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Abstract

Animals have evolved a variety of features that help them to move in different
media, like air, water or land. Such features usually develop such that the
finite amount of energy available to the animals is utilized more efficiently.
Hydra is one such animal, which has a diverse set of mechanisms for loco-
motion, including looping, swaying and somersault. It has a small (about 5
mm) tubular shaped body with tentacles at one end. Hydra belongs to the
phylum of Cnidaria, which were the earliest phylum to evolve differentiated
neuronal /muscular tissues and extracellular matrix (ECM) properties.

The motivation for the thesis comes from the experiment conducted in
Dr. Shivprasad Patil’s lab, by Suyash Naik, Manu Unni and Shatruhan Singh
Rajput. In this experiment, an AFM (Atomic Force Microscope) was used
to produce a spatially resolved map of tissue elasticity along the Hydra’s
body column. It was observed that Hydra polyps have a three times higher
stiffness in first 25% of their body column than the rest (the stiffness ratio of
3:1). A careful examination of Hydra’s motion led to the hypothesis by Dr.
Shivprasad Patil that the stiffness gradient of 3 : 1 may help Hydra utilise
its stored energy more efficiently during its somersault motion, compared to
a Hydra with no stiffness variation.

In this thesis, we propose a coarse grained computer simulation model,
to investigate the link between Hydra’s somersault and the observed stiffness
gradient. We explore the energetics the somersault motion by analysing the
dynamics of action-reaction forces like viscous drag, gravity, buoyancy in our
simulations. We also compare and contrast other stiffness ratios and attempt
to understand if there is a special significance of the ratio 3 : 1.

The last chapter of the thesis is dedicated to some additional work done
on the topic of Shear banding in wormlike Micelles. In this chapter, we report
preliminary results of first time observation of the phenomena of shear band-
ing in a wormlike micellar system, using molecular dynamics simulations.
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Chapter 1

Introduction and Experimental
overview

As a result of millions of years of evolution, animals have developed multiple
different ways to move through aquatic, terrestrial, fossorial, as well as aerial
media. Many animals have also developed abilities to move across two or
more different media, for example, a Brown Pelican can completely submerge
itself in water from mid-flight, and fly again directly from the ocean surface
[1].

Locomotion is defined as the process of moving from one place to an-
other. Animals use locomotion for many different reasons, such as running
from predators, looking for mate, searching for food, or changing their micro-
habitat. Locomotion is also not always an active process like swimming,
hopping, running etc. Some animals depend on their environment for loco-
motion. For example, a species of tiny beetles called N. kronaueri, recently
discovered in the jungles of Costa Rica have the ability to attach themselves
on top of army ants to move [2]. Such type of locomotion is known as “passive
locomotion” [3].

The energetics of locomotion is governed primarily by the action-reaction
forces of Newton’s third law. An animal needs to overcome multiple different
types of forces in order to move, such as viscous drag, gravitation, inertia
etc. The magnitude of these forces depend on the medium and the animal’s
size, for example viscous drag is much higher in water than on land.

In general, all forms of locomotion require energy, which is not available
for other efforts. Animals thus tend to progressively evolve features that
utilize energy with increasing efficiency over multiple generations [4].

There are also cases where such an efficient use of energy is not optimal,
and the priority is given to performance. An example of such a case could
be running away from predators.



Animals also don’t always tend to use only a single form of locomotion.
Some animals tend to use more than one way to move, depending upon the
situation. For example, a wheel spider, which would otherwise move using
its legs, escapes Pompilid wasps by turning to its side and cartwheeling down
the sand dunes [3].

Some animals also use a mixture of active and passive forms of locomotion
at the same time, while at other times use a purely passive, or a purely active
form of motion. An example of such an animal is Hydra.

Hydra is a small fresh water organism that belongs to the class of Hy-
drozoa and the phylum Cnidaria. They have a long cylindrical body column
about 5 mm in length. Hydra’s body wall is composed of two cell layers
[6],[7](called the epithelial cells) separated by a thin, structure-less layer of
connective tissue called the Mesoglea (ﬁg.

o

Ectoderm

Mesoglea

Endoderm
~5mm

SN———
~0.T mm

Figure 1.1: Hydra is typically observed to be around 5 mm in length and 0.1
mm in diameter. The Hydra cell wall is composed of a Mesoglea, which is
sandwiched between the Endoderm and Ectoderm cells.

Just like other animals discussed, Hydras show a variety of methods for
locomotion. They utilize passive locomotion by generating small air bub-
bles in their basal disc and float along the water current [8]. They destroy
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the bubble once they reach their favourable location. They also show more
complex movements such as swaying, looping and somersault.

In looping, the Hydra extends and attaches to the substrate using its
tentacles, and then drags its base close to the hypostome. It then proceeds
to detach its tentacles with the base firmly attached to the new position
on the substratum. Somersault (fig is slightly different than looping,
in that it involves adhering to the substrate with the tentacles for traction.
The body is moved around the head in a semi-circular arc, with characteristic
contractions.

Stage 1 Stage 2 Stage 3 Stage 4

e~ L

Figure 1.2: Hydra’s somersault motion is shown as a four stage process. The
first two stages consists of contraction from a stretched state. This is achieved
by the detachment of basal-tip, which is initially adhered to the substrate.
The later two states show the upward motion of the basal tip, which moves
the Hydra body in an inverted position.

The focus of this thesis, is to investigate the energetics of the somersault
motion. This investigation was motivated by a peculiar Young’s modulus
variation observed along the body column of Hydra using an atomic force
microscopy (AFM).

The elasticity, or the Young’s modulus of the Hydra is largely controlled
by the ECM which is sandwiched between its two cells (ﬁg. Hydra polyp
was attached to a substrate, and the Young’s modulus along its body column
was measured using an AFM. A sharp stiffness gradient was observed, with
the top 25% of its body column having a stiffness roughly three times the
rest (fig . As discussed previously, animals have been known to evolve
certain physical features which leads to a more efficient utilization of energy
during locomotion, as its an energy intensive process. Having made this
observation, and also noting the fact that Hydra’s somersault motion always
involves rising up with the stiffer end firmly placed on the substrate, led us to
investigate a possible link between this Young’s modulus ratio 3 : 1 between
the head and the basal region of Hydra, and its somersault motion.

In particular, it was hypothesized that having a stiffness gradient leads to
a more efficient energy storage and utilization during the somersault motion
of Hydra. This thesis is a review of experiments and computer simulations



conducted to validate this hypothesis, and understand the significance of
such a stiffness gradient in Hydra.

1.1 Thesis outline

The first chapter of the thesis includes, from section onwards, a brief
overview of all the experiments conducted in the labs of Dr. Shivprasad
Patil and Dr. Sanjeev Galande, by Suyash Naik, Manu Unni, Shatruhan S.
Rajput and P. Chandramouli Reddy. Section [I.3]summarises how the AFM
measurements were conducted and the result of the measurement, which
showed a stiffness gradient with a ratio of 3 : 1 along the body column of
Hydra. In the two subsequent sections, we review the chemical and physical
perturbations done to the hydra, to make its stiffness uniform. This was
done to check if the our hypothesis was valid, and if Hydra is able to perform
the locomotion with a uniform stiffness.

In the section we explore the question of Hydra’s rising up motion
being passive or active. We attempt to answer this by looking at the trend
of the bending energy dissipation curve. We end chapter 1| with section
where we review an experiment done to measure the density of Hydra by
letting it fall in a long, thin water column, and using Bernoulli’s equations.

To understand the energetics of somersault, and to explore the signifi-
cance of this special value of Young’s modulus ratio of 3 : 1, we developed a
physics based computer simulation scheme. Chapter [2]begins with the intro-
duction to this simulation scheme. Subsequent sections in chapter lay the
groundwork for the model’s validation and discuss its scope. After validating
the model, we make a qualitative, visual comparison of the somersault mo-
tion between a real Hydra and the Hydra generated from our simulations in
section In the section on units after this (sec, we establish the final
connection between the real world Hydra and the simulations on a quanti-
tative basis. We develop mathematical equations and tables which help us
translate between the numbers in the simulations and the real world.

Having validated the model and the units of the simulation in chapter
we present the analysis to validate the hypothesis using the simulation
model in chapter (3| In sections |3.1 and we compare the simulation
model with a uniform stiffness with the one with the experimental value of
stiffness gradient ratio. We track the energy stored in the shoulder and the
basal region separately and check if the energy storage and dissipation is
more efficient in the experimentally observed case. We carry out our initial
analysis without the presence of gravity or buoyancy, and also initialise all
our comparison cases of simulation at the same potential energy. In sec
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we show that the average force exerted from the basal end to the stiffer
shoulder region is higher in the cases where stiffness gradient is present. We
also note in the subsequent sections that when we put in the experimentally
observed values of Hydra density, the case with the uniform stiffness is unable
to complete its somersault, thus reproducing the experimental results. We
also discuss the link between Hydra’s density and the stiffness ratio of 3 : 1
by using phase plots in section[3.7] In this chapter, we were able to establish
to some extent the importance of having a stiffness gradient ratio, and how
it is a massive improvement over just having a uniform gradient. We also
establish that the ratio should be between two to six (« € [2,6]), for optimal
energy storage and transfer.

In Chapterwe summarize our results and discuss some drawbacks of our
simulations and experiments (sec . We provide some insights into how
the simulations could be refined further in the future, and how the scope of
current simulations can be improved by further analysis.

The simulations, modelling and analysis was conducted in the lab of Dr.
Apratim Chatterji, by Devanshu Sinha, Dr. Apratim Chatterji and Dr. Shiv-
prasad Patil.

1.2 Motivation: Why study Hydra’s somersault?

Animals have evolved several features over multiple cycles of evolution, to
optimally use their energy for movement. One such trait is the evolution of
differentiated neuronal /muscular tissues and extracellular matrix (ECM).

Cnidarians were the earliest phylum to evolve these features. Investigat-
ing how the differential stiffness, generated by the ECM, is responsible for the
movement of Hydra may improve our understanding of how more complex
organisms developed their musculoskeletal systems.

Additionally, the need of an optimal elasticity variation for greater energy
efficiency in liquid environments could be a significant design principle for
building artificial machines and advance the field of the untethered small-
scale robots working in confined areas [9].

1.3 Measurement of Hydra’s elasticity using Atomic
Force Microscopy

Most organisms use tissues of different elastic properties in different parts
of their body, which helps in an efficient energy storage and consumption



Substrate

Figure 1.3: An AFM consists of a cantilever, which is attached to a Piezo.
The top of the cantilever is coated with a material which reflects a laser beam
to a photodetector. As the cantilever moves along the substrate, the beam is
deflected due to the forces between the cantilever tip and the substrate. The
movement of the laser beam, tracked by the photodetector, reveals the surface
topology. Source: https://www.nanosurf.com/ (Used with permission of Dr.
Sujit K Dora, Application Scientist, Nanosurf)

during the locomotion [10], [I1]. For example, exoskeleton in invertebrates
and musculoskeletal systems in the vertebrates.

The different stiffness properties exhibited by these tissues help in loco-
motion. Since Hydra uses multiple complex mechanisms for its locomotion,
we wanted to investigate if it also shows some kind of spatial variation of
stiffness along its body column.

