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Abstract

Measurements of density, electric field, magnetic field, in the solar wind have
revealed fluctuations in these quantities spanning a large range of scales,
indicative of turbulence. The nature of turbulence in the solar wind has been
the subject of intense research as it plays an essential role in several aspects of
plasma behavior such as, solar wind acceleration and heating of the extended
solar corona and solar wind. While considerable progress has been made, the
nature of turbulent dissipation, especially in the extended solar corona, and
the role of density turbulence therein remains a significant unsolved problem.
This thesis is concerned with the nature of density turbulence in the extended
solar corona, especially near the inner/dissipation scale.

Electromagnetic waves traversing the solar wind experience scattering
due to turbulent density fluctuations, which leads to a wide variety of ob-
served phenomena such as intensity scintillations, angular broadening, pulse
smearing, etc. These observations provide useful constraints on the quanti-
ties characterizing density turbulence. Chapter 2 provides an overview of the
phenomenon of angular broadening.

Treatments of the radio scattering due to density turbulence in the so-
lar wind typically employ asymptotic approximations to the phase structure
function. In chapter 3 we use a general structure function (GSF) that strad-
dles the asymptotic limits and quantify the relative error introduced by the
approximations. We show that the regimes where GSF predictions are ac-
curate than those of its asymptotic approximations is not only of practical
relevance, but are where inner scale e�ects influence the estimate of the
scatter-broadening. Thus we propose that GSF should henceforth be used
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for scatter broadening calculations and estimates of quantities characterizing
density turbulence in the solar corona and solar wind.

In the next part of this thesis we use measurements of density turbulence
in the solar wind from observations of radio wave scattering and interplane-
tary scintillations. Density fluctuations are inferred using the GSF for radio
scattering data and existing analysis methods for IPS. Assuming that the
density fluctuations below proton scales are due to kinetic Alfvèn waves, we
constrain the rate at which the extended solar wind is heated due to tur-
bulent dissipation. These results, elaborated in chapter 4, provide the first
estimates of the solar wind heating rate all the way from the Sun to the
Earth.



Chapter 1

Introduction

In this chapter we will introduce the basic theme of this thesis. We briefly
review the history and important findings in the solar wind physics in the last
century. This is followed by the solar wind observations with main emphasis
on the discussion of the turbulence in the solar wind.

The correlation between the events on the Sun and the disturbances in
the geomagnetic activities on the Earth has been known from long. The
beautiful Auroras (Figure 1.1a), a natural light display in the sky predomi-
nantly observed in the high altitude regions, and geomagnetic storms giving
rise to strong currents are typical examples of such correlations. The idea of
connection between the Sun and the terrestrial magnetic disturbances was
taken seriously by some physicists near the end of the nineteenth century.
An important step came by the work of Kristian Birkeland (Birkeland, 1908),
who based on his extensive geomagnetic survey concluded that, the Earth
was bombarded with the continuum of ‘rays of electric corpuscles emitted
by the Sun’. In other words Birkeland was suggesting a continuous outflow
of charged particles from the Sun feeling up the interplanetary space - much
closer to our modern concept of the solar wind. These ideas lay in obscurity
for many years only to resurface in entirely di�erent context, around the mid-
dle of the twentieth century. The concept of a continuous outflow from the

1



2 1.1. The solar wind

Sun re-emerged as an answer to an intriguing question posed by the gaseous
tails of comets.

(a) Aurora : an example of correlation
between the activity on the Sun and geo-
magnetic disturbances (image courtesy :
https://en.wikipedia.org/wiki/Aurora)

(b) Comet Hale-Bopp observed in
1997, credit (ESO). (image courtesy
: http://www.space.com/19931-hale-
bopp.html)

Figure 1.1: correlation between geomagnetic disturbances and solar activity

Comets have two classes of tails (i) one made of dust and curved away,
with curvature explained by solar radiation pressure and the gravity and
(ii) gaseous tail that always points straight away, in the opposite direction
of the Sun (Figure 1.1b). Ludwig Biermann in the early 1950s successfully
applied the ideas due to Birkeland to the challenge of explaining the observed
properties of the gaseous tails (Biermann, 1953). The gaseous tails of comets
can therefore be neatly explained if they were subjected to a permanent flux
of charged particles coming from the Sun. Around the same time Sydney
Chapman proposed the existence of static atmosphere of the Sun extended
from the corona with the Earth and other planets immersed in it (Chapman,
1957).

1.1 The solar wind

It was di�cult to reconcile the two seemingly di�erent results, where one
suggests continuous flux of charge particles from the Sun and other talks
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about the static solar atmosphere. However, Eugene Parker in 1958 realized
that, ‘however unlikely it seemed, the only possibility is that the Biermann
and Chapmann were talking about the same thing’ (Parker, 1958). So Bier-
manns continuous flux of solar particles was just Chapman’s extended solar
atmosphere, with the temperature so high that neither the solar gravity nor
the pressure of the tenuous interstellar medium can confine it. Thus was
born the modern concept of the solar wind.

Figure 1.2: Schematic of the solar wind and its e�ect on the Earth’s magne-
tosphere. Copyright. 2014. University of Waikato (www.sciencelearn.org.nz)

Parker supported his arguments with the comprehensive theory of solar
wind, verified and confirmed later by the various space explorations e.g.,
Mariner 2, Voyager and Helios (Neugebauer, 1962, 1997). So the picture we
have now of the solar wind is as a huge bubble of supersonic plasma blown
away by the matter ejection from the Sun. The region it fills out is known
as heliosphere. The solar wind engulfs Earth and other planets and shape
their environments. It is therefore important to understand the physics of
the solar wind (Meyer-Vernet, 2007).
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1.2 Turbulence in the solar wind

The solar wind emerging from the solar corona is found to be inhomogeneous
and generates complicated three dimensional structure of the plasma helio-
sphere. Outflowing streams of di�erent speeds and solar transients introduce
further complications and enriches the solar wind with enormous variability
in its basic properties. In situ as well as remote sensing observations of mag-
netic field, velocity and density have revealed fluctuations spanning a broad
range of timescales.

Figure 1.3: Power spectrum of magnetic field fluctuations observed by Helios
2 and Ulysses between 0.3 AU and 1AU, (Adapted from (Bruno & Carbone,
2013))

In situ observations measure quantities like magnetic and electric field,
flow speeds, densities and temperatures of plasma species. Representative
measurements of the power spectrum of magnetic field fluctuations are pre-
sented in figures 1.3 and 1.4. Figure (1.3) shows that the spectrum has a



Chapter 1. Introduction 5

Figure 1.4: Power spectrum of a typical interplanetary magnetic filed fluc-
tuations observed by Helios 2 (low frequency range, Bruno et al. (2009) and
WIND (high frequency range, Leamon et al. (1998)). (Adapted from (Bruno
& Carbone, 2013))

power law shape with index ≠5/3 above a frequency that decreases with in-
creasing heliocentric distance. The spectrum at 1 AU also exhibits cut-o�s
indicative of dissipation, (figure 1.4). Similar spectral characteristics are ob-
served at all locations explored by spacecraft in the solar wind. Observations
and subsequent measurements therefore indicate that the solar wind devel-
ops a strong turbulent character towards a state that resembles well known
Kolmogorov-like scaling.

The spectrum of solar wind turbulence consists of large scales, also re-
ferred as outer scales (l

out

) at which energy injection takes place and marks
the beginning of the non-linear cascade. This is followed by the “inertial”
range characterized by an omni-directional power law shape with index -
5/3, (≠11/3 in three dimensions) and holds upto very large frequencies or
wavenumber i.e., smaller scales (Zank & Matthaeus, 1992; Dastgeer & Zank,
2009). At the smallest scales the spectrum exhibits sharp steepening in-
dicative of the presence of the inner scale (l

i

) corresponding roughly to the
proton gyroradius where dissipation is presumed to take place (Coles & Har-
mon, 1989; Harmon, 1989; Verma, 1996; Yamauchi et al., 1998; Leamon et
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al., 1999, 2000; Smith et al., 2001; Bruno & Trenchi, 2014).

Detailed measurements also indicate that the solar wind turbulence is
strongly intermittent and anisotropic depending on the angle between the
wave vector and the background magnetic field. Several questions arise :
what produces the energy injection and therefore determines the outer scale.
The solar wind is known to be weakly compressible; however what give rise
to a spectrum with Kolmogorov power law index, which corresponds to in-
compressible, isotropic fluid turbulence. What is the mechanism behind
turbulent dissipation, which should involve kinetic e�ects. Magnetohydro-
dynamics, which is valid for the low frequency regime, is out of the question
at such small scales.

These questions have large in common with the existing major problems
in the solar wind and in general space plasma physics. Turbulence plays a rel-
evant role in several aspect of plasma behavior such as solar wind generation,
acceleration of high energy particles, plasma heating and cosmic ray propa-
gation. Ultimately the problem of extended heating in the solar corona and
solar wind are those of the storage, transfer and dissipation of the abundant
energy present in the photospheric motions.

Magnetohydrodynamic (MHD) turbulence in the solar wind is a subject
of intense research. While considerable progress has been made, the na-
ture of turbulence specially near the inner scale where dissipation sets in
has remained a significant unsolved problem. Recent observations of per-
pendicular ion heating by the UVCS instrument aboard SOHO (Kohl et al.
1997, 1998, 1999; Noci et al. 1997; Cranmer, Field & Kohl 1999) have posed
questions about whether there is enough power at the dissipation scales to
enable direct perpendicular heating of the ions (Cranmer & Van Ballegooi-
jen 2003). Another important problem is an extended heating measured by
various spacecrafts (Helios, Pioneer and Voyager). These measurements does
not support adiabatic heating profile, required for the solar wind model pro-
posed by Parker. These measurements indicate slower deacay of the heating
rate than expected, which suggests that some external mechanism might be
at work and heating the solar wind at larger heliocentric distances (outer
heliospher). In this regard the damping of Alfvén wave turbulence on ions
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has attracted considerable interest. Near the dissipation scale the Alfvén
wave turbulence is found to be increasingly compressive, which suggests that
the density fluctuations in the solar wind can constrain the power in high
wave-number kinetic Alvén wave turbulence. This in turn can explain some
of the heating of the extended solar corona and solar wind (Chandran et al.,
2009) as well as acceleration of the solar wind.

One way of addressing this issue is via observations of radio scintillations
which includes scattering of radio waves and interplanetary scintillations.
The density turbulence in the solar wind introduces both systematic and
random variations in the refractive index which e�ects the propagation of
radio waves. The radio waves experiences scattering as a result of interaction
with the irregularities in the plasma they traverse. This leads to a wide
variety of propagation phenomena, which o�ers a variety of tools for studying
the medium responsible for the scattering. Such tools have been widely used
for understanding of interstellar medium, planetary atmosphere, ionosphere
and of particular interest here - the solar wind.

It is worth mentioning the upcoming space missions - Solar probe plus
and solar orbiter which will be of great importance in probing the solar wind
properties and its behavior across the inner heliosphere. These future ob-
servations will not only provide the much needed test bed for the existing
theories of the solar wind but will also be helpful to improve our under-
standing of the physics of processes in the solar corona and solar wind. The
planned trajectory of the solar probe plus has several passes within 10 R§,
which in general believed to be the region of strong scattering and solar wind
acceleration. On-board experiments like FIELDS and SWEAP will provide
in-situ measurements of electric and magnetic field, densities, flow speeds
including velocity fluctuations and temperature of electrons, alpha particles
and protons. This will greatly clarify the physics responsible for solar wind
origin.
Main scientific goals of the Solar Probe Plus can be stated as follows (Beisser,
2011),

• Determine the structure and dynamics of the magnetic fields at the
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sources of solar wind.

• Trace the flow of energy that heats the corona and accelerates the solar
wind.

• Determine what mechanisms accelerate and transport energetic parti-
cles.

• Explore dusty plasma near the Sun and its influence on solar wind and
energetic particle formation.

The solar orbiter is a planned Sun-observing satellite and is under the de-
velopment by European Space Agency (ESA). It is scheduled to be launched
in October 2018. This mission is aimed at observing polar regions of the Sun
and carry out measurements of the inner heliosphere and the nascent solar
wind. This will help in addressing the question of how does the Sun creates
and controlls the heliosphere.
Main scientific goals of the mission can be stated as follows,

• How and where do the solar wind plasma and magnetic field originate
in the corona?

• How do solar transients drive heliospheric variability?

• How do solar eruptions produce energetic particle radiation that fills
the heliosphere?

• How does the solar dynamo work and drive connections between the
Sun and the heliosphere?

1.3 Organization of thesis

The rest of this thesis is organized as follows.

In the chapter 2 we review the relevant results from the theory of wave
propagation in random medium. Starting from the parabolic wave equa-
tion we obtain general solution for the first moment of the wave field. The
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properties of the medium are described by the dielectric function ‘(r). The
solution yields phase structure function which defines wide class of observed
phenomena produced by scattering of electromagnetic waves.

We know that a useful statistic of the scattering medium is described by
the phase structure function which is the subject of the chapter 3 of this
thesis. Generally observations of angular broadening due to radio wave scat-
tering in turbulent medium employ asymptotic approximations valid either
when interferometric baseline is ∫ or π the inner scale (l

i

) of the turbu-
lence. We consider general structure function (GSF) that does not use these
approximations. We demonstrate that the regimes where GSF predictions
are more accurate than those of the asymptotic approximations is of practi-
cal relevance and more importantly it is the regime where inner scale e�ects
influence the estimate of angular broadening.

In the chapter 4 we use previously published observations of radio wave
scattering and interplanetary scintillations (IPS) in the solar wind. Taken
together these observations provide measurements of density turbulence over
wide range of spatial scales including an important dissipation range. The
density fluctuations are inferred using a recently developed tool (i.e. GSF)
for radio wave scattering and existing methods for IPS. Assuming that the
entire contribution to density fluctuations comes by Kinetic Alfvén waves we
obtain constraints on the rate of turbulent heating.

We then conclude with a brief discussion of future extension of our work
and scope in chapter 5.

In the Appendix we review the salient features of the Alfvén waves as
they non-linearly interact and propagate to higher wavenumber through tur-
bulent cascade. At high wavenumbers the solution to Alfvén branch is known
as the kinetic Alfvén waves (KAW), which unlike Alfvén waves, exhibit com-
pressibility. We outline the KAW dispersion relation which relates velocity
fluctuations to density turbulence.
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Chapter 2

Electromagnetic wave
propagation in random media

We review relevant results from the theory of wave propagation in a ran-
dom medium. The aim is to describe statistical properties of waves in terms
of statistical properties of the random medium. The starting point is the
parabolic wave equation (PWE), which describes small angle wave propaga-
tion in a random medium. The PWE is manipulated to obtain equations for
the moment of a wave field in terms of two point correlations of the dielectric
constant ‘(r). A solution to the first order moment equation of a wave field
yields the structure function. We can quantitatively define a wide range of
observed phenomena produced by scattering of electromagnetic waves using
the structure function.

