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Abstract

Supersymmetry is one of the most popular and highly motivated theories beyond the

Standard Model. Apart from providing a solution to the hierarchy problem, it also leads

to unification of couplings at high energies and has a candidate particle for dark mat-

ter. The Large Hadron Collider (LHC) has looked for supersymmetric particles in their

searches with no success till date. The collider is set to restart colliding particles again

in 2015 at an upgraded energy scale of 13 TeV. The entire particle physics fraternity is

hopeful of observing first signs of supersymmetric particle in the coming years. Once

the particles are detected, the next step for the experimentalists would be to obtain the

properties of these particles, for instance their masses and mixing.

One of the features of interest is Lepton Flavour Violation (LFV). Lepton flavour is

inherently conserved in the Standard Model owing to the massless nature of neutrinos.

Supersymmetry in its general form does not require generational lepton number conser-

vation. However, the null results in various experiments looking for LFV decays has

put strong constraints on the possibility of flavour violation in supersymmetric models.

Notwithstanding these constraints, the possibility of flavour violation in the decay of

supersymmetric particles is not completely ruled out. In fact under certain conditions,

significant LFV could be possible.

In this study, we have calculated the constraints on slepton (supersymmetric lepton)

mass matrix coming from rare decays of electron, muon and tau. Based on these re-

sults, we obtain the condition for substantial flavour violation. Next we study a signal

for lepton flavour violating decay of a supersymmetric particle neutralino, which can be

investigated at the LHC.
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Chapter 1

Introduction

1.1 Lepton Flavour Violation in Standard Model

In the Standard Model, both the up and down quarks of all the three generations are

massive with non-degenerate masses generated via spontaneous symmetry breaking . In

the mass eigenstate of up-type quarks, the Wuidj vertex where ui are the up-type quark

fields u, c and t while di are down-type quark fields d, s and b, is not a diagonal matrix in

the generation space. Consequently, the quark mass eigenstates are different from their

flavour (gauge) eigenstate and can be represented as superposition of the three flavour

eigenstates. In other words, baryon flavour number is not strictly conserved in SM.

The situation is completely different in the leptonic sector. Since the neutrinos are

massless and hence degenerate, Wliνj vertex, where li = e, µ, τ are charged leptons and

νj = νe, νµ, ντ are the corresponding neutrinos, is diagonal in the generation space in the

basis of mass eigenstates for charged leptons and neutrinos. As a result, the neutrinos do

not mix and the family lepton number is conserved in SM.

In the 1990’s, experiments designed to measure the solar neutrino flux on earth found

that the flux was not consistent with the theoretical prediction[1]. The results pointed

towards oscillation of neutrinos into one another which could only be possible if they had

non-degenerate masses. By 1998, the result from Super Kamiokande experiment[2] es-

tablished beyond reasonable doubt that neutrinos were massive and undergo oscillations.

The fact that neutrinos have masses and undergo oscillation has huge implication for

the lepton sector of the Standard Model. Under the scenario where neutrinos are massive

and oscillating, processes such as µ → eγ, τ → µγ which are forbidden in the Standard

Model, can now take place via an oscillating neutrino in the internal leg of one loop

feynman diagram.

The decay width for µ→ eγ is given by[3]

Γ(µ→ eγ) =
mµ

8π
(|AL|2 + |AR|2) (1.1)
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Figure 1.1: The decay of muon to electron through W exchange

where AL and AR are the invariant amplitudes for left handed and right handed electron,

respectively. In the limit where electron mass goes to 0, we have

AR = 0

AL = e
g2

4M2
W

mµ

32π2
δν (1.2)

where δν is given by

δν =

∑
i U
∗
eiUµim

2
i

M2
W

(1.3)

and the branching fraction is

Br(µ→ eγ) =
3α

32π
δ2
ν (1.4)

which is highly suppressed (< 10−50) owing to the vanishingly small mass of neutrinos.

The sensitivity of experiments probing the lepton flavour violating decays is too small

to detect such small values of branching fraction and no flavour violation has ever been

observed in any experiment. The null results have been used to set limits on rare decays

1.1. Thus any flavour violation occuring solely due to the massiveness of neutrinos will

remain beyond experimental reach for a long time. This may look discouraging but it is

actually a boon.

Experimental Limits on rare decay
Br(µ→ eγ) 5.7× 10−13 [4]
Br(τ → µγ) 4.4× 10−8[5]
Br(τ → eγ) 3.3× 10−8[5]

Table 1.1: Constraints on Branching Fraction of rare decay

Consider eq. (1.4), suppose in place of light neutrinos, we had particles with mass

of O(1) TeV in the internal leg with an identical mixing matrix U along with equally
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massive exchange particle. We would then get an O(1036) increase in the LFV decay rate

which will bring it into the detectable range. However there is no known particle upto

the weak scale which can replace neutrinos in the above feynman diagram. The fact that

the rare decay branching ratio’s are non-detectable under Standard Model with massive

neutrino implies that if upcoming experiments were to detect a non zero branching ratio,

it would be a definite sign of physics above weak scale. Consequently one would be able

to probe higher enrgy physics through these decays.

However, if the higher physics scale is characterised by an energy scale Λ, then Λ

appears with a negative power in the effective lagrangian for Br(µ → eγ) which is a

dimesion five operator
1

Λ
ψ̄σµν(A+Bγ5)ψFµν (1.5)

If the new physics enters at around Planck scale (∼ 1018 GeV) then again the flavour

violating amplitude will be suppressed due to the presence of Λ in the denominator

irrespective of the nature of mixing matrix [6].

Therefore, it follows that the best hope for probing high energy physics through rare

decays would be if the new physics exists not much above the weak scale. Fortunately,

supersymmetry, one of the possible extensions of the Standard Model is motivated to be

realized just above the weak scale.

1.2 A Caveat: Flavour Problem

The fact that rare decays are extremely suppresed in the SM with massive neutrinos is

because of the huge gap in the order of magnitude of neutrino masses and W-boson. If

supersymmetry is an answer to the hierarchy problem, then we should have ΛSUSY ∼ O(1)

TeV. The negative results for SUSY searches have put lower bounds on the masses of

SUSY particles. The upshot is that SUSY not only allows large lepton flavour violation

but in fact the generic prediction will be far above the observed low rates for these LFV

processes. Two solutions exist.

If the lepton and slepton mass matrices are proportional to each other (called alignment),

then δν will vanish altogether and the problem will be solved [7]. But such a choice of

mass matrix has to be justified. Another way out is if the sleptons are degenerate. Then,

just like in case of degenerate neutrinos of SM [3] there would not be any LFV. Here

again, the slepton degeneracy has to be motivated and justified.

1.3 Lepton Flavour Violation at LHC

A lepton and its superpartner slepton have the same family lepton number. Under

family lepton conservation, the number should be conserved in a process. However,
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owing to this misalignment of slepton mass matrix, in the mass eigenstate of lepton and

neutralino/chargino, the slepton mass states are not diagonal. As a result it is possible

to have decays like ˜̀
j → `iχ̃

0
1 (1.6)

ν̃ j → νiχ̃
0
1 (1.7)

where i, j are flavour indices. Although the neutrinos produced in the sneutrino decay

leave the detector undetected, the slepton decay into a lepton of different flavour can be,

in principle, observed at colliders, thus providing us with an opportunity to probe LFV

at a collider.
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Chapter 2

Supersymmetry

2.1 Introduction

The Standard Model of particle physics can successfully account for the properties of

and interactions among the fundamental particles upto TeV energy scales to a very high

precision (∼1 part in 103 for EW physics). However, the Standard Model still can not

be considered as a complete theory of nature. The model totally ignores gravity which is

one of the four fundamental forces of nature. Moreover in the last couple of decades, it

has been established that matter, as we know it, only constitutes a tiny fraction of the

universe. The universe is dominated by two mysterious entities, called Dark Energy and

Dark Matter, which are yet to be understood and explained. The Standard Model which

originated out of various theoretical and experimental endeavours, way back in the 1970’s,

does not explain these two aspects of nature. It has no explanation for matter-antimatter

asymmetry and neutrino oscillations either.

Supersymmetry is an extension of the Standard Model which postulates a symmetry

between fermions (spin half particle) and bosons (integer spin particle). A supersymmet-

ric operator transforms a fermionic field into bosonic one and vice versa.

Q |Boson〉 = |Fermion〉 (2.1)

Q |Fermion〉 = |Boson〉 (2.2)

The theory predicts existence of a partner particle (called superparticle) for each particle

of the standard model which differ from each other by spin half and are related by

supersymmetric transformation. Since the theory is an extension of the highly successful

Standard Model, it must preserve the Lorentz and gauge symmetry of the SM and must

also be renormalizable and anomaly free. For the next section, we follow the analysis and

notation of [7, 10, 11]
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2.2 Motivation

2.2.1 The Hierarchy problem

Within the Standard Model, although the masses of fermion and gauge bosons are pro-

tected by chiral symmetry and gauge symmetry respectively, there is no symmetry to

protect Higgs mass. The higgs mass receives large corrections from loop involving the

heavy top quarks which drives it to extremely high values. Under the assumption of no

new physics upto Planck scale, the large corrections to the mass can be avoided by fine-

tuning the parameters to an order of one part in 1036. [11] However such contrived choice

of parameter is deemed unnatural and unjustified and is not believed to be the actual

solution to the problem . Supersymmetry provides an ingenious solution to the problem

[10]. The leading coreection ∆m2
h from a fermionic loop of a fermion f with coupling λf

is

∆m2
h = −|λf |

2

8π2
Λ2

cutoff + . . . . (2.3)

The contribution from a scalar particle with coupling λs comes out to be

∆m2
h =

|λS|
16π2

Λ2
cutoff + . . . . (2.4)

where Λcutoff is cutoff scale. If for each fermion, we have two scalar particles, with

λS = |λf |2, then the leading quadratic correction from the fermions and bosons exactly

cancel out!. We will come back to it in the next section.

