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Abstract

Using trapped ion quantum simulation system we create RKKY-like interac-
tion pattern in a crystal having quantum spins in a triangular lattice. There-
after we study its properties and see whether it can be used to simulate any
system especially spin glass.
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Chapter 1

Introduction

There are many quantum systems that are difficult to study analytically. To
study a quantum system numerically using classical computers requires an
exponential increase in computing power for a linear increase in the size of the
system. The only way one can study such systems is by using quantum simu-
lations [1] i.e. by using controllable quantum mechanical systems. Quantum
many body systems particularly benefit from such an approach. Deutsch[2]
had shown that there even exist mathematical problems which are better
solved by quantum systems than classical ones and Shor[3] had discovered
the Shor’s Algorithm, a method to factorize numbers using quantum systems
which is exponentially faster than any classical algorithm.

Cirac and Zoller[4], using trapped ion, had for the first time shown that
a quantum computer can be implemented. The major part was to show a
controlled bit-flip operation. Weinberg’s group[5] had experimentally demon-
strated how to do it. This led to proposals and realisations of various proto-
cols of quantum computation. Gulde et al.[6] implemented the Deutsch-Josza
algorithm in a single ion. Barret et al. and Riebe et al.[7, 8] demonstrated
the teleportation of a single qubit in a two-ion trap. Chiaverini et al.[9]
were able to implement a quantum error correction protocol (as suggested
by Shor) using trapped ions. Error correction is critical to make the system
scalable.

Using the trapped ion technonolgy many quantum simulations have been
realised in the past decades, such as the topological hexagonal Kitaev model
[10], fermionic lattices [11], SU(2) Ising models [12, 13, 14, 15, 16] -including
frustrated magnetism [17, 18, 19] and, very recently, to the observation of
entanglement dynamics in spin chains [20, 21] and topological quantum spin
liquids[22]. Besides these studies, which are implemented in linear-(1D) ion
crystals, quantum simulation of various spin models has also been proposed
in 2D ion-crystals [23, 24, 25].
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Development of and challenges in Quantum Computation using the trapped
ions system have been discussd in reviews [26, 27, 28, 29, 30, 31]. More specif-
ically a review of quantum simulation of many body systems with trapped
ions is given in [32].

1.0.1 RKKY Interactions

The following interactions are mediated via an indirect exchange coupling of
the respective spins and the spin of conduction electrons:

1. The interaction between magnetic dipoles of the magnetic ions in dilute
alloys of magnetic ions in a non-magnetic metals such as Mn in Ag.

2. The interaction between nuclear spins in molecules or metals. This has
been observed using Nuclear Magnetic Resonance experiments.

3. The interaction between the spins of 4f electrons in rare-earth metals.

The magnetization of the conduction electron gas in the vicinity of mag-
netic ions shows an oscillatory behaviour[33]. This causes the indirect cou-
pling between the spins, with the magnetization of the conduction electron
gas as exchange medium. This is the RKKY interaction pattern, first pro-
posed by Ruderman and Kittel [34] in the context of nuclear spins and later
extended and generalised by Kasuya [35] and [36] using their work on al-
loys of magnetic ion cores in non-magnetic metals. For magnetic spins ~Ii
and ~Ij, located at ~ri and ~rj, in such an above system, they showed that the
interaction Hamiltonian Ĥij between the spins is of the form:

Ĥij =
~Ii · ~Ij

4

|∆kmkm|2m∗
(2π)3r4ij~2

(2kmrij cos(2kmrij)− sin(2kmrij)) (1.1)

where, |∆kmkm| represents the strength of the interaction between the mag-
netic ions and conduction electrons,m∗ is the effective mass of the conduction
electrons, rij the distance between the spins, and km is the wavenumber of
the Fermi surface of the host metal. Over relatively large distances (not in
the immediate vicinity) this can be approximated to:

Ĥij =
~Ii · ~Ij

4

2km|∆kmkm|2m∗
(2π)3r3ij~2

cos(2kmrij) (1.2)

Note that the interaction oscillates between ferro-magnetic and anti-ferromagnetic
nature. This indirect coupling plays crucial roles in Kondo effect and in Spin
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Glasses. In Kondo Effect[37, Ch. 8] a minimum is observed in resistivity
versus temperature of dilute magnetic alloys of non-magnetic metals, this is
due to the very large scattering probabilities of conduction electrons at the
magnetic centres in low temperatures.

In noble metals weakly diluted with magnetic metal ions, below a cer-
tain temperature, a new kind of order called spin glass is observed[38]. All
magnetic moments appear to have frozen in random directions with no long
range order whatsoever.

One of the phenomenon found is a special kind of spin ordering known
as spin glass phase [38]. It arises in noble metals with magnetic impurities
below a certain temperature. The interaction between any two spins in this
system is the RKKY interaction, which is oscillatory. Since the distances be-
tween magnetic metal ions will be more or less random, the nature (whether
ferromagnetic or antiferromagnetic) of the interaction between two spins is
also random. In such a case no configuration can be found which will sat-
isfy all the couplings. This is marked by several unusual characteristic such
as a highly disordered ground sate configuration, freezing of the magnetic
moments over long periods of time, a characteristic peak in the non-linear
susceptibility versus temperature graph at the critical temperature where
such behaviour is seen. Edwards and Anderson developed a model[39] to de-
scribe the behaviour of this system. Later such behaviour has been observed
in more systems and various theoretical models. Spin glass research has pro-
vided mathematical tools to analyse some interesting real-world problems in
fields such as statistical physics, condensed matter physics, graph theory and
complexity theory [40]. Even today the field still has many open questions.

