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Abstract

The phenomenon of synchronisation in coupled dynamical systems, and in
particular, the conditions under which such coupled systems achieve syn-
chrony is a topic of current interest and potential applications. The main
objective of the present project has been to explore a technique by which an
image can be represented with a network of coupled dynamical systems in
terms of the coupling matrix of the network. The central concept is the use
of the Lyapunov exponent in determining the bounds within which a net-
work of dynamical systems will show globally synchronous behaviour. The
concept of a Lyapunov spectrum has been used to determine the conditions
for which perturbations around the synchronous trajectory damp over time,
implying a stable globally synchronous state. For coupling schemes outside
these bounds one observes speci�c patterns, termed Generalised Turing Pat-
terns; this work presents application of this method to represent a given
image with a network of coupled dynamical systems. The e�ectiveness of the
method is shown through a few test cases. The method can be an e�ective
tool in image reconstruction/retrieval; certain directions of improvement are
outlined.
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Chapter 1

Introduction

Broadly, the focus of this project is the phenomenon of synchronisation in
coupled dynamical systems. Speci�cally, the conditions under which such
coupled systems achieve synchrony is a topic which has been extensively
covered in recent years in notable works such as [17, 19] among many others.
The goal of this project is to study the phenomenon of synchronisation built
around existing literature and to explore the behaviour of these systems out-
side this regime as well; conditions that lead to the formation of Generalised
Turing Patterns, as studied in [5, 24]. This project builds on the work [5],
which describes how a network of oscillators can form Generalised Turing
Patterns, patterns that emerge for speci�c coupling regimes for which global
synchrony is not possible. Non-linear di�erential equations �rst caught gen-
eral interest when their utility in describing models of population growth and
decay was �rst brought to light. The Logistic equation [12] as a model of
population growth and decay captured a variety of behaviour that was com-
monly observed in time-varying populations such as oscillations that switch
between a few �nite values, steady populations, oscillations that damp over
time to give steady values, wildly �uctuating populations and extinction.
Since then, non-linear dynamical systems, both discrete-time and continu-
ous have been used as models to describe a variety of natural phenomena,
such as the Lorenz equations as an atmospheric model[9] and the Rössler
equations[20] to model chemical reactions.
Notably, the behaviour of such dynamical systems when they are coupled to
each other has also been a topic of interest. Here, coupling implies that the
time-evolution of one such system from t to t+ δt is dependent on the value
of another system at time t or at t− T through some function. A prominent
example of this is the case of theoretical neuroscience. A number of non-
linear models of action potentials in neurons currently exist in literature,
The Hodgkin-Huxley[6], Fitzhugh-Nagumo[18] and Morris-Lecar[15] being
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examples of some, and their behaviour under various types of coupling has
been extensively studied in recent years.
Synchronisation in coupled non-linear systems has held the interest of re-
searchers for decades now. In these systems, one has N m-dimensional dy-
namical systems whose state update or derivative functions are modi�ed so
that the state vector of each is dependent on either the state vector or some
subset of the components of the state vector of at least one other such sys-
tem. Interestingly, such synchronisation is possible even when the individual
dynamical systems are executing chaotic trajectories[16]. Synchronisation of
many forms occurs; the most commonly studied is the phenomenon of global
synchronisation which this project focuses on. In a globally synchronised
network of oscillators, as time progresses, each of the N oscillators in the
network begin to execute identical trajectories, in spite of di�erences in the
initial conditions and even the parameters of the individual members/nodes
of the network. Other forms of synchronisation include

1. Partial synchronisation, where only a fraction of the nodes synchronise
[21]

2. Delay synchronisation, where some subset of the nodes is consistently
behind another subset of the nodes, i.e., x(t) = x′(t + T ) for all t>0.
This is typically seen when a delay is incorporated into the function
that speci�es how a given node is coupled to another. [11]

3. Cluster synchronisation, where di�erent groups or clusters of nodes
synchronise amongst themselves[1, 10], and

4. Phase synchronisation, where two subsets of nodes may be in phase in
their trajectories but may not have the same amplitudes.[14]

In 1998, Pecora and Carrol put forward a method by which the stability of
globally synchronised networks of dynamical systems could be evaluated [17].
This method was based on linearising the state vector of each node about
the synchronisation manifold, i.e., the trajectory the synchronised system
follows, and calculating the Lyapunov spectrum of this system. They showed
in their work the dependence of the Lyapunov exponents on the eigenvalues
of the coupling matrix by which one obtained bounds for stability for the
eigenvalues of the connectivity matrix.
The Lyapunov exponent or, as in the case of a many-dimensional dynamical
system, the Lyapunov spectrum can be used to determine how small per-
turbations around a given trajectory evolve over time [3]. In this context,
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that concept has been used to determine the conditions for which perturba-
tions around the synchronous trajectory damp over time, implying a stable
globally synchronous state [17]. For coupling schemes outside these bounds
one observes speci�c patterns, termed Generalised Turing Patterns [5]. In
the work [5, 24], the authors explored the behaviour of such coupled systems
outside the regime of stable global synchronisation. The condition for sta-
bility of the synchronised state is best described as being the case where all
perturbations transverse to the synchronised manifold damp down over time
such that all trajectories converge on the synchronisation manifold.
In their work, the authors described how speci�c coupling or connectivity
matrices satisfy the conditions of having one eigenvalue outside the regime of
synchronisation so that the system upon time evolution generates a speci�c
pattern.
They go on to propose a method by which one could theoretically generate
a matrix that produces a desired image. The main objective of this project
is to further develop and to implement this method.
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Chapter 2

Theory

2.1 Dynamical Systems

The properties of dynamical systems is central to the theory on which this
project is based. The formation of patterns that are observed under speci�c
cases of coupling is also due to the various limiting behaviour that the indi-
vidual dynamical systems exhibit under certain parameter ranges.

Typically, a dynamical system can be de�ned with the following iterative
equation [22, 5, 1, 17]:

xn+1 = f(xn) (2.1)

ẋ(t) = f(x(t)) (2.2)

For the discrete and continuous time cases, respectively. Here, x is an m-
dimensional state vector and f(x) is a linear or non-linear function of the
state vector.

2.2 Behaviour of Dynamical Systems

For di�erent parameter sets, dynamical systems display a range of behaviour
asymptotically [22]. Broadly, the categories are:

1. Fixed points - stable, unstable and neutral A �xed point x∗ is de�ned
as a point in the phase space where xn+1 = f(x∗) = 0. A stable �xed
point is one such that when the map is applied to a point x′ in the
vicinity of x∗, one gets x∗ asymptotically, that is,

lim
x→∞

fn(x′ − x∗) = 0
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as an example for the discrete case. This vicinity is known commonly
as the basin of attraction. For an unstable �xed point, this limit goes
to either in�nity or negative in�nity. For a neutral �xed point, the
RHS is a non-zero constant.

2. Periodic orbits - stable or unstable - a periodic orbit is described by
the following constraint, x(t) = x(T + t) for the continuous case and
x(n) = x(n+m) where T and m are the periods for the orbit.

3. Chaotic dynamics - deterministic trajectories with high sensitivity to
initial conditions and to perturbations.

4. Chaotic attractors - In this case, points in the basin of attraction that
are arbitrarily close become arbitrarily far apart over evolution by the
map. However, they always remain in the basin of attraction.

