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Abstract

Entanglement Entropy in the recent year has been a powerful tool to provide with new
insights in various areas of Physics. One class of such attempts was to provide us insights
about gravity in the context of gravity. Inspired by the approach taken by Ted Jacobson
in deriving the Einstein’s equations starting from Thermodynamical argument, We are

exploring such a possibility starting from the Quantum informatic arguments.

We take condition of positivity of relative entropy arising from the quantum me-
chanical arguments and imposing these arguments in the context of holography with the
help of Ryu-Takayanagi formulation. Imposing these relative entropy conditions on the
Quantum Field theories with Holographic dual, we impose constrains on the gravitational

theories allowed in the holographic bulk.

Following the approach developed by A. Sinha et al and A. Kaviraj et al, We system-
atically introduce Higher derivative perturbations in the Boundary field theory to study
the relative entropy and there by obtain constraints at non linear level for gravitational
dual. We also compute the greens function required to compute the second order cor-
rections to the Minimal surface area in the bulk homologous to the entangling region of
boundary field theory. There by using the greens function we were able to compute the
second order corrections to the relative entropy, Thus enabling impose constraints and

check in the bulk gravitational theory is necessarly differmorphism Invariant.
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Chapter 1

Introduction

Entanglement Entropy is a measure of Entanglement in a quantum system. The particu-
lar formalism of entanglement entropy that is widely used is the Von-Neumann entropy.
we follow this formalism through out the calculations. It is defined as following for a

quantum subsystem A in the system AB with p4 as it’s density matrix.

S(p) = =Trpalogpa (1.1)

Calculating Entanglement entropy for Quantum Field theory has given very interesting
results. It was both analytically and numerically observed that Entanglement entropy is
proportional to the Area of the entangling region [6, 7]. This is similar to the blackhole
entropy, hence Entanglement entropy was long proposed to be the origin of blackhole

entropy.

In the recent past Entanglement Entropy has proved to be a powerful tool to give new
insights into the various areas of physics. In the recent years, Entanglement entropy is
frequently calculated in condensed matter systems for classification of quantum phases.
It is also used as a diagnostic to characterize the quantum critical points and topologi-
cal phases. Entanglement entropy has been instrumental in exploring various topics in
Quantum field theory such as structure of renormalisation group flows and as a useful
probe for gauge transitions in gauge theories. It played an important role in establishing
c-theorems in three and higher dimensions. In the context of AdS/CFT, Holographic
Entanglement Entropy was considered in the Holographic descriptions of quantum grav-

ity and was used to classify holographic field theories. It has been suggested that at a



fundamental level it could be used to understand the quantum structure of the space time.

Recently there were very interesting results for holographic Entanglement entropy from
MERA ( Multiscale Entanglement Renormalisation Ansatz) [5].It was employed to find
a ground state of interacting spin system on a one dimensional lattice with 2™ sites.
To deal with exponentially large Hilbert space an iterative procedure is used to look for
description in fewer effective degrees of freedom, by the process of coarse-graining, where
quantum correlation of spins needs to be taken care of. This coarse-graining is achieved
through unitary transformation known as ”disentangler”, which is to remove quantum
entanglement in a given scale. This is a naive application of real space renormalisation
group on quantum systems moving from UV to IR. Hence, the ground state is described
by a structure consisting of course graining and disentanglers acting at different scales.
The Iterative steps would be related to the extra dimension of AdS.This is carried on
to QFT by cMERA (continuous MERA). Assuming a QFT with a Hamiltonian given, a
UV cut off A = % is imposed, where € is defined as the lattice constant. There is a strik-
ing connection between the procedure involved in calculating Holographic Entanglement

Entropy and estimation of Entanglement entropy in MERA.

isometry

disentangler .
(coarse-graining)

Source of Image : [5]

Where we have the entropy in this case given as,

Sq o Min., ,[#Bonds] (1.2)

In the past it was shown by Ted Jacobson [8], that it is possible to arrive at derivations

of full Einstein’s equations starting from pure Thermodynamic arguments. Extending



this question, Can one derive Einstein’s Equations starting from Quantum Mechanical
arguments ? This question makes sense in the light of AdS/CFT correspondence and
Quantum Information using the Holographic Entanglement Entropy . Recently there
were attempts made to see what Entanglement would teach us about gravity[?, 3, 4]. As
we know, Ryu-Tagayanaki Prescription gives us a way to calculate Entanglement Entropy
of a Quantum Field theory with gravitational dual. We can turn the question around
and understand what Entanglement Entropy of the Quantum Field Theory would tell us
about the space-time dynamics of the Holographic Dual without making any assumptions
about it. In particular, it would be intriguing to know if the Holographic dual necessarily

follows Einstein gravity or allows a wider class of theories.

1.1 Theory

1.1.1 Ryu-Tkayanagi Entropy formulation

The Ryu-Takayanagi Prescription gives us an elegant and a simpler way to calculate
the Holographic Entanglement entropy. The Entanglement Entropy between a spatial
region V in the boundary field theory and it’s compliment V' would be the Von-Neumann
entropy of it’s density matrix with the degrees of freedom in the region V traced out. In
the Holographic prescription, to yield the same entropy class of surfaces U are considered.
Which extend into the holographic bulk, such that they are homologous to the region
V' in boundary, such that 0V = 0U. Then the area of U is extremised to obtain the

Entanglement entropy.

S(V) = 2T de T (1.3)

B
where we follow the convention that lg_l = 871Gy and d is the spacetime dimension in

which boundary field theory is present.
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Source of Image : [11] An Example calculation for Entanglement Entropy in AdSs/CFT

is show in the following section

1.1.2 Relative Entropy

To probe the questions previously posed, it would be convenient to use another measure,
called ”Relative Entropy”, which is a derivative from Von-Neumann entropy. Relative
entropy is the fundamental statistical measure of the ‘distance’ between two states sharing
the same Hilbert space. Relative entropy between two states with density matrices pg

and p; is given as the following

S (p1lpo) = Tr (p1log p1) - Tt (p1log po) (1.4)

From Quantum Mechanics we know that relative entropy must always be positive and

zero only if both the sates are the same.
S (p1lpo) = 0 (zero only when p; = po) (1.5)

Given a state which is thermal with respect to it’s Hamiltonian H, then one can express
—H/T
e

