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Abstract

In the literature of derivative pricing, for a real life application one must know the
values of the co-efficients which appear in the non-local parabolic PDE of the initial-
boundary value problem that arises in the study of derivative pricing in a semi-
Markov modulated market model. The co-efficients that are involved as parameters
in the PDE should be estimated from the market data in a semi-Markov modulated
GBM (geometric Brownian motion) model. There exists one functional parameter,
known as hazard rate function and this current thesis studied the maximum likelihood
estimation (MLE) of transition rate of a semi-Markov process, and thereby the MLE
of the corresponding hazard rate for a given transition matrix. The study of the
convergence of MLE of transition rate through asymptotic behaviour of the estimator
has been done, that can be extended to the convergence of MLE of hazard rate
for our market model with given transition matrix. In this thesis we did perform
some numerical experiments to illustrate the convergence of MLE of hazard rate
function. Finally, by looking towards the application in Finance, it has been shown
that the solution of the approximated price equation of European call option (through
maximum likelihood estimation of hazard rate) converges to the true solution.
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Chapter 1

Introduction

Purpose of the project: This current project aims to survey recent development
on certain problems in Mathematical Finance and contribute something new. Fol-
lowing the seminal work by Black, Scholes and Merton on pricing options in 1973,
several alternative models are still being proposed in the literature and thereby new
mathematical challenges are arising. In recent years researchers are interested to
replace the constant market parameters by semi-Markov chains which evolve accord-
ing to some prescribed transition rates[8]. It is also shown in the literature that by
considering such kind of general model, many drawbacks of the original Black-Scholes-
Merton model can be fixed. While fixing the deficits, it also retains the mathematical
tractability. More precisely, the price function still solves a parabolic PDE which can
be computed numerically. Despite that, for a real life application one must know
the values of the coefficients which appear in the equation. Even for Black-Scholes-
Merton model this is a challenge. For semi-Markov modulated GBM model, the PDE
involves a few more parameters which should be estimated from the market data.

In this thesis, we put our concern on the parameter, called hazard rate function,
which needs to be studied for the purpose of solving or drawing some inferences about
the price function in a semi-Makov modulated GBM model. This current thesis
studied the MLE of transition rate of a semi-Markov process, and thereby the MLE
of the corresponding hazard rate for a given transition matrix. We also studied of the
convergence of MLE of transition rate through asymptotic behaviour of the estimator,
that can be extended to the convergence of MLE of hazard rate for our market
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model, given the transition matrix is known. We also performed some numerical
experiments to illustrate the convergence of MLE of hazard rate function. Finally,
it has been shown that the solution of the approximated price equation of European
call option (through maximum likelihood estimation of hazard rate) converges to the
true solution.

Techniques: This present thesis studied the techniques of statistical inference
of semi-Markov processes. It did scrutiny the applicability of the nonparametric
estimation for semi-Markov processes based on its hazard rate functions[16]. This
work has required knowledge of real analysis, stochastic calculus, ordinary and partial
differential equation, numerical analysis, quantitative finance, maximum likelihood
estimation and FORTRAN95 (programming language).

Outcomes: We have studied the convergence of the estimated hazard rate
through maximum likelihood estimation in a semi-Markov modulated market model.
The estimated hazard rate has been compared with the theoretical hazard rate func-
tion for a typical semi-Markov modulated market, as shown in graph [see chapter
4].

As application towards mathematical Finance, the approximated price function
is defined with the dependence of estimated hazard rate function as it appears in the
price equation as a parametric co-efficient. Thereafter, we studied the convergence
of HREB approximation of the European call option price function to the true value
of the price. Later, we have indicated a numerical method to actually compute the
approximated price function.
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Chapter 2

Preliminaries

2.1 Markov semigroup and its generator

Definition 2.1.1. (Semigroup) A semigroup of operators {S(t)}t≥0 is a family of
bounded linear operators on a Banach space V such that
(i) S0f = f ∀f ∈ V , and
(ii) St+s = St ◦ Ss ∀t, s ≥ 0.

Given a semi-group of operators, {St}t≥0, one may associate a generator in the
following way.

Define,

D := {f ∈ V | lim
t↓0

Stf − f
t

exists}

and

Af := lim
t↓0

Stf − f
t

∀f ∈ D. (2.1.1)

Then, A is called infinitesimal generator and D is the domain.

Given a Markov chain Xt we define,
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Stf(x) = E(f(Xt)|X0 = x) ∀f continuous and bounded. (2.1.2)

Thus, one can always associate a semi-group like this.

Theorem 2.1.1. {St}t≥0 is a semi-group.

Proof. We write,

St+sf(x) = E(f(Xt+s)|X0 = x)

= E(E[f(Xt+s)|Xt]|X0 = x)

= E(Ssf(Xt)|X0 = x)

= St(Ssf)(x)

= St ◦ Ssf(x).

And it is easy to check, S0 = I. Hence {St}t≥0 is a semi-group.

Let L be an operator such that,

f(Xt) = f(X0) +

∫ t

0

Lf(Xs)ds+M f
t ∀f ∈ Dom(L),

where M f is a Martingale. We see,

(Sδ − I)f = E[f(Xδ)|X0 = x]− f(x)

= E[f(Xδ)− f(x)|X0 = x]

= E[

∫ δ

0

Lf(Xs)ds+Mδ|X0 = x]

= E[

∫ δ

0

Lf(Xs)ds|X0 = x].

So,

lim
δ 7→0

(Sδ − I)f

δ
= lim

δ 7→0

1

δ
E[

∫ δ

0

Lf(Xs)ds|X0 = x].

If f is such that on the RHS the limit and expectation can change the order,
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we get
Af(x) = Lf(x),

i.e., L is the generator.

2.2 Semi-Markov process and its augmentation

2.2.1 Semi-Markov process:

The process {Xt}t≥0 is a semi-Markov process on the statespace S = {1, 2, 3, . . . , k}
if the following holds:

(i) {XTn}n≥0 is a Markov chain with the transition matrix (pij) having pii = 0 ∀i,
where {Tn} are transition times with T0 = 0 a.s.