2.2.1 The Dynamical Systems considered in this study

1. The one-dimensional discrete Logistic Map [12] - the equation for the
Logistic map used here was

x(n+ 1) = f(x(n)) = 1− a[x(n)]2 (2.3)

As the parameter a is varied from low to high (0 < a <∞) the system's
asymptotic behaviour transitions from a single �xed point to an m-point
limit cycle where m is a natural number greater than 1 and �nally to
chaotic dynamics for a > 1.5. This transition occurs in a number of
steps, termed bifurcations.

2. The three-dimensional continuous Rössler system of di�erential equa-
tions [20] - the Rössler system is described by the following di�erential
equations

dx

dt
= −y − z

dy

dt
= x+ ay

dz

dt
= b+ z(x− c)

(2.4)

The Rössler system is well-known for producing this strange attractor.
Shown also in 3 dimensions below in Figure 2.1.
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Figure 2.1: The Rössler Attractor in 3D

The plots above were produced using the parameter set a = 0.2, b =
0.2, c = 5.7.

2.3 Coupled Dynamical Systems

In a system of coupled oscillators, the RHS of the dynamical equation, in
each case, will be modi�ed to incorporate the e�ects of the other oscillators.
In general, such a system is described as [5]:

ẋi(t) = f(xi(t)) +
∑
j

Gij(x
j(t)) (2.5)

Likewise, for the discrete time case, the coupled dynamical system takes the
form

xi(n+ 1) = f(xi(n)) +
1

N

N∑
j=1

GijH(xj(n)) (2.6)

In these cases, H(x) is the coupling function that describes the dependence
of xi(n + 1) on xj(n). For the purposes of this study, H : RM → RM . G is
an N ×N coupling matrix that describes the links from and given node i to
its neighbours j. N is the number of such nodes in the network.
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2.3.1 Normal Modes

In coupled systems, such as below, one can evaluate the behaviour of the
system rather than that of each individual node. The normal modes of the
system of oscillators themselves oscillate with independent frequencies [13].
We consider the case of two coupled pendulums as in [13], whose displace-
ments are denoted by x and y. The coupling is implemented by attaching a
spring of spring constant k between the two bobs.

mẍ = −mgx
l

+ k(y − x) (2.7)

mÿ = −mgy
l
− k(y − x) (2.8)

Adding and subtracting the two equations above gives two equations in terms
of two new variables, (x+y) and (x−y) where the �rst describes the position
of the centre of mass and the second the distance between them.

m(ẍ+ ÿ) = −mg

l
+ (x+ y) (2.9)

m(ẍ− ÿ) = (−mg

l
− 2k)(x− y) (2.10)

The frequency with which the quantity x + y oscillates is the same as that
of the unperturbed individual oscillators. It describes the two pendulums
swinging in unison, that is, in synchrony. The concept of synchrony applies
as well to many coupled oscillators or dynamical systems.

2.4 Coupling and Synchronisation

In this context, the phenomenon of synchronization can be described as the
case where each xi oscillates in unison with the other oscillators in the sys-
tem (this is the case of global synchronization). Cases where a fraction of the
oscillators in the system synchronise is termed partial synchronization [21].
Synchronisation can occur in a variety of forms; complete synchronization
means that all the oscillators oscillate with the same frequency and have the
same magnitude at the same time, phase synchronization means that the os-
cillators are in phase but their amplitudes may di�er, delay synchronization
is the case where the oscillators possess the same frequency but may have a
constant phase di�erence between them.

Interestingly, global synchronization is seen even in coupled chaotic systems
[16], such as a system of coupled Lorenz oscillators, or coupled Logistic Maps.
The focus of this work is the di�erent patterns of synchronized behavior that
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can be seen in coupled chaotic systems. One such case is multi-cluster syn-
chronization [1, 10], where di�erent groups of oscillators are synchronized
within themselves but not with other groups. One other case is the emer-
gence of patterns analogous to Turing patterns [4, 23]for parameter values
where the globally synchronized state is unstable.

While studying the di�erent patterns of oscillatory behavior, one sees that
the nature of the coupling within the system between the di�erent oscillators
plays an important role in the global behavior of the system. It helps to
visualize the system as a network of oscillators with each oscillator as a sepa-
rate node and the coupling strength between the di�erent nodes as weighted
links. This allows one to explore the e�ects of various known network geome-
tries, and in some cases, call upon known results in group theory and Linear
Algebra on the adjacency matrix that describes the network.

For a system of many oscillators connected on a network, the conditions for
global synchronization are expressed in terms of the coupling matrix. For
cases where the system exhibits �xed point dynamics, the synchronised state
is the one for which all oscillators converge on the same state.

The study of the conditions for synchronisation are detailed below. We con-
sider the case of coupled continuous dynamical systems here, however, the
same procedure is applicable to the discrete time case as well.

Proceeding through the steps of the work in [5] similar to the steps in [24]
and [17], one considers the generic form of the coupled dynamical system,

ẋi(t) = f(xi(t)) +
∑
j

Gij(x
j(t)) (2.11)

Taking the deviations at each node around the synchronised trajectory, zi =
xi − xsync,one gets the linearised form, where the vector Z is the N × m
dimensional matrix composed of the vectors of deviations.

Ż = DfZ +DuZGT (2.12)

Here, one proceeds by denoting the left eigenvectors of G as ekL, and multi-
plying throughout. One gets a new vector φ = Z ∗ekL. Using the eigenvalue
equation on the second term on the right hand side, we replace the matrix
G with the eigenvalue γk where the index k is for di�erent such eigenvalues
of the coupling matrix. The resultant equations is

φk = [Df + γkDu]φk (2.13)
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This equation now has a linear matrix form and describes how deviations
from the synchronised trajectory behave over time. This linearised equation
can be used to compute the Lyapunov exponents for the system. The eigen-
value 0 corresponds to the synchronised case with chaotic dynamics. This is
evident from the fact that in this case, the coupled system and the uncoupled
system are identical. The remaining eigenvalues are for eigenvectors trans-
verse to the synchronised trajectory. If they are all negative, the system is
stable.

For the synchronised manifold, one has the eigenvector of the form
(1, 1, 1, 1, . . . 1, 1). The corresponding eigenvalue is 0. For the eigenvalue 0,
one has the N state vectors each propagating according to the equation of the
individual uncoupled system, that is, unperturbed by the adjacent oscillators.

One can generalise this to the following case

∑
j

Gij = g, ∀i (2.14)

Here, each individual node receives the same input from its neighbours and
one gets a synchronised state. In general, the eigenvector takes the form
(v, v, v, v, . . . , v, v, ) and the value of g is one eigenvalue. The dynamical
equation simpli�es to

ẋ = f(x) + gu(x) (2.15)

For which, g = 0 gives us the unperturbed, uncoupled dynamics and the
corresponding eigenvector. One can linearise the equation about the syn-
chronised manifold to get the form described above from which stability can
be evaluated.

The event plot above (Figure 2.2) describes how a system of 5 coupled Rössler
systems approaches global synchronization. The parameters are a = 0.2, b−
0.2, c = 5.7. The system is evolved over 20000 time steps of length 0.005
increment.