We propose to engineer a method to simulate RKKY interactions between
ions in a triangular lattice of trapped ions. We shall demonstrate how this
can be achieved. We shall also explore possible ways in which these RKKY
interactions can be used to simulate Spin Glass.
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Chapter 2

Quantum Simulation of Ising spin
models in trapped ion crystals

In this chapter we shall review how to simulate an effective Ising Hamiltonian
using trapped ions. We start with a section describing how ions are trapped.
We shall calculate the shape and size of the crystals that are formed. Then
we shall calculate the structure of the phonons that are present in the system.
Our scheme of creating a quantum simulation uses phonons as the exchange
medium between qubits. We shall then show how to perform the quantum
simulation and derive an effective Ising Hamiltonian. We shall conclude the
chapter with an example of the implementation.

2.1 Equilibrium configuration of trapped ions

Usually Alkali-earth metal ions such as Ca+, Sr+ or Ba+ are used as they
have Hydrogen-like electronic structure, hence the electronic states are eas-
ier to study and use. For the purposes of these simulations usually 2D Paul
traps [41, 42, 43, 44] or Penning traps [45, 46] are used. Recent work in a
Penning trap has demonstrated controllable spin-spin interactions between
a few hundred ionic spins [16], whereas studies in Paul traps show excellent
prospects for implementing such interactions as well. The net effect of a
trap on the ions although might be complicated can be approximated by a
pseudopotiential similar to a harmonic oscillator, where the potential rises
quadratically. The strength of these traps can be represented using trapping
frequencies which is analogous to the angular frequency of a harmonic poten-
tial. The trapping frequency is usually in the range 1MHz to 50MHz. This
results in inter-ion distances of about 0.1 µm to 10 µm. The ions crystallize
into self organized coulomb crystals. We shall calculate the positions of the
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ions in such crystals. This is an adaptation into three dimensions of a calcu-
lation done for one dimensional chains by James[50]. We shall assume that
the pseudo-potential experienced by N ions due to the traps is of the form:

V =
1

2
Mν20

N,3∑
i,d=1,1

ν2dxd,i
2 (2.1)

Here, d represents the direction such that x1, x2 and x3 represents the
x, y and z coordinates respectively. ν0νd is the trapping frequency along the
direction d where ν0 represents the scale of the frequency and νd represent the
ratios in the respective directions. This tells us how strong the confinement is
along a particular direction, M is the mass of the ions and ~x represents their
position. All the ions are in a single trap. They face coulombic repulsions
from each other and hence the total potential experienced by all the ions will
be:

V =
1

2
Mν20

N,3∑
i,d=1,1

ν2dxd,i
2 +

N,N∑
i,j=1,1
i 6=j

Z2e2

8πε0rij
(2.2)

Here Z is the degree of ionization of the ions, e is the electron charge, ε0 is
the permittivity of free space and rij is the distance between two ions.

To simplify our calculations we shall write the positions in terms of a
characteristic length defined by:

ud = xd/l

where,

l3 =
Z2e2

4πε0Mν20

This length is of the order of the distances between the ions, for most
experiments this is in the range 0.1 µm to 10 µm. This lets us rewrite the
potential energy as:

V =
1

2
Mν20 l

2

 N,3∑
i,d=1,1

ν2dud,i
2 +

N,N∑
i,j=1,1
i 6=j

1

uij

 (2.3)

We shall calculate the equilibrium configuration of the ions in this po-
tential assuming the ions to be classical objects. This is done by finding a
minimum of the potential energy function by numerically calculating zeros
of the gradient of the potential energy function by using a multidimensional
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non-linear Newton’s method[51]. The gradient of (2.3) is (refer to appendix
A.1 for the derivation):

∂V

∂xdi,i
= Mν20 l

ν2diudi,i +
N∑
j=1
i 6=j

udi,j − udi,i
u3ij

 = 0 (2.4)

2.2 Computational aspects of determining the
equilibrium configuration

In this section we look into the following problems that were encountered
while calculating the equilibrium configuration of ions: 1. Determining ap-
propriate initial conditions of positions to used for the numerical calculations.
2. Determining if a particular configuration is stable. 3. In case multiple sta-
ble configurations exist, which one would be more stable. The parameters
that are in our control are the trap frequencies and the number of ions. So
we need to solve these problems for a wide range of these parameters.