Tr(e H/T)
between py and p; as the following.

it’s density matrix as p = . In this case we could express the relative entropy

S(p1lpe) = %(F(pl) — F(po)) (Where F is the Free energy.) (1.6)



We also know that Free energy can be represented as F'(p) = Tr(pH) —T S(p). Hence
we’ll have

S(p1lpo) = AH)=T AS (1.7)

The reduced density matrix of a Quantum Field theory on region V could also be written

as

e—H

- Tr(e H)

(where H is a particular Hermitian operator) (1.8)

p

This is justified as the density matrix would be both Hermitian and Positive semidefinite.
The Hermitian operator(H) that would give reduced density matrix is known as ‘Modular
Hamiltonian’, which is not a local operator.The modular hamiltonian is only known for
a few cases. The further calculations will require the knowledge of modular hamiltonian

for spherical entangling region, which is given as

2

R? -
H:/ Rdd_lx QRT Too (1.9)
r<

where Ty is the time-time component of d-dimensional field theory stress tensor.

Considering the expression for the reduced density matrix, it is obvious that the rel-
ative entropy in this case would have as the same form as the thermal relative entropy

with T'= 1, which would be
S(pilpo) = A(H) — AS (1.10)

where, AS = S(p1) — S(po) , which we know from the Ryu-Takayanagi prescription will
be AS = lf—fl AArealv,] (7, is the minimal surface) and A(H) = Tr(p1H) — Tr(poH).

As previously stated, the positivity of relative entropy will lead to

Taking pg as a fixed state and consider moving p; through a family of states with an affine
parameter A such that p;(A = 0) = py. Then it is very evident that S(p1(\)|po) > 0,
V' A # 0 and S(p1(N)|po) = 0, for A = 0. If S(p1(A\)|po) describes a smooth curve with
respect to A, then the first derivative should vanish at A = 0, which implies for nearby

states that



= A(H) = AS

This would be true for the first order expansion. This inequality as stated above have
it’s origins from Quantum information. Since it is a inequality, it might not be possible
to recover full Einstein’s equations starting from it. But this inequality holds the key for

imposing constraints on the gravitational theories allowed in the holographic dual.

1.2 Literature Survey

1.2.1 Linear order

It was recently shown by Robert. C. Myers et al in [2], that using the equality A(H) =
AS, it is possible to recover linear Einstein equations for holographic dual at first order.

What follows is the summary of their work.

Taking pg as the density matrix of vacuum state in the spherical region with radius
R in the boundary CFT. The extremal surface homologous to this, on the holographic
bulk is given by

z2=VR*—1r2? (where, % = 17) (1.12)

Taking p; whose small deviation of the vacuum state pg is characterised by expectation
value of the stress tensor T’ SV in the boundary CFT. For general analysis we use Fefferman-

Graham expansion for the metric defining the bulk, given as,
2 L,
ds® = ;(dz + gy datdx”) (1.13)

When 2z ~ 0 , the above would describe asymptotic geometry. As the asymptotic metric

is chosen to be flat, we may write

v = Ny + €0G, (1.14)

Here € controls the strength of perturbation. As FG expansion is used, the deviation of



the bulk metric from the pure AdS in eq. 1.14 takes the form

2 1471 .
O = < L’szd > 2T (1.15)
n=0

On solving the Einstein’s equations with the perturbed metric, we have,

o (ZUTd/2+1]
W= RopIT[d/2 4 n+ 1]

0"T,, (1.16)

With the above expansion of the metric, on calculating AS and A(H) to the linear order,
it is found that
AS = A(H) (1.17)

Thus it was observed that by using positivity of relative entropy it is possible to retrieve

Einstein’s equations at linear order.

1.2.2 Quadratic order

As we have seen in the previous attempt, from the positivity of the relative entropy, at
the first order,only linear Einstein’s equations have been recovered. A step further has
been taken in the work done by A. Sinha et al , to move to the quadratic order in [3].

Following is the summary of their work.

In the fist order, we have AS = A(H) . But we need A(H) > AS. So, in the second
order we’ll have

APS <0 (1.18)

And to calculate the quadratic correction to the entanglement entropy, the metric 1.14

needss to be further perturbed as given
G = Mw + €68, + €6 g (1.19)

which expands as,

d—1

2
5(2)gMV = a2 (n1TMaTO‘V + nzanaﬁTa’B) (where (azfl

7 Lpd—1) and T, is constant.)

(1.20)



when Einstein’s equation is solved with the above metric, then nl and n2 obtain the

following values,

1
Ng = —m where d=4 (121)

711:5;

As we are moving on the quadratic order in T | extremal surface gets perturbed, as bulk
is altered. In the linear order case, minimal surface could be described by z(z') in a
simple way 1.12 as function of radial coordinate of boundary theory. Due to the present

perturbative expansion, we can expand z as
2(2") = 2o(a") + ez (2) where zo(z%) = V R2 — 1?2 (1.22)

From the ryu-Takayanagi prescription 1.3, we know that entropy depends on the vh
(h is the induced metric). To compute the quadratic correction to the entropy, v/ is
Taylor expanded, which leads to

1 ) 1 ' 1
/ A1V = / i <§¢E (hiohy) 2 + Zx/ﬁéhu(mij + Z\/Ehufs(?)hij) (1.23)

The induced metric is given as
2

L
hij = ;(Qz‘j + 0;20;2) (1.24)

The above is evaluated at extremal surface z = 2y + €z (20 = VR?—12). The
contributions of A%S is categorised into 3 second order contributions based on powers of

z1 as the following,

/dd_15(2)\/ﬁ = A(g,o) + A(271) + A(272) (1.25)
Thus the z; can be found by minimizing A1) + As,2). This gives us,

—aR?z,% 1 , zizd
— (T + 1T, here T'=1T;" T, =T;;— 1.26
S (T+T) (where ) (1.26)

Z1 =

Plugging the solution of 2z, calculating the A®) S and imposing the condition A®S < 0

10



gives the folloing inequality,

ni+2(d—1)ny > 0, (1.27)
2d+1—4(d+1)ny —4(d*> —1)ny > 0, (1.28)
d+2—4(d+1)n; —4d(d* —1)ny, > 0, (1.29)

This inequality represents a triangle in the parameter space of n; and ns

na

02+

0.1~

-0.4

-0.2 -

-0.3 -

Source of Image : [4]

1.2.3 Non-constant stress Tensor

As we have seen that, in quadratic case we have not obtained the Einstein’s equations
rather obtained constraints on the class of gravitational theories allowed in the holo-
graphic bulk This is due to the inequality. The following work by Aprathim Kaviraj et
al in [4], is to minimise these constraints by taking the non-constant stress tensor and

obtaining non-linear constraints.The p, is still taken as the same.