(ii)P (XTn = j, Tn−Tn−1 ≤ y|XTn−1 = i, . . . , X0) = pijF (y|i) ∀j 6= i while F (·|i)
is a c.d.f. for each i.

The two independent quantities for the description of a semi-Markov process
can be interpreted as follows:

(i) pij gives the probability of going to state j in the next transition, given the
current state is i,

P (XTn = j|XTn−1 = i) = P (XTn = j, Tn−Tn−1 <∞|XTn−1 = i) = lim
y→∞

pijF (y|i) = pij.

(ii) F (·|i) denotes the conditional distribution of holding time,

P (Tn − Tn−1 ≤ y|XTn−1 = i) = P (XTn ∈ S, Tn − Tn−1 ≤ y|XTn−1 = i)

=
∑
j∈S

P (XTn = j, Tn − Tn−1 ≤ y|XTn−1 = i) = F (y|i).
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2.2.2 Augmented Markov process (Xt, Yt):

In our discussion we consider a particular class of semi-Markov processes which satisfy
the following conditions,

(i) F (y|i) is twice differentiable ∀i and f(y|i) := d
dy
F (y|i) is bounded,

(ii) f(y|i) > 0 ∀i & y > 0.

We embed S in Rk through i ∼ ei ∈ Rk and define for y ∈ [0,∞)

λij(y) := pij
f(y|i)

1− F (y|i)
, ∀j 6= i ∈ S (2.2.1)

and

λii(y) := −
∑

j∈S,j 6=i

λij(y) ∀i ∈ S. (2.2.2)

Define, Λij(y) as a left closed and right open interval of the real line for a particular
y ∈ R+∀j 6= i ∈ S with the intervals having lengths λij(y) and arranged consecutively
according a lexicographic order starting from the origin. Define functions h : S×R+×
R→ Rk and g : S × R+ × R→ R+ as

h(i, y, z) :=
∑

j∈S,j 6=i

(j − i)1Λij(y)(z)

and
g(i, y, z) :=

∑
j∈S,j 6=i

y1Λij(y)(z).

Theorem 2.2.1. Let us consider a set of stochastic integral equations, given by,

Xt = X0 +

∫ t

0

∫
R
h(Xu−, Yu−, z)℘(du, dz) (2.2.3)

Yt = t−
∫ t

0

∫
R
g(Xu−, Yu−, z)℘(du, dz), (2.2.4)

where ℘ is Poisson random measure with intensity as Lebesgue measure dudz and
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h and g are mentioned above. The equations (2.2.3) and (2.2.4) has a strong solu-
tion (Xt, Yt), which is a Markov process and {Xt}t≥0 is a semi-Markov process with
transition matrix (pij) and holding time c.d.f. F (·|i).

Proof. The proof of existence of a strong solution is standard, and we omit. To show
the Markovity of (Xt, Yt), we need to check that the dependence of future (XT , YT )
of the processes on past is only with the present state (Xt, Yt).

XT = X0 +

∫ T

0

∫
R
h(Xu−, Yu−, z)℘(du, dz)

= X0 +

∫ t

0

∫
R
h(Xu−, Yu−, z)℘(du, dz) +

∫ T

t

∫
R
h(Xu−, Yu−, z)℘(du, dz)

= Xt +

∫ T

t

∫
R
h(Xu−, Yu−, z)℘(du, dz).

YT = T −
∫ T

0

∫
R
g(Xu−, Yu−, z)℘(du, dz)

= (T − t) + t−
∫ t

0

∫
R
g(Xu−, Yu−, z)℘(du, dz) +

∫ T

t

∫
R
g(Xu−, Yu−, z)℘(du, dz)

= (T − t) + Yt +

∫ T

t

∫
R
g(Xu−, Yu−, z)℘(du, dz).

Thus, we prove that (Xt, Yt) is a Markov process.

From the equations one can easily derive to get the following interpretations,
which ensure the integrals to represent the augmented Markov process, viz.,

(1) Considering τn = Tn − Tn−1 we will first prove P (τn+1 ≤ y|FTn , XTn = i) =

F (y|i).

From (2.2.1), our consideration of f to be the derivative of F and knowing
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∑
j 6=i∈S pij = 1, we get,

dF (s|i)
ds

= f(s|i) =
∑
j∈S

pijf(s|i)

= (1− F (s|i))
∑
j 6=i∈S

λij(s).

Since F (0|i) = 0, thus, ∫ y

0

dF (s|i)
1− F (s|i)

=

∫ y

0

∑
j 6=i∈S

λij(s)ds

⇒ − ln(1− F (y|i)) =

∫ y

0

∑
j 6=i∈S

λij(s)ds.

So,

F (y|i) = 1− exp(−
∫ y

0

∑
j 6=i∈S

λij(s)ds)

= 1− P (℘(
⋃

0<s≤y

({Tn + s} ×
⋃
j 6=i

Λij(s))) = 0)

= 1− P (no jump in (Tn, Tn + y]|FTn , XTn = i)

= P (τn+1 ≤ y|FTn , XTn = i).

(2) Secondly we will prove P (XTn+1 = j|FTn+1−
, Tn+1) = pXTnj.
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Owing to the property of Markovity of (Xt, Yt), we see,

P (XTn+1 = j|FTn+1−
, Tn+1) = P (XTn+1 = j|XTn+1−

= XTn , YTn+1−
= Tn+1 − Tn)

= P (

∫
R
h(XTn , Tn+1 − Tn, z)℘({Tn+1} × dz) = j −XTn|∫

R
h(XTn , Tn+1 − Tn, z)℘({Tn+1} × dz) 6= 0)

= P (℘({Tn+1} × ΛXTnj
(Tn+1)) 6= 0|℘({Tn+1} × ΛXTn l

(Tn+1)) 6= 0

for some l)

=
|ΛXTnj

(Tn+1)|
|
⋃
l 6=XTn

ΛXTn l
(Tn+1)|

[ ℘ has uniform distribution]

=
λXTnj(Tn+1)∑

l 6=XTn
λXTn l(Tn+1)

= pXTnj.

