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Abstract

A microbial colony population expanding in two-dimensions is subject to
greater genetic drift compared to well-mixed populations. Time-series flu-
orescence images of bacteria Escherichia coli and budding yeast Saccha-
romyces cerevisiae colonies show that during the course of colony growth,
a well-mixed population of two fluorescently labeled strains, segregates into
well-defined sector-like domains with fractal boundaries (Hallatschek et al.,
2007). The dynamics of these domain boundaries are responsible for the
sectoring pattern at large. As the colony grows, these domain boundaries
do not propagate linearly, as the cells with different genotypes on either
side of the domain boundary undergo neutral competition at this interface.
These domain boundaries in the sectoring pattern are akin to trajectories
of random walkers undergoing anomalous diffusion. Through previous re-
search, we note that different microbial colonies, such as that of E. coli and
S. cerevisiae, differ in the amount of boundary wandering. To answer these
questions, we have implemented the Eden Model, a grid based stochastic
simulation in Python. This model of microbial colony growth allows us to
test models that can give rise to the experimentally observed differences in
boundary wandering. We propose a modification of the Eden Model that
delays the cell division of newly reproduced cells the model. This is imple-
mented as a two-state process: a newly born cell is in a nascent state for
a fixed maturation time after which they reach an active state which can
divide. We quantitatively show that by incorporating this growth delay into
the Eden Model, the domain boundary wandering becomes less pronounced
in our model and consequently, reduces the genetic drift in the growing pop-
ulations. We discuss how our model integrates biological cell cycle dynamics
into colony growth models to predict the genetic drift in colony populations.
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Abbreviations and Symbols

Here is the list of abbreviations and symbols frequently used in this report
and their descriptions.
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Reference for abbreviations and

symbols

↵ Diffusive exponent (The exponent in the diffusion equation for domain
boundary wandering �

2
= MSD = 2Dr

↵.)

� Maturation time (This is the time period after which a nascent cell tran-
sitions to an active dividing cell in the Eden Model with growth delay
(EMwD) formulation. This is the key parameter which we vary in our
various simulations of the model.)

Cinit Circular initialization (Refers to the initial condition for the simulation
space which is similar to the circular inoculation of a microbial colony.
See subsection 3.1.3 for details.)

LS init Linear singular initialization (Refers to the initial condition for the
simulation space which generates just a single domain boundary on a
linear growth front of colony growth. See subsection 3.1.3 for details.)

Linit Circular initialization (Refers to the initial condition for the simulation
space which is similar to the linear inoculation of a microbial colony.
See subsection 3.1.3 for details.)

SS init Semicircular singular initialization (Refers to the initial condition for
the simulation space which generates just a single domain boundary
on a circular growth front of colony growth. See subsection 3.1.3 for
details.)

⌧ Mean division time (This is the parameter which determines the rate of
division of cells in EMwD. For the purpose of all the simulation results
described in this text, assume ⌧ = 1.0.)

D Diffusive coefficient (The coefficient in the diffusion equation for domain
boundary wandering �

2
= MSD = 2Dr

↵.)
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EM Eden Model (Refers to the Type-C Eden Model with individuals of
multiple distinct genetic identities.)

EMwD Eden Model with growth delay (Refers to modified Type-C Eden
Model with a delayed growth state of cells as described in section 2.3.)
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Chapter 1

Introduction

A bacterial colony growing on a solid substrate such as an agar plate with
nutrient rich media has a very different population growth pattern compared
to a well-mixed fluid media. The former scenario shows much more en-
hanced genetic drift compared to the latter even at high population sizes.
This is due to the constraint that population growth is limited to the narrow
perimeter of the colony which is described as the growth frontier. This leads
to repeated genetic bottlenecks and segregation of the bacterial gene pools
into sector-like regions of reduced genetic diversity. Experiments involving
plating of well-mixed E. coli population consisting of CFP- and YFP-tagged
strains in equal ratios and imaging under fluorescent microscopy shows ge-
netic sectoring pattern on the scale of a few millimeters (Hallatschek et al.,
2007).

On the microscale, the cells are organising during the colony growth by
cell growth, division and mechanical contact forces between the cells as they
push against each other. These small scale interactions lead to the pat-
tern at large. A previous study simulating bacterial colony growth in silico
(Rudge et al., 2013) indicate that mechanical instability arising due to uni-
axial growth in rod-shaped cells leads to the fractal boundary between genet-
ically segregated population regions, which shall be referred to as domains.

This genetic sectoring pattern also is observable in 2-dimensional models
where most of the biological and physical processes responsible for the colony
spread is simplified to reproduction and spatially exclusive site occupation
rules. The genetic sectoring behaviour is salient enough to appear in such
reductionist models, it follows that it would be a feature of any spatially
expanding population, not just microbial populations.
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Figure 1.1: Images reproduced from Hallatschek et al. (2007)). Mi-
crographs from fluorescent microscopy experiments in which well-mixed mi-
crobial populations with 50:50 YFP and CFP labelled strains were inoculated
on agar plates. The images show that the two genetically distinct subpopu-
lations segregate into sector-like domains with a sharp boundary separating
them. Subfigures (a) and (b) depict E. coli colonies and subfigures (c) and
(d) depict S. cerevisiae (yeast) colonies. (a) and (c) are linear inoculations
while (b) and (d) are circular inoculations. S. cerevisiae colonies show less
domain boundary wandering and greater number of sectors compared to the
E. coli colony.
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1.1 Spatial gene segregation and genetic drift

The genetically segregated domains which are visible under fluorescent imag-
ing of a microbial colony inoculated with a mixture of CFP- and YFP-labelled
cells, are a manifestation of genetic drift which acts at the frontier of the ex-
panding colony. Genetic drift in a population usually refers to the variation
of different genotypes in a small population, because of the randomness (in
sampling) in the reproductive process, as opposed to any phenotypic differ-
ences among the individuals.1

Although the populations in this case are not small (the initial droplet in
figure 1.1 A consists of ⇡ 10

6 cells), the effective population of reproducing
individuals is a small fraction of the population. Only a small number of
cells at the very edge of the colony, the growth frontier, are able to pass on
their genes to the next layer of outwardly spreading cells. This “genetic bot-
tleneck” is strong enough to segregate the population into domains of genetic
near-homogeneity. This is only possible because the individuals are immobile
barring the mechanical outward force due to the individual cell growth and
are neutral competing for space as a resource. In a well-mixed, population as
a counterexample, genetic drift is usually weak, and the dynamics of geno-
typic frequencies is almost deterministic during the population growth. This
soft constraint of 2-dimensional spread of a population is often encountered
in nature, in fact the surface colonizing bacteria and archae are known to
arrive fairly early in the evolutionary history of life on earth. In that regard,
the genetic drift at the colony growth frontier played a major role in the
evolution of primitive life on Earth.

This enhanced genetic drift can lead to disappearance or fixation of cer-
tain genotypes, beneficial and deleterious alike, in the reproducing subpopu-
lation of a colony. In terms of population genetics, there is a decrease in the
population diversity at the frontier and, consequently, a decrease in diversity
in the colony population at large. From a practical standpoint, in a microbial
population these effects can be important factors in affecting the evolution
of antibiotic drug resistance, which is a huge challenge for us in medicine and
healthcare. If we can understand what factors affect the sectoring pattern,
we can perhaps have an insight into what contributes and controls the rate
of loss of genetic diversity, we can perhaps be able to design drugs to target
not just the microbial growth, but any factors which can reduce the chance
of an antibiotic-resistant mutant proliferation and survival.