2.2.1 Initial Configuration used for solving

Since we are numerically solving for the positions using Newton’s method,
we need to provide an initial configuration of ions. If our initial configuration
is closer to the actual solution the calculation is more likely to converge and
also take less time. In section 2.2.2 we shall see how to decide what will
be the general form (whether it will be a linear chain or a two dimensional
crystal or something else). Here we shall specify, given a certain form, the
appropriate initial configuration to obtain a solution of that form. These have
been derived using a process of trial and error, which might have a lack of
completeness in its search for all possible configurations. However it is enough
if the initial configuration is able to give a solution of the desired form, since
then the only remaining problem will be long convergence times which can
be solved by fine-tuning these configurations. To know what are the possible
forms of the equilibrium configurations a large number of solutions obtained
from randomly generated configurations was studied. The solutions obtained
can be broadly categorized into the four categories. Here is a brief description
of these categories and the initial conditions used:

1. Linear Chain: This is favoured when the trap potentials are strong
along two directions and weak along one. The initial configurations for
this is easy to arrive at. We used evenly spaced ions in a row along the
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direction in which the final solution is expected to be. Along the other
two directions the ions are at the minimum of the potential.

2. Planar crystal: These can be subdivided into two more categories for
the purposes of determining the initial configuration.

(a) Zigzag Chain: This is favoured when trap potentials are strong
along one direction, slightly weak along another and very weak
along the third. Along the direction with the weakest potential
this is similar to the linear chain. Along the next direction the ions
are alternating at a certain distance from the potential minimum.

(b) Planar isotropic crystal: This is favoured when the trap potentials
are almost equal along two directions and stronger along a third.
It was found that the most stable planar crystals take the form of
concentric rings of polygons. But the question of how many ions
should be in each ring still remains. This was selected by looking
at the configuration which after solving gave the least value of the
potential energy. Table 2.2 tells us the number of ions that should
be present in each ring for a given number of total number of ions.
It is observed that the ions tend to form a triangular lattice. This
realized if the total number of ions is 7,19,38 . . . .

3. Three-dimensional Crystal: This is favoured when the trap potentials
are almost or completely equal. There seem to be no simple general
rules which can be followed to obtain a good initial configuration and
one has to do a case by case study depending on the total number of
ions.

Figure 2.1 shows the above mentioned forms of ion crystals.

2.2.2 Stability of a configuration

As discussed in section 2.1, we calculate the equilibrium configuration of ions
by numerically solving for the derivative of the potential. This will only give
us a fixed point of the potential which may or may not be a stable. If the
system were stable, given any small perturbation the system should return to
its original state. A small perturbation to the system can be represented as a
combination of the vibrational modes (as will be discussed in 2.3. According
to the theory of small oscillations, if a vibrational mode is stable it will
have a positive frequency. So the stability of a particular configuration can
be determined by looking at the presence or absence of a vibrational mode
with a negative frequency. In figure 2.2 we plot the frequency of the lowest
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Figure 2.1: This figure depicts the various crystal phases for 10 ions. The
diagrams show the position of ions on the z-y plane for (a) liner chain (b)
zigzag chain (c) 2d crystal.

frequency transverse mode as a function of the transverse trapping frequency
for the linear chain and a planar crystal.

From the figure 2.2, we can conclude that at νy ≈ 4.6 the crystal un-
dergoes a phase transition. Note however that, near this point, the solution
obtained using a zigzag chain will look very similar to a linear chain. Using
such analysis one can also determine the point where the 2d to 3d phase
transition takes place. For the case of N = 10 ions we do such a study, using
the results we can predict the phase of the structure based on the results for
a given set of trapping frequencies as shown in 2.3. We expect similar plots
for other number of ions as well.

2.3 Vibrational Spectrum of an Ion Crystal

We shall assume that these ions are situated in the equilibrium positions and
the only form of motion are small oscillations about these points. Since the
ions interact with each other through Coulomb repulsions their motions will
be coupled. We would have to describe theses oscillations using independent
modes of oscillation, which can be calculated using the theory of small oscil-
lations. To describe the energy in this system, we shall assume the normal
modes to be quantum harmonic oscillators. An excitation in one of these
modes may be termed a phonon. Since phonons are the exchange media in
our quantum simulation, it is essential to calculate the eigenfunctions and
eigenfrequencies of all the phonon modes.

According to the theory of small oscillations we need to diagonalize the
second derivative of the potential energy function. The second derivative is
(derived in appendix A.1):
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N Configuration N Configuration

3 3 12 4 8

4 4 13 4 9

5 5 14 4 10

6 1 5 15 5 10

7 1 6 16 1 5 10

8 1 7 17 1 6 10

9 2 7 18 1 6 11

10 3 7 19 1 6 12

11 3 8 20 1 7 12

Table 2.2: Configuration of ions in two-dimensional crystals. This table
tells the number of ions present in each shell of a two dimensional crystal
for a given number of ions. This first number is the number of ions in the
innermost shell, then the second shell and so on. Note that if the number of
ions is 7,19,37. . . a triangular lattice is formed.

