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Abstract

Clustering is one of the most widely researched areas in unsupervised learning, where the

main aim is to find structures in unlabelled data sets. This is done by partitioning data

set into smaller groups or clusters so that the data points in the cluster have more common

features among themselves compared to those in other clusters. There are plenty of different

types of clustering techniques starting from the classical to the more recent ones based on

the topological and geometrical methods. It has wide application across various fields.

Different types of hierarchical, partitioning and density-based clustering algorithms are

studied along with topological data analysis based clustering using persistent homology. The

real data sets contain both numerical and categorical variables, which makes it difficult to

cluster. Different approaches and few techniques for clustering mixed data sets are discussed.

The objective is to study all these techniques and their limitations complemented by two

real-life application in business and physical science fields.
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Chapter 1

Introduction

Clustering is one of the most popular and widely used techniques in various disciplines such

as statistics, biology, social science, Image segmentation, software engineering to identify

natural groups and structures in a data set. It is a method of unsupervised learning, of

identifying similar clusters within the data and are grouped into different groups. The

similarity or dissimilarity between two objects in a data set is usually measured as the

distance between the vectors representing the objects. These objects are multidimensional

variables, also called attributes or features. In this thesis, we refer to these variables as

attributes. There are hundreds of different types of clustering techniques starting from the

classical to the more recent ones based on the topological and geometrical methods. The

popular clustering techniques are hierarchical clustering, partitioning clustering methods

like k-means and partition around medoids, density clustering methods like DBSCAN, mode

clustering and level set clusters.

Algebraic topology is a branch of mathematics that deals with using abstract algebra to

study topological spaces. Topological Data Analysis is a recent and most popular research

area which uses tools from topology and statistics to study and analyse structures in the

data sets. The approach here is, given a point cloud in a metric space and assuming data is

derived from a manifold, algebraic topology is used to measure the persistence of homology

groups and classifies the point cloud geometrically. ToMATo is Topological Mode Analysis

Tool used to cluster data using persistent homology.

Most of the clustering techniques are applicable either on numerical or categorical data
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sets, but not applicable to mixed data sets. To cluster a mixed type data set is still a

challenge. There are many approaches where algorithms used for clustering single data type

is modified and used on mixed-type data sets. However, they all suffer mainly from loss of

information. KAMILA is a recent approach which addresses the problems faced by other

algorithms and produces more stable clusters.

This project is aimed at studying different clustering algorithms, as well as the imple-

mentation of the same on real-world data sets. The techniques studied are applied to an air

quality data set to understand the healthy/less polluted places before and during COVID-19

lockdown in India across different cities. The algorithms studied are tried on a mixed data

set; Online Shoppers Intention to analyse the behaviour of online shoppers.
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Chapter 2

Clustering

Clustering is the process of grouping unsupervised data into smaller homogeneous groups

or clusters. Without any prior information about the classes, clustering methods identify

different classes from the data set. The points within the cluster are similar to each other

while they are dissimilar to points in the other clusters. The properties and similarity

measure of the clusters varies between applications. Veenman et al. 2003 [8] defined cluster

as

Definition 2.0.1. Given a data set X = x1, x2, ..., xN , where xi is the vector of attributes in

p dimensional metric space, and N is the number of objects in X. Then C = {C1, C2, ..., CM}
is the set of M partitions of X and satisfies the following properties

• X =
M⋃
i=1

Ci

• Ci 6= φ, 1 ≤ i ≤M

• Ci
⋂
Cj = φ, i 6= j, 1 ≤ i, j ≤M

2.1 Similarity and Dissimilarity Measures

Clustering algorithms group data points into different clusters based on the similarity or

dissimilarity between them. The measure of dissimilarity or similarity of one point with
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respect to another is the basic tool for clustering. Similarity measures are used to describe

quantitatively how similar two data points are or how similar two clusters are. The similarity

measure is high for points within the cluster. The greater the dissimilarity measure, the

more dissimilar are the two data points, or the two clusters [2]. The most commonly used

dissimilarity measure is the distance measure.

Definition 2.1.1. Let xi, xj be any two points in Rd and dij = d(xi, xj), i, j = 1, 2,...,n.

The dissimilarity must satisfy the following properties.

1. d(xi, xj) ≥ 0 [Non-negativity]

2. d(xi, xj) = 0 ⇐⇒ xi = xj [Reflexivity]

3. d(xi, xj) = d(xj, xi) [Symmetry]

4. d(xi, xj) ≤ d(xi, xk) + d(xk, xj) [Triangle Inequality]

The dissimilarity is defined by various distance metrics. Some of them are

• Euclidean - The most widely used metric for continuous data, which is the straight

line distance between two points.

d(xi, xj) =

√√√√ d∑
k=1

(xik − xjk)2

• Manhattan- This is also used for the continous data, here distance between two points

is the sum of differences of cartesian coordinates.

d(xi, xj) =
d∑

k=1

|xik − xjk|

• Gower - This is used when the data set contains both numerical and categorical

attributes.

d(xi, xj) =

√√√√ 1∑d
k=1w(xik, xjk)

d∑
k=1

w(xik, xjk)d2k(xik, xjk)
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d2k(xik, xjk) is the squared distance and w(xik, xjk) is either 0 or 1 depending on whether

or not a comparison is valid for kth attribute. They are defined differently for different

types of attributes [2].

– For ordinal and continuous attributes,

dk(xik, xjk) =
|xik − xjk|

Rk

where Rk is the range of the kth attribute.

– For quantitative attributes,

dk(xik, xjk) = |xik − xjk|

and w(xik, xjk) = 0 if there is a missing value at the kth attribute; otherwise

w(xik, xjk) = 1.

