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Abstract

Entanglement Entropy in the recent year has been a powerful tool to provide with new

insights in various areas of Physics. One class of such attempts was to provide us insights

about gravity in the context of gravity. Inspired by the approach taken by Ted Jacobson

in deriving the Einstein’s equations starting from Thermodynamical argument, We are

exploring such a possibility starting from the Quantum informatic arguments.

We take condition of positivity of relative entropy arising from the quantum me-

chanical arguments and imposing these arguments in the context of holography with the

help of Ryu-Takayanagi formulation. Imposing these relative entropy conditions on the

Quantum Field theories with Holographic dual, we impose constrains on the gravitational

theories allowed in the holographic bulk.

Following the approach developed by A. Sinha et al and A. Kaviraj et al, We system-

atically introduce Higher derivative perturbations in the Boundary field theory to study

the relative entropy and there by obtain constraints at non linear level for gravitational

dual. We also compute the greens function required to compute the second order cor-

rections to the Minimal surface area in the bulk homologous to the entangling region of

boundary field theory. There by using the greens function we were able to compute the

second order corrections to the relative entropy, Thus enabling impose constraints and

check in the bulk gravitational theory is necessarly differmorphism Invariant.
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Chapter 1

Introduction

Entanglement Entropy is a measure of Entanglement in a quantum system. The particu-

lar formalism of entanglement entropy that is widely used is the Von-Neumann entropy.

we follow this formalism through out the calculations. It is defined as following for a

quantum subsystem A in the system AB with ρA as it’s density matrix.

S(ρ) = −TrρA log ρA (1.1)

Calculating Entanglement entropy for Quantum Field theory has given very interesting

results. It was both analytically and numerically observed that Entanglement entropy is

proportional to the Area of the entangling region [6, 7]. This is similar to the blackhole

entropy, hence Entanglement entropy was long proposed to be the origin of blackhole

entropy.

In the recent past Entanglement Entropy has proved to be a powerful tool to give new

insights into the various areas of physics. In the recent years, Entanglement entropy is

frequently calculated in condensed matter systems for classification of quantum phases.

It is also used as a diagnostic to characterize the quantum critical points and topologi-

cal phases. Entanglement entropy has been instrumental in exploring various topics in

Quantum field theory such as structure of renormalisation group flows and as a useful

probe for gauge transitions in gauge theories. It played an important role in establishing

c-theorems in three and higher dimensions. In the context of AdS/CFT, Holographic

Entanglement Entropy was considered in the Holographic descriptions of quantum grav-

ity and was used to classify holographic field theories. It has been suggested that at a
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fundamental level it could be used to understand the quantum structure of the space time.

Recently there were very interesting results for holographic Entanglement entropy from

MERA ( Multiscale Entanglement Renormalisation Ansatz) [5].It was employed to find

a ground state of interacting spin system on a one dimensional lattice with 2m sites.

To deal with exponentially large Hilbert space an iterative procedure is used to look for

description in fewer effective degrees of freedom, by the process of coarse-graining, where

quantum correlation of spins needs to be taken care of. This coarse-graining is achieved

through unitary transformation known as ”disentangler”, which is to remove quantum

entanglement in a given scale. This is a naive application of real space renormalisation

group on quantum systems moving from UV to IR. Hence, the ground state is described

by a structure consisting of course graining and disentanglers acting at different scales.

The Iterative steps would be related to the extra dimension of AdS.This is carried on

to QFT by cMERA (continuous MERA). Assuming a QFT with a Hamiltonian given, a

UV cut off Λ = 1
ε

is imposed, where ε is defined as the lattice constant. There is a strik-

ing connection between the procedure involved in calculating Holographic Entanglement

Entropy and estimation of Entanglement entropy in MERA.

Source of Image : [5]

Where we have the entropy in this case given as,

Sa ∝MinγA [#Bonds] (1.2)

In the past it was shown by Ted Jacobson [8], that it is possible to arrive at derivations

of full Einstein’s equations starting from pure Thermodynamic arguments. Extending
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this question, Can one derive Einstein’s Equations starting from Quantum Mechanical

arguments ? This question makes sense in the light of AdS/CFT correspondence and

Quantum Information using the Holographic Entanglement Entropy . Recently there

were attempts made to see what Entanglement would teach us about gravity[?, 3, 4]. As

we know, Ryu-Tagayanaki Prescription gives us a way to calculate Entanglement Entropy

of a Quantum Field theory with gravitational dual. We can turn the question around

and understand what Entanglement Entropy of the Quantum Field Theory would tell us

about the space-time dynamics of the Holographic Dual without making any assumptions

about it. In particular, it would be intriguing to know if the Holographic dual necessarily

follows Einstein gravity or allows a wider class of theories.

1.1 Theory

1.1.1 Ryu-Tkayanagi Entropy formulation

The Ryu-Takayanagi Prescription gives us an elegant and a simpler way to calculate

the Holographic Entanglement entropy. The Entanglement Entropy between a spatial

region V in the boundary field theory and it’s compliment V would be the Von-Neumann

entropy of it’s density matrix with the degrees of freedom in the region V traced out. In

the Holographic prescription, to yield the same entropy class of surfaces U are considered.

Which extend into the holographic bulk, such that they are homologous to the region

V in boundary, such that ∂V = ∂U . Then the area of U is extremised to obtain the

Entanglement entropy.

S(V ) =
2π

ld−1p

∫
Ext[V ]

dxd−1
√
h (1.3)

where we follow the convention that ld−1p = 8πGN and d is the spacetime dimension in

which boundary field theory is present.
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Source of Image : [11] An Example calculation for Entanglement Entropy in AdS3/CFT2

is show in the following section

1.1.2 Relative Entropy

To probe the questions previously posed, it would be convenient to use another measure,

called ”Relative Entropy”, which is a derivative from Von-Neumann entropy. Relative

entropy is the fundamental statistical measure of the ‘distance’ between two states sharing

the same Hilbert space. Relative entropy between two states with density matrices ρ0

and ρ1 is given as the following

S (ρ1|ρ0) = Tr (ρ1 log ρ1) - Tr (ρ1 log ρ0) (1.4)

From Quantum Mechanics we know that relative entropy must always be positive and

zero only if both the sates are the same.

S (ρ1|ρ0) ≥ 0 (zero only when ρ1 = ρ0) (1.5)

Given a state which is thermal with respect to it’s Hamiltonian H, then one can express

it’s density matrix as ρ =
e−H/T

Tr(e−H/T )
. In this case we could express the relative entropy

between ρ0 and ρ1 as the following.

S(ρ1|ρ0) =
1

T
(F (ρ1)− F (ρ0)) (Where F is the Free energy.) (1.6)
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We also know that Free energy can be represented as F (ρ) = Tr(ρH)− T S(ρ). Hence

we’ll have

S (ρ1|ρ0) = ∆〈H〉−T ∆S (1.7)

The reduced density matrix of a Quantum Field theory on region V could also be written

as

ρ =
e−H

Tr(e−H)
(where H is a particular Hermitian operator) (1.8)

This is justified as the density matrix would be both Hermitian and Positive semidefinite.

