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Abstract:

Propagation of spiking activity in networks of neuron is the key to how 
information is presented in the brain. The precise arrival times of spikes encode
different kinds of incoming information. It has been shown that parameters like 
the number of spikes and the variability in timing of spikes determine the 
propagation of input across the network (Diesmann, Gewaltig, & Aertsen, 
1999b). We want to determine the conditions under which the activity 
propagates across layers of neurons in a feed-forward network (Diesmann, 
Gewaltig, & Aertsen, 1999a; Kumar, Rotter, & Aertsen, 2010a; Rossum, 
Turrigiano, & Nelson, 2002) Also we look for the conditions under which spike 
volleys with spread in spike times synchronise and vice-versa. Feed-forward 
networks are embedded in many brain areas (Doupe, Solis, Kimpo, & Boettiger,
2004; Fee & Scharff, 1969; Gewaltig, Diesmann, & Aertsen, 2001a; Hanuschkin,
Diesmann, & Morrison, 2011; Mittmann, Koch, & Häusser, 2005; Teramae & 
Fukai, 2008) and an understanding of activity propagation in canonical feed-
forward network will help us understand dynamics of neural networks in 
general and also form a good framework for understanding sensory 
computation.
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Chapter 1

Introduction:

           “A writer is like a tuning fork: We respond when we’re struck by
something. The thing is to pay attention, to be ready for radical empathy. If we

empty ourselves of ourselves we’ll be able to vibrate in synchrony with
something deep and powerful. If we’re lucky we’ll transmit a strong pure note,
one that isn’t ours, but which passes through us. If we’re lucky, it will be a note

that reverberates and expands, one that other people will hear and
understand.” 

―Roxana Robinson

A neural code is a collection of spikes that may be used by the brain to 
encode,decode and process cognitive information.  Brain is a highly modular 
structure and spiking activity propagates from one region to another in a 
manner where the collective spikes either have a low temporal difference or 
high temporal difference depending on the network and the synapses 
(Diesmann et al., 1999a; Gewaltig, Diesmann, & Aertsen, 2001b). Thus to 
understand the neural code it is necessary to understand the conditions under 
which the spiking activity propagates.

1.1 Synchrony and need for neural assemblies:

Even though the brain is densely packed with neurons, a very small fraction of 
them are activated in response to a stimulus. Many studies that recorded single
neuron activity suggested that repeated presentation of the same stimulus 
activates roughly the same set of neurons each time. This fact is the basis for 
the concept of neural assembly (Gerstein, Bedenbaugh, & Aertsen, 1989; 
Harris, 2005; Hebb, 1949).

Intrinsic properties of the neurons and the synaptic connectivity plays a role in 
the network's operation. Activity propagation by individual neurons solely can't 
be mediated in a noisy environment reflecting fluctuations in the synaptic input
and hence are incapable of transmitting signals with millisecond precision. 
Hence a population of neuron becomes necesary for the transfer of signal 
(Gerstein et al., 1989). On the other hand it is evident that neural computations
are very fast as in a task of categorizing complex visual scenes takes about 
150msec (Fabre-Thorpe, 2011) which is fascinating as the signal has to go 
through many synapses for this computation. Also from the brain recordings of 
Songbirds it is known that the preplay and replay events have a very small 
timescale of hundreds of milliseconds (Doupe et al., 2004; Long, Jin, & Fee, 
2010). By collecting spikes from a population of many independent neurons 
from a layer the readout can be made reliable. 

Our perspective is to look at the collective activity of populations of neurons 
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with respect to synchrony transfer or propagation with change in the temporal 
structure of the spikes in the presence of noise arising from various sources. In 
context of temporal coding in the brain well-timed and reliable spikes are of 
prominent importance. Abeles formalized the idea of synfire chain, groups of 
neuron are connected in a feed-forward manner where a large enough pool of 
depolarising neurons tend to align their action potentials to propagate activity 
synchronously (Abeles, 1991). Precision of neuron's action potential is accessed
based on the timing of those of its neighbouring neurons which share the same
pool. The quality of timing determines whether the synchronous spiking is 
sustained or it dies out (Diesmann et al., 1999a). 