– For binary attributes, dk(xik, xjk) = 0 if both xi and xj have the kth attributes

present or absent; otherwise dk(xik, xjk) = 1. w(xik, xjk) = 0 if both data points

xi and xj have the kth attribute absent; otherwise w(xik, xjk) = 1.

– For nominal or categorical attributes, dk(xik, xjk) = 0 if both xi = xj; otherwise

dk(xik, xjk) = 1. w(xik, xjk) = 0 if there is a missing value at the kth attribute;

otherwise w(xik, xjk) = 1.

• Hamming - This metric is used for comparing two binary data strings, that is number

of points at which two binary data differs. It is the subset of Gower distance metric

and we use the same equation of Gower for computing Hamming distance.

2.2 Hierarchical Clustering

As the name suggests hierarchical clustering forms a nested sequence from the linkage be-

tween data points, which forms the hierarchy of clusters. Hierarchical clustering are of two

types - agglomerative and divisive.

The agglomerative algorithm also called bottom-up methods starts with each point being

its own cluster and then closest clusters are successively merged until single cluster remains.
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The divisive algorithm also called top-down method is the reverse of agglomerative method,

it begins with the whole set as a single cluster and then divides into smaller clusters.

Given data set D = x1, ..., xn, distance metric is used to calculate the dissimilarity be-

tween the data points. D = (dij) be the matrix of dissimilarities between the n data points

and dij = d(xi, xj), i, j = 1, ..., n. In the case of agglomerative method, each data point is

considered as a cluster, and the smallest dissimilarity in D is merged to form a cluster, say I

and J are two clusters merged to form IJ cluster. Then dissimilarity between IJ cluster and

other clusters K 6= IJ are computed. This dissimilarities depend upon the linkage method

used. The linkage method is needed to compute the distance between the clusters and to

merge them. The different types of linkage methods are :

• Single linkage - This method calculates the shortest distance between the datapoints

in each cluster and merges two clusters whose distance between them is the smallest.

dIJ,K = min(dI,K , dJ,K)

• Complete linkage - This method calculates the largest distance between the data points

in each cluster and merges two clusters with largest distance between them.

dIJ,K = max(dI,K , dJ,K)

• Average linkage - This method calculates the average distance between each datapoint

in a cluster to every datapoint in the other cluster.

dIJ,K =

∑
iεIJ

∑
kεK dik

(NIJNK)

where NIJ and NK are the number of items in IJ and K clusters respectively.

This is repeated until all the items are merged into a single cluster. In the end, we

obtain a hierarchical tree diagram, that is dendrogram. Dendrogram has nodes indicating

clusters or the point at which clusters combine and lines connected to the nodes indicating

the clusters which are nested into one another. The height is the vertical distance between

nodes, the difference in heights indicates how close the points are. The dendrogram is cut

horizontally to get different clusters. Based on the dendrogram, we calculate the number of
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clusters. It is a challenging problem to decide where to cut the dendrogram, i.e., to decide

the number of clusters. There is no definite method, most cases it is context-dependent and

from a theoretical point of view. One method is to plot the number of clusters against the

dissimilarity and choose the cluster number corresponding to the knee of the plot.

Advantages

• Of all the clustering algorithms, this is one of the most simple to understand and easiest

to implement.

• No prior information about the number of clusters required.

Disadvantages

• Once decided to merge the clusters, it cannot be undone.

• The real world applications are mostly high- dimensional, which makes it difficult to

visualize and extract the clusters from the dendrogram.

• With mixed data type, it is difficult to compute the distance matrix.

• Not sensitive to noise and outliers.

2.3 Partitioning clustering

Data points are grouped into predetermined k number of clusters by splitting or merging

them and iteratively reassigning them into better suitable groups till it reaches optima.

Unlike hierarchical clustering, there is no hierarchical relationship between the clusters, that

is data points can change between the cluster during the process.The two popular methods

are K-means and PAM.
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2.3.1 K-Means

This method begins by either assigning data points to predetermined K clusters and then

calculating the centroids or by assigning the data points to the cluster with the nearest

randomly chosen centroid and then recomputing the centroid as new items are added and

lost until an optimum is reached. This happens iteratively and stops when (Sum of Squared

Error) ESS can’t be reduced further, that is the sum of the squared distance between the

data points and the cluster’s centroid is at minimum. This is the most popular and simplest

unsupervised clustering algorithm.

Let x1, x2, ... be the data points and k be the number of clusters required. The k centers

ci ∈ C, i = 1...k are randomly chosen and distance dist(ci, x) between each data point from

the data set and cluster center is calculated, 2.1. Then each data point is assigned to the

nearest center based on the distance that is,

argmin
ci∈C

dist(ci, x)

After all the data points are assigned to each cluster, the average of all the data points in

the cluster is calculated to get the mean. If Ci is the set of all datapoints in the ith cluster

then new centroid is

ci =
1

|Ci|
∑
xi∈Ci

xi

This process is repeated until there is no change in the cluster mean.

K means clustering algorithm gives us k cluster centers whose ESS is minimum. The

k is subjective and depends on the similarity measure used and the the parameters, hence

it’s difficult to decide the value of k. Elbow method and gap statistic gives us an idea to

choose the value of k. Elbow method calculates the within sum of square error (WSS) for

different values of k and the WSS is plotted against k. The bend in the plot indicates the

appropriate number of clusters. Gap statistic is the statistical testing method where within

intra cluster variation is calculated for different values of k, Wk for the given data set and

Wkr null reference data set with random distribution. Then gap statistic is the deviation of

Wk from the expected value of Wkr under null hypothesis. The estimate k will be the one

which maximizes the gap statistic [16].
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2.3.2 Partitioning Around Medoids (PAM) or K Medoid Cluster-

ing

This is similar to the k-means clustering, instead of centroids, this algorithm begins by

searching for k- medoids, where medoid is a point in the cluster which has minimum dis-

similarity with other points in the cluster and then selected points are interchanged with

unselected to improve the quality of the cluster. For large data sets, the final results may

vary after each run because it starts by selecting random points as medoids.