Taking the stress tensor to be non-constant will add more terms to 5(2)g,w at the
quadratic order. In this paper, terms with maximum of two derivatives are considered.

Hence it would change the metric as follows,

11



0@ g,, = a222 (T T, + 1o Tog T + 22T, V) . (1.30)

Where 7, expands as

Tow =13 (T 0T, + Tyo OT,) + 14my TogOT ™ + 150, Tos0, T + 160,T,,50° T,
+ 1700, Tag T + 1800 T,50°T," + ng (8, T0pd’ T, + 8, Topd"T,*) + 1100w 0a T, 0T

+ 11100 Ty 50 TN + Nz (70,0, Ty + T7%000,Typ) + n13T° 0,051, (1.31)

on solving the Einsteins equation with the above metric, we’ll that the n’s obtain the

following values,

1 111
= ™M T 1800 T 71807 T 600" T 360"
0 ! ! 0 ! ! (1.32)
ng=0ng=—npog=—,n11=0np=———-n13 = — )
8 5 169 1207 10 7207 11 5 1012 1207 13 60

As in the previous case, minimising A1) + A2,2) With respect to 2; gives the following

equation.
1 rid
2R (32 (021) = 7010 Wl)) =
o & 0? w'a! o2 i9 i Lok
¥ T(d—2)+Tx(d+2)_E do*T + (d + 4) 7 T | + Z-T—i—Qxé?oTOj—i—ﬁx.r x0Ty |

(1.33

The solution of z; that satisfies the above equation with other constraints is the following

(the process of obtaining this solution will be explained in the coming chapters)

T+ T, 1 - o Ok T
2 = —29° R? ( + + — (m’&T%— xlxjxkﬂ)

10 12 R?

1 o o 0;0;T, (R2 — 7’2) ; OQT
1,..79.9. i gk 1YYkl 2 Q.7 %)
+_28 ($$3133T+$$$ z R? ) - 168 T + x'x 5 . (1.34)

12



On calculating A®S we get that,

823 R®
472505,
8723 R0
3118503,

APgG = (—=160(n1 + 6n2) (Ti0) * + 8(—9 + 201, + 60n2) (T;;) > + 8(1 + 60n,)T?) +

[(10 — 12n4 + 216011, + 72006 + 1440ng) (0,150 T7") + 48 (Tng + 4514 + 15n7) TO*T

—120n; — 672ny — 1440n3 — 4320n, — 1440n;) T"0*Ty; + (=12 + 720m,3) T 0,0, T
—55 4+ 120n; + 2160n19 + 3360y + 72005 + 720n8) (0;Tj1) * + (12ny — 216001, — 1440n4) 9;Ty,;0° T

_|_
+
+ (5 + 2160n19 + 33602 + 720n5) (9;T) * + (1201 + 3361, + 144003 + 2160n, + 720n7) T 9°T},
+

(
(
(
(—120n; — 4320110 — 672ny — 144005 — T20ng) (8;To;) %] - (1.35)

substituting the values from 1.32, it reduces to

AP g — _ 167T2R10L—3 672 + 20 (Ty0) 2 + 6 (T3;) >

05, 4725 R2
(5(0T) 2 + 15(9;To;) * + 30 To;07To* + 5(9;Tjy,) 2 — 20,Ty,;0F T
+ T (1.36)

As there are no T Q0T terms present, it is possible to show that when Einstein values
are substituted the A%S can be shown as a negative definite quantity by completing the
squares. Due this would not be possible in the 1.35 case, as such terms are present and
00T OJT are also required to complete the squares. Hence, by making an assumption that
T,.,(Z = 0) = 0, reducing the parameter space to n; and n, and imposing the condition

AP S < 0 gives us the new constrain region,

13



01

02

03

Figure 1.1: The blue (upper) triangle is from constant stress tensor case and the red
one from non-constant case. The intersecting part is the net allowed region for n; and
ng. Source of Image : [4]

1.3 Motivation

As we have seen in the various scenarios above, the Einsteins equations starting from
the positivity of relative entropy are recovered in linear order in O(7). Where as on
moving to the quadratic order, we see that we obtain constraints for a class of gravi-
tational theories allowed in the holographic dual. To recover Einstein’s equation at the
quadratic order, the constrained area in the parameter space of n; ’s has to be reduced
to the Einstein values/point. And the A®S needs to be shown as a negative definite
quantity. This was not possible due to the terms of order O(T'00T') are present. As they
have made the assumption 7}, (¥ = 0) = 0, which restricts the stress tensor to a special
class, resulted in a new triangular region of constrained area which is rotated around the

old at the Einstein point as in 1.1

As initially stated, we are not assuming anything about the holographic bulk, hence
we don’t even take diffeomorphism of the Bulk into consideration. Thus, we need to
add higher derivative (4 — 0’s acting on 2 — T’s) perturbation to the metric, so that
we’ll have 00T 00T terms to complete the squares. By doing so, we still don’t have to
restrict ourselves with a particular class of stress tensors such as 7),,(Z = 0) = 0, but can
consider a wider variety of them. As a result, we may end up new constrained areas as

the following,

14



N,

T

Figure 1.2: Here we have the Blackdot representing the Einstein point. Blue - repre-
senting the old case and red, green representing the new one

Doing so would help us constrain the allowed region in the parameter space to a great
extent around the Einstein values and show that the . It might also happen that we can
recover the full Einstein’s equations and show that the bulk theory is diffeomorphism
invariant up till the quadratic order . But we should remind ourselves that as we are
dealing with inequality, that we also end up with parameter space restricting itself to the

unbounded space.

15



Chapter 2

Higher derivative perturbations

In order to constrain the area around the parameter space, it is required to move to
higher derivative perturbation. In this chapter we initially deal with introducing Higher
Derivative perturbation and solving the Einstein’s equations using the new perturbed
metric. Further on we use the new induced metric to find the Equations of motion for z;.
Later, a method is illustrated on how to obtain the solution for new z; and the solution

is found.