A neural code can be characterized on several biophysical dimensions like the 
time constants of different synaptic channels involved (Liu, Xu, Kang, & 
Nedergaard, 2005), transmitter release depending on the calcium 
concentration in the presynaptic terminal (Fiacco & McCarthy, 2004; Helmchen,
Borst, & Sakmann, 1997; Zhai & Bellen, 2004), astrocytes which phospharylate 
the post synaptic terminal channels affecting their conductances (Volman, Ben-
Jacob, & Levine, 2007), etc.,.

We look at the two basic dimensions of neural representations needed for 
characterizing a neural code. Spatial: sensory processing is based on size of 
distributed populations of neurons from small neural ensemble to populations 
of neurons spread across brain areas.) Temporal: neural responses evolve over 
time, and the temporal structure of neural activity is often required to explain 
speeded reactions (Overath et al., 2007). Neglecting the temporal dimension of
neural activity results in a less detailed representation of the sensory input. 
Synfire coding is therefore necessary where a stable propagation of signal is 
required. 

1.2 Topology of the network:

The topology of connections within a feed-forward network (FFN) can determine
the degree to which it synchronizes the incoming signal. The probability of 
connections across layers can also play a role in determining whether activity 
propagates across the network or steadily dissipates as it traverses multiple 
layers. In a bilogical scenario FFN is a part of a network with both back and 
forth connections (Kumar, Rotter, & Aertsen, 2010b)  and it becomes important 
to study the dynamics of the FFN and that of the embedding feedback-
feedforward network. One way to study the dynamics of the FFN under realistic
conditions is by randomly choosing a group of neurons and identifying another 
group that is directly connected to the first group with certain probability. 
Repeating this N times, N layers of FFN can be identified (Vogels & Abbott, 
2005). In Neocortex where neurons are weakly connected, only sparsely 
connected FFNs can be identified (Izhikevich, Gally, & Edelman, 2004; Vogels & 
Abbott, 2005). Evidences from neuroanatomy suggest that there are 10000 
synapses per neuron where individual synapses are weak and unreliable 
suggesting that collective activation of multiple presynaptic neurons is 
necessarg to elicit an action potential in a postsynaptic neuron (Binzegger, 
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Douglas, & Martin, 2004; Garey, 1999).  By systematically varying the 
intralayer and interlayer connectivity we study the effects on the dynamics of 
the network.

1.3 Noise - Sources and its role:

Another key aspect that needs to be investigated is the role of noise that it 
plays in the propagation of signal. Experimental evidences from in vivo 
extracellular recordings suggest that a neural network can be considered as a 
complex nonlinear dynamical system exhibiting chaotic dynamics 
(Segundo,2003;van Vreeswijk & Sompolinsky, 1996). The information 
propagation across multiple layers of brain imposes important constraints that 
previous studies lack. First is to retain information about the stimulus, small 
stimuli should propagate whereas strong stimuli shouldn't saturate the 
response. Second, synchronisation must not be lost for synfire coding in 
presence of noise from various possible background sources like noise in the 
spike generator, spontaneous quantal events (Bekkers, Richerson, & Stevens, 
1990), input from neural ensemble in a network maintaining an asynchronous 
low-activity state (van Vreeswijk & Sompolinsky, 1996), heterogeneity in the 
excitability of the cell (Wilson & Cowan, 1972) or stochastic vesicle release 
(Maass & Natschläger, 2000). 

The membrane potential of neocortical neurons in-vivo is found to be 
continously fluctuating due to the presence of synaptic background activity 
which reflects ongoing activity in the cortical network (Destexhe & Paré, 1999). 
In cat parietal cortex it was found that background activity accounts for upto 
80% of the input conductance (Destexhe & Paré, 1999). A significant 
conductance increase due to background activity has also been observed in 
cerebellar Purkinje cells (Häusser & Clark, 1997). High-amplitude membrane 
potential fluctuation is a consistent feature of intracellular recordings in-vivo, 
which are rarely taken into account. The membrane potential fluctuations have 
been shown to play a positive role in increasing the responsiveness of 
neocortical pyramidal neurons in presence of synaptic background activity by 
lowering the threshold of firing (Hô & Destexhe, 2000a). In a network level 
increased responsivess will lead to detection of small signals which are below 
threshold. This is in line with the observation that background activity is 
particularly intense in intracellularly recorded cortical neurons of awake 
animals (Steriade, 1999) where it can be an active component of arousal or 
attentional mechanisms. Hence noise in a way helps in propagation of such 
small signals in a network.