The Hermitian operator(H) that would give reduced density matrix is known as ‘Modular

Hamiltonian’, which is not a local operator.The modular hamiltonian is only known for

a few cases. The further calculations will require the knowledge of modular hamiltonian

for spherical entangling region, which is given as

H =

∫
r<R

dd−1x
R2 − r2

2R
T00 (1.9)

where T00 is the time-time component of d-dimensional field theory stress tensor.

Considering the expression for the reduced density matrix, it is obvious that the rel-

ative entropy in this case would have as the same form as the thermal relative entropy

with T = 1, which would be

S (ρ1|ρ0) = ∆〈H〉 − ∆S (1.10)

where, ∆S = S(ρ1)− S(ρ0) , which we know from the Ryu-Takayanagi prescription will

be ∆S = 2π

ld−1
p

∆Area[γa] (γa is the minimal surface) and ∆〈H〉 = Tr(ρ1H)− Tr(ρ0H).

As previously stated, the positivity of relative entropy will lead to

S (ρ1|ρ0) ≥ 0 ⇒ ∆〈H〉 ≥ ∆S (1.11)

Taking ρ0 as a fixed state and consider moving ρ1 through a family of states with an affine

parameter λ such that ρ1(λ = 0) = ρ0. Then it is very evident that S(ρ1(λ)|ρ0) > 0,

∀ λ 6= 0 and S(ρ1(λ)|ρ0) = 0, for λ = 0. If S(ρ1(λ)|ρ0) describes a smooth curve with

respect to λ, then the first derivative should vanish at λ = 0, which implies for nearby

states that
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⇒ ∆〈H〉 = ∆S

This would be true for the first order expansion. This inequality as stated above have

it’s origins from Quantum information. Since it is a inequality, it might not be possible

to recover full Einstein’s equations starting from it. But this inequality holds the key for

imposing constraints on the gravitational theories allowed in the holographic dual.

1.2 Literature Survey

1.2.1 Linear order

It was recently shown by Robert. C. Myers et al in [2], that using the equality ∆〈H〉 =

∆S, it is possible to recover linear Einstein equations for holographic dual at first order.

What follows is the summary of their work.

Taking ρ0 as the density matrix of vacuum state in the spherical region with radius

R in the boundary CFT. The extremal surface homologous to this, on the holographic

bulk is given by

z =
√
R2 − r2, (where, r2 = x2i ) (1.12)

Taking ρ1 whose small deviation of the vacuum state ρ0 is characterised by expectation

value of the stress tensor T 0
µν in the boundary CFT. For general analysis we use Fefferman-

Graham expansion for the metric defining the bulk, given as,

ds2 =
L2

z2
(dz2 + gµν dx

µdxν) (1.13)

When z ' 0 , the above would describe asymptotic geometry. As the asymptotic metric

is chosen to be flat, we may write

gµν = ηµν + εδgµν (1.14)

Here ε controls the strength of perturbation. As FG expansion is used, the deviation of
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the bulk metric from the pure AdS in eq. 1.14 takes the form

δgµν =
2

d

ld−1P

Ld−1
zd
∑
n=0

z2nT (n)
µν (1.15)

On solving the Einstein’s equations with the perturbed metric, we have,

T (n)
µν =

(−1)nΓ[d/2 + 1]

22nn!Γ[d/2 + n+ 1]
�nTµν (1.16)

With the above expansion of the metric, on calculating ∆S and ∆〈H〉 to the linear order,

it is found that

∆S = ∆〈H〉 (1.17)

Thus it was observed that by using positivity of relative entropy it is possible to retrieve

Einstein’s equations at linear order.

1.2.2 Quadratic order

As we have seen in the previous attempt, from the positivity of the relative entropy, at

the first order,only linear Einstein’s equations have been recovered. A step further has

been taken in the work done by A. Sinha et al , to move to the quadratic order in [3].

Following is the summary of their work.

In the fist order, we have ∆S = ∆〈H〉 . But we need ∆〈H〉 ≥ ∆S. So, in the second

order we’ll have

∆(2)S < 0 (1.18)

And to calculate the quadratic correction to the entanglement entropy, the metric 1.14

needss to be further perturbed as given

gµν = ηµν + εδgµν + ε2δ(2)gµν (1.19)

which expands as,

δ(2)gµν = a2z2d
(
n1TµαT

α
ν + n2ηµνTαβT

αβ
)
(where (a=

2

d

lp
d−1

Ld−1
) and Tµν is constant.)

(1.20)
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when Einstein’s equation is solved with the above metric, then n1 and n2 obtain the

following values,

n1 =
1

2
; n2 = − 1

8(d− 1)
where d=4 (1.21)

As we are moving on the quadratic order in T , extremal surface gets perturbed, as bulk

is altered. In the linear order case, minimal surface could be described by z(xi) in a

simple way 1.12 as function of radial coordinate of boundary theory. Due to the present

perturbative expansion, we can expand z as

z(xi) = z0(x
i) + εz1(x

i) where z0(x
i) =

√
R2 − r2 (1.22)

From the ryu-Takayanagi prescription 1.3, we know that entropy depends on the
√
h

(h is the induced metric). To compute the quadratic correction to the entropy,
√
h is

Taylor expanded, which leads to

∫
dd−1δ(2)

√
h =

∫
dd−1

(
1

8

√
h
(
hijδhij

)
2 +

1

4

√
hδhijδhij +

1

4

√
hhijδ(2)hij

)
(1.23)

The induced metric is given as

hij =
L2

z2
(gij + ∂iz∂jz) (1.24)

The above is evaluated at extremal surface z = z0 + εz1 (z0 =
√
R2 − r2). The

contributions of ∆2S is categorised into 3 second order contributions based on powers of

z1 as the following, ∫
dd−1δ(2)

√
h = A(2,0) + A(2,1) + A(2,2) (1.25)

Thus the z1 can be found by minimizing A(2,1) + A(2,2). This gives us,

z1 =
−aR2z0

d−1

2(d+ 1)
(T + Tx) (where T = Ti

i ,Tx = Tij
xixj

R2
) (1.26)

Plugging the solution of z1, calculating the ∆(2)S and imposing the condition ∆(2)S < 0

10



gives the folloing inequality,

n1 + 2(d− 1)n2 ≥ 0 , (1.27)

2d+ 1− 4(d+ 1)n1 − 4(d2 − 1)n2 ≥ 0 , (1.28)

d+ 2− 4(d+ 1)n1 − 4d(d2 − 1)n2 ≥ 0 , (1.29)

This inequality represents a triangle in the parameter space of n1 and n2

Source of Image : [4]

1.2.3 Non-constant stress Tensor

As we have seen that, in quadratic case we have not obtained the Einstein’s equations

rather obtained constraints on the class of gravitational theories allowed in the holo-

graphic bulk This is due to the inequality. The following work by Aprathim Kaviraj et

al in [4], is to minimise these constraints by taking the non-constant stress tensor and

obtaining non-linear constraints.The ρo is still taken as the same.

Taking the stress tensor to be non-constant will add more terms to δ(2)gµν at the

quadratic order. In this paper, terms with maximum of two derivatives are considered.