Now, we proceed to look at the semi-Markov kernel and prove
P (XTn+1 = j, τn+1 ≤ y|FTn) = pXTnjF (y|XTn).

P (XTn+1 = j, τn+1 ≤ y|FTn) = E[P (XTn+1 = j, τn+1 ≤ y|FTn+1−
, Tn+1)|FTn ]

= E[pXTnj1τn+1≤y|FTn ]

= pXTnjP (τn+1 ≤ y|FTn)

= pXTnjF (y|XTn).

In view of the previous theorem, given a semi-Markov process Xt, we can aug-
ment that with the holding time process Yt to obtain a Markov process (Xt, Yt) and
we call that the augmented Markov process.

To illustrate the behaviour of the process Yt, we plot a typical realization below.
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2.3 Derivation of generator of augmented Markov

process

Now our aim is to find the infinitesimal generator of the augmented Markov process
on the domain of smooth functions.

Using Itô’s formula for function of RCLL (right continuous with left limit) pro-
cesses(Theorem II.31 [18]), we calculate the infinitesimal change of some function of
the augmented Markov process φ(Xt, Yt) as

dφ(Xt, Yt) =
∂φ

∂y
(Xt, Yt)dY

c
t + φ(Xt, Yt)− φ(Xt− , Yt−)

=
∂φ

∂y
(Xt, Yt)dt+

∫
R
[φ(Xt− + h(Xt− , Yt− , z), Yt− − g(Xt− , Yt− , z))− φ(Xt− , Yt−)]

(℘̂(dt, dz) + dtdz).

Note that: ℘̂ is compensated Poisson random measure with expectation zero. We
denote the process obtained by integrating w.r.t. ℘̂ as {Mt}t≥0. Clearly Mt is a
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martingale and we obtain

dφ(Xt, Yt) =
∂φ

∂y
(Xt, Yt)dt+

∑
j 6=Xt−

[φ(j, 0)− φ(Xt− , Yt−)]λXt−j(Yt−)dt+ dMt

=
∂φ

∂y
(Xt, Yt)dt+

f(Yt− |Xt−)

1− F (Yt− |Xt−)

∑
j 6=Xt−

pXt−j[φ(j, 0)− φ(Xt− , Yt−)]dt+ dMt.

Thus the infinitesimal generator L of the augmented Markov process, restricted in
the class of C1 function (in y) is given by

Lφ(i, y) =
∂φ

∂y
(i, y) +

f(y|i)
1− F (y|i)

∑
j 6=i

pij[φ(j, 0)− φ(i, y)]. (2.3.1)

2.4 Application in Finance

The operator, L obtained in appears in several differential equations in the field of
mathematical finance[8, 12]. In the next chapter we provide a short description of
one such equation which arises in derivative pricing.
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Chapter 3

Price equation in a semi-Markov
modulated market

In the literature of derivative pricing, we often encounter incomplete market, where to
hedge for a contingent claim, no class of self-financing hedging strategy is adequate to
replicate the given legitimate claim at maturity. Although, there are many approaches
to deal with pricing problem through formulation of price. One of them is the local
risk minimization approach mentioned by Föllmer and Sondermann[7]; Schweizer[20];
Schweizer[21]; Schweizer[22]; Schweizer[23]. It says that for hedging a claim, one must
adopt a dynamic strategy through dynamic (varies with time) allocation to the assets
and it must replicate the given claim through accumulation of additional cash flow
in a continuous trading. Here, optimal hedging is done by minimizing the quadratic
residual risk (QRR), a particular measure of the additional cash flow, under certain set
of constraints. Föllmer and Schweizer[6] showed that existence of an optimal hedging
is equivalent to the existence of Föllmer Schweizer decomposition of discounted claim
in a particular form, for a arbitrage free market. For some typical market models, it
is quite possible to derive and solve a system of differential equations (price function
associated) for obtaining price and optimal hedging of a claim.

We consider regime switching market model by assuming the market parameters
to vary according to a stochastic process with finite state-space, with time. We are
more concerned in a semi-Markov regime switching market model, where the param-
eters follow a semi-Markov process,{Xt}t≥0, where t is the time. This market model
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is called a semi-Markov modulated GBM (geometric Brownian motion) model. Hunt
& Devolder[12] have talked about the advantages of using semi-Markov switching
models over homogeneous Markov switching models as the memoryless Markovian
property restricts the flexibility of semi-Markov process in exhibiting holding time
duration dependence. For example, it is useful in tackling the duration dependent
business cycles. Thus, it gives us the motivation to study this generalized market
model.

The study on option pricing using Föllmer Schweizer decomposition, in a semi-
Markov modulated GBM model, was done in Ghosh & Goswami[8], where they have
shown the price function to satisfy a non-local system of parabolic PDEs, which
arises while finding the optimal hedging strategy for a claim, a European call option
with prescribed strike price and maturity time, in semi-Markov modulated market.
Goswami, Patel & Shevgaonkar[9] have shown that the same price function also satis-
fies a Volterra integral equation of second kind and that non-local PDE is equivalent
to the Volterra equation.

In the next section a brief description of locally risk minimizing hedging in
general (incomplete) market, following Föllmer and Schweizer, is given.

3.1 Locally risk minimizing pricing

Consider, a market with two assets, {St}t≥0 and {Bt}t≥0 where St and Bt are con-
tinuous semi-martingales and Bt has finite variation. Then, an admissible strategy is
defined by,

π = {πt = (ξt, εt), 0 ≤ t ≤ T}, that satisfies (A1).

The portfolio value at time t is given by,

Vt = ξtSt + εtBt. (3.1.1)

Assumption (A1) (i)ξt is square integrable w.r.t. St, (ii) expectation of ε2
t is

finite, (iii) ∃a > 0 s.t. P (Vt ≥ −a, t ∈ [0, T ]) = 1.