2.1 Introduction

Electromagnetic wave propagation through a random medium leads to a wide
variety of observed phenomena such as pulse smearing, spectral broadening,
intensity scintillations, angular broadening etc. Observations of these phe-

11
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nomena can be used to study the nature of the turbulence in the intervening
random medium (e.g. the solar wind). The first step in this regard is to
establish the physical foundations. We reproduce important results in this
field, relevant to our work.

We discuss the problem of wave propagation and scattering in a random
continuum, defined as a medium whose dielectric constant ‘(r, t) is a contin-
uous random function of position and time. Examples of random media are
the solar wind, the solar corona and the Earths atmosphere.

The approach presented here is known as analytical or multiple scat-
tering theory, which starts with the fundamental di�erential equations for
field quantities (e.g. Maxwell’s equations for electromagnetic field) and then
introduces statistical considerations.

Since we are dealing with a random medium we need to use the statistical
approach to describe the medium and its e�ects on the electromagnetic wave
propagating through it. Specifically, we concentrate on the correlation of fluc-
tuations at two points separated in space and time. There are several ways
to do so but describing these correlations in terms of the structure function is
the most elegant way and of great practical value. We use turbulence theory
to express the structure function in terms of the spectrum of fluctuations in a
random medium. We will see that this treatment requires to specify certain
physical parameters (such as the amplitude of turbulence C

2

N

(r) and its inner
scale (l

i

(r))). These parameters characterizes the turbulent fluctuations am-
bient in the medium and need to be determined using observations. We will
see that the observations of radio scattering and interplanetary scintillations
(IPS) provide useful constraints on these parameters.

From now on we use the term turbulent medium to denote a random
medium having fluctuations in ‘(r, t), spanning a wide range of scales.
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2.2 Parabolic wave equation

Consider an electromagnetic wave, E(r, t) = E
0

ei(Ÿz≠Êt) propagating in +z

direction. Assume source free region and the magnetic permeability, µ

m

= 1,
(B = H). Maxwell’s equations relate electric and magnetic fields by following
equations :

Ò ◊ E(r, t) = 1
c

ˆH(r, t)
ˆt

;

Ò ◊ H(r, t) = 1
c

ˆ

ˆt

(‘(r, t)E(r, t)). (2.1)

Here ‘(r̨, t) is the dielectric constant that describes the propagation proper-
ties of a medium. Consider this wave incident upon the turbulent medium
extending over the range 0 < z < L. Turbulent fluctuations in the dielectric
constant scatter the wave. Assuming a stime dependence of e

≠iÊt we can
write :

E(r, t) = E(r)e≠iÊt (2.2)
H(r, t) = H(r)e≠iÊt (2.3)

Using this in (2.1) we get :

Ò ◊ E(r) = iÊ

c

H(r);

Ò ◊ H(r) = E(r)
c

C
ˆ

ˆt

‘(r, t) ≠ iÊ‘(r, t)
D

For the sake of brevity, we will henceforth drop the explicit dependence
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Figure 2.1: A schematic diagram showing the geometry for a thin screen of
irregularities. The electromagnetic wave propagates in the +z direction and
is incident on the turbulent medium at z = 0. The top panel shows spherical
wave propagation whereas the bottom panel is for plane wave propagation
(chapter 3)



Chapter 2. Electromagnetic wave propagation in random media 15

on space (e.g. E(r) ‘æ E). Combining these two equations :

Ò ◊ Ò ◊ E = iÊ

c

2

Eˆ‘

ˆt

+ Ê

2

c

2

‘E (2.4)

Consider the magnitudes of the terms :

Ê

c

2

|E|ˆ‘

ˆt

and Ê

2

c2

‘|E| (2.5)

To estimate the time dependence of ‘, we note that the first derivative with
respect to time is related with the average speed of irregularities and their
size l in the turbulent medium i.e., ˆ/ˆt ‘æ v/l. Here v is the typical velocity
scale; in case of the slow solar wind, v = 400km/s. Since v π c :

Ê

c

2

ˆ‘

ˆt

‘æ v

l

Ê

2

c

2

‘ π Ê

2

c

2

‘ (2.6)

Thus we can neglect the first term on the right hand side of 2.4 and write :

˛Ò ◊ ˛Ò ◊ ˛

E = Ÿ

2

‘

˛

E (2.7)

where Ÿ = Ê/c. Noting that :

Ò ◊ Ò ◊ E = ≠Ò2E + Ò(Ò · E) and Ò · (‘E) = 0, we get (2.8)

Ò2E + Ò
;

E · Ò‘

‘

<
+ Ÿ

2

‘E = 0 (2.9)

At this point it is customary to decompose ‘ in terms of its average value and
a fluctuating part, which is a stochastic function of space and time : It is this
part that gives rise to the scattering of electromagnetic radiation. Defining :

‘ = ‘

0

+ ”‘ , whereÈ‘(r)Í = ‘

0

and ‘

1

© ”‘

‘

0

π 1. (2.10)
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We can write (2.9) as :

Ò2E + Ò
;

E · Ò‘

1

1 + ‘

1

<
+ Ÿ

2(1 + ‘

1

)E = 0 (2.11)

The term in the curly braces describes the e�ects of polarization. We define
l

‘

as the smallest length scale over which ‘ changes only by a small amount
and assume :

Ÿl

‘

∫ 1 (2.12)

Then ,

----Ò
;

E · Ò‘

1

1 + ‘

1

<---- π |E|Ÿ‘

1

l
‘

(2.13)

Since the smallest scale of |E| being 1/Ÿ, it is clear that when compared
with |Ÿ‘

˛

E|, the polarization term can be neglected, since Ÿl

‘

∫ 1.
These arguments suggests that when Ÿl

‘

∫ 1 and ‘

1

π 1 the scalar wave
equation is a good approximation to equation (2.9) and we can write (Tatarskii,
1969) :

Ò2

E + Ÿ

2(1 + ‘

1

) = 0 (2.14)

This equation describes e�ects of di�raction as well as refraction but
neglects polarization. In deriving 2.14 we ignored contribution from the
Faraday rotation due to ambient magnetic field. This is justified when the
di�erence in the refractive indices for the right and left circular polarized
wave is negligible.

As the wave (E) propagates in the z direction its phase Ã e

iŸz. Thus it
is useful to define u as follows (Lee & Jokipii, 1975I) :

E = ue

iŸz (2.15)
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Using this with 2.14 we get :

2iŸ

ˆu

ˆz

+ Ò2

u + Ÿ

2

‘

1

u = 0 (2.16)

As mentioned above we are interested in a situation where Ÿl

‘

∫ 1. In other
words the geometrical dimensions of the irregularities are much greater than
the wavelength ⁄ of radiation, i.e., :

-----Ÿ
ˆu

ˆz

----- ∫
-----
ˆ

2

u

ˆz

2

----- (2.17)

This is equivalent to neglecting reflection and considers only small angle
propagation (Figure 2.2). The condition 2.17 is often called the quasi-optical
or parabolic wave approximation. Using this we can replace Ò2 by the trans-
verse Laplacian yielding :

2iŸ

ˆu

ˆz

+ Ò2

‹u + Ÿ

2

‘

1

u = 0 (2.18)

This is known as the parabolic wave equation (PWE) and is the starting
point for the theory of strong fluctuations.

Figure 2.2: An example of small angle scattering. The parabolic wave equa-
tion accounts for multiple episodes of forward scattering and neglects back-
scattering.
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2.3 Parabolic equation for moment

For further analysis it is important to describe statistical properties of u
in terms of the statistical properties of the medium. We assume that the
fluctuations in the dielectric constant ‘(r, t) are time-stationary. We therefore
omit the time dependence from the arguments of ‘

1

. Define s = (x, y) as
transverse coordinates and z as the direction of the propagation. We can
express statistical properties of u in terms of an infinite set of correlation
function (Lee & Jokipii, 1975I) :

�
m,n

(z, s

1

, s

2

, . . . , s

m

, s

ú
1

, s

ú
2

, . . . , s

ú
n

)
= Èu(z, s

1

)...u(z, s

m

)uú(z, s

1

)...uú(z, s

n

)Í (2.19)

Where È Í defines ensemble average defined over all the configurations of the
medium. m and n are the integers.

Next we need to find a statistical description for the turbulent medium.
Since a medium is described by the fluctuations in dielectric constant (‘

1

)
we need to learn how ‘

1

can be expressed in terms measured properties of a
turbulent medium. Phase fluctuations ”„(z, s) can be considered as a reliable
surrogate for the dielectric fluctuations. The question to be asked is how ”„

varies from one point to another in the turbulent medium. Consider two
sensors at positions r

1

= (z, s
1

) and r

2

= (z, s
2

). We are interested in the
spatial dependence of the sensor readings averaged over all configurations of
the medium. A natural way to achieve this is to define a spatial correlation
function which represents how the measurements at one point (say s1) e�ects
the measurements at the other point s2:

B

„

(z, s
1

, s
2

) = È”„(z, s
1

)”„(z, s
2

)Í (2.20)

Assuming homogeneity further simplifies the calculations. Assume that the
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spatial correlation function defined above remains invariant under the spa-
tial translation; in other words, B

„

depends only on the di�erence in the
arguments :

Homogeneity implies B
„

(z, s) = È”„(z, 0)”„(z, s) , where s = s
1

≠s
2

(2.21)

Similarly we can state the correlation function for the dielectric constant that
correlates fluctuations in dielectric constant at two di�erent points seperated
by a distance s, we therefore define :

B

‘

(z, s) = È‘
1

(z, 0)‘
1

(z, s)Í (2.22)

The assumption of homogeneity can be relaxed without a�ecting the results
but this complicates the algebra.

The problem now is to manipulate (2.18) to obtain equation for �
m,n

in terms
of the statistical properties of ‘

1

, specified by two point correlation function,
B

‘

(z, s). We stick to the dielectric constant description for now. In the next
chapter, we introduce phase fluctuations as it is relevant from the point of
view of measurements. The problem is considerably simpler as we need to
consider only lowest values of m and n. For example, m = 1 and n = 1
defines a second order moment, �

1,1

(z, s
1

, s
2

) which gives angular spectrum
and hence angular broadening. The quantity �

1,1

(z, s
1

, s
2

) is defined as :

�
1,1

(z, s
1

, s
2

) = Èu(z, s
1

)uú(z, s
2

)Í (2.23)

To obtain a di�erential equation for �
1,1

= �
1,1

(z, s
1

, s
2

), consider (2.18), for
u(z, s

1

), and multiply it with u

ú(z, s
2

) :

2iŸ

ˆu

1

ˆz

u

ú
2

+ Ò2

‹1

u

1

u

ú
2

+ Ÿ

2

‘

1

(z, s
1

)u
1

u

ú
2

= 0 (2.24)

Here u

1

= u(z, s
1

) and u

ú
2

= u(z, s
2

), and Ò2

‹1

is the transverse laplacian
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with respect to s
1

= (x
1

, y

1

). Similarily we can write the conjugate of (2.24)
as follows :

2iŸ

ˆu

ú
2

ˆz

u

1

+ Ò2

‹2

u

ú
2

u

1

+ Ÿ

2

‘

1

(z, s
2

)uú
2

u

1

= 0 (2.25)

Here Ò2

‹2

is the transverse laplacian with respect to s
2

= (x
2

, y

2

). Subtract-
ing (2.25) from (2.24) and averaging we get :

2iŸ

ˆ

ˆ

Èu
1

u

ú
2

Í + (Ò2

‹1

≠ Ò2

‹2

)Èu
1

u

ú
2

Í + Ÿ

2È[‘
1

(z, s
1

) ≠ ‘

1

(z, s
2

)]u
1

u

ú
2

Í = 0 (2.26)

If we can express the third term in (2.26) in the form of an average field, we
can construct the di�erential equation for �

1,1

= Èu
1

u

ú
2

Í. We are thus looking
for an equation of the form :

È‘
1

(z, s
1

)u
1

u

ú
2

Í = A(z, s
1

, s
2

)Èu
1

u

ú
2

Í (2.27)

Where A(z, s
1

, s
2

) is proportional to È‘
1

(z, s
1

)‘
1

(z, s
2

)Í. The turbulent medium
is described by the fluctuations in dielectric constant (‘

1

(z, s)), and the last
term in (2.26), which couples ‘

1

(z, s) to the wave field, u, is therefore cru-
cial to explain how the wave field is modified due to irregularities. One way
to deal with this term is to use the Rytov approximation (Tatarskii, 1969;
Ishimaru, 1978). To solve for an equation of the form of (2.26) we would
like to separate the u from the stochastic quantity ‘

1

so that the ‘

1

appears
as an additional source term. Rytov approximation achieves exactly this in
the weak scattering assumption. Rytov’s idea is to express the solution as a
product of two terms,

1. the unperturbed field given by e

iŸz≠Êt and,
2. the exponential of a surrogate function e

ln(‰)+i„, which needs to be
determined from the equation (2.26).
The Rytov approximation is characterized by the Rytov condition : The
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logarithmic amplitude variations È‰Í in the turbulent media are small :

È‰Í π 1 (2.28)

In other words this approximation assumes the intensity fluctuations to
be very small as compared to the mean intensity. The Rytov approximation
works well for interplanetary scintillations but for the situations where fluc-
tuations can be comparable to the mean (e.g. interstellar scintillations, solar
corona and solar wind < 30R§), it is inapplicable. We use here the more
general, Markov approximation (Lee & Jokipii, 1975I), which assumes the
wave field u changes only by a small amount over the correlation length (l

‘

)
of ‘

1

(z, s). This approximation helps us deal with the third term in (2.26)

We consider following three important assumptions

• Parabolic wave approximation

• Turbulent medium is homogeneous and is described by the correlations
of dielectric constant.

B

‘

(z, s) = È‘
1

(z, 0)‘
1

(z, s)Í

• Markov approximation

As noted earlier, the correlations of the dielectric constant has a direct
bearing on the wave field (last term in 2.26) in the transverse direction, but
it has little e�ect on the wave field along the direction of the propagation
(z). This is the essence of the Markov approximation. We can quantify this
approximation in a following way : fluctuations in dielectric constant (‘

1

) are
delta correlated in the direction of propagation :

È‘
1

(z, 0)‘
1

(zÕ
, s)Í = ”(z ≠ z

Õ)A(z, s) (2.29)

The term, A(z, s) will be used later, but the link between the Markov ap-
proximation and the third term of (2.26) may now be seen if we compare
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(2.29) with (2.27).