1.4 Role of Inhibition :

Inhibition is found to play a key role in providing a time window for integration 
of spikes. It is observed that when inhibition is blocked pharmacologically, it 
leads to epilepsy. In this condition the neurons are no more selective to 
stimulus form (Cossart et al., 2001). 
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1.5 Balance of Excitation and Inhibition:

 In cortex it has been sen that neurons tend to show random spiking activity 
which suggests that if neurons were solely to remain in a depolarised state the 
individual random spikes won't be able to illicit any action potential, but it is 
observed that it can illicit an action potential suggesting that there's constant 
excitation comming in which keeps the membrane potential of the neurons just
below the firing threshold (Hô & Destexhe, 2000b). A balance between this 
inhibition and excitation thus helps in increased responsivess to stimulus, 
decides the selective window for spike integration based on the level of 
inhibition present thus neural computation, and it also enables the long 
distance propagation of signals in a network connected with lower probabilities 
(Haider, Duque, Hasenstaub, & McCormick, 2006).  Since synchrony transfer is 
been investigated incorporating inhbition in the network will better help 
understand the ability of the signal to propagate through the layers and the 
interplay between excitation and inhibition to keep the neuron ready for firing 
depending on the form of stimulus.
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Chapter 2

Methods:

Simulations were done using the BRIAN simulator in Python 2.7.

”The network model used in the present study was obtained from ModelDB 
(accession number 153988)”.

In the model a feed-forward network of 100 neurons present in 10 subsequent 
layers was created. Connectivity among neurons within a layer was absent. All 
the 100 neurons from one layer form synapses with neurons in the next layer 
only. In total the network had 1000 neurons and 90000 synapses. Neurons were
modelled using Integrate-and-fire neurons with leaky K-conductance having a 
resting membrane potential, -70 mV and firing threshold, -55 mV and an 
absolute refractory period of 1 msec. Exponential form of alpha synapses with 
reversal potential of 0 mV having a fall time of 0.325 ms where choosen to 
yield a realistic 0.14 mV bump in the post synaptic potential. To incorporate the
ongoing background cortical network activity, every neuron in the network 
received a synaptic current with 25.27 mV mean and a standard deviation of 
6.264 mV, such that the frequency of background firing was 1.88 Hz.

2.1 Dynamics of the Integrate-and-fire neuron (Stein, 1967):

A leaky IF neuron model is a simplistic neuron model which is computationaly 
fast and is ideal for network simulations, given by the ODEs, where (1) is the 
voltage derivative, (2) conductance derivative and (3) exponential synapse.

14
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2.2 Synapse:

15

Illustration 1: Leaky Integrate and Fire neuron with K-Conductance. Resting potential, -70 mV; Firing 
threshold, -55 mV; Abs. refrac. period, 1 msec; 

Illustration 2: Synapse dynamics:A single spiking event triggers the synapse which has a 
fall time of 0.325 msec which contributes to a 0.14 mV jump in the membrane voltage. 



Exponential synapse with a fall time of 0.325 ms is used (Equation 3). The 
synaptic connection between two neurons was made such that a presynaptic 
neuron when spiked contributed 0.14 mV of PSP in the postsynaptic neuron 
with a synaptic conductance of 13 mV.

2.3 Network Connectivity

2.3.1 Excitatory Feed-Forward Network:

In a feed forward network, the neurons from one layer form synapses with 
neurons in the next layer. Within a layer neurons don't make synapses with 
each other. The weight of synaptic strength is equal for all the connections.
In excitatory FFN, all the neurons are of excitatory nature. 
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Illustration 3: Change in membrane potential on receiving 1 spike



Drawing 1: All the neurons of a layer project to every neuron in the next layer. 
Intragroup connections are absent.(Source:Created in Neural Network 
simulator application for Google Android OS 4)

2.3.2 Excitatory-Inhibitory Feed-Forward Network:

Another network composition later used in the work comprises of both 
excitatory and inhibitory neurons in the ratio 88:12 (Garey, 1999; Mayhew, 
1991). The strength of inhibition is equal to that of excitation and connections 
within a neuron layer is absent.