For di�erent coupling schemes, it is possible to obtain cases of partial or no
synchronization as well.
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Figure 2.2: Global Synchronisation in a network of coupled Rössler Systems
-The parameters are a=0.2, b-0.2, c=5.7. The system is evolved over 20000
time steps of length 0.005 increment. The coupling scheme for the case above
is symmetric all-to-all. The eigenvalues of the matrix G are [0,-5,-5,-5,-5]. In
this case, the maximal Lyapunov exponent of the uncoupled nodes is 0.075

.
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2.5 Lyapunov Exponents and Stability of the

Synchronised State

The Lyapunov exponents or Lyapunov spectrum of the system is central to
the study of stability and of the chaotic trajectories of dynamical systems.

The Lyapunov exponent measures sensitive dependence to initial conditions.
Essentially, the Lyapunov exponent is a measure of the asymptotic behaviour
of a small di�erence in initial conditions over time or over repeated iterations
[3]. If the di�erence grows then the system is sensitive to initial conditions,
which is indicative of chaotic dynamics of the map in question. If the di�er-
ence shrinks to zero asymptotically, the system is describing a either a stable
periodic orbit or a stable �xed point.

In the context of coupled systems, the Lyapunov exponent can be used to
check for divergent or damped perturbations transverse to the synchronised
manifold [17, 1, 5]. The system is linearised about the synchronised manifold
and the asymptotic behaviour of perturbation vectors transverse to the syn-
chronised manifold is quanti�ed to evaluate the stability of the synchronised
state.

For a system given by x′(t) = f(x(t)), the Jacobian matrix J is de�ned as

J t(x0) =
df t(x)

dx

∣∣∣∣
x0

(2.16)

The matrix given by

L(x0) = lim
t→∞

(J tTranspose(J t))
1
2t

can be decomposed using QR decomposition or an equivalent method to give
its eigenvalues. The spectrum of Lyapunov exponents is obtained in terms
of these eigenvalues

λi(x0) = logΛi(x0) (2.17)

For the discrete case, we get instead the Jacobian of f(x(n)) and the matrix
L as

lim
n→∞

[J(xn, yn)J(xn − 1, yn − 1) . . . J(x1, y1)]
1/n (2.18)

From which the spectrum of Lyapunov exponents is obtained.
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For the coupled case, we have obtained the Lyapunov exponent in terms of
the linearised equation in equation X . Thus, we get our Lyapunov exponent
in terms of the eigenvalues of the coupling matrix G given by λ.

µi(λ) = hi +
1

N
Re(λ), i = 1, 2, . . . ,M (2.19)

Rearranging the above equation, and using the constraint that the maximal
Lyapunov exponent has to be less than zero, we get the stability condition
below as a constraint on the eigenvalues of the coupling matrix. Here, the hi
are the Lyapunov exponents of the uncoupled system.

|λ+N | < Nexp(−hmax), λ 6= 0 (2.20)

For the case of nearest neighbour coupling, for which results have been pre-
sented here, the eigenvalues of the coupling matrix are given as.

λl = −2N

P

p∑
p=1

apsin
2πp(l − 1)

N
, l = 0, 1, . . . , N − 1 (2.21)

Thus, the constraint on the eigenvalues can be translated into constraints on
the ap's by substituting for λ.
These constraints describe the coupling scheme required to obtain global
synchronisation. In addition to global synchronisation, it also possible to ob-
tain partial synchronisation, phase-delayed synchronisation where the phase
di�erence between di�erent components is constant and also multi-cluster
synchronisation.
The main focus of this project is Generalised Turing Patterns. These are
patterns that emerge out of coupled systems outside the parameter regime
of stability.

2.6 Turing Patterns

Turing patterns have been studied for a considerable amount of time. One
of the oldest and most well-known examples is the case of the Reaction-
Di�usion equation. [4, 23]

(∂tu ∂tv) =

(
Du 0
0 Dv

)(
∂xxu
∂xxv

)
+

(
F (u,v)
G(u,v)

)
(2.22)
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The equation above is familiar as the heat equation, however, the second term
on the RHS describes how the two components are coupled. The solution of
the independent heat equation is given as

u(x, t) =
∞∑
n=1

Dnsin

(
nπx

L

)
e−

n2π2at
L2 (2.23)

where

Dn =
2

L

∫ L

0

f(x)sin

(
nπx

L

)
dx (2.24)

Here, f(x) describes the initial state of the system, that is, u(x, 0) = f(x). It
is assumed that for this case the boundary conditions are u(0, t) = u(L, t) = 0
for all t > 0.

With appropriate selection of f(x), Dn takes 0 values for all n except n = 1.
This gives a Gaussian bell-shaped solution to u(x, t). As time progresses, the
bell levels out to a constant function. For cases where the function u(x, t)
describes aprobability distribution function, the process of levelling out of
the Gaussian describes di�usion.

In the case of coupled equations, such as the reaction di�usion equation,
for coupling strengths outside the regime of stability one observes steady
patterns in the spatial coordinates of the system, rather than the constant,
di�used state. The stability of the system is evaluated by using linear sta-
bility analysis on the matrix form of the RHS and its eigenvalues.

2.7 Generalised Turing Patterns

The following section is about the study of patterns of oscillations seen in
networks of oscillators where the coupling parameters are such that the glob-
ally synchronous case is unstable. All the results are generated calling upon
code written to caluclate the Lyapunov exponent as mentioned in the previ-
ous sections.

In addition, using the linearised forms as derived above in the stability anal-
ysis of cluster synchronisation, one can obtain bounds on the eigenvalues of
the graph in terms of the maximal Lyapunov exponent of the uncoupled sys-
tem.
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The focus thus far has been on the single dimensional Logistic discrete map
and the many-dimensional continuous Rössler map. In these two cases, sym-
metric nearest neighbour coupling in 1-D ring and 2-D lattice con�gurations
has been implemented.

The matrix H that determines the functional dependence of each oscillator
on its neighbours has been set to the identity in the Rössler case and to f(x)
in the Logisitic map case.

For the Rössler map with H(x) = Ix , the Jacobian of this function is simply
the identity itself. Thus, the linearised equation obtained above becomes
convenient to evaluate since the identity matrix commutes with any other
matrix.

The relation obtained is:

µi(λ) = hi +
1

N
Re(λ), i = 1, 2, . . . ,M (2.25)

For the discrete system, since H(x) = f(x), the relation for the stability
bounds on the eigenvalue can be determined from the equation below (put
equation reference here)

|λ+N | < Nexp(−hmax), λ 6= 0 (2.26)

For cases of general coupling functions or general coupling matrices, the Lya-
punov exponents for the system do not have convenient forms by which they
can be expressed as in the one above.

In these cases, the trajectory of the coupled system given some initial con-
ditions needs to be calculated and stored. Thereafter, the linearised system
can be calculated at each time step by using the stored values to calculate
the Jacobian at di�erent points and follow the rest of the procedure to obtain
the Lyapunov exponents.

For the case of the Logistic map, speci�c patterns were generated by using
the known stability bounds of the uncoupled system.

To have an analytical understanding of how di�erent coupling schemes gen-
erate di�erent patterns, some speci�c cases were implemented.

For the Logistic map with symmetric nearest neighbour coupling, one can
see that the coupling matrix is shift-invariant. Under this condition, the
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eigenvectors of the coupling matrix take the following form:

el =

(
exp

(
2πi

l

N

)
, exp

(
4πi

l

N

)
, . . . , exp

(
2Nπi

l

N

))T

(2.27)

Here, l is the index over the N eigenvectors of the N×N coupling matrix, G.