1

2

∂2V

∂xdi,i∂xdj ,j
=

1

2
Mν20



ν2di +
∑N

k=1
k 6=i

3(udi,i−udi,k)
2
−u2ik

u5ik
: i=j
di=dj

−3(udi,i−udi,j)
2
−u2ij

u5ij
: i 6=j
di=dj

−
3(udi,i−udi,j)(udj,i−udj,j)

u5ij
: i 6=j
di 6=dj∑N

k=1
k 6=i

3(udi,i−udi,k)(udj,i−udj,k)
u5ik

: i=j
di 6=dj

(2.5)

We shall call the eigenvalues ωm and the eigenvectors ~bmi. For a system
having N ions, there will be 3N eigenvalues/eigenvectors.

When we calculate the phonon modes, we observe that the spectrum of
frequencies can be distinguished into two bands: one having transverse modes
(motion perpendicular to the plane of the ions) and another with longitudinal
modes (motion along the plane of the ions). In all cases the band containing
the transverse phonons has higher frequencies. We shall be using a laser field
which is perpendicular to the plane of the ions and hence can only affect the
motion in the transverse direction. Therefore only transverse phonons can
affect interactions.
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Figure 2.2: This figure plots the frequency of the lowest frequency transverse
phonon mode for the linear chain and a specific mode of the planar crystal as
a function of the transverse trapping frequency. We can clearly see that about
νy ≈ 4.6 the least frequency phonon mode for both the crystals becomes zero.
This indicates a phase transition which occurs at this point. This plot has
been made for 10 ions and using nuz = 1, νx = 10.

Phonon modes at the end of a band are easier to use as one can work with
larger detunings. Also noise due to other bands are reduced. Developments
in techniques of ion-pinning can help us in manipulating the phonon modes
as well as their frequencies. One has to look through the phonon modes
or engineer them in the desired way as to create the required interaction
pattern.

2.4 Quantum Simulation using ion crystals

To perform any form of quantum simulation or quantum computation, we
require a method to store our qubits. It should be feasible to manipulate and
measure them individually and they should have a large coherence time. In
the trapped ion system, superpositions of two electronic states of the ions are
used for this purpose. States can be easily initialized using optical pumping
techniques and measured by attempting to excite one of the states used to
represent the qubit. Two schemes are largely used:

Optical qubits: Here the ground state and an excited metastable state
are used to represent the |0〉 and |1〉 of our qubits. They are manipulated by
lasers in optical frequencies. They have lifetimes of about a second. They
require lasers with very high spectral coherence, but allow for easy focussing
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Figure 2.3: This is a phase diagram that shows what would be the form
of the crystal for various values of ratios of the trapping frequencies for a
system containing 10 ions. νx, νy and νz are trapping frequency ratios. nuz
has been taken as 1. The crystal can exhibit a linear phase, a planar crystal
phase and a 3d-crystal phase. This figure has been generated numerically by
calculating the stability of particular phase by analysing its eigenspectrum
of phonon modes. This diagram will help us in determining the values for
trapping frequencies to use to generate a particular form of crystal.
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Figure 2.4: These plots show the highest-frequency transverse modes (in de-
creasing order of frequency) of 10 ions in a linear chain. The x-axis represents
the index of each ion. The y-axis represents the relative amplitude of each ion
after normalization. The highest mode (shown in (a)) is the centre-of-mass
mode in which all the ions oscillate in-phase with the same amplitude.
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Figure 2.5: These plots show the highest-frequency transverse modes (in de-
creasing order of frequency) of 19 ions in a two dimensional crystal. The dots
represent the ions and the colour of the crystals represents the amplitude.
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and operations are of very high fidelity.
Radio-frequency qubits: Here two hyperfine levels of the ground state are

used to represent quantum information. These are generally well suited for
quantum simulations as the lifetimes of the states are much larger. They can
either be directly be manipulated by microwaves or using a Raman process.
A Raman process requires two laser fields, an atom absorbs a photon from
one of the laser fields and emits into another, the net effect is as though
the atom is affected by a laser with a frequency equal to the difference in
frequencies of the two laser fields.

The hamiltonian of the system described so far can be represented as a
sum of the energy in the electronic state and the energy in the phonons. The
electronic state energy would be.

Ĥe = (~ω)
N∑
i=1

σ̂zi (2.6)

The motional energy can be represented as a summation of harmonic
oscillator Hamiltonians, one for each phonon mode.

Ĥm =
3∗N∑
m=1

~ωm(â†mâm + 1/2) (2.7)

Here ωm are the eigenvalues of the phonon modes. â†m and âm are the
annihilation and creation operators of a phonon in mode m.

We propose to indirectly couple the electronic states of each ion using
the phonons as the interaction medium. This can be achieved by coupling
the electronic states with the motional states. A laser field (or an equivalent
Raman process) is used for this purpose. A general Hamiltonian describing
the interaction between an optical field and an atom/ion will be:

ĤI =
N∑
i=1

~Ω
(

ei(
~k·~xi+ωI t+φi) + h.c.