To measure such a spatial variation in detail along Hydra’s body column,
an atomic force microscope was used. An Atomic Force Microscope, or an
AFM, consists of a cantilever attached to shaker. The cantilever, at its
other end has a sharp tip that interacts with the substrate in different ways,
depending upon the properties which need to be measured. The tip end of
the cantilever also consists of a reflective surface at the top/up side, to reflect
a laser beam while it raster scans the substrate. The deflections of this laser
beam can be measured via a position sensitive photodetector, which picks up
the vertical and lateral motion of the probe. The photodetector’s deflection
sensitivity is calibrated in terms of the nanometers of motion versus the
measured voltage (fig 1.1)

A tip-less cantilever, with a spherical glass bead glued to it at the end
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Figure 1.4: A. The cantilever tip raster scans along the hydra body column.
The zoomed in image of the cantilever has a glass bead attached to it using
Dynax-431 glue. B. Shows a sample force versus tip and substrate separation
curve obtained from the AFM and its fit with the Hertz model
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was used to measure the elastic properties of Hydra. A glass bead, instead
of a sharp tip is generally used in a cantilever when we measure the elastic
properties of the substrate, instead of mapping the microscopic surface.

The glass bead is pushed on the surface of the body column of the hydra,
thus deforming it. This deformation curve is fitted with the Hertz model, to
extract the elastic moduli (the Young’s modulus in our case) of the part of
the body column being deformed.

Hertz contact mechanics model can only be used when the nature of the
elastic contact is non-adhesive. This means that in order to justify the use of
Hertz model, we needed to check if the deformation curve followed any kind
of hysteresis. It was observed that this was not the case, thus validating the
use of Hertz model.

The AFM measurements of Young’s modulus along the Hydra’s body
column (fig [1.5) showed a very peculiar character. We observed that the
Young’s modulus was not uniform along the body column, but it was on an
average the upper quarter of the body column had thrice the stiffness of the
rest.

0 25 50 75 100
1600 [ ' ' ' "4 1600
Young’s Modulus
gradient
E W 1.4 kPa
L 1200 | 1{ 1200
o B 0.4kPa
=
>
©
(@]
=
w
2 800} 1 800
3
©]
>
400 | -1 400
0 25 50 75 100

Distance along the body column (%)

Figure 1.5: Young’s modulus measured along the body column of the Hydra
varies with the distance along its body column. The top 25 % of the Hydra’s
body column shows a three times higher stiffness than the rest
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Motivated by these experimental studies, it was hypothesized this stiff-
ness gradient plays an important role in the second half of Hydra’s somersault
motion (ﬁg To investigate this hypothesis further, Hydra’s regenerative
property was exploited. Using chemical and physical perturbation, Hydra’s
ECM, which is primarily responsible for its stiffness, was destroyed and com-
pared with the Hydra with the stiffness gradient. These experiments are
reviewed in the next section.

1.4 Chemical Perturbation To Mitigate ECM
Stiffness

To understand the role of stiffness gradient along the body column of Hydra
for its locomotion, we need to compare a regular hydra (with a stiffness gradi-
ent) with the one without a stiffness gradient. For this, Hydra’s regenerative
properties was exploited. It is known that 2,2’-Dipyridyl (DP) is a chemical
which inhibits ECM polymerization in Hydra [12], [13], [14], [15]. In the
chemical perturbation experiments, Hydra polyps were treated with DP for
a time of 72 hours. AFM measurements of Hydra polyps after 72 hours of
DP treatment showed that Hydra had a uniform stiffness throughout their
body column, as opposed to having a stiffness gradient.

Interestingly, it was also observed that there were zero events of Hydra
polyps showing their somersault. This gave the first indication that there
could be a possible correlation between Hydra’s ability to somersault and
the stiffness gradient along its body.

After a further 36 hours, it was observed that the somersault movement
had started again. This also correlates well with the fact that at this time,
the stiffness gradient along the Hydra’s body column had been restored to
its original value.

1.5 Physical Perturbation To Mitigate ECM Stiff-
ness

Another method used to remove the stiffness gradient was to physically nick
the shoulder region. This nick destroys the ECM in the shoulder region,
but due to the regenerative nature of Hydra, it starts to heal and restore
its stiffness. AFM measurements showed that the stiffness in the shoulder
region becomes the same as the rest of the body after 12 hours.

It was observed that the polyps showed a similar behaviour to the chem-
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Figure 1.6: The ECM was perturbed globally using chemical disruption of
collagens by treatment with 10 mM Dipyridyl (DP). The treatment time in
DP is shown along the arrow. The average somersault events per Hydra
reduce upon treatment with DP for 36 hours and none are observed after
treatment with DP for 72 hours. The error bars represent standard errors
and the significance values are calculated using the 2-tailed paired student’s
t-test. P-value <0.05 is shown as *, <0.005 is shown as **.

ical perturbation method. No somersault events were recorded when the
Hydra had a uniform gradient, thus further indicating towards the hypothe-
sis may have some validity to it.
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Figure 1.7: The ECM was perturbed locally in Hydra polyp using a partial
cut (nick) and the stiffness gradient was abolished (represented as + for
native state and — for abolished). The time for regeneration after the nick is
shown along the arrow and the nick is represented at the appropriate position
along Hydra. The graph shows the average somersault events per Hydra
with nicks at the shoulder or the body column (n=20, N=3). Perturbing
the stiffness in the shoulder region significantly reduces the somersaults by
Hydra polyps. The error bars represent standard errors and the significance
values are calculated using the 2-tailed paired student’s t-test. P-value <0.05
is shown as *, <0.005 is shown as **.

1.6 Video analysis of somersault

The physical and chemical perturbations show that a stiffness gradient is
indeed required for the Hydra to complete its motion. However, the exact
reason for this is still unclear. We discuss this in more details in our sim-
ulations. Hydra’s locomotion involves both active and passive components.
While the initial stretching part is considered active, the contraction consists
of both active and passive parts. The passive part being the stored potential
energy which Hydra has due to the initial stretching.

In this section, we review at a basic experiment done to partially answer
this question, and confirm to some degree that the contraction and standing
inverted is mostly passive.

When the Hydra polyp undergoes the contraction, the potential energy
released is composed of two parts. The first part is stored in the stretched
part, while the rest is stored in the bent segment which has the higher stiff-
ness. Using careful analysis of high definition video recordings of Hydra as
it undergoes the contraction, we can reveal how this stored bending energy
behaves with time.

14



This was done by utilizing the fact that the bending energy is directly
proportional to the square of the curvature in the bent region. Using the
formula (eq and for bending energy of hollow rods [16] with inner

and outer radii, we can extract this energy stored in the bent region.

YIL
= SR (1.1)
Where,
2 _ .2
I = 240A = M 1.2
[aa="00 (1.2

Here Y is the Young’s modulus, I is the second area moment of Inertia,
and 7o are the inner and outer radii of the hydra body, L is the length of
the bent region and R is the radius of curvature of the bent segment (head
region) at any given time.

All other parameters like the stiffness, length etc are mostly fixed, except
for the radius of curvature, which evolves with time during Hydra’s motion.

This radius of curvature was extracted by fitting Hydra’s bent region with
carefully calibrated circles using the Fiji software at different time frames.
The resulting curve (ﬁg shows that the stored energy in the bent region

A B
L - Length 15

Y -Young's Modulus
R -Radius of Curvatu

L

-~
Energy in
Bend (U)

(nJ)

Evend
L]

Time (s)

Figure 1.8: A Bending energy stored in the shoulder region can be estimated
by calculating its curvature. The curvature is calculated using the least
square circle fit in every frame of the video, using Fiji software. B The
experimental data (dots) is shown to fit well with the exponential decay
function (solid line)

shows an exponential dissipation. This is consistent with the curve a regular
non-living object would show, thus indicating towards the argument that the
contraction and standing upright motion of Hydra should be mostly passive,
unless Hydra actively tries to conform to an exponential dissipation curve,
which is unlikely. For simulations of the same, refer to appendix @
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1.7 Estimation of Hydra’s density

Hydra’s density determines the extent to which the gravitational force is
cancelled out by water’s buoyancy. As we shall see in the last chapter, this
is crucial to explain the elasticity gradient of Hydra.

The density of Hydra was determined by removing its tentacles and drop-
ping it in a vertical long water column (height 2m, diameter 5cm). When
Hydra polyp is dropped in this water column, it attains a terminal velocity
which is measured to be 0.003m/s. It moves downwards horizontally, without
rotating or tumbling. At this terminal velocity, we can write a force balance
equation (Bernoulli’s equation) which yield’s the following

[4mnL/In(L/D)] x v
Vg

p=po+ (1.3)
Where p is the density of Hydra, py and n are density and viscosity of water
respectively. L is the length of Hydra body column, D is the diameter of the
body column and V' is the volume of Hydra and g is the acceleration due to
gravity. The length and the diameter of hydra was measured at five different
locations across its body column and also measured for 10 different animals.
The errors in the measurement of L and D largely determine the errors in
estimating the density of Hydra from the measurements. The density of
hydra tissue is calculated to be . This is 54 1.5% above the density of water.
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Chapter 2

Computational and Theoretical
model of Hydra and its validation

To develop a more in-depth understanding of the underlying mechanics of
Hydra’s somersault motion, we attempted to develop a physics-based model
of Hydra, which captures passive part of the somersault motion.

In our simulations, we simplify Hydra as a hollow elastic cylinder with a
given radius, and an elasticity gradient along its body column. The stiffer
segment of this "model" Hydra adheres to a substrate while the other end is
released from an initial stretched-bent position.

Our simulation’s primary goal was to explain how the stiffness gradi-
ent helps in locomotion by using the minimum number of input parameters.
These parameters are classified into two types, 1. External, and 2. Internal.
The external parameters are the parameters of the environment in which the
Hydra polyp lives in. These include things like gravity and water’s viscos-
ity. The internal parameters for us are things like the dimensions of Hydra
(its inner, outer radii, length, etc), Young’s modulus of its body column.
There are also some derived parameters which couple the external and inter-
nal and thus dictate the motion of Hydra; one example would be the Drag
coefficient, which results from the multiplication of Hydra’s dimensions and
water’s viscosity, up to some constant.

In this section, we begin by describing the bead-spring network model
of Hydra, followed by the model validation studies conducted to see if the
results make sense. We end this section by showing a visual comparison of
the motion of our model-Hydra versus a video of real Hydra. In the next
chapter, we discuss the results and analysis our model produced.
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2.1 Bead-spring Model of Hydra

The computer model of Hydra is composed of beads of a unit mass connect
by springs. Ten beads are arranged in the form of a circle of diameter D
and connect via springs of stiffness x;,q. Two such circular arrangements are
connected together and form a cylindrical tube we call a "segment".49 such
segments are stacked on top of each other and connected again by Hookean
springs to form a longer cylindrical tube, which we will use in our simulations
as the model Hydra [17], [18], [19].

For the cylindrical tube to react correctly to different types of forces,
there are several types of spring connections made within every segment.
For example, opposite vertices (beads) were connected together to simulate
internal structure; diagonally opposite vertices were connected to resist shear,
ete.

The network of springs which have their own individual stiffness constant
Kina, also has an overall stiffness k.ss. The effective stiffness can be calculated
by following some modifications of the usual parallel and series law of adding
spring constants.

Since the model-Hydra has its stiffness in terms of spring constant, whereas
the experimental values are in terms of Young’s modulus, we need to estab-
lish a relation between the two so that we can put correct values in our
simulations.