Figure 2.1: One loop diagram which give fermionic and bosonic correction to Higgs mass..

2.2.2 Coupling Unification

When the gauge couplings of SU(3)C×SU(2)L×U(1)Y gauge group of the standard model

are evolved to high energy scales through renormalization group equation, they don’t quite

meet at a common point of energy scale. However the supersymmetric evolution appears

to give a unique point where all the couplings converge.
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Figure 2.2: Two loop RG evolution of coupling constants in SM and SUSY. The dashed
lines are from SM while the coloured solid are from SUSY. The figure is taken from Ref
[10]

2.2.3 Dark Matter Candidate

Dark matter is believed to compose 26.8% of the Universe [12]. However the identity of

dark matter (DM) still elludes us. A Weakly Interacting Massive particle (WIMP) having

a mass of around 100 GeV is hypothesized to be a major, if not the only constituent of DM

[13]. Supersymmetry under the assumption of R-parity1 conservation gives a candidate

WIMP.

2.2.4 Gravity

When the supersymmetry is elevated from a global symmetry to a local symmetry depen-

dent on space-time variable xµ, then under infinitesimal transformation of the lagrangian,

extra fermionic terms are generated which spoil the symmetry if not taken care of. To

regain the symmetry, one needs to introduce a fermionic field with a spin of 3/2 . This

spin 3/2 particle is identified as the superpartner of graviton, the particle which mediates

gravity. The model thus naturally incorporates gravity, the only interaction missing from

the Standard Model.

1 To avoid terms which violate baryon and lepton number conservetion in the lagrangian, one imposes
the condition that the lagrangian terms must be invariant under R-parity where the superfields transform
as

RP = (−1)3(B−L)2s (2.5)
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2.3 Minimal Supersymmetric Standard Model (MSSM)

MSSM is Minimal Supersymmetric Standard Model. This is an extension of SM with

minimum number of particles needed to incorporate a self consistent SUSY.

In supersymmetry, the analogues of quantum field of SM are called superfields or super-

multiplet which are function over superspace which is an eight dimensional space with

4 space-time and 4 fermionic degrees of freedom. The gauge group of MSSM, like SM ,

is SU(3)C × SU(2)L × U(1)Y . The particle content and their respective gauge transfor-

mations are given in Table The superfields come in two forms; chiral supermultiplets

containing left chiral fermions and vector supermultiplets containg vector bosons of SM, in

additon to their respective superparticle fields and auxillary field2 The particle spectrum

of the MSSM and their transformation properties under the SU(3)C × SU(2)L × U(1)Y

gauge group is given by,

Qi ≡

(
uLi

ũLi

dLi
d̃Li

)
∼
(

3, 2,
1

6

)
U c
i ≡

(
uci ũci

)
∼
(

3̄, 1, −2

3

)
Di ≡

(
dci d̃ci

)
∼
(

3̄, 1,
1

3

)
Li ≡

(
Li L̃i

eLi
ẽLi

)
∼
(

1, 2, −1

2

)
Ei ≡

(
eci ẽci

)
∼ (1, 1, 1)

The supersymmetric lagrangian is constructed from these superfields. The part of the

lagrangian which gives kinetic term for SM fermion and sfermions and their interaction

with gauge boson is given by

Lkin =

∫
dθ2dθ̄2

∑
Φ†βe

gV Φβ (2.8)

where β runs over all the chiral superfields while the summation is over the vector super-

fields.

2. A chiral superfield can be written as

Φ = φ+
√

2θ.χ+ θ.θF (2.6)

where χ is the left chiral SM fermion while φ is its scalar superpartner. F is an auxillary field introduced
to keep supersymmetry intact even ’off-shell’.
A vector superfield in Wess-Zumino gauge can be expressed as

V = −θσµθ̄Aµ + iθθθ̄λ̄− iθ̄θ̄θλ+
1

2
θθθ̄θ̄D (2.7)

where Aµ is a SM gauge field while λ is its supersymmetric fermionic partner. D here is the auxillary
field.
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The counterparts of yukawa terms in SM come from

Lyuk =

∫
dθ2W (Φ) + h.c. (2.9)

where W is an analytic function of superfields called the superpotential and is given by

W = W1 +W2 (2.10)

where

W1 = huijQiU
c
jH2 + hdijQiD

c
jH1 + heijLiE

c
jH1 + µH1H2 (2.11)

W2 = εiLiH2 + λijkLiLjE
c
k + λ

′

ijkLiQjD
c
k + λijkU

c
iD

c
jD

c
k (2.12)

Under the assumption of R-parity, the W2 part vanishes. The gauge part of the lagrangian

is written as

Lg =

∫
dθ2WαWα + h.c. (2.13)

whereWα are field strength superfield constructed from respective vector superfields and

α runs over all the vector superfields. To sum things together, MSSM lagrangian under

exact supersymmetry is given by

LSUSY = Lkin + Lyuk + Lg (2.14)

2.3.1 A Broken Symmetry

If supersymmetry were an exact symmetry of nature we would expect SUSY particles to

have masses identical to their corresponding SM particle. However since no such particle

has been observed in nature, SUSY must be a broken symmetry. The manner of SUSY

breaking has been a matter of speculation. A supersymmetry breaking at weak scale

would imply existence of SUSY particle with masses less than SM particles. Since this

has not been observed, supersymmetry breaking at weak scale is ruled out. Since SSB is

much desired, models have been postulated with SSB enforced at high energies like Min-

imal Supergravity and Anomaly Mediated Spontaneous Breaking. However irrespective

of the mechanism, the symmetry breaking at weak scale can be parametrized in terms of

explicit soft terms.

Coming back to the hierarchy problem, the solution to hierarchy problem from supersym-

metry is exact as long as |λS| = |λ2
f | where λS and λf are coupling constants from Eq. 2.3

and 2.4. However, since SUSY is broken , the couplings which are related to the particle

masses, may not be related in the desired fashion as to cancel out all corrections. There-

fore if SUSY has to provide solution to the hierarchy problem, the relationship between

coupling constants in the unbroken case must hold while at the same time, the correction
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from SUSY breaking terms must be protected by supersymmetry. The Lagrangian, is

therefore split in two parts

L = LSUSY + Lsoft (2.15)

where LSUSY is totally supersymmetric while Lsoft contains explicit SUSY breaking terms.

If the mass scale of SUSY Lsoft = M , then in the limitM → 0, ∆m2
H must vanish. This

implies that the correction to Higgs mass under broken symmetry can grow logarithmi-

cally at best.

∆m2
h = M2

[
λ

16π2
ln(ΛUV/M) + . . .

]
. (2.16)

The requirement that the correction should not be more than the bare mass implies

that M itself has to be around a few TeV’s.

The explicit soft susy breaking terms are written as:

−Lsoft = q̃∗iL(M2
q̃)ij q̃jL + ũ∗iR(M2

ũ)ijũjR + d̃∗iR(M2
d̃
)ij d̃jR + l̃∗iL(M2

l̃
)ij l̃jL

ẽ∗iR(M2
ẽ)ij ẽjR + [h1.l̃iL(f eAe)ij ẽ

∗
jR + h1.q̃iL(fdAd)ij d̃

∗
jR +

h2.q̃iL(fuAu)ijũ
∗
jR + h.c.] +m2

1|h1|2 +m2
2|h2|2 + (Bµh1.h2 + h.c.)

+
1

2
(M1

¯̃
λ0PLλ̃0 +M∗

1
¯̃
λ0PR

˜̃
λ0) +

1

2
(M2

¯̃
λiPLλ̃

i +M∗
2

¯̃
λiPRλ̃

i)

+
1

2
(M3

¯̃gaPLg̃
a +M∗

3
¯̃gaPRg̃) (2.17)

In the above expression M1,2,3 are gaugino mass parameters corresponding to U(1)Y

,SU(2)L and SU(3)C gaugino fields while m1 and m2 are real Higgs scalar mass param-

eters for the higgs doublet h1 and h2 respectively and h1.h2 = h̃†1h2 where h̃1 = iτ2h
∗
1 is

an SU(2) doublet. M2
q̃,l̃

are the mass matrices for squared left squark and slepton mass.

These are 3 × 3 hermitian matrices in generation space. M2
ũ,d̃,ẽ

are the mass matrices

for squared right quark and slepton mass. These too are 3 × 3 hermitian matrices in

generation space. f eAe, fdAd and fuAu are coefficient to trilinear terms. The coeffi-

cient of Higgs bilinear term has been factored into the product of µ and B, where B has

dimensions of mass. These parameters in general are complex which gives us 125 real

unknowns. For phenomenomenological studies, handling these many unknown is next

to impossible. Several simplyfying assumptions are made, at times motivated by experi-

mental constraints( for instance null results for CP violation beyond Standard Model) to

make the model manageable.