One can allow adding an instantaneous cash flow, ∆Ct with the return of in-
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vestment at t−∆ in the portfolio value at time t, thus

Vt = ξt−∆St + εt−∆Bt + ∆Ct. (3.1.2)

From (3.1.1) and (3.1.2), we get the discrete equation,

Vt − Vt−∆ = ξt−∆(St − St−∆) + εt−∆(Bt −Bt−∆) + ∆Ct,

equivalently we got the SDE as

dVt = ξtdSt + εtdBt + dCt. (3.1.3)

Definition 3.1.1. Strategy, πt = (ξt, εt), is defined to be self financing if

dVt = ξtdSt + εtdBt, ∀t ≥ 0.

From the above definition, it’s clear to see, for a self financing strategy π, the
cost process Ct(π) = initial cash flow = constant.

There are market models, which are incomplete in the sense that there exists no
class of self financing strategies to perfectly hedge for given contingent claim. These
markets are known as incomplete markets. Here, one can get an optimal strategy
through minimizing quadratic residual risk, a measure of cash flow, under certain
constraint[6]. It is shown in [6] that for arbitrage free market, the existence of an
optimal strategy to hedge an FT measurable claim H is equivalent to that of Föllmer
Schweizer decomposition of discounted claim, H∗ := B−1

T H in the following form

H∗ = H0 +

∫ T

0

ξH
∗

u dS∗u + LH
∗

T (3.1.4)

where H0 ∈ L2(Ω,F0, P ), LH
∗

= {LH∗
t }0≤t≤T is a square integrable martingale, or-

thogonal to the martingale part of St and ξH
∗

= {ξH∗
t } satisfies (A1)(i). Here,

ξH
∗ in the decomposition constitutes the optimal strategy. So, the optimal strat-
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egy πt = (ξt, εt) is given by

ξt := ξH
∗

t ;

εt := V ∗t − ξH
∗

t S∗t ;

with V ∗t := H0 +
∫ t

0
ξH

∗
u dS∗u + LH

∗
t ,S∗t := B−1

t St and BtV
∗
t represents the locally risk

minimizing price at t of the claim H.

3.2 Description of market model

Considering (Ω,F , P ) to be underlying complete probability space, let us model the
hypothetical state (assumed to be observable) by {Xt}t≥0, a semi-Markov process
on finite state space S = {1, 2, . . . , θ} with transition probabilities (pij) and con-
ditional holding time distributions F (·|i). Also consider {Tn}n≥0 to be consecutive
jump/transition times with T0 = 0.

We assume in a semi-Markov regime, that the interest rate,rt evolves depending
on the hypothetical state of the market. Here the market consists of one locally
risk free money market and one stock as the risky asset. Let, {Bt}t≥0 be the price
of money market account at t, also called the bond, with rt = r(Xt) and B0 = 1.
Therefore,

Bt = exp(

∫ t

0

r(Xu)du).

Consider the stock price process to be {St}t≥0, governed by semi-Markov modulated
GBM as

dSt = St(µ(Xt)dt+ σ(Xt)dWt), S0 > 0 (3.2.1)

where {Wt}t≥0 is standard Wiener process independent of the semi-Markov process
{Xt}t≥0; the drift coefficient, µ is real valued and the volatility, σ ∈ (0,∞) on domain
S. The solution of SDE(3.2.1) is an Ft semi-martingale with almost sure continuous
paths, where Ft is a filtration of F with right continuous version of Xt and St gener-
ated filtration. Ghosh & Goswami[8] have shown that this market model does admit
the existence of equivalent martingale measure, thus it is arbitrage free under admis-
sible strategy. The stock price involves uncertainties arising because of the driving
Brownian motion and the semi-Markov switch. Due to semi-Markov switching, the
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market is incomplete.

3.3 B-S-M type price equation of European call op-

tion

Consider a particular contingent claim, a European call option, on St with strike price
K and maturity time T . Then the FT measurable contingent claim H, is given by,

H = (ST −K)+.

In questing for an optimal hedging strategy for the claim in semi-Markov mod-
ulated market, we encounter the following system of differential equations[8, 9, 12],

∂

∂t
φ(t, s, i, y) +

∂

∂y
φ(t, s, i, y) + r(i)s

∂

∂s
φ(t, s, i, y) +

1

2
σ2(i)s2 ∂

2

∂s2
φ(t, s, i, y)

f(y|i)
1− F (y|i)

∑
j 6=i

pij[φ(t, s, j, 0)− φ(t, s, i, y)] = r(i)φ(t, s, i, y), (3.3.1)

defined on

D := {(t, s, i, y) ∈ (0, T )× R+ × S × (0, T )|y ∈ (0, t)}, (3.3.2)

with boundary conditions

φ(t, 0, i, y) = 0, ∀t ∈ [0, T ],

φ(T, s, i, y) = (s−K)+; s ∈ R+; 0 ≤ y ≤ T ; i = 1, 2, ..., θ; (3.3.3)

where r(·),σ(·),(pij),F (·|i) are mentioned in section (3.2) and f(·|i) is derivative of
F (·|i). Goswami, Patel & Shevgaonkar[9] have shown that the solution gives locally
risk minimizing price function of the European call option through establishing exis-
tence and uniqueness of solution of an equivalent Volterra integral equation of second
kind.
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Chapter 4

Estimation of Instantaneous
transition rate function

4.1 Convergence of the MLE

Considering an augmented Markov process (X, Y ) = (Xt, Yt)t≥0, defined on a com-
plete probability space with S = {1, 2, ..., θ} such that θ <∞, as the state-space for
the underlying Markov chain (XTn)n≥0. (YTn)n≥0 are the sojourn times, defined by
YT0 = 0 and YTn− = Tn − Tn−1, in these states measured in R+.