For a hollow cylindrical tube of length L and cross-sectional area A, we
know that the stress (o) versus strain (€) equation has Young’s modulus (Y)
as

oc=Ye (2.1)
Where
Ax F
€ = T,O’ = Z (22)

Here F' is the force exerted along its long axis. We also know that for
a spring of length L and stiffness constant k, if we exert the same force F
along its axis, we can write the Hooke’s law as

F = —kAx (2.3)

If we substitute eq[2.2]into eq[2.1} and compare it with eq[2.3] we can extract
the relationship between the Young’s modulus and spring constant as

YA
o = A (2.4)
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Figure 2.1: A Hydra’s tubular body column is modelled by a network of
beads connect with Hookean springs arranged in the form of a cylinder. The
upper 25% of the model-Hydra has the effective stiffness value, which is «
times the rest. Here a is an adjustable parameter, whose experimentally
obtained value is 3. B cross-section view of the model-Hydra shows ten
beads arranged circularly to form a ring. We made appropriate connections
to produce appropriate responses to shear, torsion etc.

This k is the effective spring constant, resulting from the contribution of all
the springs together. In the next section, we extract a relation between this
effective stiffness constant (k.sy) and the stiffness of individual springs (kna),
so that we can tune the individual stiffness and read off what the effective
stiffness is.

2.2 Response to axial deformation of model-
Hydra

Ideally, when we have two springs, with spring constants k; and ko connected
in parallel, the resultant stiffness are additive, so the effective stiffness can

19



be written as,
k= ]{1 -+ k’2 ~ f(kla ]{,'2) (25)
Similarly, when the springs are connected in a series we get

1 1

k= {k—l + k—J . F(ky, ko) (2.6)

In both cases, the effective stiffness is function of individual stiffness of the
springs, which is independent of the amount of deformation and is thus a
constant with respect to Ax or strain in continuum case. In our model,
not only do we have parallel and series connection which lead to a constant
effective stiffness, we also have diagonally connected springs. (fig C) This
results in a slightly more complicated effective stiffness, which has a strong
dependence on the amount of strain.

Az

Zo

k=~ f(ki ko €)= (2.7)
However, this is closer to real world since the stiffness constant does indeed
depend on the amount of strain we put in. The effective stiffness in our
model-Hydra varies about 20% during the course of the simulation.

To find out the exact relation between the individual spring constants
and the overall effect spring constant, we continuously deformed our model-
Hydra along its long axis and plotted the effective spring constant versus
the strain and versus the individual spring stiffness (fig . We can see in
the figures that even at a high strain of 1, which is a non-linear regime, the
effective stiffness by only about 20%. We can also see that for a fixed value
of strain; the effective stiffness varies linearly with the stiffness of individual
springs.

In all our simulations, for the sake of simplicity, all the k;,4 are set to have
the same value in the lower three-quarters of the Hydra body, say kg = ko,
whereas the upper 25% of the body column has the stiffness of o x ky. As
discussed in the previous sections, we will vary this a parameter to compare
the cases of uniform stiffness & = 1 and the experimentally obtained stiffness
gradient where a ~ 3.

2.3 Implementation of external forces

Hydra is a freshwater organism; thus its motion is subjected to various types
of external forces, including drag due to water’s viscosity, buoyancy, and
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k ~ f(k;, ky, Ax)

Figure 2.2: A. The effective spring constant follows the reciprocal addition
law of spring constants when the springs are connected in series.B. Springs
are connected in parallel leads to the individual stiffness being directly added
together to get the effective stiffness. C. Model-Hydra, along with series and
parallel connections, also has diagonal connections which results in a strong
dependence of effective stiffness on the amount of strain.

gravity. In this section, we will discuss how these forces were incorporated.
The exact numbers will be discussed in the last section.

Our model-Hydra is composed of 500 beads forming the cylindrical net-
work. We calculate each type of force and distribute it evenly across all the
beads. This implies that if force due to gravity is F}, each bead is acted upon
with a force of F,/500, such that the overall force equals the total force.

Hydra’s somersault motion lies in a low Reynolds number regime, thus
we can approximate the drag force with a simple Stokes drag.

Based on the analysis of the videos, we can divide the motion of Hydra
into two parts. The first part is the contraction, where the Hydra returns
from its stretched position to its neutral length. This is followed by an
upward motion, which straightens the bent part in the head region, leading
to Hydra returning to its native, inverted state.

We know that the drag experienced by Hydra depends on its current
geometry, the viscosity of water and its velocity. While this can become a
relatively complex task, since the geometry of Hydra varies with time, we
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Figure 2.3: A. The effective stiffness (k.ff) variation (normalized by constant
individual stiffness (k;,q) versus strain (e). It can be seen that the effective
stiffness of model-Hydra varies only about 20% during the course of the
simulation, which occurs below € = 1. B. The effective stiffness (k) varies
linearly with the individual stiffness (k;,q) for any fixed strain.

can simplify the problem by comparing our model-Hydra with a cylindrical
tube moving inside water along its longitudinal and transverse axis.

The contraction of model-Hydra experiences a drag very similar to a
cylindrical tube moving inside water along its longitudinal axis, while the
upward motion is similar to a cylinder moving transversely.

The drag constant experienced by a cylinder is well known([11],[20]), and
it’s given by the following equation,

drnl . 2wl
Y= @y T L) 29

Here, L and D are length and diameter of the cylinder, while 7 is the water’s

viscosity (fig|2.4)
Since the difference between the two is not too much, for our simulations
we have used the average of the two,

_FJ_+F||

Caim = 2.9
) (2.9)
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Figure 2.4: A. The drag experienced by a thin and long cylinder when it
travels along its short axis in water. B. The drag experienced by a long thin
cylinder when it travels along its long axis in a viscous medium. In A and B,
7 is the viscosity of the medium, while L and D are the length and diameter
of the cylinder respectively.

As discussed in above, we implement this by giving each bead (mass-point)
1/500 of this force, and we include this in the drag constant itself. So each
bead has a drag constant associated with it given by 'peqq = I'sim /500 Since
Hydra is suspended in water, it experiences both an upward buoyant force,
and a downward gravitational pull. We can say that Hydra experiences an
effective gravitational force, which is a small fraction of the real gravitational
force. Each bead in the simulations experiences 1t*/500 of this effective
gravitational force g.s¢, where g.;y = Bg, S being some fraction and g =
9.8m/s%.

Apart from these external forces, we have also implemented a hard-sphere
like repulsive force to simulate the substrate on which Hydra sticks itself.
This repulsive force is present to make sure that Hydra does not cross through
the surface upon which it performs its somersault.
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This external repulsive force is modelled by a Lennard-Jones 6-12 poten-
tial [21], which is cutoff such that we only include its repulsive part. This
is also known as the Weeks—Chandler—Anderson (WCA) potential [22]. It’s
obtained in the following way, we start with a regular LJ potential and take
its derivative to get the force,

Vis(r) = e, ([@} v l@] 6 (2.10)

rrLy rrLy

oVis(r ot? 1 [ob
FLJ(T) _ g;( ) = 48¢r,; <|:TT[§]:| —5 7/‘TL‘]:|) (211)
LJ L' LJ

By equating F; = 0, we can find the minima of V;; at 2/65. We can thus
tweak the force function by truncating it at this point, such that only the
repulsive part remains. We do this by defining a new function which we use
in the simulations,

ab]2:| i
Fr, = {486“ ([ e

0;Vr > r,

[UE‘J:|) — FLJ(QI/GO');VT < T

TLJ

N[

(2.12)

In our simulations, this force acts as a repulsive force only in the vertically
up direction, similar to a floor.

2.4 Time evolution of model-Hydra: Damped
velocity verlet algorithm

Each bead in our simulation is evolved in time using a modified version
of velocity verlet algorithm [23], [24], [25], [26]. The velocity verlet algo-
rithm is typically used in molecular dynamics simulations however, its scale-
independent and can be used in our simulations as well.

If we calculate the net combined force on a given bead (say i), the
general expression for the time evolution of position and velocity, in velocity-
verlet algorithm is given by

1
Tpil = Tp + ANv, + EAfan; (2.13)

1
Upy1 = Uy + EAt(anH +ay,) (2.14)
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Where x,,v,,a, are position, velocity and acceleration at the n" step re-
spectively.

This expression is derived on the assumption that the acceleration/force
only depends on the position in the previous steps, and not on velocity.
However, as we have discussed above, the damping term is velocity dependent
and thus a(z,,t,) = a(Tn, v, ty).

In our case the damping is linear, and the damping force G(v) can be
written as

G(v) =~yv = Inil~ Tn-l O(A?) (2.15)
24
Using this, we can modify the velocity verlet algorithm to get the following
expressions:

1
Tps1 = Tp + Dgv, + §A?an (2.16)

1

T Ay 2m

[0 (1 — Ayy/2m) + ZA—T;L(Fnl + F,)] (2.17)

Refer to Appendix [B] for further details about this derivation.

2.5 Visual comparison of model-Hydra with real
Hydra videos

Before attempting to compare our simulations at a quantitative level with
the real world, we compared the output of our simulations with videos of real
Hydra qualitatively to see if our simulations display similar characteristics.

One such characteristic, which is the focus of this study, is that our sim-
ulations must follow a similar two-part process of 1. contraction and 2.
standing upright by straightening the bent part.

Our simulations start by fixing both ends of the model-Hydra in a stretched
position. The shoulder region makes an angle of 45 with the substrate since
the rest of the motion is not passive. We observed in the videos of real Hydra
polyps, that the once the Hydra is in its upright position, it makes a slight
angle with the substrate, which is subsequently fixed extending one of its
tentacles and pulling itself in a vertical position.

Looking at a side by side comparison of the simulations versus the real
Hydra (fig , we can see that the simulations indeed show a similar type
of two-part motion.

25



Hydra Computer Simulations

Shoulder

Basal end Contraction

Initial State

Upward
Motion

Final State

Figure 2.5: A. Real images of the two part motion of Hydra polyp, extracted
from the frame by frame video analysis of Hydra motion. B. Snapshots from
the simulations. Both A and B show a contractile motion, followed by an
upward motion. Model-Hydra in the simulations is initialised with a strain
of e=0.8

2.6 Simulation units

As discussed in the introduction, we have put the absolute minimum set of
parameters to understand the role of stiffness gradient. Further refinement
and introduction of more parameters in the model will only be needed if the
phenomenon cannot be explained by these parameters.

A stretched Hydra simulation can be characterised by the following pa-
rameters

1. Young’s modulus: Y
2. Length: L

3. Cross-sectional area: A
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4. Energy stored: E
5. Mass: M
6. Drag: I’

In order to match the real world with the simulations, we need a dimensionless
quantity that can translate the units used in the real world into simulations
units and vice-versa.

Taking the parameters mentioned above, we can construct such a param-
eter &, which can be written as

IL32 YA
= — 2.1
£ 5 i (2.18)

We have already established a simple relation between the Young’s modulus
and spring constant in the previous sections. If we utilize that relation here
and substitute for Y — kL/A, we get

rr? |k
i (2.19)

¢ E VM

Following is a tabulated approximate data about Hydra available from the
experiments (table [2.1)) To get the value of dimensionless parameter &, we

Mass M 10~ "kg
Length L 5x 107*m
Diameter D 10%m
Water’s viscosity n | 1072Pa

Table 2.1: List of approximate experimentally observed data for Hydra
polyps

start by estimating all its dependent variables

1. Elastic Energy (F): To get a rough estimate of the stored elastic
energy in Hydra, we take the experimentally measured Young’s modulus
value to be around 1000Pa. We also assume a linear stress-strain curve i.e.
0 = Ye. The stored elastic energy per unit volume is given by the integral of
this stress-strain curve. For the sake of simplicity, we assume that the Hydra
stretches itself to twice its length, which means that the strain e = 1. Thus
we can write
LYV

= (2.20)

YVeé?