Hence it would change the metric as follows,
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δ(2)gµν = a2z2d
(
n1TµαT

α
ν + n2ηµνTαβT

αβ + z2Tµν (1)
)
. (1.30)

Where Tµν expands as

Tµν =n3 (Tµα�Tν
α + Tνα�Tµ

α) + n4ηµνTαβ�T
αβ + n5∂µTαβ∂νT

αβ + n6∂αTµβ∂
βTν

α

+ n7∂µ∂νTαβT
αβ + n8∂αTµβ∂

αTν
β + n9

(
∂µTαβ∂

βTν
α + ∂νTαβ∂

βTµ
α
)

+ n10ηµν∂αTβγ∂
αT βγ

+ n11∂αTγβ∂
βT γαηµν + n12

(
T βα∂α∂µTνβ + T βα∂α∂νTµβ

)
+ n13T

αβ∂α∂βTµν (1.31)

on solving the Einsteins equation with the above metric, we’ll that the n’s obtain the

following values,

n3 = − 1

24
, n4 =

1

180
, n5 = − 1

180
, n6 = − 1

60
, n7 =

1

360
,

n8 = 0, n9 =
1

120
, n10 =

1

720
, n11 = 0, n12 = − 1

120
, n13 =

1

60
(1.32)

As in the previous case, minimising A(2,1) + A(2,2) with respect to z1 gives the following

equation.

1

z0d−1R

(
∂2 (z0z1)−

xixj

R2
∂i∂j (z0z1)

)
=

z0
2R

(
T (d− 2) + Tx (d+ 2)− z20

12

(
d∂2T + (d+ 4)

xixj

R2
∂2Tij

)
+ xi∂iT + 2xi∂0T0j +

1

R2
xixjxk∂kTij

)
,

(1.33)

The solution of z1 that satisfies the above equation with other constraints is the following

(the process of obtaining this solution will be explained in the coming chapters)

z1 = −z03R2

(
T + Tx

10
+

1

12

(
xi∂iT + xixjxk

∂kTij
R2

)
+

1

28

(
xixj∂i∂jT + xixjxkxl

∂i∂jTkl
R2

)
− (R2 − r2)

168

(
∂2T + xixj

∂2Tij
R2

))
. (1.34)

12



On calculating ∆(2)S we get that,

∆(2)S1 =
8π2L3R8

4725`3P

(
−160(n1 + 6n2) (Ti0)

2 + 8(−9 + 20n1 + 60n2) (Tij)
2 + 8(1 + 60n2)T

2
)

+

+
8π2L3R10

31185`3P

[
(10− 12n1 + 2160n11 + 720n6 + 1440n9)

(
∂iTjk∂

kT ji
)

+ 48 (7n2 + 45n4 + 15n7)T∂
2T

+ (−120n1 − 672n2 − 1440n3 − 4320n4 − 1440n7)T
0i∂2T0i + (−12 + 720n13)T

ij∂i∂jT

+ (−55 + 120n1 + 2160n10 + 336n2 + 720n5 + 720n8) (∂iTjk)
2 + (12n1 − 2160n11 − 1440n9) ∂iT0j∂

jT 0i

+ (5 + 2160n10 + 336n2 + 720n5) (∂iT ) 2 + (120n1 + 336n2 + 1440n3 + 2160n4 + 720n7)T
ij∂2Tij

+ (−120n1 − 4320n10 − 672n2 − 1440n5 − 720n8) (∂iT0j)
2
]
. (1.35)

substituting the values from 1.32, it reduces to

∆(2)S =− 16π2R10L
3

`3P

[
6T 2 + 20 (Ti0)

2 + 6 (Tij)
2

4725R2

+

(
5 (∂iT ) 2 + 15(∂iT0j)

2 + 3∂iT0j∂
jT0

i + 5(∂iTjk)
2 − 2∂iTkj∂

kT ij
)

31185

]
. (1.36)

As there are no T∂∂T terms present, it is possible to show that when Einstein values

are substituted the ∆2S can be shown as a negative definite quantity by completing the

squares. Due this would not be possible in the 1.35 case, as such terms are present and

∂∂T∂∂T are also required to complete the squares. Hence, by making an assumption that

Tµν(~x = 0) = 0, reducing the parameter space to n1 and n2 and imposing the condition

∆(2)S < 0 gives us the new constrain region,

13



Figure 1.1: The blue (upper) triangle is from constant stress tensor case and the red
one from non-constant case. The intersecting part is the net allowed region for n1 and
n2. Source of Image : [4]

1.3 Motivation

As we have seen in the various scenarios above, the Einsteins equations starting from

the positivity of relative entropy are recovered in linear order in O(T ). Where as on

moving to the quadratic order, we see that we obtain constraints for a class of gravi-

tational theories allowed in the holographic dual. To recover Einstein’s equation at the

quadratic order, the constrained area in the parameter space of ni ’s has to be reduced

to the Einstein values/point. And the ∆(2)S needs to be shown as a negative definite

quantity. This was not possible due to the terms of order O(T∂∂T ) are present. As they

have made the assumption Tµν(~x = 0) = 0, which restricts the stress tensor to a special

class, resulted in a new triangular region of constrained area which is rotated around the

old at the Einstein point as in 1.1

As initially stated, we are not assuming anything about the holographic bulk, hence

we don’t even take diffeomorphism of the Bulk into consideration. Thus, we need to

add higher derivative (4 − ∂’s acting on 2 − T ’s) perturbation to the metric, so that

we’ll have ∂∂T∂∂T terms to complete the squares. By doing so, we still don’t have to

restrict ourselves with a particular class of stress tensors such as Tµν(~x = 0) = 0, but can

consider a wider variety of them. As a result, we may end up new constrained areas as

the following,

14



Figure 1.2: Here we have the Blackdot representing the Einstein point. Blue - repre-
senting the old case and red, green representing the new one

Doing so would help us constrain the allowed region in the parameter space to a great

extent around the Einstein values and show that the . It might also happen that we can

recover the full Einstein’s equations and show that the bulk theory is diffeomorphism

invariant up till the quadratic order . But we should remind ourselves that as we are

dealing with inequality, that we also end up with parameter space restricting itself to the

unbounded space.
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Chapter 2

Higher derivative perturbations

In order to constrain the area around the parameter space, it is required to move to

higher derivative perturbation. In this chapter we initially deal with introducing Higher

Derivative perturbation and solving the Einstein’s equations using the new perturbed

metric. Further on we use the new induced metric to find the Equations of motion for z1.

Later, a method is illustrated on how to obtain the solution for new z1 and the solution

is found.