1For our discussions throughout, we assume that there are no phenotypic differences
across any individuals, which also holds for the experiments.
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1.2 Previous work on genetic sectoring

There have been many attempts to model the self-organized pattern of a mi-
crobial colony, within and at large, from grid-based approaches of diffusion-
limited aggregation (DLA) model (Matsuyama and Matsushita, 1993) to in
silico three-dimensional biophysical modelling with cell-cell mechanical in-
teractions (Rudge et al., 2013). Largely, the focus had been on the spread
of the colony, the branching patterns at the frontier and other mechanical or
physical aspects of the such as biofilm formations.

The spatial structuring of genes in a microbial colony was initially ob-
served by fluorescent imaging of colonies with two neutrally labelled (with
GFP and YFP) subpopulations of bacteria (Hallatschek et al., 2007) and
since, then there have been many studies to elucidate this phenomenon. The-
oretical studies such as (Saito and Müller-Krumbhaar, 1995), (Hallatschek
and Nelson, 2008) and (Korolev et al., 2011) have found multiple consis-
tent descriptions of this phenomenon. Computer simulation attempts to
reproduce the qualitative genetic sectoring pattern have used stepping-stone
model, off-lattice colony growth models (Korolev et al., 2011), metapopu-
lation models with demes on a lattice (Gralka et al., 2016) and variations
on Eden Model (Hallatschek and Nelson, 2008) (Kuhr et al., 2011). Of all
these models, Eden Model is the simplest and more intuitively aligns with
our analogue for non-motile microbial colony on hard agar plates, compared
to others which have cell migration in space. All the models, show genetic
sectoring, but by the nature of Eden Model, the monoallelic domain bound-
aries are exact making it more amenable to the boundary wandering analysis
that we wished to do.

Eden Model serves as the starting point of the study as the coarsest model
of the system we wish to understand. The Eden Model, first described by
Murray Eden in 1961 to study the biological growth pattern (Eden, 1961),
is a stochastic growth process on a two-dimensional (square) lattice. While
the original study only focused on the overall spread of the colony, I present
a many-allele variant of the Eden Model (EM) which is used to understand
the genetic patterning within the colony. Despite being lattice-based and a
very simplified description of reproduction and spread, it matches well with
the essential aspects of the fractal genetic patterning that happens due to
a narrow reproducing frontier in a two-dimensional range expansion. It has
previously been considered to study spread of deleterious mutation (Kuhr
et al., 2011) but here we consider neutral competition only.

While, the sectoring pattern has been well-described and reproduced by
many avenues, little has been known as to how biological factors at the cel-
lular level, such as cell shape, growth rate, division rates, etc. factor into.
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Consider figure 1.1; contrasting the genetic sectoring patterns of E. coli and
S. Cerevisiae, we can see that the domain boundary wandering in the yeast
colonies is observably less than that in the bacterial colonies. This shows
that the spatiogenetic sectoring in microbial colonies although potentially
universal, show appreciable diversity. Previous research focusing on the me-
chanical interactions within the colony (Farrell et al., 2017), suggest that the
difference in the cell shape for the rod-shaped E. coli and the quasi-spherical
S. Cerevisiae can be one of the factors that differentiate the spatiogenetic
patterns of their respective colonies. Another difference between the two mi-
crobes is the cell division rate and I honed my focus on this aspect to see if
it results in the desired effect on the sectoring pattern. In this study, I hope
to model a transition from the excessive domain wandering pattern of E. coli
to the almost spoke-like sectors in yeast colonies, by modulating the division
process at the level of an individual.

I shall start by describing the genetic sectoring in colony growth in terms
of the wandering and colliding domain boundaries surrounding the monoal-
lelic domains in the colony, a theoretical outlook presented by (Hallatschek
and Nelson, 2008). This simplifies the problem by mapping the two-dimensional
sectoring pattern to a one-dimensional fractal boundary which is akin to ran-
dom walk, whose spread relates to the roughness of the front of the colony.
I, then, will describe EM with multiple genetic identities and how the simu-
lations for this growth process compares to our experimental observations.

After which, I shall propose a modified version of EM, in which imple-
ment the condition that the cell which just got produced cannot immediately
reproduce but must mature over a time period before being able to divide.
I showed that increasing this maturation period does indeed reduce the do-
main boundary wandering qualitatively. To quantify this effect, I focused on
two main simulation initial conditions Linear singular initialization (LS

init

)
and Semicircular singular initialization (SS

init

), both of which only have two
monoallelic domains and a single boundary separating them. This allows us
to quantify the wandering of a single domain boundary at a time as a diffusive
random trajectory. It was found that the additional maturation time in the
cell growth step pronounceably decreased the domain boundary wandering
and genetic drift in the system. I shall finally discuss how the maturation
time affects the colony frontier roughness and implications of my findings.
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Chapter 2

Theory and Model

2.1 Sectoring dynamics

The key idea at play in how we interpret the sectoring dynamics as part of
this study is to look at the erratic path of the domain boundaries or the
sharp contour separating the domains.

Let us define the domain size as the distance, in the case of a linear
inoculation, and the separation angle, in the case of circular inoculation,
between the boundaries encompassing the domain. In a deterministic model
of growth, a genetic sector or domain should remain of a constant size, except
for the circular growth case where the sector angle grows as the radius of
the colony. But if we let stochastic variations to play a role, the sectors
will inevitably show size variations as there is neutral competition taking
between distinct genetic type variants at the boundary separating the two
domains. Throughout this study, the assumption that there is no difference
in the reproductive success of the individuals in the population regardless
of their genotype (their colour). Hence, the variation in the domain size is
completely due to neutral genetic drift.

The phenomenological outlook we take to analyse is this variation dynam-
ics is the one developed by (Hallatschek and Nelson, 2008). I will summarize
this approach and list the key results relevant for interpreting the quantita-
tive results that I will present later.

An illustrative explanation of their model can be seen in the figure 2.1.
Each domain is described by the pair of random walkers (the tips of the
encompassing domain boundaries where they meet the growth front). Their
trajectories in space and time are sufficient to describe the dynamics of the
particular domain. Since these walkers are constrained to the growth front,
this effectively maps the problem of sectoring dynamics in two dimensions to

12



Figure 2.1: Illustration reproduced from Hallatschek and Nelson (2008) A
visualization of how the sectoring pattern in a microbial colony coarsens
over time. A. As the colony growth front (black contour) is moving with an
average upward velocity, there are four domains in contact with the front.
The three domain boundaries can be seen as the trail of the tips of the do-
main boundaries (blue circles). B. The second image depicts the subsequent
snapshot after some time. By chance, the two domain boundary tips (encom-
passing the red domain on the left), consequently annihilate each other (at
the yellow star). The enclosed domain (red domain on the left) is pinched off
from the growth frontier and, henceforth trapped in the bulk of the colony.
The two green domains merge to form a larger single domain. We model these
dynamics by the tips of the boundaries performing a random walk along the
the one-dimensional contour of the growth front with the self-annihilating
(or coalescing, in case of three distinct domain colours) behaviour.
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Figure 2.2: Analogous illustration of figure 2.1 overlayed and mapped onto
an instance of an EM simulation output. The image shows the progression of
the linearly inoculated colony with two genetic variants initialized at random
positions at x=0 over the course of 1.5 ⇥ 10

4 divisions. Red stars indicate
some of the collisions of neighbouring domain boundaries. In the zoomed in-
set image, a more clear delineation of the growth frontier after 5000 divisions
(blue line) and the domain boundaries (yellow lines). The subsequent bound-
ary collision is marked by the yellow star. A unit distance in x-y directions
is the dimension of a single cell or grid site.

a simpler one-dimensional description tenable to analytical techniques.
Let us first consider the case of linear inoculation. The analysis starts

by assuming that the separation between a pair of domain boundaries (i.e.
the domain size) is a continuous random variable X(r) where r marks the
location of the growth front and X fluctuates as the separation between two
independent random walks with diffusive coefficient D

