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Abstract

The analytic and computational study of the probabilistic mechanics of
particles is simplified by latticizing space. In this project, we consider a two
dimensional, square lattice, with particles interacting via nearest neighbour
dimer evaporation-deposition processes. We then use the quantum spin anal-
ogy developed by Stinchcombe et al. to analyse the system. Here, we study
the analogous Hamiltonians of two systems, one with evaporation and depo-
sition allowed in both spatial directions, and the other with this symmetry,
broken. We note that despite differences in the Hamiltonian, both systems
have the same ground state, and differ in dynamics of the excitations.
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Chapter 1

The Introduction

In this chapter we will establish formalisms and discuss the precedent to this
work.

1.1 The raison d’être

An exact understanding of non-equilibrium statistical mechanics has long
eluded us, and this project was taken up to get closer to such an understand-
ing. Lots of ‘many-body’ problems ranging from molecular crowding to traffic
issues, can be simplified and studied under the ambit of non-equilibrium sta-
tistical mechanics. A Lot of emergent behaviour like jamming, shock waves
etc., are preserved, and therefore can be analysed.

1.2 Structure

As part of this chapter, in the next section, we will discuss some basic stochas-
tic mechanics, as well as the quantum spin analogy introduced by Stinch-
combe et al.. In Chapter 2 , we will look at the evaporation - deposition
Hamiltonian as described by Stinchcombe et al. [5, 1, 2] and the symmetry
broken Hamiltonian and attempt to compare the two. Through Chapter 3
, we look at what properties emerge out of a mean field analysis of the two
systems, and compare them. The results of numerical simulations comparing
various properties of the two systems are included in Chapter 4 .
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1.3 Humble beginnings
Consider a two dimensional lattice as shown. Let s denote a particular state,
or configuration of the system.

Figure 1.1: An arbitrary state s. This is a simple square lattice. The filled
sites indicate the presence of a particle, while empty ones indicate absence.

From a description by Schutz [3, 4], a probabilistic evolution of the state
may be written as follows, where P (s, t) is the probability that the system is
in a state s, at time t.

P (s, t+ ∆t) = Σ
s′εχ

ps′→sP (s′, t) (1.1)

where χ is the set of all states, and ps→s′ is the probability of a jump
between two states, from s to s′. Given this microscopic step, the Master
equation is derived as follows

P (s, t+ ∆t)− P (s, t) = Σ
s′ 6=s

ps′→sP (s, t)− P (s, t) (1.2)

but, note that amongst the jump probabilities is one term that is respon-
sible for a state to remain as it is. And, ps→s = 1− Σ

s′ 6=s
ps→s′ . This is used in

the equation above to get

P (s, t+ ∆t)− P (s, t) = Σ
s′ 6=s

[ps′→sP (s′, t)− ps→s′P (s, t)] (1.3)

This equation is now divided by ∆t, and the limit ∆t→ 0 is taken. Then,
the Master equation is

∂tP (s, t) = Σ
s′ 6=s

[ωs′→sP (s′, t)− ωs→s′P (s, t)] (1.4)
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where ω is a jump rate. Now, as described in [5], we move to a Hamil-
tonian formalism by taking states s to state vectors |s〉, and probabilities to
probability vectors like

|P (t)〉 = Σ
s

[ P (s, t) |s〉 ] (1.5)

So, given the master equation, a stochastic time dependent Schrödinger
equation is written as follows

∂t |P (t)〉 = −H |P (t)〉 (1.6)
Also, the evolution operator at very small time steps is

e−H∆t = 1−H∆t (1.7)

1.4 The Heisenberg model analogy
An occupied site is mapped to an up spin and a vacancy to a down spin
[1]. This analogy allows us to write the Hamiltonian in terms of that of the
familiar quantum many-body problem, and thereby use all the techniques
available to us there.