For simplicity, we define Xn := XTn and Yn := YTn−. To define the augmented
Markov process, the initial law has been defined as P (X0 = j) := p(j) and the
following semi-Markov kernel is specified as,

P (Xn+1 = j, Yn+1 ≤ y|X0, X1, ..., Xn, Y1, ..., Yn) := QXnj(y) (a.s.) (4.1.1)

∀y ∈ R+ and 1 ≤ j ≤ θ.

With the assumption, Qii(y) = 0, ∀i ∈ S,the conditional distribution function
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of the holding/sojourn time in state i is defined by,

F (y|i) :=
θ∑
j=1

Qij(y), ∀y ∈ R+
.

Naturally we can see,

Qij(y) = P (Xn+1 = j, Yn+1 ≤ y|X0, X1, ..., Xn = i, Y1, ..., Yn)

= P (Yn+1 ≤ y|Xn+1 = j,Xn = i)P (Xn+1 = j|Xn = i)

= pijF (y|i, j).

Now we assume that the underlying semi-Markov process has a special property
which states that F (y|i, j) does not depend on the j variable. Hence, Qij(y) =

pijF (y|i).

We define the instantaneous transition rate function, ∀j 6= i ∈ S,of a semi-
Markov kernel by,

λij(y) := lim
∆y↓0

P (Xn+1 = j, y < Yn+1 ≤ y + ∆y|Xn = i, Yn+1 > y)

∆y
,

λii(y) := −
∑

j∈S,j 6=i

λij(y) ∀i ∈ S.

i.e.,

λij(y) =


qij(y)

1−F (y|i) if pij > 0 and F (y|i) < 1

0 otherwise,

where qij(.), defined by qij(y) := pijf(y|i), is the density/derivative of Qij(.),
assuming Qij(.) to be absolute continuous w.r.t. Lebesgue’s measure. We also define,

λi(y) := |λii(y)|,

Λi(y) :=
θ∑
j=1

∫ y

0

λij(u)du.
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Consider a history of augmented Markov process censored at fixed time τ ,

H(τ) = (X0, X1, ..., XNτ , Y1, Y2, ..., YNτ , Uτ ),

where Uτ = τ −TNτ is the backward recurrence time, (Tn)n≥0 are jump times and Nτ

is the number of jumps before time τ .

The associated log-likelihood function is maximized to obtain the maximum
likelihood estimator(MLE) of the transition rate function,λij(.). The likelihood func-
tion for H(τ) is

L(τ) = p(X0)(1−
θ∑
l=1

QXNτ l
(Uτ ))

Nτ−1∏
l=0

pXlXl+1
f(Yl+1|Xl)

=⇒ p(X0)−1L(τ) = exp(−ΛXNτ
(Uτ ))

Nτ−1∏
l=0

exp(−ΛXl(Yl+1))λXl,Xl+1
(Yl+1)

Then we consider log-likelihood as

l(τ) := log p(X0)−1L(τ) =
Nτ−1∑
l=0

(log λXl,Xl+1
(Yl+1)− ΛXl(Yl+1))− ΛXNτ

(Uτ ).

Approximate the transition rate λij(y) by piecewise constant function λ∗ij(y)

defined by λ∗ij(y) = λij(vk) = λijk for y ∈ (vk, vk+1] = Ik, where (vk)0≤k≤M−1 is a
regular subdivision of [0, τ ], i.e., 0 = v0 < v1 < v2 < ... < vM−1 < vM = τ with
step ∆τ = τ

M
and M = [τ 1+α], where [.] is the Greatest integer or box function and

α ∈ (0, 1),to get

λ∗ij(y) =
M−1∑
k=0

λijk1(vk,vk+1](y). (4.1.2)

Then taking the log-likelihood and (4.1.2) and doing some calculus one obtains,

l(τ) =
∑
i,j∈S

M−1∑
k=0

(dijk log λijk − λijkvik), (4.1.3)
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where vik is a function of sojourn time in state i on the interval of Ik such that {vik}k
is a decreasing sequence while each member is a function of sojourn time in state i on
the interval Ik, and dijk is the number of transitions from state i to state j for which
the observed sojourn time in state i lies in Ik and for Nτ ≥ 1, they are respectively
given by

vik =
Nτ−1∑
l=0

(Yl+1∧ vk+1− vk)1{i}×(vk,∞)(Xl, Yl+1) + (Uτ ∧ vk+1− vk)1{i}×(vk,∞)(XNτ , Uτ ),

and

dijk =
Nτ−1∑
l=0

1{i}×{j}×Ik(Xl, Xl+1, Yl+1).

So the MLE of λijk is

λ̂ijk =

 dijk/vik if vik > 0;

0 otherwise.
(4.1.4)

Therefore the estimator of λij(y) is given by,

λ̂ij(y, τ) =
M−1∑
k=0

λ̂ijk1(vk,vk+1](y). (4.1.5)

Suppose, Ni = Ni(τ) and Nij = Nij(τ) be the number of occurrence of event
{Xl = i} for 0 < l < Nτ + 1 and number of occurrence of i to j transition in [0, τ ],
respectively. Let us denote Nτ as N . Then, we define the following estimators:

QN
ij (y) =

1

Ni

N∑
l=1

1{i}×{j}×[0,y](Xl, Xl+1, Yl+1),

qNij (y) =
QN
ij (vk+1)−QN

ij (vk)

∆τ

if y ∈ (vk, vk+1],
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f̂ij(y, τ) =
1

∆τNij

N∑
l=1

∑
k

1{i}×{j}×Ik(Xl, Xl+1, Yl+1).1Ik(y)

=
1

∆τNij

Nij∑
r=1

∑
k

1Ik(Ylr+1)1Ik(y)

=
1

∆τNij

Nij∑
r=1

ζijr,

where
ζijr :=

∑
k

1Ik(Ylr+1)1Ik(y) =
∑
k∗

1I∗k (Ylr+1).

It is clear to see, qNij (y) =
Nij
Ni
f̂ij(y, τ).

We also define GN
ij (.) as

GN
ij (y) =

N∑
l=1

∑
k

(Yl+1 − vk)
∆τNi

1{i}×{j}×Ik∩(y,∞)(Xl, Xl+1, Yl+1).1Ik(y).

