.

The number of ∂+’s in the denominator must be one greater than that in the numer-

ator (see for example (A.20)) for this commutator to work. This immediately rules

out the above ansatz.

Similarly, we can check the other commutators one by one. We observe that no

combination of the objects in the table above (involving three fields) satisfies the

Poincarè algebra. Thus a proof by exhaustion leads us to conclude that there are no

corrections to the spin generator at the quartic order.

This completes the construction of the light-cone representation of the Poincaré al-

gebra for spin-1 interacting fields. Therefore, using this framework we can derive the

entire Yang-Mills theory in four dimensions, just by demanding the closure of the

Poincarè algebra.
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Appendix B

Fermions in the light-cone gauge

To deal with fermions, it is convenient to work with the gamma matrices expressed

in the light-cone notation

γ+ =
1√
2

(γ0 + γ3) ; γ− =
1√
2

(γ0 − γ3)

γ =
1√
2

(γ1 − iγ2) ; γ̄ =
1√
2

(γ0 − iγ2) . (B.1)

The gamma matrices satisfy the Clifford algebra

{ γµ , γν } = 2 ηµν ,

where ηµν is the light-cone metric (2.4).

We can now define two projection operators

π+ = −1

2
γ+γ− ; π+ = −1

2
γ−γ+ (B.2)

with the properties

π+
2 = π+ ; π2

+ = π+ ; π+π− = π−π+ = 0 (B.3)

Using these operators, a spinor ψ in the light-cone frame can be split into “+” and

“-” components

ψ+ = P+ψ ; ψ− = P−ψ .
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such that ψ = ψ+ + ψ−. This analysis will be useful when we discuss supersymme-

try as the supersymmetry generators, which are fermionic in nature, have a similar

decomposition in the light-cone formulation.

Free action for fermionic fields

We start with the Dirac Lagrangian for a spinor field in four dimensions and obtain the

equations of motion. It turns out that the equation for ψ− is an algebraic constraint

relation, which can be used to eliminate ψ− from the theory. ψ+ contains two real

components, which can be combined in a complex anticommuting field ψ(x). The

equation of motion for ψ looks the same as that of a bosonic field. However, the

important difference is that the dimension of ψ is not the same as that of a bosonic

field. Thus the free action for a fermion in four dimensions reads

S =

∫
d4x ∂+ψ̄(x)

�
∂+

ψ(x) (B.4)

One can also derive interacting theories with fermionic fields in the light-cone for-

mulation. These theories obviously cannot have three-point (or any odd order) self-

interaction terms, but we can consider the coupling of fermionic fields to an integer

spin field [49]. Such couplings occur naturally in theories with supersymmetry.
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Appendix C

Gamma matrix manipulations in

d = 11

In this appendix, we discuss some useful identities and gamma matrix manipulations

for SO(7) spinors. These identities are important for our calculations, because the

kinematical supersymmetries, qm and q̄m transform in a 8-dimensional spinor repre-

sentation under the SO(7) in eleven dimensions.

We consider the 28 antisymmetric γ-matrices, γm and γmn, where the indices m,n. . . .

run from 1 through 7.

The relevant Fierz identity for the product of two SO(7) spinors is

AαAβ = −1

8
γmαβ Aγ

mA+
1

16
γmnαβ Aγ

mnA. (C.1)

where the α, β, ..... are spinor indices.

We will now show how to manipulate expressions involving multiple spinors. In order

to bring them to a convenient form, we must write all such expressions in terms of

the SO(7) irreducible representations.

In the case of two spinors, we can express the 28 different components as 7 + 21 as

shown in (C.1).
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Expressions involving three spinors

Consider the following expression

γnβγ (E∂+2∂̄φE−1∂+3φ)|ρα,ρβ ,ργ = γnβγ
∂

∂ρα
∂

∂ρβ
∂

∂ργ
(E∂+2∂̄φE−1∂+3φ)|ρ=0

≡ γnβγ AαAβAγ B. (C.2)

In order to convert such expressions to the form (40), we use the Fierz identity to

obtain a prefactor of the form γnαβ.

With three spinors A we get 56 components which split into 8 and 48 as follows.

|8〉3 = (γqA)αAγ
qA,

|48〉3 = AαAγ
pA− 1

7
(γpγqA)αAγ

qA.

Any expressions with 3A’s can now be decomposed in terms of these states, for

example

(γrA)αAγ
rpA = 5

(
AαAγ

pA− 1

7
(γpγqA)αAγ

qA

)
− 2

7
(γpγqA)αAγ

qA. (C.3)

Using the Fierz identity we also find

(γqA)αAγ
qA =

1

2
(γqrA)αAγ

qrA, (C.4)

Expressions involving four spinors

In an expression with 4 A’s, there are 70 components. These can be split up as

AγmAAγnA which is 1 + 27.

AγmAAγmnA which is 7.

Aγ[mAAγnp]A which is 35.
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Expressions involving five spinors

We now focus on expressions with 5A’s. The corresponding irreducible forms for five

spinor combinations are

|8〉5 = AαAγ
rAAγrA

|48〉5 = (γrA)αAγ
pAAγrA− 1

7
(γpA)αAγ

rAAγrA.

With the help of Fierzing an expression with 5A’s decomposes as

AαAγ
pqAAγqA = −2

3
[(γrA)αAγ

pAAγrA− 1

7
(γpA)αAγ

rAAγrA] +
4

7
(γpA)αAγ

rAAγrA.

(C.5)

This formula leads to an useful result

(γpA)αAγ
prAAγrA = 4AαAγ

rAAγrA (C.6)

We can derive two other useful formulae

AαAγ
pAAγqA =

1

9
(γpγrA)αAγ

rAAγqA

+
1

9
(γqγrA)αAγ

rAAγpA

+
1

9
δpq AαAγ

rAAγpA, (C.7)

and

AαAγ
[pqAAγr]A = −1

9
(γpqγsA)αAγ

sAAγrA

−1

9
(γrpγsA)αAγ

sAAγqA

−1

9
(γqrγsA)αAγ

sAAγpA. (C.8)

Using the above formulae, equations (6.26), (6.27) and (6.29) in chapter 6 yields the
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following expression (up to a common prefactor)

c1AαAγ
nAAγmABm + c2(γmγpA)αAγ

nAAγpABm − c3AαAγ
mAAγmABn

=
c1

9
(γnγrA)αAγ

rAAγmABm

+
(c1

9
+ c2

)
(γmγrA)αAγ

nAAγrABm

+
(c1

9
− 4
√

2 c3

)
AαAγ

rAAγrABn (C.9)

The first term on the r.h.s is of the desired form. Hence, the other two terms must

vanish. This fixes the value of the free parameters in our ansatz.

c1 = − 1

4
√

2
, (C.10)

c2 =
1

36
√

2
, (C.11)

c3 = − 1

288
. (C.12)

Expressions involving seven spinors

We now consider expressions with seven A’s. Such an expression appears in (6.31).

In this case, only an 8 is possible.

|8〉7 = (γmA)αAγ
mAAγnAAγnA. (C.13)

Using the Fierz identity we immediately get

AαAγ
nAAγmAAγmA =

1

7
(γnγrA)αAγ

rAAγmAAγmA. (C.14)
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