2.1 New terms to metric

Adding Higher derivative perturbation would mean to add new terms to metric in quadratic

order in 7" with 4 — 0’s acting on them. Hence the metric 1.19 would get perturbed as,

0 g = a®2 (M Ty T + nanu TogT + 22TV + 24T,,2) . (2.1)
,53) is constructed by taking into account all the possibilities of 4 — Js acting on

2 — T's, the total non-zero contributions to the metric would be the following

16



T2 = n1a 0 OT 0T + 145 0 0a0T0.0,T% + 116 0w 0a0yT 00" T g + naz 1 0aO T 0T,
+ 11 a0y Ty OT™ + g 0,0 T 00T + ngo OT,a0O0T + noy 00.T,a0°0" Ty + noa 8,0, Toy OT™
+ g3 0.0, T 000, Tf + n24 020, T*0°0, Ty + nas (0.0, Ta0T™) + nag (0,0, T 0“0, TY)
+ ng7 (020, T* 0T + nag 0 D0T 0T + ngg 1, 00T 0T + nizo 0a0y0:T,, O°T™
+ ng1 (00,T,a0"TY) + ngz (D0TL0TY) + naz 0.0,0, 0Ty + naa 0:0,0,T*0Ty
+ nss (D@HT‘lbﬁ”Tab) + nge (0,000, T,.0°Tab) + ngr (8a8b@uT,,C(()bTac) + nsg (D@MTabﬁaTVb)
+ 139 M T T + 1o 00,05 Ty, T + ngy (O°T,aT) + nap 00,0, Ty T

+ 1z (00,0, TuT) + ngq (D0T,.0,T™) (2.2)

The terms in brackets are symmetrised by addition.

2.1.1 Solving for Einstein values

The coefficients infront of each term, in the higher derivative perturbation needs to be
found. One primary reason being that, to check if A?)S is satisfying the negativity con-
dition on Einstein values and secondly, to see effect of new terms on n; and nsy , so a
comparative study could be made with the previous cases. As we could see, without a
efficient way, it would be nearly impossible to fix these coefficients by taking arbitrary

stress tensor.

Hence, we take special cases of Stress tensor, i.e T),, and use them as the trial functions

to solve the Einstein equation for empty AdS. The trial functions as taken as,

Won 4 g@n o 53)n
Ty = oy B ™ + By + B w™)s ( where x,y,w are space cordinates of CFT) (2.3)
Where we took, a0 or 1 to either turn on or off the component and 5,(},2 = (0,1) and
n =1,2,3,4. These values are chosen such that, we have the stress tensor to be Traceless

(T} = 0) and divergence less (9,7 = 0).

17



As they are taken as infinitesimal perturbation, we can set R, — %R 9w + A g
to zero. By this way on solving Einstein’s equations we can segregate coefficients of
exponential functions to a particular order in x depending on n and set them to zero.
This would give us multiple linear equations in terms of n;’s which would be easier to

solve. Hence doing so, we’ll get the following values for the coefficients of higher order

perturbations
1 L 1 ) 17,
NMU=—"—"—=—0, N5=—=+Q, Ng=Q, N7=———2== — 20, NIg = ———= + 2,
VT 157 34560 16 17 17280 18 17280
7 61 1 1
- 129 ) -9 - 42 - 19
MY = 7ogp T4 M0 T rogp TAY ML T T pggy T A0, M2 T Timpg T A, M3 = gy A
1 ) 19 o L, 1 ) 1
Noy = ———— — 20, Ngs = — =, N =——1— Q, Ny =—"————200, Nog = ———— , Nog =
247 17280 P BT 38240 0 20 T T 8640 et 17280 P8 T To12 0
1 . 1 1 . 11 . 1
n = —— n = n = — Nn- = - n = n = — n = Nn- = —
30 2880 ) 31 ) 32 960 ) 33 17280 ) 34 3 35 34560 ) 36 3 37 5760 3
1 1 1 1 1 1 7
Ng=—=-—,MN390=———— , M40 =——= , Ml === , M2 =——= , M3 = o, N4 = —————
87 79304 0T 69127 10T o607 M T 7687 T T840 BT 2304 0 M 11520
(2.4)

Where « is found to be a free parameter.Due to diffeomorpism we expects all the values
of n’s to be fixed, but this a seems to be a gauge artefact, which on selection of proper

gauge transformation can be gauged away.

To check the above values,a stress tensor with arbitrary functions can be taken such

that it satisfies trace, divergence less and symmetry conditions. Such as

T,uu = fuu('x> Y, U}) (25)

We were able to solve Einstein’s equations, on assuming above conditions and the values
obtained to see that they perfectly agree and go to zero.Hence establishing a check for

the above values.

2.2 EOM for =

Since higher order perturbations are introduced to the metric, this will in turn change
the induced metric for extremal surface in the holographic dual. This would mean new
Equations of motion for z; has to be derived for the current scenario by minimising

Ay + Apa).
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2.2.1 Induced metric

The induced metric for the extremal surface can be defined as the following.

2

L
hij = —5 (9ij + 0:20;2) (2.6)

Here we have g;; expanded as g, = 1, + €dg,, + €26 g and z gets expanded as
2z = 29+ €z1. On collecting terms expanding the above equation and segregating with

different powers of € we'll have hY; , 6h;; and 6@ h,;, which is give as the following

L? T;L5
My = a0t =5, (2.7)
0
L2 1;0:21 x:0;z1 27 T
Oh;; = 04, T I T (g + 2 2.8
J Zo(g] % % % (77]+ Zg ))7 ( )
L? 2z ;0,71 10,2 322 Tik;
0@hi; = —(0Wgij + 021021 1(5% I - ) - S+ )
2
+21 ) (d+ 2n)20 (T (2.9)

n=0

As we know that induced metric satisfies the condition hy;h/* = h%(h°)7% = 6f. So
from this we’ll have ,

ZO fl?i.ﬁEj

L2 (771] R2 ) )
Sh = Shyy, K" p0 ™I (2.11)

RO (2.10)

With these expressions of induced metric, it would easy to expand and calculate §@v/h,

by estimating A ), A nandAq 1)

Calculating EOM of z;