After supersymmetry and electroweak symmetry is broken, the different sparticles

having common U(1)em quantum number mix together and acquire masses based on the

values of the SUSY breaking parameters.
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First we consider sleptons. In the flavour (gauge) basis where the flavour eigenstate is

(eL, µL, τL, eR, µR, τR) ≡ (lL, lR) , the slepton mass matrix is given by a 6× 6 matrix. For

this eigenstate, the mass matrix can be written in blocks of 3× 3 matrix as

− Lm =
(
l̃†L, l̃

†
R

)( m2
L m2T

LR

m2
LR m2

R

)(
l̃L

l̃R

)
, (2.18)

where m2
L and m2

R are 3×3 hermitian matrices and m2
LR is a 3×3 matrix. These elements

are given as,

m2
Lij = M2

l̃ ij
+ (m2

li
+m2

Z cos 2β(−1

2
+ sin2 θW ))δij, (2.19)

m2
Rij = M2

ẽ ij + (m2
li
−m2

Z cos 2β sin2 θW )δij, (2.20)

m2
LRij = (Al −mliµ tan β)δij, (2.21)

For our case, we assume the above mass matrix to be real. This , in general, need not

be diagonal and hence can include mixing between different generations. We diagonalize

the mass matrix M2 by a 6× 6 real orthogonal matrix UL as

ULM2UT
L =MD, (2.22)

and we denote its eigenvalues by m2
l̃X

(X = 1, · · · , 6). The mass eigenstate is then written

as

l̃X = ULX,il̃Li + ULX,i+3l̃Ri, (i = 1, · · · , 3). (2.23)

Conversely, we have

f̃Li = UT
L iX f̃X = ULXif̃X , (2.24)

f̃Ri = UT
L i+3,X f̃X = ULX,i+3f̃X . (2.25)

Since there are no right handed sneutrinos, the situation is a little simpler here. The

sneutrino mass matrix is a 3× 3 matrix given by

m2
ij =M2

l̃ ij
+

(
1

2
M2

Z cos 2β

)
δij, (2.26)

for the basis given by (νeL, νµL, ντL) . The diagonalization protocol for neutrino mass

matrix is similar to that of slepton mass matrix.

Coming to the case of charginos, we follow the nomenclature of Ref [14] for later conve-

nience. The mass matrix is given by

− Lm =
(
W̃−
R H̃−2R

)( M2

√
2mW cos β√

2mW sin β µ

)(
W̃−
L

H̃−1L

)
+ h.c.. (2.27)
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This matrix MC is diagonalized by a 2× 2 real orthogonal matrices OL and OR as

ORMCO
T
L =MD

C . (2.28)

If we write (
χ̃−1L
χ̃−2L

)
= OL

(
W̃−
L

H̃−1L

)
,

(
χ̃−1R
χ̃−2R

)
= OR

(
W̃−
R

H̃−2R

)
. (2.29)

then the chargino mass eigenstates are given by

χ̃−i = χ̃−iL + χ̃−iR (i = 1, 2) (2.30)

One should note that if M2, µ ≈ Λ�MW , the diagonal elements dominate the chargino

mass matrix and the diagonalizing matrix is close to the identity matrix. From Eq. 2.29,

one could see that under such condition the left and right weyl components of a chargino

is mostly a wino or a higgsino and there is relatively less mixing. Their masses can be

approximated by M2 and µ and corrections to this enters at ∼ O(M2
Z/Λ

2). This feature

will be used later in our analysis.

From Eq. 2.30, we see how the four-component Dirac chargino can be written in terms

of left chiral and right chiral weyl spinors.

Finally we come to neutralinos. The mass matrix of the neutralinos is given by

− Lm =
1

2

(
B̃LW̃

0
LH̃

0
1LH̃

0
2L

)
MN


B̃L

W̃ 0
L

H̃0
1L

H̃0
2L

+ h.c., (2.31)

where

MN =


M1 0 −mZ sin θW cos β mZ sin θW sin β

0 M2 mZ cos θW cos β −mZ cos θW sin β

−mZ sin θW cos β mZ cos θW cos β 0 −µ
mZ sin θW sin β −mZ cos θW sin β −µ 0

 .

(2.32)

which is diagonalized by a real orthogonal matrix ON ,

ONMNO
T
N =MD

N (2.33)

The mass eigenstates are given by

χ̃0
iL = (ON)ijX̃

0
jL (i, j = 1, · · · , 4) (2.34)
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where

X̃0
iL = (B̃L, W̃

0
L, H̃

0
1L, H̃

0
2L). (2.35)

We have thus Majorana spinors

χ̃0
i = χ̃0

iL + χ̃0
iR, (i = 1, · · · , 4) (2.36)

with mass Mχ̃0
A

.
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Chapter 3

Constraints on Slepton Mass Matrix

As mentioned earlier, the lepton flavour is not conserved in general in supersymmetry

owing to the off diagonal elements of the slepton mass matrix.This supersymmetric feature

would contribute to the rare deacy of leptons via the following one loop diagrams

(a) Chargino contribution
(b) Neutralino contribution

Figure 3.1: One loop contribution to rare decay li → ljγ a) via chargino, b) via neutralino
in the internal leg

Since the li → ljγ decay is highly suppressed in nature, any acceptable model of SUSY

should comply with the constraints imposed by extremely stringent upper limits on rare

decays put by experiments. Models like minimal Supergravity (mSUGRA), gauge me-

diated symmetry breaking (GMSB) and Anomaly mediated symmetry breaking(AMSB)

may break SUSY in flavour blind fashion at high scales [6]. They predict a universal

common value for slepton mass matrix which even after evolving to weak scale does not

give rise to off-diagonal elements.

A problem of interest is to quantify the maximum amount of misalignment of slepton

mass matrix allowed by the current data. To that end one uses the method of mass

insertion to do the calculation. This involves calculating the effect of the off-diagonal

entries in the mass matrix which is diagonal to begin with in the mass eigenstate basis

of slepton. Consider once again the slepton mass matrix.

M2 =

(
m2
L m2T

LR

m2
LR m2

R

)
(3.1)
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where m2
L and m2

R are 3× 3 hermitian matrices and m2
LR is a 3× 3 matrix. In the mass

insertion approximation, these matrices are diagonal to begin with and a non-diagonal

term ∆AB
ij = δABij mA

i m
B
j is inserted to introduce misalignment. Here the index i, j runs

over the generation while A,B = L,R refer to the left and right handed sleptons. To

maintain the hermiticity of the matrix of the mass matrix, we assume ∆AB
ij = ∆AB

ji . For

example, a mass insertion ∆LL
12 would appear in the m2

L matrix as

m2
L =

 mL
2
11 ∆LL

12 0

∆LL
12 mL

2
22 0

0 0 mL
2
33

 (3.2)

which corresponds to a Feynman propagator shown in (3.2)

Figure 3.2: Feynman propagator depicting mass insertion

A compelete specification of the composition of neutralino and chargino would require

specifics of a model. In order to keep the analysis model independent in the approximate

calculation, the off-diagonal entries appearing in the neutralino and chargino mass ma-

trices are assumed to be much smaller than the diagonal elements M1,M2 and µ. In

other words, M1,M2 and µ � MW . Under this assumption, we have Feynman diagram

like Fig. 3.3

Figure 3.3: Chirality flip in B̃0 and˜̃W− for pure Bino and Wino eigenstates.

3.1 MIA Calculation

3.1.1 Amplitude for li → ljγ

The amplitude for the process li → ljγ take the form

17



T = mliε
λuj(p− q)[iqνσλν(ALPL + ARPR)]ui(p)

with q being the photon momentumin in the limit q → 0. ελ is the photon polarization

vector, while p is the momentum of the incoming lepton.The decay width is given by

Γ(li → ljγ) =
48π3α

G2
f

(A2
L + A2

R) (3.3)

where Gf is the Fermi constant. In the mass insertion approximation, the left and right

amplitudes are given by [15] [16]

(AijL ) =
α2

4π
∆LL
ij

[
f1n(aL2) + f1c(aL2)

m4
L̃

+
µM2tanβ

(M2
2 − µ2)

(f2n(aL2, bL) + f2c(aL2, bL))

m4
L̃

]

+
α1

4π
∆LL
ij

[
f1n(aL)

m4
L̃

+ µM1tanβ

(
−f2n(aL, bL)

m4
L̃
(M2

1 − µ2)
+

2f2n(aL)

m4
L̃
(m2

R̃
−m2

L̃
)

)]

+
α1

4π
∆LL
ij

[
µM1tanβ

(m2
R̃
−m2

L̃
)2

(
f3n(aR)

m2
R̃

− f3n(aL)

m2
L̃

)]

+
α1

4π
∆LR
ij

[
1

(m2
L̃
−m2

R̃
)

(
M1

mlj

)(
f3n(aR)

m2
R̃

− f3n(aL)

m2
L̃

)]
(3.4)

and

(AijR) =
α1

4π
∆RR
ij

[
4f1n(aR)

m4
R̃

+ µM1tanβ

(
2f2n(aR, bR)

m4
R̃

(M2
1 − µ2)

+
2f2n(aR)

m4
R̃

(m2
L̃
−m2

R̃
)

)]

+
α1

4π
∆RR
ij

[
µM1tanβ

(m2
L̃
−m2

R̃
)2

(
f3n(aL)

m2
L̃

− f3n(aR)

m2
R̃

)]

+
α1

4π
∆RL
ij

[
1

(m2
R̃
−m2

L̃
)

(
M1

mlj

)(
f3n(aL)

m2
L̃

− f3n(aR)

m2
R̃

)]
, (3.5)

where α1 = (5/3)(α/ cos2 θW ), α2 = (α/ sin2 θW ), aL2 = M2
2/m

2
L̃
, aL = M2

1/m
2
L̃
, aR =

M2
1/m

2
R̃

, bL = µ2/m2
L̃
, bR = µ2/m2

R̃
, ∆AB

ij = δABij mÃmB̃ and mL̃ and mR̃ are the average

slepton masses for the left and right sleptons, respectively. The M1 and M2 are the

gaugino mass parameters. The fin’s and fic’s are loop functions from neutralinos and

charginos contributions, respectively, given by:

f1n(x) =
−17x3 + 9x2 + 9x− 1 + 6x2(x+ 3) lnx

24(1− x)5
,

f2n(x) =
−5x2 + 4x+ 1 + 2x(x+ 2) lnx

4(1− x)4
,
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f3n(x) =
1 + 2x lnx− x2

2(1− x)3
,

f1c(x) =
−3 − 9x2 + 9x+ 1 + 6x(x+ 1) lnx

6(1− x)5
,

f2c(x) =
−x2 − 4x+ 5 + 2(2x+ 1) lnx

2(1− x)4
,

f2n(x, y) = f2n(x)− f2n(y) ,

f2c(x, y) = f2c(x)− f2c(y) . (3.6)

3.1.2 Explanation of the terms and cancellation in amplitude

Of all the possible diagrams which contribute to the amplitude, two contributions are of

great significance which result in cancellation in amplitude due to destructive interference.