1 1
E/V:/Jde:>E:V/ Yede =
0 0

0
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Using the values of inner and outer radii for the Hydra and its length from
table we get the stored elastic energy value to be

YV 10°Pa x (12 — 0.05%) x 107®m? x 5 x 107?
2 2

E

~6x1078J
(2.21)

2. Stoke’s drag coefficient for Cylinder I': The amount of drag
experienced by Hydra is determined by its Stoke’s coefficient. As discussed
in the previous sections, Hydra motion occurs in a low Reynolds’s number
condition, and thus the drag force is linearly dependent on the velocity. The
diameter to length ratio D/L for the Hydra body is a small fraction, and it
can be approximated as a long, thin cylindrical tube ( [11] and [20]). The
drag coefficient in this approximation is divided into two parts, one parallel
to the cylinder axis (running along its length), which we call I'j and the
other perpendicular to the axis, I';. Ideally, I'| should be used during the
contraction and I'; during the upward motion ,however due to these being
very close to each other, we can take their average and get

_F||+FL B 3mnL

b 2 In(L/D)

~ 1.2 x 107°Ns/m (2.22)

3. Mass (M): A rough estimate of Hydra’s mass can be made by
observing the fact that the density of Hydra should be very close to that of
water. Therefore the mass can be calculated as

M=~ % (Tguter - r?nner) X PH,O = 10771{;.9 (223>
4. Stiffness constant of equivalent spring (k.;r): We use the previously
calculated relation between the Young’s modulus and the spring constant to
calculate the stiffness of an equivalent spring by using the same average value
of Young’s modulus (1000 Pa) and cross-sectional area of Hydra

YA _ ]'OSPa XX (T?}uter B rzznnev“)
L L

kepp = ~05x 1072N/m  (2.24)

Using these, we can estimate £ as

3

E VM 6 x 10-8.J

T2 [h (12X 10 Pa)(5 x 10-0m)? 05 x 102N/m
N 10-"kg T
(2.25)

The simulation parameters are selected, such that this dimensionless
quantity remains unchanged in the simulation units. Choosing the stiffness
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constant fixes the stored elastic energy of the system. Using the effective
stiffness value of 20su, where su stands for simulation units, the stored en-
ergy can be calculated as 1/2k.;Ax?,,. The neutral length of the simulation
Hydra being 30su, upon being stretched twice its length, gives the value of
Ax g = 30su. Using these values along with the simulation mass as 500su
(each bead being assigned a mass of 1 unit, with 500 beads forming the
cylinder), we get

LY S L
Em Mm =0.02I (2.26)

gsim -

Since &g, must be equal to £, means that

Toim = 0.02I = 7 = 1.1 (2.27)
= Dm ~ 55su (2.28)

Since our model-Hydra consists of 500 beads, each bead can be assigned
a viscous drag coefficient of T, = T';,,/500 ~ 0.11su

sim

Estimation of Time Units

We can construct a unit of time using the drag coefficient, I', neutral length
of the Hydra, and the elastic energy stored for a strain of e = 1.
rr?
T=— 2.29

E (229)
Since these quantities have already been fixed in the units section, the cal-
culated time in the simulation units must correspond to the time calculated
using the same formula in SI units. Therefore,

CyimL? 55 x 302

sim = sim =55 2.30
7 Eo 9000 o (2.30)

This must be equal to

F'L*  1.2x107°Ns/m x (5 x 107%)*m

_ -3
- T =5x 10 (2.31)

T =

Comparing the two, we get the relation between SI units and simulation units
as

ls = 1.1 x 10%su (2.32)
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It could be argued that there are several other ways to combine the existing
parameters to define the simulation time, for example, a time unit could also
be defined by combining the effective stiffness of the equivalent spring and
the mass of Hydra as 7" ~ \/m/k.

However, this method of defining time does not capture the parameters
of the environment in which the Hydra resides, namely, the viscous drag. On
a qualitative basis, it can be argued that had the time in the simulation been
defined as 7*, the simulation would not have been uniquely governed by 7*
as we changed the viscosity.

On a more quantitative level, we compared the time evolution of model-
Hydra for three different values of stored elastic energy and viscous drag,
such that the ratio of the drag with the energy is the same.

We can see in the figure (ref that despite having three different val-
ues of drag and energies, all three curves of time evolution of model-Hydra
collapse on top of each other. This proves that our selection of 7 parameter
is justified.

We can ,therefore, summarize the correspondence between the units used
in our simulations and the SI units used in experiments in table

Dimension | Simulation Units SI Units
Length [L] 1 0.17 x 10~*m
Mass [M] 1 2x 107 "kg
Time [T] 1 0.91 x 10735

Table 2.2: Table summarizes the correspondence between the simulation
units and the SI units used in experiments

2.7 Initial setup and objective of the simula-
tions

Having fixed all the parameters and qualitatively validated the model, we
can begin to analyse the model. To understand why Hydra developed an
elasticity gradient, we left a free parameter o in the simulations. When
a = 1, the model-Hydra has a uniform stiffness throughout its body column,
while when o = 3, the stiffness gradient is similar to that of the experiment.

Since the model-Hydra could have any value of stiffness gradient, we can
also perform simulations for several different values of «, and test if there is
any unique advantage of having an « = 3 variation.
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Figure 2.6: Model-Hydra is released from its basal end and the centre of
mass position of its basal end is tracked with time. The figure shows the
height of the centre of mass (average position of the 10 beads in the basal
end) from the substrate to which the model-Hydra is attached. For three
different values of drag coefficient (I';,['; and I's) paired with three different
values of energy (E;, Es and Ej3) such that I'y/E; = I'y/Ey = '3/ E3, all three
curves overlap each other, which shows that 7 = I'L?/E uniquely determines
the time evolution of Hydra. This simulation is conducted at the strain of
e = 0.2, however, this remains true for any value of e.

If we see any clear advantage with @ = 3 case, we would like to explain
the reason behind the same by comparing several different quantities like
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momentum, kinetic and potential energy, etc between a = 3 and other values
of .

Our simulations have been conducted with two different initial stretched
positions of Hydra, one with a small strain of € = 0.2, while the other being
a larger strain of € = 0.8. A strain much larger than this is not only out of
the scope of our simulations, but it is also not generally seen in real Hydra

polyps.
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Chapter 3

Simulation results and discussion

All our simulations are performed in two different cases, one where the gravity
and buoyancy forces are turned on, while the other where they are switched
off.

Both these cases are required to develop an understanding of Hydra’s
motion, as each case achieves a particular objective.

1. With Gravity and Buoyancy turned off, we want to explore the internal
dynamics of model-Hydra as it evolves in time. We want to probe if
there is a clear advantage, in terms of efficiency, for a Hydra with a
gradient.

2. If we establish some kind of clear advantage of having a stiffness gra-
dient, we wish to ask if this advantage becomes the deciding factor in
terms of Hydra’s ability to rise when the external forces of Gravity and
Buoyancy are turned on.

In the next sections, we compare and contrast multiple different model-
Hydras by looking at different quantities.

It needs to be noted that for our comparisons to have an equal footing,
for all the model-Hydra cases from a = 1 to a = 30, the absolute values of
Young’s modulus has been selected such that the total energy stored for a
given strain (e) remains the same. This means that the case where model-
Hydra has a uniform stiffness (o« = 1) and the model-Hydra with any gradient
(ov > 1) have the same energy. This is a major distinction between our sim-
ulation and the experiments, where the real Hydra’s gradient was destroyed
such that the entire polyp has the lower Young’s modulus value of 500Pa.
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3.1 Basal tip height versus time plots and Re-
laxation time

We begin our simulations by initially quantifying the centre of mass position
of the basal tip of model-Hydra, as it evolves in time. Our model-Hydra
starts from its head region fixed at one end, while the other end (basal) is
stretched and fixed at a small strain of e = 0.2. (fig|3.1)

The centre of mass position of the basal tip is calculated by averaging the
positions of the ten beads, which form the circular tip of model-Hydra. We
call the vertical movement as Hydra as Hpyqr, While the movement along the
direction of its contractile motion (along its long axis) is termed as L pydrq-

Shoulder Region

Fixed Head

Figure 3.1: Schematic of the simulations shows the basal-tip and the
shoulder-base composed of circularly arranged beads. Beads are not shown
on the body surface for clarity. The height of the centre of mass of the
basal-tip is labelled as Hpyqrq, whereas the movement along the horizontal
direction is labelled by the Lpyq4,, coordinate. The region shaded in green is
the first 25% of Hydra’s body. It has a higher observed stiffness value than
the rest of the body column.

After the initial contraction is complete, the model-Hydra starts with an
upward motion. The basal-tip’s behaviour during this upward motion can be
understood better by comparing it with a sphere with some initial velocity
(¢), moving in the same vertical direction in a viscous medium. For such a
sphere, a differential equation can be written as

d?z(t) T dz(t)
dt? m dt

—0 (3.1)

Upon solving this equation, we get the functional form of z(t) ~ (1 — e'/7).
To account for some deviations from this behaviour, we write the equation

34



for the upward motion of basal tip with two free parameters a and b, such
that z(t) = a(l — €/7) +b. Both Hyyara(t) (fig[3.2[A) and Lyyara(t)(fig
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Figure 3.2: A. The vertical (Hpydrq) and B. the horizontal (L y4rq) position
of the basal-tip of model-Hydra is plotted with time for a« = 1(uniform) and
a = 3 (gradient) cases. Both these cases are plotted for a small strain of
€ = 0.2. The plots for ¢ = 0.8 show similar behaviour.

B) are plotted on a semi-logarithmic scale, to see if the upward motion does
indeed have an exponential nature. It can be seen in the plots that during
the upward motion, the Hpyqrq(t) versus ¢t does become straight, which is a
signature of an exponential nature. We fit each of these Hpyarq(t) plots with
the above calculated function z(t) = a(1 — e*/7) + b, to extract 7, which we
call the "relaxation time". This relaxation time is proportional to the time
taken by the model-Hydra to complete its motion.

We repeated the simulations for multiple values of o, ranging from a = 1
which is the uniform stiffness, to a = 30. For each such simulation, we
plotted the Hpygr(t).vs.t curve and extracted 7 by fitting the plots with
z(t). We carried out this analysis for both large ¢ = 0.8 and small ¢ = 0.2
values of strains.

We define Power P as the initial potential energy of model-Hydra, divided
by this 7, or P = Ei,/7. The extracted 7 can be treated as a function of
a, which carries over to the definition of Power as well, so P — P(a) =
Ei/T(0).

We plotted P(«a) versus « for the two strain cases (fig|3.3)).

We can see from fig[3.3]| that in both € = 0.2, 0.8 cases, a clear advantage
in terms of Power is seen for the model-Hydra with an elasticity gradient.
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Figure 3.3: Power P(«), defined as the initial total stored potential energy
Eyo divided by the relaxation time 7(«) is plotted for small e = 0.2 and large
e = 0.8 values of strains. The initial stored potential energy intentionally
kept to be independent of the values of «, and only depends on the initial
strain.

It is interesting to note that despite all the o having the same initial energy
(for a given €), the @ = 3 model-Hydra is significantly more powerful in its
somersault motion.

We can also see that there is a significant jump in the Power advantage
as we go from « = 1 — o = 2 and from a« = 2 — o = 3. However,
the significance of the Power gain diminishes sharply beyond o« = 3. In
particular, « = 1 — «a = 3 shows a gain in Power by 45% — 50%, while going
from o = 3 — a = 6 shows only about 8% — 10% further advantage.