Advantages

• Fast, simple and easier to understand and imply.

• Generalizes to clusters of different shapes and sizes, such as elliptical clusters.

Disadvantages

• It is difficult to handle noisy data or outliers. The outliers instead of ignored they get

their own clusters.

• Predicting k in prior is not easy.

• The clusters depend upon initial values. Different results are obtained when initial

partitions or centroid values are changed.

• Fails for non linear data.

2.4 Density clustering

Density-based clustering is a method to group similar data points by identifying regions of

high density and separating different groups by regions of low density which contains noise

points. This algorithm unlike partitioning cluster is not biased towards hyper spherical

or convex shaped clusters and forms clusters of arbitrary shape. This doesn’t require the
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number of clusters as input. The most popular method is Density-Based Spatial Clustering

of Applications with Noise (DBSCAN).

2.4.1 DBSCAN (Density-Based Spatial Clustering of Applications

with Noise)

DBSCAN is one of the most widely used density algorithm which can find the natural clusters

in the data space without any prior knowledge of the clusters present in the data set [17].

It is an high performance algorithm which can find clusters of arbitraty shape and identify

the noise points. It starts with an arbitrary point x and finds all the point within the given

radius. The clusters resulting from this algorithm are the high density regions in the data

space. The algorithm requires two parameters, ε and Nmin, where ε is the radius and Nmin

is the number of minimum points, i.e, the neighbourhood of radius ε must contain Nmin to

form a cluster. This algorithm doesn’t require the number of clusters as input. The idea of

DBSCAN can be explained using the following definitions [12],

Definition 2.4.1. Epsilon neighbourhood of a point - Let p be a point in the data set

X, the ε neighborhood of a point p, denoted by N(ε)p, is defined as N(ε)p = {q ∈ X | d(p,q)

≤ ε}, where d is the distance measure and ε ≥ 0.

Density reachablity and density connectivity are the main concepts used for performing

DBSCAN.

Definition 2.4.2. Directly density reachable - p is directly density reachable from q

w.r.t ε and Nmin, if

a) p ∈ N(ε)q

b) |N(ε)q| ≥ Nmin .

Definition 2.4.3. Density reachable - p is density reachable from q with respect to ε

and Nmin if there is a chain of points p1, ..... pn, p1 = q, pn = p such that pi+1 is directly

density-reachable from pi.

Definition 2.4.4. Density Connectivity - p and q are density connected if there exists

r which has sufficient number of points in its neighborhood and both the points p and q are

within the ε distance.
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Ester et al. [12] defined cluster as

Definition 2.4.5. A cluster C is a non-empty subset of data set X satisfying the following

conditions

1. Maximality - ∀ p ∈ C and if q is density-reachable from p, then q ∈ C.

2. Connectivity - ∀ p, q ∈ C, then p is density-connected to q.

Three types of points can be distinguished in a cluster,

The core points are the points in the inside of the cluster which has more than Nmin

points within the ε radius.

The border points are the points on the border of the cluster which are significantly

less in number than the core points.

The Noise is a set of points in data set X, which doesn’t belong to any cluster Ci.

The algorithm begins by visiting any point p and extracting every density reachable

points with respect to ε and Nmin, forming an ε neighbourhood. If p is a core point, then it

forms a cluster. If p is a border point, then no points are density reachable from p and then

next point is visited [12]. This repeats until all points are visited. The points which are not

in the clusters are considered as noise points.

To apply this algorithm on the data set we need to decide on the ε and Nmin values. The

Nmin should be at least one point plus the dimension of the data set. The points within the

cluster are close to each other so they will have small k-nearest neighbour (KNN) distance

and the noise points will have largest distance. Plotting the k-nearest neighbour distance

(i.e., the distance to the kth nearest neighbor) in descending order, the threshold point is

where the KNN distance curve bends. This can be used as optimal ε value.

Advantages

• No prior information about cluster numbers required.

• Noise points are identified.

• Can handle clusters of different shapes and sizes.

11



Disadvantages

• Fails for high dimensional and varying density clusters.

• Sensitive to parameters, epsilon and minimum points.

2.5 Kernel Density Estimation

Kernel density estimation (KDE) is a non parametric density estimation method.The density-

based algorithm requires to estimate the underlying probability density from the sample

data.

Definition 2.5.1. Let X be the d-dimensional Euclidean space, Rd. A function K : X→ R

is said to be a kernel if it satisfies the following properties,

a. K is non negative; K(x) ≥ 0.

b.
∫
K(x)dx = 1..

c.
∫
xK(x)dx = 0.

d.
∫
xK(x)dx <∞

Definition 2.5.2. Given a set of data x1, . . . , xn ⊂ Rd, kernel K and a positive number h,

called the bandwidth or smoothing parameter, the kernel density estimator is defined as

f̂(x) =
1

nhd

N∑
i=1

K(
x− xi
h

) (2.1)

Given the bin width, this function places symmetrical humps or kernels over each data

point, see Figure 2.1, and the distance from a reference point is calculated. Sum of the

individual kernels gives us the density estimate for the distribution [18]. The most commonly

used kernel is Gaussian Kernel,

K(x) =
1√
2π
e−x

2/2
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Figure 2.1: A kernel density estimator f̂h(x). At each point x, f̂h(x) is the average of the
kernels centered over the data points xi. The data points are indicated by short vertical
bars. Source : Wasserman, 2006 [24]

On the d-dimensional space the kernel is defined as

K(x1, x2, ..., xd) =
d∏
i=1

K(xi)

To obtain a good estimate we need to adjust the bandwidth h accordingly. The value of

h which minimizes the integrated square error (ISE) is optimum. Large value of h gives

smoother estimates while smaller values gives rough estimates. Some of the properties of

KDE are given below.