As we know that the second order perturbation of vh expands as
1 . 1 .
/ A5V h = / d! (- h (hishi) 2 + Z\/E(Shuahij + Z\/Eh”cS(Q)hij) (2.12)
On segregating the resultant expression in the powers of z;, we would get,

/dd_lé(Z)\/ﬁ = A(Q’O) + A(271) + A(272) (2.13)
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For calculating the Equations of Motion for z;, we need only A1) and A2 as the
other terms would not contain z; or 9;z;. On plugging in Induced metric expressions 2.7

in the Taylor expansion of VA 2.12, we get that

Aoy = L0 [ a2 (1 % i, 82 32, — 24
2,1 = a .I'Z—ZO Zl_ﬁx 21| — =< Zl—ﬁl' i 21

2 o i, 2,005 ok
zO 64T (5z _Fo, 3Z1> + T <2z8x’8]z1/R2 e ak'zl)

3 R? R? R*
J Ik d
—f—082ﬂj <22’ Zaﬂzl/R2 _ 321]”: v 20-77 foi kzl)

2

Py natr? 22rtriak O,z
+ﬁa‘*T (zzgxaﬂzl/R2—5 o 9 7 . (2.14)

and

R (d(d— )22 2 (0z1) 20 2 (d -1 .
_ 73 3 1 i 7
AQ,Q =L /d ZO < ZOQ + 2R2 2R4 ( 8 Zl) R2 21T &zl
(2.15)

As we are taking boundary spacetime dimensions to be 4, we set d=4. and now we need to
minimise the sum of above two with respect to z; by substituting in the Euler-Lagrange,
ie

oL oL
—— 0| — | = with =As1+ Ags. 2.1
821 87, ((96121) 0 it £ 21 22 ( 6)

On solving the above equation, we get equations of motion for z; as the following,

1 xlad
zOdTR (82 <202’1> — F@aj (2021)) =
2
22—]0% (T(d—2)+Tx (d+2) - (d@2T+(d+4) U)

4
1
+@ ((d +2)0°T + (d + 6) 72 iy TZ]> + 20T + 2000 Ty, + '’ 0T
0 (i - 1,
= <xzaiDT+ 2a' 00T o; + ﬁxzxﬂx’fakDTnD . (217)

Tu

As in the previous notation, T'= T} and T}, = z'z7 2 77- Hence, a solution for z; should

satisfy the above equations of motion.
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2.3 Methodology to find z; solution

Here we illustrate and follow the method of finding z; developed by Kaviraj et al in [4].

The minimality constrain that we obtained above can be written as the following,
20 (82 (2’021) - xixjaﬁj (Z()Zl)> =J. (218)

The J we have, contains the details of how bulk metric is deformed due to perturbations of
stress-tensor from the boundary. By using a particular coordinate transformation, which

will be illustrated in the latter part of the section, the above equation can be written as
(—Aps +3)z = J, (2.19)

where Ays is scalar Laplacian on AdSs. Since we are dealing with the time-independent
perturbations and then parametrise minimal surface we’ll have the AdS3; Laplacian in-
stead of a 5 dimensional one. By the form of above equation , z; can be thought of as
a scalar field propagating on the z, surface. So, we can see that it’s a equation of field
propagating AdSs; with m = 3, m being the mass of it. By this the general solution can

be written as,

zZ1 = /GbulkbulkJ + fhom (2.20)

Grutk—bur 1s the bulk to bulk propagator for a massive scalar field. As the z;vanishes on

the entangling surface, we can set fj,m, to zero.

2.3.1 Greens function for z;

From the above, the general solution for z; can be written as,

(z) = / sz, ) J(3), (2.21)

As we could see that du; is the riemannian volume element on AdS3 and x collectively
describes the intrinsic coordinates, An AdS3 of unit radius is described by a hyperboloid

Minkowski space R*! given by,

X2+ X2+ X2 - X2 =1, (2.22)
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where the X;’s are coordinates of R*!'. Thus we can take the intinsic coordinates of AdSs

as
X; =sinf cos¢ sinhn, Xy =sinf sin¢ sinhn, X3 = cosd sinhn, X, = coshn. (2.23)

Where we have n = tanh™'(r) and 6,¢ are angular coordinates.The metric in terms of

these coordinates is the following
ds® = dn? + sinh® n(d6? + sin® 0d¢?) . (2.24)

The geodesic distance between two points x and & on AdSj3 is given by the relation

~

cosh d(z,z) = -X. X, (2.25)

we have X and X are respective intrinsic coordinates. As the greens function is the
bulk-bulk propagator for a scalar field with m? = 3(as for present case this is the value

of m? 2.20) is given by,
1 ef2d(x,§:)

G ) = o da)

(2.26)

We can take point x to have n = 0, which translates to X; = Xo = X3 =0,X,=1. The
calculations at this point would get simpler as it is the lowest point in the hyperboloid
and we’ll have coshd = cosh 7. As we know, 7 is the intrinsic coordinates corresponding

to . So, we’ll have

e 20
Q h? f— i h 7) = sech’7(1 h? 7).
/d 2/ dr) sin 774 o nJ(n) where  J(7) = sech’nj(1 4 tanh” 7))
(2.27)

The process evaluating the above integral around origin is justifiable as we can always

make a coordinate transformation such that the point of evaluation is origin.
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2.4 Solution for z;

As We have in the above equations, 2.18 and 2.17. We know that from the minimality

constrain the source function that we would obtain will be the following,

2 L]

20 2 9 HAH AN
=—(Td-2)+T 2) — =2 T 4 Ty
J 2R< (d—2)+T,(d+2) 12(da + (d + )328 U)
xizd
R2

4

20 2
=0 NPT
+384<(d+ ) + (d +6)

) ) 1 . .
DQT’Z]) + :U’@ZT + 2331607—‘0]' —+ ﬁﬂfzﬂ’}]xka}cﬂj

2

2 . 1.
-2 <x’8¢DT + 22°9,0T g + ﬁx’wﬂw’“&cDsz)) , (228)

Now we make use of the formula 2.27 with the above source to find z;. To make calcula-
tion simpler we move to the Fourier space we write the above J in the form of derivatives

of exponentials to find the solution.