2.1 New terms to metric

Adding Higher derivative perturbation would mean to add new terms to metric in quadratic

order in T with 4− ∂’s acting on them. Hence the metric 1.19 would get perturbed as,

δ(2)gµν = a2z2d
(
n1TµαT

α
ν + n2ηµνTαβT

αβ + z2Tµν (1) + z4Tµν (2)
)
. (2.1)

T (2)
µν is constructed by taking into account all the possibilities of 4 − ∂s acting on

2− T s, the total non-zero contributions to the metric would be the following
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T (2)
µν = n14 ηµν�Tab�T

ab + n15 ηµν∂a∂bT
cq∂c∂qT

ab + n16 ηµν∂a∂bT
cq∂a∂bTcq + n17 ηµν∂a∂bT

cq∂a∂cT
b
q

+ n18 ∂a∂bTµν�T
ab + n19 ∂a∂cT

b
µ∂

c∂bT
a
ν + n20 �Tµa�T

a
ν + n21 ∂b∂cTµa∂

c∂bT aν + n22 ∂µ∂νTab�T
ab

+ n23 ∂c∂µT
ab∂a∂νT

c
b + n24 ∂a∂µT

bc∂a∂νTbc + n25 (∂c∂µTνa�T
ac) + n26 (∂a∂µT

b
c ∂

a∂bT
c
ν )

+ n27 (∂a∂µT
bc∂c∂bT

a
ν ) + n28 ηµν�∂cTab∂

cT ab + n29 ηµν�∂aTbc∂
cT ab + n30 ∂a∂b∂cTµν∂

cT ab

+ n31 (�∂bTµa∂
bT aν ) + n32 (�∂aT

b
µ∂

bT aν ) + n33 ∂c∂µ∂νT
ab∂cTab + n34 ∂c∂µ∂νT

ab∂aT cb

+ n35 (�∂µT
ab∂νTab) + n36 (∂a∂b∂µTνc∂

cTab) + n37 (∂a∂b∂µTνc∂
bTac) + n38 (�∂µT

ab∂aTνb)

+ n39 ηµν�
2TabT

ab + n40 �∂a∂bTµνT
ab + n41 (�2TµaT

a
ν ) + n42 �∂µ∂νTabT

ab

+ n43 (�∂a∂µTνbT
ab) + n44 (�∂bTµc∂νT

bc) (2.2)

The terms in brackets are symmetrised by addition.

2.1.1 Solving for Einstein values

The coefficients infront of each term, in the higher derivative perturbation needs to be

found. One primary reason being that, to check if ∆(2)S is satisfying the negativity con-

dition on Einstein values and secondly, to see effect of new terms on n1 and n2 , so a

comparative study could be made with the previous cases. As we could see, without a

efficient way, it would be nearly impossible to fix these coefficients by taking arbitrary

stress tensor.

Hence, we take special cases of Stress tensor, i.e Tµν and use them as the trial functions

to solve the Einstein equation for empty AdS. The trial functions as taken as,

Tµν = αµνe
(β

(1)
µν x

n + β
(2)
µν y

n + β
(3)
µν w

n)κ ( where x,y,w are space cordinates of CFT) (2.3)

Where we took, αµν0 or 1 to either turn on or off the component and β
(i)
µν = (0, 1) and

n = 1, 2, 3, 4. These values are chosen such that, we have the stress tensor to be Traceless

(T ii = 0) and divergence less (∂iT
ij = 0).
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As they are taken as infinitesimal perturbation, we can set Rµν − 1
2
R gµν + Λ gµν

to zero. By this way on solving Einstein’s equations we can segregate coefficients of

exponential functions to a particular order in κ depending on n and set them to zero.

This would give us multiple linear equations in terms of ni’s which would be easier to

solve. Hence doing so, we’ll get the following values for the coefficients of higher order

perturbations

n14 = −
1

4608
− α , n15 =

1

34560
+ α , n16 = α , n17 = −

1

17280
− 2α , n18 = −

17

17280
+ 2α ,

n19 =
7

17280
+ 2 , n20 =

61

17280
+ 2α , n21 = −

1

17280
− 2α , n22 = −

1

4320
+ 2α , n23 =

1

17280
+ 2α ,

n24 =
1

17280
− 2α , n25 =

19

138240
− α

2
, n26 = −

1

8640
+ 2α , n27 = −

1

17280
− 2α , n28 = −

1

6912
, n29 = 0 ,

n30 = −
1

2880
, n31 = 0 , n32 =

1

960
, n33 = −

1

17280
, n34 = 0 , n35 =

11

34560
, n36 = 0 , n37 =

1

5760
,

n38 = −
1

2304
, n39 = −

1

6912
, n40 = −

1

960
, n41 =

1

768
, n42 = −

1

8640
, n43 =

1

2304
, n44 = −

7

11520

(2.4)

Where α is found to be a free parameter.Due to diffeomorpism we expects all the values

of n’s to be fixed, but this α seems to be a gauge artefact, which on selection of proper

gauge transformation can be gauged away.

To check the above values,a stress tensor with arbitrary functions can be taken such

that it satisfies trace, divergence less and symmetry conditions. Such as

Tµν = fµν(x, y, w) (2.5)

We were able to solve Einstein’s equations, on assuming above conditions and the values

obtained to see that they perfectly agree and go to zero.Hence establishing a check for

the above values.

2.2 EOM for z1

Since higher order perturbations are introduced to the metric, this will in turn change

the induced metric for extremal surface in the holographic dual. This would mean new

Equations of motion for z1 has to be derived for the current scenario by minimising

A(2,1) + A(2,2).

18



2.2.1 Induced metric

The induced metric for the extremal surface can be defined as the following.

hij =
L2

z2
(gij + ∂iz∂jz) (2.6)

Here we have gij expanded as gµν = ηµν + εδgµν + ε2δ(2)gµν and z gets expanded as

z = z0 + εz1. On collecting terms expanding the above equation and segregating with

different powers of ε we’ll have h0ij , δhij and δ(2)hij, which is give as the following

h0ij =
L2

z20
(ηij +

xixj
z20

) , (2.7)

δhij =
L2

z20
(δgij −

xi∂jz1
z0

− xj∂iz1
z0

− 2z1
z0

(ηij +
xixj
z20

)) , (2.8)

δ(2)hij =
L2

z20
(δ(2)gij + ∂iz1∂jz1

2z1
z0

(δgij −
xi∂jz1
z0

− xj∂iz1
z0

) +
3z21
z20

(ηij +
xixj
z20

))

+z1

2∑
n=0

(d+ 2n)zd+2n−1
0 (T

(n)
ij ) (2.9)

As we know that induced metric satisfies the condition hijh
jk = h0ij(h

0)jk = δki . So

from this we’ll have ,

h0 ij =
z20
L2

(ηij −
xixj
R2

) , (2.10)

δhij = δhlm h0 il h0 mj (2.11)

With these expressions of induced metric, it would easy to expand and calculate δ(2)
√
h,

by estimating A(2,0),A(2,1)andA(2,1)

Calculating EOM of z1

As we know that the second order perturbation of
√
h expands as

∫
dd−1δ(2)

√
h =

∫
dd−1

(
1

8

√
h
(
hijδhij

)
2 +

1

4

√
hδhijδhij +

1

4

√
hhijδ(2)hij

)
(2.12)

On segregating the resultant expression in the powers of z1, we would get,

∫
dd−1δ(2)

√
h = A(2,0) + A(2,1) + A(2,2) (2.13)
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For calculating the Equations of Motion for z1, we need only A(2,1) and A(2,2) as the

other terms would not contain z1 or ∂iz1. On plugging in Induced metric expressions 2.7

in the Taylor expansion of
√
h 2.12, we get that

A2,1 = Ld−1a

∫
dd−1x

R

2z0

(
T

(
z1 −

z20
R2
xi∂iz1

)
− z20

12
∂2T

(
3z1 −

z20
R2
xi∂iz1

)
+
z40

384
∂4T

(
5z1 −

z20
R2
xi∂iz1

)
+ Tij

(
2z20x

i∂jz1/R
2 − z1x

ixj

R2
− z20x

ixjxk∂kz1
R4

)
− z

2
0

12
∂2Tij

(
2z20x

i∂jz1/R
2 − 3

z1x
ixj

R2
− z20x

ixjxk∂kz1
R4

)
+
z40

384
∂4Tij

(
2z20x

i∂jz1/R
2 − 5

z1x
ixj

R2
− z20x

ixjxk∂kz1
R4

))
. (2.14)

and

A2,2 = L3

∫
d3x

R

z40

(
d(d− 1)z1

2

z02
+
z0

2 (∂iz1)

2R2
− z0

2

2R4

(
xi∂iz1

)
2 +

(d− 1)

R2
z1x

i∂iz1

)
.