Theorem 2.5.1. Assume that f is continuous at x and that h → 0 and nh →∞ as n →∞.
Then f̂h(x)→P f(x)

As the sample size tends to infinity, the density estimate converges to it’s true value in

probability, then f̂h is said to be a consistent estimator of f .

Theorem 2.5.2. Under the assumption in Theorem 2.5.1, the bias and variance of the KDE

at x are

Bias[f̂h(x)] =
1

2
µ2(K)f ′′(x)h2 +O(h2) (2.2)
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V ariance[f̂h(x)] =

∫
K2(x)dx

nh
f(x) +O(nh)−1 (2.3)

Corollary 2.5.1. Under the definition 2.5.1, the MSE (Mean Squared Error) of the KDE

at x is

MSE[f̂h(x)] =
(µ2)

2(K)

4
(f ′′(x))2h4 +

∫
K2(x)dx

nh
f(x) +O(h4 + (nh)−1) (2.4)

If f is square integrable, then performance of f̂h at x ∈ Rd is measured by MSE,

MSE(x) = Ef{f̂h(x)− f(x)}2

If MSE(x)→ 0 for all x ∈ Rd as n→∞, then f̂h is said to be pointwise consistent estimator

of f in quadratic mean.

KDE can be extended to estimate multivariate densities f in Rd based on the same

principle 2.5.1. Given Xi,X2, ...,Xn in Rd, the KDE of f at x ∈ Rd is

f̂H =
1

n|H|1/2
n∑
i=1

K(H−1/2(x− Xi)) (2.5)

and the where K is the multivariate kernel and H is the bandwidth matrix; fxf symmetric

and positive definite matrix. The most commonly used multivariate kernel is normal kernel,

K(x) =
1
√

2π
f
e−1/2x′x

2.6 Level Set Clusters

The level set clustering is a non parametric density clustering method.

Definition 2.6.1. Let x1, . . . , xn be a random sample from a distribution F with density f ;

xi ∈ X ⊂ Rd. ∀ t ≥ 0, the upper level set is,

Lt = {x : f(x) ≥ t}

To define the density of level set, kernel density estimate (KDE) is used. Kernel density
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Figure 2.2: Left: A density function f. Middle: density clusters corresponding to
Lt = {x : f(x) ≥ t}. Right: the density tree corresponding to f is shown under the den-
sity. The leaves of the tree correspond to modes. The branches correspond to connected
components of the level sets. Source : Wasserman, 2016 [1].

.

estimate doesn’t care about the specific shape of the level set [19]. Given kernel K on Rd

and bandwidth h > 0, such that h → 0 as n →∞ [19], f̂h be the KDE. Then the estimate

of Lt is L̂t = {x : f̂h(x) ≥ t}.

A high-density cluster is a maximal connected component of L̂t for any t and the level

set tree τ is simply the set of all such clusters. C =
⋃
t≥0

Ct, where Ct is the density level

clusters at level t. To find the connected components of the L̂t, Let It : {i : f̂h(xi) > t}. Now

create a graph whose nodes corresponds to (xi : i ∈ It) and put an edge between xi and xj

if ‖xi − xj‖ < ε where ε > 0 is a tuning parameter. Then connected components C1, C2, ...

of the graph estimate clusters at level t, Figure 2.2.

2.7 Mode Clustering

This is another non-parametric density clustering method. In this method, we start by

estimating the density function and then finding the modes of the estimator and then clusters

are defined as the basins of attraction of these modes. The kernel density estimator is used to

find the density estimator and mean shift algorithm finds the modes and basins of attraction

[4].

Let x1, . . . , xn be a random sample with density f̂ ; xi ∈ X ⊂ Rd. Let’s assume f̂ has
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compact support K ⊂ Rd and has k local maxima M = m1, . . . ,mk and is a morse function.

Definition 2.7.1. A function f : M → R is a Morse function if its critical points are

non-degenerate, i.e., the Hessian of f at each critical point is non-singular.

A point m is called local mode if there exists an open neighbourhood N of x such that

f(x)>f(y) for all y element of N and x not equal to y. Since f is assumed to be morse, the

m is a local mode if and only if g(m) = (0, ..., 0)T and λ(H(m)) < 0, where λ is the largest

eigen value of H(m).

According to Morse theory, integral curves never intersects except at the critical points.

The integral curve through x is a path πx : R→ Rd such that πx(0) = x and

π
′
(t) = ∇f(πx(t))

. Now let’s define the destination of the integral curve beginning at x as

dest(x) = lim
t→∞

πx(t)

. Following the steepest ascent path we will reach a mode (true except for Lebesgue measure

0 ), then dest(x) = mj. The basin of attraction of mJ is defined by

Cj = {x : dest(x) = mj}, j = 1, ..., k

. The set C1, ..., Ck are called the population clusters. Now we use the mean shift algorithm

described below to find the modes M̂ = {m̂1, ..., m̂k}. The estimated basins of attractions

are

Ĉj = {x ∈ Rd : ˆdest(x) = m̂j}, j = 1, ..., k̂

and the clusters are Xj = {Xi : Xi ∈ Ĉj} = {Xi : ˆdest(Xi) = m̂j}.

2.7.1 Mean Shift Algorithm

The mean shift algorithm is a non parametric method to estimate the density gradient, seeks

a mode or local maximum of density of a given distribution. It begins by choosing a search

window, and computing the mean of the data in the search window. Then the search window
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Figure 2.3: Left: a density with four modes. Right: the partition (basins of attraction) of
the space induced by the modes. These are the population clusters.[1]

is centered at the new mean location and repeated until convergence. Comaniciu et al, [25]

explained the theory and approach behind Mean Shift algorithm in detail.