2.3.3 Excitatory-Inhibitory Feed-Forward Network with Intra-layer 
connections:

The composition is same as for 2.3.2 but with inhibitory connections made 
within a neuron layer.

2.3.4 Excitatory-Inhibitory FFN with connection probability:

In this type of network the connections from one group to another are made 
with certain probability to highlight the fact that neurons synapse with different
strength with neighboring layer/group of neurons. This network is used to 
understand the role of excitation-inhibition balance in spike activity 
propagation.

2.4 Background activity:

The background activity was modelled by feeding a noise current through 
exponential synapses to the conductance of the LIF neuron. The noisy events 
are independently drawn for every single neuron in all the layers. The noise 
was drawn from a standard normal distribution. Since integration is done by 
Euler method, the standard deviation and mean were adjusted for the noise. 
The frequency of spiking events for a group was found to 1.88 Hz (17 
spikes/90ms).
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Illustration 4: Background spiking due to noise is at 1.88 Hz for a group containing 100 
neurons, runtime 90 ms

2.5 Spiking activity propagation:
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Illustration 5: Stable propagation with initial spike volley having a spike count 'a' of 50 spikes
and temporal dispersion 'sigma' between the spikes of 0 ms.



The spike activity propagation is such that for an input of 50 spikes with 0 ms 
temporal spread, it is stable or propagates to the last layer with a decreasing or
constant temporal spread. And for an input of 48 spikes with temporal spread 0
ms, it is unstable or propagates with an increasing temporal spread. This is in 
terms with the parameters used to generate figures 1.d & 1.e of Aertsen et. al. 
1999.

2.6 Estimation of spike number and temporal spread: 

To estimate the temporal spread 'sigma' and spike count 'a' in the subsequent 
layer following a stimulus is done by drawing a time window of 30 ms around it.
The time window is drawn taking care of the synaptic delay present between 
the first and the nth group for a case where the propagation is stable 
throughout i.e., for input 100 spike count with 0 ms spread. This key 
measurement is later used to generate a phase portrait in the paper. Also 
estimation is done independently again and again for a sample size of 50 for all
the simulations so as to get a better estimate of temporal spread in the signal.
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Illustration 6: Unstable propagation with initial spike volley having a spike count 'a' of 48 spikes 
and temporal dispersion 'sigma' between the spikes of 0 ms.



2.7 Phase portrait to understand propagation:

Grid of sizes 10x10 and 15x15 with one parameter being spike count 'a' and 
other temporal dispersion 'sigma' are used for understanding the nature of 
propagation with changes being made to network, synapse and intrinsic 
properties of the neurons. Every grid point is an initial condition for a network 
simulation of duration 90 ms. The final measurement of 'a' and 'sigma' draws a 
vector in the phase plane indicating the nature of propagation. With this a 
regime of stable and unstable propagation can be seen with direction of 
vectors either going left-up or down-right on the phase plane. Nullclines are 
also present which show how 'a' and 'sigma' change with changes made to the 
network model. Coloration of grid is done based on the following results from 
simulation run at each point:

a. Spike count increase (Blue).
b. Decrease in tempral spread (Red).
c. Both a,b (Green)
d. Neither a nor b (Black).
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Illustration 7: a,sigma estimation; Red box is the time window for estimation where spike 
count 'a' is counted and temporal dispersion of the spike times of every neuron is calculated.



2.8 Finding the stable and saddle fixed points:

Stable fixed point is point where all the stabily propagating signal converges to.
The two fixed points in the phase portrait are present only when the 'a' 
nullcline (Blue) intersects with the sigma-nullcline (Red) as seen in Illustration 
8. To study the movement of fixed points while changing the network model 
parameters and noise we pick out the points of intersections from the overlap 
(Green region)  where the one on the top-left is stable and the bottom-right is 
saddle. A 3D plot is done to observe the change in nature with respect to any 
network parameter. In the below figure Illustration 9 we can see the various 
fixed points present.  
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Illustration 8: Phase portrait with number of neurons per layer, 100. The green overlap 
shows that two fixed points exist at the intersections of blue and red nullclines. 
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Illustration 9: Activity propagation phase diagram. a, spike count and sigma is the variation in spike time. stable 
fixed point ,Red,(95,0.75) and Blue,(62,1.375) stable fixed point. Green line separates the stable and unstable 
propagation regimes. Yellow is the point corresponding to the form of basal noise activity in the network.