X

. Implying, if the
front has the average displacement of �r = r� r0, then the associated incre-
ment �X = X(r) �X(r0) has mean 0 and a variance linearly proportional
to �r. That gives us,

h�Xi = 0; h�X

2i = 4D

X

�r ⌘ �

2
X

(r) (2.1)

A domain is closed off when the domain boundaries collide or the domain
size reaches 0. On an average, the domain size at r should be comparable
to �

X

(r), thus as long as the habitat span L remains larger than �

X

(r),
it is likely that the domain has survived and remains in contact with the
growth front. Thus, the effective number of surviving domains N(�r) at
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Figure 2.3: Summary of all the measurables discussed in section 2.1. A.
Illustration of colony growth front with linear inoculation, with an example
domain with separation X(r) when the front is at r. L is the habitat span in
the direction perpendicular to the growth direction. B. Illustration of colony
growth front with linear inoculation, with an example domain with angular
separation �(r) when the front is at radius r.

effective time r decreases as �r increases, eventually leading to the fixation
of a single domain at the growth front, given enough growth time. The crude
but informative relation is,

N(r|r0) /
Lp

D

X

�r

(2.2)

Let us now come to the case of a circular inoculation. As the growth front
is curved we have to consider the domain sizes in terms of the subtended from
the centre of the inoculation. This is parametrization can be done as,

�� ⌘ �X

r

(2.3)

This change of variables means that the angular diffusive coefficient D�

is no longer a constant and varies with r as follows.

D�(r) ⌘ lim

�r!0

h��

2i
4�r

=

D

X

r

2
(2.4)

Thus, from a colony growth from r0 to r gives rise to a mean square
angular displacement of

�

2
� ⌘ h��

2i = 4

Z
r

r0

dr

0
D�(r

0
) = 4D

X

(r

�1
0 � r

�1
) (2.5)
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Figure 2.4: An illustration of how roughness of the growth front can lead to
a tilt in the instantaneous velocity of domain boundary tip walker.

This consequence of this, in contrast with the linear inoculation case, is
that the mean square angular displacement converges to a finite value of 4DX

r0

implying the sectoring stabilizes as the colony grows. In fact, we expect a
finite number of domains surviving at long times N(1|r0),

N(1|r0) /
r

r0

D

X

(2.6)

Thus far, we assumed that the growth front is smooth and progresses
uniformly for across the habitat span. Now, if the growth front contour
is rough, the domain boundary wandering no longer can be assumed to be
diffusive. Consider that across a span of length � if the surface roughness
(the height difference from the mean position of the surface) h �

⇣ , where
⇣ denotes the roughness exponent of the surface. In that case, the average
velocity of the domain boundary can no longer be assumed to be the same
as the average velocity of the growth front as depicted in the Fig. .

In fact there will be a slight tilt ✓ to the mean velocity of the walker with
mean 0 and root mean square of the order �

⇣�1. This lends the walker a
varying drift velocity in the direction perpendicular to the mean velocity of
the growth front which has a mean 0 across time. Effectively, changing the
diffusive dynamics of �X to an analogous anomalous diffusion regime,

�

2
X

(r) = 4D

X

�r

2⇣
= 4D

X

�r

↵ (2.7)

Here, ↵ shall be referred to as the anomalous diffusion coefficient.
Propogating this correction into equations 2.2 through 2.6, we get the

following,
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N(r|r0) / Lp
D

X

�r

⇣

=

Lp
D

X

�r

↵
2

(2.8)

N(1|r0) / r

1�⇣

0p
D

X

=

r

1�↵
2

0p
D

X

(2.9)

The quantities N (number of sectors surviving at the frontier), r/r0 (dis-
tance of colony propagation in units of mean cell length scale) and L (colony
span in the transverse direction to the expansion) can be readily measured
both in experiments and simulations. By image analysis of experimentally
grown colonies we can isolate domain boundaries visible in the florescence
micrographs and perform MSD analysis to calculate the D and ↵ values.
The same can be said about the simulation outcomes. Thus, all the quanti-
ties in 2.8 serve as the points to reconcile the spatiogentic patterns found in
experiments to those in the simulations.

Notably, both the results from the analysis of domain boundaries found
in the micrographs of experiments done in (Hallatschek et al., 2007) and the
analysis of the domain boundaries of the EM simulations,which is presented
later in the thesis, show the above-mentioned anomalous diffusive trajecto-
ries. Later, I shall describe the results for domain boundary dynamics in
terms of Diffusive coefficient (D)1 and Diffusive exponent (↵) for the EM
and the variations thereof with varying parameters. Equations 2.8 relate
those quantities to the number of surviving sectors for given amount of front
progression and expected fixation times.

2.2 Eden Model (EM)

In this section, I explain how the EM growth process works. The process
is defined on a 2-dimensional lattice in which an individual (cell) occupies
a lattice site and can reproduce another individual with the same genetic
identity to one of its unoccupied neighbouring site on the lattice (Eden, 1961).
For our discussion, the lattice is square and the neighbourhood considered
is the Von Neumann neighbourhood i.e. the two vertically adjacent and the
two horizontally adjacent lattice sites.

Any individual with an unoccupied neighbouring site can replicate and
hence, is called an active site. During each growth step, one of the active
site is chosen with uniform probability over all active sites and is chosen to

1Hereinafter, the subscript X is dropped from DX for ease of notation as the context
for the usage of diffusive coefficient is obvious.
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Figure 2.5: Illustrative EM schematic. I. A cell occupying a site can
reproduce another cell to one of its four neighbouring sites. II. An illustration
of sequence of substeps in a step in the growth process. (a) Identify active
sites. An occupied site is an active site if it has one or more unoccupied
neighbour, and considered inactive otherwise. (b) Select an active site to
replicate This selection is done with uniform probability over all active sites.
(c) Select an unoccupied neighbour of the chosen active site. Selection is done
with uniform probability over the unoccupied neighbours. (d) Reproduce a
new cell to the selected unoccupied site This completes the growth process
step

reproduce to one of its unoccupied neighbouring site with equal probability
over each unoccupied neighbouring site. This process was previously referred
to as Type-C Eden model by Jullien and Botet (Jullien and Botet, 1985).
The individuals do not die and thus, an occupied site remains so indefinitely.
Thus, of the standing population only the active site individuals participate
in the growth of the population which is mostly confined to the periphery
of the cluster formed, hence we loosely refer to the set of active site as the
frontier. Figure 2.5 describes on growth step of the process.

In our implementation, we focus on the genetic identity of individual cells.
The daughter cell has the same genetic identity as the parent. We assume
that there are no mutations in the process. The total number of alleles during
the initialization of an instance is treated as a variable parameter.

We consider two geometry of the growth spread: linear growth and circu-
lar growth. In linear growth, a single line of active cells is initialized on the
leftmost edge of the square grid and thus the process propagates the spread in
left to right direction. While, for the circular growth conditions, we initialize

18



the active cells on an approximate circle of sites on the square grid around
an inactive core. In this case, the growth process leads to an approximate
circular cell cluster growing radially outward. In both case, the initial active
cells are assigned their genetic character with uniform probability over the
total number of alleles chosen at the parameter.

This version of the model shows a constant rate of population growth i.e.
1 per growth step. Although this does not correspond to the biological reality
in which we expect the population growth rate to proportional to the number
of reproducing individuals at any given time, the actual growth cluster and
the arrangement of the individuals within them do not depend on the time
elapsed but the total division events that happen during the course of the
simulation. Thus, for the sake of simplicity of implementation there is no
consideration given to the time rate of division, but just the cluster spread
and absolute number of population growth.

I will describe the results from the EM simulations which are consistent
and validated by literature in chapter 4. Having said that, the range of
behaviour of the EM is only defined by the EM Type-C only depends on the
genetic identities of the cells and their location at the start of the simulation
and does not have any other parameter barring the size of the grid/habitat.