Advantages

• Insensitive to initialization and outliers.

• Uses a specific kernel and models complex clusters having non convex shapes.

Disadvantages

• Only one parameter bandwidth is required, but it is difficult to choose the bandwidth

value.

• It doesn’t works well in higher dimensions, KDEs breaks down.

• It is difficult to determine meaningful and non-meaningful modes.
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Figure 2.4: The mean shift algorithm. The data are represented by the black dots. The
modes of the density estimate are the two blue dots. The red curves show the mean shift
paths; each data point moves along its path towards a mode as we iterate the algorithm.[1]

• Fails when clusters overlap.

18



Chapter 3

Topological Data Analysis

3.1 Introduction

Topological data analysis is basically set of statistical, mathematical and algorithmic meth-

ods to analyse and find the topological and geometrical structures in a data set. This helps

us to analyze and understand high dimensional and complex data sets. This method was first

introduced in 2000 by Edelsbrunner, Letcher and Zomorodian [21]. TDA has lots of appli-

cations including clustering algorithms, image processing, neuroscience, shape segmentation

etc.

Persistent homology is a topological data analysis method used to analyse the qualitative

(topological) features of a data set which leads to a persistent diagram. The connected

components of a topological space is detected by the homology and persistence homology

assigns birth and death values to measure the features. By qualitative features it indicates

clusters, cycles, flares etc in a data set.

3.2 Persistent Homology

Given a data set that lies in a metric space with a distance measure, algebraic topology

computes the characteristics of the data such as connected components or existence of holes
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by associating vector spaces or simply by counting them or by associating complex algebraic

structures.

Homology associates vector space Hi(X) to space X. H0(X) counts the number of path

components in X, H1(X) counts the number of holes and H2(X) counts the number of

voids. These numbers are called Betti numbers and represented by β0, β1, ... For arbitrary

topological spaces it’s hard to capture the homology, thus simplicial complexes are used to

estimate the homology which can be computed algorithmatically [21].

Definition 3.2.1. Simplicial Complex Let X be a discrete set. An abstract simplicial

complex is a collection C of finite subsets of X such that if σ ∈ C then τ ∈ C for all τ ⊆ σ.

If |σ| = k + 1 then σ is called a k-simplex.

Simplicial complexes are the sets composing points, edges, triangles and higher dimen-

sional polytopes. There are many types of simplicial complexes and the choice of them

depends on the nature of data, computational cost etc. The most widely used one is Vietoris

Rips Complex.

Definition 3.2.2. Čech complex Let P be a finite set of points in Rn, andBx(r) be a ball

with center x ∈ Rn and radius r ∈ R, the the Čech complex of P and r is

C(r) := {σ ⊆ P |
⋂
x∈σ

Bx(r) 6= φ} (3.1)

Definition 3.2.3. Vietoris–Rips complex Given a scale parameter r and a finite set of

points P, the Vietoris–Rips complex is defined as the simplicial complex that contains all

subsets whose diameter is at most r:

V(r) := {σ ⊆ P |diamσ ≤ r} (3.2)

Let U be a cover of X i.e., a collection of subsets of X such that the union of the subsets

is X. The k-simplices of the Čech complex are the non-empty intersections of k+1 sets in

the cover U [21]. The nerve of a collection of sets is defined as,

Definition 3.2.4. Let U = {Ui}i∈I be a non-empty collection of sets. The nerve of U is the

simplicial complex with set of vertices given by I and k-simplices given by i0, . . . , ik if and

only if
⋂k
j=0 Uij 6= φ.
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Figure 3.1: The birth and death time of modes (left) and the persistence diagram (right).
Source : Wasserman, 2016 [1]

Theorem 3.2.1 (Nerve Theorem). Let U = {Ui}i∈I be an open cover of a topological space X

by open sets such that intersection of any sub collection of Ui’s is either empty or contractible.

Then X and the nerve of U are homotopicaly equivalent.

Let Xi, ..., Xn be the data points. B(x, ε) represent ball with a radius ε centred at x.

B(X1, ε), B(X2, ε), ..., B(Xn, ε) represents the set of balls around each data point. As the

value of ε increases, the topological features also changes. When ε = 0 , there will be no

connected components, as the value of ε increases the connected components are formed and

merged until one component is left, at a particular value of ε, a hole will appear (birth) and

the hole will disappear (death) at a larger ε value. The birth and death point of each feature

is recorded as a bar in a barcode plot and a persistence diagram is made with each feature

as a point on the diagram with coordinates representing birth and death Figure 3.1.

3.3 Persistence Based Density Clustering

The mode clustering algorithm defined in section 2.7 estimates the KDE, finds the modes and

the basins of attractions by using Mean Shift Algorithm [2.7.1]. Now, we can use persistence

homology to detect and merge unstable modes [22]. The prominence of a peak is the height

difference between the height of the peak and level at which the basin of attraction meets it’s
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parent peak. The persistence computes the prominence of the density peaks and a hierarchy

of the peaks based on it are created.

Let t = supxf(x), where f is the density function and Lt be the upper level set, Lt = {x :

f(x) ≥ t}. As the t changes from [-∞,+∞], when new modes are formed, new connected

components of Lt are born and then died by merging with the other connected component.

From this we can say each mode has a lifetime and this lifetime can be plotted as points in

the plane with x-coordinate representing birth and y-coordinate representing the death time.

This plot is called the persistence diagram (PD) of f . The modes which are far from the

diagonal (y = x) are the stronger modes and they are the level sets with more lifetime and

the small modes have short lifetime level sets. Any mode whose point PD is farther from

the diagonal is considered as significant mode [1]. The clusters are obtained by merging the

peaks of prominence less than a given thresholding parameter τ into its parent peak in the

persistence hierarchy.