The eigenvalues can be determined using the eigenvectors and the matrix
with the following relation.

λl =
eTl Gel
eTl wl

(2.28)

Finally, substituting the following shift invariant coupling matrix G with
symmetric nearest neighbour coupling,

G =
N

2P


−2
∑P

p=1 a1 . . . ap 0 . . . 0 ap . . . a1
a1 −2

∑P
p=1 a1 . . . ap 0 . . . ap . . . a2

. . . . . . . . .

a1 . . . ap 0 . . . 0 ap . . . a1 −2
∑P

p=1


(2.29)

One obtains the following form of the eigenvalues, which can be substituted
to obtain the stability bounds on the coupling strengths themselves in terms
of the maximal Lyapunov exponent, rather than the eigenvalues.

λl = −2N

P

p∑
p=1

apsin
2πp(l − 1)

N
, l = 0, 1, . . . , N − 1 (2.30)

Using the scheme described above, one can set coupling strengths to realise
di�erent patterns. One has a set of inequalities in P variables each obtained
by setting each eigenvalue within the stability bounds. For a coupling ma-
trix that has one non-zero eigenvalue that is, the completely connected graph,
only two patterns can be realised. Likewise, for a system with two distinct
non-zero eigenvalues, a total of four patterns can be realised, two of one type
and two of another. For the cases shown below, the two types are the short
and long-wavelength patterns.

Patterns such as the ones described below are generated by putting one or
more eigenvalues outside the stability boundaries so that the

1. the deviations grow with time in the directions corresponding to those
eigenvalues

2. the deviations are bounded by the non-linearity of the system after long
time so that the desired pattern is obtained.
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Chapter 3

Methods

3.1 Calculating the Lyapunov Exponent

The calculation of the Lyapunov exponent for general many-dimensional dy-
namical systems has been well-documented [2] and the code used here to
calculate it has drawn from a number of sources

1. The dynamical system is evolved for a given time length T and stored.

2. Another loop is run in which, at each time step, the Jacobian of the
function J(xn) is calculated using the stored value of xn

3. Using this Jacobian, an orthonormal basis of perturbations around the
state vector is propagated.

4. For an m-dimensional state vector, an orthonormal basis of n ≤ m
perturbation vectors can be propagated in this manner to give the n
largest Lyapunov exponents.

5. The m × n matrix of propagated perturbations can then be decom-
posed using QR decomposition to generate another set of orthonormal
perturbation vectors, as well as the eigenvalues of the Jacobian update
operation.

6. The logarithm of the eigenvalues is summed at each time step. The
new orthonormal basis generated is propagated using the Jacobian in
the next time step and the logarithm of the resulting eigenvalues also
summed.

7. At the end of T time steps, the accumulated sum of logarithms is
divided by T to give the m-dimensional vector of Lyapunov exponents.
To approximate the limx→∞, a very large T is typically used.
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3.2 Algorithm to Propagate the Coupled

Dynamical System

The basis of the algorithm is the use of the RK4 numerical integration rou-
tine to solve the system of di�erential equations for the continuous time case
and the discrete time increment function for the discrete time case.

The coupling matrix G is initialised with either 1-D or 2-D nearest neighbour
or next-nearest neighbour coupling.

Following this, for a �xed number of time-steps, the system is propagated
and a snapshot of the �nal state after these time steps is plotted.

For the continuous time Rössler case, a standard RK4 routine was used

k1 = hf(xn, yn)

k2 = hf(xn +
1

2
h, yn +

1

2
k1)

k3 = hf(xn +
1

2
h, yn +

1

2
k2)

k4 = hf(xn + h, yn + k3)

yn+1 = yn +
1

6
k1 +

1

3
k2 +

1

3
k3 +

1

6
k4 +O(h5)

(3.1)

Here, yn denotes the state vector at time x = xinitial + nh, h is the in�nites-
imal time-increment. THe boldface yn denotes the state vector

The state vector y = (x, y, z) from the 3-D Rössler system

dx

dt
= −y − z

dy

dt
= x+ ay

dz

dt
= b+ z(x− c)

(3.2)

For the discrete time case, xn+1 = f(xn) and the system is solved by calling
the increment function at each discrete time step. For the system used, that
is, the Logistic map, the equation is
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xi(n+ 1) = f(xi(n), xj(n)) = 1− a[xi(n)]2 +
N∑
j=1

GijHj(xj(n)) (3.3)

The coupling matrix is symmetric nearest neighbour coupling as shown above.
The matrix looks like

G =
N

2P


−2
∑P

p=1 a1 . . . ap 0 . . . 0 ap . . . a1
a1 −2

∑P
p=1 a1 . . . ap 0 . . . ap . . . a2

. . . . . . . . .

a1 . . . ap 0 . . . 0 ap . . . a1 −2
∑P

p=1


(3.4)

For values of ap falling within certain bounds, which can be obtained from
the bounds on the eigenvalues in this case

|λ+N | < Nexp(−hmax), λ 6= 0 (3.5)

And the relation between the eigenvalues and the values of ap

λl = −2N

P

p∑
p=1

apsin
2πp(l − 1)

N
, l = 0, 1, . . . , N − 1 (3.6)

One gets bounds on the eigenvalues for the stable regime.

By setting an eigenvalue outside these bounds, one can destabilise the cor-
responding eigenvector or eigenmode, in the case of symmetric coupling, to
produce a pattern.

For each given eigenvalue of the coupling matrix G, we get an inequality in
P variables. We get N such inequalities for the N eigenvalues. This set of in-
equalities determines whether we see synchrony or asynchrony in the network.

3.3 Algorithm to Reproduce and Image Using

a Matrix

The next area of study was the use of speci�c patterns and creating a matrix
that would generate the given pattern. One can use the fact that one of the
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eigenvectors of the coupling matrix has to be (1,1,1,...1,1) for the synchro-
nised manifold, with corresponding eigenvalue 0. Seeing that a particular
eigenvector of the coupling matrix would grow exponentially with time if the
corresponding eigenvalue was outside the stability bound, we take the second
eigenvector to correspond to the desired spatial pattern and its correspond-
ing eigenvalue to be outside the stability bound.

Thus, one has two eigenvectors and eigenvalues, and can arbitrarily set the
remaining eigenvalues within the stability bounds. Using the two known
eigenvectors, one can create an orthogonal basis of eigenvectors and use the
eigenvalues to create a matrix G which will realise the desired pattern.

Therefore, given a vector v that represents a given pattern to be realized,
one can generate the coupling matrix that will produce this pattern when
the system is evolved through the following steps.

1. For v of length N, generate N eigenvalues such that the �rst is 0, the
second lies outside the stability bounds as speci�ed by the dynamical
equation of each node, (computed using the Lyapunov exponent) and
the remaining are selected randomly from within the bounds.

2. The null-space of the synchronized manifold, (1, 1, 1, 1, ..., 1, 1, )T and
the vector v complete the basis set that can be used to compute the
coupling matrix G for which the instability is along the vector v so
that the corresponding pattern is seen.

3. The linearly independent basis isorthogonalised using the Gram Schmidt
method to produce a set of orthogonal eigenvectors v.