Before we delve into the evaporation-deposition problem, we look at an
instructive one dimensional diffusion model [2]. Two adjacent lattice sites,
say (i& i + 1) are considered. The probability that the particle makes the
jump, in time ∆t is ωi i+1∆t. So now, a spin Hamiltonian for the system
is written by comparing the evolution operator for microscopic steps with
equation 1.7 [5]

H = Σ
i
[−ωi i+1σ

−
i σ

+
i+1 + 1

4ωi i+1(1 + σzi )(1− σzi+1)] (1.8)

The first term makes the jump with probability ωi i+1∆t, while the second
term allows it to remain, with a probability 1−ωi i+1∆t. Accounting for the
symmetrically opposite process, the following is obtained

H = 1
4Σ
i

[1
2(ωi i+1 + ωi+1 i)(σ̄i · σ̄i+1 − 1)

]
+

1
4Σ
i

[1
2(ωi i+1 − ωi+1 i){i(σxi σ

y
i+1 − σ

y
i σ

x
i+1) + σzi σ

z
i+1}

] (1.9)

This is the Hamiltonian for a lattice with asymmetric, hard-core (single
occupancy of a lattice site) diffusion, and in case of equal rates (ωi i+1 =
ωi+1 i), it maps to a simple Heisenberg Hamiltonian (σ̄i · σ̄i+1 − 1).
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It is interesting to note that the ground state of this Hamiltonian is a
state with all spins pointing in one direction. In a two dimensional lattice
the analogy is as follows

Figure 1.2: The jammed and analogous ground states.

With respect to diffusion, this state is ‘jammed’; i.e., given diffusion as
the only process, the system will remain stuck in this state. So, the analogous
ground state seems to correspond to a jammed state in our system.
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Chapter 2

The Alter(c)ation

We will now look at the interaction that is the main focus of this project:
evaporation and deposition. In this chapter we will only describe the two
cases. For a discussion on the dynamics of the new Hamiltonian, look at
Chapter 5

2.1 Unbroken symmetry
Dimer deposition and evaporation occur on adjacent lattice sites that are
empty and full, respectively. Similar to a jump rate, evaporation (ε′) and
deposition (ε) rates are defined such that a dimer will evaporate with a
probability ε′∆t, and correspondingly deposit.[2]

In the same way as in section 1.4, the Hamiltonian is deduced from the
microscopic evolution operator. As in the earlier chapter, we can look at
just the one dimensional Hamiltonian, and easily extrapolate to two. The
relevant Hamiltonian is

H = −Σ
i

[
ε′i i+1

{
σ−i σ

−
i+1 −

1
4(1 + σzi )(1 + σzi+1)

}]
+

−Σ
i

[
εi i+1

{
σ+
i σ

+
i+1 −

1
4(1− σzi )(1− σzi+1)

}] (2.1)

The first term annihilates while the second creates. When the two rates
are equal, this reduces to

H = −εi i+1Σ
i

[
σ−i σ

−
i+1 + σ+

i σ
+
i+1 −

1
2(1 + σzi σ

z
i+1)

]
(2.2)

At this point, a little trick is employed to better utilise this Hamiltonian.
Let our current square lattice be made up of two interlaced simple square
lattices of

√
2 times the original lattice site separation.
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Figure 2.1:

Given any two adjacent points, each will be in a different sub-lattice.
Now, given two points, let us perform the following ‘flip’ in the Hamiltonian,
to one of the points. [2]

σ±i+1 → σ∓i+1 σ
z
i → −σzi (2.3)

This then takes the Hamiltonian to the Heisenberg form. The state cor-
responding to the ground state is represented by figure 2.2. You can easily
see that with respect to dimer evaporation and deposition processes, this is
a jammed state. It is so because for either of those processes to occur, there
needs to exist a dimer occupancy/vacancy.

Figure 2.2:

Thus, from the two examples of the Heisenberg analogy provided by
Stinchcombe et al., we see that the ground state in the spin system cor-
responds to a jammed state in the lattice. We now would like to look at this
with a minor modification.
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2.2 Broken symmetry
We now break the spatial symmetry of the evaporation-deposition processes.
Let us say, we allow evaporation in the x-direction and deposition in y. Then,
we now have the Hamiltonian

H = −Σ
i

[
ε′xi i+1

{
σ−i,jσ

−
i+1,j −

1
4(1 + σzi,j)(1 + σzi+1,j)

}]
+

−Σ
j

[
εyj i,j+1

{
σ+
i,jσ

+
i,j+1 −

1
4(1− σzi,j)(1− σzi,j+1)

}] (2.4)

You can immediately see that a simplification like in the previous case is
no longer possible, due to the two terms now acting on different dimensions.
But let us proceed in a similar manner anyway.