The stress tensor is taken to be of the form,
T;'j = Eij(E)eiE'f, Eij(lg)kj =0. (229)

On Fourier transforming the source, z; is given by

21 = (26 — EJR2 > - E (4 (—k‘2) R2E _ k24€82 + k28€ij8 a] + GJT>

384 R2

1 Y ra) _iaJ =I5 k410 i'_i_j_4
+— <6k4R4e L UAR6T + 66D — K R106,07 — 20ekid 7T — P00 IO )
kgqujgigjgng

R2

—imj=l
=i ke —=i 1 —=i =2i —imj=
+ (kiea - %fja + 2higeo;0 > - (—kaiR%ﬁ — kD0 + ke, 000 +

— 29 K*R?koeo; — Qkoeojk25¢52> / BiG(x, 1) (2° ¢*F) (2.30)

where we have 0' denoting 0/0k;
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To simplify things, we can assume k to be in the direction of 3. Then the integral

part of the equation simplifies to
/ BiG(x, )z’ eF = / PGz, 7)(R2 — 72)°? ¢ikas (2.31)

As previously discussed, these transformations has to be made to the new intrinsic coor-
dinates (1,0, ¢') , where we have & = (1,0, ¢) = (Rtanhn, 0, ¢) becoming the origin. In

these coordinates

r2 1
1\ 2.32
( R2 ) (coshncoshn/ 4 cos 0’ sinh i sinh 7)/)? ( )
w3 costcoshn’ sinhn + cosf cos 0’ coshnsinhn’ — cos ¢’ sin 0 sin 'sinhy’ (2.33)

R cosh 1 cosh 1’ 4 cos @ sinh ) sinh 7/

The integrand is expanded in powers of k up till 8 powers of k. The expression has been

evaluated upto 4 powers of k in [4], and the results are given bellow,

/dn'd@’d¢'8inh 7' (coshn/ — sinh7’)? (R = (i, 0/ ¢,)2)5/2 _ R’sech®n (2.34)
4 T 12 T
inhn’ hn — sinh 7’ 2
/dn/d9/d¢/81n Ui (COS 4:’1— S 77) Zk x3(n/,9/, ¢/) (R2 _ 7'(77/,9/, ¢/)2)5/2
7. 126
= Zk;; cos fsech®n tanh , (2.35)
sinh 7’ (coshn’ — sinh#n/)?
/dn/dgldgb/ Ui ( 4:’1- 77) (Zk' x3<77,7 9/’ Qb,)) 2 (R2 o r(nl7 9/7 ¢1)2)5/2
15 2 p7
= < 3>6(f% sech’n (1 + 6cos’ 0 tanh? n) . (2.36)
inh ' h7' — sinhn’ 2
/dn/de,d¢181n Ui (COS 4:]T SI 77) (Zk 1'3(77/,(9/,¢/)) 3 (R2 . r(n/7el7¢/)2)5/2
~ (ik)’R®cos fsech’n tanhn (3 + 10 cos? @ tanh® ) (2.37)
B 2520 L
inh / h I o h 12
/dﬁ/deld¢/81n n (COS 4:’1- Sm 77) (Zk 373(77/, 0/, ¢/)) 4 (R2 - 7"(77/, 9/7 ¢/)2)5/2
B (ik)*R%ech®a (1 + 6 cos? B tanh® a + 15 cos® B tanh* @) (2.35)

20160
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We need to evaluate it for further 4 more powers up to k%

inhn’ hn — sinh ' 2
/dn/d9/d¢/81n 77 (COS 4:7_( s 77) (Zk 5173(77/,9/, ¢/)) 5 (R2 - T(n/,el’ ¢/)2)5/2
B ik® R0 cos fsech®a tanh o (3 + 10 cos? 6 tanh? o + 21 cos* 6 tanh? a)
N 181440

(2.39)

inhn’ h7» — sinh 7’ 2
/dn,deld¢,81n Ui (COS 477 S 77) (Zk x3(nl’ 0/7 ¢/>> 6 (R2 o T(nl, 0/7 ¢/>2)5/2
™

(ik)5RMsech®a (1 + 6 cos? @ tanh® a + 15 cos® 0 tanh* o + 28 cos® § tanh® «v)
1814400

(2.40)

inh »’ hr' — sinh 7’ 2
/dn/deld(b/Sln Ui (COS 477 S 77) (Zk $3<7’]l,9/,¢/)) 7 (R2 _ 7,,(7,’/’9/’¢/)2)5/2
m

B ik™ R'2 cos fsech®a tanh o (3 + 10 cos? 6 tanh? o + 21 cos* 6 tanh o + 36 cos® # tanh® a)
o 19958400

(2.41)

inhn’ hn' — sinh 7’ 2
/dn,deldeSln n (COS 477 sSmnmn ) (Zk $3(n/’ 9/7 ¢/)) 8 (R2 o ’I"(T]/, 9/7 ¢1)2)5/2
m

(ik)®R¥sech®a (1 4 6 cos® @ tanh® ov + 15 cos* 6 tanh* & + 28 cos®  tanh® ov + 45 cos® 6 tanh® «t)
239500800

(2.42)

we can see that sech®y is nothing but z3 and kcosftanhn is nothing but (k- 7). On

transforming back and acting the source on integral we’ll have.

E*RY K*R2y2 kAt 1 1

- _ 3pP2(__ o _ka 22__1{;2]{/,' 2 2
e e RV TR L G e s L CR O

1 1 K*R* kK22 (k-r)t di(k-r)® (ker)? di(ker)
ik (k R + —— ik (k- )2 — _ _

ot F (b MRS+ ik (k- m)a” = et e = et T T g 12

1
S NT+T

1)

(2.43)
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On performing inverse Fourier transform, we’ll have

2 =5 R (—— (m il +T) + — (R* —2%) (82T—|—$W@2R—;)

10 R? 168
_R4 — 26@?5 + ot (84T + xia:j84—ii) — 1—12 (xzx]xl%% + xl%>
+é (R2 — acQ) (:clal(92T + 2lata? 9,0° Rg) 218 (x 2 ala™0,0,, ﬁ + 2la™ o, a@T )
+$ (R* —2?) (:clxmalama2T + xlxmxia:jazamazﬂ#g>
_9_16 (xixjx 2P 0,0,, 8,,@ + 2l x”@zamapT>
—é <xixjx "2 210,0,,0,0, Rg + :El%mﬁpxqalamapﬁqT)> (2.44)

As we now have z; in Functional form , we can proceed to calculating A2S.
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Chapter 3

A(2)S and Results

3.1 Calculating A®S

As we now have the z; We can proceed to calculate the Area functional in terms of Stress

tensor and it’s derivatives.