)
κ̂i (2.8)

Here, Ω is the Rabi frequency, indicative of the interaction strength (it
depends on the amplitude of the optical field and the transition dipole mo-
ment), ~k and ωI is the wavevector and angular frequency of the applied field
respectively (if a Raman process is used this is the difference in the angular
frequencies of the two fields used). The angular frequency ωI used is ωm′ + δ,
where m′ represents the mode that we propose to use for our interaction. xi
is the position of the ion at site i. Notice that we have assumed that all the
ions are uniformly radiated, otherwise all the ions will have their own Ωi and
~ki. κ̂i acts on the Bloch space of the states created by the |0〉i and |1〉i, it
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depends on the polarization of the optical field and the angular momenta of
the states encoding |0〉i and |1〉i. A general form for κ̂i would be

κ̂i = α01̂ + α1σ̂
x
i + α2σ̂

y
i + α3σ̂

z
i (2.9)

The total Hamiltonian will be Ĥ = Ĥe+ Ĥm+ ĤI . This can be simplified
and transformed to be of the form of an Ising Hamiltonian.

Ĥ =
N∑
i=1

Eiσ̂zi+

N,N∑
i,j=1,1
i 6=j

Jijσ̂ziσ̂zj (2.10)

where Jij takes the following value:

Jij =
3N∑
m=1

Ω2ηmi η
m
j

δm
(2.11)

where δm is the detuning of the applied laser field from the phonon mode
m. This would be simply ωI − ωm.

ηmi = ~k · ~bmi
√

~
2Mωm

(2.12)

ηmi are the Lamb-Dicke parameters. They indicate the strength of the
coupling between the electronic states and the motional states. Refer to ap-
pendix A.2 for the transformations required to obtain equation (2.10). The
derivation assumes the system to be in the Lamb-Dicke regime i.e. the cou-
pling created between the electronic states and the motional states is weak

(ηmi

√〈
(âm + â†m)2

〉
� 1). The rotating wave approximation has also been

used in this derivation. From equations (2.11) and (2.12) we can conclude
that the interaction pattern would resemble the phonon mode with the small-
est detuning.

2.4.1 Computational resources used

The code required for the calculations have been written in Python with
the help of the scipy library [52]. LAPACK [53] and ARPACK [54] from
FORTRAN have been used to calculate the eigenvalues/eigenvectors. Plots
have been made using the matplotlib library [55].
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2.4.2 Generating power law spin-spin interactions

Power law interactions are of the form Jij = r−αij ; here rij is the distance
between the ions, in the case of a linear chain one can take this to be simply
i − j, where i and j are the indices of the spins. We can attain values of
α such that 0 < α < 3 by varying the detuning δ. A similar result has
been obtained in [16]. There are many interesting models for spin chains
under power law potentials viz. Haldane-Shastry Model, Majumdar-Ghosh
Model, Meshkin-Lepkov-Glick model [56], which can be studied using such
a simulation. However these models assume periodic boundary conditions
which will be hard to implement using a linear chain trapped ion system.

We shall show a calculation with 10 ions. First of all we need to prepare
a linear chain. Note that this is extendable to more number of ions. A one
dimensional Paul trap is a good means to achieve this. Appendix 2.2 can
help us with determining the ratio of trapping frequencies to be used. We
shall use the parameter values of ν0 = 1MHz, νx = 1, νy = νz = 10. Using
equation (2.4) we can calculate the positions of these ions. For our choice of
number of ions and trapping frequencies the following would be the positions
of ions on a linear line(the ions have been assumed to be of calcium):

Positions (in 10−5m)

-4.88 -3.57 -2.47 -1.45 -0.48 0.48 1.45 2.47 3.57 4.88

We shall use the data of these positions to solve for the phonon modes in
the system. This is done by calculating the eigenvalues and eigenvectors of
(2.5). The spectrum of frequencies has been plotted in 2.6 and some of the
highest energy transverse modes have been shown in 2.4.

The highest frequency mode has all the ions oscillating in phase with the
same amplitude. This is the centre of mass mode. If our detuning from the
frequency of this mode is very small, the interaction pattern would resemble
the phonon mode. Since the mode has all the ions moving in phase with
the same amplitude, the corresponding interaction pattern would be a long
range ferromagnetic interaction or J ∼ r0. As we increase the detuning,
other phonon modes also start playing a role in determining the interaction
pattern. We observe that it takes a J ∼ r−α form.

2.4.3 Beyond power law potentials

New techniques have led to the development of more complicated spin mod-
els recently. Nath et al.[22] have used ion pinning to simulate the Hexagonal
Kitaev Model which has a topological spin liquid ground state. Ion pinning
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18



creates different trap frequencies around specific ions, which lets us engi-
neer the phonon modes. Bermudez et al. [25] create frustrated spin models
using anisotropic couplings. This is done by using laser fields whose resul-
tant wavevector is not perpendicular to the plane of the crystal. We shall
incorporate these techniques to simulate RKKY interactions.