(2.15)

As we are taking boundary spacetime dimensions to be 4, we set d=4. and now we need to

minimise the sum of above two with respect to z1 by substituting in the Euler-Lagrange,

i.e
∂L
∂z1
− ∂i

(
∂L
∂∂iz1

)
= 0 with L = A2,1 + A2,2 . (2.16)

On solving the above equation, we get equations of motion for z1 as the following,

1

z0d−1R

(
∂2 (z0z1)−

xixj

R2
∂i∂j (z0z1)

)
=

z0
2R

(
T (d− 2) + Tx (d+ 2)− z20

12

(
d∂2T + (d+ 4)

xixj

R2
∂2Tij

)
+
z40

384

(
(d+ 2)�2T + (d+ 6)

xixj

R2
�2Tij

)
+ xi∂iT + 2xi∂0T0j +

1

R2
xixjxk∂kTij

− z
2
0

12

(
xi∂i�T + 2xi∂0�T 0j +

1

R2
xixjxk∂k�Tij

))
, (2.17)

As in the previous notation, T = T ii and Tx = xixj Tij
R2 . Hence, a solution for z1 should

satisfy the above equations of motion.
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2.3 Methodology to find z1 solution

Here we illustrate and follow the method of finding z1 developed by Kaviraj et al in [4].

The minimality constrain that we obtained above can be written as the following,

z0
(
∂2 (z0z1)− xixj∂i∂j (z0z1)

)
= J . (2.18)

The J we have, contains the details of how bulk metric is deformed due to perturbations of

stress-tensor from the boundary. By using a particular coordinate transformation, which

will be illustrated in the latter part of the section, the above equation can be written as

(−∆H3 + 3)z1 = J , (2.19)

where ∆H3 is scalar Laplacian on AdS3. Since we are dealing with the time-independent

perturbations and then parametrise minimal surface we’ll have the AdS3 Laplacian in-

stead of a 5 dimensional one. By the form of above equation , z1 can be thought of as

a scalar field propagating on the z0 surface. So, we can see that it’s a equation of field

propagating AdS3 with m = 3, m being the mass of it. By this the general solution can

be written as,

z1 =

∫
Gbulk−bulkJ + fhom , (2.20)

Gbulk−bulk is the bulk to bulk propagator for a massive scalar field. As the z1vanishes on

the entangling surface, we can set fhom to zero.

2.3.1 Greens function for z1

From the above, the general solution for z1 can be written as,

z1(x) =

∫
dµx̂G(x, x̂)J(x̂) , (2.21)

As we could see that dµx̂ is the riemannian volume element on AdS3 and x collectively

describes the intrinsic coordinates, An AdS3 of unit radius is described by a hyperboloid

Minkowski space R3,1 given by,

X2
1 +X2

2 +X2
3 −X2

4 = −1 , (2.22)
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where the Xi’s are coordinates of R3,1. Thus we can take the intinsic coordinates of AdS3

as

X1 = sin θ cosφ sinh η, X2 = sin θ sinφ sinh η, X3 = cos θ sinh η, X4 = cosh η . (2.23)

Where we have η = tanh−1(r) and θ,φ are angular coordinates.The metric in terms of

these coordinates is the following

ds2 = dη2 + sinh2 η(dθ2 + sin2 θdφ2) . (2.24)

The geodesic distance between two points x and x̂ on AdS3 is given by the relation

cosh d(x, x̂) = −X.X̂ , (2.25)

we have X and X̂ are respective intrinsic coordinates. As the greens function is the

bulk-bulk propagator for a scalar field with m2 = 3(as for present case this is the value

of m2 2.20) is given by,

G(x, x̂) =
1

4π

e−2d(x,x̂)

sinh d(x, x̂)
. (2.26)

We can take point x to have η = 0, which translates to X1 = X2 = X3 = 0, X4 = 1 . The

calculations at this point would get simpler as it is the lowest point in the hyperboloid

and we’ll have cosh d = cosh η̂. As we know, η̂ is the intrinsic coordinates corresponding

to x̂. So, we’ll have

z1(0) =

∫
dΩ̂2

∫ ∞
0

dη̂ sinh2 η̂
1

4π

e−2η̂

sinh η̂
J(η̂) where J(η̂) = sech5η̂(1 + tanh2 η̂) .

(2.27)

The process evaluating the above integral around origin is justifiable as we can always

make a coordinate transformation such that the point of evaluation is origin.
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2.4 Solution for z1

As We have in the above equations, 2.18 and 2.17. We know that from the minimality

constrain the source function that we would obtain will be the following,

J =
z0
2R

(
T (d− 2) + Tx (d+ 2)− z20

12

(
d∂2T + (d+ 4)

xixj

R2
∂2Tij

)
+
z40

384

(
(d+ 2)�2T + (d+ 6)

xixj

R2
�2Tij

)
+ xi∂iT + 2xi∂0T0j +

1

R2
xixjxk∂kTij

− z
2
0

12

(
xi∂i�T + 2xi∂0�T 0j +

1

R2
xixjxk∂k�Tij

))
, (2.28)

Now we make use of the formula 2.27 with the above source to find z1. To make calcula-

tion simpler we move to the Fourier space we write the above J in the form of derivatives

of exponentials to find the solution.

The stress tensor is taken to be of the form,

Tij = εij(~k)ei
~k.~x, εij(~k)kj = 0 . (2.29)

On Fourier transforming the source, z1 is given by

z1 =

(
2ε− 6εij∂

i
∂
j

R2

)
− 1

12

(
4
(
−k2

)
R2ε− k24ε∂2 + k28εij∂

i
∂
j

+
8εijk

2∂
i
∂j∂

2

R2

)

+
1

384

(
6k4R4ε+ 2k4R26ε∂

2
+ k46ε∂

4 − k4R210εij∂
i
∂
j − 20εijk

4∂
i
∂
j
∂
2 − k410εij∂

i
∂
j
∂
4

R2

)

+

(
kiε∂

i − klεij∂
i
∂
j
∂
l

R2
+ 2k0εoj∂

i

)
− 1

12

(
−k2kiR2ε∂

i − k2kiε∂
2
∂
i
+ k2klεij∂

i
∂
j
∂
l
+
k2klεij∂

i
∂
j
∂
l
∂
2

R2

−2∂
i
k2R2k0εoj − 2k0εojk

2∂
i
∂
2
)∫

d3x̂G(x, x̂)(z0
5 ei

~k.~̂x) (2.30)

where we have ∂
i

denoting ∂/∂ki
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To simplify things, we can assume ~k to be in the direction of x3. Then the integral

part of the equation simplifies to

∫
d3x̂G(x, x̂)z0

5 ei
~k.~̂x =

∫
d3x̂G(x, x̂)(R2 − r̂2)5/2 eikx̂3 . (2.31)