H = −Σ
i

[
ε′xi i+1

{
σ−i,jσ

−
i+1,j −

1
4(1 + σzi,j + σzi+1,j + σzi,jσ

z
i+1,j)

}]
+

−Σ
j

[
εyj j+1

{
σ+
i,jσ

+
i,j+1 −

1
4(1− σzi,j − σzi,j+1 + σzi,jσ

z
i,j+1)

}] (2.5)

Now, we perform the same sub-lattice flip, as before. That gives us

H = −Σ
i

[
ε′xi i+1

4
{
σ̄i,j · σ̄i+1,j − 1− σzi,j − σzi+1,j + i(σxi,jσ

y
i+1,j − σ

y
i,jσ

x
i+1,j)

}]
+

−Σ
j

[
εyj j+1

4
{
σ̄i,j · σ̄i,j+1 − 1− σzi,j − σzi,j+1 + i(σxi,jσ

y
i,j+1 − σ

y
i,jσ

x
i,j+1)

}]
(2.6)

this reduces to

H = −Σ
i

[
ε′xi i+1

4
{
σ̄i,j · σ̄i+1,j − 1− σzi,j − σzi+1,j + 4σ−i,jσ−i+1,j

}]
+

−Σ
j

[
εyj j+1

4
{
σ̄i,j · σ̄i,j+1 − 1− σzi,j − σzi,j+1 − 4σ−i,jσ−i+1,j

}] (2.7)

This does not seem tractable due to the pair annihilation terms. So, we
may pursue another line of simplification, where we attempt to write the
Hamiltonian in terms of the three pauli matrices, without any annihilation
or creation matrices.
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We begin from equation 2.4 once again, but this time look at both
directions together, and introduce the flip at this point. Also, we assume the
two rates to be equal.

1
−ε
H = σ−i,jσ

+
i+1,j+σ+

i,jσ
−
i,j+1−

1
4
{

(1 + σzi,j)(1− σzi+1,j) + (1− σzi,j)(1 + σzi,j+1)
}

(2.8)
We know the commutation relation iσz = [σx, σy] as well as the relation

σ± = 1/2(σx ± iσy). We use these to write the Hamiltonian in terms of the
first two pauli matrices

4
−ε
H = (σxi,j + iσyi,j)(σxi+1,j − iσ

y
i+1,j) + (σxi,j − iσ

y
i,j)(σxi,j+1 + iσyi,j+1) (2.9)

4
−ε
H = σxi,jσ

x
i+1,j + σyi,jσ

y
i+1,j + σxi,jσ

x
i,j+1 + σyi,jσ

y
i,j+1

−i(σxi,jσ
y
i+1,j − σ

y
i,jσ

x
i+1,j)− i(σ

y
i,jσ

x
i,j+1 − σxi,jσ

y
i,j+1)

(2.10)

We re-convert the upper row back into a form involving the Heisenberg
Hamiltonian

4
−ε
H = σ̄i,j · σ̄i+1,j − 1− σzi+1,j + σ̄i,j · σ̄i,j+1 − 1 + σzi,j+1

−i(σxi,jσ
y
i+1,j − σ

y
i,jσ

x
i+1,j)− i(σ

y
i,jσ

x
i,j+1 − σxi,jσ

y
i,j+1)

(2.11)

Comparing this with the Hamiltonian of the system with an un-broken
symmetry, we see that apart from the Heisenberg term, there are two field
terms, and an angular momentum - like term (it is not, because there are
two different spins involved).