The Markov approximation amounts to introducing an intermediate length
scale (say, �z in the direction of propagation), such that �z > l

‘

but small
enough so that u(z ≠ �z, s) ≥ u(z, s), (Lee & Jokipii, 1975I). Given the
above three assumptions with (2.29) and since u(z, s) is a function of ‘

1

(z, s)
we can obtain an expression for the third term in (2.26) using the Furutsu -
Navikov formula (Furutsu (1963); Navikov 1965) :

È‘(z, s
1

)u
1

u

ú
2

Í =
⁄

dsÕ
1

A(s
1

≠ sÕ
1

)
K

”(u
1

uú
2

)
”‘

1

(z, s
1

)

L

(2.30)

Here ”/”‘

1

(z, s
1

) denotes a functional derivative. To solve this we need to find
an expression for ”(u

1

u

ú
2

)/”‘

1

(z, s
1

). Using the Markov approximation we can
express the functional derivative in terms of the delta function in transverse
coordinates and second order moment, �

1,1

, defined in (2.26). Following
Tatarskii (1969); Ishimaru (1978) we can write :

”u

1

u

ú
2

‘

1

(z, sÕ
1

) = iŸ

4 [”(s
1

≠ sÕ
1

)u
1

u

ú
2

≠ ”(s
2

≠ sÕ
1

)u
1

u

ú
2

] (2.31)

Taking the ensemble average of (2.31) and substituting in (2.30), we get :

È‘(z, s
1

)u
1

u

ú
2

Í = iŸ

4 [A(z, 0) ≠ A(z, s
1

≠ s
2

)]�
1,1

(2.32)

We can write the conjugate of (2.32) as :

È‘(z, s
2

)uú
2

u

1

Í = ≠iŸ

4 [A(z, 0) ≠ A(z, s
1

≠ s
2

)]�
1,1

(2.33)

Substituting (2.32) and (2.33) in (2.26) we get the di�erential equation for
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the second order moment :

I

2iŸ

ˆ

ˆz

+ (Ò2

‹1

≠ Ò2

‹2

) + iŸ

3

2 [A(z, 0) ≠ A(z, s
1

≠ s
2

)]
J

�
1,1

= 0 (2.34)

This is the parabolic equation for the second order monent, �
1,1

. We can
further simplify it using the assumption of homogeneity, which says that :

Èu
(

z, s
1

)uú(z, s
2

) = �
1,1

(z, s) (2.35)

where s = s
1

≠ s
2

. This implies ÒÈu(z, s)Í = 0, and hence (Ò2

‹1

≠
Ò2

‹2

)�
1,1

(z, s) = 0. Thus we can write (2.34) as :

I
ˆ

ˆz

+ Ÿ

2

4 [A(z, 0) ≠ A(z, s)]
J

�
1,1

= 0 (2.36)

Integrating (2.36) along the direction of propagation and imposing the initial
condition, �(z, 0) = 1, the general solution can be written as :

�
1,1

(z, s) = exp
I

≠ Ÿ

2

4 z [A(z, 0) ≠ A(z, s)]
J

(2.37)

The term in the curly braces of Eq. (2.37) is called the structure function.

D

‘

(z, s) = Ÿ

2

4 [A(z, 0) ≠ A(z, s)] z (2.38)

We will be concerned primarily with the structure function in (chapter 3)
and it will also play an important role as a tool in the calculations of rate of
turbulent heating (chapter 4). The D

‘

(z, s) defined in (2.38) is a structure
function for ‘

1

(z, s), which are fluctuations in the dielectric constant of a
turbulent medium. In chapter 3 when we introduce the structure function
for the phase fluctuations (D

„

(z, s)), we will demonstrate that both these
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defenitions are identical.

To find a general expression for the structure function (D
‘

(z, s)) we need to
simplify the term in square bracket of (2.38). We now take a detour to see
how the correlations of ‘

1

in a turbulent medium can be related to A(z, s).

2.4 The wavenumber spectrum

Consider the Fourier transform of the correlation of ‘

1

at points r
1

and r
2

in
a turbulent medium, (Ishimaru, 1978) :

È‘
1

(r
1

)‘
1

(r
2

)Í =
⁄⁄⁄

d �
‘

() exp[i · (r
1

≠ r
2

)] (2.39)

Here d = dŸ

x

dŸ

y

dŸ

z

. Taking the inverse Fourier transform of (2.39)
and using (2.29) :

�
‘

() = 1
2fi

⁄
dzÕ

⁄⁄
ds ”(z ≠ zÕ) A(zÕ

, s) exp[≠i‹ · s]

Here ds = dxdy and s = r‹ = (x, y), is a transverse coordinate. Thus
with d‹ = dŸ

x

dŸ

y

we get :

A(z, s) = 2fi

⁄ ;⁄⁄
d‹ �

‘

() exp[i‹ · s]
<

dz (2.40)

In deriving this, the assumption of homogeneity has been used to simplify
the problem. We can further simplify it by assuming isotropy :

�
‘

() ‘æ �
‘

(Ÿ) (2.41)
B

‘

(z, s) ‘æ B

‘

(z, s) (2.42)

In other words the correlation depends only on the magnitude of the di�er-
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ence between the transverse coordinates. Though the problem in general is
anisotropic we will learn in chapter 3 isotropy is a good assumption in several
situations.

The isotropic form of (2.40) is given by :

A(z, s) = 4fi

2

⁄ I⁄
ŸdŸ �

‘

(Ÿ)
A

sin(Ÿs)
Ÿs

BJ

dz (2.43)

The irregularities of a turbulent medium are completely described by �
‘()

,
the spatial power spectrum of the correlations of ‘

1

(z, s). The expression for
A(z, 0) can be obtained easily using s = 0 in (2.40). From (2.38) we get :

D

‘

(z, s) = fiŸ

2

2

⁄
z

0

dz
;⁄⁄ Œ

≠Œ
d �

‘

()[1 ≠ exp(i‹ · s)]
<

(2.44)

Assuming isotropy :

D

‘

(z, s) = 2fi

2

Ÿ

2

⁄
z

0

dz
I⁄ Œ

0

ŸdŸ �
‘

(Ÿ)
C

1 ≠ sin(Ÿs)
Ÿs

DJ

(2.45)

Equation (2.44) forms the basis for our work presented in chapter 3.

2.4.1 Interpretation of Ÿ

The physical interpretation of the wavenumber can be understood as follows.
Instabilities in the ambient field produces large scale irregularities, often ref-
fered to as eddies. The large scale eddies breaks into smaller ones producing
hierarchy of scales (l), which is the hallmark of turbulence. Eddies of dif-
ferent sizes a�ect measurements of spatial covariance in di�erent way. Data
obtained from an interferometer of baseline s (vector seperation between
the sensors/antennas) shows that the covariance decreases with increasing s.
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This gives an important clue suggesting that only those eddies which satisfy
(Wheelon, 2001) :

|s| < l (2.46)

are going to contribute significantly to the measurements of spatial co-
variance. This condition can be expressed in terms of the wavenumber as
follows. For simplicity we choose the isotropic case. The contribution from
the sine term (known as weighting function) in (2.43) is significant when the
argument (Ÿs) satisfies :

Ÿs π 1 (2.47)

Comparing the conditions expressed by (2.46) and (2.47) we conclude :

Ÿ ≥ 1/l (2.48)

This suggests that large eddies corrosponds to small wavenumber and vice
versa. Although we introduced the spectral representation as a mathematical
convinience we see that the sizes of the di�erent irregularities can be identified
with inverse wavenumbers. Therefore the spectrum describes the relative
ability of di�erent eddy sizes to influence the measurements of correlations
of the dielectric constant in turbulent medium.

The second important advantage of this approach is the simplification of
the propagation integral (2.44). Transforming the integral into space and
wavenumber representation allows one to express a measured quantity in the
following way (Wheelon, 2001) :

Measured Quantity =
⁄

d �
‘

() [ Weighting function of Ÿ] (2.49)
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The problem can now be seen in terms of two modules coupled by the
wavenumber integral (e.g. Eq. 2.45 in the light of Eq. 2.49). The modules
are,

• Wavenumber spectrum �
‘

(), which describes the turbulent medium.

• Weighting function, which characterizes the propagation features of the
electromagnetic wave.

Together they generate a complete description of a measured quantity.
In the discussion till now we have analysed almost all the electromagnetic
features of propagation without an explicit mention of a model for the tur-
bulent medium. The approach of representing turbulent medium in terms of
a wavenumber spectrum makes this possible. The choice of the model for a
turbulent medium is postponed to the next chapter.

2.5 The structure function

We now make a few remarks regarding the structure function which demon-
strates its utility.

Consider the correlation of refractive index fluctuations at two points
n(A) at A and n(B) at B in the turbulent medium. The points A and B
are seperated by a distance l as shown in figure (2.3). Let l

1

be the scale of
the irregularities smaller than that of the distance between A and B. l

2

, on
the other hand, is the scale of irregularities that is ∫ the distance between
A and B. The distance between A and B is denoted by l. We can see from
figure that l

2

∫ l and its e�ect on both points is almost identical. However
it does not contribute to the di�erence n(A) ≠ n(B). Similarily irregularities
with l

1

π l contributes only a small amount to the di�erence n(A) ≠ n(B).
Therefore the main contribution is caused by the irregularities having scale
comparable to the distance between A and B. This suggests that the value of
the structure function is a measure of the intensity of turbulent irregularities
having scale l. We can readily connect l with the interferrometric baseline |s|.
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Figure 2.3: Schematic diagram to illustrate e�ects of irregularities on the
measured properties of a turbulent medium. The structure function is a
measure of the intensity of irregularities having scales comparable to the
distance (l) between points A and B in a turbulent medium. Small scale
(l

1

π l) irregularities are shown in purple. Irregularities with l

2

∫ l are
shown in blue. The structure function can be defined in terms of di�erence
in correlations of refractive index fluctuations, at two di�erent points in a
turbulent medium, n(A) ≠ n(B).
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This not only allows us to produce a quantitative description of the observed
phenomenon due to scattering, but also helps in constraining parameters that
characterize turbulence in the intervening medium.

2.6 Summary

We have provided a brief description of the theory of scattering of electro-
magnetic waves in a turbulent media. Starting with the Maxwell equations
in a source free region and using the small angle scattering we reproduced an
equation for the wave propagation in turbulent medium Eq. (2.18). Fluctu-
ations in the dielectric constant necessitate a statistical approach to deduce
the e�ects of turbulent fluctuations on the wave propagation. Using the
Markov approximation on the variability of the wave field in the direction of
propagation, we can obtain the parabolic equation for the second moment
of the wave field Eq. (2.34). A solution of this equation to first order yields
angular broadening and defines structure function via two point correlations
of fluctuations in the dielectric constant Eq. (2.44). The structure func-
tion described in terms of the wavenumber spectrum helps us simplify the
propagation integral. The physical insight this picture o�ers is the simple
identification of the wavenumber with the size of irregularities (eddies) in a
turbulent medium. This connects the theoratical description with measured
properties of the intervening medium like the solar wind.

In the next chapter we continue bulding on these concepts and explore
the general form of the structure function and its role in the radio wave
scattering. We will see how the interplay between the scales of irregularities
and interferometric baselines provides constraints on the form of the structure
function to be used while predicting phenomenon due to the scattering of
electromagnetic waves.
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Chapter 3

The general structure function
(GSF)

Calculations of angular broadening of radio sources due to scattering o� tur-
bulent density inhomogeneities in the solar wind usually employ asymptotic
approximations to the phase structure function. We use a general structure
function (GSF) that does not use these approximations. We show that the
regimes where the GSF predictions are more accurate than those of its asymp-
totic approximations is of practical relevance, and are also the regimes where
inner scale e�ects influence the estimate of angular broadening. The findings
in chapter (3) have been published in Ingale et al. (2015)

3.1 Introduction

We learned from chapter 2 that the interaction between plasma inhomo-
geneities and electromagnetic waves give rise to the scattering of electromag-
netic waves in the solar wind. This interaction is determined by the dielectric
constant, ‘ or equivalently by refractive index (‘ = µ

2) . If Ê is the angu-
lar frequency of the propagating wave and Ê

p

= 4fin

2

e

e

2

/m

e

is the electron

31
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plasma frequency, for Ê ∫ Ê

p

the dielectric constant, ‘ is given by :

‘ = 1 ≠ Ê

2

p

Ê

2

= 1 ≠ ⁄

2

r

e

n

e

fi

(3.1)

where ⁄ is the wavelength of the electromagnetic wave, r

e

= e

2

/m

e

c

2

is the classical electron radius. Plasma irregularities are described by the
fluctuations in the dielectric constant, (‘

1

) given by :

‘

1

= ⁄

2

r

e

fi

”N

e

= 2”µ (3.2)

Here ”N

e

denotes the fluctuations in the background electron density.
Interaction between the electromagnetic wave and plasma irregularity, over
a characteristic length scale ”z in the direction of the propagation give rise
to fluctuations in the phase (”„) :

”„ = Ÿ�z”µ = ⁄r

e

�z”N

e

(3.3)

Therefore the phase front of an electromagnetic wave passing through the
turbulent medium gets corrugated and an observer receives radiation from a
range of angles; in other words the source has su�ered angular broadening
with a characteristic angular width ◊

s

. Since the source is now broadened
and not point-like there is a geometrical time delay resulting in temporal
broadening of the source. If the turbulent medium is moving with the velocity
v

s

in the direction transverse to the observer, a monochromatic source, in
addition to angular / temporal broadening, experiences spectral broadening.
Thus phase fluctuations of the electromagnetic wave traversing a turbulent
medium gives rise to a range of scattering phenomena.

Phase fluctuations can be measured by using interferometric observations
of a spatially coherent source with a pair of antennas separated by a distance
s known as the baseline. Usually a phase deviation �„ = ”„(r)≠”„(r + s) is
measured over time scales much smaller than the scale over which solar wind
irregularities causes a drift in the scale of the baseline s of the interferometer.
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The structure function is then readily estimated using D

„

(s) = È[�„(s)]2Í,
known as phase structure function (Coles & Harmon, 1989; Spangler & Saku-
rai, 1995). Scattering phenomena can be quantitatively described by Eq.
(2.44).