For the Gram-Schmidt method, we take a linearly independent �nite
set of vectors and de�ne the following projection operator

proju(v) =
〈v,u〉
〈u,u〉

u (3.7)

Using this, in general, each ui is modi�ed as

Ui = vi

i−1∑
j=1

projuj(vi) (3.8)
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Here, the vi denote the vectors that make up the linearly independent
basis and the ui denote the new orthogonal vectors produced.

4. The matrix G is given by UWU−1 . Where W is the diagonal matrix
of eigenvalues as initially generated.

5. To represent an image in terms of a matrix, �rst the image is modi�ed
so that the resolution is as desired by averaging the pixel values over the
appropriate window. Then the image matrix is reshaped to produce an
eigenvector. Next the vector of ones of the same length as this modi�ed
image vector is used to produce a matrix G using steps 1-4.
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Chapter 4

Results

For the case where the dynamical system is in the �xed point regime, we
consider the Logistic map x(n+ 1) = f(x(n)) = 1− a ∗ x(n)2. A network of
size N = 5 was used.

The Lyapunov exponent for the system with a = 0.5 is −0.32.
The Lyapunov exponent for the chaotic case, a = 1.9 is 0.54.
We use the relation between the eigenvalues of G and the maximal Lyapunov
exponent.

|λ+N | < exp(−hmax) (4.1)

And the relation between the coupling strengths ap where p = 1, 2 to get a
set of inequalities in terms of the maximal Lyapunov exponent.
For N = 5 and hmax = −0.32 we have the following relation

−1.36 < 1− a1sin2(πl/5)− a2sin2(2πl/5) < 1.36, l = 1, 2 (4.2)

Likewise, for N = 5 and hmax = 0.54 we have the relation below.

−0.578 < 1− a1sin2(πl/5)− a2sin2(2πl/5) < 0.578, l = 1, 2 (4.3)

For two values of l we get two sets of inequalities with which we can set the
values of a1 and a2 to get speci�c patterns. Since we can vary both a1 and
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a2 independently to be outside the bounds of stability, we have two possible
patterns that we can form. In the spatial sense, one is a long wavelength
pattern while the other is a short wavelength pattern.

In the plots generated below, the �ve greyscale bars are each for a di�erent
oscillator. The vertical axis is for time.The �gures below for the �xed point
and chaotic case are reproductions of the �gures in the paper [5]. The �gures
on the Rössler system have no analogues in the paper [5] but are produced
on the same principle.
For a = 0.5, the system settles to a �xed point. The short wavelength pat-
tern can be obtained by putting a1 = 3, a2 = 1.It is shown in Figure 4.1.

Figure 4.1: For a = 0.5 in the Logistic map, the system settles to a �xed
point. The short wavelength pattern for �xed point dynamics can be obtained
by putting a1 = 3, a2 = 1.

Putting a1 = 1, a2 = 3, we get the so-called long-wavelength pattern, shown
below in Figure 4.2.
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Figure 4.2: Setting the parameter a = 0.5 for the Logistic map and putting
a1 = 1, a2 = 3, we get the so-called long-wavelength pattern under �xed
point dynamics

One can see that due to the coupling strengths being stronger for the im-
mediate neighbours in the one case, that con�guration leads to the short
wavelenght pattern where immediate neighbours are strongly correlated. For
the other case where the next-nearest neighbour is strongly coupled, we see
the long-wavelength pattern where the correlated nodes include the next-
nearest neighbours. The symmetric neighbour coupling is a good case-study
to consider the e�ects of coupling.

Next, the case of chaotic dynamics was considered.
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Figure 4.3: Here, the parameter a = 1.9 for the Logistic map equation, the
coupling strengths are a1 = 1, a2 = 3. One observes a pattern similar to
the long wavelength case Figure 4.2 except that the time trace shows chaotic
dynamics instead of time invariant �xed point dynamics asymptotically.

Figure 4.4: Here, the parameter a = 1.9 for the Logistic map equation, the
coupling strengths are a1 = 3, a2 = 1. One observes a pattern similar to the
short wavelength case Figure 4.1 except that the time trace shows chaotic
dynamics instead of time invariant �xed point dynamics asymptotically.
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4.1 Applied to the 3-D Rössler system

In the �gures Figure 4.5a and Figure 4.5b, the Rössler has been used and
the �rst dimension plotted against time for the N oscillators. The patterns
described are respectively the long and short wavelength ones.

(a) The pattern is [1,0,1,0,1]. (b) The pattern is [1,0,0,0,1].

Figure 4.5: The nodes follow Rössler system dynamics with parameters, a =
0.2, b = 0.2 and c = 5.7. Two patterns are produced on a network of 5 nodes
using the method described in Section 3.

4.2 Using 2-D or biperiodic Coupling

Similarly, a 2-D lattice coupling case was checked Figure 4.6a and reproduced
using the method described in Section 3 as Figure 4.6b. In this case, a snap-
shot of the oscillator amplitudes of theN2 oscillators is taken and plotted
below. One can see roughly a checkerboard pattern emerge. Here, N = 5.
This means there are 25 oscillators in the network.

The �rst one is from the [−2.4,−1] nearest neighbour 2-d lattice map, that
is, the coupling strength between two elements connected laterally is -2.4 and
that between two elements connected vertically is -1. It should be noted that
for 2-D coupling, one is essentially implementing 1-D coupling with the near-
est neighbour and the N+1th neighbour. A=0.5 so the dynamics is in the
stable regime. The image on the right is produced after using the pattern in
the �rst to reproduce the image. Once can see small variations in the scales
and the relative values of di�erent cells, however, the similarity is marked.
This same procedure was repeated with the case of nearest and next-nearest
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2-d coupling.
In this case Figure 4.7a and Figure 4.7b, each node was connected to the
4 closest nodes both laterally and vertically. The lateral coupling strengths
were [−18.4,−10], the vertical were [−12,−8]. The parameter a = 0.5 and
the number of oscillators was 256 on a 16 ∗ 16 network.

(a) The pattern produced using the near-
est neighbour coupling scheme. (b) A reproduction of the adjacent image

Figure 4.6: This �gure is produced from the [−2.4,−1] nearest neighbour 2-d
lattice map, that is, the coupling strength between two elements connected
laterally is -2.4 and that between two elements connected vertically is -1.here,
too, the �xed point dynamics of a = 0.5 was used in the Logistic map for the
nodes. The second image is a reproduction produced using the algorithm in
Section 3.

(a) Here each node was connected to the 4
closest nodes both laterally and vertically.

(b) This one is a reproduction of the adja-
cent �gure using the algorithm described
in Section 3.

Figure 4.7: Here each node was connected to the 4 closest nodes both laterally
and vertically. The lateral coupling strengths were [−18.4,−10], the vertical
were [−12,−8]. The parameter a = 0.5 and the number of oscillators was
256 on a 16 ∗ 16 network.
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For the �gures above Figure 4.6a and Figure 4.6b followed by Figure 4.7a and
Figure 4.7b, the general form of the time evolution equation of the system
is:

xj,k(n+ 1) = f(xj,k(n)) +
1

2P

p∑
p=1

[ap[f(xj+p,k(n)) + f(xj−p,k(n))]

+bp[f(xj+p,k(n)) + f(xj−p,k(n))]− 2(ap + bp)f(xj,k(n)], j, k = 1, 2, . . . , L

(4.4)

Where the dual index speci�es the 2-D nature of the network where each node
has 4 neighbours instead of 2. As in the 1-D case, �nding the eigenvectors,
that is, the fourier modes of the matrix, we get the eigenvalues as earlier and
they obey the following constraint based on the maximal Lyapunov exponent
hmax.