In the basis where the lepton masses and the gauge couplings are flavour diagonal, the

lagrangian is given by [15]

−L = l̃†Liχ̃
0
A

(
N
A(i)
LR PR +N

A(i)
LL PL

)
li + l̃†Riχ̃

0
A

(
N
A(i)
RR PR +N

A(i)
RL PL )li

+ ν̃†i χ̃
−
A(C

A(i)
LR PR + C

A(i)
LL PL)li + h.c., i = e, µ, τ (3.7)

where the coefficient C
A(i)
B,C and N

A(i)
B,C (with B,C = (L,R)) are:

C
A(i)
LL = g2(OR)A1

C
A(i)
LR = − g1√

2

mli

MW cβ
(OL)A2

N
A(i)
LL = − g2√

2
(ON)A2 −

g1√
2

(ON)A1

N
A(i)
RR =

√
2g1(ON)A1

N
A(i)
LR = N

A(i)
RL =

g1√
2

mli

MW cβ
(ON)A3, (3.8)

where OL,R and ON diagonalize the chargino and neutralino mass matrices, respectively.

Consider figure 3.4a having a B̃
0

exchange with a flavor violating and a chirality

flipping term in the internal slepton line. In this case, both the incoming and outgoing

chiral leptons couple with a slepton of same chirality at the vertices. As a result the

amplitude is proportional to NRR and NLL. The terms NRR and NLL have opposite sign

with respect to each other as can be seen in Eq. (3.8). In addition, the amplitude is

proportional to the M1 (B̃
0

mass), µtanβ (the L-R mass slepton mass term) apart from

the mass insertion term ∆AB
ij . Since its proportional to tanβ the contribution is enhanced

with increase in the magnitude of β. On the other hand, a B̃
0
-H̃

0
exchange (3.4b) with

chirality flipped at one of the vertex through yukawa term, has a left lepton coupling to a

right slepton and higgsino at one vertex while a right slepton-right lepton-bino coupling
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at another. The term thus is proportonal to NRL and NRR which have the same sign

(3.25). Moreover this contribution too is tanβ enhanced, where the tanβ comes from

the presence of yukawa coupling (∝ 1/cos(β)) and B̃
0
-H̃

0
mixing which is proportion to

sin(β). In addition the numerator has M1 ( B̃
0

mass), µ (H̃
0

mass) and of course ∆AB
ij .

As we can see we have two contributions of same order coming with opposite signs. This

results in the cancellation in the amplitude contributing to Br(lj → li) and the constraints

are expected to be relaxed in certain regions of parameter space. These cancellations were

shown by Hisano et al [17]

(a) Pure B̃
0

exchange (b) B̃
0
-H̃

0
exchange

Figure 3.4: Diagrams contributing to cancellation of amplitude[17].

3.1.3 Parameterization and Results

Under MIA, we wrote a Python program to plot the Br(li → ljγ) versus δ for 1-2 and

2-3 generation for 3 model points PS1, PS2, PS3 which are defined as follows

PS1 : M1 = 300, M2 = 600, mL = 500, mR = 450, µ = 350, tanβ = 20

PS2 : M1 = 250, M2 = 500, mL = 475, mR = 525, µ = 375, tanβ = 20

PS3 : M1 = 250, M2 = 500, mL = 625, mR = 650, µ = 600, tanβ = 20
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Figure 3.5: Branching fraction versus δ for parameter set PS1. The black line corresponds
to the 90% branching fraction limit coming from the rare decay experiments 1.1

Figure 3.6: Branching fraction versus δ for parameter set PS2. The black line corresponds
to the 90% branching fraction limit coming from the rare decay experiments 1.1

Figure 3.7: Branching fraction versus δ for parameter set PS3. The black line corresponds
to the 90% branching fraction limit coming from the rare decay experiments 1.1
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In the above calculation, we use the parameter sets defined on the pervious page and

randomly vary δ over a range (-1.0,1.0) to get the branching fraction using Eq. 3.3 -

3.5. From the figure we see that, as —δ— increases in magnitude, the branching fraction

for the rare decay increases uniformly. In 1-2 generation, where the bound on rare decay

µ→ eγ is ofO(10−13), the branching ratios for non-negligible values of δ are usually above

the experimental bound indicated by the black line in the figure. For 2-3 generation, the

bounds are not that strong (O(10−8)) and therefore even a relatively larger δ of O(10−1)

gives branching fraction which are not excluded by experiments. Moreover, we can see

that the cancellation in the RR sector is quite apparent. For all the three parameter sets

(PS1, PS2 and PS3), the branching fraction for a given value of δ is least for the RR

sector. Further the stronger bounds in 1-2 generation means that even with cancellation

in the RR sector, the δ’s permissable by rare decay constraints are vanishingly small.

Only in the 2-3 sector, where the rare decay bounds are not so strong, we can have a

significant value of δ within the rare decay limit for certain region of parameter space. In

the above diagram, maximum allowed value of δ23 increases from PS1 (O(10−2)) to PS2

(O(10−1)) and from PS2 to PS3 (O(1)).

These initial results seemed positive and therefore we moved on to doing full cal-

culation under mass-insertion. For this the model needed to be specified beforehand.

We worked in phenomenological minimal supersymmetric model (pMSSM) with flavour

violation incorporated through mass insertion ∆AB
ij

3.2 Full Calculation:

The mass insertion approximation is accurate only in the limit of small δ and small mass

splittings of mass eigenvalue. [15]. Therefore we also perform the full calculation. The

mass insertion of ∆AB
ij in the diagonal slepton mass matrix makes it non-diagonal. As a

result we need a non-trivial unitary matrix to dioganlize the mass matrix. This unitary

matrix which was digonal for the approximate calculation is no more digonal and has

non-trivial entries which can couple slepton and lepton of two different flavours at a

slepton-lepton-neutralino vertex. Also as a result of the mass insertion ∆AB
ij , the mass

eigenvalues of the slepton l̃iR and and l̃jR become corelated through the insertion. The

mass matrix looks like

M2 =



m2
ẽL

0 0 me
LR 0 0

0 m2
µ̃L

0 0 mµ
LR 0

0 0 m2
τ̃L

0 0 mτ
LR

me
LR 0 0 m2

ẽR
0 0

0 mµ
LR 0 0 m2

µR
∆RR

23

0 0 mτ
LR 0 ∆RR

23 mτ2R


(3.9)
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where mi
LR = Ai −mliµ tan β and i = e, µ, τ

On solving the following matrix equation

UM2UT =M2
D (3.10)

we get diagonalizing matrix U which is used for full calculation.

3.2.1 Amplitude for li → ljγ:

The neutralino contributions are given by [14] [18]

A(n)L =
1

32π2

1

m2
l̃X

[
NL
iAXN

L∗
jAX

1− 6xAX + 3x2
AX + 2x3

AX − 6x2
AX log xAX

6 (1− xAX)4

+ NR
iAXN

R∗
jAX

mj

mi

1− 6xAX + 3x2
AX + 2x3

AX − 6x2
AX log xAX

6 (1− xAX)4

+ NL
iAXN

R∗
jAX

mχ̃0
A

mi

1− x2
AX + 2xAX log xAX

(1− xAX)3

]
, (3.11)

A(n)R = A(n)L
∣∣
L↔R , (3.12)

where xAX = m2
χ̃0
A
/m2

l̃X
and the indices are A = 1, .., 4, X = 1, .., 6.

The chargino contributions are given by

A(c)L = − 1

32π2

1

m2
ν̃X

[
CL
iAXC

L∗
jAX

2 + 3xAX − 6x2
AX + x3

AX + 6xAX log xAX

6 (1− xAX)4

+ CR
iAXC

R∗
jAX

mj

mi

2 + 3xAX − 6x2
AX + x3

AX + 6xAX log xAX

6 (1− xAX)4

+ CL
iAXC

R∗
jAX

mχ̃−A

mi

−3 + 4xAX − x2
AX − 2 log xAX

(1− xAX)3

]
, (3.13)

A(c)R = A(c)L
∣∣
L↔R , (3.14)

where in this case xAX = m2
χ̃−A
/m2

ν̃X
and the indices are A = 1, 2, X = 1, 2, 3. Notice that

in both neutralino and chargino contributions a summation over the indices A and X is

understood.

where the coefficients are

C
R(l)
iAX = C

A(i)
LL Uν

X,i,

C
L(l)
iAX = C

A(i)
LR U ν

X,i,

N
R(l)
iAX = N

A(i)
LL U l

X,i +N
A(i)
LR U l

X,i+3,

N
L(l)
iAX = N

A(i)
RL U l

x,i +N
A(i)
RR U l

X,i+3 (3.15)

where the coefficient C
A(i)
B,C and N

A(i)
B,C are defined in 3.8.
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3.2.2 Parameterization and Results:

MSSM in general has 105 supersymmetric and 19 standard model parameters. However

experiments have put constraints on the parameter space especially on the CP violating

phases. The CP violating phases result in large elctric dipole moments contradicting the

experimental results [19]. While it is possible to find regions of parameter space where

cancellations among different amplitudes allow large CP violating phases, inspite of the

stringent EDM constraints [20], since such a region is by necessity somewhat restricted, we

have decided to work in the situation where CPV phases are absent .Hence in our analysis

we assume no CP violating phases and take our parameters to be real which reduces the

number of independent parameters significantly. We take into account the exlusion limits

set by LEP and LHC [21]on the sparticle masses and also the discovery potential of the

next LHC run. With these in mind we wrote a Python program to perform a random

scan over the parameter range: where δ is related to off-diagonal element ∆ as

∆ij
AB = δijABm

i
Am

j
B (3.16)

with A,B = L,R and i, j are generation indices.

pMSSM parameters
mẽL 200 - 500 mµ̃L 200 - 500
mτ̃L 200 - 500 mẽR 200 - 500
mµ̃R 200 - 500 mτ̃R 200 - 500
Aτ 400 M1 40-600
M2 103-600 µ 100-1000

tanβ 10-30 δ -1.0 - 1.0

Figure 3.8: Scatter plot for BR(µ → eγ) vs δLL12 . The horizontal black line indicates the
experimental upper bound at 90% confidence level as quoted in 1.1. The points falling
above the black line are exluded by experiments.
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Figure 3.9: Scatter plot for BR(µ→ eγ) vs δLR12 . The horizontal black line indicates the
experimental upper bound at 90% confidence level as quoted in 1.1. The points falling
above the black line are exluded by experiments.