Fig also shows peak and a plateau for ¢ = 0.2 and ¢ = 0.8 cases
respectively. These can be explained by the fact that given all model-Hydras
have been kept at the same initial energies, to achieve a stiffer shoulder region,
we must decrease the stiffness of the basal region. Beyond a certain «, the
basal region starts to become floppy and is unable to hold itself together well
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enough to resist the viscous drag. This tipping point occurs at around o = 5,
which is close to the experimental value of o = 3.

It can be speculated that Hydras had a significant advantage in terms of
Power to resist the viscous drag by developing a sharp gradient along their
body column. They settled at a stiffness ratio of a = 3 because 1. there
was little to no advantage beyond this point (8% — 10% compared to initial
45% — 50%), and 2. Beyond about o« = 5, any advantage gained starts to
become a disadvantage.

3.2 'Total Potential and Kinetic energy with time

To further investigate our models, we plotted the total potential energy and
the total kinetic energy of Hydra in both the uniform and the gradient (o = 3)
cases (ﬁg. We observed that while a rapid dissipation of energy is seen
in both cases, the o = 3 case has a slower reduction of the potential energy.
This can be attributed to the fact that there is a more efficient transfer of
energy between the basal and the shoulder region, which leads to more energy
saved in the stiffer segment to be utilized later during the upward motion.
The uniform (o = 1) model-Hydra can be seen to lose more of its potential
energy during the initial contraction, potentially leading to an energy deficit
during the upward motion. We see in the later sections when we switch on
the gravity that this is indeed true.

3.3 Energy and Momentum of basal and shoul-
der region

In the last section, we discussed the advantage a stiffness gradient provides in
terms of the Power and energy storage. However, our simulations showed that
all model-Hydras, irrespective of the value of «, were able to pull themselves
in an inverted position. This was not seen in the experiments, which showed
that the Hydra with uniform stiffness was unable to stand inverted.

In this section and the sections which follow, we assume model-Hydra
to have a density, which is 6% higher than water. Taking this density dif-
ference into account, we put in the appropriate gravitational and buoyant
forces. This was done in accordance with the experimental results of the
measurement of Hydra density, as discussed in chapter 1.

Interestingly, it was observed that model-Hydra with a uniform stiffness
is unable to stand inverted, while model-Hydras with values of @ > 1 were
able to. This was consistent with the experiments.
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Figure 3.4: A. The total potential energy of model-Hydra is plotted with
time. Hydra with o = 3 has a much larger stored potential energy than the
Hydra with o« = 1 at the end of its contraction, which occurs at about 100
ms.B. Total kinetic energy for the a = 3 shows a similar behaviour, with a
slower initial dissipation compared to uniform, but reverses later on.

In fig[3.5]- A, we can see that at time ¢ = 0, just before the release of the
ring at the basal end, the total potential energy (green) of the stretched model
Hydra is the same for both o = 3 and a = 1. After release, the total energy
decreases with time during the contractile motion due to viscous dissipation.

The energy stored only in the shoulder region (black) at time ¢t = 0 is
more for o = 1 compared to a = 3. After release the energy in the shoulder
region decreases for both cases but remarkably at ¢ ~ 15ms, the energy
stored in the shoulder region of & = 3 becomes greater than o = 1. Since
the retained potential energy till the end of contractile motion is more for
a = 3, this clearly indicates a more effective energy transfer from stretch to
the bend for @ = 3. The energies stored in the shoulder region, the basal
region, and the total energy are shown for a longer time to follow the energy
behavior as the model Hydra goes from a contractile to an upward motion.
At longer times (3.5{B), for @ = 3, the energy in the shoulder region remains
greater than the energy stored in shoulder region for a« = 1. The minima
at t = 50ms (before the end of contraction) in basal stored energy for both
a =1 and a = 3 is due to small transfer from shoulder to basal region.

To understand the crossover of stored energies in the shoulder region seen
in[3.5}A at t = 15ms, we plot the center of mass of velocities in x- direction
of the basal and the shoulder region for both & = 1 and a = 3 cases. The
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Figure 3.5: A. and B. Show the energy stored in basal and the shoulder
region of Hydra as it evolves in time in the presence of gravity. C. The
velocity of centre of mass of the basal and the shoulder region in both oo =1
and o = 3 cases. D. The difference in centre of mass momentum of the basal
and the shoulder region of model-Hydra. A sharp crossover can be seen at
time ¢ = 40ms.

difference in velocities of the two regions allows the momentum transfer to
produce a force on the shoulder region in positive x- direction. Presumably,
this force is responsible for bending the shoulder.

The difference in momentum between the basal and the shoulder region is
plotted as a function of time for both cases. Force exerted by the basal region
on the shoulder is indicated by the slope at each point of the plot. The initial
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(t < 30ms) slope for @ = 3 case is steeper than the v = 1. This indicates
a larger force exerted by the basal region on the shoulder for & = 3. The
a = 3 case has a larger momentum difference after contractile movement.

3.4 Average force at the junction
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Figure 3.6: Force at the junction of basal and shoulder region averaged near
the end of the contraction, is plotted as a function of stiffness gradient ratio
a. Despite the same initial stored energy, the force at the junction for a = 3
is about 50% greater than o = 1. The inset shows the instantaneous force
versus time for &« = 1 and o = 3 case. It can be seen that the initial force
is the same, but o = 3 force remains larger as the model-Hydra evolves in
time.

By analysing the energy and momentum plots in the previous section, we
can safely assume that not only is the stiffness gradient responsible for a more
powerful Hydra motion, but it also increases the efficiency of energy transfer
between the basal and the shoulder region. This argument was supported
further by plotting the average force at the basal and shoulder junction.
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In fig we plotted the force, which is averaged on a short time period
of 50ms before and after the contraction, versus a. We observed that this
force is significantly (=~ 50%) larger for o = 3 cases than o« = 1.

This larger force at the junction pushes the stiffer segment more than
a = 1, which leads to larger energy being stored in the shoulder region. It
is this energy which is then efficiently utilized in helping the Hydra stand
inverted.

fig also shows a similar behaviour as fig where going beyond a
certain « value, the curve starts to turn around, and any advantage gained
beyond this point becomes a disadvantage. In the case of fig[3.6] this tipping
point or maxima occurs at a higher a of around a = 10 — 15.

3.5 Estimation of the Threshold Energy (Er1ycshoid)

In the last sections, it was observed that the model-Hydra which can store
energy more efficiently in the stiffer shoulder region, could complete the mo-
tion. We also concluded that its the energy stored in the shoulder region,
which is responsible to turn the Hydra into its final inverted position. In this
section we attempt to quantify, what is the minimum energy required by the
shoulder region for the Hydra to stand inverted.

To carry out this calculation, we start by focusing on a single bead 1.
This bead will have to resist both the viscous forces and the damping forces
during the course of the simulations.

To get the total energy dissipated, we have to integrate the viscous force
faced by the bead over the entire time period of the simulations. The integra-
tion excludes the initial contraction time since we only care about the energy
in the shoulder region. We define the time at the end of the contraction as
te, and the time when the motion is completed as ¢y, while the integration
path is defined as s;(t). We can therefore write,

EPras _ / tf To;(t)dsi(t) (3.2)

To get the total energy needed we also need to add to this the gravitational
potential energy of the bead at ty, so

tr
E’iThreshold — / FUZ' (t)ds, (t) + ng/h<tf) (33)
t

c

It is to be noted that we use an effective gravity ¢’ instead of usual g, to
account for the buoyant forces in water. Taking the sum over all 500 beads
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gives us the threshold energy as

500

Broveaoa =3[ et 0+ mig () (3.4)

i=1

This formula can easily be evaluated in the simulations. Erpeshoq is similar
to a potential barrier, which the model-Hydra most cross in order to complete
its motion.

3.6 Stored energy in the shoulder after contrac-
tion Fgpuder versus time (t)
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Figure 3.7: The energy in the shoulder region at the end of the contraction
Eshoutder 18 plotted with time for uniform (o = 1) and gradient (o = 3) cases.
Only € = 0.8 case is shown, refer to appendix for other cases.

To compare the calculated threshold energy with the « =1 and a = 3
cases, we plotted the energy in the shoulder region at the end of the contrac-
tion for uniform and gradient cases. We can see in the plot that a = 3 has an
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initial energy larger than the threshold, while the uniform cases starts with
a lower energy. The dashed solid line represents the calculated Erpesnoiq as
discussed in the last section.

As both model-Hydras evolve in time, we can see that « = 1 curve
becomes flat and is unable to use its leftover energy, while o = 3 is able
to to use the shoulder energy to stand inverted effectively. As we dis-
cussed in the last section, starting with larger energy in the shoulder region
(Eshoulder > EThreshola), which results from a more significant push/force at
the junction during contraction, helps the Hydra in completing its motion.

3.7 Density difference (Ap) versus a: Phase
Plots

The downward force on Hydra body column while trying to stand inverted
is due to density difference (Ap) in Hydra tissue and water. The efficiency
of energy transfer to work against this is large for greater stiffness variation
(larger o). We have performed simulation runs for different parameters, and
we plot a phase diagram of Ap and « to find out criticality for standing
inverted.

The simulations clearly show that the variation in tissue stiffness, char-
acterized by «, facilitates efficient energy transfer from a stretch to a bend,
which is used to overcome the downward force on the body column due to
Hydra’s higher density compared to that of water. Since this energy is used
for overcoming the hydrodynamic drag and the weight of body column due
to the density difference, the successful completion of somersault depends on
two parameters specific to Hydra: Ap and «a.

Since experimentally observed Young’s modulus is over-estimated owing
to the treatment with Glutaraldehyde, we generated phase diagrams Ap ver-
sus « for different values of Young’s modulus. We observed that for extremely
labile bodies (Y < 10 Pa), the energy stored in the stretch and transferred
to the bend is lower than the threshold, and Hydra is unable to rise for all
values of a.

On the other hand, for extremely stiff bodies (Y > 10 kPa), the energy
required to stretch to 80% strain is large, and the transferred energy is always
above the threshold such that Hydra is always able to rise for all values of «.
These two extremes are far from the experimentally observed stiffness and
its variation in real Hydra tissue.

Figure 4D depicts the phase diagram of Ap and a at the experimentally
observed values of Y. Note that to keep the amount of energy and strain
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Figure 3.8: Phase diagram of model-Hydra’s density difference (with respect
to water) versus the Young’s modulus ratio (o). The experimentally mea-
sured parameters of Hydra lie in the green oval in the phase space. The
width and height of the oval represents errors involved in estimating o and
Hydra density ,respectively. The strain € is 0.8.

fixed when the model Hydra is stretched, for a < 3, Y for the body region
is kept larger than 500 Pa. For a > 3, the Y for the body region is kept
smaller than 500 Pa. For Y= 500 Pa throughout the body column, it is not
able to rise and stands inverted if the tissue is 2.5% denser than water. The
parameters Ap and « for real Hydra lie inside the green oval shape (ﬁg.
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The phase diagram is robust with respect to strain and different initial
energies stored in the stretch. It indicates that a model Hydra with larger
«, signifying a better energy transfer, can lift itself even if its heavy, which
is described by a larger Ap. It is also interesting that the critical behaviour
for lifting the body column is seen in the phase plot of Ap and « only for
the range of tissue stiffness seen in real Hydra.
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Figure 3.9: A. Phase diagram Ap and « for € = 0.8 obtained with Young’s
modulus value half of experimentally observed values. The uniform stiffness
(o = 1) enables Hydra to lift the body column having density difference of
only 1% compared to water. The blue square denotes the lower bound on
density of real Hydra tissue and o« = 3. The plot underscores the importance
of variation in stiffness even if it is overestimated in AFM measurements
due to glutaraldehyde treatment. B. The phase diagram for strain e = 0.2.
Note that the overall energy in the stretch is reduced due to smaller strains.
The dissipated energy while the body column is contracting is much less
too. Hence, the tissue stiffness variation is not very critical for the density
difference of 6% and below. Albeit the Hydra with larger variation in tissue
stiffness characterized by larger « is able to lift body columns with density
difference of up to 9 — 10%.