With the propagation integral given by Eq. (2.44) we can think of the
problem in two ways. First if we know the form of the spatial power spec-
trum of density fluctuations we can integrate Eq. (2.44) and obtain the
structure function; conversely, given measurements of the structure function
we can determine the spatial power spectrum and thus directly get handle
on the parameters that characterize density turbulence in the solar corona.
We will explore both of these approaches. This chapter concerns with the
first approach where we use the empirical information of the spatial power
spectrum of density turbulence to compute the structure function. Chap-
ter 4 deals with the later approach where we can constrain the parameters
characterizing the density turbulence, using measurements of the structure
function obtained by interferometric experiments.

3.2 Phase structure function

To illustrate various propagation phenomena, quantitatively described by
D

„

, consider a Cartesian coordinate system with z being the direction of
propagation. The observer is in the x, y plane, located at a distance L along
the z axis.

Suppose the turbulent medium fills the half space z > 0. The role of the
turbulent medium is to change the phase of the incident wave randomly as
a function of position and time (Figure 3.1). A coherent wave incident on
the medium at z = 0, experiences loss of spatial as well temporal coherence
due to random phase fluctuations. We have seen that this gives rise to
angular broadening of the source with a characteristic angular width ◊

c

, also
known as the scattering angle. To obtain a quantitative description of angular
broadening therefore we need to connect ◊

s

with the structure function D

„

.
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Figure 3.1: Schematic of an experiment to measure phase deviation of the
incident plane wave due to turbulent solar wind.

We know that the statistical properties of a turbulent medium at z = L

can be described by the spatial correlation functions, B

‘

, B

„

, or B

N

e

of ‘

1

, ”„

or ”N

e

(Bastian, 2000), using (3.2) and (3.3) :

B

‘

(s) = È‘
1

(r)‘
1

(r + s)Í

=
A

fi

2

⁄

2�z

B

B

„

(s)

= (r2

e

⁄

4

/fi)B
N

e

(s) (3.4)

Where r = (x, y, z = L) and r1 = r + s, with s = (xÕ
, y

Õ
, 0) are the
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transverse coordinates. In the context of an interferometer on the Earth
measuring the correlation, given by (3.4), the quantity |s| can be interpreted
as the interferometer baseline. Following equations (2.29), (2.37) and (2.38)
we can alternately define the structure function for ‘

1

as follows :

D

‘

(s) = 2[È‘
1

(r)2Í ≠ È‘
1

(r)‘
1

(r + s)Í] (3.5)

It is evident from (3.2) and (3.3) that the treatment of the phase fluctua-
tions is equivalent to the one described in previous chapter for the fluctuations
in the dielectric constant (also see §2.3). We can therefore define the phase
structure function as :

D

„

(z, s) = 2[È”„(r)2Í ≠ È”„(r)”„(r + s)Í] (3.6)

which is related to (3.5) via (3.4). The relation between the phase fluctua-
tions ”„ experienced by the wave propagating through the turbulent medium
and the density fluctuations ”N

e

depends on the geometry of the scattering.
In general we can write (Spangler, 1996) :

”„(r) = r

e

⁄

⁄
L

0

”N

e

(r) dz (3.7)

Therefore the phase structure function D

„

(s) can be written as :

D

„

(z, s) = 2r

2

e

⁄

2

⁄
L

0

[È”N

e

(r)2Í ≠ È”N

e

(r)”N

e

(r + s)Í] dz (3.8)

Following a similar line of investigation as in Chapter 2 we can use the
wavenumber representation. The Fourier transform of the correlations of
density fluctuations is the spatial power spectrum :

È”N

e

(r)”N

e

(r + s)Í =
⁄ Œ

≠Œ
S

n

(z,)exp[i · s] d (3.9)

Here ‹ = (Ÿ
x

, Ÿ

y

, 0) is the transverse wave number and the S

n

(z,) is the
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spatial power spectrum of the density fluctuations. Thus using (3.8) and
(3.9) we can write D

„

in terms of the wavenumber spectrum representation
(equivalent to Eq. 2.49),

D

„

(z, s) = 8fi

2

r

2

e

⁄

2

⁄
L

0

dz
⁄⁄ Œ

≠Œ
d S

n

(z,) [1 ≠ exp(i · s)] (3.10)

The value of s where D

„

(z, s) = 1 gives a measure of the extent of broad-
ening of an ideal point source due to the scattering caused by the turbulent
density fluctuations. This value of s is denoted by s

0

and is called the coher-
ence scale or di�raction scale. It is related to ◊

s

by :

✓
s

= (|| s
0

)≠1 (3.11)

Thus the phase structure gives direct information on the angular broaden-
ing of a source when observed against the background of a turbulent medium
like the solar wind. Since the phase structure function contains the spatial
power spectrum of the density fluctuations, information about the observed
angular extent of the sources gives a good handle on the parameters charac-
terizing the turbulence spectrum in the solar wind. We now briefly examine
di�erent geometries involved in the scattering problem.

3.2.1 Thin screen geometry

The irregularities of a turbulent medium can be assumed to be concentrated
in a thin, two-dimensional screen. This assumption is well justified in many
problems of interest (e.g. radio wave scattering from a distant celestial
source) and also greatly simplifies the analysis.

If we consider the screen to be located at z = 0, the role of the screen is
to introduce a position dependent phase change ”„(r) to the incident wave.
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Figure 3.2: Illustration depicting the e�ect on a wave traversing a thin screen
of turbulent irregularities. Scattering of electromagnetic wave is quantita-
tively described by the weighting function (2.49)

Equation (3.10) with a scattering screen of thickness �L yields :

D

„

(z, s) = 8fi

2

r

2

e

⁄

2�L

⁄⁄ Œ

≠Œ
d S

n

(z,) [1 ≠ exp(i · s)] (3.12)

3.2.2 Spherical and plane wave propagation

The extent of scatter broadening depends on whether the wavefront is pla-
nar (1-D) or spherical (3-D). When a source is embedded in the scattering
medium, as is the case for sources in the solar corona (Bastian, 1994; Subra-
manian & Cairns, 2011) it is appropriate to adopt a formalism that includes
the spherically diverging nature of the wavefront. We will later see that
the assumption of isotropy in the turbulent spectrum is also justified in this
situation.

For the spherically diverging wavefront, the observer is sensitive to a
range of eddy sizes (scales of irregularities) given by sa/b, where s is the
interferometer baseline, a is the distance of the scattering screen from the
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Figure 3.3: (Adapted from Wheelon (2001)) Schematic showing range of
eddy sizes, observer is sensitive to, in case of spherical as well as plane wave
propagation.

source and b is the distance of the observer from the source; see Subramanian
& Cairns (2011) for details. In other words, the e�ective baseline for spherical
wave propagation at a given heliocentric distance R is (Ishimaru, 1978) :

s

e�

= sR/(R
1

≠ R

0

) , (3.13)

Figure 3.4: (Adapted from Subramanian & Cairns (2011)) Geometry for the
spherical wave propagation

where R

1

is the heliocentric distance at which the observation of angular
broadening is made and R

0

is the heliocentric distance at which the source
is situated (figure 3.4).
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The planar (1D) formalism, on the other hand, is appropriate when the
source, scattering region(s), and observer are all far apart from each other,
as assumed in calculations for distant celestial sources viewed through the
scattering screen of the solar wind. We will see later that a treatment of
anisotropic scattering is essential for this situation. In this case an observer
is typically sensitive only to scattering regions (eddies) with sizes of the order
of the interferometer baseline s (Figure 3.3). In other words, s

e�

= s for plane
wave propagation.

3.2.3 Turbulence spectrum

We know from the propagation integral (2.27) that the turbulent medium is
described by the spatial power spectrum of density fluctuations S

n

(z,). To
proceed further it is necessary to consider an actual model for the turbulence
spectrum. Measurements of solar wind density fluctuations by various space-
craft have provided important inputs regarding the form of the turbulence
spectrum. Observations in the low speed solar wind between 0.3 and 1 AU
at frequencies < 0.1 Hz reveal that the spatial power spectrum of electron
density fluctuations in the solar corona largely follow the Kolmogorov scaling
(Marsch & Tu, 1990; Tu & Marsch, 1995; Coles & Harmon, 1989). The tur-
bulent density spectrum is commonly modeled as a power law in wavenumber
space. It is known that at the smallest scales the density spectrum displays
an abrupt steepening (Coles & Harmon, 1989) indicating the existence of the
inner scale. In this region an exponential cut-o� is often a good approxi-
mation to a steeper power law (Bale et al., 2005; Alexandrova et al., 2012).
Models also suggest that the dissipation range is an exponential cuto�, im-
plying that observations of steeper power laws might arise from instrumental
limitations (Howes et al., 2008). The turbulent density spectrum is often
written as :

S

n

(z,) = C

N

(z)2 ||≠– exp[≠Ÿ

2

/Ÿ

2

i

] (3.14)

Here the quantity C

2

N

(z) is the amplitude of density turbulence and – is
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the power law index. The quantity l

i

= 2fi/|i| is generally referred to as the
inner scale, where dissipation sets in (exponential turnover). The steepening
of the spectrum beyond the inner scale is often attributed to the dissipation
of the turbulent eddies and associated waves (Coles, 1978; Woo & Armstrong,
1979).

In-situ observations near the Earth at higher frequencies (> 0.1Hz) find
no evidence for any deviation from the Kolmogorov scaling as a function of
the angle with respect to the local magnetic field direction (Celnikier et al.,
1987; Tu & Marsch, 1995). At higher frequencies, however, there is evidence
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for steepening at wave numbers ¥ 2fi/l

i

. In high speed solar wind streams,
there seems to be some evidence for spectral flattening at high frequencies
prior to the inner scale.

3.2.4 Anisotropic scattering

An important result from angular broadening observations is that the solar
wind turbulence is highly anisotropic. Scatter-broadened images of distant
celestial sources viewed on foreground of the solar wind at small elongations
from the Sun tend to be strongly anisotropic with axial ratio as high as ≥ 16
(Anantharamaiah et al., 1994; Coles & Harmon, 1989; Coles et al., 1987).

Figure 3.5: (Adopted from Bastian, 2000) An example of a source with
an anisotropic brodening due to turbulent irregularities in the solar wind.
Anisotropy is evident is predominantly in the direction of the magnetic field.
The direction of the Sun is indicated by §

The scatter-broadened images are observed to be elongated along the di-
rection of the (predominantly radial) large-scale magnetic field. One must
therefore consider the e�ect of anisotropy while calculating the phase struc-
ture function for the scattering in these cases. The thin screen geometry is
appropriate for this situation (Coles et al., 1987; Coles & Harmon, 1989).



42 3.2. Phase structure function

Define a cartesian coordinate system x, y, z, with z along the line of sight.
For plane wave propagation, which is relevant for radiation from distant back-
ground celestial sources viewed against the turbulent solar wind scattering,
density inhomogeneities are concentrated in a thin screen of thickness �L,
located at z = 0 between the source and the observer. In this case, the trans-
verse coordinates x and y are in the plane of the scattering screen, which is
perpendicular to the line of sight. The x coordinate is taken to be along
the projection of the local magnetic field vector into the x ≠ y plane and at
small elongations, it is observed that scatter broadened images are typically
stretched along the x direction. This can be treated using a formalism where
the underlying turbulent eddies are also elongated in the x direction.

Figure 3.6: Geometry for the anisotropic scattering. z is along the line of
sight and x’ is such that the direction of B‹ is always along x’. The projection
of the density structure appears as eccentric ellipse elongated along x’

Narayan & Hubbard (1988) developed a theory of refractive scintillation
that includes anisotropy. They model the turbulent spectrum as a power
law with the power law index – Æ 4, but do not include a cuto� due to
dissipation. We extend the formulation of Narayan & Hubbard (1988) to
include the exponential cut-o� together with the power law spectrum. The
anisotropic generalization of the power law spectrum with exponential cuto�
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can be written as :

S

n

(z,) = C

2

N

(R) (fl2

Ÿ

2

x

+ Ÿ

2

y

)≠–/2 exp[≠(fl2

Ÿ

2

x

+ Ÿ

2

y

)(li/2fi)2]. (3.15)

The axial ratio fl (> 1) measures the degree of anisotropy, which can be
interpreted in the following way : if the density blob in the screen has length
l in the y direction, it is elongated to fll in the x direction. In writing (4.1)
we have assumed, following Narayan & Hubbard (1988), that :

• The axial ratio, fl is independent of the spatial scale .

• The focusing action of the density gradient in the scattering screen is
negligible.

We assume that the inner scale (li = 2fi/ki) is anisotropic such that
l

ix

= fll

iy

.

We replace the usual Cartesian coordinate system with the coordinates
Ÿ

r

and › defined as :

k

r

= (fl2

k

2

x
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y
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≠1

A
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flk

x

B

(3.16)

Accordingly, the area element will be scaled as :

d2

Ÿ = Ÿ

r

fl

dŸ

r

d› (3.17)

Using the coordinate transformation defined in 3.17, we obtain the fol-
lowing expression for the correlation of density fluctuations :
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where J

0

is the Bessel function of the first kind. Thus for the scattering
screen of thickness �L the phase structure function (3.12), using (4.1) and
(3.19), can be written as :
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Integrating over Ÿ

r

we obtain :
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Cairns (1998) has showen that the PWE formalism for the angular broad-
ening (Chapter 2) can be extended to include non-zero, spatially varying
ratio f

p

/f < 1, where f

p

is the plasma frequency and f = 2fic/⁄ is the ra-
diation frequency. Consequently the expression for the propagation integral
(3.21) and thus scattering angle ◊

s

can be modified by including a factor
[1 ≠ f

p

(z)2

/f

2] inside the path integral. Thus Eq. (3.21) is modified to :
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where
1

F

1

denotes the confluent hypergeometric function also known as the
Kummer function. Defining G = s/l

i

the approximation s π l

i

corrsponds
to G æ 0 and the approximation s ∫ l

i

to G æ Œ :
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b

(3.23)

Therefore we find the following limiting forms of the phase structure func-
tion (3.22) for anisotropic scattering :
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for s π l

i

, and :

D

„

(z, s) = 1
fl

8fi

2

r

2

e

⁄

2�L

2–≠2(– ≠ 2)
� (1 ≠ (– ≠ 2)/2)
� (1 + (– ≠ 2)/2)

C

2

N
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(1 ≠ f

2

p

(z)/f

2) (3.25)

for s ∫ l

i

.

In the equations (3.24) and ()3.25, |s| = ( s

2
x

fl

2 + s

2

y

) 1
2 , and l

i

= ( l

2
ix

fl

2 + l

2

iy

) 1
2 .