Figure 3.10: Scatter plot for BR(µ→ eγ) vs δRR12 . The horizontal black line indicates the
experimental upper bound at 90% confidence level as quoted in 1.1. The points falling
above the black line are exluded by experiments.
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Figure 3.11: Scatter plot for BR(τ → eγ) vs δLL13 . The horizontal black line indicates the
experimental upper bound at 90% confidence level as quoted in 1.1. The points falling
above the black line are exluded by experiments.

Figure 3.12: Scatter plot for BR(τ → eγ) vs δLR13 . The horizontal black line indicates the
experimental upper bound at 90% confidence level as quoted in 1.1. The points falling
above the black line are exluded by experiments.
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Figure 3.13: Scatter plot for BR(τ → eγ) vs δRR13 . The horizontal black line indicates the
experimental upper bound at 90% confidence level as quoted in 1.1. The points falling
above the black line are exluded by experiments.

Figure 3.14: Scatter plot for BR(τ → µγ) vs δLL23 . The horizontal black line indicates the
experimental upper bound at 90% confidence level as quoted in 1.1. The points falling
above the black line are exluded by experiments.
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Figure 3.15: Scatter plot for BR(τ → µγ) vs δLR23 . The horizontal black line indicates the
experimental upper bound at 90% confidence level as quoted in 1.1. The points falling
above the black line are exluded by experiments.

Figure 3.16: Scatter plot for BR(τ → µγ) vs δRR23 . The horizontal black line indicates
the experimental upper bound at 90% confidence level as quoted in Table1.1. The points
falling above the black line are exluded by experiments.

From the above figures, we observe that the constraints on 1-2 generation are very
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strong as for a significant value of δ (where δij = ∆mimj), the braching ratio for rare

decay is usually more than the 90% CL upper bound as indicated by the black line in the

figure. However for 1-3 and 2-3 generations, substantially large values of mass insertion

parameters are allowed even with the rather stringent upper limits on rare decays and

values of δ upto 0.7-0.8 are possible. As far as chiral sectors are concerned, the mass

insertion in L-R sector is much more constrained than in the LL or the RR sector .

Although values of mass insertion parameter δ as large as 0.8 are allowed for both the

RR and the LL sector for the 1-2 and 2-3 generation case, the trend in the RR sector

is more pronounced than in the LL sector. The most robust least upper bound on δ

which is valid throughout the parameter space studied, irrespective of any cancellation,

are shown in the table below.

Bounds on δ
δLL12 1×10−5

δLR12 1.8×10−7

δRR12 4×10−5

δLL13 0.008
δLR13 0.0025
δRR13 0.03
δLL23 0.008
δLR23 0.0025
δRR23 0.04

Table 3.1: Least upper bounds on δ from rare decay of leptons for the parameter space
considered in our analysis.

3.3 The Inverse problem: A model independent ap-

proach

Consider the scenario where we know the slepton mass eigenvalues. We are interested in

solving the inverse problem for the left sector of 1-2 generation as it would be a model

independent procedure.

The slepton mass matrix with off-digonal element in the LL sector of 1-2 generation

looks like

M2 =



m2
ẽL

∆LL
12 0 me

LR 0 0

∆LL
12 m2

µ̃L
0 0 mµ

LR 0

0 0 m2
τ̃L

0 0 mτ
LR

me
LR 0 0 m2

ẽR
0 0

0 mµ
LR 0 0 m2

µR
0

0 0 mτ
LR 0 0 mτ2R


(3.17)

Since the L-R mixing in first and second generation is suppressed by small lepton mass,

we take a simplified picture with LR mixing in these generations set to 0. Since there is
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only one flavour violating term in the slepton mass matrix which couples the left sector

of first generation with the second generation, the third generation is decoupled from

from 1-2 generation. Notice that the LR term for third generation is a flavour conserving

term and mixes the stops together without affecting the selectron and smuons. Since the

LR term for the first and second generation is set to 0, the LL sector of 1-2 generation

is decoupled from the RR sector. In the diagonalizing matriz, we will have non-trivial

flavour violating off-diagonal elements in the firt row second column and second row first

column only. The other non-trivial off-diagonal element in would only mix the left-right

stops together and would not couple the third generation with remaining generations.

Thus our problem reduces to solving for top left 2 × 2 The reduced 2 × 2 satisfy the

relation

(
cos θ − sin θ

sin θ cos θ

)(
M2

1 ∆12
LL

∆12
LL M2

2

)(
cos θ sin θ

− sin θ cos θ

)
=

(
m2 0

0 m2 + ∆m2

)

or (
M2

1 ∆12
LL

∆12
LL M2

2

)
=

(
cos θ sin θ

− sin θ cos θ

)(
m2 0

0 m2 + ∆m2

)(
cos θ − sin θ

sin θ cos θ

)

which gives us (
M2

1 ∆12
LL

∆12
LL M2

2

)
=

(
m2 + ∆m2 sin2 θ ∆m2 sin θ cos θ

∆m2 sin θ cos θ m2 + ∆m2 cos2 θ

)

One should note that in the limit ∆m2 → 0, the off-diagonal terms vanish and the

diagonal terms become equal to the degenerate common mass m2. This means that

BR(lj → liγ) also vanishes.

Expanding and equating the off-diagonal term,

∆12
LL = δM1M2 = ∆m2 sin θ cos θ (3.21)

substituting for M1 and M2 in the above equation, we get

δ12
LL

√
m2 + ∆m2 sin2 θ

√
m2 + ∆m2 cos2 θ = ∆m2 sin θ cos θ (3.22)

30



δ12
LLm

2

√(
1 +

∆m2

m2
sin2 θ

)(
1 +

∆m2

m2
cos2 θ

)
= ∆m2 sin θ cos θ (3.23)

δ12
LLm

2

√
1 +

∆m2

m2
+

(
∆m2

m2

)2

sin2 θ cos2 θ = ∆m2 sin θ cos θ (3.24)

Taking term of O(1), we have the simple equation

δ12
LL =

∆m2 sin θ cos θ

m2
(3.25)

Thus the constraint on delta indirectly constrains the product ∆m2 sin θ cos θ
m2 . If δmax is the

maximum insertion allowed then the condition

|∆m2 sin θ cos θ|
m2

< δmax (3.26)

must hold. Similar results were obtained in [22] using a different approach.

Now, | sin θ cos θ| belongs to [0, 1
2
]. Therefore, θ is unconstrained if

1

2
<
δmaxm

2

∆m2
(3.27)

3.4 LFV branching ratio for neutralino

From the above formalism, the slepton eigenstates in mass eigenstate basis of lepton and

neutralino can be written as(
ẽL

µ̃L

)
=

(
cos θ sin θ

− sin θ cos θ

)(
ẽLm

µ̃Lm

)

Where ẽL and µ̃L are now mixture of the mass eigenstates eLm and µLm . The eLm

component in eL is changed by a factor cos θ while the µL now gets a component of εLm

proportional to sin θ. Similar mixing happens in case of µLm. As a result of this, we get

flavour violating decays of sleptons. The branching ratios are modified in the following

ways

Brv(χ
0
2 → ẽe) = cos2 θBrnv(χ

0
2 → ẽe)

Brv(χ
0
2 → µ̃µ) = cos2 θBrnv(χ

0
2 → µ̃µ) (3.29)

Brv(χ
0
2 → µ̃e) = sin2 θBrnv(χ

0
2 → ẽe)

Brv(χ
0
2 → ẽµ) = sin2 θBrnv(χ

0
2 → µ̃µ) (3.30)
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where Brv is the branching ratio in case of flavour violation while Brnv is the branching

ratio in case of no flavour violation The sleptons then decay to a lepton and the light-

est neutralino through another lepton-slepton-neutralino vertex where the same analysis

holds. A flavour violating eµχ̃0
1 results if there is LFV at one of the two vertex with

flavour conservation at the other. The flavour violating branching fraction is given by

Br(χ̃0
2 → eµχ̃0

1) = sin2 θ cos2 θBr(χ̃0
2 → eeχ̃0

1) + sin2 θ cos2 θBr(χ̃0
2 → µµχ̃0

1) (3.31)

where Br(χ̃0
2 → eeχ̃0

1) and Br(χ̃0
2 → µµχ̃0

1) is the branching ratio of χ̃0
2 in the case where

there is no mixing at the interaction vertex.
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Chapter 4

Signals of SLFV

Lepton flavour violation can be exhibited in the following direct decay channels

˜̀
j → `kχ̃

0
i

˜̀
j → νkχ̃

±
i

ν̃ j → `kχ̃
±
i

ν̃ j → νkχ̃
0
i

However, since the neutrinos leave the detector undetected, the decay into a neutrino

is not an experimentally useful process to observe LFV. This leaves us with the slep-

ton/sneutrino decay into charged lepton for investigating LFV.

pp→ ¯̃
`
i
˜̀
i
→ `

k
`
j
χ̃0

1χ̃
0
1

The Drell-Yan process can give a pair of sleptons/sneutrinos of same flavour which can

decay to two opposite sign leptons of different flavour [22] . The background to the pro-

cess comes from t t, W+ W− production and decay and it is usually difficult to extract

the signal from the background. A relatively low cross-section for the SUSY Drell-Yan

does not help either.