The experimentally measured stiffness of Hydra tissue is likely to be an
overestimate due to treatment of Glutaraldehyde. It has also been reported
that such treatment does not largely affect tissue stiffness. It is difficult to
quantify such effect in case of Hydra, but the observed increase in Young’s
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modulus due to such treatment on rat-tail tendons quantified using AFM is
nearly 50% [27].

We have performed simulation runs to monitor the effect of such over-
estimations on the critical nature of standing upside down. fig A shows
a phase diagram in which, Y for both shoulder and body column is halved
compared to the experimentally observed values in our AFM experiments.
The variation characterized by « is seen to be more critical than that depicted
in fig|3.8| Hydra with uniform stiffness is unable to lift its body column, even
if it is 1% above the density of water.

The phase plot in fig[3.8] was for larger strain of e = 0.8. In fig[3.9}B, we
have plotted the same for the lower value of strain, e = 0.2. We observed a
small difference between these plots, as the density difference for the o = 3
case shifts up by 1%.
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Chapter 4

Conclusion and Remarks

Nature has a fascinating way of optimizing the efficiency of energy utilization
in multiple cycles of evolution. We made an honest attempt to capture a
small glimpse of such an optimization, by investigating a peculiar behaviour
of stiffness along Hydra’s body column.

We began by measuring Young’s modulus along Hydra’s body column.
Hydra’s body is small, about 5 mm in length. To resolve the Young’s modulus
along its surface, we used an AFM, together with the theory of contact
mechanics by Hertz.

We observed a sharp gradient of Young’s modulus values along the Hy-
dra’s body column. This was unexpected as Hydra’s body seemed to be
composed of the same cells from head to basal tip. We hypothesized a higher
value of Young’s modulus could possibly be responsible for a part of Hydra’s
somersault motion.

While having a stiffer base to pivot Hydra’s body against viscous drag
made some intuitive sense, it was unclear to us if such a gradient was neces-
sary. In other words, if Hydras could complete their motion without such a
gradient, why would they evolve one?

Furthermore, what was the significance of the stiffness gradient ratio of
3 : 17 If the hypothesis was correct, why would the Hydra not evolve a stiffer
shoulder with the gradient ratio of say 10 : 1 or 20 : 17 Does 3 : 1 provide
some special advantage that disappears for lower or higher values?

It is known that Hydra’s elasticity is mostly governed by the ECM, or the
Extra Cellular matrix. The ECM (also known as Mesoglea) is sandwiched
between Hydra’s Epithelial cells. To see if our hypothesis had any validity,
we modulated this ECM using chemical and physical perturbations. Using
these techniques, and the fact that Hydra has regenerative properties, we
were able to create Hydra polyps with a uniform, constant stiffness from
shoulder to basal tip.
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We discovered that the Hydra with a uniform stiffness were unable to
complete the somersault motion, thus giving a possible reason for the validity
of the hypothesis.

To understand the underlying mechanics of the motion, we developed a
physics-based computer simulation model of Hydra, with a minimal set of
input parameters. After simulating several hydras with different stiffness
ratios (a) between the shoulder and the basal region, we were able to note
a clear advantage for a gradient in terms of energy utilization. We not only
noted a 50% higher increase in power, we also saw an improvement in energy
storage and transfer mechanisms.

Although our simulations indicated a clear advantage to be had for a
stiffness gradient, all our models were able to complete their motion, unlike
the experiments. At this point, we factored in the Hydra density, which we
had so far assumed to be equal to the water in which it lived. Upon factoring
the density, which was measured experimentally, our simulations showed that
a uniform stiffness Hydra was unable to complete its motion while the one
with a gradient was able to.

To understand why we did not observe a higher stiffness ratio (say o >
10), we studied models with multiple values of a, ranging from o = 1 (uni-
form) up to @ = 30. All our models showed that whatever advantage was
gained for smaller ratios (between a > 2 and a < 10) started to either
plateau ( diminishing gains with increasing «), or started to decrease mono-
tonically. The reason behind it was related to the fact that we compared all
Hydras to be at the same initial energy. This meant that as we made the
stiffer end more stiff, we had to keep reducing the stiffness of the longer basal
end, resulting in the longer end having no stiffness to hold itself together.

4.1 Future perspective, drawbacks of the model
and experiments

By performing experiments and simulations, we were able to measure the
elasticity of Hydra to have a peculiar ratio of 3 : 1. We could also conclude
that this number provides a significant advantage to Hydra than having no
stiffness gradient at all.

Using our model, we were also able to put bounds on the ratio of 3 : 1,
by looking at higher and lower ratios. From our simulations, we were able
to establish that a € [2,5] was the most optimal case in terms of energy
utilization. However, we were unable to pinpoint « to the experimentally
observed value of a = 3.
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Following is a list of reasons we think may have led to this, including
things which we can improve in the future, and reasons which we do not
have control over.

1.

Hydra is a living organism: Hydra’s motion involves both active
and passive parts. At present, while there is positive evidence towards
the fact that the contractile motion is mostly passive, we have not found
a way to say it definitively.

. Fluid dynamics was not explicitly solved: We did not use explicit

Navier-Stokes equations for the moving boundary of Hydra. Instead,
we assumed a constant drag which was an average of long thin cylinder
moving along its transverse and longitudinal axis.

. Finite element method: We used a mass-spring method instead of

FEM, which may have more accurately replicated the experimentally
observed motion. Our model, however, is much faster.

. Accuracy of experiments/Biological variations: Not all Hydras

have the exact same shape, size or mass. There is an inherent variation
in dimensions and measurements due to Hydra being a living organism.
For our models, we could only put an average value as an input, and
this inherent variation may result in an inherent variation of the results,
which could not be controlled.

Composite function: We were able to find several functions and
plotted them against either time (¢) or stiffness ratio . Each of these
functions put some bounds to what are viable stiffness ratios. The
Power, P(«) versus a curve showed a peak and a plateau for a € [2, 6],
whereas the average force F(«) curve bounded o € [2,10]. It may
be possible that we find a function with multiple input parameters
(including current functions themselves as input) ,which narrows this
range even further.

In conclusion, we would like to say that while we were successful in high-
lighting the importance of the stiffness gradient, understand some of the me-
chanics involved and clarify how a much higher stiffness ratio is sub-optimal,
we could still improve the simulations by using more complex techniques
like FEM coupled with explicit fluid equations, and using multi-parameter
functions which peak at or near the experimentally observed value of a.
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Chapter 5

Additional work: Molecular
Dynamics simulation scheme to
study shear banding in worm-like
micelles

5.1 Introduction

Shear is defined as the component of stress tensor, which is co-planar to
the cross-section of a given material. Materials, depending on their internal
molecular composition, respond very differently when such stress is applied
to them.

Such a response to shear stress is captured by a modulus, which relates
the components of applied shear, usually represented with o, with the com-
ponents of strain or strain rate (y/7).

The response of a given material to shear stress is broadly categorized as
either completely viscous, completely elastic, or a combination of the two,
termed as viscoelastic response. A viscous response is seen in Newtonian fluid
like water, where upon the application of shear, the stress is instantaneously
dissipated in the fluid. In a broader context, an instantaneous dissipative
response means that an applied shear stress relaxation time is zero. Similarly,
the application of shear stress on elastic solids leads to a storage of energy
instead of dissipation. Such a response to shear is termed an elastic response.

There are many ways to characterize shear response of a given material.
Quantities like storage and loss modulus (G', G"), viscosity (1), dynamic
viscosity (1) etc are some of the different types of moduli used, depending
upon the rheological conditions.
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In general, it is known that for a completely viscous response, the applied
shear stress is proportional to strain rate, while the elastic response has
stress being proportional to strain. The stress versus strain rate equation for
viscous liquid has fluid viscosity (n) as the proportionality constant, while
the elastic response has Young’s modulus (Y').

Viscoelastic response requires a more complex relation between applied
shear stress and strain. Such response is commonly observed in Macromolec-
ular systems like Polymer melts [28]), Micelles (|29], [30], [31]) , Gels [32]
etc. In Rheology, such systems are usually characterized by probing the ma-
terials with an oscillatory strain and measuring the response. The oscillation
frequency is varied to probe different relaxation modes of the given material.
Phenomenological models, like Maxwell’s model, are used to compute the
storage and the loss modulus in such experiments. The details of Maxwell’s
model are provided in appendix D]

A viscoelastic system also shows other diverse set of phenomenon depend-
ing on its internal molecular structure and the amount of shear strain rate
applied [33], [34], [35], [36]. When sheared at a certain rate, a viscoelastic
material may show a reduction or increment in its measured viscosity. Such
occurrences are termed as shear thinning and shear thickening, respectively
I37], [38]. In some cases, a material could also divide itself into slow-moving
and fast-moving layers or bands or different stresses and velocity profiles.
This is known as the phenomenon of shear banding. In the present work, we
focus on the shear banding, seen in worm-like micellar solutions.

A Micelle (fig A) is an self-assembled aggregate of surfactant molecules
in an aqueous solution [39]. Depending upon the concentration, micelles
prefer to self-assemble into different shapes. Our work focuses on the micelles
which assemble in long tubular shapes (fig B), with a hydrophobic tail
towards the inside and hydrophilic head at their surface. These are known
as worm-like micelles [40],]41].

When a worm-like micellar solution is sheared beyond a critical stress,
the fluid breaks up into two flow regions with two different strain-rates [41],
[42], [43]. On gradually increasing externally applied strain rate (%;) in the
micellar solution in a rheometer, the measured stress keeps on increasing
linearly initially with strain. However, beyond a critical value of strain rate
(stress) e.g.41(0.) = 14s7! for CPCl-Hex micellar solution [42], one also
observes that a part of the fluid flows with a shear rate 45(o.), which higher
than 41 (o.) and the values of measured shear-stress plateaus off.
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Hydrophilic Head

Figure 5.1: A. Micelle is an aggregate of surfactant molecule which consists
of a hydrophilic head and a hydrophobic tail. B. At a certain concentration
in an aqueous solution, micelles tend to self-assemble into long semi-flexible
cylindrical aggregates, which is known as worm-like Micellar configuration.
C. Many such worm-like micelles interact with each other in an aqueous
medium. Such a configuration is known to exhibit characteristics of shear
banding.

5.2 Chapter outline

We begin by describing the model used for performing the shear simulations
in section[5.3] We discuss the types of particles in the model and the interac-
tion potentials used. We then proceed to describe the simulations performed
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in detail in section We divide this section into two parts, the first being
the initialization of the system while the other deals with the application of
a constant strain rate. We end this chapter by briefly describing the prelim-
inary results obtained by analysing the steady-state conditions of the shear
flow. We report the first time observation of shear bands in a molecular
dynamics simulations of worm-like micelles in this section.

5.3 Details of the Simulation Model

Our model, which was proposed by Dr. Apratim Chatterji and Alex Abra-
ham, has been published in a previous work [44]. The previous work dealt
with the equilibrium properties of self-assembling polymeric system. In par-
ticular, it was established that linear polymeric chains could be obtained
using spherically symmetric potentials. In the present work, we use this
model and analyse its steady-state properties under shear.