Chapter 3

Results:
A feed-forward network (FFN) is a simple network configuration which is used 
to address the spike activity propagation across layers of brain. Neurons form 
weak synapses but many with neurons across the group. A propagating pulse 
(spike activity) needs to attend certain amount of synchrony to elicit an action 
potential in the receiving neuron. The amount of synchronisation is depending 
on the firing rates of neuron and the membrane potential of the receiving 
neurons. The background activity present in the network facilitates in 
increasing the sensitivity of membrane potential to incomming pulse by 
lowering the firing threshold for the neuron. 

3.1 Average membrane potential and activity propagation for 
various neuron pool sizes:

In the below figure the membrane potential average is at -62 mV with the firing
threshold at -50 mV.

The synchronisation and the number of incomming spikes play an important 
role in determining the nature of propagation which can be either stable (i.e, 
synchronously propagating) or unstable (i.e, propagation with decreasing 
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Illustration 10: Form of the action potential is shown in the figure for some neurons from all the 10 
layers of excitatory feed-forward network. Average membrane potential is found to be -62 mV.

M.Pot.
(in mV)

Time (in ms)



activity and synchrony). The number of neurons present in a layer or the 
neuron pool also determines the nature. For bigger neuron pool the activity is 
found to stable and is unstable when small. In the figures below are for 
w(neuron per group) 90,100 & 110.
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Illustration 12: Neuron per group, 90 Illustration 11: Isoclines for w 90

Illustration 14: Isoclines for w 100

Illustration 15: Isoclines for w 110

Illustration 13: Neurons per group,100

Illustration 16: Neurons per group, 110



3.2  Spike response probability :

The size of neuron pool affects the spike response probability which is a 
sigmoid function of number of incomming spikes.
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Illustration 17: 'Alpha' is the probability of spikes in the last layer and 'a' is number of spikes 
present in the input to the first layer of FFN. It is seen that the response saturates and trend is a 
sigmoid.



The presence or absence of synchrony in incomming spikes linearly affects the 
spike response probability as the window for integration of spikes gets affected.

3.3 Spike activity propagation in an Excitatory-Inhibitory Feed-
Forward Network :

Cortex is found to contain both excitatory and inhibitory neurons roughly in 
ratio of 88:12. Earlier FFN created was of only excitatory nature and lacked 
inhibitory connections. 
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Illustration 18: 'Sigma' is the spread of spikes in time. Spread in output versus the 
spread in input is plotted. The trend is linear indicating that spread alone is not 
sufficient for synchronisation.
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Illustration 19: Without inhibition: w = 125, grid 30x30

Illustration 20: With Inhibition: w = 125, weight of inhibition = -69.4, grid 30x30,



Inhibition in a network is found to determine a window for spike integration and
hence is required to attain synchronisation. A new FFN was created containing 
both inhibitory and excitatory neurons differing only in the nature of synapses 
they formed. The excitatory and inhibitory neurons synapsed with all the 
neurons of the subsequent group. Parameters like the weight of inhibition & 
compostion (E-to-I ratio) were varied. Both the parameters affected the 
strength of inhibition. It is found that as the strength of inhibition was increased
the fixed points started to disappear for the EI-FFN containing 125 neurons 
(Illustration 19 & 20). The disappearence of fixed point is similar to that 
observed by varying the number of neurons present per group for an E-FFN 
(Illustration 12,13,16).
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Illustration 21:  A 3D plot with positive X & Y axis being sigma and neuron number. Z-axis is the
weight of inhibition

Wi

Sigma(ms)

a (neuron number)



The timescale of inhibition and excitation were same hence the resultant effect 
was just a decrease in strength of excitation to the subsequent group. The 
speculation that inhibition in the FFN affected synchrony was ruled out.