The anisotropic coherence length is defined as

D

„

(z, s0) = D

„

(z, s

0x

, s

0y

) = 1 . (3.26)

We note that the root of (3.22) is |s0| = (s2

0x

+ s

2

0y

) 1
2 . Following Narayan

& Hubbard (1988), we assume that the coherence length in x direction s

0x

is elongated by the factor of fl relative to the coherence length s

0y

in the y
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direction; in other words,

s

0x

= fls

0y

(3.27)

Psuedo-codes for implementing the GSF and numerically evaluating the
coherence length are given in the appendix. Similarly we assume that :
l

ix

= fll

iy

. Equations (3.26) and (3.27) give the following expressions for the
semi-major axes of the scatter-broadened image projected on the scattering
screen in terms of the coherence length s

0x

and s

0y

:

◊

cx

= (2fis

0x

/⁄)≠1

, (3.28)

◊

cy

= (2fis

0y

/⁄)≠1 = fl◊

cx

. (3.29)

Note that expressions (3.20) ≠ (3.25) depend on fl only through the factor
1/fl, while the scattering angles (3.28) and (3.29) in the x and y direction
respectively di�er by a factor of fl. We recover the isotropic results for fl = 1.

3.2.5 Isotropic scattering

If the underlying turbulent eddies are isotropic, isotropic scattering is a rea-
sonable assumption. The extent of anisotropy observed in scatter-broadened
images at small solar elongations is determined more by the variation in the
direction of the large scale magnetic field with respect to the line of sight than
by the degree of anisotropy of the density fluctuations (Chandran & Backer,
2002). Using an anisotropic Goldreich-Sridhar spectrum, Chandran & Backer
(2002) have shown that the scatter broadened images will be isotropic if the
direction of the large-scale magnetic field is substantially aligned with the
line of sight. This is intuitively obvious, since the plasma response would be
gyrotropic about the large-scale magnetic field. Specifically, if “ is the angle
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between the magnetic field and the line of sight, they show that if :

“ π (s/l

out

)1/3

, (3.30)

where s is the baseline and l

out

is the outer scale of the turbulence, the
dominant contribution to the turbulent spectrum comes from the values of
k

x

and k

y

satisfying k

2

x

+ k

2

y

ƒ s

≠2.

Figure 3.7: (From Mercier et al. (2006)) Image of radio sources in the solar
corona obtained by combining visibilities from GMRT and NRH. The sources
near the disc center are nearly isotropic

In case of spherical wave propagation, where the observer is looking
through the corona down at a source on the Sun, the line of sight from
the Earth to the Sun is radial, and “ satisfies (3.30) amply. In this situ-
ation the e�ects of anisotropic scattering are likely to be minimal. Images
of scatter-broadened sources near disk center in the solar corona are indeed
not very anisotropic (Zlobec et al., 1992; Mercier et al., 2006), validating



48 3.2. Phase structure function

this idea (Figure 3.7). Stronger support for this argument is provided by the
fact that type I radio bursts are strongly circularly polarised near disk center
(Wentzel, 1997), and become less so near the limb. Since quasi-transverse
magnetic field regions (in this case, regions of horizontal magnetic field) serve
as depolarization sites, this implies that sources that are substantially near
disk center do not encounter such regions, at least above the level where
the emission originates; in other words, the magnetic field along the line of
sight is largely radial (Wentzel, 1997). As discussed above, this implies that
the scattering process will be isotropic. There is also some evidence for the
fact that the inner scale itself is isotropic, in which case the assumption of
isotropy is well justified for scales comparable to or less than the inner scale
(Armstrong et al., 1990; Bastian, 1994). For an isotropic turbulent density
spectrum with an inner scale l

i

, (4.1) reduces to :

S

n

(z, Ÿ) = C

2

N

(z) Ÿ

≠– exp[≠(Ÿl

i

/2fi)2] , (3.31)

where the spatial wavenumber Ÿ = (Ÿ2

x

+ Ÿ

2

y

) 1
2 .

Therefore the phase structure function, (3.22) can be rewritten as (Coles
& Harmon, 1989) :
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T

V ≠ 1
Z
^

\ , (3.32)

and the corresponding asymptotic approximations (3.24) and (3.25) take the
form (Coles et al., 1987; Subramanian & Cairns, 2011):

D

„

(z, s) = 4fi

2

r

2

e

⁄

2�L

2–≠2

�
3

1 ≠ – ≠ 2
2

4
s

2

C

2

N

(z)l
i

(z)–≠4

(1 ≠ f

2

p

(z)/f

2) , (3.33)
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for s π l

i

and

D

„

(z, s) = 8fi

2

r

2

e

⁄

2�L

2–≠2(– ≠ 2)
� (1 ≠ (– ≠ 2)/2)
� (1 + (– ≠ 2)/2)

C

2

N

(z)s–≠2

(1 ≠ f

2

p

(z)/f

2) . (3.34)

for s ∫ l

i

.

The isotropic coherence length s

0

is defined by

D

„

(s
0

) = 1 . (3.35)

For a given wavelength ⁄, the extent to which an ideal point source is broad-
ened is given in terms of the isotropic coherence length s

0

as

◊

c

= (2fis

0

/⁄)≠1

. (3.36)

Just as the anisotropic coherence length s
0

= (s
0x

, s

0y

) can be readily
calculated from the asymptotically correct expressions (3.24) and (3.25) for
the structure function (3.22), the isotropic coherence length s

0

can be calcu-
lated easily for the asymptotic approximations (3.33) and (3.34) of the phase
structure function (3.32).

Several authors e.g., (Bastian, 1994; Subramanian & Cairns, 2011) have
used these asymptotic expressions to obtain estimates of angular broadening
of sources in the solar corona. However, there are limitations associated with
using these asymptotic expressions. Specifically, equations (3.24) and (3.25)
or (3.33) and (3.34) do not meet seamlessly at s = l

i

, which suggests that in
situations where the baseline is comparable to the inner scale, the asymptotic
approximations cannot give reliable results (Coles et al., 1987; Subramanian
& Cairns, 2011). In what follows, we compute the scatter broadening angles
◊

cx

and ◊

cy

for the anisotropic case using the full expressions (3.22) and
compare them with those obtained with the limiting expressions (3.24) and
(3.25).Similarly, for the isotropic case we compare scatter broadening angles
◊

c

obtained using full expression (3.32) with those obtained by using the
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limiting expressions (3.33) and (3.34). For this purpose we need to specify a
model for the background electron density and for the amplitude of density
turbulence C

2

N

.

3.2.6 Density Models

To estimate angular broadening we need to integrate the random phase fluc-
tuations along the line of sight. The lower limit of this integral is the fun-
damental plasma level (f = f

p

) which depends on the background electron
density, n

e

. A model for f

p

is needed to fully describe refractive index and
inner scale e�ects. Since f

2

p

Ã n

e

a model for the ambient electron density
n

e

(z) is required.

One density model we use is due to Cairns et al. (2009), which we will
call the “wind-like” density model from now on. The electron density as
a function of heliocentric distance R (which is measured in units of R§) is
given by:

n

e

(z) = 1.58 ◊ 1027 ◊ (z ≠ 1)≠2 cm≠3

. (3.37)

It is important to note that the wind-like density model includes an o�set,
z

0

(= 1) in (R§), due to plasma sources being near to the photosphere. Cairns
et al. (2009) shows that for z

0

≥ 1.05 ≠ 2R§ the local density profile is often
wind like n

e

Ã (z ≠ 1)≠2. This model is known to be accurate close to the
solar limb and also transitions smoothly to z

≠2 profile at large distances.

In fact, the wind-like density model only specifies that the density should
be proportional to (z ≠1)≠2; we obtain the proportionality constant of 1.58◊
1027 cm≠3 by demanding that the density predicted by this model equal that
predicted by the Leblanc et al. (1998) density model at 1 AU. Another useful
model is the commonly used 4-fold Newkirk density model, which has a
di�erent proportionality constant (equal to 4.2 ◊ 104 cm≠3).
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3.2.7 Amplitude of Density Turbulence : C

2
N(z)

In order to characterize the amplitude C

2

N

of the turbulent density spectrum
S

n

(eq 3.31), we use a model originally proposed by Armstrong & Woo (1980)
and later refined by Spangler & Sakurai (1995). This model is based on VLBI
observations in the outer corona and solar wind. Spangler & Sakurai (1995)
obtained the following expression for C

2

N

as a linear fit to scattering data
between 10R§ ≠ 50R§ (Figure 3.8):

C

2

N

(z) = 1.8 ◊ 1010

A
z

10R§

B≠3.66

m≠20/3

. (3.38)

Figure 3.8: (Adapted from Spangler & Sakurai (1995)) Amplitude of density
turbulence C

2

N

as a function of heliocentric distance z in R§

The dimensions of C

2

N

(z) in general are m≠–≠3, where – is the power law
index characterizing the inertial range of the turbulent density spectrum S

n

in (3.31). It may be noted that (3.38) is valid only for a Kolmogorov spectrum
(– = 11/3). There is considerable evidence supporting the idea that inertial
range density fluctuations in the solar wind follow the Kolmogorov scaling
(Montgomery et al., 1987; Goldstein et al., 1995; Lithwick & Goldreich, 2001;
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Dastgeer & Zank, 2007; Marsch & Tu, 1990; Tu & Marsch, 1995; Coles &
Harmon, 1989).

Although we mostly use the Kolmogorov scaling (– = 11/3) in this work,
there is some evidence for flattening of the spectrum (at heliocentric distances
of a few R§) from scales around 100 km down to the inner scale (Coles &
Harmon, 1989; Bastian, 1994), which might be evidence for the dispersion
range that occurs prior to the dissipation range. The extent of this flattening
strongly depends upon the phase of the solar cycle and the speed of the solar
wind (Manoharan et al., 1994). The evolution of the flattening feature with
heliocentric distance is currently not known.

We have addressed the issue of spectral flattening by using – = 3 in (3.31),
as in Bastian (1994). Since (3.38) as it stands is valid only for – = 11/3,
we need to re-calculate C

2

N

using equation (9) of Spangler & Sakurai (1995)
with – = 3. We obtained a least square fit to the plot of the newly calculated
C

2

N

against the impact parameter R

0

(distance of closest approach), which
yields the following expression for C

2

N

for – = 3:

C

2

N

(z) = 8.1 ◊ 1012

A
z

10R§

B≠3.66

m≠6

. (3.39)

Although we mostly use (3.38), (which holds for – = 11/3), we also discuss
modifications to our results arising from the use of (3.39).

3.3 The relevance of the GSF

The principle aim of this chapter is to investigate the constraints on the ap-
propriate form of the structure function in terms of the estimates of coherence
scale (s

0

) obtained by using the GSF (3.22) and (3.32) and the corrospond-
ing asymptotic branches (given by (3.24) and (3.25) for anisotropic scattering
and (3.33) and (3.34) for isotropic scattering). To explore the circumstances
under which the GSF is significantly more accurate than the asymptotic
branches, we start by comparing Eqs (3.24) and (3.25) with Eq. (3.22) for
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anisotropic scattering and Eqs (3.33) and (3.34) with Eq. (3.32) for isotropic
scattering. To address this question we will use the coherence length s0. In
case of anisotropic scattering recall that the coherence length s0 = (s

0x

, s

0y

)
is related to the phase structure function via (3.26), and the scattering angles
◊

cx

and ◊

cy

(which is the semi-major axes of an image corresponding to an
ideal point source subject to scatter broadening) are related to s

0x

and s

0y

via (3.28) and (3.29), respectively. We have calculated the results for s

0x

and
s

0y

but to avoid confusion we discuss only the y-component of the coherence
length, namely s

0y

. The results for the x-component of the coherence length,
s

0x

(= fls

0y

) are identical.

In order to compare the angular broadening predictions of the GSF with
those predicted by the asymptotic branches, we plot the relative error intro-
duced in the coherence length s

0y

when either of the asymptotic approxima-
tions (3.24) or (3.25) of the GSF (3.22) is used, as a function of the inner
scale l

iy

. Denoting coherence scale obtained by using the GSF : s

0

(GSF) and
coherence scale obtained by using asymptotic branches : s

0

(asymptotic), we
define the relative error in s

0

as follows :

% relative error in s

0

= s

0

(GSF) ≠ s

0

(asymptotic)
s

0

(GSF) ◊ 100 % (3.40)

An advantage in working with the relative error in s

0y

is that our conclu-
sions are independent of the observing frequency for plane wave propagation.
We carry out a similar exercise for isotropic scattering, which is relevant for
the spherically diverging wavefront. In this situation, (3.32) is modified to
include an integral along the line of sight (§3.3.2). The lower limit of the
line-of-sight integral, which is the plasma level, is a function of an observ-
ing frequency. The spherical wave calculations are therefore expected to be
sensitive to the observing frequency. When the relative error is significant
the predictions of the GSF disagree with those of the asymptotic branches,
and the converse is true when the relative error is negligible. The inner scale
l

i

is maintained as a free parameter in §3.2 – 3.4 . When using the GSF,
we note that the coherence length s0 needs to be calculated using a numer-
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ical root finding procedure. On the other hand, one can obtain an explicit
analytical expression for s0 when using the asymptotic branches. For non-
zero, spatially varying ratios f

p

(z)/f , the expressions for the GSF and the
asymptotic branches for an anisotropic case are modified by the inclusion
of the factor [1 ≠ f

2

p

(z)/f

2]≠1 in (3.22), (3.25) and (3.24). It can be eas-
ily shown that (3.21) is recovered in the limit f

p

(z)/f æ 0 (i.e.f
p

(z) π f)
and constant f

p

/f). Similarly, for the isotropic case, the GSF and the cor-
responding asymptotic branches are modified to ((3.32), (3.33) and (3.34)).
Consequently, in the limit f

p

(z)/f æ 0 the angular broadening results are
independent of the ratio f

p

/f (Cairns, 1998).

3.3.1 Plane wave propagation

Plane wave propagation is relevant to the situation where one is observing
a distant cosmic source against the background of the solar wind. In this
situation, anisotropic scattering is important, especially for sources at small
solar elongations. In what follows, we compute the coherence length by using
the anisotropic phase structure function discussed in § 2.1.1, and compare it
with those obtained using the asymptotic approximations.

The coherence length s

0y

is calculated by using (3.26) and (3.27). Fig-
ures 3.9 and 3.10 show the relative error in the predictions of the GSF and
either asymptotic branch of s

0y

as a function of the inner scale l

iy

.