The model consists of two types of monomers, labelled as type-A and
type-B. The interaction potential between A-A, and B-B is purely repulsive
and is of the form

e—r/Raa

Vaa(r) = Vep(r) = aa———Yr < (5.1)

This potential is also known as a screened Coulomb or a Yukawa potential.
Here, the range of interaction is controlled by the parameter R, while the
relative strength is controlled by the value of €,q.

The interaction between A-B can be divided into three parts based on
the distance between the particles. At very short distances, we expect the
particles to repel each other similar to a hard-sphere. This is modelled by
an excluded volume term ~ (o /r)?*. Here, r is the distance between the two
particles, and o is the diameter of the particle. The second part takes care
of short-range attraction. These include distances just slightly more than
the particle diameter (o, ﬁg.We use the term ~ — (o /r)'? to model this
attractive part. The third part of the interaction is the screened Coulomb
interaction term, ~ e~"/% /r. The interaction range for the screened Coulomb
potential is decided by the value of R. The relative strength of the screened
Coulomb potential is controlled by the constant €’ 5, while the relative com-
bined strength of the excluded volume and short-range attractive term is
controlled by a single constant €45

Vantr) =ean [ (2)"" = (2)"] + (52)



We again note that all the terms in both V45 and Va4, Vg only depend
on the radial distance between monomers, and are thus spherically symmet-
ric. As discussed above, linear polymeric chains were obtained using these
potentials. This eliminated the need of calculating more computationally
expensive and time-consuming 3 or 4 body potentials to model semi-flexible
polymer chains. Thus permitting the study of larger systems for longer pe-
riods. The parameter o in the simulations is also known as the "excluded
volume distance". It is the unit of length in the simulations and is set to
o = 1. All the energies in the simulations henceforth are measured in terms
of unit thermal energy kgT. The kg7 is also set to unity. The unit of
mass (m) is also set to unity, with monomers of both types having a mass
of m = 1. We can construct the simulation time 7 by combining kg7, o and

_ 1 m_
m,aST—Uﬂ/kBT—l.

The range of the potential V44(r), which is controlled by the parameter
Roo is set to Rao = 2.300, while the range of Vyp(r) is set to Rap = 1.90.
The combined strength of the excluded volume and short-range attraction, is
also set to a constant value throughout the simulations as e = 113.4kgT.
The constant associated strength of the screened Coulomb potential for Vg
potential is defined as €% 5 in eq However, it needs to be noted that
for Vyp, the screened Coulomb is shifted horizontally by 7y, to accommo-
date for the excluded volume and the short-range attraction terms. €% is
obtained by multiplying the Coulomb strength €45 by an exponential con-

stant term e™/%45. Thus we have ¢5 = €4 ze"/ 45, More explicitly, the

e~ "/RaB ¢ ro/RaB e~ "/Rap
= €ap€ Y

Coulomb term in eq can be written as €’ 5
e 0TT0/BAB T the simulations, ro = 1.120 and €4p = 23.10kpT.

The parameter €., controls the strength of screened Coulomb repulsion
of particles of same type (Va4 = Vpp). This parameter is also responsible for
branching. The simulations have been conducted for several different values
of €qq, ranging from e, = 1.25 x 10°kgT to €4e = 5.00 x 10°k5T, to check
for shear banding. For each value of €,,, we also analysed the steady-state
properties at different shear rates, ranging from 4 = 0.005 to ¥ = 0.02, and
we also varied the monomer densities from p = 0.150 to p = 0.165. We used
a box size of 90 x 30 x 3003, with z-axis to be the longer, shear direction.
Periodic boundary conditions were incorporated in the x and y directions,
while solid walls are present along the z-axis.

C
€AB

The time evolution of the simulation is carried out using the velocity verlet
integration method in molecular dynamics. Additionally, we have included
an implicit fluid by combining the velocity verlet with a langevin dynamics.
The langevin noise, which is given by the fluctuation-dissipation theorem as,
<n(t)n(t') >=2I'kgTé(t —t'), is taken to be I' = 0.1.
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Figure 5.2: A. Potential between similar monomers, A-A or B-B (denoted
by Vaa(r)) is plotted versus the radial distance between them r(c). B.
Potential V45 (r) is the potential between particles of type A and B, plotted
as a function of radial distance (r(0)) between them. Both Va4 (r) and Vag(r)
are spherically symmetric potentials.

5.4 Simulations

5.4.1 System initialization and equilibration

We begin the simulations with a box size of 90 x 30 x 3002, with I, = 900
being the direction of shear. Initially, we do not apply any shear to the system
and let it settle in an equilibrium configuration. The system is initialized for
a given density such that the monomers of type-A and type-B are distributed
homogeneously across the simulation box. The number of monomers of type-
A is kept to be exactly the same as type-B. This is done to ensure that the
inhomogeneities arising during the course of the simulations are only due to
interaction potential and not due to unequal distribution of monomers of
different types. During this initialization step, we apply periodic boundary
conditions in all three directions.

5.4.2 Application of strain rate

Once equilibrium is reached, we re-initialize the system starting from the
final equilibrium configuration achieved during the initialization steps. We
define walls of equal thickness at both ends of the [, direction. Any monomer
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Figure 5.3: The simulations were performed for several values of ¢,,, which
controls the strength of the Coulomb repulsion of particles of the same type.
Vaa(r) is plotted as a function of radial separation between particles for
different values of €,

of either type, which ends up within these walls, is frozen. Furthermore, if a
monomer finds its way in either the top or the bottom section from the bulk
during the simulations, it is also frozen in its place and begins to move with
the velocity derived from the strain rate assigned to the top or the bottom
section.

The positions and the velocities of monomers within the bulk are updated
according to the velocity-verlet algorithm, which is typical in a molecular
dynamics simulation. These equations are:

1
TEH_l = 71? + Atvn + §A?an (53)

1
vt = 4 §At(an+1 + ap) (5.4)

Additionally, we include an implicit fluid, which the particles interact with.
This is modelled by including a dissipation and a noise term, commonly
known together as langevin dynamics. The dissipation term is I', and its

56



strength in our simulations is set to I' = 0.1. Once the dissipation constant
is fixed, the amplitude of the noise term 7(t), is also fixed using the fluctuation
dissipation theorem,

< p(t)n(t) >= 20kpTs(t — t') (5.5)

These additional terms are included by modifying the velocity verlet algo-
rithm (see appendix.

We begin the simulations by assigning a constant strain rate (%) to the top
section, while the bottom section is stationary (blue regions in fig|5.4). Unlike
the initialization phase, however we apply periodic boundary conditions only
along the x and the y-axis, while the z direction is bounded by the top and
bottom walls.

When we apply an external force on the top layer for shear, we need to
ensure that the temperature profile across the simulation remains constant
(isothermal condition). For this, we use a layer-wise thermostat in our sim-
ulations. This is implemented in the following way: First, we divide the
simulation into multiple layers of unit length each. Since the combined wall
thickness in the simulations is 5o, we are left with a bulk thickness of 250,
which leaves us with 25 layers. For each layer, we calculate the total kinetic
energy, from the set of velocities of the particles {v}, v}...v 1}, where Ny, is
the number of particles in a given layer L. According to the equipartition
theorem, the total kinetic energy in a given layer must be equal to the total
number of particles within that layer,

3
=y ma? = kBT N; (5.6)

Therefore, we must find a constant factor, with which we can scale the veloc-
ities of the particles with a given layer L, such that the total kinetic energy
satisfies the equipartition theorem. In particular, we need to find a scale
factor &1, such that when v; = &, x v}, we get

1 o 3
=1

From here, we can find the value of £ to be

3kgTN
= ,/—ZN]‘; - 5,2 (5.8)
i=1""Y
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Therefore for every layer, we find the value of £, and scale the velocities. To
verify the thermostat, we also measured the temperature profile versus the
z-axis. We observed a constant average temperature across all layers during
the steady-state.

IWaII Thicknei % | ——— 7/‘

. Frozen Wall
‘ Particles

. O Type A
® Type B

[ )
IWa‘hickness

Figure 5.4: Representation of a cross-section of simulation box, along the
vertical [, and horizontal [, axis. The simulation box is divided into three
sections after equilibrium is reached. Monomers which end up in the top or
the bottom section (in the blue region) after equilibrium are frozen in their
place, while the middle section is called "bulk." Monomers in bulk region
are propagated in time according the usual velocity verlet algorithm coupled
with langevin noise. All the monomers in the top wall (section) are displaced
with a constant strain rate. This effectively shears the system, and we extract
the results once a steady state is reached.
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5.5 Result and discussions

We calculated the velocity profile of the micellar system along the z axis.
This was done in the following way:

We first divide the bulk into layers of unit length along the z axis. Since
the cumulative wall thickness is bo, we are left with 25 layers in bulk. We
calculate the centre of mass velocity of each layer after every 20 iterations
and average it over every 10° iterations/time steps in the simulations. We
start this averaging procedure after rejecting the first 20 x 10° iterations, to
ensure that the steady-state is reached. We utilize a similar procedure to
calculate other quantities like temperature and density profiles.

A linear velocity profile is expected when no shear bands are present in
the simulations. However, in the presence of shear banding, we would expect
the bulk monomers to split themselves into two or more bands moving with
different velocities. This would be a deviation from the linear velocity profile.

In our simulations, we explored a combination of different shear rates,
values of €., and different densities.We report for the first time, the obser-
vation of shear bands in a molecular dynamics simulation, for specific values
of €qe = 2.5 x 10°, monomer density of 0.160 and the shear rate of 0.01. In
fig B, a clear deviation from the dashed linear velocity profile could be
seen. Such a deviation is the first indication of the presence of shear banding
present in the system.

We also note the upper part of the curve in B, with z < 5o, shows a
velocity that is faster than the externally applied velocity of the top layer.
This is also a sign of shear bands in micellar solutions, where the fast-moving
phase is faster than the applied shear rate [41].

5.6 Conclusion and future perspective

In the present work, we have reported the first observation of shear banding
in worm-like micelles using molecular dynamics simulations. For this, we
used novel, two-body spherically-symmetric potentials, which helped reduce
computationally expensive calculations.

In future, we would like to develop a more microscopic level understand-
ing of our simulations. This could be done by calculating bond extension
within different layers, bond alignments, branching etc. We would also like
to calculate the full stress tensor in every layer.
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Figure 5.5: A. Velocity in the x direction v, is plotted along the z-axis for
€aa = 1.25x10°. B. Velocity v, is plotted along the z-axis for €4, = 2.5x 10°.
In both cases, the langevin noise amplitude is set to 0.1, with the particle
density of 0.160 and shear rate ¥ = 0.01. The solid purple line represents the
average of each of the velocity curves, while the dashed line is the expected
linear velocity profile when no shear banding is present. In B, we can see a
clear deviation from the dashed line, which is indicative of a shear banded
flow.
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Appendix A

Exponential nature of bending
energy FEp., s with Time (?)

It is slightly tricky to separate two different forms of energy stored in our
simulations. One is the energy during the contractile motion, while the other
is the "bending" energy stored in the shoulder region after the contraction
ends.

Since our simulations involve beads and springs, and we only have access
to the potential energies stored in such springs, we can not tell the difference
between the "bending" and the "stretching" energy.

However, as discussed in chapter 1, to show that the contraction and up-
ward motion of hydra is mostly passive, involves establishing the exponential
nature of the the dissipation of bending energy. In this appendix, we show
this trend both in the experiments, and try to replicate it in the simulations.

For a bent cylinder/rod, the energy stored in the "bend" is proportional
to the cylinder’s Young’s modulus and it’s curvature.

YIL
2R?