3.4 ToMATo

Topological Mode Analysis Tool (ToMATo) is the clustering algorithm using TDA. ToMATo

relies on three parameters; the neighbourhood graph G, the density estimator f̂ and the

merging parameter τ . The popular neighbourhood graphs are δ rips graph and k nearest

neighbour (KNN) graph. The algorithm begins by taking G and a non-negative τ . Let f̂(i)

be the estimated density value of each vertex i of G at that point. The first step is mode

seeking where i with highest f̂ compared to its neighbours are selected as the peak of f̂ . The

next step is merging the peaks with prominence less than τ . The output is the collection

of merged clusters. The article by Chazal et al [22] describes the theory and applications of

ToMATo in detail.
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Figure 3.2: ToMATo approch : (a) estimation of the underlying density function f at the
data points; (b) result mode seeking step; (c) approximate PD; (d) final result obtained after
merging the clusters of non-prominent peaks. Source : Chazal, et al 2013 [22]
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Chapter 4

Clustering Mixed Type Data Set

4.1 Introduction

The clustering is defined as grouping objects into different clusters based on the similarity

between the data points. Most of the clustering algorithms studied are based on euclidean

distance which are primarily used on data sets with all real valued attributes. The classical

clustering algorithms like partitioning clustering works by taking the average of distance

between the data points which can’t be applied for categorical attributes. Typically, most

real data sets involve both real valued and categorical attributes which can’t be clustered

using classical clustering algorithms. Clustering mixed data is still a challenge. To balance

the contribution from continuous and categorical variables is one of the main challenge. Most

of the clustering algorithms suffer from information loss due to discretization, parametric

assumptions or the choice of weights of continuous versus categorical variables.

There are several clustering algorithms available for mixed data type. Most of them are

modifications of the clustering algorithms used for non mixed type data. Gower’s distance

metric can be used as similarity metric for hierarchical clustering, but for large data sets it

becomes meaningless.
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4.2 Different Approaches

The techniques attempted to cluster mixed data type tries to use the same method for single

data type set. One method is by changing the categorical variables to dummy codes and

then applying the clustering techniques suitable for numerical data types. For a multi valued

categorical variable the dummy codes will be 0 & c indicating absence and presence of the

particular value in the variable for each of the values. A large c will emphasize the categorical

variables more whereas small c will emphasize the continuous variable more. Taking c = 1

is not a very good approach in the case of mixed type data clustering.

Another approach is by using a distance metric applicable for mixed data like Gower’s

distance. And then clustering methods which is based on distance is used to cluster. From

2.1 we know each variable need to be assigned a weight, the choice of weights will again

like dummy coding, cause either over or under emphasizing the variables. Hence the cluster

output we get won’t be accurate.

There are many other approaches for clustering mixed data type using single data type

algorithms, but they are not relevant here. Moving on, stabler, effective and recent mixed

data type clustering techniques are discussed.

4.3 W K Prototype Algorithm

This algorithm proposed by Huang (1998) is an extension of partitioning algorithms used

for either numerical or categorical data types. This method integrates k modes and k means

algorithms for mixed data sets. A new similarity measure is defined and the cluster centers

are means for numerical variables and modes for categorical variables. The distance is defined

as de + γdh [14], where de and dh represents the euclidean distance of the numeric attributes

and the hamming distance of the categorical attributes respectively. The γ is a weight to

balance both the attributes. The weights are inversely proportional to sum of within cluster

distances [15]. The k prototype algorithm process same as k means algorithm except k mode

is used for categorical attributes. The hamming distance is defined for bi-valued categorical

variables, hence won’t be accurate in case of multi valued categorical variables.
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4.4 KAMILA

The above mentioned approaches and algorithms fails in handling the contribution of contin-

uous and categorical variables, ths problems are more or less adressed by a recent technique

KAy-means for MIxed LArge data sets (KAMILA) proposed by Foss et. al. (2016). This

algorithm combines Gaussian Multinomial mixture model [23] and K- means algorithm.

This method works by estimating density from the data and balances the continuous and

categorical variable’s contribution without assigning weights.

Hunt et al [23] gives insight into the theory and mathematics behind KAMILA in detail.

4.5 Clustering Mixed-Type Data Using Persistent Ho-

mology

Let X = x1, x2, x3, ....., xD interdependent random variable, f is the probability function and

G = (ν,ε) is the graph, where ν is the node-set with each element representing a random

variable and ε is the edge, representing the dependency relation between the variables.

A value assignment to all random variables x = (x1, ..., xD) is called a configuration. The

potential function f : x → R assigns each configuration a real value. And this is inversely

proportional to the log of the probability distribution.

We are focusing tree-structured graphical model, T = (ν,ε). For this, we can factorise

the probability function into products as

p(x) =
∏

(i,j)∈ε

(
p(xi), p(xj)

p(xi, xj)

)∏
k∈ν

p(xk)

and compute the mutual information

MIij =

∫
xi,xj

p(xi, xj)log(
p(xi, xj)

p(xi)p(xj)
)dxidxj

. Let ID and IC be index sets of random variables of discrete and continuous domain
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respectively. Within the discrete domain, we use hamming distance distH(x, x
′
) and L2

distance distL2(x, x
′
) within the continuous domain.

Nd
δ (x) = {x′ | distd(x, x

′
) ≤ δΛdistc(x, x

′
) = 0}

is the discrete neighbourhood of x with radius δ > 0, hamming distance not greater than δ

and zero euclidean distance. Similarly, the continuous neighbourhood of x with radius ε > 0

is

Nc(x) = {x′ | distd(x, x
′
) = 0Λdistc(x, x

′
) ≥ ε}

Now we define a mode, which is the local maxima in both neighbourhoods. A point x ∈ χ
is a mode if and only if there exist positive numbers ε and δ such that

p(x) ≥ p(x
′
) for any x

′ ∈ Nc(x)

p(x) ≥ p(x
′
) for any x

′ ∈ Nd(x)

We estimate all pairwise mutual information and then compute tree (ν, ε). Next, we use

the Mode seeking algorithm for finding modes.