As we have Constructed the metric till two derivatives of T;;, we will evaluate the
area functional up till that order. The Area functional as mentioned previously in 2.12
and 2.13 will have contributions from A ) A1) A(2,2). Hence the better way would be
to evaluate these individually and sum the contributions. If we recollect, The solution
for z; depends on the derivatives of the stress tensor at the origin. Thus, this should
be followed for area functional as well. To implement this we need to Taylor Expand
the T;;(Z)’s appearing in the area functional and then integrate it. On Taylor expanding

T

+;(Z) around origin up to four derivatives we’ll have,

1 1 1
T:;(Z) = Ti; + xkﬁkTw + xkxlaka,:n] + i — k2l a™0,0,0,, Ti; + 4—m 2™ 2" 0,0,0,,0 L

21
(3.1)
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3.1.1 Contribution from A

We have previously seen that A, ) is of the form

R 2 2 2
A1y = Ld_la/dd_le— (T (%) (z1 — Z—Ox28i21> — %82T (%) (37;1 - Z—Ox’&zl)

20 R2 Ji2
0 5 ] .. @] 2,000 ook
—f-%@‘l’f (%) (521 — %xzﬁizl> + T (Z) <2Z§I18321/R2 B lef K atRi ak21>
ZQ . i i leix]' ZQxixjxkakzl
0 o ] 2 igd gk
o (s ),

Now, replace T;;(Z) with it’s Fourier expansion, described in 3.1 and expand it further
by replacing z; with it’s solution given in 2.44 . On expanding this would give us with
explosion of terms. We hand pick terms with four derivatives resulting from this ex-
pansion, as terms with two derivative corrections has already been dealt with in [4]. As
expected there is no appearance of the three(odd) derivative terms. We are not writing
the expanded form of A1) , As the resultant expression is huge.

We us the the following tick to simplify the integrand further

/d(d_l)x f(ryz'aizkat . n pairs = N, (0iO0 - - - + permutations) /dd_lx f(r)yr*,

(3.3)
Where N,, is a normalisation constant.
Ny = L forn =1 (3.4)
1 = d—1 or n = .
1
Ny, = f =2 )
> = (d=1pt2d—1) " (35)
1
No — f =3 3.6
ST (@=1P+6(d—1)2+8(d—1)) o (3.6)
1
N, = forn=4. (3.7)

—15 — 8d + 14d? + 8d? + d*

By this way we turn our integrands with r™’s as the only integrating variables. Hence

making it easy to integrate.

On following the above and integrating the expression of A, ;) with r going from

(0, R) We'll obtain the contribution from A 1).
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3.1.2 Contribution from A

We've noted that the functional form of A, ) is given by the following

R d(d - 1)212 2’02 (81‘21) 202 i (d — 1) i
Ao = L3 / d?’xz—é ( o + SR o (x 8121) 24 2 212'0;21
(3.8)

And we follow the same procedure as we did in the case of A1) and evaluate the Area

functional for the above expression.

3.1.3 Contribution from A )

The expression for A ) in compressed form can be written as the following.
s [ 5. R1C 2y, 1 iy 5@, _ 5
Aoy =L [ d°z ;(g((ég) — 20909, + (0g:)°) + 1((59@-59] + 699 —0%g,)) (3.9)
0
where we have dg = dg! and dg, = %591']‘, Similarly for 6®¢ and §®g,. we need to

Taylor expand Tj;(Z) and use the above trick to obtain the contribution from A g).

3.1.4 A,

On summing up the contributions from Ay, A yand A2, We will have Ay which
is the correction tot he minimal surface due to new perturbations. For the current
considerations it is relavent for to consider only terms of the order O(99TIIT), as only
these would be useful in completing the squares, hence keeping terms uptill this order we

will have A, as the following.
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R12
~ 85135050
+ 210 ((0°Twi)* (3n1 + 8ny + 72n5 + 10214 — 6ns + 36n7 + 1728114 + 576n9 + 576n22)

Ay (97(0°T)* + 2 (3 (97 (3:0;T)* + 1364 (8;0;Tim) > — 8;0; Ty, (40°0'T™ + 9™ TV
+2 (6 (17n10 + 144n16) (90:0;T00) * + (0°Too)? (4na + 51ny — 3ns + 18n7 + 864n1s + 288n9))
+2 (113400°T0° T (nz + 16n15) + (9°Ty5)? (945n1 + 25200, + 2268003 + 32130n, — 1890n;
+11340m7+544320m 14+ 181440020+ 181440n2+341)+315 (2 (8n2 + 3315 — 3n7 + 288n24) (9,0;T00) >
+ 2 (311 + 8na + 33n5 — 3n7 + 39ng + 102010 + 864116 + 288191 + 288n94) (0;0;T0r)
+ 0,0, Ty 0" 0"T% (6 (13ng + 2209 + 34111 — 2119 + 288117 + 96n93 + 192n96) — ny)
+ 0,0, T, (—60'0™T" (ng + naz — 96 (3n15 + 2n97)) + 20°F T™ (30,
+ 8ny 4 3315 — 3n7 + 36ng + 102110 + 864n16 + 28809, + 288n4)

+0"0"T™ (6 (12ng — ng + 22ng + 3dn1; — 2119 + 288117 + 96n19 + 96093 + 192n26) — n1)))
(3.10)

From the above A, we can have the O(09T T contribution to A®)S as the following

AP, = " A, (3.11)

The total A®S up to four derivative corrections is given by
AP S = AP S + APg, (3.12)

where A®)S; is previously given in 1.35

3.2 Results

We have seen that we have obtained a equation describing the new minimal area, resulted
due to perturbation introduced by higher order derivatives. The equation describing the

new minimal surface is as follows,

2=z +€xn where 2, is given by zy = R* — 12 (3.13)
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and we have z; which we previously described as,

2 =5 R (—— (m il +T) + — (R* —2%) (82T—|—$W@2R—;)

10 R? 168
R4 — 2R2.T2 + $C4 4 i ol ij 1 i il 0 ﬂj l(?T

i 1 oT
+— (R2 — acQ) (:clal(92T + 2lztad o) 82R;> % (x 2 ata™o,0,, ﬁ +x xmaza )

+— (R — 2?) (a:’xmalama2T + xlxmxia:jﬁlamazﬂ%;>
S — (xixjx P 0,0, 8,,@ + 2l x”@lamapT>

—é (xixjx " 2P 210,0,,0,0,—5 L +xl$mxpxq853m8p8qT)> (3.14)

R2
From this we have proceeded on to calculating the Area Functional which would give us
A® S, On substituting the Einstein values for all the n’s expect for n; and n,, We’ll have

the A® S reduced to the following.