Now the estimator of hazard rate (4.1.5) can be written as

λ̂ij(y, τ) =
∑
k

qNij (vk)

1−
∑θ

j=1{QN
ij (vk+1)−GN

ij (vk)}+ [ ((Uτ∧vk+1−vk))

∆τNi
]1{i}×[vk,∞)(XNτ , Uτ )

.1Ik(y).

(4.1.6)

In order to study asymptotic property of hazard rate, we define the following
quantities:

Aij(y) =
∑
k

qNij (y)

1−
∑θ

j=1{QN
ij (vk)}+ [ ((Uτ∧vk+1−vk))

∆τNi
]1{i}×[vk,∞)(XNτ , Uτ )

.1Ik(y)

and

Bij(y) =
∑
k

qNij (y)

1−
∑θ

j=1{QN
ij (vk+1)}+ [ ((Uτ∧vk+1−vk))

∆τNi
]1{i}×[vk,∞)(XNτ , Uτ )

.1Ik(y).
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Lemma 4.1.1. For any fixed y ∈ [0, τ ], we get

Aij(y) ≤ λ̂ij(y, τ) ≤ Bij(y).

Proof. The right inequality is obvious owing to the non-negativity of GN
ij (y). For the

left one, we have for y ∈ Ik, (Yk − vk)/∆τ ≤ 1, so

1−
θ∑
j=1

{QN
ij (vk+1)−GN

ij (vk)} ≤ 1−
θ∑
j=1

{QN
ij (vk+1)−

Ni∑
l=1

1{i}×{j}×Ik(Xl, Xl+1, Yl+1)/Ni}

= 1−
θ∑
j=1

{QN
ij (vk+1)−QN

ij (vk+1) +QN
ij (vk)}

= 1−
θ∑
j=1

QN
ij (vk).

Theorem 4.1.1. Consider the transition rate function, λij(.), to be continuous.

The estimator of transition rate, λ̂ij(., τ), is uniformly strongly consistent for
λij(.), for α ∈ (0, 1/2), in all compacts [0, T ],T ∈ R+, in the sense that

max
i,j

sup
y∈[0,T ]

|λ̂ij(y, τ)− λij(y)| → 0, almost surely, as τ →∞.

Proof. From the above lemma 4.1.1., the sufficient condition for the theorem is that
Aij(y) and Bij(y) converge in probability, as τ →∞, to the same limit λij(y).

The proof is divided into two parts, firstly we prove that qNij (y) uniformly con-
verges almost surely, as τ →∞, to the limit qij(y) = pijf(y|i, j).

We check,

|qNij (y)− qij(y)| = |Nij

Ni

(f̂ij(y, τ)− f(y|i, j)) + f(y|i, j)(Nij

Ni

− pij)|

≤ Nij

Ni

|f̂ij(y, τ)− f(y|i, j)|+ f(y|i, j)|Nij

Ni

− pij|.
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From Billingsley[2],

|Nij

Ni

− pij| → 0 as τ →∞ (a.s.).

It is clear to see the asymptotic unbiasedness of f̂ij(y, τ),

E[f̂ij(y, τ)]− f(y|i, j)→ 0 as τ →∞.

Suppose, 0 < α < 1
2
. To prove the almost sure convergence of f̂ij(y, τ) to

f(y|i, j), it is sufficient to prove that

f̂ij(y;n) =
1

n∆

n∑
r=1

ζijr

converges almost surely to f(y|i, j) as n→∞, with ∆ = n−α.

We see,

|f̂ij(y, n)− E[f̂ij(y, n)]| = | F̂ (vk+1;n|i, j)− F̂i(vk;n|i, j)
∆

− F (vk+1|i, j)− F (vk|i, j)
∆

|

≤ 2

∆
sup
y
|F̂ (y;n|i, j)− F (y|i, j)|,

where F̂ (y;n|i, j) is the associated (with f) c.d.f. estimator.

From Dvoretzky’s et al., inequality[5], the measure has been shown to be bounded
by some exponential function of n, as

P{sup
y
|f̂ij(y;n)− E[f̂ij(y;n)]| > ε} ≤ P{sup

y
|F̂ (y;n|i, j)− F (y|i, j)| > ε

∆

2
}

< C exp(−2(
εn1/2−α

2
)2)

= C exp (
−ε2

2
n1−2α).
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For 0 < α < 1/2,

∞∑
n=0

P{sup
y
|f̂ij(y;n)− E[f̂ij(y;n)]| > ε} < C

∞∑
n=0

exp (
−ε2

2
n1−2α) <∞,

so using Borel Cantelli’s Lemma, then

P{lim
n

sup
y
|f̂ij(y;n)− E[f̂ij(y;n)]| > ε} = 0

i.e.

P (
∞⋂
n=1

∞⋃
k=n

{sup
y
|f̂ij(y;n)− E[f̂ij(y;n)]| > ε}) = 0

=⇒ sup
y
|f̂ij(y;n)− E[f̂ij(y;n)]| → 0 almost surely, as n→∞.

By theorem 2.1, p. 10, in Gut[11],

sup
y
|f̂ij(y, τ)− E[f̂ij(y, τ)]| → 0 almost surely, as τ →∞.

There exists almost sure convergence of f̂ij(y, τ) to f(y|i, j) as f̂ij(y, τ) shows
asymptotic unbiasedness and convergence is uniform on any compact [0, T ], as f(y|i, j)
is continuous (from the assumption made for the theorem).

Therefore,

max
i,j

sup
y∈[0,T ]

|qNij (y)− qij(y)| → 0 (a.s.), as τ →∞.