2.3 Eden Model with growth delay (EMwD)

Figure 1.1 shows a qualitatively different levels of boundary wandering and
one can also clearly the difference in the numbers of the domains in con-
tact with the growth front between the bacterial (E. coli) and the yeast (S.
cerevisiae) colonies. I wanted to integrate one of the biological differences
between the two organisms into the grid-based simulations I discussed so far
and to see if that could lead to a difference in the genetic pattern if that
factor is varied. With that in mind, I decided to put in a growth delay factor
into the system. This modified growth model is called EMwD.

2.3.1 Division as a first order process

As I mentioned previously in 2.2 the simulation time does not correspond
to any meaningful time for the population save for the subsequence of each
division/birth events. To amend this, I made an assumption about the rate
at which the cells divide. The division of all active cells is a first order
process with the time order parameter ⌧ . In other words, each cell with an
unoccupied neighbouring site divides at constant rate and the average time
for an active cell to undergo division is Mean division time (⌧). Thus, an
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Figure 2.6: Illustrative EM with growth delay schematic. The main
cell states and the various growth and transition process are labelled on the
left of the figure. The squares denote the cell states: Active (green), nascent
(green with pink inset) and inactive (blue). The right side depicts how the
various processes relate the cell states to each other. The pink arrow denotes
a birth/division event in which an active cell produces a nascent daughter
cell at an unoccupied neighbouring site as described in 2.3.1. The green
dashed arrow indicates the transition from a nascent to active cell after the
maturation time � has elapsed as discussed in 2.3.2. The grey dashed arrows
indicate the encompassment of an active/nascent cell by other cells which
makes it unable to reproduce and hence deemed inactive.
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active cell at any given time (t
current

) will divide after time (T
div

) which is a
random variable which follows the distribution below:

P(t  T

div

< t+ dt) =

1

⌧

exp

⇣�t

⌧

⌘
dt, if t > 0, else, 0 (2.10)

This assumption means that the population growth rate at any time is
proportional to the number active (read reproducing cell) and, in the case of a
well-mixed population, the population would grow exponentially. These two
implication validate our assumption with enough scrutiny that our simplistic
model merits.

If this growth rate process was included in the EM, the statistical be-
haviour of the spatial organization of the individuals, remains unchanged, so
we can carry the observations from the original formulation of the EM to the
one assuming division as a first order process, regarding the behaviour of the
sectors and the domain boundary wandering.

This assumption gives our model a meaningful continuous time axis.

2.3.2 Growth delay

A bacterium recently formed from a division is less likely to divide compared
to one which has had the time to harvest nutrients, grow in terms of cell
volume and mass and replicate its genetic information. So, I propose to
introduce a maturation time or a growth delay for a cell to model that idea.

Consider that an active cell (mother) divides to produce a daughter cell
which will occupy one of the mother’s unoccupied neighbouring sites. Now,
I shall label this daughter cell as nascent. Only after Maturation time (�)
has passed after its birth will it become active and can potentially divide
to add to the population. In other words, each cell division in our model is
asymmetric division that produces an active cell at the original site of the
mother cell and a nascent cell at one of its unoccupied neighbouring sites.

The condition for a cell to become inactive remains unchanged: an ac-
tive/inactive cell becomes inactive if it no longer has an unoccupied neigh-
bouring site i.e. it is completely encompassed by other cells. This modified
model is summarized in figure 2.6.

Thus, our modified model takes two parameters to describe its growth
dynamics: ⌧ the mean division time for an active cell and � the time a
nascent cell takes to mature to an active cell. Both of these are in arbitrary
time units and since, there is no other time scale defining factor in the system,
the system behaviour only depends on the ratio ⌧

�

up to a rescaling in the
time axis. From this observation and the reduction of the parameter space,
for all the simulations performed ⌧ = 1 was fixed. In other words, for our

21



purposes a unit time is equivalent to the mean division time for an active
site.

Moreover, note that EM growth process is a special case of this modified
model in which � = 0. If � = 0, then effectively the nascent cell state is
removed from the system and each daughter cell becomes active immediately,
as was the case in the EM. Thus, the growth process reverts to the EM, albeit
now the process is defined on a continuous time axis instead of the discrete
growth steps. It can be argued that if we let both the EM and the EMwD,
but � = 0, grow until N divisions take place, any possible final configuration
of the system is equally likely in both processes.

This opens up a spectrum of behaviour controlled � of which the EM is
an extreme point. Our expectation is that increasing � for a fixed ⌧ , the
behaviour of the model will go from Eden-like to deviating from it.
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Chapter 3

Methods

In this chapter I shall describe the practical computational details of the
implementation of the models and the analysis of the simulations. All the
programs are in python utilizing mainly the scientific computation packages
numpy and scipy .

3.1 Eden Model (EM) implementation

For the case of the primitive EM, we consider only discrete growth steps, in
each of which one cell divides and the population grows by one.

3.1.1 The grid structure

The EdenModel class/object functions on the main data attribute of an
N ⇥ M numpy array with integer entries which represents the lattice in
which the simulation takes place. From hereinafter, I shall refer to this array
as the grid. The numpy array with periodic boundary conditions was imple-
mented by subclassing the existing numpy.ndarray based on the python

code provided by Alex McFarlane on their github blog post (McFarlane,
2016).

Each entry in the grid represents a lattice site indexed by the usual array
indexing ‘ij‘ in numpy . The array takes integer values. An entry with a
value 0 indicates an empty site. Whereas a positive integer entry represents
a cell occupying the site with the genetic identity equivalent to the integer
value. Thus, the genetic identities on a lattice are 1, 2,and so on. A �1 entry
denotes a blocked site, which is used only in different intializations.

The adjacency on our lattice is defined a nbhd method which takes a
site index as an argument and returns the indices of the sites adjacent to
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it. In general, the adjacent neighbourhood of each site is the Von Neumann
neighbourhood, i.e. the two vertically and the two horizontally adjacent sites.
Though it should be noted that redefining this method can allow simulation
in a different lattice configuration, such as hexagonal site grid as discussed
in subsection 3.1.4.

3.1.2 Growth process

During a realization of a EM simulation, the dynamic variables are the grid
itself and active , a list of site indices of cells which are active. The EM
growth step described in is implemented as follows. At the start of a growth
step, an index is chosen from with active with uniform probability to be
divided and a daughter cell of the same genetic identity is added to one of
its unoccupied neighbouring site ( open_nbhd(index) returns indices from
nbhd(index) with grid entry 0). Then, it is checked that the daughter cell
is active and if any of its neighbours have become inactive, based on which
active is updated. Figure 3.1 describes the algorithm flow in detail.

3.1.3 Initializations

EM simulations were performed mostly four different initializations of the
grid, each defined by the grid size N ⇥M and additional parameters.

1. Circular initialization (C
init

) [r0 (initial radius), n

g

(number of geno-
types)] : This is similar to the circular inoculation of a microbial colony.
A circle of radius r0 centred at the centre of the grid is initialized with
cells of genetic identities chosen uniformly from 1 to n

g

. All the sites
in the interior of this circle are blocked.

2. Circular initialization (L
init

) [n
g

(number of genotypes)] : This is similar
to the linear inoculation of a microbial colony. The first column of the
grid (j = 0) is blocked and the second column of the grid is initialized
with cells of genetic identities chosen uniformly from 1 to n

g

.

3. LS
init

: This is used to study an isolated domain boundary wandering
in linear growth front. The first column of the grid (j = 0) is blocked.
The second column is initialized with cells of genetic type 1 and 2 in
the top and the bottom half respectively. Additionally, the top and the
bottom rows of the grids are also blocked.