As previously discussed, these transformations has to be made to the new intrinsic coor-

dinates (η′, θ′, φ′) , where we have ~x = (r, θ, φ) = (R tanh η, θ, φ) becoming the origin. In

these coordinates

(
1− r2

R2

)
=

1

(cosh η cosh η′ + cos θ′ sinh η sinh η′)2
(2.32)

x3
R

=
cos θ cosh η′ sinh η + cos θ cos θ′ cosh η sinh η′ − cosφ′ sin θ sin θ′sinhη′

cosh η cosh η′ + cos θ′ sinh η sinh η′
(2.33)

The integrand is expanded in powers of k up till 8 powers of k. The expression has been

evaluated upto 4 powers of k in [4], and the results are given bellow,

∫
dη′dθ′dφ′

sinh η′(cosh η′ − sinh η′)2

4π

(
R2 − r(η′, θ′, φ′)2

)5/2
=
R5sech3η

12
, (2.34)∫

dη′dθ′dφ′
sinh η′(cosh η′ − sinh η′)2

4π
ik x3(η

′, θ′, φ′)
(
R2 − r(η′, θ′, φ′)2

)5/2
=
ikR6

20
cos θsech3η tanh η , (2.35)∫

dη′dθ′dφ′
sinh η′(cosh η′ − sinh η′)2

4π
(ik x3(η

′, θ′, φ′)) 2
(
R2 − r(η′, θ′, φ′)2

)5/2
=

(ik)2R7

360
sech3η

(
1 + 6 cos2 θ tanh2 η

)
. (2.36)∫

dη′dθ′dφ′
sinh η′(cosh η′ − sinh η′)2

4π
(ik x3(η

′, θ′, φ′)) 3
(
R2 − r(η′, θ′, φ′)2

)5/2
= −

(ik)3R8 cos θsech3η tanh η
(
3 + 10 cos2 θ tanh2 η

)
2520

, (2.37)∫
dη′dθ′dφ′

sinh η′(cosh η′ − sinh η′)2

4π
(ik x3(η

′, θ′, φ′)) 4
(
R2 − r(η′, θ′, φ′)2

)5/2
=

(ik)4R9sech3α
(
1 + 6 cos2 β tanh2 α + 15 cos4 β tanh4 α

)
20160

. (2.38)
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We need to evaluate it for further 4 more powers up to k8

∫
dη′dθ′dφ′

sinh η′(cosh η′ − sinh η′)2

4π
(ik x3(η

′, θ′, φ′)) 5
(
R2 − r(η′, θ′, φ′)2

)5/2
=
ik5R10 cos θsech3α tanhα

(
3 + 10 cos2 θ tanh2 α + 21 cos4 θ tanh4 α

)
181440

.

(2.39)∫
dη′dθ′dφ′

sinh η′(cosh η′ − sinh η′)2

4π
(ik x3(η

′, θ′, φ′)) 6
(
R2 − r(η′, θ′, φ′)2

)5/2
=

(ik)6R11sech3α
(
1 + 6 cos2 θ tanh2 α + 15 cos4 θ tanh4 α + 28 cos6 θ tanh6 α

)
1814400

.

(2.40)

∫
dη′dθ′dφ′

sinh η′(cosh η′ − sinh η′)2

4π
(ik x3(η

′, θ′, φ′)) 7
(
R2 − r(η′, θ′, φ′)2

)5/2
=
ik7R12 cos θsech3α tanhα

(
3 + 10 cos2 θ tanh2 α + 21 cos4 θ tanhα + 36 cos6 θ tanh6 α

)
19958400

,

(2.41)∫
dη′dθ′dφ′

sinh η′(cosh η′ − sinh η′)2

4π
(ik x3(η

′, θ′, φ′)) 8
(
R2 − r(η′, θ′, φ′)2

)5/2
=

(ik)8R13sech3α
(
1 + 6 cos2 θ tanh2 α + 15 cos4 θ tanh4 α + 28 cos6 θ tanh6 α + 45 cos8 θ tanh8 α

)
239500800

.

(2.42)

we can see that sech3η is nothing but z30 and k cos θ tanh η is nothing but (k · r). On

transforming back and acting the source on integral we’ll have.

z1 = −z03R2(−k
4R4

6912
+
k4R2x2

3456
− k4x4

6912
+

1

432
k2(k · r)2R2 − 1

432
k2(k · r)2x2

− 1

192
ik2(k · r)R2 +

1

192
ik2(k · r)x2 − k2R2

168
+
k2x2

168
− (k · r)4

432
+
i(k · r)3

96
+

(k · r)2

28
− i(k · r)

12

− 1

10
)(T + Tx) .

(2.43)
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On performing inverse Fourier transform, we’ll have

z1 = z30R
2

(
− 1

10

(
xixjTij
R2

+ T

)
+

1

168

(
R2 − x2

)(
∂2T + xixj∂2

Tij
R2

)
−R

4 − 2R2x2 + x4

6912

(
∂4T + xixj∂4

Tij
R2

)
− 1

12

(
xixjxl

∂

∂xl
Tij
R2

+ xl
∂T

∂xl

)
+

1

192

(
R2 − x2

)(
xl∂l∂

2T + xlxixj∂l∂
2 Tij
R2

)
− 1

28

(
xixjxlxm∂l∂m

Tij
R2

+ xlxm∂l
∂T

∂xm

)
+

1

432

(
R2 − x2

)(
xlxm∂l∂m∂

2T + xlxmxixj∂l∂m∂
2 Tij
R2

)
− 1

96

(
xixjxlxmxp∂l∂m∂p

Tij
R2

+ xlxmxp∂l∂m∂pT

)
− 1

432

(
xixjxlxmxpxq∂l∂m∂p∂q

Tij
R2

+ xlxmxpxq∂l∂m∂p∂qT

))
(2.44)

As we now have z1 in Functional form , we can proceed to calculating ∆2S.
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Chapter 3

∆(2)S and Results

3.1 Calculating ∆(2)S

As we now have the z1 We can proceed to calculate the Area functional in terms of Stress

tensor and it’s derivatives.

As we have Constructed the metric till two derivatives of Tij, we will evaluate the

area functional up till that order. The Area functional as mentioned previously in 2.12

and 2.13 will have contributions from A(2,0) A(2,1) A(2,2). Hence the better way would be

to evaluate these individually and sum the contributions. If we recollect, The solution

for z1 depends on the derivatives of the stress tensor at the origin. Thus, this should

be followed for area functional as well. To implement this we need to Taylor Expand

the Tij(~x)’s appearing in the area functional and then integrate it. On Taylor expanding

Tij(~x) around origin up to four derivatives we’ll have,

Tij(~x) = Tij + xk∂kTij +
1

2!
xkxl∂k∂lTij +

1

3!
xkxlxm∂k∂l∂mTij +

1

4!
xkxlxmxn∂k∂l∂m∂nTij

(3.1)

27



3.1.1 Contribution from A(2,1)

We have previously seen that A(2,1) is of the form

A(2,1) = Ld−1a

∫
dd−1x

R

2z0

(
T (~x)

(
z1 −

z20
R2
xi∂iz1

)
− z20

12
∂2T (~x)

(
3z1 −

z20
R2
xi∂iz1

)
+
z40

384
∂4T (~x)

(
5z1 −

z20
R2
xi∂iz1

)
+ Tij (~x)

(
2z20x

i∂jz1/R
2 − z1x

ixj

R2
− z20x

ixjxk∂kz1
R4

)
− z

2
0

12
∂2Tij (~x)

(
2z20x

i∂jz1/R
2 − 3

z1x
ixj

R2
− z20x

ixjxk∂kz1
R4

)
+
z40

384
∂4Tij (~x)

(
2z20x

i∂jz1/R
2 − 5

z1x
ixj

R2
− z20x

ixjxk∂kz1
R4

))
. (3.2)

Now, replace Tij(~x) with it’s Fourier expansion, described in 3.1 and expand it further

by replacing z1 with it’s solution given in 2.44 . On expanding this would give us with

explosion of terms. We hand pick terms with four derivatives resulting from this ex-

pansion, as terms with two derivative corrections has already been dealt with in [4]. As

expected there is no appearance of the three(odd) derivative terms. We are not writing

the expanded form of A(2,1) , As the resultant expression is huge.