Consider, Ĥi(y, τ) be the estimator of Hi(y) := F (y|i)[∵ F (y|i, j) = F (y|i) as
described in our model],

Ĥi(y, τ) =
θ∑
j=1

QN
ij (y)− ((Uτ ∧ vk+1)− vk)

∆τNi

1{i}×[vk,∞)(XNτ , Uτ ).
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For y ∈ Ik, Aij(y) and Bij(y) can be written as

Aij(y) =
qNij (y)

1−Hi(y)

∞∑
n=0

(
Ĥi(vk, τ)−Hi(y)

1−Hi(y)
)n,

Bij(y) =
qNij (y)

1−Hi(y)

∞∑
n=0

(
Ĥi(vk+1, τ)−Hi(y)

1−Hi(y)
)n.

Now, as τ → ∞, Ĥi(y, τ) converges uniformly to Hi(y) on R+[15, 17, 10].
Therefore, Aij(y) and Bij(y) converge uniformly, as τ →∞ with probability 1, to the
same limit λij(y).

Remark: Continuous time Markov process with finite state space is a special
case of the semi-Markov process we consider here.

4.2 Numerical experiment

We did numerical experiment to see the comparison between maximum likelihood
estimation of hazard rate function and the theoretical/predefined hazard rate of the
semi-Markov process. We choose, the state-space to be S = {1, 2, 3} and transition
matrix

(pij) =

 0.0 0.1 0.9

0.4 0.0 0.6

0.7 0.3 0.0

 .

,

for the semi-Markov process.

In order to have the semi-Markov process defined, we generate the holding
times, Yn by adding two identically independent random variables with distribution
exp(1) = Γ(1, 1), thus

Yn ∼ Γ(2, 1).
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So, the associated p.d.f. for {Yn} is f(y; 2, 1) = ye−y

12.Γ(2)
= ye−y and c.d.f. is

F (y; 2, 1) =

∫ y

0

ue−udu = −ye−y + 1− e−y.

Therefore, the theoretical hazard rate function for any y ∈ [0, τ ], is given by,

λi(y) = λij(y)/pij =
f(y|i)

1− F (y|i)
=

y

y + 1
∀i ∈ S and i 6= j.

Estimated hazard rate(approximated to step function for regular intervals Ik)
for y ∈ [0, τ ],

λ̂i(y) = λ̂ijk/pij if y ∈ Ik, ∀i ∈ S and i 6= j.

The estimated hazard rate function (approximated step function), λ̂i(.), for
fixed (i, j) = (1, 3), in the interval of y ∈ [0, T = 4],T ∈ [0, τ ], is therefore generated,
over the history of the semi-Markov process censored at τ = 3900.

Comparison between the theoretical and estimated hazard rate function (y takes
the values from X-axis):

Remark: The estimated hazard rate function has been estimated as a step
function for each individual intervals {Ik}k≥0 and then plotted at the left limit i.e.
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vk for each. Now, as the theoretical hazard rate is strictly increasing, the estimated
hazard rate appears to be slightly overestimated in the graph than actual estimation.
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Chapter 5

Approximation of price function

5.1 Convergence of approximation

Definition 5.1.1. Let λ̂i be an MLE of λi, the hazard rate, and φ be the solution
of the problem (3.3.1)-(3.3.3). If the function λi is replaced by λ̂i in (3.3.1)-(3.3.3),
then the solution of the modified equation is called the HREB (hazard rate estimation
based) approximation of φ with parameter λ̂i.

Theorem 5.1.1. Let, φ̂n be the HREB approximation of φ with parameter λ̂ni , where
λ̂ni is the MLE of λi using observation of the semi-Markov process of time length n
with number of grid points bn1+αc, 0 < α < 1

2
.

Then, φ̂n converges to φ point-wise, as n→∞.

Proof. The classical solution of (3.3.1)-(3.3.3) exists uniquely[8, 9]. So, φ is unique.

Replacing the functional parameter, hazard rate, λi(y) by the MLE, λ̂ni (y), using
observation of the semi-Markov process of time length n with number of grid points
bn1+αc, for a fixed α s.t. 0 < α < 1

2
in (3.3.1)-(3.3.3). So, φ̂n satisfies a modified

(3.3.1)-(3.3.3) which also has a unique solution.

Now, we define the difference of the functions φ and its HREB estimator, φ̂n to
be,

ψn(t, s, i, y) := φ(t, s, i, y)− φ̂n(t, s, i, y).

31



Now, by doing some algebra in (3.3.1)-(3.3.3), we see that ψn satisfies the fol-
lowing system of equations,

∂

∂t
ψ(t, s, i, y) + r(i)s

∂

∂s
ψ(t, s, i, y) +

1

2
σ2(i)s2 ∂

2

∂s2
ψ(t, s, i, y) + λi(y)

∑
j 6=i

pijφ(t, s, j, 0)− λi(y)φ(t, s, i, y)

= r(i)ψ(t, s, i, y) + (λi(y)− λ̂ni (y))
∑
j 6=i

pijφ̂
n(t, s, j, 0)− (λi(y)− λ̂ni (y))φ̂n(t, s, i, y),

defined on
D := {(t, s, i, y) ∈ (0, T )× R+ × S × (0, T )|y ∈ (0, t)},

with boundary conditions

ψ(t, 0, i, y) = 0, ∀t ∈ [0, T ],

ψ(T, s, i, y) = 0, s ∈ R+; 0 ≤ y ≤ T ; i = 1, 2, · · · , θ;

where r(·),σ(·),(pij),F (·|i),f(·|i) are mentioned in section (3.2) and (3.3).

We rewrite the above system of equations as,

∂

∂t
ψ(t, s, i, y) + Lψ(t, s, i, y) = r(i)ψ(t, s, i, y)− fn, (5.1.1)

where

(Lψ)(t, s, i, y) :=

[
r(i)s

∂

∂s
+

1

2
σ2(i)s2 ∂

2

∂s2

]
ψ(t, s, i, y)+λi(y)[

θ∑
j=1

pijψ(t, s, j, 0)−ψ(t, s, i, y)],

and L is the infinitesimal generator of (St, Xt, Yt) satisfying

dSt = St(r(Xt−)dt+ σ(Xt−)dWt),

where Xt is a semi-Markov process with hazard rate λi(y) and transition matrix (pij),
and Yt is the holding time process and

fn(t, s, i, y) := (λ̂ni (y)− λi(y))[
∑
j 6=i

pijφ̂
n(t, s, j, 0)− φ̂n(t, s, i, y)].
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Then, using Feynman-Kac formula,

ψn(t, s, i, y) = E[

∫ T

t

exp

(
−
∫ τ

t

r(Xu)du

)
ηndτ |St = s,Xt = i, Yt = y], (5.1.2)

where,
ηn(τ) = fn(τ, Sτ , Xτ , Yτ ).