3.4 Rate of inhibition and its effect on propagation :
 
The background activity was the key determinant of nature of propagation 
which affected the membrane potential of the neurons in the groups. 
Background activity comprised of 20000 synspses feeding to every neuron in 
the FFN with 88%% being excitatory and 12 inhibitory. The excitation by noise 
is delivered at 2 Hz and inhibition at 12.5 Hz. The 2 Hz excitation is constantly 
present due to the large number of excitatory noise neurons firing whereas 
inhibition comes in short time interval. This short time interval of incomming 
noisey inhibition in FFN defines the window of integration for spikes. It is found 
that as the frequency of inhibition was decreased the synchrony in spiking 
activity decreases.
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Illustration 22: Wi = -34, w = 125, Inhibition rate = 2Hz
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Illustration 23: Wi = -34, w = 125, Inhibition rate = 4.6Hz

Illustration 24: Wi = -34, w = 125, Inhibition rate = 19Hz,



Another interesting discovery was that as the frequency of inhibtion was 
increased to very high number the synchrony attained in the spiking activity 
decreased due to the fact that the window of integration of spikes became 
extremely small.

3.5 Introduction of connection probability in EI-FFN :

To make EI-FFN more realistic probabilistic connections were made across 
subsequent groups.
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Illustration 25: A 3D plot with positive X & Y axis being neuron number & sigma. Z-axis is the rate of 
inhibition

Rate(Hz)

A (Neuron number)

Sigma (ms)
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Illustration 26: Wi = -34, w = 125, Probability = 0.7

Illustration 27: Wi = -34, w = 125, Probability = 0.89



It is observed that for low probabilities of connection the propagation became 
unstable. Though for a higher probability of 89% most of the propagation 
traces entered unstable regime. For 97% connectivity the propagation is stable 
for most of the grid points.

3.6 Balance of Excitation and Inhibition in excitatory-inhibitory feed-
forward network :

The balance of excitation and inhibition was studied in this network.  Balance of
excitation and inhibition (BEI) is a necessity for long distance propagation. 
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Illustration 28:  Wi = -34, w = 125, Probability = 0.97



Figure below show movement of stable fixed point leftwards indicating a 
decrease in sigma as the proportion of inhibitory-noise neuron is increased.

34

Illustration 29: Wi = -34, w = 125, Proportion = 0.17

Illustration 30: Wi = -34, w = 125, Proportion = 0.64



BEI is found to vary across areas of brain and affects the spatio-temporal 
aspect of spike activity. For E-I ratio in noise of 0.1-0.5 , the fixed points 
seaparated over temporal scale and became synchronized at 0.5 ms. 
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Illustration 31: Wi = -34, w = 125, Proportion = 0.85



Whereas for higher E-I ratio the fixed points diverged on temporal scale. 
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Illustration 32: A 3D plot with positive Y & X axis being neuron number & sigma. Z-axis is the 
proportion of noise inhibitory neuron to excitatory neuron from 0.0 to 0.5.

E/I ratioe

Sigma(ms)
a(neuron number)



On increasing inhibition due to noise the window for integration becomes 
shorter which causes less number of spikes to synchronise even though the 
spike numbers are high.
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Illustration 33: A 3D plot with positive Y & X axis being neuron number & sigma. Z-axis is the 
proportion of noise inhibitory neuron to excitatory neuron from 0.5 to 1.0



Chapter 4

Discussion:
It is observed that signal below 50 'a' spike number fails to propagate 
(Illustration 6). Noise raises the mean membrane potential to -63 mV from -70 
mV (Illustration 10) thus decreasing the firing threshold in the process for 
signals to propagate stabily (Illustration 5).
 
The network is of integrate and fire neurons which have a firing threshold of -55
mV. A neuron spikes when it crosses the threshold and this spike is represented
as a point in the raster plot. The Zeroth layer marked '0' is the spike volley 
injector which has a known spike count 'a'  and a temporal dispersion 'sigma' to
the first layer. This spike volley then propagates consecutively across the 
network in a forward direction as the network lacks back connections/synapses 
between two consecutive layers (Illustration 5 & 6). The spike volley 
propagating across the layers depending on the strength of the synapses, 
connectivity, temporal dispersion of spikes in a layer and the mean number of 
spikes in a layer either synchronizes or disperses. The propagation is coined 
stable when there is synchronization (Illustration 5) and is unstable when there 
is dispersion (Illustration 6). There is a point where the propagation shows both 
stable and unstable propagation with equal probability and is called the saddle 
node. 