We us the the following tick to simplify the integrand further

∫
d(d−1)x f(r)xixjxkxl · · ·n pairs = Nn(∂ij∂kl · · ·+ permutations)

∫
dd−1x f(r)r2n ,

(3.3)

Where Nn is a normalisation constant.

N1 =
1

d− 1
for n = 1 (3.4)

N2 =
1

((d− 1)2 + 2(d− 1))
for n = 2 (3.5)

N3 =
1

((d− 1)3 + 6(d− 1)2 + 8(d− 1))
for n = 3 (3.6)

N4 =
1

−15− 8d+ 14d2 + 8d3 + d4
for n = 4 . (3.7)

By this way we turn our integrands with rn’s as the only integrating variables. Hence

making it easy to integrate.

On following the above and integrating the expression of A(2,1) with r going from

(0, R) We’ll obtain the contribution from A(2,1).
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3.1.2 Contribution from A(2,2)

We’ve noted that the functional form of A(2,2) is given by the following

A(2,2) = L3

∫
d3x

R

z40

(
d(d− 1)z1

2

z02
+
z0

2 (∂iz1)

2R2
− z0

2

2R4

(
xi∂iz1

)
2 +

(d− 1)

R2
z1x

i∂iz1

)
.

(3.8)

And we follow the same procedure as we did in the case of A(2,1) and evaluate the Area

functional for the above expression.

3.1.3 Contribution from A(2,0)

The expression for A(2,0) in compressed form can be written as the following.

A(2,0) = L3

∫
d3x

R

z40
(
1

8
((δg)2 − 2δgδgx + (δgx)

2) +
1

4
(δgijδg

ij + δ(2)g − δ(2)gx)) (3.9)

where we have δg = δgii and δgx = xixj

R2 δgij, Similarly for δ(2)g and δ(2)gx. we need to

Taylor expand Tij(~x) and use the above trick to obtain the contribution from A(2,0).

3.1.4 A2

On summing up the contributions from A(2,0),A(2,1)and A(2,2), We will have A2 which

is the correction tot he minimal surface due to new perturbations. For the current

considerations it is relavent for to consider only terms of the order O(∂∂T∂∂T ), as only

these would be useful in completing the squares, hence keeping terms uptill this order we

will have A2 as the following.
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A2 =
R12

85135050

(
97(∂2T )2 + 2

(
3
(
97 (∂i∂jT )2 + 1364 (∂i∂jTlm) 2 − ∂i∂jTlm

(
4∂i∂lT jm + ∂l∂mT ij

)
+ 210

(
(∂2T0i)

2 (3n1 + 8n2 + 72n3 + 102n4 − 6n5 + 36n7 + 1728n14 + 576n20 + 576n22)

+2
(
6 (17n10 + 144n16) (∂i∂jT00)

2 + (∂2T00)
2 (4n2 + 51n4 − 3n5 + 18n7 + 864n14 + 288n22)

)
+2
(
11340∂2Tij∂

i∂jT (n13 + 16n18) + (∂2Tij)
2 (945n1 + 2520n2 + 22680n3 + 32130n4 − 1890n5

+11340n7+544320n14+181440n20+181440n22+341)+315
(
2 (8n2 + 33n5 − 3n7 + 288n24) (∂i∂jT00)

2

+ 2 (3n1 + 8n2 + 33n5 − 3n7 + 39n8 + 102n10 + 864n16 + 288n21 + 288n24) (∂i∂jT0l)
2

+ ∂i∂jT0l∂
i∂lT 0j (6 (13n6 + 22n9 + 34n11 − 2n12 + 288n17 + 96n23 + 192n26)− n1)

+ ∂i∂jTlm
(
−6∂l∂mT ij (n6 + n13 − 96 (3n15 + 2n27)) + 2∂i∂jT lm (3n1

+ 8n2 + 33n5 − 3n7 + 36n8 + 102n10 + 864n16 + 288n21 + 288n24)

+∂i∂lT jm (6 (12n6 − n8 + 22n9 + 34n11 − 2n12 + 288n17 + 96n19 + 96n23 + 192n26)− n1)))

(3.10)

From the above A2 we can have the O(∂∂T∂∂T ) contribution to ∆(2)S as the following

∆(2)S2 =
8π2L3

l3P
A2 (3.11)

The total ∆(2)S up to four derivative corrections is given by

∆(2)S = ∆(2)S1 + ∆(2)S2 (3.12)

where ∆(2)S1 is previously given in 1.35

3.2 Results

We have seen that we have obtained a equation describing the new minimal area, resulted

due to perturbation introduced by higher order derivatives. The equation describing the

new minimal surface is as follows,

z = z0 + εz1 where z0 is given by z0 = R2 − r2 (3.13)
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and we have z1 which we previously described as,

z1 = z30R
2

(
− 1

10

(
xixjTij
R2

+ T

)
+

1

168

(
R2 − x2

)(
∂2T + xixj∂2

Tij
R2

)
−R

4 − 2R2x2 + x4

6912

(
∂4T + xixj∂4

Tij
R2

)
− 1

12

(
xixjxl

∂

∂xl
Tij
R2

+ xl
∂T

∂xl

)
+

1

192

(
R2 − x2

)(
xl∂l∂

2T + xlxixj∂l∂
2 Tij
R2

)
− 1

28

(
xixjxlxm∂l∂m

Tij
R2

+ xlxm∂l
∂T

∂xm

)
+

1

432

(
R2 − x2

)(
xlxm∂l∂m∂

2T + xlxmxixj∂l∂m∂
2 Tij
R2

)
− 1

96

(
xixjxlxmxp∂l∂m∂p

Tij
R2

+ xlxmxp∂l∂m∂pT

)
− 1

432

(
xixjxlxmxpxq∂l∂m∂p∂q

Tij
R2

+ xlxmxpxq∂l∂m∂p∂qT

))
(3.14)

From this we have proceeded on to calculating the Area Functional which would give us

∆(2)S. On substituting the Einstein values for all the n’s expect for n1 and n2, We’ll have

the ∆(2)S reduced to the following.