4. SS
init

[r0 (initial radius)]: This is used to study an isolated domain
boundary wandering in circular growth front. A semicircle centered at
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Figure 3.1: EM implementation flow diagram for N divisions. The
rectangular blocks represent a process or a variable assignment. The dia-
monds represent a condition decision. The rounded rectangles are start and
terminate states in the algorithm.
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the midpoint of the left-most edge of the grid is initialized with the
top quarter circle lined with cells of genetic identity 1 and the bottom
quarter circle with those of genetic identity 2. The interior of the
semicircle is blocked.

Figure 3.2 shows all the initialization and the subsequent relization after
7500 growth steps.

Figure 3.2: Initializations implemented. Subfigures A, B, C and D show
the four chief initilizations: Circular initialization (C

init

), Circular initializa-
tion (L

init

), Linear singular initialization (LS
init

) and Semicircular singular
initialization (SS

init

), respectively, on 200⇥ 200 grid before the growth sim-
ulation has been started. Subfigures E, F, G and H show an outcome of the
simulation for C

init

, L
init

, LS
init

and SS
init

after 7500 growth steps/divisions
in the EM growth process. Red and green denote the two genetically distinct
cells present in the colony. Blue denote empty site in the grid and white
denote blocked sites.
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3.1.4 Hexagonal grid implementation

A 2-dimensional triangular lattice is one in which each lattice point is a unit
away from six neighbouring sites. We refer to it as the hexagonal grid because
each lattice site can be thought of a hexagon with a neighbour sharing one of
the hexagon’s edge each. We can define the EM on this lattice as well, just
by changing the cell neighbourhood in the growth step. A hexagonal grid
version of EM or the one defined on a triangular lattice was also implemented,
by redefining the nbhd((i,j)) to return [(i + 1, j), (i + 1, j + 1), (i, j +

1), (i � 1, j), (i � 1, j � 1), (i, j � 1)]. This allowed the program to store
the hexagonal grid in the M ⇥N numpy.ndarray as usual. Except in this
case, the indexing of the array does not match up to the hexagonal grid site
coordinates, but are a skew linear transformation of it.

Figure 3.3: An instance of circular colony growth simulation on a
hexagonal grid. Simulation output of circular colony growth with 2 genetic
variants. The initial colony radius was r0 = 50. The simulation ran for 4⇥10

4

growth steps. Red and green denote the two genetically distinct cells present
in the colony. Black denote blocked sites.
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3.2 Eden Model with growth delay (EMwD)

implementation

The object class for EMwD was implemented by subclassing upon the prim-
itive EM class EdenModel with the grid attribute remaining intact. This
object takes the mean division time ⌧ and the maturation time � as parameter
arguments.

The list of indices of active cells active is the same as in the EM, see
section 3.1. To track the nascent cells, a queue consisting of tuples of nascent
cell index and the global time at which it will transition to an active cell is
defined as nascent . The global time is tracked by the variable time .

3.2.1 Growth process

The growth process is based on Doob-Gillespie algorithm in which the divi-
sion is a first order process and the maturation events (i.e. nascent to active
transitions) take place at a fixed time which are determined by the birth time
of the nascent cells in question. The growth process progresses by determin-
ing which of the events: a division or a maturation event takes place first.
Consider the following conditions at the start of a growth step and what a
growth step looks like for each of them:

1. num(nascent) > 0 and num(active) = 0
Then, a nascent to active transition will happen first. The first el-
ement in the queue nascent is popped and assigned to variables
cell_index and t_m respectively. cell_index is added to active

and the global time is set to t_m . In other words, the first nascent
cell to mature is made active and the time progress to the time at which
that happens.

2. num(nascent) = 0 and num(active) > 0
Then, a division event will happen first. A random increment time
dt is drawn from an exponential probability distribution with scale
parameter ⌧

Nactive
where ⌧ is the mean division time of an active cell and

N

active

is the number of active cells in the system. The global time is
incremented to time + dt . Then, an active cell is chosen with uniform
probability to be divided and a new daughter cell is added to the grid.
The daughter cell index and the time at which the daughter cell will
mature, time + � is appended to nascent . Then, the algorithm check
for any encompassment event and updates the active and nascent

accordingly.
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3. num(nascent) > 0 and num(active) > 0

A random increment time dt is drawn from an exponential probability
distribution with scale parameter ⌧

Nactive
. If time + dt < t_next , the

time at which the next maturation event happens, the division event
happens at time + dt as described in case (2). Else, a nascent to
active transition happens at t_next similar to case (1).

The algorithm flow of the EMwD is shown in figure 3.4. The initial con-
ditions of the simulation space defined for EM remains the same for EMwD.

3.3 Mean Square Deviation analysis of the do-

main boundary

Domain boundary points are extracted from the grid after the simulation
by marking them at the vertices shared by four sites. In other words, a
domain boundary point is said to exist at (i, j) if any of the following cell
pairs identified by their indices [(i, j), (i+1, j)], [(i, j), (i, j+1)] or [(i, j), (i+
1, j + 1)], differ in their genetic identity. The initial conditions LS

init

and
SS

init

are used to extract isolated domain boundaries. The coordinate axis
is set with the leftmost boundary point as the origin and the obvious x- and
y-axis are considered.

3.3.1 MSD over multiple realizations

To calculate the MSD of the boundary from its starting position in the y-axis
across various realizations (N), the boundary points from the N realizations
are collated into a single dataset [(x

i

, y

i

)]

K

i=1. Then, MSD is calculated by
the following equation.

MSD(x) =

P
8i,xi=x

y

2
i

n

x

(3.1)

where, n
x

is the number of points such that x

i

= x. This method is only
used for to analyse domain boundary wandering in case of the LS

init

initial
conditions since, average direction of growth for a domain boundary cannot
be considered constant in case of SS

init

initial condition. Moreover, the
fit value of the diffusion coefficient from the MSD(x) vs x plots are not
accurate. For this, the next method for estimating MSD profile of the domain
boundaries is preferred.
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Figure 3.4: EMwD implementation flow diagram. The main processes
of maturation event, division event and updating the active and nascent
containers are shown in green, pink and grey rectangles, respectively. The
substeps in each of the processes are detailed in the flow blocks connected
by the dashed lines. The rectangular blocks represent a process or a variable
assignment. The diamonds represent a condition decision. The rounded
rectangles are start and terminate states in the algorithm. Symbols in the
flow diagram- T: total time, dt: time-step, t: instantaneous time
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3.3.2 MSD over segmented windows

Consider a domain boundary data sorted as [(0, 0) = (x0, y0), . . . , (xi

, y

i

), . . . , (x

N

, y

N

)]

such that x

i

 x

i+1. From this trajectory, we take a contiguous segment
Seg(p, q) = [(x

i

, y

i

)]

q

i=p

and fit a line through it using least square regression
⇤

p,q

⌘ y = m

p,q

x + c

p,q

. We then consider tranformed coordinates for the
Seg(p, q) as the x-axis along the line ⇤(p, q) and the origin as the projection
of (x

p

, y

p

) onto ⇤(p, q). Under this transformation our segment looks like
Seg⇤(p, q) = [(0, Y1), . . . , (Xj

, Y

j

), . . . , (L

p,q

, Y

q�p

)]

q�p

j=1. Here L

p,q

is the length
of the segment in the transformed coordinates.

MSD(p, q) =

P
q�p

j=2 Y
2
j

· (X
j

�X

j�1)

L

p,q

(3.2)

For our analysis, we calculate the MSD for segments of length L =

l, 2l, . . . ,m

cutoff

l such that m

cutoff

l is approximately 60 to 70% of the total
trajectory length.
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Chapter 4

Results

In this chapter, I shall summarize my findings from the simulation of Eden
model with cells with distinct genetic identities and my modification of the
Eden Model with incorporates a delay in cell division after the birth of a new
cell in the system.