∣∣∣∣1− 2

P

p∑
p=1

(apsin
2(πpl/L) + bpsin

2(πpm/L))

∣∣∣∣ < exp(−h1),

l,m = 1, 2, . . . , L/2or(L− 1)/2

(4.5)

Here we have l + m constraints and we work with the assumption that the
extent of connection P along the lateral direction is the same as along the
vertical, meaning that if a node (j, k) is connected to its neighbours j ± 1
and j±2 then it will be connected to k±1 and k±2 as a result. This can be
generalised to abandon this constraint by setting P to be the max of either
of these two cases, so that the ap or bp can be set to zero where necessary
and the general form of the constraint is preserved.

4.3 Application to Encoding an Image

The method was now used on a real image. The resolution of the image
was reduced by averaging over groups of pixels for ease of computation. The
image used is a common one in these contexts Figure 4.8.
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Figure 4.8: The image of Lenna in 256*256 resolution and in monochrome.

The low resolution version was used to produce a 24*24 length image vector.
This is seen in Figure 4.9a and Figure 4.9b.
Correspondingly, this vector and the 24*24 vector of ones were used to create
a new orthonormal basis and the matrix of connections with the eigenvalue
corresponding to the second eigenvector, i.e., the image itself set to desta-
bilise the system along this eigenvector to produce the image asymptotically
Figure 4.9b

(a) The image of Lenna downsampled

The image of Lenna was
downsampled to 24*24

(b) The downsampled image of Lenna re-
produced

The downsampled image was used as
the eigenvector

Figure 4.9: The image of Lenna was downsampled to 24*24 and The down-
sampled image was used as the eigenvector and a coupling matrix that would
reproduce the image asymptotically when nodes following �xed point dynam-
ics of the Logistic map were coupled.
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The method becomes very computationally ine�cient at higher resolutions.
Parallel computing methods are not immediately applicable since the com-
putation at a given node is dependent on the computation at its adjacent
nodes.
It is possible to splice the image and to perform the matrix representation
and image reproduction method on each splice in parallel to get the higher
resolution image back. However, the recovered image di�ers from the original
as can be seen below in Figure 4.10.

Figure 4.10: The image of Lenna was downsampled to 64*64. Each individual
strip was separately reproduced using the algorithm described in Section 3
and the �nal image was reassembled.

One notices di�erences in Figure 4.10 from the original Figure 4.8 in that
some strips are on average a di�erent shade from that in the original. This
is because each strip is computed separately and the basis of eigenvectors
used to reproduce it have been normalised independent of the other strips
as opposed to the non-parallel case where there was only one instance of
normalisation.

4.4 Selective Pattern Formation and Pattern

Inversion

A point that deserves mention here is the case of multiple eigenvalues being
set outside the bounds of stability. Consider for example if two distinct pat-
terns were used, along with the synchronised manifold, to generate the set
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of eigenvectors of the coupling matrix, one could then experiment with the
eigenvalues used to complete the coupling matrix and observe the following :

1. If the eigenvalue corresponding to the �rst pattern is set unstable and
all the others stable then the �rst pattern is observed.

2. If the eigenvalue corresponding to the �rst pattern is set stable, the
second stable and all the rest unstable, the second pattern is observed.

3. If the eigenvalues of both patterns are set unstable then only the second
pattern is seen.

4. If the eigenvalues of both patterns are set unstable and also set one
other eigenvalue unstable then a pattern distinct from any of the three
eigenvalues is observed. This combination is not the same as the alge-
braic sum of the patterns (under whatever scaling is used to quantify
them) or the linear superposition of them

These observations are useful in determining constraints under which the
method may be employed to reproduce the image.
Another interesting phenomenon that could be observed in the case of the
Logistic map under the stable regime was that for the same eigenvalues and
eigenvectors, one could either obtain the original pattern used to produce the
coupling matrix representations or an inversion of the pattern depending on
the initial values used

(a) The inversion triplet

The original pattern
(b) The inversion triplet

The pattern inverted

(c) The inversion triplet

The original pattern
reproduced

Figure 4.11: The �gure above shows in the three panels, �rst a given pattern
produced using �xed point dynamics of the Logistic map for the nodes, sec-
ond, an inverted pattern produced and third, the original pattern reproduced
again.

32



In all the three cases Figure 4.11a, Figure 4.11b and Figure 4.11c, the cou-
pling matrix was identical as well as the parameter for the Logistic equation
as well. Examination shows that initial conditions play a role in determining
the nature of the image reproduced according to the rules listed below.
If one considers a given node and its asymptotic value according to the pat-
tern,

1. If the asymptotic value is of high magnitude and the di�erence between
the initialisation and the asymp totic mean of all the nodes is low in
magnitude, one observes an inversion in the �nal image.

2. If the asymptotic value is of low magnitude and the di�erence between
the initialisation and the asymptotic mean of all the nodes is low in
magnitude, one observes the original image itself.

3. If the initialisation is outside the basin of attraction for the given at-
tractor, one gets unbounded asymptotic values.

The Logistic equation itself for the parameter value used converges to a single
�xed point over time. This �xed point is stable. The alternate �xed point
arises only when coupling is incorporated and that made it hard to study the
inversion analytically to draw conclusions.
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Chapter 5

Discussion

This report represents a method and the implementation to represent images
using networks of coupled dynamical systems. As shown, it is possible given
an image of size N , to generate a matrix of couplings between nodes that will
reproduce the desired image when each node represents a non-linear dynam-
ical system in a network de�ned by the above-mentioned matrix of coupling
strengths of sizye N2.

A central concept in this study, the Lyapunov exponent is predominantly
employed as a means to quantify sensitive dependence on initial conditions.
It measures how the relative distance between two nearby trajectories evolves
over time as the two trajectories are evolved using the dynamical map. It is
therefore one of the most commonly used methods to identify chaotic dynam-
ics. An important feature of the work is the use of the Lyapunov exponent
as in earlier works [17] and in other articles since then, to measure how per-
turbations transverse to the synchronised manifold in a system evolved over
time, i.e., whether these perturbations grow in magnitude or decreased. This
provides a quantitative handle on the stability of the synchronised manifold.

Another highlight of the work is the use of a number of mathematical tools
useful in studying matrix forms of networks, namely adjacency lists. The
eigenvalues of the coupling/adjacency matrix are the primary handle on the
existence of a trajectory for global synchronisation and on the stability anal-
ysis of this trajectory.

The method opens the door to many possibilities in the question of training
a network for robust image retreival and image encryption. In particular,
employing techniques in compressive or sparse sensing [7] on the coupling
matrix is one possibility for encrypting the information in the image. A
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sparse matrix is one whose entries are predominantly zero. It is possible to
compress the information of such matrices to much smaller sizes than the
original matrix. This technique is used in compressive image transmission
by considering a transform of the image that satis�es this criteria, such as
the Fourier transform.

The receiver needs to be aware of the dynamical system and parameters
thereof for the nodes. Accordingly, by reconstructing the coupling matrix
using sparse representations and sparse sensing techniques such as FOCUSS,
the image that is the original message can be reconstructed at the receivers
end.