A cursory look at a lattice with such a symmetry broken evaporation -
deposition process tells us, interestingly, that its jammed state is the same
as for the original system. We will discuss more about this in Chapter 5
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Chapter 3

The Mean Field

In this chapter, we are going to discuss the mean field approach, and look at
the features it presents.[2] Let us look at the density variation at a site. It
would be the average of the particle currents going in and out of that site.

dρi
dt

= 〈Ji− + Ji+〉 (3.1)

3.1 Unbroken Symmetry
It is instructive to perform a mean field study of a one dimensional system
of the original kind with both evaporation and deposition allowed. Let ni
denote the occupancy of a site, with possible values being 0 and 1.

Ji+ = ε(1− ni)(1− ni+1)− ε′nini+1

Ji− = ε(1− ni−1)(1− ni)− ε′ni−1ni
(3.2)

Now, we look at the average of these currents. Here is where lies the crux
of the mean field simplification: in ignoring higher order correlations. i.e.,
〈nini+1〉 = 〈ni〉 〈ni+1〉 = ρiρi+1. So now, we have

dρi
dt

= 2− 2ρi − ρi+1 − ρi−1 (3.3)

Since we only consider equal rates, we will set ε = ε′ = 1.

3.1.1 Uniform average density in 1 dimension
Upon summing over all lattice sites (assume periodic boundaries throughout)
and dividing by the number of sites, we obtain the density profile of the whole
lattice.
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dρ̄(t)
dt

= 2− 4ρ(t) (3.4)

This is a first order linear ODE. Solving it yields

ρ̄(t) = ce−4t + 1
2 (3.5)

Plotting for various initial conditions, we see that the average density
goes to half.

Figure 3.1: The variation of the average density, with time, for a 1-
Dimensional system

3.1.2 The continuum approximation
Instead of performing the above simplification of equation 3.3, we may
rewrite it as follows

dρi
dt

= 2− 4ρi − (ρi+1 − 2ρi + ρi−1) (3.6)

At system sizes much larger than the distance between two adjacent lat-
tice points, we may use the first principles definition of a double derivative
to write

∂ρi
∂t

= 2− 4ρi −
∂2ρi
∂2x

(3.7)

Under steady state conditions, we get a form for ρi
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ρi = 1
2 + C1 cos (2x) + C2 sin (2x) (3.8)

Figure 3.2: The density profile for a 1-Dimensional system, under initial
conditions of half, zero and full occupancies.

This density profile, in accordance with the average density of the system,
has a mean value of half.

3.1.3 Uniform average density in 2 dimensions

Moving to two dimensions with the symmetry retained is trivial. One needs
to consider two more currents, resulting in

dρ̄(t)
dt

= 4− 8ρ(t)

⇒ ρ̄(t) = ce−8t + 1
2

(3.9)

This signifies a faster (to first order) approach to a constant density of 1
2 .

This is also visible upon comparison with its plot for various initial conditions.
Note that both figures have the same scale.
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Figure 3.3: The variation of the average density, with time, for a 2-
Dimensional system

3.2 Broken Symmetry
We now look at what the mean field approach tells us about our altered
system. Let us write down the currents for this.

Jx = −ε′ni,jni+1,j − ε′ni−1,jni,j (3.10a)
Jy = ε(1− ni,j−1)(1− ni,j) + ε(1− ni,j)(1− ni,j+1) (3.10b)

That gives us a density differential equation of the form

dρi,j
dt

= 2− 2ρi,j + ρi,j−1ρi,j + ρi,jρi,j+1 − ρi−1,jρi,j − ρi,jρi+1,j (3.11)

3.2.1 Uniform average density in 2 dimensions
We may follow the same procedure as before to discern the density profile of
our system, but this system introduces non-linear terms. At this point I make
the assumption, that at long times, ρi,j = ρi,j−1 = ρi,j+1 = ρi−1,j = ρi+1,j.
Then, the two non-linear terms cancel out to give

dρ̄(t)
dt

= 2− 2ρ̄(t) (3.12)

This has a profile as is seen in the following figure. Note that this is
slower (to first order) than even the one dimensional symmetric system.