We obtained s

0y

as a root of the GSF, (3.22) and compared with s

0y

from
the asymptotic branches, (3.24) and (3.25) for three di�erent values for axial
ratio fl. The solid line is for fl = 1, dotted line for fl = 5 and the dashed line
for fl = 10. The results shown in Figures 3.9 and 3.10 are for a representative
solar elongation of 10R§. It is evident that anisotropy e�ects are not very
significant; varying fl by a factor of 10 results in a di�erence of < 10% in the
relative error.

Figure 3.9 shows that the region where the relative error is significant
decreases with increasing anisotropy. For fl = 1, (solid line) the relative
error increases sharply for l

iy

Æ 200km; in this region, the s

y

π l

iy

branch is
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Figure 3.9: Relative error in the coherence length s

0y

(s
0x

) as a function of
l

iy

(l
ix

) when the asymptotic branch s

y

π l

iy

(s
x

π l

ix

), (3.24) is used. The
calculations are for plane wave propagation through the corona and solar
wind and for a representative solar elongation of 10R§. The solid line uses
the degree of anisotropy, fl = 1, the dotted line is for fl = 5 and the dashed
line uses, fl = 10.

inadequate and the GSF should be used. For fl = 5, (dotted line) the relative
error becomes significant for l

iy

Æ 100km and for fl = 10, (dashed line), the
relative error is significant for l

iy

Æ 80km.

Figure 3.10 displays the corresponding relative error for the asymptotic
branch s

y

∫ l

iy

. It is evident that the extent of the region for which the
relative error is significant increases with the degree of anisotropy. For fl =
1, (solid line) the relative error is significant for l

iy

Ø 10km, implying the
asymptotic branch s

y

∫ l

iy

is inadequate and the GSF should be used. For
fl = 5, the relative error increases for l

iy

Ø 8km and for fl = 10, the relative
error is significant for l

iy

Ø 4km.

From Figures 3.9 and 3.10 it is clear that, for plane wave propagation
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Figure 3.10: Relative error in the coherence length s

0y

(s
0x

) as a function of
l

iy

(l
ix

) when the asymptotic branch s

y

∫ l

iy

(s
x

∫ l

ix

), (3.25) is used. The
calculations are for plane wave propagation through the corona and solar
wind and for a representative solar elongation of 10R§. The solid line uses
the degree of anisotropy, fl = 1, the dotted line is for fl = 5 and the dashed
line uses, fl = 10.

through the solar wind and corona, the coherence length s

0y

(and therefore
the broadening angle computed from it) computed via the GSF agrees with
the asymptotically correct expressions (i.e. the relative error is negligible)
only for l

iy

< 4km or l

iy

> 200km. In other words, for the degree of anisotropy
ranging from 1≠10, the statement s

y

π l

iy

is valid for l

iy

Ø 200 km, and
the predictions of (3.24) hold well. Similarly, s

y

∫ l

iy

is valid for l

iy

Æ 4km,
and the predictions of (3.25) will be accurate for values of the inner scale
satisfying this condition. At a solar elongation of 10 R§, we find that the
GSF predictions disagree with those of the asymptotic branches for 4km
Æ l

iy

Æ 200 km. Although the results shown in Figures 3.9 and 3.10 hold
only for a solar elongation of 10 R§, we have also investigated this aspect
for other elongations. We find that the s

y

π l

iy

asymptotic branch is valid
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for elongations < 5R§, while the s

y

∫ l

iy

asymptotic branch is valid for
elongations > 20R§. In summary for solar elongations between 5 and 20 R§

the GSF needs to be used.

3.3.2 Spherical wave propagation

For sources embedded in the solar corona, spherical propagation e�ects are
important (figure 3.4). Since the assumption of isotropic scattering is justi-
fied in this situation (§ 2.2), the coherence lengths are computed using the
formulation outlined in § 2.1.2.

For spherical wave propagation we need to use the e�ective baseline s

e�

=
sR/(R

1

≠ R

0

), where R

1

is the distance of the observer from the source
and R

0

is the distance from which scattering is assumed to be e�ective.
We consider R

0

to be equal to the fundamental plasma emission level; for
327MHz, with the wind-like density model R

0

, is located at 0.0156 R§ above
the photosphere.

In this case, the line of sight from the source embedded in the solar corona
to the observer (at the Earth) spans heliocentric distances ranging from the
height of fundamental plasma emission (where f

p

(R) = f) to 1 AU. One
therefore needs to explicitly integrate equation (3.32) along the line of sight
with R being the integration variable. This aspect is di�erent from the plane
wave case (§ 3.1.1). Thus for the spherical wave propagation (3.32) should
be modified to :
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(z)

B
2

T

V ≠ 1
Z
^

\ dz (3.41)

and the corresponding asymptotic branches e.g. (Coles et al., 1987; Bastian,
1994; Subramanian & Cairns, 2011) by :
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for s

e�

π l

i

and

D

„

(z, s) = 8fi

2
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2) dz . (3.43)

for s

e�

∫ l

i

.

While computing the integral we consider the lower limit to be at the
height of approximately 700 km above the plasma emission level. Further-
more, the lower limit of integration (which is the fundamental plasma level)
depends on the observing frequency; it therefore follows that the relative er-
ror in the coherence length also depends on the observing frequency. We use
the structure function given by (3.41) and (3.35) to find the coherence length
predicted by the GSF. Similarly, we use (3.42), (3.43) and (3.35) to find the
coherence lengths corresponding to the s

e�

π l

i

and s

e�

∫ l

i

branches re-
spectively.

Figure 3.11 and 3.12 shows the relative error in the coherence length s

0

corresponding to the asymptotic branch s

e�

π l

i

for three di�erent frequen-
cies. Figure 3.11 shows that for 150MHz (dashed line), the s

e�

π l

i

branch
is inadequate for l

i

Æ 10 km, whereas for 327MHz (dotted line) and 600MHz
(solid line) the s

e�

π l

i

branch is inadequate for l

i

Æ 20 km and for l

i

Æ 60
km respectively.

Figure 3.12 shows that, for an observing frequency of 150MHz (dashed
line), the GSF predictions disagree with those of the s

e�

∫ l

i

branch for
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Figure 3.11: Relative error in the coherence length s

0

as a function of l

i

when the asymptotic branch s

e�

π l

i

, (3.33) is used. The calculations are for
spherical wave propagation appropriate for sources embedded in the corona.
The solid line uses an observing frequency, f = 600MHz, the dotted line uses
f = 327MHz and the dashed line uses f = 150MHz.

l

i

Ø 0.1 km. On the other hand, for 327MHz (dotted line) and 600MHz
(solid line) the GSF predictions disagree with those of the s

e�

∫ l

i

branch
for l

i

Ø 0.4 km and for l

i

Ø 1km respectively.

To summarize, we find that the range of the inner scales for which the
relative error is significant (i.e., the predictions of the GSF disagree with those
of the asymptotic branches) is a weak function of the observing frequency. For
observing frequencies ranging from 150 MHz to 600 MHz the GSF predictions
disagree with (and are more accurate than) those of the asymptotic branches
for 0.1 km Æ l

i

Æ 60 km.



60 3.3. The relevance of the GSF

0.01 0.10 1.00 10.00 100.00
Inner scale li (km)

0

20

40

60

80

100

re
la

tiv
e
 e

rr
o
r 

(%
)

Figure 3.12: Relative error in the coherence length s

0

as a function of l

i

when the asymptotic branch s

e�

∫ l

i

, (3.34) is used. The calculations are
for spherical wave propagation, appropriate for sources embedded in the the
corona. The solid line uses an observing frequency, f = 600MHz, the dotted
line uses f = 327MHz and the dashed line uses f = 150MHz.

3.3.3 E�ect of local flattening of the turbulent spec-
trum

As mentioned earlier, there is some evidence for the flattening of the power
spectrum of density turbulence between scales ¥ 100 km and the inner scale
(Coles & Harmon, 1989). This may be a manifestation of the so called
“dispersion range” (Bruno & Carbone, 2013). It is not clear how this feature
evolves with heliocentric distance. Although our current formalism cannot
accommodate two power laws and an exponential turnover, we follow Bastian
(1994) in using – = 3 (instead of the Kolmogorov – = 11/3) for the entire
spectrum. As discussed in § 2.2, the appropriate expression to use for C

2

N

is
then (3.39).
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Figure 3.13: Relative error in the coherence length s

0y

(s
0x

) as a function of
l

iy

(l
ix

) when the asymptotic branch s

y

π l

iy

(s
x

π l

ix

), (3.24) is used with
the power law index (– = 3). The calculations are for plane wave propagation
through the corona and solar wind and for a representative solar elongation
of 10R§. The dotted line uses the degree of anisotropy, fl = 1, the solid line
is for fl = 5 and the dashed line uses, fl = 10.

With these modifications, Figures 3.13 and 3.14 show that for plane wave
propagation (at an elongation of 10 R§ and for 1 < fl < 10) the relative
error in the coherence length s

0

is significant for 1 km Æ l

i

Æ 1000km.
Furthermore, the region of disagreement is insensitive to the value of fl when
fl Ø 5.

For spherical wave propagation, Figures 3.15 and 3.16 show that, the
range of l

i

for which the disagreement is significant depends on the observing
frequency. For 327 MHz we find that the GSF predictions for angular broad-
ening observed at the Earth disagree with those of the asymptotic branches
for 0.1 km Æ l

i

Æ 100 km. Thus, the range of l

i

over which the GSF and the
asymptotic branch predictions disagree is larger for – = 3 as compared to
– = 11/3.
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Figure 3.14: Relative error in the coherence length s

0y

(s
0x

) as a function of
l

iy

(l
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) when the asymptotic branch s

y

∫ l

iy

(s
x

∫ l

ix

), (3.25) is used with
the power law index (– = 3). The calculations are for plane wave propagation
through the corona and solar wind and for a representative solar elongation
of 10R§. The dotted line uses the degree of anisotropy, fl = 1, the solid line
is for fl = 5 and the dashed line uses, fl = 10.

3.3.4 When are inner scale e�ects important?

We have established in Figures 3.9 ≠ 3.12 that it is essential to use the GSF
for 4km Æ l

i

Æ 200km for plane wave propagation and for 0.1km Æ l

i

Æ 60km
for spherical wave propagation. We next investigate the sensitivity of the
predicted source size to l

i

. For spherical wave propagation we calculate the
scattering angle ◊

c

using (3.36) with the GSF (3.41) and for plane wave
propagation the scattering angle ◊

cy

is calculated using the GSF (3.22) and
(3.29). We take the inner scale l

i

(for spherical wave propagation) and l

iy

(for plane wave propagation) to be a free parameter.

Figure 3.17 shows the extent of angular broadening for an ideal point
source as a function of l

i

, for plane wave and spherical wave propagation
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Figure 3.15: Relative error in the coherence length s

0

as a function of l

i

when
the asymptotic branch s

e�

π l

i

, (3.33) is used with the power law index
(– = 3). The calculations are for spherical wave propagation, appropriate
for sources embedded in the the corona. The solid line uses an observing
frequency, f = 150MHz, the dashed line uses f = 327MHz and the dot-
dashed line uses f = 600MHz.

at an observing frequency of 327 MHz. For plane wave propagation, these
calculations are carried out at an elongation of 10 R§ with a screen thickness
�L = 0.5R§ and fl = 1, 5 and 10. It is clear from Figure 3.17 that for plane
wave propagation, the extent of scatter broadening depends upon the value of
the inner scale only for l

iy

Ø 10 km. This gives the upper limit on the values
of l

i

below which the results are independent of the inner scale. We find
that this upper limit is a function of the degree of anisotropy, and it declines
for larger values of fl. For plane wave propagation, we find that inner scale
e�ects are important only for heliocentric distances Æ 20R§. This result is
consistent with our finding that the GSF can be approximated by the s

y

∫ l

iy

and s

x

∫ l

ix

asymptotic branch for solar elongations > 20R§; this branch
(3.25) does not involve the inner scale. On the other hand, for spherical wave
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Figure 3.16: Relative error in the coherence length s

0

as a function of l

i

when
the asymptotic branch s

e�

∫ l

i

, (3.34) is used with the power law index
(– = 3). The calculations are for spherical wave propagation, appropriate
for sources embedded in the the corona. The solid line uses an observing
frequency, f = 150MHz, the dashed line uses f = 327MHz and the dot-
dashed line uses f = 600MHz.

propagation Figure 3.17 shows that the scatter broadening angle is sensitive
to the inner scale for l

i

Ø 1 km.

To summarize, for f = 327 MHz, inner scale e�ects can generally be
considered to be important (in the sense that the source size using the GSF
is sensitive to the actual value of the inner scale) if l

i

Ø few hundred meters
to a few km. We have carried out similar calculations for f = 1500MHz; for
this frequency, we find that the source size is sensitive to the inner scale if
l

i

Ø a few km to 100 km.
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Figure 3.17: The predicted broadening ◊

c

as a function of the inner scale
l

i

at an observing frequency of 327 MHz and Kolmogorov power law index
– = 11/3. The dashed, solid and dot-dashed lines are for ◊

cy

computed
using GSF with plane wave propagation at a solar elongation of 10 R§ and
the degree of anisotropy fl = 1, 5 and 10, respectively, and screen thickness
�L = 0.5R§, given by (3.22) while the dotted line is for ◊

c

computed using
GSF with spherical wave propagation using (3.41).

3.3.5 Inner scale models

We have thus established the range of inner scale values for which the GSF
needs to be used (§ 3.1.1 and § 3.1.2), using the inner scale as a free param-
eter. We now evaluate the inner scale in the corona and the solar wind using
three di�erent physical prescriptions. The first prescription is one where the
inner scale arises from proton cyclotron damping by MHD waves (Coles &
Harmon, 1989; Harmon, 1989; Verma, 1996; Yamauchi et al., 1998; Leamon
et al., 1999, 2000; Smith et al., 2001; Bruno & Trenchi, 2014) :

l

i

(R) = 684 ◊ n

e

(R)≠1/2 km , (3.44)
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where n

e

is the electron number density in cm≠3. For the second prescription,
we identify the inner scale with the proton gyroradius (Bale et al., 2005;
Alexandrova et al., 2012):

l

i

(R) = 1.02 ◊ 102

µ

1/2

T

1/2

i

B(R)≠1 cm , (3.45)

where µ (© m

i

/m

p

) is the ion mass in terms of the proton mass, T

i

is the pro-
ton temperature in eV and B is the Parker spiral magnetic field in the ecliptic
plane (Williams, 1995). However, recent work seems to suggest that the dissi-
pation could occur at scales as small as the electron gyroradius (Alexandrova
et al., 2012; Sahraoui et al., 2013). The third prescription we consider as-
sumes that the inner scale is the electron gyroradius fl

e

, given by:

l

i

(R) = 2.38 ◊ T

1/2

e

B(R)≠1 cm , (3.46)

where T

e

is the electron temperature in eV.