2.5 Summary
In this chapter we have discussed how to use a Paul/Penning trap to trap
ions into one and two-dimensional crystals. We simulate Ising spin models
using these Ion crystals, specifically power law potentials. We shall use these
techniques to develop a simulation of RKKY interactions.
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Chapter 3

Quantum Simulation of RKKY
Interactions in a triangular lattice
using trapped ions

3.1 Simulating RKKY Interactions

In section 2.4.2 we saw how to simulate power law potentials in a one-
dimensional linear chain using trapped ions. Now we shall demonstrate how
to simulate RKKY Interactions using similar techniques. As discussed in
section 1.0.1, RKKY interactions show both ferromagnetic and antiferro-
magnetic interactions in an oscillatory manner in space. In section 2.4.2 we
had utilized primarily the centre of mass phonon mode. This led to an in-
teraction pattern in which all interactions were antiferromagnetic as all ions
oscillate in the same phase in the centre of mass mode. Hence to create an
oscillatory interaction pattern one could use a phonon mode in which neigh-
bouring ions oscillate out of phase. An analysis of the phonon modes of the
linear chain as well as the two-dimensional crystals shows that the lowest
frequency transverse modes happen to be of this nature, as can be seen from
figure 3.1.

One could utilize this mode to generate RKKY interactions by tuning the
effective laser frequency (ωI) near the frequency of this mode. We calculate
the interaction pattern that would be generated by doing so. This has the
desired oscillatory pattern of ferromagnetic and antiferromagetic interactions.
Also the interaction strength decreases with distance as can be seen in figure
3.2. However a power-law regression analysis shows that it is not of the form
of a power law. However the obtained interaction pattern has a ground state
which can satisfy all the interactions. To observe frustration one must study
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Figure 3.1: The lowest frequency transverse mode of a one-dimensional linear
chain with 25 ions.

a two-dimensional system.
In section 2.2.1 we had seen that a triangular lattice is formed for 7, 19,

37. . . number of ions. We observe that in the lowest frequency transverse
mode of such crystals all ions within a shell oscillate in-phase while ions in
neighbouring shells oscillate out of phase (figure 3.3). This is analogous to
the desired interaction pattern with respect to the central ion. Figure 3.4
shows the interaction pattern with respect to the central ion when one tunes
the laser close to the frequency of this mode. For reference an RKKY interac-
tion curve is also plotted. The wavelength of ferromagnetic-antiferromagnetic
oscillation of the RKKY pattern thus generated is fixed and cannot be con-
trolled by adjusting any parameters as it is a function of the phonon mode
used. However the peripheral ions do not show such a pattern. Our analysis
shows that in the 19 ions system 30 of the 130 two-spin interactions are along
the wrong direction in the ground state of the system. This frustration how-
ever doesn’t lead to degeneracy as the conflicting interactions are of weaker
strength as compared to other interactions present in the system.

In many crystals with different number of ions than ones required to form
triangular lattices it is observed that this oscillatory mode is not the lowest
frequency transverse mode. However such a mode exists in such crystals
also, just that it is within the band of transverse modes. It is hard to use a
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Figure 3.2: Resultant interaction pattern of the one-dimensional RKKY sim-
ulation. The graph has been calculated for a 25 ion chain with νx = νy =
10 and νz = 1 and a detuning of δ = −0.1ν0. This both the oscillatory as
well as the diminishing nature of the RKKY interaction.
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Figure 3.3: The plot on the left shows the positions of ions in a 19 ion chain,
the indices of each ion has been marked near it. The plot on the right shows
the lowest frequency transverse mode in this crystal, the relative amplitudes
have been plotted against the index of the ion. This mode shall be used
to simulate RKKY interactions. This has been calculated for 19 ions in a
symmetric two dimensional trap with νz = νy = 1 and νx = 6 and a detuning
of δ = −0.1ν0

mode which is inside a band since one is forced to use smaller and smaller
detunings, which might lead to resonance effects. This is especially true when
the number of ions is large as the band gets denser. Our analysis also shows
that this mode has the largest amplitude for the central ion, in fact this mode
has the largest amplitude for the central ion among all the transverse modes.
Hence any changes to the central ion it will affect this mode the most. We can
specifically change the trapping around a specific ion as demonstrated in [22].
Loosening the trapping near the central ion brings down the frequency of this
mode thus taking it outside the band. This also helps with the triangular
lattices, since even in this case this mode is removed from the rest of the
band.
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νz = νy = 1 and νx = 6 and a detuning of δ = −0.1ν0
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3.2 Spin Glass with trapped ions
Using the method developed in simulating RKKY interactions, one can ex-
tend to simulation of spin glasses. We shall present to you preliminary work
done in this direction and challenges that we face while developing such a
system.

[57]study spin systems with randomly arranged spins under RKKY in-
teractions using Monte-Carlo simulation. They were able to observe several
properties also observed in spin glasses. In a similar vein we hope to simulate
spin glasses using quantum systems. Already [58] have proposed a quantum
system for spin glasses using quantum solids with impurities.

Firslty we look at how good is the naive RKKY model as a system to
simulate spin glasses. We obeserve that there are no multiple energy wells
in the potential energy spectrum of such a system. It is speculated that this
is due to the small size of the system. In [57] multiple energy minima were
observed only as the size of the system started approaching ≈ 150. The
essential ingredients for RKKY based spin glass is the irregularity in the
interactions generated by a randomness of position and the frequent spin-
flips of an RKKY interactions. In the system that we have been using such
irregularity may not arise since the positions of all the ions are very regular.