χ̃0
2→ `

i
˜̀
j
→ `

i
`
k
χ̃0

1

A highly studied channel for lepton flavour violation is the decay of neutralino (mostly

χ̃0
2) to a lepton and a slepton with subsequent decay of the slepton to a lepton of different

flavour along with χ̃0
1. The channel is kinematically open only if χ̃0

2 is heavier than slepton

[23, 24].

χ̃0
2 can also be produced in the decay of gluino and squarks [22]. Since the gluino/squarks

are produced via strong interaction, their production cross-section can be significantly
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Figure 4.1: Direct production cross-section for channels involving a wino like χ̃0
2 with

mχ̃0
2

= mχ̃1
. Particle spectrum was generated using SUSEFLAV [25] and cross-section is

calculated using Prospino2.1 [26] at an LHC energy of 14 TeV.

greater than any direct electrowino production channel and for heavier electrowino, the

σ× BR for χ̃0
2 production via squarks is usually better than the direct production mode.

There is another channel which can give LFV signature:

χ̃0
2χ̃

0
2→ l±i l

±
i l
∓
j l
∓
j (i 6= j)

The channel has a very distict LFV signal comprising of a pair of same sign same flavour

leptons. Since it requires flavour violation in the decays of both the neutralinos, the

probability of this final state is reduced significantly (∝ (BR(l̃i → lj)
2). Moreover, the

cross-section for χ̃0
2 χ̃

0
2 pair-production is rather small compared to other electroweakino

production channels as can be seen from Fig. ( 4.1). Despite that, the fact that l±i l
±
i l
∓
j l
∓
j

signal has almost no direct SM background, reduces the total background to the signal

appreciably. Clearly there is a trade-off between diminished signal and reduced back-

ground and makes it an interesting channel to investigate for the case of LHC running at

14 TeV and at an integrated luminosity of 3000 fb−1.

4.1 Production Cross section

To study the signals of Lepton flavour violation in neutralino decay at the LHC, one needs

significant LFV branching fraction. As we have seen, the flavour violating neutralino

decay into electron and muon can be parameterized in terms of a rotating angle θ, which,

along with the slepton mass difference, is constrained by the corresponding rare decay

of muon. We also saw that if the slepton masses are suffieciently degenrate, then the
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Figure 4.2: Production cross-section for strongly interacting squarks and gluino as a
function of their mass calculated using Prospino2.1 and SUSY-HIT at an LHC energy of
14 TeV [27]. In the case of squark pair poduction, gluino mass was set at 2.5 TeV while
for gluino pair prosuction, squark masses were taken to be around 1 TeV.

constraint on the angle theta is significantly reduced.

In our analysis, we focus on the 1-2 generation where the final state LFV signal would

be e±e±µ∓µ∓. Similar signal for the 1-3 and 2-3 lepton generation would be marred with

the hadronic and leptonic decays of τ which will make extracting the signals difficult and

flooded with backgrounds. We carry out the steps assuming flavour mixing angle to be

θ = π
6
. From equation 3.25, for the upper bound on δ12

LL of ∼ O(10−5) and a slepton mass

of around 500 GeV,

∆m2 ≈ 5.77 (GeV )2 (4.1)

In fact, a maximal mixing of θ = π
4

can be obtained for ∆m2 ≈ 5 (GeV )2 We take the

common slepton mass as 500 GeV. The SUSY spectrum for our model point is generated

in pMSSM using SUSY-HIT. The remaining inputs are as follows:
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pMSSM parameters
M1 425 M2 550
M3 2500 µ 800

tanβ 10 MApole
1000

At 0 Mq1L 1000
Mq2L 1000 Mq3L 800
MuR 1000 McR 1000
MtR 800 MdR 1000
MsR 1000 MbR 800

Table 4.1: pMSSM parameters for LFV analysis

with all the other tri-linear coefficient set to 0. To run SUSY-HIT, the intial input for

slepton soft masses were taken as 500 GeV. The degeneracy was specified in the output

SLHA file. The spectrum generated is then verified for exclusion using CheckMATE

against ATLAS results from ATLAS-CONF-2013-024 [28] (Stop pair production, ATLAS-

CONF-2013-047 [29] (inclusive squark pair production), ATLAS-CONF-2013-035 [30]

(chargino-neutralino prouction with 3 lepton in final state). These ATLAS analysis were

chosen because they have excluded masses which come closest to the spectrum for our

model point. From the analysis, we find that the model is not excluded by any of the 3

ATLAS analyses. In fact the minimum β value from among all the signal regions of a

single ATLAS analysis were 0.3708 (ATLAS-CONF-2013-047), 0.9448 (ATLAS-CONF-

2013-024) and 0.96618 (ATLAS-CONF-2013-035). Since a β value of less than 0.05 implies

CLs exclusion at 95 % , the above values, despite being based on LO cross-section, are

far from exclusion limit. In short, our model point is not excluded by ATLAS searches

and we proceed with it to the next step.

4.2 Number of signal events

For our model point, the following LO cross-sections are obtained using MadGRAPH and

SUSY-HIT at 14TeV. The input files required to reproduce these results can be accessed

at [31]

Process σ (fb)
pp → q̃q̃ 267.8
pp → q̃ ¯̃q 612.1
pp → q̃q̃ → χ0

2χ
0
2qq 11.79

pp → q̃ ¯̃q → χ0
2χ

0
2qq 55.66

Now, the relevant χ0
2 branching ratios are

Br(χ̃0
2 → e+e−χ̃0

1) = 0.1470
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Figure 4.3: Number of signal events as function of θ in radian for LHC running at
√
s =

14 TeV.

Br(χ̃0
2 → µ+µ−χ̃0

1) = 0.1470 (4.2)

which under LFV mixing gives us

Br(χ̃0
2 → eµχ̃0

1) = 0.0551 (4.3)

and so aur signal rate is given by

χ0
2χ

0
2 → e+e+µ−µ− + /ET = σχ0

2χ
0
2
× 0.0551× 0.0551× 0.5 (4.4)

4.3 Background

The background to the signal is extremely small and comes mainly from

• ZZ, tt̄Z decays involving τ+l−j τ
+l−j with both the τ then decaying to l−i where

lk = e, µ and i 6= j

• Processes with 2 or 3 leptons and 2 or 1 fake lepton coming from misidentifcation.

The next step would be to analyze the backgound quantitively. Using that one could

calculate whether the model point gives a 5σ signal for LFV at the LHC. Further one

could do similar analysis for different model points of parameter space and generalize the

results for LHC searches.
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Chapter 5

Conclusion

In this work, we have studied the implication of constraints coming from lepton flavour

violating rare decays (li → ljγ) on the slepton mass matrix. We have obtained bounds on

the off-diagonal elements of slepton mass matrix for the 1-2, 1-3 and 2-3 sector. We found

that the off-diagonal elements of 1-2 generation are exteremely constrained ∼ O(10−5)

by the experimental limit on Br(µ→ eγ). The constraints on 1-3 and 2-3 generation are

relatively much smaller ∼ O(10−3). We also found that for some parameter points there

can be cancellations in amplitude for (li → ljγ) due to which an off-diagonal entry as

large as ∼ O(10−1) can also be possible (3.1)

The limits on rare decay constrains the off-diagonal elements of slepton mass matrix,

which in turn constrains the product of slepton mass splitting and the flavour mixing

magnitude. This implies that for sufficiently small mass splittings we can have significant

flavour mixing and vice versa. In particular we demanded for the 1-2 generation, a

significant flavour mixing angle θ of π
6

radian, which is possible for a mass insertion

parameter δ, of ∼ O(10−5) if the slepton mass squared difference is of the order ∼
O(1). With this flavour mixing, we calculated the LFV braching ratio for neutralino and

investigated a channel where 2 neutralinos simultaneously undergo LFV decay producing

a distinct e±e±µ∓µ∓ signature which will have a very small background at the LHC. We

defined a model in Madgraph with flavour violating interactions and caculated the signal

rates for a model point in pMSSM which is not excluded by ATLAS searches.For our

particular choice of model point given in Table 4.1, we got more than 500 signal events

for a near maximal mixing. In the future, we hope to investigate other regions of the

MSSM parameter space for the LFV signal to generalize our results and findings for the

LHC phenomenology.

The seacrh for supersymmetric lepton flavour violation in itself is a very interesting and

motivated problem in high energy physics. Additionaly, SLFV can give rise to another

interesting phenomenon called flavored co-annihilation [32] which addresses the problem

of excesses in neutralino relic density if χ0
1 is a dark matter component. In [32], mSUGRA

and NUHM models have been studied in details. It would be interesting to revisit and
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study the conditions on parameter space and flavor mixing, which could give a neutralino

relic density compatible with the experimental limits is obtained.
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Appendix A

Searches at The LHC

The Large Hadron Collider (LHC) at CERN has persistantly looked for signals of su-

persymmetric particles in their searches. As of now, no direct or indirect evidence of

supersymmetry has been found. The experiments have served to set exclusion limits on

the parameter space of the supersymmetric models. Owing to the great number of pa-

rameters in SUSY, the limits are often set in a framework called Simplified Models where

specific relation between the participating particles is assumed.