From theorem 4.1.1.[16], we have the uniform convergence of λ̂nXτ to λXτ in
y ∈ [0, T ],T ∈ R+, almost surely, for 0 < α < 1

2
. Or, in other words we get, for any

given ε(> 0), ∃N s.t. P (N <∞) = 1 and for n ≥ N,

|λnXτ (y)− λXτ (y)| < ε ∀y ∈ [0, T ]. (5.1.3)

Hence, it is clear that for fixed (τ, ω),

ηn(τ)(ω) ↓ 0 point-wise as n→∞.

For European call price function, φ̂n(τ, Sτ , j, 0), we see

0 ≤ φ̂n(τ, Sτ , j, 0) ≤ Sτ ∀j,

then,
|
∑
j 6=Xτ

PXτ jφ̂
n(τ, Sτ , j, 0)− φ̂n(τ, Sτ , Xτ , Yτ )| ≤ Sτ . (5.1.4)

Therefore, from (5.1.3) and (5.1.4), we get, |ηn(τ, ω)| ≤ εSτ ∀n ≥ N & y ∈
[0, T ].

Define, g(τ)(ω) := εSτ (ω).

To prove for Lebesgue integrability of g in any interval [a, b] ∈ [0, T ], we need,

E[

∫ T

0

εSτdτ ] <∞. (5.1.5)
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By applying Tonelli’s theorem for Sτ (> 0), we get,

E[

∫ T

0

εSτdτ ] =

∫ T

0

εE[Sτ ]dτ. (5.1.6)

We know,

Sτ = S0 exp[

∫ τ

0

{µ(Xu)−
1

2
σ2(Xu)}du+

∫ τ

0

σ(Xu)dWu]. (5.1.7)

Let us define the following variables as

c := max
i∈S
{µ(i)− 1

2
σ2(i)},

d := max
i∈S
{σ2(i)}.

Clearly,

Sτ ≤ S0 exp(

∫ τ

0

cdu) exp(

∫ τ

0

σ(Xu)dWu). (5.1.8)

Hence, it is sufficient to prove that the R.H.S. has finite expectation. To this
end we observe,∫ τ

0

σ(Xu)dWu =
∞∑
n=1

∫ Tn∧τ

Tn−1∧τ
σ(XTn−1)dWu

=
∞∑
n=1

∫ Tn∧τ

Tn−1∧τ
σ(XTn−1)(WTn∧τ −WTn−1∧τ )

Hence, the conditional distribution of
∫ τ

0
σ(Xu)dWu given FXτ is normal with mean

zero and variance
∞∑
n=1

σ2(XTn−1)[Tn ∧ τ − Tn−1 ∧ τ ],

where FXτ is the filtration of F generated by X = {Xt}t≥0.
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Now using the formula of variance of a Log normal random variable, we get,

E

[
exp

(∫ τ

0

σ(Xu)dWu

)]
= E

[
exp

(
1

2
[
∞∑
n=1

σ2(XTn−1)[Tn ∧ τ − Tn−1 ∧ τ ]

)]

≤ E

[
exp

(
d

2

∞∑
n=1

(Tn ∧ τ − Tn−1 ∧ τ)

)]

= exp

(
d

2
τ

)
.

Using above inequality we obtain from (5.1.8),

E(Sτ ) ≤ S0e
cτe

d
2
τ = S0e

(c+ d
2)τ .

Hence, ∫ T

0

E(Sτ )dτ = S0

∫ T

0

e(c+
d
2)τdτ

=
S0

(c+ d
2
)

(
e(c+

d
2)T − 1

)
<∞.

Thus, from (5.1.5) and (5.1.6), g(τ)(ω) is Lebesgue integrable and we have
|ηn| ≤ g. Hence, using Dominated Convergence Theorem, we can see

lim
n
ψn(t, s, i, y) = lim

n
E[

∫ T

t

exp

(
−
∫ τ

t

r(Xu)du

)
ηndτ |St = s,Xt = i, Yt = y]

= E[

∫ T

t

exp

(
−
∫ τ

t

r(Xu)du

)
lim
n
ηndτ |St = s,Xt = i, Yt = y]

= 0.

So, ψn → 0 as n→∞, point-wise. Therefore, φ̂n converges to φ point-wise, as
n→∞.
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5.2 Computation of price function

To compute the modified (replacing the hazard rate through its estimator) (3.3.1)-
(3.3.3) numerically, the MLE λ̂i(y, τ) has to be interpolated. Since this functional
parameter should satisfy differentiability, we adopt cubic spline as we know the exis-
tence,uniqueness and convergence of spline. As the PDE that involves European call
option price function, can be computed numerically, but to do this one needs to fit
a spline on the estimated hazard rate and then the nature of the approximated price
function can be illustrated.
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Appendix A

Table1

Table A.1: The following is the table for the graph for estimated hazard rate along
with theoretical, with given (i = 1, j = 3), generated [see chapter 4] through estima-
tion of transition rate function[16].

Ik λ̂1(y) λ1(y)

0 .100 0
0.25 .358 0.2
0.5 .380 0.333333333
0.75 .580 0.428571429
1 .596 0.5

1.25 .629 0.555555556
1.5 .688 0.6
1.75 .662 0.636363636
2 .795 0.666666667

2.25 .850 0.692307692
2.5 .853 0.714285714
2.75 .861 0.733333333
3 .815 0.75

3.25 .777 0.764705882
3.5 1.03 0.777777778
3.75 .871 0.789473684
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