One of the possible ways to solve this problem is to make the interaction
pattern anisotropic. This would make the various spins at the same dis-
tance from a given spin not have similar interactions and thus would break
the regularity of the interactions. Such anisotropic interactions have already
been demonstrated in quantum simulations using trapped ions[25]. In their
experiments the laser field used is not entirely perpendicular to the crystal
plane, but at an angle. Although this might excite the longitudinal modes as
well, if the laser frequency used is sufficiently far from those of the modes the
interaction pattern will be unaffected. Upon using such techniques the sign
of the interaction becomes rather irregular. We also calculate the probability
distribution for a given interaction strength, It follows a centralized distribu-
tion which is akin to the Gaussian distribution of the Edwards et Anderson
model.

There are still many challenges that have to be overcome such as 1) The
ability to simulate temperature in the system 2) make the wavelength of
oscillation of the sign of the interaction pattern controllable 3) Application
of the method to larger systems and making sure that it stays scalable.
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Chapter 4

Conclusion

In this thesis we first reviewed existing methods of quantum simulation of spin
systems using trapped ions. We also showed how to create a two-dimensional
crystal as well as an example of a quantum simulation. We have demon-
strated how to create an RKKY interaction pattern in quantum spins in a
triangular lattice. This work can be built upon to create a quantum simu-
lation of spin glasses and our preliminary research is mildly promising with
certain challenges that still need to be overcome.
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Appendix A

Long proofs

All supplementary material that adds to the body of work of the main text
should be added here. The use of supplementary information in the form of
Appendices is non-mandatory. Please use them only if you feel that they are
essential in clarifying parts of the main text of the project report. If you find
it necessary, you can add more than one of them. (Appendix 2, 3 etc)

A.1 Determining the equilibrium configuration
of two dimensional crystals

The potential experienced by ions is given in equation (2.3) reproduced below:

V =
1

2
Mν20 l

2

 N,3∑
i,d=1,1

ν2du
2
d,i +

N,N∑
i,j=1,1
i 6=j

1

uij

 (A.1)

An equilibrium configuration of positions of ions would correspond to a
minimum in the above function. At a minimum all the derivatives of the
potential energy function would vanish i.e. ∂V/∂xdi,i = 0 ∀ 1 ≤ di ≤ 3, 1 ≤
i ≤ N .

∂V

∂xdi,i
=

∂V

∂udi,i

∂udi,i
∂xdi,i

and,
∂udi,i
∂xdi,i

= l−1 (A.2)

hence,

34



∂V
∂xdi,i

= 1
2
Mν20 l

∂
∂udi,i

(∑N,3
j,d=1,1 ν

2
du

2
d,j +

∑N,N
j,k=1,1
j 6=k

(∑3
d=1(ud,j − ud,k)2

)−1/2)
= Mν20 l

(
ν2diudi,i −

∑N
j=1
j 6=i

(udi,i − udi,j)
(∑3

d=1(ud,j − ud,k)2
)−3/2)

(A.3)
which can be rewritten as equation (2.4).
Calculation of the phonon modes requires the calculation of the second

derivative of the potential energy function. i.e. ∂2V
∂xdi,i∂xdj,j

.

∂2V

∂xdi,i∂xdj ,j
= Mν20

∂

∂xdj ,j

ν2diudi,i − N∑
k=1
k 6=i

(udi,i − udi,k)(∑3
d=1(ud,i − ud,k)2

)3/2
 (A.4)

This can be further divided into four cases:
Case I: i = j and di = dj

∂2V

∂xdi,i∂xdi,i
= Mν20

ν2di − N∑
k=1
k 6=i

(
1

u3ik
− 3(udi,i − udi,k)2

u5ik

) (A.5)

Case II: i 6= j and di = dj

∂2V

∂xdi,i∂xdi,j
= Mν20

(
1

u3ij
− 3(udi,i − udi,j)2

u5ij

)
(A.6)

Case III: i = j and di 6= dj

∂2V

∂xdi,i∂xdj ,i
=

N∑
k=1
k 6=i

3(udi,i − udi,k)(udj ,i − udj ,k)
u5ik

(A.7)

Case IV: i 6= j and di 6= dj

∂2V

∂xdi,i∂xdj ,j
= −

3(udi,i − udi,j)(udj ,i − udj ,j)
u5ij

(A.8)

Adding these cases we can arrive at equation (2.5).
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A.2 Derivation of the spin-spin Hamiltonian

We can write ~x as a sum of position operators of all phonon modes. Hence

~xi =
3N∑
m=1

~bmi

√
~

2Mωm

(
â†m + âm

)
(A.9)

We shall introduce Lamb-Dicke parameters as

~k · ~xi =
3N∑
m=1

ηmi
(
â†m + âm

)
(A.10)

They represent the strength of the coupling created between the electronic
states and the motional states by the optical field. They can be defined using

ηmi = ~k · ~bmi
√

~
2Mωm

(A.11)

Incorporating equations (A.9) and (A.10) into (2.8) we get

ĤI =
N∑
i=1

~Ω
(

ei(
∑3N

m=1 ηmi(â†m+âm)+ωI t+φi) + h.c.
)
κ̂i (A.12)

The total Hamiltonian of the system becomes

Ĥ = Ĥe + Ĥm︸ ︷︷ ︸
Ĥ0

+ĤI (A.13)

We shall write the Hamiltonian in the interaction picture using Ĥ0 as the
known part of the Hamiltonian. In the interaction picture the interaction
Hamiltonian will be

Ĥ ′I(t) = Û †0(t)ĤIÛ0(t) where Û0(t) = e−iĤ0t/~ (A.14)

Since both Û0(t) and ĤI are separable with respect to individual ions, the
transformation into to interaction picture can be done separately for each ion.