One drawback of this method is its computational cost, and the cost of trans-
mitting the information. While most image compression and transmission
involves sending less information than the image itself, in this case, a cou-
pling matrix of size N2 is required to represent an image of size N. Here
too, methods like compressive sensing can make this a technique with real-
world application; this involves considering only a part of the coupling matrix
rather than the entire matrix. The FOCUSS algorithm is applicable in this
context. However, it uses a dictinoary matrix to reconstruct the original data
from the set of sparse samples. Often, the only way to �nd the appropriate
dictionary matrix is by using a training algorithm in conjunction with the
FOCUSS algorithm which minimizes the error iteratively[7, 8]. Therefore,
even in cases of convergence, the converged dictionary matrix may not re-
produce the original coupling matrix exactly.
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Appendix A

Code

This appendix contains some of the code used to generate the �gures in this
report.
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Code to calculate the Lyapunov Exponent 
 

function mu = LyapExpo(a,b,c,Ndim,dt,tmax)                                   

Ndir = Ndim                                  ; 

% number of vectors that are being evaluated to calculate the Lyapunov 

exp 

                            ; 

nmax = round(tmax/dt)                       ;% nbre of time steps                                   

; 

v = randn(Ndim,1)                           ; 

%======================= 

% Initialize everything   

%======================== 

Y      = zeros(Ndim,Ndir)      ;  

%% Ndir specifies the directions along which Lyapunove exponent will 

be calculate 

%% for Ndir = Ndim, the dimensionality of the dynamical system, the 

entire spectrum of the uncoupled Lyapunov exponent is calculated.  

weight = zeros(Ndir,nmax)      ; 

mu     = zeros(Ndir,nmax)      ; 

uu     = zeros(Ndim,nmax)      ; 

Edir   = randn(Ndim,Ndir)      ; 

uu(:,1) = v                    ; 

for itime = 2 : nmax  

  v = rk4_step(a,b,c,dt,v)  ; 

  uu(:,itime) = v            ;   

end % this bit creates a Rossler time series 

for  itime = 1 :  nmax 

     for idir = 1 : Ndir 

        Y(:,idir) =  jac_step(a,b,c,dt,uu(:,itime),Edir(:,idir))  ;  % 

Tangent linear model 

        % here, at each time step the state vector is used, to 

calculate 

        % the jacobian at each time stepand propagate the perturbation 

        % using the linearised model 

     end 

     [QQ TT] = qr(Y)                  ;%GramShmidt orthogonalization    

     %% QQ is the orthonormal basis and TT is the triangular matrix 

with the eigenvalues 

     weight(:,itime) = diag(TT)       ;%use the eigenvalues and take 

sum  

    for idir = 1 : Ndir 

        tmp = 0.0 ; 

        for j = 1 : itime 

           tmp = tmp + log(weight(idir,j))   ; %accumulate sume of 

abs(eigenvalues) 

        end 

        mu(idir,itime) = real(tmp)/(dt * itime)    ; %divide by 

current time 

        %the final column of mu is the asymptotically converged value 

of 



        %the Lyapunov exponent, the entire time series has been stored 

to 

        %see when the ecxponent converges 

    end 

    Edir = QQ   ;% reset the perturbations to an orthonormal basis 

that will be propagated using the jacobian again    

end 

end  

 

 

Code to calculate the increment for the discrete 

time Logistic map 
 

function output = increment_rhs(x,a,sigma,G,H,P) 

n = size(G); 

output = zeros(n(1),1); 

dim =1; 

for i =1:n(1) 

    output(i) = 1 - a*x(i).^2; 

    accum1 = 0; 

    for j=1:n(1) 

        %below for H(x) = f(x) 

        accum1 = accum1 + (sigma/(n(1)))*G(i,j)*(1 - a*x(j).^2); 

         

        %below for H(x) = x in 1D 

        %accum1 = accum1 + sigma*(1/n(1))*G(i,j)*x(j) 

         

        %below for H(x)  = x in many D - note that dim!=1 and outpute 

is of 

        %dimension dim., as is accum1.  

         

%         accum2 = zeros(1,dim); 

%         for k =1:dim 

%             for l = 1:dim 

%             accum2(1,k) = accum2(1,k) + H(k,l)*x_base(j,l); 

%             end 

%         end 

%         accum1 = accum1 + sigma*(1/n(1))*G(i,j)*accum2; 

 

    end 

    output(i) = output(i) + accum1; 

end 

end 

 

Code to calculate the derivatives for the 

continuous time Rossler system 
 

function output = derivatives(a,b,c,sigma,G,H,x_base) 

%% derivatives for the 3-d Rossler system with H(x) = I(NxN) 

n = size(G); 



m = size(x_base); 

members = m(1); 

dim = m(2); 

output = zeros(n(1),dim); 

for i =1:n(1) 

    output(i,1)  = - x_base(i,2) - x_base(i,3); 

    output(i,2) = x_base(i,1) + a*x_base(i,2); 

    output(i,3) = b + x_base(i,3)*(x_base(i,1) - c); 

    accum1 = zeros(1,dim); 

   %%code block below includes effect of coupling with H(x) = I(NxN) 

    for j=1:n(1) 

        accum2 = zeros(1,dim); 

        for k =1:dim 

            for l = 1:dim 

            accum2(1,k) = accum2(1,k) + H(k,l)*x_base(j,l); 

            end 

        end 

        accum1 = accum1 + sigma*(1/n(1))*G(i,j)*accum2; 

    end 

    output(i,:) = output(i,:) + accum1(1,:); 

end 

end 

 

 

Code to calculate the RK4 increment for the 

continous time Rossler system 
 

function x = rk4_step(dt,a,b,c,sigma,G,H,x) 

%function that computes rk4 with the drivatives that include the 

coupling 

k1 = derivatives(a,b,c,sigma,G,H,x); 

spam1 = x + 0.5*k1*dt; 

k2 = derivatives(a,b,c,sigma,G,H,spam1); 

spam2 = x + 0.5*k2*dt; 

k3= derivatives(a,b,c,sigma,G,H,spam2); 

spam3 = x + k3*dt; 

k4 = derivatives(a,b,c,sigma,G,H,spam3); 

kk = (1/6)*(k1+2*(k2+k3)+k4); 

x = x+dt*kk; 

end 

 

 

Code to plot a pattern based on a given coupling 

matrix or to reproduce a predetermined pattern 

for the continuous time Rossler system. 
 