4.1 Sectoring patterns in the Eden model of mi-

crobial colony growth

We started this investigation of the genetic patterning in the two-dimensional
expansion of a microbial colony with the EM with the specification that the
cells now carry a genetic identity or label which they pass on to their offspring.
The growth rule is agnostic to this genetic label and thus, phenotypically
all the cell agents in the system are identical. Hence, it is surprising at
first glance, that this version of the Eden model produces genetic sectoring
patterns quite similar to those observed in experiments with two strains of
neutrally labelled microbes. The simulation outputs from figure 4.1(b) is
fairly comparable to those of figure 1.1.

In retrospect, it is obvious that the genetic sectoring would be inevitable
as all the ingredients for it are there; neutral competition, genetic bottleneck
due to small reproducing population at the growth frontier and the stochas-
ticity of the growth rule are sufficient factors to capture this behaviour in
simulations.

4.1.1 Number of sectors in linear and circular growth

In figure 4.2(a), it can be seen how quickly the domain boundary collisions
lead to reduced genetic diversity in the population. In the case of linear
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Figure 4.1: Subfigure (a): Simulation output of linear colony growth
with 10 genetic variants. The simulation was initialized with Circular ini-
tialization (L

init

) with number of genetic variants = 10. The growth process
was done for 104 steps/reproduction events. Grid size is 100⇥ 200 Different
shades of teal indicate cells of different genetic identity. Subfigure (b): Sim-
ulation output of circular colony growth with 10 genetic variants.
The simulation was initialized with Circular initialization (C

init

) with initial
radius r0 = 50 and number of genetic variants = 10. The growth process was
done for 10

5 steps/reproduction events. Grid size is 500 ⇥ 500. The dark-
ened initial core is ignored as it is inactive throughout the process and its
constitution plays no role in the simulation. Different shades of teal indicate
cells of different genetic identity.
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growth, the size of the frontier (the height of the grid) remains fairly constant
through the process. Thus, the unoccupied sites neighbouring the active cells
remain bounded. Given enough time, two randomly propagating domain
boundary will eventually collide, and the sector bound by them will close
off. Hence, we expect if the linear growth simulation is propagated for long
enough, there will be a fixation event i.e. only one sector will remain at the
frontier.

Comparing this to circular growth (see figure 4.2(b)), we observe initially
large number of sectors being closed off. But as the frontier (circumference of
the radially growing colony) grows the spatial separation of domain bound-
aries increases on average leading to the events of sectors closing off becoming
rarer as time progresses. In contrast with the linear growth front, the domain
boundaries on a circular front seem to drift apart at a rate proportional to
the velocity of the growth front. We can expect a non-zero number of sectors
surviving on an average, in case of circular growth, and the sectoring pattern
seems to stabilize.

Both of these observations agree with the experimental results and the
theoretical expectations from the results described in 2.1.

When figures 4.2(b) and 4.2(a) are compared with 4.1(b) and 4.1(a),
the obvious expectation of greater diversity at initialization leads to greater
diversity at the end of growth is realized. But in the case, three or more
genetic variants in the system, not all boundary collisions lead to boundary
annihilation. Say, for example, a domain of type 1 neighbours a domain of
type 2 on top and a domain of type 3 on the bottom, then if the two domain
boundaries of the domain of type 1 were to collide, they will coalesce to
form a single domain boundary between domains of type 2 and 3. Thus, the
average rate at which domains grow (or contract) really is a function of the
number of distinct genetic identities in the system, in addition to the number
of domains and the span of the habitat. The mean field approximation for
this calculation would rely on the expected fraction of boundary collisions
which result in coalescence (as opposed to annihilation).

4.1.2 Boundary wantering as a super-diffusive random
walk

With focus on the behaviour of singular domain boundary, 25 simulations
of LS

init

initialized EM grids was performed. A representative realization of
such simulation is provided in figure 4.3(a). The collated 25 domain bound-
aries were collected and the MSD vs r (distance from the initial front) was
performed as described in section 3.3.1. The ln(MSD(r)) vs ln(r) plot is
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Figure 4.2: Subfigure (a): Simulation output of linear colony growth
with 2 genetic variants. This simulation was on a rectangular grid with
periodic boundary conditions on the top and bottom edge of the grid. The
first column is row of inactive cells, the second column was initialized ran-
domly with cells with one of 2 genetic identities. Different shades of teal
indicate different genetic identity. The growth process was done for 10

4

steps/reproduction events. Grid size is 100 ⇥ 200. Subfigure (b): Simula-
tion output of circular colony growth with 2 genetic variants. The
simulation was initialized with the circular C initialization with initial radius
r0 = 50 and number of genetic variants = 2. The growth process was done
for 10

5 steps/reproduction events. Grid size is 500 ⇥ 500. The darkened
initial core is ignored as it is inactive throughout the process and its consti-
tution plays no role in the simulation. Different shades of teal indicate cells
of different genetic identity.
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given in the figure
The close linear fit in figure 4.3(b) implies that domain boundary wan-

dering can be approximated by the equation:

MSD = 2Dr

↵

= 2Dr

2⇣ (4.1)

The slope of the linear fit ↵ = 2⇣ = 1.33 indicates that if we were to
consider r or in the linear case x as the time-coordinate then the domain
boundary wandering is analogous to a super-diffusive random walk. The
diffusive coefficient in that case would be 2D = 0.51. The diffusive expo-
nent has previously been calculated by simulations of the Eden model(Saito
and Müller-Krumbhaar, 1995) which validates our implementation as con-
sistent with it. This anomalous diffusive character can be attributed to the
roughness of the growth frontier itself as described in section 2.1.

4.1.3 MSD over segmented windows

Furthermore, MSD analysis of segmented windows as described in section
3.3.2 was performed on singular domain boundaries obtained from both LS

init

initialization and SS
init

initialization for 25 runs on both. For the linear
growth case, the segment windows ranged from 36 to 720 with increments
of 36 while each total boundary lengths were ⇡ 1000. Similarly, for circular
growth case, the segment windows ranged from 20 to 400 with increments of
20 while each total boundary lengths were ⇡ 600.

From the log10(MSD) vs log10(window size) plots for both LS
init

and
SS

init

initializations, the line

y = log10(MSD) = ↵⇥ log10(window size) + log10(2D) = mx+ c (4.2)

is fit using linear regression. The segmented window MSD plots are shown
in figures 4.4(a), 4.4(b) and 4.5. Both fits give use similar values for the
anomalous diffusion equation parameters. The LS

init

simulations predict
log10(2D) = �1.8416 ± 0.1663 and ↵ = 1.2903 ± 0.0546. The SS

init

sim-
ulations predict log10(2D) = �1.8913 ± 0.1365 and ↵ = 1.3006 ± 0.0546.
Both the results can be considered practically identical to each other. This
is because only the local geometry of the growth frontier where the domain
boundary intersects with it, affects the wandering of the domain boundary.