∆(2)S = −8π2L3

l3P

R12

170270100
(194(∂2T )2−2667(∂2T0i)

2+61(∂2Tij)
2+84∂2Tij∂

i∂jT+6(194(∂i∂jT )2

−28(∂i∂jT00)
2−7∂i∂jT0l(6∂

i∂jT 0l+26∂i∂lT 0j)+∂i∂jTlm(2686∂i∂jT lm+6∂i∂lT jm−9∂l∂mT ij))

+2520(3(∂2T0i)
2+3(∂2Tij)

2+6(∂i∂jT0l)
2+6(∂i∂jTlm)2−∂i∂jT0l∂i∂lT 0j−∂i∂jTlm∂i∂lT jm)n1

+21((∂2T0)
2−69120α+960n2−11+960(((∂2T0i)

2+(∂2Tij)
2+2((∂i∂jT0l)

2+(∂i∂jTlm)2+(∂i∂jT00)
2))n2

+72((∂2T0i)
2+∂2Tij(∂

2T ij+2∂i∂jT )+(∂i∂jT00)
2−(∂i∂jT0l)

2−∂i∂jTlm(∂i∂jT lm−2∂i∂lT jm+∂l∂mT ij))α)))

(3.15)

The for restricting the parameter space to n1 and n2 is to, obtain a contained region and

to make a comparative study with the previous cases.
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3.3 Discussion

We could clearly see that by substituting the values of n1 and n2 in 3.15, not all the terms

turn out to be positive definite. As is it not expected, but there is dependence on the

free parameter α, which was not fixed on solving the Einstein’s equations. We can use a

different technique to prove that ∆(2)S2 < 0. We can take ∆(2)S = V TMV . where V is a

column Vector containing elements of the form , ∂i∂jTkµ which are linearly independent

of each other, made sure by the following constrains.

∂iTij = 0 , ∂iTi0 = 0 and ∂iTjk = ∂iTkj . (3.16)

∆(2)S1 will have no O(∂∂T ) contributions at Einstein point as we could see in 1.36. Hence

the vector V is given by the following

V = {∂21T0,1, ∂1∂2T0,1, ∂22T0,1, ∂1∂3T0,1, ∂2∂3T0,1, ∂23T0,1, ∂21T0,2, ∂1∂2T0,2, ∂22T0,2, ∂1∂3T0,2, ∂2∂3T0,2,

∂23T0,2, ∂
2
1T0,3, ∂1∂2T0,3, ∂

2
2T0,3, ∂

2
1T1,1, ∂1∂2T1,1, ∂

2
2T1,1, ∂1∂3T1,1, ∂2∂3T1,1, ∂

2
3T1,1, ∂

2
1T1,2,

∂1∂2T1,2, ∂
2
2T1,2, ∂1∂3T1,2, ∂2∂3T1,2, ∂

2
3T1,2, ∂

2
1T1,3, ∂1∂2T1,3, ∂

2
2T1,3, ∂

2
1T2,2, ∂1∂2T2,2, ∂

2
2T2,2, ∂1∂3T2,2

, ∂2∂3T2,2, ∂
2
3T2,2, ∂

2
1T2,3, ∂1∂2T2,3, 2∂

2
2T2,3, ∂

2
1T3,3, ∂1∂2T3,3, ∂

2
2T3,3} (3.17)

Now we diagonalize the 42× 42 matrix M with a matrix U . Then we can write,

∆(2)S = V TMV = V TUTMdUV = (UV )TMd(UV ) =
23∑
i=1

λi(UV )i
2 . (3.18)

where λi’s are the eigenvalues of M . On calculating Eigenvalues for M at Einstein point,

we see that few values are dependent on α. Of these values, a few of them are linearly

dependent on α , rest in a Quadratic form. On plotting these functions of alpha, we see

that it is not always a negative quantity. Hence, we observe that α , which was thought

to be the free parameter in Einstein values in 2.4, is observed to take only restricted class

of values.

Hence with out properly fixing the value of α, we can not obtain constraints on the

parameter space. The work regarding the same is in progress. As we have all the nessary

components of the order O(∂∂T∂∂T ), We are expecting to complete the squares and

show it as a negative definite quantity. Thus this would enable us to consider a wider
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class of stress tensors. This as stated initially can enable us to consider various class of

stress tenors, which can lead to a situation in the parameter space as initially expected

in [?] .Hence there is a possibility that atleast in a particular parameter slice (e.g: n1 and

n2), we can recover the Einstein point.

Even though we are increasing the parameter space by including the new derivatives,by

recovering Einstein point in one the parameter slice and Using the Feynman’s arguments

we can show that the bulk theory is diffeomorphism invariant up to the quadratic order.
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Appendix A

Appendix

A.1 Entanglement Entropy in AdS3/CFT2 (Sec. 1.1.1)

The following is the example calculation given in [1] For a (1+1)D CFT the entanglement

entropy is given by the following expression

SA =
c

3
· log

(
L

πa
sin

(
πl

L

))
, (A.1)

According to AdS/CFT, gravitational theories on AdS3 space of radius R are dual to

(1+1)D CFTs with the central charge

c =
3R

2G
(3)
N

. (A.2)

The Metric of AdS3 in global coordinates can be expressed as the following

ds2 = R2
(
− cosh ρ2dt2 + dρ2 + sinh ρ2dθ2

)
. (A.3)

As we go to the boundary, ρ = ∞ of the above metric is divergent. Hence a cut off

is imposed on it, such that ρ ≤ ρ0 to regulate the space of the bounded region. This

corresponds to imposing the UV cutoff on the CFT. If L is the total length of the system

with both ends identified, and a is the lattice spacing (or UV cutoff) in the CFTs, we

have the relation (up to a numerical factor)

eρ0 ∼ L/a. (A.4)
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Figure A.1: (a) AdS3 space and CFT2 living on its boundary and (b) a geodesics γA as
a holographic screen.

We take cylindrical coordinates for the CFT2 at the boundary ρ = ρ0 identifying with

(t, θ). The subsystem A ( is the region 0 ≤ θ ≤ 2πl/L. The minimal surface area γA in

Eq. (1.3) is identified with the static geodesic that connects the boundary points θ = 0

and 2πl/L in a particular time slice, travelling inside AdS3 (Fig. A.1 (a)). With the cutoff

ρ0 introduced above, the geodesic distance LγA is given by

cosh

(
LγA
R

)
= 1 + 2 sinh2 ρ0 sin2 πl

L
. (A.5)

Assuming that the UV cutoff(ρ0) is large enough, such that eρ0 � 1. The Entanglement

Entropy given by the formula [1], with the above described central charge is given by the

following

SA'
R

4G
(3)
N

log

(
e2ρ0 sin2 πl

L

)
=
c

3
log

(
eρ0 sin

πl

L

)
. (A.6)

The resultant expression exactly coincides with the known CFT result A.1.

37


	Introduction
	Theory
	Ryu-Tkayanagi Entropy formulation
	Relative Entropy

	Literature Survey
	Linear order
	Quadratic order
	Non-constant stress Tensor

	Motivation

	Higher derivative perturbations
	New terms to metric
	Solving for Einstein values

	EOM for z1
	Induced metric

	Methodology to find z1 solution
	Greens function for z1

	Solution for z1

	(2)S and Results
	Calculating (2)S
	Contribution from A(2,1)
	Contribution from A(2,2)
	Contribution from A(2,0)
	A2

	Results
	Discussion

	References
	Appendix
	Entanglement Entropy in AdS3/CFT2 (Sec. 1.1.1)