% % % %%% 1-d scene 

% ap = [8]; 

% P = length(ap); 



% G = G_writer(ap,5); 

 

 

%%%% 2-d scene 

% % % ap = [-18.4,-10]; 

% % % bp = [-12,-8]; 

% % % P = length(ap); 

% % % G = coupler_2d(ap,bp,16); 

 

%%%%%% the image is read from a .png file and downsampled to produce 

the 

%%%%%% image vector 

% % % resolution = 8; 

% % % image = imread('lena.png'); 

% % % image_prep(resolution,image); 

% % % patt_vec1 = csvread('patt_hat3.csv'); 

% % %  

% % % %%%%%% the coupling matrix is generated using the image vector, 

synch 

% % % %%%%%% manifold and by initialising the eigenvalues according to 

the 

% % % %%%%%% stability bounds 

% % %  

% % % [m,n] = size(patt_vec1); 

% % % patt_vec = reshape(patt_vec1,n*m,1) 

h_max = 0.07140; 

lower_bound =  -n*m*(1 + exp(-h_max)); 

upper_bound = n*m*(exp(-h_max) - 1); 

stable = upper_bound - upper_bound/2; 

unstable = upper_bound + 2*upper_bound; 

patt_vec = [1,0,0,0,1]'; 

unstable = 0; 

stable = -23.3; 

G = construct_matrix_2c(h_max,patt_vec,unstable,stable); 

dlmwrite('second_G.csv',G,',') 

 

[n1,n2] = size(G); 

dim = 3; 

T=4000; 

H = eye(dim); 

a=0.2; 

b=0.2; 

c=5.7; 

sigma=1; 

dt=0.05; 

x=zeros(n1,dim,T); 

x(:,:,1) = (02*rand(n1,dim)-1); 

time_trace = zeros(1,T); 

time_trace(1,1)=1; 

for t=2:T 

    time_trace(t) = time_trace(t-1)+1; 

    x(:,:,t) = rk4_step(dt,a,b,c,sigma,G,H,x(:,:,t-1)); 



    if mod(t,50) ==0 

        t 

    end 

end 

% size(x(1,1,:)) %% plotting the first dimension of N oscillators vs 

time 

image = imagesc(transpose(squeeze(x(:,1,600:T)))); 

colormap(gray); 

% % plot(squeeze(x(1,2,:)),squeeze(x(1,1,:))) 

 

%%%% for the Lenna image 

 

 

Code to produce a given pattern using a coupling 

matrix or to reproduce a pre-determined pattern 

for the discrete time logistic map 
 

clear all 

 

%%%%G can be read from a csv file, or constructed using an eigenvector 

and 

%%%%the max Lyap exponent or by constructing a nearest neighbour/ 

lattice 

%%%%coupling 

 

%%%%% csv read 

%G = csvread('coupling_mat_SW.csv'); 

 %G = 2.*G 

%%%% constuct from eigenvector 

%%% long wavelength 

%G = construct_matrix_2c(-0.39,[-0.4802,-

0.5399,0.1465,0.6304,0.2431]') 

%%% short wavelength 

% patt_vec = csvread('patt_hat.csv'); 

% % G = construct_matrix_2c(-0.39,[-0.6321,0.4984,-0.1743,-

0.2163,0.5244]') 

% G = construct_matrix_2c(-0.39,patt_vec) 

 

%P=2; 

 

%%%%%%%% written using the nearest-neighbour coupling strengths 1-d 

case 

%for short wavelength at fixed point dyn, ap = [3,1] 

%G = G_writer([3,1],5) 

%  G = G_writer_eval([1,1,2],5,-0.39); 

P = 2; 

%%%%%%%%%%% written using nearest-neighbour coupling, 2-d case 

% for (2,2) mode and chaotic dyn (a=1.9), ap=0.9 and bp = 0.9 

ap = [0.9]; 

bp = [0.9]; 



P = length(ap); 

G = coupler_2d(ap,bp,5); 

 

n = size(G); 

T=2000;  %%% time steps 

dim=1; %%% not equal to 1 for many imensional systems 

H = eye(dim); %%%% H atrix for a matrix transform coupling function 

 

%%%%%%%% inititalise parameters 

a=0.5; %%%%% 1-d logistic map 

%%%%%%%%%%%%%%%%%%%% 

 

replicates = 1; 

sigma=0.1; %  global coupling constant 

 

x=zeros(replicates,n(1),T); 

z=zeros(replicates,n(1),T); 

for i = 1:replicates 

x(i,:,1) = 0.05*(2*rand(n(1),1)-1); % initial conditions 

%  x(i,:,1) = -0.2*[1,-2,3,-3,2,-1,1,-1,3,-3]; 

x(i,:,1); 

time_trace = zeros(1,T); 

time_trace(1,1)=1; 

for t=2:T 

%     if t <= 1000 

%         G = G_writer([3,1],5); 

%     else 

%         G = csvread('looped_mat.csv'); 

%     end 

    time_trace(t) = time_trace(t-1)+1; 

    x(i,:,t) = increment_rhs(x(i,:,t-1),a,sigma,G,H,P); 

    %%%% absolute value of the deviations from the mean, as described 

in 

    %%%% the paper 

    z(i,:,t) = abs(x(i,:,t) - sum(x(i,:,t))); 

%     if mod(t,50) ==0 

%         t; 

%     end 

end 

% x(i,:,end); 

end 

% zz = zeros(replicates,floor(n(1)/2),T); 

% c=1; 

% for i = 1:2:n(1) 

%     zz(1,c,:) = z(1,i,:); 

%     c=c+1; 

% end 

b = zeros(replicates,floor(sqrt(n(1))),floor(sqrt(n(1))),T); 

c=1; 

 

%%%%% block below is to take an N8N snapshot in the case of 2d 

coupling at 



%%%%% some given time 't' or of the time average of all the values 

 

for i = 1:replicates 

    c=1; 

    for j=1:floor(sqrt(n(1))) 

        for k=1:floor(sqrt(n(1))) 

            for t=1:T 

                b(i,j,k,t) = x(i,c,t); 

%                 if x(i,c,t) > 0 

%                     b(i,j,k,t) = 1; 

%                 else 

%                     b(i,j,k,t) = 0; 

%                 end 

            end 

            c=c+1; 

        end 

    end 

end 

 

%%%%% take time average of the N*N values for each replicate 

 bb = mean(b,4); 

bb = b(:,:,:,400); 

plot_data = squeeze(mean(bb(:,:,:),1)); 

figure 

image = imagesc(plot_data(:,:)); 

%%%%%%%%%%%%%%%%%%%% 

 

 

%%%% block below is for the 1-d case, plotting the absolute value of 

% %%%% deviations 

% plot_data = squeeze(mean(z,1)); 

% pattern = plot_data(:,2000) 

% spam = isnan(pattern) 

% % if sum(spam) == 0 

% % dlmwrite('patt_hat.csv',pattern,'delimiter',','); 

% end 

%size(plot_data) 

% figure 

% image = imagesc(transpose(plot_data(:,200:2000))) 

%%%%%%%%%%%%%%%%% 

 

colorbar('eastoutside') 

colormap(gray) 

%plot(x(1,1:100)) 

% hold on 

 

Code to downsample a given image 
 

function im = image_prep(t_res,image) 

%%% this function downsamples the original image according to the 

desired 



%%% resolution t_res and displays the downsampled image at the end 

%%% windows of length t_res are successively chosen from the original 

image 

%%% and the average value of all cells in a given window is used for 

the 

%%% new image.  

info = imfinfo('lena.png'); 

x_res = info.Width; 

y_res = info.Height; 

sv = floor(x_res/t_res); 

n = x_res; 

m = t_res; 

im = zeros(t_res-1); 

c1 = 1; 

for i = 1:sv:n-sv 

    c2 = 1; 

    for j = 1:sv:n-sv 

        window = image(i:i+sv,j:j+sv); 

        value = mean(mean(window)); 

        im(c1,c2) = value; 

        c2 = c2+1; 

    end 

    c1 = c1+1; 

end 

imagesc(im); 

colormap(gray); 

colorbar('eastoutside'); 

dlmwrite('patt_hat3.csv',im,'delimiter',','); 

end 

 

 

 