A.1 Simplified Model

A simplified model is defined in terms of particle masses and the related cross sections and

branching ratio [33, 34]. For example, the direct production of χ̃±1 χ̃
∓
1 with its eventual

decay to dilepton along with large missing ET ( /E) is dependent on the mass of χ̃±1 , mass

of χ̃0
1 which appears as /E and the pair production cross section (σpair). In the simplified

approach, the squarks and gluinos are decoupled from the model. For a wino-like χ̃±1 ,

the cross-section for the process becomes a function of χ̃±1 mass. The one-step cascade

decay brings the mass of intermediate sleptons into consideration, the choice of which

alters the kinematics of the analysis. To reduce the dimensionality, slepton mass could

be parametrized in terms of chargino and neutralino mass. For instance, in their analysis

of this particular channel, CMS[35] and ATLAS[36] took the slepton masses as

m˜̀ = mχ̃±1
+ x(mχ̃0

1
−mχ̃±1

) (A.1)

where 0 < x < 1 and assuming 100% branching fraction. The common choices for x were

0.05, 0.5 and 0.95 .
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A.2 Confidence Level:

The σ × BR (for a channel like chargino pair production) is a function of mass and

composition/mixing of participating particle [37]. For a given composition, the cross-

section usually decreases with mass. The expected number of events for a given process

is given by

N = σ × Luminosity × Acceptance× Efficiency (A.2)

where σ comes from theory while Luminosity, Acceptance and Efficiency depends on the

experimental setup.

Since no events in access of that given by SM has been observed at LHC, the null

results are used to set upper limits on allowed particle masses. Limits calculated with

the CLs method [38, 39] are based on the sampling distribution of the statistic

Q =
M∏
i=1

exp[(−si + bi)](si + bi)
ni

exp(−bi)bni
i

(A.3)

or its logarithm

q = lnQ (A.4)

under the signal plus background and background only hypotheses, S and B, respectively.

The index i runs over channels, where si = Lσ where L is acceptance times efficiency

times integrated luminosity, bi is the expectation of backgraound and ni is the number

of events observed in the ith channel Given the distributions p(Q|S) and p(Q|B) one

calculates a CLs limit, at level β , by solving the following

β =

∑
Q<Q0

p(Q|S)∑
Q<Q0

p(Q|B)
(A.5)

for the upper limit on the cross-section σ, where q0 is the observed value of the statistic

q. A a cross-section is exclded at 95% if the value of β is less than 0.05

A.3 Testing Model points against data:

The fact that these exclusion limits are obtained under simplyfying assumptions means

that the low energy scale has not been excluded exhaustively. Both CMS and ATLAS have

performed numerous analyses using different search channels. In order to test whether a

model point1 is excluded or not by a given analysis, one needs to know

• The expected number of signal

1By model point we mean a specific point in the multi-dimensional parameter space of any of the
supersymmetric model like mSUGRA, pMSSM etc.
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Figure A.1: Exclusion limit for Electroweak chargino and neutralino production by AT-
LAS

• The expected signal background

• The actual number of signature events observed

Where the events are defined in terms of final state particles. For instance in [36], the

event is defined to comprise of 2 electrons and no jets with high /E and is sensitive to direct

slepton pair production and chargino pair production with eventual decay to charged

leptons via slepton or W. To improve the signal to background ratio, signal regions are

defined using selection cuts on particle momentum(pT ), /E and dilepton invariant mass.

In other words, the number of signature events produced and the number taken into

account for analysis after imposing selection cuts is different. This reflects in a reduced

value of acceptance.

The first step in testing a model point is to obtain the acceptance of the signal

region after applying event selection cuts. CheckMATE [40] is a publicly available HEP

package which does this job efficiently. The program takes simulated event from event

generators like Madgraph [41] and PYTHIA [42] and performs detector simulation using

Delphes [43, 44, 45]. The output from Delphes is taken and event selection cuts from

the particular analysis of interest are applied. After the selection cuts are applied, the
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accepatance changes and is given by

Acceptance =
Number of Events before selection cut

Number of Events after selection cut
(A.6)

One must note that this acceptance is not the one dependant on the experimental setup

at LHC. This arises because we impose selection requirements on the events with the

intention of reducing background. Using this acceptance, the number of expected signal

events is normalized

NNormalized = σ × Luminosity × Acceptance (A.7)

Once we have the normalized signal events and the data from LHC analysis, the CLs

prescription can be used to find whether a model point is exluded or allowed. CheckMATE

does the acceptance calculation and using the prestored data from various ATLAS and

CMS analyses, performs the CLs caculation as well. The following is a result reproduced

using CheckMATE.

Figure A.2: Exclusion limit for mχ̃+
1

in chargino pair production channel with decay to
slepton.
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A.4 Program for Full BR(li → ljγ) Calculation

The code is based on formula given in [17, 18]

import numpy as np

import random

import math

generation = int(raw_input("Enter generation as 12 or 13 or 23"))

LeftRight = raw_input("Enter LL or LR or RR")

length = int(raw_input("Enter number of scan iteration")

cos_square_theta = 0.76 # cosine squre of weinberg angle

sin_square_theta = 0.24 # sine square of weinberg angle

tan_theta_weinberg = np.sqrt(0.24/0.76)

MZ = 91.1 # mass of Z boson

MW = 80.0 # mass of W boson

mass_tau = 1.777

mass_muon = 0.1056

mass_electron = 0.51/1000

mass = [mass_electron,mass_muon,mass_tau]

Gf= 1.1665651183618914e-05 # fermi constant

alpha=1/137.0

def func1(a):

return (( 1 - 6*a + 3*a*a + 2*a*a*a -6*a*a*np.log(a))/(6*(1-a)**4))

def func2(a):

return ((1 - a*a + 2*a*np.log(a))/(1-a)**3)

def func3(a):

return ((2 + 3*a -6*a*a + a*a*a + 6*a*np.log(a))/(6*(1 - a)**4))

def func4(a):

return ((-3 + 4*a - a*a - 2*np.log(a))/(1 - a)**3)

br=[]

Delta=[]

M1_array=[]

M2_array=[]

mu_array=[]

selectron_mass_left_array=[]
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smuon_mass_left_array=[]

stau_mass_left_array=[]

selectron_mass_right_array=[]

smuon_mass_right_array=[]

stau_mass_right_array=[]

file1=open(’data_scan_LL_23.out’,’a’)

for loop in range(10000):

selectron_mass_left = float(random.randint(200,500))

smuon_mass_left = float(random.randint(200,500))

stau_mass_left = float(random.randint(200,500))

selectron_mass_right = float(random.randint(200,500))

smuon_mass_right = float(random.randint(200,500))

stau_mass_right = float(random.randint(200,500))

A_electron = 0.0

A_muon = 0.0

A_tau = 000.0

M1 = float(random.randint(40,600))

M2 = float(random.randint(103,600))

mu = float(random.randint(100,1000))

delta = ((delta_avg + ( 1 - 2*random.random())*delta_diff))

tanb = float(random.randint(10,30))

beta = math.atan(tanb) # beta in radian

add_left_slepton = (-0.5 + sin_square_theta)*MZ*MZ*np.cos(2*beta)

add_right_slepton = -(sin_square_theta)*MZ*MZ*np.cos(2*beta)

add_sneutrino = 0.5*MZ*MZ*np.cos(2*beta)

i = (generation/10) - 1

j = (generation%10) - 1

aa = 0.0

bb = 0.0

cc = 0.0

dd = 0.0

ee = 0.0

ff = 0.0

gg = 0.0

hh = 0.0

ii = 0.0

limit = 0.0

if (LeftRight == "LL"):
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if generation == 12:

aa = delta*selectron_mass_left*smuon_mass_left

limit = 5.7E-13

elif generation == 13:

bb = delta*selectron_mass_left*stau_mass_left

limit = 3.3E-08

elif generation == 23:

ee = delta*smuon_mass_left*stau_mass_left

limit = 4.4E-08

elif LeftRight == "LR" or LeftRight =="RL":

if generation == 12:

cc = delta*selectron_mass_left*smuon_mass_right

limit = 5.7E-13

elif generation == 13:

dd = delta*selectron_mass_left*stau_mass_right

limit = 3.3E-08

elif generation == 23:

ff = delta*smuon_mass_left*stau_mass_right

limit = 4.4E-08

elif LeftRight == "RR":

if generation == 12:

gg = delta*selectron_mass_right*smuon_mass_right

limit = 5.7E-13

elif generation == 13:

limit = 3.3E-08
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hh = delta*selectron_mass_right*stau_mass_right

elif generation == 23:

ii = delta*smuon_mass_right*stau_mass_right

limit = 4.4E-08

m_selectron_left_square = selectron_mass_left**2

m_smuon_left_square = smuon_mass_left**2

m_stau_left_square = stau_mass_left**2

m_selectron_right_square = selectron_mass_right**2

m_smuon_right_square = smuon_mass_right**2

m_stau_right_square = stau_mass_right**2

CM = np.array([[M2,np.sqrt(2)*MW*np.cos(beta)],[np.sqrt(2)*MW*np.sin(beta),mu]])

CMT = np.transpose(CM)

C=np.dot(CM,CMT)

D, U_star_inv = np.linalg.eig(C)

U_star = np.linalg.inv(U_star_inv)

OR = U_star

CC = np.dot(CMT,CM)

D, V_inv = np.linalg.eig(CC)

OLT = V_inv

OL = np.transpose(OLT)

chargino_mass_matrix = np.dot(OR,np.dot(CM,OLT))

chargino_mass = [chargino_mass_matrix[0][0],chargino_mass_matrix[1][1]]

MN = [[M1,0,-MZ*np.sqrt(sin_square_theta)*math.cos(beta),

MZ*np.sqrt(sin_square_theta)*math.sin(beta)],

[0,M2,MZ*np.sqrt(cos_square_theta)*math.cos(beta),

-MZ*np.sqrt(cos_square_theta)*np.sin(beta)],

[-MZ*np.sqrt(sin_square_theta)*math.cos(beta),

MZ*np.sqrt(cos_square_theta)*math.cos(beta),0,-mu],

[MZ*np.sqrt(sin_square_theta)*math.sin(beta),

-MZ*np.sqrt(cos_square_theta)*np.sin(beta),-mu,0]]

neutralino_mass_matrix,ONT = np.linalg.eig(MN)
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ON = np.transpose(ONT)

neutralino_mass = [neutralino_mass_matrix[0],neutralino_mass_matrix[1],

neutralino_mass_matrix[2],neutralino_mass_matrix[3]]