Remarkably, a previous study has found the diffusive exponent for the
case of an E. coli colony to be ⇣

E. coli

= 0.65 (Hallatschek et al., 2007) which
is very close to our results from the simulations of the Eden growth process
⇣ = 0.65. This surprising similarity in the diffusive exponents have been
noted by (Hallatschek et al., 2007), although no speculations have been made
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Figure 4.3: Subfigure (a): Representative simulation output for singu-
lar domain boundary with a linear growth front This simulation was
done a rectangular grid with LS

init

. The top and bottom half of the first
column of the grid was initializaed with cells of genetic type 1 and 2 respec-
tively. The boundary between the two domains is highlighted in red. The
growth process was done for 4⇥ 10

5 steps/reproduction events. Grid size is
400⇥ 1200. Subfigure (b): log

e

of MSD of domain boundary vs. log

e

of
distance from initial frontier The y-value is the natural logarithm of the
squares of vertical deviation of the domain boundary in (a) averaged over 25
instances of simulation and the x-axis represents the natural logarithm of the
distance propogated by the frontier from the initial frontier. The blue dots
indicate the simulated MSD values and the dashed black line is the linear fit
(slope = 1.33, y-intercept = �0.680)
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Figure 4.4: Subfigure (a): Segmented window MSD vs window size
for the linear growth case (linear scale) The plot shows segemented
window MSD calculation performed on 25 runs of singular domain boundary
propogation with LS

init

initialization. The segment window sizes ranged
from 36 to 720 with increments of 36 while each total boundary lengths
were ⇡ 1000. Subfigure (b): Segmented window MSD vs window size
for the circular growth case (linear scale)The plot shows segemented
window MSD calculation performed on 25 runs of singular domain boundary
propogation with SS

init

initialization. The segment window sizes ranged
from 20 to 400 with increments of 20 while each total boundary lengths
were ⇡ 600. In both the subfigures, black dots indicates the average MSD
for the given window size for a single domain boundary realization and the
semi-transparent grey filled curves represent standard deviation bounds for
each black dot. The blue triangle represent the MSD averaged for all 25
boundaries. The dashed blue line indicates the power law fitted curve for
y = 2Dx

↵.
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Figure 4.5: Segmented window MSD vs window size for the linear
and circular growth case (loglog scale) Subfigure (a) is the plot in figure
4.4(a) in a log-log scale. Subfigure (b) is the plot in figure 4.4(b) in a log-log
scale. Refer to figures 4.4(a) and 4.4(b) captions for details for the plots
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as to why. This connection is further made stark by noting that E. coli is but
one microorganism which forms such two-dimensional colonies on substrates,
while it has been noted that yeast colonies do not show such pronounced
boundary wandering.

4.2 Effect of growth delay on demixing and sec-

tor boundaries

In this section, the results regarding the Eden Model with growth delay are
presented. The model formulation and the implementation are discussed in
sections 2.3 and 3.2, respectively. Before proceeding, it should be noted that
the parameters in the EM with growth delay model, namely ⌧ and �. As
noted in 2.3, the growth process only depends on the ratio ⌧

�

upto a time
rescaling, ⌧ = 1 is fixed for all the simulations.

The obvious consequence of increasing � is that the overall colony growth
will be slowed down1, as the time from birth to the first division event for
each cell is increased by �. Although, we cannot say that the linear relation
at the individual level scales to population level. As seen in the figure 4.6,
for the same simulation time T , the final colony size achieved decreases for
increasing �.

There are other details which stand out in the figure 4.6. Qualitatively,
the domain boundary wandering becomes less prominent for increasing �.
Moreover, the significant presence of the cells in the nascent state at the
growth frontier for higher values of �. To make an analogy to reaction sys-
tems, the nascent to active transition becomes the rate limiting process for
larger � values for this multi state growth process. Because of this, the colony
geometry is also affected. In EM starting with a single cell or a circular initial
colony the final colony shape approaches a circle. While in EMwD, although
the growth front becomes smoother, the overall curvature starts deviating
from circularity for increasing �. It is an artefact of the underlying square
lattice. I speculate on this further in the next chapter.

4.2.1 Effect of growth delay on boundary wandering

The qualitative observations suggest that � is smoothening the growth fron-
tier and thus, dampening the boundary wandering phenomenon which causes
the sectoring. Segmented window MSD analysis was performed in the same

1This is the reason I referred to this model as Eden Model with growth delay.
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Figure 4.6: Simulation output with SS init for various � values after
growth time T = 500 and mean division time ⌧ = 1 fixed for each.
The four simulation outputs for � = 0.01, 0.1, 1, 5 are shown. The two shades
of teal represent cells of different genetic identities. The yellow dots represent
nascent cells.

fashion as in section 4.1.3 for a range of � for both the LS and SS initializa-
tions.

For both LS
init

and SS
init

, we can see from figures 4.7(a) and 4.7(b)
that MSD profiles for �  0.1 remains largely stable and similar to those of
respective growth case in EM. For � > 0.1 we see the MSD values starting
dipping, indicating quantitatively lesser boundary wandering.

The diffusive equation parameters D, the diffusion coefficient, and ↵, the
diffusion exponent, derived from fitted curves to the segmented window MSD
profile are plotted as a function of � in figure 4.8.

The plots in figure 4.8 are surprising, as the initial expectation would
be to presume that both the parameter D and ↵ would have a monotonic
dependence of �, if any. In figure 4.8(a), at � = 10

�3, the predicted ↵ = 1.13

is significantly lower than the one obtained for the EM = 1.30. Then, it
further increases to 1.31 at � = 0.01. This is in stark contrast with our
intuition based in theory described in section 2.1 that increasing � leads
to smoothening of growth frontier which in turn, should reduce ↵. In the
circular case, initially for �  0.1, ↵ fluctuates about 1.0 but then shoots
up to ↵ = 1.35 for � = 1. Moreover, the � dependence profile of both the
parameters predicted for different growth cases are starkly different.

To probe this further, simulations were performed � varying between 10

�4

and 10

�2. The results from the subsequent segmented window MSD analysis
and diffusion equation curve fitting are shown in figure 4.9. Even for relatively
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Figure 4.7: Subfigure (a): Segmented window MSD plots for LS init
with growth delay for varying � from 10

�3 to 10. Each plot utilizes
single domain boundary data from 25 different simulation runs. The segment
window sizes ranged from 36 to 720 with increments of 36 while each total
boundary lengths were ⇡ 1000. Subfigure (b): Segmented window MSD
plots for SS init initilizations with growth delay for varying � from
10

�3 to 10. Each plot utilizes single domain boundary data from 25 different
simulation runs. The segment window sizes ranged from 20 to 400 with
increments of 20 while each total boundary lengths were ⇡ 600. The axis are
plotted in log-log scale. The dashed blue line indicates the fitted y = 2Dx

↵

curve. Black dots are data points from individual runs and blue triangles
are indicate the mean MSD over 25 runs. The light blue regions indicate the
spread of the data. Representative lines of fixed slope 1.33 and slope 1 are
drawn in red and orange respectively.42



Figure 4.8: Subfigure (a): Fit values of log(2D) and ↵ as function of
� as obtained from data from LS init. Both variables are plotted over a
common x-axis. Subfigure (b): Fit values of log(2D) and ↵ as function
of � as obtained from data from SS init. Both variables are plotted over a
common x-axis. The blue curve and axis (left) corresponds to log(2D) where
2D is the diffusion coefficient. The green curve and axis (right) corresponds
to ↵, the diffusion exponent. See figure 4.7(b) for the fitted curves.
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low � values the diffusion parameters fluctuate dramatically upon varying �.
↵ value, in fact, goes above 1.4 at log(�) = �2.8 which shows a higher
degree of superdiffusive character than the original EM. Another peculiar
observation to be made is that the fluctuation pattern for both log(2D) and
↵ between 10

�4  �  10

�3 and 10

�3  �  10

�2 are remarkably similar
except the fluctuations are much more pronounced in the latter segment.

Figure 4.9: Fit values of log(2D) and ↵ as function of � as obtained
from data from LS init for finer � sampling. Both variables are plotted
over a common x-axis. The blue curve and axis (left) corresponds to log(2D)

where 2D is the diffusion coefficient. The green curve and axis (right) corre-
sponds to ↵, the diffusion exponent.

Also, for almost all consecutive � values, a decrease in ↵ is accompanied
by an increase in log(2D) and vice versa. Since, both parameters drive the
boundary wandering, they seem to fluctuate in a compensatory manner. To
look at the combined effect of these parameters on the overall boundary
wandering, the fitted parameters were used to compute the predicted MSD
of the domain boundary for fixed propagation length r, and plotted over
varying �.