Mode Seeking Algorithm

The section 2.7 describes mode clustering in detail. It is an iterative algorithm, starts with

an initial data point x, we have a kernel function (2.1) which estimates the probability in

the neighbourhood until convergence. The final position is the mode of convergence. At

each step, we first consider discrete variables in the discrete neighbourhood until no better

elements exist. Then we update the continuous variables using gradient descent until the

gradient of f at continuous dimensions becomes zero.

Merging clusters using topological persistence

The modes provide the clusters. We find the relative height, that is the distance between the

height of the peak(mode) and level at which basin of attraction meets another higher mode.

{xt = x ∈ X | f(x) ≥ t} is the super level set, the probability density is greater or equal to t.

Each mode assigns to the birth of the new connected component in the super level set and

when a component created by higher mode meets this component, it merges to form new
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connected component. The density value of creating a mode is called birth time and the

density value of the point at the saddle (where two components meet) is called death time.

The difference between birth and death times is called persistence. Persistence measures the

saliency of modes.
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Chapter 5

Comparison of Air Pollution Levels

5.1 Introduction

According to IQAir’s report, 21 out of the 30 most polluted cities in the world are in India.

The significant causes of air pollution are emissions from the factories and exhaust from

the vehicle. Due to COVID-19 pandemic, strict nationwide restrictions were placed initially

by the government, which lead to a reduction in public movement and vehicular traffic.

Since work-from-home became the new normal, offices no longer had to function fully. A

nationwide lockdown was imposed from March 24, 2020, till May 1. All of this had a severe

impact on air quality during the first few weeks when the lockdown was enforced strictly.

Different clustering techniques studied are used to compare the air pollution level in

different cities of India before and during the lockdown. In order to compare 7 major air

pollutants, PM10, PM2.5, O3, SO2, NO2, NO and CO are considered.

5.2 Objective

The study is an effort to use different clustering algorithms for comparison. The objective

is to compare and analyse the changes in air quality before and during COVID-19 lockdown

in India over eight different cities.
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5.3 Dataset

For comparing the air quality levels, seven most frequently used pollutants for analysing the

air quality is taken. The contaminants are Ozone, NO, NO2, SO2, CO, PM10 and PM2.5.

The data has been collected from Central Pollution Control Board (CPCB) website. The

daily level (averaged over 24 hr period time) of each pollutant in mg/m3 for 70 days before

and during COVID-19 lockdown are used. The pollutant level data from January 1, 2020 to

March 23, 2020 (before lockdown) and from March 24, 2020 to May 1, 2020 (after lockdown)

are collected and analysed. The average of the each pollutant level 70 days before and after

COVID-19 lockdown is used to do different clustering methods. The eight different stations

are,

1. Mumbai (CST)

2. Nashik

3. Kochi (Vytilla)

4. Delhi (JNU stop)

5. Guwahati

6. Chandigarh

7. Patiala

8. Bangalore (SB road)

5.4 Method

Various clustering algorithms namely DBSCAN, K means, PAM, hierarchical clustering and

ToMATo discussed in this thesis have been applied to compare the significance of different

air pollutants in different cities. These algorithms group the cities into different classes/

clusters, and we analyse the nature of different clusters.

Additionally, clustering is applied to Vytilla station over 78 days before and during

lockdown to observe the changes in air quality due to lockdown. Rand Index is a similarity
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Result

Prelockdown Postlockdown

Method Cluster A Cluster B Noise Cluster A Cluster B Noise

DBSCAN 2,6,7,8 1,4,5 3 2,5,6,7,8 1,3 4

AGNES(S) 2,3,6,7,8 1,4,5 2,4,5,6,7,8 1,3

AGNES(A) 2,3,6,7,8 1,4,5 2,4,5,6,7,8 1,3

AGNES(C) 2,3,6,7,8 1,4,5 2,4,5,6,7,8 1,3

DIANA 2,3,6,7,8 1,4,5 2,4,5,6,7,8 1,3

K MEANS 2,3,6,7,8 1,4,5 2,4,5,6,7,8 1,3

PAM 2,3,6,7,8 1,4,5 2,4,5,6,7,8 1,3

ToMATo 2,3,6,7,8 1,4,5 2,4,5,6,7,8 1,3

Table 5.1: The clustering output of different stations.

DBSCAN K Means Hierarchical ToMATo

DBSCAN 1 0.9058682 1 0.4391144

K Means 0.9058682 1 0.896138 0.01304527

Hierarchical 1 0.896138 1 0.03702071

ToMATo 0.4391144 0.01304527 0.03702071 1

Table 5.2: Rand Index values between different clustering method results for Vytilla station.

measure between two different types of clusters of the data set. The Rand index ranges

between 0 and 1 where 0 indicates that two data clusters do not agree on any pair of points

and 1 indicating that the data clusters are exactly the same. In this application, this is used

to compare the results of clustering on Vytilla data set.

5.5 Results and Discussion

Clustering the data of eight different stations yielded a solution with 2 clusters. The output

clusters of pre lockdown and post lockdown gave the same results for different techniques.
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Figure 5.1: Plot of ToMATo clustering :(a) Pre-COVID19 and (b) Post-COVID19 Lockdown

Figure 5.2: The clustering outputs of Vytilla city. (a) DBSCAN (b) K-Means (c) Hierarchical
clustering and (d) ToMATo
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Figure 5.3: Comparison of ToMATo, hierarchical, K-Means and DBSCAN clustering results.
The colour corresponding to each day represents the cluster to which it is assigned to.