87T2L3 R12
© 13170270100

—28(0;0:To0)?—70;0: To1 (60 T 4260 ' T +0;0; T}y (26860° ¥ T™ +60' 0 T™ —99! 9™ T
J J J

(194(0%T)*—2667(0* T, )*+61(9°Ty;)*+840°T;;0' 0" T+6(194(9,0,T)*

+2520(3(9%T0:)*+3(9°T5) 2 +6(0:0;Tor ) +6(0;0;Tim )2 — 0;0; T0 0 0' T — 0;0; T, 0" 0" T™ Y

+21((0*Tp)*—69120a4+960n2—114960(((0*To; ) *+(8°T33)*+2((9:0; Tt ) *+(0:0; Ty ) *+(0:0;Too ) *) ) 2

+T72((0* T )2+ 0% T3 (P T 420V T) +(0;0;To0 ) > — (0:0;Tor ) — 0;0; Tin (' P T™ —20°0' T™ +0' 0™ TV) ) v ) )
(3.15

The for restricting the parameter space to n; and ns is to, obtain a contained region and

to make a comparative study with the previous cases.
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3.3 Discussion

We could clearly see that by substituting the values of n; and ns in 3.15, not all the terms
turn out to be positive definite. As is it not expected, but there is dependence on the
free parameter o, which was not fixed on solving the Einstein’s equations. We can use a
different technique to prove that A®S, < 0. We can take A®S = VI MV. where V is a
column Vector containing elements of the form , 9;0;T}, which are linearly independent

of each other, made sure by the following constrains.
alT‘U = 0, 81 0 — =0 and 8,7—‘Jk = 87,T]€] . (316)

AP S will have no O(AT) contributions at Einstein point as we could see in 1.36. Hence

the vector V is given by the following

V = {0iTy1,010:T 1, 05To,1,0105To 1, 0:05T1 1, 03To1, 01 T 2, 0102 T0 2, 03T 2, 010510 2, 0205Th 2,
03T 2, 07T 3, 0105To 3, 03 To 3, 07 Th 1, 010011 1, 05T 1, 0105T1 1, 0205Ty 1, 05T 1, 07T 2,
0105112, 03T 2, 01051 2, 02051 2, 0311 2, 07 T 5, 01001 3, 05T 3, 07 T 2, 0105 T2 2, 03T 2, 0105T
,0505T 0,05 0,07 T 3, 0105T 3,205 T 5, 03 T3 3, 0102 T3 3, 05 T3 3} (3.17)

Now we diagonalize the 42 x 42 matrix M with a matrix U. Then we can write,
ADS = VT MY = VIUT MUV = (UV)T My(UV) Z N (UV); (3.18)

where \;’s are the eigenvalues of M. On calculating Eigenvalues for M at Einstein point,
we see that few values are dependent on a. Of these values, a few of them are linearly
dependent on « , rest in a Quadratic form. On plotting these functions of alpha, we see
that it is not always a negative quantity. Hence, we observe that « , which was thought
to be the free parameter in Einstein values in 2.4, is observed to take only restricted class

of values.

Hence with out properly fixing the value of o, we can not obtain constraints on the
parameter space. The work regarding the same is in progress. As we have all the nessary
components of the order O(9JT00T), We are expecting to complete the squares and

show it as a negative definite quantity. Thus this would enable us to consider a wider
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class of stress tensors. This as stated initially can enable us to consider various class of
stress tenors, which can lead to a situation in the parameter space as initially expected
in [?] .Hence there is a possibility that atleast in a particular parameter slice (e.g: nl and

n2), we can recover the Einstein point.
Even though we are increasing the parameter space by including the new derivatives,by

recovering Finstein point in one the parameter slice and Using the Feynman’s arguments

we can show that the bulk theory is diffeomorphism invariant up to the quadratic order.
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Appendix A

Appendix

A.1 Entanglement Entropy in AdS;/CFT; (Sec. 1.1.1)

The following is the example calculation given in [1] For a (141)D CFT the entanglement

entropy is given by the following expression

c L . (wl
Sa = 3 -log (E sin (f)) : (A.1)

According to AdS/CFT, gravitational theories on AdS; space of radius R are dual to
(1+1)D CFTs with the central charge

3R
The Metric of AdSs in global coordinates can be expressed as the following
ds* = R? (— cosh p?dt* + dp? + sinh p2d92) . (A.3)

As we go to the boundary, p = oo of the above metric is divergent. Hence a cut off
is imposed on it, such that p < py to regulate the space of the bounded region. This
corresponds to imposing the UV cutoff on the CFT. If L is the total length of the system
with both ends identified, and a is the lattice spacing (or UV cutoff) in the CFTs, we

have the relation (up to a numerical factor)

e’ ~ Lfa. (A4)

36



(@) (b) A

oD

Figure A.1: (a) AdS; space and CFTs living on its boundary and (b) a geodesics v, as
a holographic screen.

We take cylindrical coordinates for the C'F'Ty at the boundary p = p, identifying with
(t,0). The subsystem A ( is the region 0 < § < 27l/L. The minimal surface area 74 in
Eq. (1.3) is identified with the static geodesic that connects the boundary points 6 = 0
and 27l/L in a particular time slice, travelling inside AdSs (Fig. A.1 (a)). With the cutoff

po introduced above, the geodesic distance L., is given by

o Tl

= (A.5)

L
cosh ( ];A> — 1 + 2sinh® py sin

Assuming that the UV cutoff(pg) is large enough, such that e” > 1. The Entanglement
Entropy given by the formula [1], with the above described central charge is given by the

following

Sp %}s)log (eQ”O sin? %l) = glog (6"0 sin %l) : (A.6)

The resultant expression exactly coincides with the known CFT result A.1.
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