Figures 4.10(a) and 4.10(a) both show that predicted MSD vs � curves
seem to be stable for � < 0.1 around the values which are fairly close
to the predicted MSD values from the EM, MSD

fit

(r) = 2.0, 0.7,�0.6 for
r = 1000, 100, 10 respectively, followed by a decrease in predicted MSD for
all r when � increases beyond 0.1. In figure 4.11, for lower � below 0.01, the
predicted MSD values remain fairly constant and consistent with the pre-
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Figure 4.10: Subfigure (a):Expected log MSD(r) = log(2D)fit+↵fit · log(r)
vs � for LS init data Subfigure (b): Expected log MSD(r) = log(2D)fit +

↵fit · log(r) vs � for SS init data Red, blue and green lines denote r =

1000, 100 and 10 respectively.
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Figure 4.11: Expected log MSD(r) = log(2D)fit+↵fit·log(r) vs � for LS init
data Red, blue and green lines denote r = 1000, 100 and 10 respectively.

dicted MSD for the EM. Thus, the variation in D and ↵ as seen in figure
4.9 seem to be almost definitely compensatory to give a constant boundary
wandering.

Taken altogether, the results from the simulations of EMwD show that
the model can show a wide range of behaviour with respect to the domain
boundary wandering phenomenon going from superdiffusive to diffusive and
even subdiffusive character under certain values of �. Moreover, we can
identify 0.1 <

�

⌧

< 10 as the critical range in which the domain boundary
behavior goes from fairly pronounced wandering like the EM to an almost
ballistic propagation.
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Chapter 5

Discussion

The microbial colony growth in two-dimensions is subject to strong genetic
drift resulting in spatial demixing of genotypes in the growing population and
establishment of monoallelic domains separated by a sharp domain boundary.
As part of this study, it is demonstrated that a simple agent-based model on
a lattice such as the Eden Model is sufficient to capture the salient behaviour
of genetic demixing and sectoring and even match the boundary wandering
exponent of the experimentally observed E. coli colonies. Nevertheless, this is
not enough to emulate the range of genetic sectoring patterns seen in nature,
let alone give us insight as to what factors drive and control this behaviour.
In this project, I outline a bottom-up approach to model this phenomenon, in
which we start with the existing Eden Model and incorporate a biologically
suggestive detail while maintaining the simplicity of the original.

The formulation of EMwD expands the range of behavior as far as the
genetic sectoring is concerned, while the EM remains as a special subcase of
the new model. The incorporation of a nascent cell state and the maturation
time (�) in the growth process, provides us with a tunable parameter to
control the behavior of the system. The results from analysing the singular
domain boundary for various cases, suggests that increasing � from 0 to the
values comparable to the mean division time dampens the domain boundary
wandering, leading to a more stable sectoring pattern and reduced genetic
drift. This makes good on the promise of giving us a possible avenue through
which we can go from the sectoring pattern of, say, E. coli colony to that of
yeast colonies. In fact, experiments of observing the sectoring pattern of E.
coli colony at 21

� C and 37

� C, show that the domain boundary wandering
in colonies grown at lower temperature show less genetic drift (Gralka et al.,
2016). This further corroborates with our model in which slower cell growth
leads to less genetic drift.

In our EMwD model, the nascent cell state is comparable to a cell which
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Figure 5.1: Figure adapted from Wang and Levin 2009. The illustration
depicts various stages of a traditional bacterial cell cycle. Here the B period
is the period between cell birth and the initiation of chromosomal replication.
The C period depicts the stage in which chromosomal replication takes place
and finally, the D period is the time between completion of chromosomal
replication and the completion of cell division. We indicate that B/C peiod
corresponds to the nascent state in our EMwD model whereas the D period
corresponds to the active state in the same.

is doubling its size and undergoing chromosomal replication. The active cell
state, then, would correspond to a cell which has undergone chromosomal
doubling and can undergo cell division. Specifically in the case of bacterial
cell cycle, the nascent cell state and the active cell state can be thought of
analogous to B/C periods and D period of the bacterial cell cycle respectively.

This mapping is not accurate as the cell division in EMwD is asymmetric
in the sense the two daughter cells do not start at the same cell state after
division. It would be interesting to simulate EMwD in which an active cell
reverts to the nascent state after reproducing a daughter cell at a neighbour-
ing site. In that formulation, perhaps we can map fast-growing bacteria and
slow-growing bacteria on a �

⌧

axis and see if the sectoring patterns compare
to what the model would predict.

In the case of a eukaryotic microbe, such as S. cerevisae, the mapping
of the nascent and active states described in EMwD will correspond to the
interphase and M phase in the eukaryotic cell cycle respectively. Although,
this mapping is not comprehensive at the moment and a more elaborate
modelling of the cell cycle stages in further development of EMwD would be
required to have a more faithful modelling of various cell cycle stages, their
regulation and how the time period with each are distributed.

Comparison of the effect of cell growth cycle between E. coli and S. cere-
visae colony genetic sectoring pattern cannot be made conclusively as there
are other large scale differences in how the cells spatially organize in colonies
between the two organisms. The cell size and shape difference between a
rod-shaped bacteria and a larger ellipsoidal yeast cell would certainly lead to
difference in the spatial organization of the cells which our grid-based EMwD
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model is not fit to address. Nonetheless, if quantitative description of spa-
tiogenetic pattern and the domain boundaries in S. cerevisae colonies are
provided, our expectation is that the diffusive parameters of the boundary
wandering measured from experiments would correlate with the coefficient of
variation of the time period from birth to the subsequent division of the cell.
In our model, this coefficient of variation would have the value ⌧

⌧+�

. Expec-
tation from our model is that boundary wandering decreases with increase
in the C

V

of the birth to division time. Experiments can be performed by
measuring C

V

for E. coli and S cervisae and performing fluorescence imaging
experiments as described in the introduction. The outcomes from these ex-
periments can support or oppose the predictions from our model but cannot
wholly rule out the effect of any other factor independently influencing the
spatiogenetic pattern.

The within species comparative experiments where only cell growth cycle
stages are regulated and the resultant spatiogenetic pattern are compared
as outcomes would be more promising test of the EMwD model. For such
an experiment for a particular microbial species or strain, any retardation of
chromosomal replication or, separately, the division of the cell by the means
of addition of metabolic agents which are known to inhibit one of these pro-
cesses can be used to create two or more types of populations which show
differing ratio of time period of B/C phase and D phase, which in EMwD
corresponds to �

⌧

. Moreover, temperature can be used to control the cell
cycle kinetics. These time periods can be measured by flow cytometry. After
having measured those,the two population with differing cell cycle behavior
can be inoculated separately and their spatiogenetic patterns can be ana-
lyzed. From the model, I hypothesize that higher �

⌧

ratio will lead to lesser
domain boundary wandering and higher number of surviving sectors for the
same amount of colony propagation.

The results from the EM with growth delay, also poses interesting ques-
tions as to how the incorporation of nascent cell state and why the diffusive
boundary parameters behave in such an unintuitive manner for varying �.
Analysing the growth frontier, particularly in terms of its roughness and
roundness, in case of circular inoculation, might give insight as to the inter-
action of growth frontier and domain boundaries.

The deviation from the circularity for colonies is an artefact of the lattice,
for large �

⌧

ratio, which is at odds with how microbial colonies spread. I spec-
ulate that the cells in the model seem to go from asynchronous stochastic
division events to synchronous divisions, for large �, and the colony cluster
tend towards the diamond shape similar to that of the Von Neumann neigh-
bourhood. This can be alleviated trying out the model implementation over
a hexagonal lattice or a square lattice with Moore neighbourhood.
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So far, we have only characterized the domain boundary wandering. Sta-
tistical characterization the genetic sectoring pattern at large is required in
terms genetic diversity measures such as number of surviving sectors, local
spatiogenetic correlations.
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Appendix A

Source Code

Source code of the work used in the results described in this text are stored
at https://github.com/CyCelsLab/microbialDemix.
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