Table 5.1 summarizes the clustering result.

• Healthier and non healthier clusters were decided by comparing the cluster centers/medoids

of both clusters with CPCB prescribed standards.

• Clusters obtained post-lockdown are “healthier” than pre-lockdown clusters.

• Although lockdown made station 3 healthier, impact of lockdown wasn’t strong when

compared to other stations which classified it into relatively unhealthy.

Figure 5.2 shows the different clustering plots of Vytilla and Table 5.2 gives the Rand

Index. Figure 5.3 shows us that the observation before and during lockdown are grouped

into different clusters. The 5.3 and Rand Index gives us a similar output. The Rand Index

is high for DBSCAN, kmeans and hierarchical clustering, which means the clusters resulting

from these three methods are similar. There is a significant impact of lockdown on Vytilla’s

air quality.
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Chapter 6

The Study of Online Shopper’s

Behaviour to Seek the Pattern

6.1 Introduction

Online shopping has grown exponentially taking a remarkable share of retail market in last

two decades. Strategically marketing offers and promotions are necessary to attract more

customers and to encourage sales in online shopping platforms. Even though online shopping

sites observe high traffic number, only a small fraction of users actually complete transac-

tion and contribute to revenue generation. In order to make experience of purchasing a

product enjoyable for customer and to increase successful transaction rate, marketers can

carefully target advertisements to a more relevant crowd. We use data set downloaded from

https://archive.ics.uci.edu/ml/datasets/Online+Shoppers+Purchasing+Intention+Dataset.

The source of this data set is Sakar et al. Clustering algorithms are applied to understand

intent of each user from their analytics data. Gower distance metric is used to calculate the

dissimilarity between the observations, as the data set consists of numerical and categorical

variables.

37



6.2 Data set

The data set consists of mixed covariates with 12330 observations of 18 attributes. The data

set was formed so that each session would belong to a different user in a 1-year period to avoid

any tendency to a specific campaign, special day, user profile, or period [9]. The data consists

of 10 numerical and 8 categorical variables. The features are Administration, Administration

duration, Information, Information duration, Product related duration, Bounce rate, Exit

rate, Page value, Special day, Operating system, Browser, Region, Traffic type, Visitor type,

Weekend and Revenue.

The numerical features Administration, Administration duration, Information, Informa-

tion duration, Product related duration represents the number of three different pages visitors

visited and the time duration they spent in seconds. Bounce rate and exit rate indicates

the percentage of visitors entered and then left, and visitors exiting the site after visiting

number of pages respectively. Page value indicates the average value of pages visited before

completing the transaction. Special day indicates whether the visitors visited site on days

near to special days.

The categorical attributes operating system and browser indicates the operating system

of the device and the web browser respectively, from which visitor visits the site. There are

8 and 13 different operating system and browsers respectively. The Region indicates the

location of the visitor. Traffic type indicates how the visitor ended up at the site. New

visitor, existing visitor and other visitor are the three different visitor types. Weekend is

Boolean value indicating whether the visitor visited on weekend or not. Revenue is a class

label representing whether the visitor ended up buying or not.

6.3 Objective

The aim is to drop the class label Revenue and use different clustering methods on the

remaining attributes to check whether the group (classes) match those given by it.
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DBSCAN K Means W K Prototype ToMATo KAMILA

0.7331659 0.7068107 0.8483791 0.0011 0.8920143

Table 6.1: Rand Index values compared with Revenue class label

6.4 Methods.

Since the data set is large and complex, it is difficult to get informative output by using

hierarchical methods. As the data set consists mixed variables, using Euclidean distance

metric to find the dissimilarity is not possible. Also partitioning methods and DBSCAN

can’t be used directly.

• So one approach would be to use Gower’s distance to calculate the dissimilarity and

then perform clustering using k means and dbscan. Gower’s distance (or similarity)

first computes distances between pairs of variables of data set and then combines

those distances to a single value per record-pair [11]. Gower’s similarity measure is

scaled to fall between 0 and 1, 0 corresponds to identical points and 1 corresponds to

maximally dissimilar points. To assign weights for Gower, feature importance is done

using random forest and the variables are ranked according to their importance. The

weights are assigned according to the rank.

• ToMATo

• W K prototype

• KAMILA

6.5 Results and Discussion

The clusters obatined were compared with the Revenue class label. From table 6.1, the

KAMILA algorithm gave more matching results with Revenue label compared with other

techniques applied using Gower metric. Two clusters were obtained, ”I” and ”II”. Cluster I

contains more than 85 percent of the total data points. From the Figure 6.1, the customers

who spent more time on administrative pages are more likely to make purchase. Results
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Figure 6.1: Clustering plot : administrative duration against bounce rate

shows that the cluster ”II” with very few data points is the cluster which ends up purchasing

or contributing to the revenue. The data points of cluster ”II” were more engaging in

consumer culture, hence relevent e-commerce websites can ad target them instead of data

points in cluster ”I”.

40



Chapter 7

Conclusion

In this thesis, we learned the theory behind various clustering algorithms and their limitations

are seen. We also explored the mathematics behind the most popular Topological Data

Analysis tool persistent homology and saw how it could be integrated with unsupervised

learning like clustering. The clustering results cannot be generalised; it depends upon the

data set and our interpretations. The classical algorithms like hierarchical, k-means and pam

group the data set into different clusters even if there is no group structure, while DBSCAN

identifies the noise points and finds clusters accordingly.

The studied methods are applied to two different types of data sets, numerical and mixed

type. The clustering outputs of Air Quality data set (numerical) were similar. To cluster the

Online shoppers’ intention (mixed) data set, we attempted two ways, one by using Gower

metric and applying the techniques designed for numerical data sets and another way by

using two new recently published algorithms for mixed-type data set. The latter method

gave more better results than the former method.
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