Ni_L = [[0.0,0.0,0.0,0.0,0.0,0.0],[0.0,0.0,0.0,0.0,0.0,0.0],

[0.0,0.0,0.0,0.0,0.0,0.0],[0.0,0.0,0.0,0.0,0.0,0.0]]

Ni_R = [[0.0,0.0,0.0,0.0,0.0,0.0],[0.0,0.0,0.0,0.0,0.0,0.0],

[0.0,0.0,0.0,0.0,0.0,0.0],[0.0,0.0,0.0,0.0,0.0,0.0]]

Nj_L = [[0.0,0.0,0.0,0.0,0.0,0.0],[0.0,0.0,0.0,0.0,0.0,0.0],

[0.0,0.0,0.0,0.0,0.0,0.0],[0.0,0.0,0.0,0.0,0.0,0.0]]

Nj_R = [[0.0,0.0,0.0,0.0,0.0,0.0],[0.0,0.0,0.0,0.0,0.0,0.0],

[0.0,0.0,0.0,0.0,0.0,0.0],[0.0,0.0,0.0,0.0,0.0,0.0]]

Ci_R = [[0.0,0.0,0.0],[0.0,0.0,0.0],[0.0,0.0,0.0]]

Ci_L = [[0.0,0.0,0.0],[0.0,0.0,0.0],[0.0,0.0,0.0]]

Cj_R = [[0.0,0.0,0.0],[0.0,0.0,0.0],[0.0,0.0,0.0]]

Cj_L = [[0.0,0.0,0.0],[0.0,0.0,0.0],[0.0,0.0,0.0]]

delta_matrix_sneutrino = [[0,aa,bb],[aa,0,ee],[bb,ee,0]]

delta_matrix_slepton = [[0,aa,bb,0,cc,dd],[aa,0,ee,cc,0,ff],

[bb,ee,0,dd,ff,0],[0,cc,dd,0,gg,hh],[cc,0,ff,gg,0,ii],[dd,ff,0,hh,ii,0]]

slepton_mass_matrix = np.array([[m_selectron_left_square +

add_left_slepton,0,0,(A_electron*mass_electron)-

mass_electron*mu*tanb,0,0],[0,m_smuon_left_square +

add_left_slepton,0,0,(A_muon*mass_muon)-

mass_muon*mu*tanb,0],[0,0,m_stau_left_square +

add_left_slepton,0,0,(A_tau*mass_tau)-mass_tau*mu*tanb],

[(A_electron*mass_electron)-mass_electron*mu*tanb,

0,0,m_selectron_right_square + add_right_slepton,0,0],

[0,(A_muon*mass_muon)-mass_muon*mu*tanb,0,0,

m_smuon_right_square + add_right_slepton,0],

[0,0,(A_tau*mass_tau)-mass_tau*mu*tanb,

0,0,m_stau_right_square + add_right_slepton]])

+ delta_matrix_slepton

slepton_mass, slepton_diagonalizer = np.linalg.eig(slepton_mass_matrix)

sneutrino_mass_matrix = np.array([[m_selectron_left_square +
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add_sneutrino,0,0],[0, m_smuon_left_square + add_sneutrino,0],

[0,0,m_stau_left_square + add_sneutrino]])+ delta_matrix_sneutrino

sneutrino_mass, sneutrino_diagonalizer = np.linalg.eig(sneutrino_mass_matrix)

if ( slepton_mass[0] > 40000 and slepton_mass[1] >40000 and

slepton_mass[2] > 40000 and slepton_mass[3] > 40000 and

slepton_mass[4] >40000 and slepton_mass[5] > 40000 and

sneutrino_mass[0] > 0 and sneutrino_mass[1] > 0 and sneutrino_mass[2] > 0):

slepton_mass = [np.sqrt(abs(slepton_mass[0])),np.sqrt(abs(slepton_mass[1])),

np.sqrt(abs(slepton_mass[2])),np.sqrt(abs(slepton_mass[3])),

np.sqrt(abs(slepton_mass[4])),np.sqrt(abs(slepton_mass[5]))]

sneutrino_mass = [np.sqrt(abs(sneutrino_mass[0])),

np.sqrt(abs(sneutrino_mass[1])),

np.sqrt(abs(sneutrino_mass[2]))]

UL = np.linalg.inv(slepton_diagonalizer)

UV = np.linalg.inv(sneutrino_diagonalizer)

g2=0.652

gcoeff=g2/np.sqrt(2)

A_n_L = 0.0

A_n_R = 0.0

A_c_R = 0.0

A_c_L = 0.0

AL = 0.0

AR = 0.0

for A in range(4):

for X in range(6):

Ni_L[A][X] = -gcoeff*(((mass[i]*ON[A][2]*(UL[X][i]))

/(MW*np.cos(beta)))+(2*ON[A][0]*tan_theta_weinberg*

(UL[X][i+3])))

Ni_R[A][X] = -gcoeff*((-ON[A][1]-ON[A][0]*tan_theta_weinberg)

*(UL[X][i])+(mass[i]*ON[A][2]*(UL[X][i+3]))/(MW*np.cos(beta)))

Nj_L[A][X] = -gcoeff*(((mass[j]*ON[A][2]*(UL[X][j]))

/(MW*np.cos(beta)))+(2*ON[A][0]*tan_theta_weinberg*(UL[X][j+3])))

Nj_R[A][X] = -gcoeff*((-ON[A][1] -ON[A][0]*tan_theta_weinberg)

*(UL[X][j])+(mass[j]*ON[A][2]*(UL[X][j+3]))/(MW*np.cos(beta)))
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A_n_L = A_n_L + (((Ni_L[A][X]*np.conjugate(Nj_L[A][X])

+ ((Ni_R[A][X]*(Nj_R[A][X])*(mass[i]/mass[j])))*

func1((neutralino_mass[A]/(slepton_mass[X]))**2)) +

(Ni_L[A][X]*(Nj_R[A][X])*neutralino_mass[A]*

func2((neutralino_mass[A]/(slepton_mass[X]))**2)

/(mass[j])))/(32*np.pi*np.pi*slepton_mass[X]**2))

A_n_R = A_n_R + (((Ni_R[A][X]*np.conjugate(Nj_R[A][X])

+ ((Ni_L[A][X]*(Nj_L[A][X])*(mass[i]/mass[j])))*

func1((neutralino_mass[A]/(slepton_mass[X]))**2)) +

(Ni_R[A][X]*(Nj_L[A][X])*neutralino_mass[A]*

func2((neutralino_mass[A]/(slepton_mass[X]))**2)

/(mass[j])))/(32*np.pi*np.pi*slepton_mass[X]**2))

for A in range(2):

for X in range(3):

Ci_R[A][X] = -g2*OR[A][0]*(UV[X][i])

Ci_L[A][X] = g2*mass[i]*OL[A][1]*(UV[X][i])

/(np.sqrt(2)*MW*np.cos(beta))

Cj_R[A][X] = -g2*OR[A][0]*(UV[X][j])

Cj_L[A][X] = g2*mass[j]*OL[A][1]*(UV[X][j])

/(np.sqrt(2)*MW*np.cos(beta))

A_c_L = A_c_L + -(((Ci_L[A][X]*(Cj_L[A][X])+

(Ci_R[A][X]*(Cj_R[A][X])*(mass[i]/mass[j])))*

func3((chargino_mass[A]/(sneutrino_mass[X]))**2)) +

(Ci_L[A][X]*(Cj_R[A][X])*chargino_mass[A]

*func4((chargino_mass[A]/(sneutrino_mass[X]))**2)

/(mass[j])))/(32*np.pi*np.pi*sneutrino_mass[X]**2)

A_c_R = A_c_R + -(((Ci_R[A][X]*(Cj_R[A][X]) +

(Ci_L[A][X]*(Cj_L[A][X])*(mass[i]/mass[j])))*

func3((chargino_mass[A]/(sneutrino_mass[X]))**2)) +

(Ci_R[A][X]*(Cj_L[A][X])*chargino_mass[A]*

func4((chargino_mass[A]/(sneutrino_mass[X]))**2)

/(mass[j])))/(32*np.pi*np.pi*sneutrino_mass[X]**2)

AL = A_n_L + A_c_L
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AR = A_n_R + A_c_R

br.append(((AL)**2 + (AR)**2)*(48*np.pi*np.pi*np.pi*alpha*0.1739)/(Gf*Gf))

Delta.append(delta)

print "slepton_mass ",slepton_mass

print "sneutrino_mass ", sneutrino_mass

M1_array.append(M1)

M2_array.append(M2)

mu_array.append(mu)

selectron_mass_left_array.append(selectron_mass_left)

smuon_mass_left_array.append(smuon_mass_left)

stau_mass_left_array.append(stau_mass_left)

selectron_mass_right_array.append(selectron_mass_right)

smuon_mass_right_array.append(smuon_mass_right)

stau_mass_right_array.append(stau_mass_right)

file1.write(str(delta) + ’\t’ + str(br[-1]) + ’\t’ + str(M1) +

’\t’ + str(M2) + ’\t’ + str(mu) + ’\t’ + str(selectron_mass_left)

+ ’\t’ + str(smuon_mass_left) + ’\t’ + str(stau_mass_left) + ’\t’

+ str(selectron_mass_right) + ’\t’ + str(smuon_mass_right) + ’\t’

+ str(stau_mass_right) + ’\n’)

else:

continue

file1.close()
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