Ĥ ′I(t) =
N∑
i=1

Ĥ ′Ii (A.15)

Also since the electronic part and motional part are independent this can be
broken down into:
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ĤIi
′ = eiĤmt/~~Ω

(
ei(

∑3N
m=1 η

m
i (â†m+âm)+ωI t+φi) + h.c.

)
e−iĤmt/~︸ ︷︷ ︸

Part 1

eiĤet/~κ̂ie
−iĤet/~︸ ︷︷ ︸

Part 2

(A.16)
Part 2 can be simplified as:

κ̂′i = eiĤet/~κ̂ie
−iĤet/~

= eiωtσ̂
z
i /2(α01̂i + α1σ̂

x
i + α2σ̂

y
i + α3σ̂

z
i )e
−iωtσ̂z

i /2

= eiωtσ̂
z
i /2(α01̂i + α3σ̂

z
i + 1/2(α1 − iα2)σ̂

+
i + 1/2(α1 + iα2)σ̂

−
i )e−iωtσ̂

z
i /2

=
1

2

(
α01̂i + (α1 − iα2) e

iωtσ̂+
i + α3σ̂

z
i

)
+ h.c.

Part 1 contains terms of the form

eiωI tâ
†
mâmeiη

m
i (â†m+âm)e−iωI tâ

†
mâm (A.17)

Using the Baker-Campbell-Hausdorff formula

e−B̂Âe−B̂ =
∑
n

1

n!

[
Â, B̂

]{n}
(A.18)

and the commutation relation for harmonic oscillator annihilation oper-
ator [

â, â†
]

= 1 (A.19)

one can get

eiη
m
i exp

(
âme

−iωI t + â†me
iωI t
)

= eiωI tâ
†
mâmeiη

m
i (â†m+âm)e−iωI tâ

†
mâm (A.20)

which gives us the interaction Hamiltonian

Ĥ′Ii =

(
~Ω exp

(
3N∑
m=1

iηmi
(
âme

−iωI t + â†me
iωI t
)
− iωIt+ iφi

)
+ h.c.

)
κ̂′i

(A.21)
We shall assume ωI � ω. We will apply the rotating wave approximation

in which terms which rotate too fast are averaged out. In this case we neglect
terms not having eiωI t to get

Ĥ′(i)I = ~Ω exp

(
3N∑
m=1

iηmi
(
âme

−iωI t + â†me
iωI t
)
− iωIt+ iφi

)
(α01̂i+α3σ̂

z
i )+h.c.

(A.22)
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We use the Hamiltonian (A.22) to create an effective σ̂z ⊗ σ̂z interaction
and hence an Ising like Hamiltonian. We shall assume that we are working
in the Lamb-Dicke regime, where the induced coupling between the motional
states and the electronic states are small. Here η

〈
(â†m + âm)2

∣∣(â†m + âm)2
〉1/2 �

1. Hence expanding the Hamiltonian in terms of the Lamb-Dicke parameters
and ignoring all higher order terms other than the linear term.

Ĥ′I = ~Ωe−iωI t+iφi

(
i

3N∑
m=1

ηmi
(
âme

−iωI t + â†me
iωI t
))

(α01̂i + α3σ̂
z
i ) + h.c.

(A.23)
Using the Rotating wave approximation again and ignoring terms faster

than eiδt we get:

Ĥ′I = i~Ω
3N∑
m=1

ηmi e
iφi â†m

(
α01̂i + α3σ̂

z
i

)
+ h.c. (A.24)

The complete interaction Hamiltonian will also have the term Ĥδ which
we had left out so far. However this part is unaffected by the transformation
and can be written as it is in the final Hamiltonian. Hence

Ĥ′S = Ĥ′I + Ĥδ (A.25)

Now we shall apply a canonical transformation to the above Hamiltonian
such that its form becomes similar to that of the Ising Hamiltonian. The
applied transformation is given by

Ĥ′′S = ÛĤ′SÛ † (A.26)

with

Û = exp

(
−

N∑
i=1

3N∑
m=1

1

~δm

(
ξ̂mi â

†
m − ξ̂

m†
i âm

))
(A.27)

and
ξ̂mi = i~Ωηmi e

iφi
(
α01̂i + α3σ̂

z
i

)
(A.28)

The transformed Hamiltonian is

Ĥ′′S =
N∑
i=1

N∑
j=1

3N∑
m=1

Ω2ηmi η
m
j

δm
eiφi−φj

(
α01̂i + α3σ̂

z
i

) (
α01̂j + α3σ̂

z
j

)
+ Ĥδ (A.29)
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