The spike response follows a sigmoid trend as can be seen in Illustration  17 for
a excitatory feed-forward network. The sigmoidicity is due to the fact that the 
average  membrane potential is raised which leads to saturating responses 
when  higher number of spikes are seen by the neuron-group indicating the 
importance of noise for increased responsiveness. The spread of spikes 
increases with increasing spread in input (Illustration 18) and is linear as the 
strength of excitation gets distributed over a large time scale increasing the 
time to spike for neurons in a group.
 
To check the network activity behavior for different values of spike count 'a' 
and temporal dispersion between the spikes 'sigma',an activity phase plane is 
generated (Illustration 9). 

The stable fixed point, red (Illustration 9), is the spike count 'a' and spike time 
variation where the stabily propagating signal finally converges to. The stable 
fixed point is point where further propagation of activity irrespective of the 
number of layers will remain stable and will always have the same spike count 
and sigma. The saddle node, blue, is the point where the propagation is both 
stable and unstable. The green line through the saddle node is the separatix for
the stable-unstable propagation regime. There is another stable fixed point, 
yellow to which the unstabily propagating signal finally settles to. This fixed 
point is the measure of the synaptic background activity's temporal dispersion 
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and spike count.  

In excitatory feed-forward network it is observed that as the neurons per layer, 
w is increased the region of stable propagation expands (Illustration 12,13,15). 
The a-nullcline moves rightwards in the phase plane (Illustration 11,14,16). 
Again spike response probability due to increase in number of input spike 
explains this as the region where the response saturates increases. The sigma-
nullcline remains unaffected though which is independent of the neuron 
number. 

When inhibitory neurons are made a part of the network and an excitatory-
inhibitory FFN is created the strength of inhibition is seen to affect the spiking 
activity in the subsequent groups (Illustration 19,20). The inhibition decreases 
the amount of excitation delivered to the subsequent group when the rate of 
inhibition is same as that of excitation. The synchronisation due to inhibition 
from neurons of FFN was ruled out. 

It is found that only the background activity played an important role in 
bringing out the synchronisation. Interplay between inhibitory and excitatory 
noise not only kept the average membrane potential higher but also a time 
window for integration of incomming spike was present. It is seen that as the 
rate of inhibition due to noise is increased the extent of synchronisation 
increases (Illustration 22,23,24). But excess increase in inhibition rate was 
found to decrease the level of synchronisation as the time window for 
integration of incomming spikes got reduced (Illustration 25). This reduced time
window can only synchronise very few spike times which are insufficient to 
ellicit a timed response in the subsequent group.

In a realistic scenario not all neurons from one group will synapse with the 
neurons of subsequent group. Connection probability was introduced and was 
found that for higher connection probabilities in an EI-FFN, the regime of stable 
propagation was large (Illustration 26-31). 

Balance of excitation and inhibition is necessary for selective response to 
various signals. The ratio of inhibition to excitation by noise was varied by 
changing the proportion of noise inhibitory neurons. For a proportion of 0.5 it 
was found that the synchronisation increases in EI-FFN containing 125 neurons 
per layer (Illustration 32). But a further increase in proportion lead to a 
decrease in level of synchronisation as the average membrane potential of the 
neurons dropped (Illustration 33).

Another question of separation of signals in two excitatory-inhibitiory feed-
forward networks containing a common layer between them is being 
investigated. 
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Chapter 5

Conclusion :
We observed that spiking activity has two modes of propagation. The 
background activity plays a key role in bringing out synchronisation which is a 
requirement for stable propagation of signals. Presence of inhbition in the feed-
forward network containing inhibitory neurons only affected the ellicited 
response and is not helpful for propagation of signal. The background inhibition
played a role in bringing out synchronisation while the background excitation 
elevated the average membrane potential thus increasing the responsiveness 
of neurons to weak stimulus. Balance of excitation and inhibition in the 
background activity plays a role in selective responses to stimuli and thus 
stimuli depending on the level of this balance of excitation and inhibition in 
different cortices ellicit response differently.   
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