Where, I is the second moment of area and R is the curvature

U x

(A1)

I_/Q%A (A.2)

To show that this energy has an exponential trend, it is enough to calculate
the curvature of the bent shoulder region of Hydra and plotting its inverse
squared with time. This is plotted in the fig

In it can be seen that during the initial contraction, the shoulder
region is flat, thus its curvature is zero, thus the bending energy is also zero.
As the contraction occurs, the shoulder becomes more and more curved, thus
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Figure A.1: Experimentally measured bending energy curve shows an expo-
nential trend with time. Exact value of the constant of proportionality could
not be established thus there is a slight discrepancy between the absolute
values from the experiments and simulations.

storing larger bending energy. There is a clear peak of Fpenq, which marks
the maximum possible curvature of the shoulder region, and the start of the
upward motion. The points from max FEjp.,q till the end of the motion show
a definite exponential decay trend, and fit well with the exponential curve
(solid line)

Similar curve can also be replicated in our simulations by the following
procedure. In our simulations, the first 14 circles (rings) out of the total
50, constitute of the stiffer shoulder region. We calculate the centre of mass
of each of these rings to get 14 points, to get a set of (z,y) coordinates
at a giVGIl time ti, {[l’l(tz), yl(tz)]7 [(L’Q(tz), yg(tz)], ceey [xN(tz>,yN<tz>]} We can
estimate the radius of curvature by using the method of least square fit for
a circle, defined by

Suu + va
N

Where N is the total set of coordinates for a given time (14 in our case), u,
and v, are the centre of curvature of the fit circle. u, and v, are found from
by solving the matrix equation

Suu S’U/U uC _ 1 SUU/LL _'_ SU/U’U
|:SU’U S’U’U:| |:UC:| N 5 |:S’UU’U + S’U’U/ll,} (A.4>

B(t:) = ug(t:) + vp (ti) + (A-3)

Where Sy, = > wiy Suuu = D3 Uy Suww = D, UZ0; ete.
The radius of curvature of the fit circle at a given time is then given by

R(t) = /B(1) (A.5)
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We repeated this analysis for different model-Hydra cases which have been
plotted in fig The exponential decay trend can be clearly seen in all
three plots. Just like the experiments, it can be seen that the initial bending
energy is zero, since the entire body column of hydra is stretched. It increases
rapidly as more and more energy from the stretched region is transferred to
the shoulder. The figure also shows that the energy transfer and storage is
better in the oo = 3 case, despite same initial energy.
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Figure A.2: Figure shows three different model-Hydra plots. The gradient
(av = 3) clearly shows a larger peak bending energy than the and the uniform
(a = 1). We also simulated a uniform o = 1 model at a lower energy, to
match the experiments
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Appendix B

Velocity Verlet algorithm in
Damped condition

The velocity verlet method of integration, is given by the following set of
equations

1
Tpi1 = Tp + Ayv, + §Afan, (B.1)

1
Upy1 = Uy + §At(an+1 + ay,) (B.2)

The formulation is made under the assumption that the acceleration /force
is strictly dependent only on the position, i.e. f = f(x,,t,).
In case of damping, the force and the acceleration take the form

= f(@n, vn, tn) (B.3)
a — a(Ty, Vp, ty) (B.4)

Due to the v,, dependency of the acceleration, it becomes difficult to evaluate
Un41 as equation [B.2]itself depends on v;,14

1
Un+1 = Un + §At [an+1(xn+1> Un+1, tn+1> + CLn(I'n, Un, tn)] <B5>

To resolve this problem, we begin by approximating a, 1 = a(Z,11, Uni1, tas1)
by ani1 = a(Tpi1, Vn + @y, tyr1) and then refining. Using this in the ve-
locity verlet equations we get following set of equations:

1
Tyl = Tp + A0, + éA?an, (B.6)
R 1
UnJrl = Un + EAIE [an + a(anrla Un + Atanv tn+1)]7 (B7>
1 .
Upt1 = Up + EAt [an + a(xn-i-la Un+1, tn—H)] (B'8>
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This expression can be simplified by including the explicitly expression for
the acceleration in case of linear damping. The linear damping formula can
be written both in forward and backward difference method as:

Gpﬁﬁzzvvzzzﬂ%ilfﬁ (B.9)

t

GB(v) =qv = % (B.10)
t

Adding G (v) and GP(v) we get

2xmm:%“_%z%_%” (B.11)
t

— Gv) = %*%f“ (B.12)

Using this expression in eq we get the final expressions for damped
velocity verlet algorithm

1
Tnpl = Tn + Ayv, + éAfan (B.13)

1

[ (1 — Ayy/2m) + QA—WI;(Fn_l + F,)] (B.14)
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Appendix C

E houlder Versus time (t) for

e=0.2and e =1.1

To show that the Espouiger is independent of the value of strain (), we plotted
the Egpoulger versus time (t) graphs for higher (¢ = 1.1) and lower (¢ = 0.2)
values of strains.
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Figure C.1: A. Egouder is plotted with time for lower strain of e = 0.8.
B. FEouder is plotted for a lower strain value of € = 0.2. Both A and B
show a = 3 model-Hydra is able to complete its motion due to E,ouider >
ErThresnod, regardless of the value of €. EgpouigerinA is higher than B because
of lower initial energy dissipation which occurs during the contraction step.
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Appendix D

Maxwell’s model for
Viscoelasticity

When a viscous fluid is subject to a shear stress, it responds by immediately
dissipating the applied stress internally. While when the same shear stress is
applied to an elastic material, it stores the stress energy and releases it back
when such stress is removed. For viscous fluids, a shear stress (o) is said to
be proportional to strain rate while stress is directly proportional to strain in
a completely elastic material. More rigorously, materials can be categorized

O-yx x }/yx O-yx X y . O-yx

Sy =P e —»

A B

Figure D.1: A. A completely elastic solid undergoes a shear stress o, = 0.
In such a case, the shear stress is directly proportional to shear strain. B.
A completely viscous undergoes shear stress, and immediately dissipates it.
In this case the shear stress is not proportional to the strain, but the strain
rate. C. A material which is viscoelastic has a more complex response to
shear stress. It has both storage as well as dissipative components.

based on the stress relaxation time (). A material with completely elastic
response has an infinite stress relaxation time, or A — oo, whereas a viscous
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fluid, which does not store any stress energy has the stress relaxation time
of A — 0. Based on such considerations, Maxwell proposed a two parame-
ter phenomenological model to characterize a viscoelastic material. For the
present case in ﬁg we can write the Maxwell’s model in component form
as

7o) 4+ 222 s, D)

Here, A is the stress relaxation time, o,, is the component of stress tensor
co-planar to the top surface in fig @ 1 is the constant determining the
viscous contribution, while /A determines the elastic contribution. In the
following sections, we will analyse different solutions to Maxwell’s model.

D.1 Stress relaxation under constant strain of
fYyJC(t) — %Sx

From fig at time ¢ = 0, a constant strain of v,, = ’ygx is applied to the
viscoelastic system. Putting this strain in the Maxwell’s model, we get

oy (t) + A =1 (D.2)
= 0y(t) +A\———==0 (D.3)

Using integrating factor, and the initial condition of ¢,,(0) = G~,, we get

O(t) = Gl (D.4)

— G(t) = Turll) _ Gemtn (D.5)
’70
yx

Here, G(t) is defined as the stress relaxation modulus. From the above
derivation, we can see that G(t) — n/\ as A — oo, which is a completely
elastic response. We also note that the relaxation modulus G(t) is not a
function of the ’strain’ or its derivatives. This means that both low or high
strains can be characterized by G(t). This is a result of the Maxwell’s model
being linear. This linearity has been further exploited to create a generalized
Maxwell’s model. Such models are built to characterize materials with more
than one relaxation mode. The relaxation modulus then is made up of a
linear superposition of modulus of individual modes.
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D.2 Stress relaxation under oscillatory strain:
Strain of vy = vy, sin(wt)

Figure D.2: Illustration of a cone and plate type Rheometer assembly. The
cone rotates/oscillates along the ¢ direction. The oscillation frequency is
kept to be low enough such that the fluid radially outward forces can be
ignored.

Here, we solve the Maxwell’s model for a cone and plate Rheometer ge-
ometry (fig[D.2). The cone is lowered in a viscoelastic fluid and oscillates
along the ¢ direction. We use spherical coordinates for ease of calculation.
From observation, we can see that the most important component of stress is
the o, component. We first write the Maxwell’s model for this component
as

809¢(t) c‘? i
009(t) + A= = 17 [ggsin(wt)] (D.6)
From observing the geometry, we can say that the most significant component
of velocity in this case is v4. By symmetry, and the fact that the fluid is in-
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compressible, we note that v, is a function of # and 7 only. At 0 = 7/2,
which the bottom of the cone, fluid does not have any motion, thus vs(6 —
w/2,1) — 0.

Due to the linear nature of Maxwell’s model, we also know that the
frequency of the measured shear stress would be the same as the applied
strain, and the difference would only be in a phase. With this in mind, we
can directly say that a general solution for stress in this situation would be

09y = Tgysin(wt + 0) (D.7)
Using the properties of trignometric functions, this can be expanded as
o9s = G'(w)sin(wt) + G"(w)cos(wt) (D.8)

If we put this test function inside the differential equation, we can solve for
G" and G” . The stress-strain equation thus becomes,

Guw?\? GwA
_ A0 ; _
700 = Voo | T oy @l) + T a0t D9
Where,
Guw?\?
r_ T A
G = FWEIY (D.10)
GuwA
"o
G — T e (D.11)

The phase lag in the stress-strain relationship, defined in can be explic-
itly defined now as

§=tan™" (i) (D.12)

The tan(0), which is equal to G”/G" is also known as "loss tangent". The
terminal responses of G’ and G” show that as w — 0, G’ o< w?, while G” < w.
Also, as w becomes large, G’ — G while G” — w™!. The terminal responses
naturally lead to the definition of a cross-over frequency as w. = 1/A. When
w << W, we have a mostly viscous dominated phase, whereas when w >> w,,
G’ plateaus off, and we have a completely elastic phase.

In the solutions above, G’ is known as the storage modulus, as it character-
izes the elastic response of the material. This is in-phase with the externally
imposed strain. The G” is known as the loss modulus, which characterizes
the viscous response. From the equation we can see that G” is associ-
ated with cos(wt), which is exactly 90° out phase with the stress, thus being
proportional to strain rate.
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D.3 Stress relaxation under oscillatory strain
rate: Strain rate of 4y, = 4y, sin(wt)

Following along similar arguments as section when we apply an oscil-
latory strain rate of p4 = "yg¢sin(wt), the stress response is captured by a
phase lag of ¢, and can be written as ogy = agqjsin(wt + ¢). Expanding this
using the trignometric identities and putting the guess solution back in the
Maxwell’s model, we get

_ 0 n . nwt
Ogp = 7Y mszn(wt) - mCOS(wt) (Dlg)
In this case, we define ' as 157 and 1" as 7% et 5 7’ is known as "dynamic

viscosity" of the material. It can be seen that 7 is associated with the part
of eq where 0y, is directly proportional to the strain rate, while n” is
associated with the part which is 90° out of phase with the strain rate.

We can therefore see that multiple different moduli can be used to char-
acterize both the viscous and the elastic response of the material. From
and we can see that in an "oscillatory strain" mode of the rheometer,
the quantities G’ and G” characterize the elastic and the viscous response of
the given material, while in the "oscillatory strain rate" mode, it is the "dy-
namic Viscosity" or "n'", which is responsible for characterizing the viscous
response, and n” for the elastic.
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