Figure 3.18 shows the inner scale obtained using these three prescriptions
as a function of heliocentric distance. It is useful to compare the predictions
of the inner scale models with the range of inner scales for which we claim
that the GSF needs to be used. For plane wave propagation, a distant cosmic
source is located at a given solar elongation (which we take to be the same
as the heliocentric distance for the purposes of this discussion) behind the
solar wind scattering screen. At this heliocentric distance, the angular broad-
ening prediction using the GSF is more accurate than that of either of the
asymptotic branches if 0.3km Æ l

i

Æ 300 km (§ 3.1.1). The light grey region
in Figure 3.18 denotes this region; it indicates the range of inner scales for
which the GSF predictions are more accurate than those of the asymptotic
branches for plane wave propagation for distant cosmic sources located at
solar elongations between 5R§ and 20R§ and having axial ratios 1 < fl < 10.
The s π l

i

asymptotic branch is adequate for elongations < 5R§ (dark grey
region in Figure 3.18) , while the s ∫ l

i

asymptotic branch is adequate for
elongations > 20R§. To summarize, Figure 3.18 reveals that, for distant
cosmic sources (for which plane wave propagation is appropriate) located
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Figure 3.18: The inner scale l

iy

(l
ix

) in km as a function of heliocentric dis-
tance in radius of Sun (R

s

), for plane wave propagation. The dashed and
dot-dashed lines show the proton gyroradius (3.45) using proton tempera-
tures of 105 and 106 K respectively. The solid and dotted lines show the
inner scale governed by proton cyclotron damping (3.44) using the wind-like
density model (3.37) and the fourfold Newkirk density model respectively.
The thick dashed line shows the electron gyroradius (3.46) using an electron
temperature of 105K. The light grey region denotes the range of (distant)
source elongations and inner scale values for which the GSF yields predictions
that are substantially more accurate than those of the asymptotic branches.

at solar elongations between 5R§ and 20R§ and axial ratios 1 Æ fl Æ 10,
the GSF would need to be used if the inner scale is the proton gyroradius
or is due to proton cyclotron resonance. These results are summarized in
Table 3.1
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Figure 3.19: The inner scale l

i

in km as a function of heliocentric distance
in radius of Sun (R

s

), for spherical wave propagation. The dashed and dot-
dashed lines show the proton gyroradius (3.45) using proton temperatures
of 105 and 106 K respectively. The solid and dotted lines show the inner
scale governed by proton cyclotron damping (3.44) using the wind-like den-
sity model (3.37) and the fourfold Newkirk density model respectively. The
thick dashed line shows the electron gyroradius (3.46) using an electron tem-
perature of 105K. The light grey region denotes the range of (distant) source
elongations and inner scale values for which the GSF yields predictions that
are substantially more accurate than those of the asymptotic branches.
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We carry out a similar exercise for spherical wave propagation. In this
situation, the source is embedded in the solar corona and the observer is at
the Earth, looking at the source through the turbulent medium (figure 3.4).
Figure 3.19 shows the inner scale obtained using the three prescriptions (Eqs.
3.44-3.46) as a function of heliocentric distance. The linestyles are the same
as those used in Figure 3.18. As explained in § 3.1.2, for spherical wave
propagation at observing frequencies ranging from 150 MHz to 600 MHz,
the predictions of the GSF are more accurate than those of the asymptotic
branches for 0.1km Æ l

i

Æ 60km. This region is represented by a grey band
in Figure 3.19. It is well known that most of the scattering takes place well
within 30R§ (Subramanian & Cairns, 2011). We can claim that the angular
broadening estimates using the GSF will be more accurate than those of the
asymptotic branches if the grey band in Figure 3.19 encloses the inner scale
predicted by a specific model for heliocentric distances Æ 30 R§. Figure 3.19
show that this is the case (i.e., the GSF needs to be used for accurate broad-
ening estimates) if the inner scale is governed by proton-cyclotron damping
or is given by proton gyroradius. If, on the other hand, the inner scale is the
electron gyroradius with T

e

= 105K, the inner scale values predicted by this
model overlap the grey band in Figure 3.19 only for heliocentric distances Ø
30 R§. For T

e

= 106K, this is true for heliocentric distances Ø 50 R§. Thus,
if the inner scale is given by the electron gyroradius, we cannot claim that
the GSF predictions will be substantially more accurate than the predictions
of the asymptotic branches. These results are summarized in Table 3.2.

3.4 Summary and conclusions

The amplitude of MHD turbulence in the extended solar corona and solar
wind, especially near the inner (dissipation) scale, is a subject that is of
considerable interest in a variety of applications. We investigate it using
predictions for the angular broadening of radio sources. Typical estimates
of angular broadening due to refraction and scattering by density turbulence
use approximations to the structure function that are valid for situations
where the interferometer spacing is ∫ or π than the inner scale l

i

. We
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use a general structure function (GSF) that does not use these approxima-
tions. We consider both plane wave propagation, which is appropriate for
distant cosmic sources observed against the background of the solar wind,
and spherical wave propagation, which is appropriate for sources embedded
in the solar corona. For plane wave propagation we consider an anisotropic
density turbulence spectrum comprising a Kolmogorov power law (– = 11/3)
spectrum multiplied by an exponential turnover at the inner scale. For spher-
ical wave propagation, isotropic scattering is a well justified assumption. We
demonstrate that angular broadening predictions using the general structure
function agree with those obtained using the appropriate asymptotic expres-
sions in the limits s π l

i

and s ∫ l

i

. For plane wave propagation, for
sources observed at elongations between 5 and 20 R§ and with the degree
of anisotropy 1 Æ fl Æ 10, we find that the GSF is substantially more ac-
curate than the asymptotic branches for 4 km Æ l

ix

, l

iy

Æ 200 km. These
results are independent of observing frequency as well as the amplitude of
the density turbulence (C2

N

), and only weakly dependent on the degree of
anisotropy (fl). For spherical wave propagation, however, the results are
found to be weakly dependent on the observing frequency. For observing
frequencies ranging from 150 MHz to 600 MHz, the predictions of the GSF
are more accurate than those of the asymptotic branches if 0.1km Æ l

i

Æ
60 km. If the spectrum is taken to be flatter (– = 3), the range of l

i

for
which the GSF predictions disagree with those of the asymptotic branches is
larger. Importantly, the range over which the GSF predictions are substan-
tially more accurate than those of the asymptotic approximations for plane
wave propagation (light grey band in figure 3.18) is well within the expected
values of the inner scale for the proton cyclotron damping and the proton
gyroradius models for the inner scale. For plane wave propagation, we find
that angular broadening predictions using the GSF are sensitive to the value
of the inner scale for distant cosmic source located at elongations Æ 20R§.
For spherical wave propagation, which is applicable when a source embed-
ded in the solar corona is viewed at the Earth, the GSF is more accurate if
the inner scale is due to proton cyclotron damping or is given by the proton
gyroradius.

Using the GSF with spherical wave propagation to calculate the predicted
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extent of broadening of an ideal point source, we find that angular broadening
is sensitive to the value of l

i

(in other words, inner scale e�ects are significant)
if l

i

Ø a few to a few tens of km for f = 327 MHz. For an observing frequency
of 1500 MHz, inner scale e�ects are important if l

i

Ø a few to 100 km.

The rate at which energy in solar wind turbulence damps on ions is an
important question cutting across sub-disciplines. While some progress has
been made in this regard, its still not clear if there is enough energy in the
cascade near the dissipation scale for direct perpendicular heating (Cranmer
& Van Ballegooijen, 2003). This question can be addressed via accurate esti-
mates of the amplitude of density turbulence (C2

N

). Observations of angular
broadening of radio sources are typically reliable means of constraining C

2

N

.
Recent conclusions regarding the magnitude of density fluctuations (relative
to the background density) in the heliosphere (Bisoi et al., 2014) are also
expected to help in constraining C

2

N

. However, such estimates have tradi-
tionally been made using expressions for the structure function that are only
valid in limits where the interferometric baseline used for observing are either
∫ or π the dissipation scale. We have used the general structure function
and quantified the errors arising from the use of these approximations. Our
results underline the necessity of using the GSF for quantitative estimates of
angular broadening.
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Chapter 4

Density fluctuations and
heating of the solar wind

We consider previously published radio wave scattering and IPS data of mea-
surements of density turbulence in the solar wind. Taken together, these
measurements yield density turbulence spectra spanning a wide range of spa-
tial scales, including the important high frequency region where dissipation is
expected to take place. The density fluctuations are inferred using a combi-
nation of recently developed theoretical tools (Chapter III) to analyze radio
wave scattering data and existing analysis methods to treat interplanetary
scintillation data. Hypothesizing that the density fluctuations are due to ki-
netic Alfvén waves, we constrain the rate at which the extended solar wind is
heated due to turbulent dissipation. Our results provide the first estimates of
the turbulent heating rate all the way from the Sun to the Earth.

4.1 Introduction

The problem of how a corona is heated to ≥ a million degrees has been a
subject of intense investigation for a few decades. A related, somewhat lesser

75



76 4.1. Introduction

known, and equally important problem is that of heating / energy deposition
in the extended solar wind. Parker’s theory of the solar wind predicts an adia-
batic temperature profile, which requires a radial dependence of temperature
as T (r) Ã r

≠4/3. However the temperature profile deduced from the in-situ
measurements (Helios, Pioneer and Voyager) over heliocentric distances from
0.3 ≠ 100 AU does not agree with the adiabatic temperature profile. Fits to
measurements of the radial temperature profile in the ecliptic plane shows
that the temperature follows a radial profile given by e.g., (Bruno & Carbone,
2013) :

T (r) ≥ T

0

(r
0

/r)›

where the exponent › æ [0.7, 1], with › Æ 1 for r < 1AU and flattens to
≥ 0.7 for r Ø 30AU.

Figure 4.1: Observed vs predicted temperature profile : Radial temperature
profile as a function of heliocentric distance (in AU). The dotted line shows
the expected temperature profile due to Parker theory of adiabatic expansion.
The dashed line shows the average trend in the actual temperature profile
indicating slow down for r > 1 AU. (Adapted from Matthaeus et al. (1999b))
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This clearly indicates that the temperature decays more slowly than that
predicted by adiabatic expansion (Figure 4.1). A number of such observations
in the inner heliosphere indicate that the solar wind undergoes distributed
heating. This suggests that there must be some mechanism at work within
the solar wind plasma responsible for supplying the energy required to ac-
count for the observed heating.

Several heating mechanisms have been proposed, which can be broadly cat-
egorized as follows :

• Sweeping model of cyclotron heating (non-turbulent model) :
In this model non-turbulent high frequency waves (KHz range) are
invoked for the ion cyclotron heating. Waves with frequency Ê < Ê

c

,
(Ê

c

is the proton cyclotron frequency) ‘rise up’ in the solar corona
and reach a height where Ê ≥ Ê

c

. At this point the wave experiences
cyclotron damping and leads to direct ion heating.

• Turbulent heating :
In this model low frequency waves undergo a turbulent cascade due to
non linear interactions and transfer energy from large scales to smaller
scales. At smaller scales viscous e�ects become dominant due to ‘e�ec-
tive collisions’ (e.g. proton cyclotron damping) and this leads to the
dissipation of energy - which heats up the ions.

In this work we consider the later class of models, to explain the observed
solar wind heating. Since the solar wind is a collisionless plasma (with mean
free paths as large as 1 AU) the viscous coe�cients that drive the dissipation
are weak. This requires an e�cient mechanism to transfer energy in the
solar wind fluctuations to smaller scales. Solar wind turbulence, with energy
cascading from large to small scales before ultimately dissipating at small
scales, might provide an answer e.g. (Verma, 1996).

As discussed earlier, radio waves propagating through the solar wind are
scattered due to density fluctuations (Chapter 2). Therefore the properties
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and evolution of density fluctuations are of considerable interest in both the
inner and outer heliosphere (Cairns et al., 2000)

There is considerable evidence pointing to the fact that the solar wind be-
haves as a weakly compressible turbulent medium (e.g., (Zank & Matthaeus,
1992; Dastgeer & Zank, 2009, 2010; Zank et al., 2012), with a Kolmogorov-like
(Ÿ≠11/3) turbulent spectrum for density, magnetic field and velocity fluctua-
tions in the inertial range. Dastgeer & Zank (2010) suggest a physical picture
where the background pressure imbalance gives rise to density fluctuations,
which are passively convected in a field of weakly compressible velocity fluc-
tuations. Consequently it is di�cult to compute the direct contribution of
density fluctuations in the energy budget of the solar wind.

The density modulation index ‘

N

(© ”N/N) is crucial in understand-
ing the transport properties of the solar wind. It is therefore important to
evaluate the radial profile of ‘

N

, especially in the near-Sun region.

Another important point regarding solar wind properties is to explore
the relation between the density modulation index and the magnetic field
modulation index (‘

N

e

≠‘

B

), where ‘

B

© ”B/B. It is generally accepted that
the slow solar wind exhibits fully developed turbulence; it therefore provides
an ideal platform to study this relation. In-situ measurements provide good
estimates of the mean magnetic field B

0

for the slow solar wind and extensive
radio observations can be used to deduce density fluctuations in near Sun
solar wind. In combination they can provide reliable estimates of the rms
fluctuations of the magnetic field.

The goals of this work are 1) to undertake a brief survey of interplanetary
scintillation (IPS) and angular broadening observations in order to estimate
the density modulation index as a function of heliocentric distance, and 2)
to obtain an estimate of the extended heating rate in the solar wind using
these observations.

In the next section we briefly discuss observations of IPS and the angular
broadening of distant celestial sources viewed against the background of the
turbulent solar wind. We make use of previously published data of radio
scintillation observations and derive density fluctuations at the inner scale
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of the solar wind turbulence (Armstrong et al., 1990; Anantharamaiah et
al., 1994; Spangler & Sakurai, 1995; Bisoi et al., 2014). We then present
results for the density modulation index and the turbulent energy cascade
rate calculated at dissipation scale and finally conclude with summary and
interpretation of the results.

4.2 Radio Scintillations : brief background

Radio scintillation techniques are useful for studying the properties of the
solar wind. These techniques include

• Angular broadening,

• Phase scintillations and

• Single- and multi-station interplanetary scintillations (IPS) of the radio
sources.