Here, the oversimplification leads to incorrect results.
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Figure 3.4: The variation of the average density, with time, for a 2-
Dimensional system

3.2.2 The continuum approximation
From equation 3.11, we have

dρi,j
dt

= 2−2ρi,j+ρi,j(ρi,j−1−2ρi,j+ρi,j+1)−ρi,j(ρi−1,j−2ρi,j+ρi+1,j) (3.13)

∂ρi,j
∂t

= 2− 2ρi,j + 2ρi,j
[
∂2ρi,j
∂y2 −

∂2ρi,j
∂x2

]
(3.14)

Even the steady state solution of this diffusion-like equation is not simple.
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Chapter 4

The Simulation

We will now see the numerical manifestations of the two non-equilibrium
systems, and compare & contrast them. The works of W. Feller [8] and J.
Spencer [9] were referred to during this study.

4.1 The Anomaly

We have seen that the original and the symmetry broken systems share the
ground state. So now, we look at some properties of their first ’excited state’.
This is just a jammed state with a one site change, an anomaly.

Figure 4.1: The anomaly in the jammed (or ground) state.

Under evaporation-deposition dynamics, such an anomaly behaves like a
random-walker. In the symmetric case, it is a simple, discreet, 2-D random
walker, while in the symmetry broken system, its motion is more restricted.
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4.1.1 Mean Squared Displacement

The first property we will look at is the mean squared displacement of the
anomaly. The averaging is performed over an ensemble of a thousand sys-
tems.

Figure 4.2: The x-axis represents the number of steps after which the mean
square displacement (y-axis) is calculated.

One can see that they are linear to sufficient accuracy, and show the
diffusive properties of a simple random walk. It is interesting that the two
systems have the same diffusive characteristics when it comes to an anomaly.

4.1.2 Probabilities of Return

In the second property we look at, we consider, in a space of all crossings of
the x-axis (say) by the anomaly, the probabilities associated with each return
length.

At low numbers of steps needed for a return, this quantity exhibits stark
differences.
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Figure 4.3: The x-axis represents the number of steps for which the proba-
bility (y-axis) is calculated.

An anomaly in a symmetry-broken setting has a relatively high probabil-
ity of return due to the dimensional restriction of its dynamics, that results
in there necessarily being a 1 step return every time it hits the x-axis. For
the same event in the symmetric setting, there is only a chance of 1/2.

A two step return is impossible in a symmetry-broken system because
every two consecutive steps are at right angles to each other.

Large step return frequencies of both the kinds of systems convergent
decrease.
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Chapter 5

The Conclusion

In this chapter, we make the concluding discussion.
Let us begin by taking another look at the final Hamiltonian of the sym-

metry broken system, equation 2.11

4
−ε
H = σ̄i,j · σ̄i+1,j − 1− σzi+1,j + σ̄i,j · σ̄i,j+1 − 1 + σzi,j+1

−i(σxi,jσ
y
i+1,j − σ

y
i,jσ

x
i+1,j) − i(σyi,jσxi,j+1 − σxi,jσ

y
i,j+1)

(5.1)

We had noted how both systems have the same jammed state. Post the
’flip’, this means that the analogous ground states are the same too.

Let us examine each kind of term independently.

1. The Heisenberg terms,

2. The field terms,

3. The ‘angular momentum’ terms

The first seeks to align all the spins in a particular direction. This is the
term responsible for the ground state (gs).

The two field terms prefer to align rows & columns in the up & down
directions respectively. These terms do not make any difference, as, given a
spin direction, it is preferred by one field term and not by the other.

The third term is slightly more interesting. It acts to flip the spins of
two adjacent points, if they already have opposite spins; otherwise, it has
no effect on the dynamics. So, in the gs, this term will have no effect. But
in the presence of anomalies, this term is responsible for their propagation.
When the evaporation and deposition rates are equal, there is no preferred
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direction. This explains the random walk like diffusive behaviour seen in
figure 4.2.

Figure 4.3, on the other hand is an example of the differences in their
dynamics. For small return lengths, their probabilities vary greatly. The
symmetry broken system has a high number of length 1 returns due to the
fact that every time the anomaly comes to the x-axis, it makes a length 1
movement and remains on it. Also, it has no returns of length 2.

We see from the figure that the probabilities of large return lengths
equalise.

The modified Hamiltonian was not analytically tractable, but we could
see the implications of the differences.
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