4.2.1 Angular broadening

Scattering of electro-magnetic waves due to density turbulence in plasma
leads to a wide variety of observed phenomena such as intensity scintillations,
angular broadening, spectral broadening, pulse smearing, etc. The change in
angular size of the source due to the scattering of electromagnetic waves in the
solar wind is known as angular broadening. The scattering of electromagnetic
waves is a consequence of a density turbulence in the solar wind. We have
discussed how solar wind density turbulence can be characterized in terms
of the structure function in chapter 3.

Using measurements of the structure function we can deduce various pa-
rameters that characterize spatial power spectrum. For instance, from the
measured dependence of the structure function on the baseline s we can get
power law index – for the spatial power spectrum of the density fluctuations.
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Using the magnitude of the structure function we get the path integrated
value of the amplitude of the turbulence C

2

N

.

When the interferometric baseline (s) is comparable to the inner/dissipation
scale of the solar wind density turbulence, (i.e., s ≥ l

i

) the GSF should be
used for accurate estimates of the angular broadening (Ingale et al., 2015).
Consider a plane wave propagating from a distant radio source incident on a
thin screen of density irregularities in the solar wind. Let �L be the thick-
ness of the scattering screen. The scattering screen lies in the x ≠ y plane
and the propagation direction is along z. The scattering medium can be
characterized by the anisotropic power law spectrum (Ingale et al., 2015) :
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This enables us to compute amplitude of density turbulence C

2

N

as a func-
tion of heliocentric distance, which when used with (4.1) yields information
on the variance of the density fluctuations.

4.2.2 Interplanetary scintillations (IPS)

Interplanetary scintillations (IPS) have played an instrumental role in de-
ducing the properties of the solar wind over the wide rage of the heliocentric
distances e.g., (Manoharan et al., 1994; Janardhan et al., 1996). We present
here a brief introduction to the IPS and its properties. Variations in the in-
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tensity of an astronomical source over time scales of 0.1 second ≠ 10 seconds
are referred to as IPS. IPS observations therefore provide useful information
about properties of the solar wind, such as density fluctuations and wind
velocity.

Consider radiation of frequency f coming from a distant “point” source
incident as a plane wavefront on the thin screen of of solar wind having den-
sity irregularities. The role of the thin screen is to introduce phase variations
between the emergent wavefronts.

Figure 4.2: Adapted from Bisoi et al. (2014), figure illustrates the geometry
of IPS observations.

The phase di�erence between scattered and unscattered waves varies with
distance from the screen. Phase changes are gradually converted to amplitude
variations by constructive and destructive interference. As the wavefront con-
tinues in the direction of propagation, interference leads to the formation of
a spatial intensity pattern. Beyond the first Fresnel zone the intensity mod-
ulations are fully developed and follow the spectrum of the refractive index
(equivalently, density) fluctuations. This allows us to express the amplitude
of intensity variations in terms of density fluctuations ”N

e

. It is useful to
note at this point that due to the action of the Fresnel filter, one can probe,
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using IPS observations, the density structure at the scales Æ 1000km (Rao et
al., 1974; Coles & Filice, 1985; Yamauchi et al., 1998; Fallows et al., 2008).
Large scale density fluctuations (like those of coronal mass ejections (CMEs))
are automatically excluded in IPS observations.

The measurable quantity in IPS is the scintillation index m, which quan-
tifies the degree to which a distant compact source experiences scintillations.
It can be expressed as :

m

2 = È(I(t) ≠ ÈIÍ)Í/ÈIÍ2 (4.3)

Where ÈIÍ is the mean intensity of the source. The value of m depends
principally upon

• Distance from the Sun

• Source structure

• Observing frequency and

• Solar wind density fluctuations.

IPS observations are particularly useful in the weak scattering regime, char-
acterized by ”„ π 1, where ”„ is the path integrated phase deviation along
the line of sight of the source. The condition for strong scattering ”„ ∫ 1
develops as the line of sight of the source approaches the Sun and the electron
density (N

e

) increases.

It is particularly simple in the weak scattering approximation to demonstrate
the relation between the scintillation index m and the density fluctuations
”N

e

. The four point correlation function of the electric field gives intensity
scintillations which defines the scintillation index (Lee & Jokipii, 1975III).
Starting from the parabolic wave equation for the statistical moments of the
medium (chapter 2) we can derive the expression for the fourth order moment
(�

2,2

). It is possible to write �
2,2

in terms of the linear combination of the
second order moments (�

1,1

) which are related to the phase structure function
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(2.21) and thus to the phase fluctuations ”„. Therefore the scintillation index
m can be written as (Lee & Jokipii, 1975III) :

m

2 = È(I(t) ≠ ÈIÍ)Í/ÈIÍ2 = 1 ≠ exp[≠2(”„)2] (4.4)

In the weak scattering approximation, (”„ π 1) we can neglect the second
and higher order terms and write (4.4) as :

m =
Ô

2”„ (4.5)

Phase fluctuations can be expressed in terms of density fluctuations by (Salpeter,
1967; Bisoi et al., 2014) :

”„ = (2fi) 1
4
⁄r

e

(a�L) 1
2 [È”N

2

e

Í] 1
2
, (4.6)

where ⁄ is the observing wavelength, r

e

is the classical electron radius and a

is the typical scale size in the thin scattering screen of thickness �L. Using
(4.6) with (4.5) we can write density fluctuations ”N

e

as :

”N

e

= m

(2) 1
2 (2fi) 1

4
⁄r

e

(a�L) 1
2

(4.7)

Eq. (4.7) enables one to calculate the density fluctuations from m, given the
parameter a. We use angular broadening observations and IPS observations
to probe density structures at di�erent solar elongations at di�erent observ-
ing frequencies. For the near-Sun region (which is in the strong scattering
regime characterized by rms phase fluctuations � ∫ 1) angular and spectral
broadening observations are useful. In the weak scattering regime (i.e. for
heliocentric distances Ø 40R§, where �� π 1 ) IPS observations provide an
excellent guide to density fluctuations (Yamauchi et al., 1998; Bisoi et al.,
2014). A knowledge of density fluctuations (”N

e

) is required in order to ob-
tain the velocity fluctuations which can then be used to derive the turbulent
cascade rate or equivalently heating rate. We infer ”N

e

using 1) the recently
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developed GSF (Ingale et al., 2015), chapter (3) to analyze radio wave scat-
tering and 2) existing analysis methods for interplanetary scintillation (IPS)
data.

4.3 Angular broadening and IPS observations
: details

In what follows, we briefly describe and reanalyze previously published data
regarding observations of angular broadening carried out by Armstrong et
al. (1990); Anantharamaiah et al. (1994) phase scintillation observations due
to Spangler & Sakurai (1995) and IPS observations from Bisoi et al. (2014).

4.3.1 Angular broadening observations

Armstrong et al. (1990) carried out their observations during solar occulta-
tion of 3C279 in October 1983 and 1985. which was during the solar minimum
of cycle 21. Anantharamaiah et al. (1994) observed standard VLA calibrators
during 2-6 November 1988, which was during the maximum of cycle 22.

The angular broadening observations can be directly interpreted as the
spatial correlations in the electric field, E, also known as visibilities (chapter
2). The spatial scale of the electric field correlations depends upon the radio
frequency f and the distance of closest approach of the line of sight to the
source (impact parameter R

0

). To obtain useful measurements these scales
must be comparable with the interferometric baselines available. In order to
allow for the spatial scales of scattering field to be comparable to the avail-
able baseline lengths it is useful to employ di�erent observing frequencies for
di�erent solar elongations. Armstrong et al. (1990) and Anantharamaiah et
al. (1994) carry out multi-frequency observations between the solar elonga-
tions of 2 to 10 R§ and 2 to 16 R§ respectively.

The very large array (VLA) has baselines ranging from 7-35 km with
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(a) (b)

Figure 4.3: (Adapted from (Armstrong et al., 1990)). Figure (a) shows elec-
tric field correlation as a function of projected baseline. Figure (b) shows the
scatter broadened image of a radio source showing anisotropy. The image is
elongated in a direction perpendicular to the mean magnetic field.

observing frequencies between 327MHz and 24GHz. The advantage of using
interferometric imaging is that they also provide a measure of the anisotropy
of the irregularities. Scatter- broadened images of distant celestial sources
viewed against the foreground of the solar wind at small solar elongations of-
ten exhibit strong anisotropy e.g., (Armstrong et al., 1990; Anantharamaiah
et al., 1994). Furthermore, the observed correlations are found to be higher
for baselines oriented in a direction close to the radial (defined as the source
direction) and the correlations are lower for the baselines oriented perpen-
dicular to the radial (Armstrong et al., 1990), indicating anisotropy, figure
(4.3).

We know that the medium can be characterized by the phase structure
function D

„

(s), where s is the vector along an interferometric baseline. The
relation between D

„

(s) and the spatial power spectrum S

n

(R, s) is given by
(2.27). Therefore if the power spectrum is anisotropic, it will be reflected in
the phase structure function, as is evident in the measurements of Armstrong
et al. (1990) and Anantharamaiah et al. (1994).
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Measurements of D

„

(s)

The observed visibilities V (s) can be directly interpreted in terms of the
scattering parameters. The normalized visibilities give the mutual coherence
function �(s) which is related to the structure function by (Anantharamaiah
et al., 1994) :

D

„

(s) = ≠2ln�(s) where, �(s) = V (s)
V (0) (4.8)

The estimation of the D

„

(s) using observations of V(s) requires no as-
sumptions about the strength of the scattering (Lee & Jokipii, 1975I; Arm-
strong et al., 1990).

The geometry considered is similar to that outlined in chapter 3. z is the
direction of the propagation, and scattering screen is in the x≠y plane, such
that x-axis is along the direction perpendicular to the mean magnetic field
(figure 3.6). The scattered broadened images are elongated along the x-axis.
The structure function in this direction is denoted by the D

major

and that in
perpendicular direction (y-axis) is denoted as the D

minor

. The anisotropy is
parametrized by the axial ratio fl © x/y. Armstrong et al. (1990) presented
estimates of the anisotropic structure function and axial ratio (fl) in their
figures 4a and 4b which are reproduced here (figure (4.4), (4.5)).

Observations of angular broadening with various baselines shows that the
anisotropy is scale dependent i.e. smaller scales are closer to being isotropic
than larger scales (Armstrong et al., 1990).

It is also found that the anisotropy is larger for the smaller solar elonga-
tions and decreases significantly beyond 6R§ (Armstrong et al., 1990; Anan-
tharamaiah et al., 1994). Figure 5 of Armstrong et al. (1990) reproduced
here (figure 4.6), shows the axial ratio as function of solar elongation. It is
evident from figure (4.6) that for solar elongations > 15R§, the axial ratio
fl ƒ 1. For the data in Anantharamaiah et al. (1994) the values for D

major

and D

minor

can are obtained directly from their table (2). In both these cases
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Figure 4.4: Adapted from Armstrong et al. (1990). The figure shows the
anisotropic structure function scaled to the baseline of 10 km and wavelength
of 20cm as a function of solar elongation. D(10km, 0) corresponds to D

major

and D(0, 10km) corresponds to D

minor

all the measurements are scaled to the wavelength of ⁄ = 20cm and a baseline
of s = 10km.

Using observations of D

„

(s) along the major and the minor axes of the density
structures we calculate resultant structure function in the x ≠ y plane, which
is the vector sum of the D

major

and the D

minor

. The amplitude of the resultant
structure function is given by :

D

resultant

(s) =
Ò

D

2

major

+ D

2

minor

(4.9)

The corresponding error bars are listed in all cases except for the mea-
surements of D

„

(s) by Armstrong et al. (1990), figure 4.4. Since the errors
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Figure 4.5: Adapted from Armstrong et al. (1990). The figure shows axial
ratio as a function of heliocentric distance

are not depicted in their paper, following Spangler & Sakurai (1995) we set
the errors to be one-third of the values of D

„

(s). The derived values for the
measurements of the Armstrong et al. (1990) are given in table (4.1)

Measurements of D

„

from Spangler & Sakurai (1995)

Spangler & Sakurai (1995) use phase scintillation observations to probe the
density turbulence in the solar wind at heliocentric distances between 10 to
49.8 R§. The observations were carried out with the VLBA during July and
August of 1991, which corresponds to the maximum of solar cycle 22. These
are also multi-frequency observations. Observations of phase scintillations
give measurements of the phase variance from which the phase structure
function can be derived using D

„

(s) = È[”„(r) ≠ ”„(r + s)]2Í, (Coles & Har-
mon, 1989). Here ”„(r) is the phase deviation along the line of sight. This
gives information about the phase structure function as a function of the
baseline s for di�erent impact parameters R

0

. Figure 4 of Spangler & Saku-
rai (1995) showing their results for the measurements of the D

„

is reproduced
here (Figure 4.7).

Figure (4.7) shows the measurements of D

„

at four di�erent impact pa-
rameters (R

0

) : 10, 26.7, 42.7 and 49.8 R§ as a function of the baseline
s. All the observations are scaled to a wavelength of 12.6 cm. This gives
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Figure 4.6: Adapted from Armstrong et al. (1990). The figure shows axial
ratio fl as a function of solar elongation. Open boxes represents results of
Blessing & Dennison (1981), during 1969-1971 (solar maximum), open circles
represents data from Ward (1975), during 1972-1974 (solar minimum) and
filled boxes represents data from Armstrong et al. (1990) during October
1983 and 1985 (Solar minimum)

the distribution of D

„

(s) with s for di�erent solar elongations. Spangler &
Sakurai (1995) scales their structure function to a fiducial baseline of 2000
km assuming a single power law index – = 11/3 that is consistent with the
Kolmogorov spectrum. For our purpose we want to scale these obseravtions
to the baseline of 10 km. It is evident from the inner scale values obtained
using ion-inertial length over the heliocentric distance range of 10-50R§, that
the baseline of 10km lies near the dissipation range. We therefore can not
apply single power law index while scaling the measurements of the Spangler
& Sakurai (1995) to the baseline of 10km. It is necessary to examine the
break in the power law index of the spatial power spectrum with the helio-
centric distance for an appropriate scaling.
Coles & Harmon (1989) derived the spatial power power spectrum for elec-
tron density fluctuations. In general this power spectrum consists of three
parts (Bastian, 1994) -
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Table 4.1: Resultant D

„

(s) derived using data points from Armstrong et al.
(1990)

distance D

resaultant

fl error in D

reaultant

error in fl

2.08 177.15 14 19.15 3
2.21 138.33 12.5 15.13 1
2.45 78.43 12 8.83 2
5.17 4.88 5.5 0.63 2
5.4 3.99 6 0.52 1
5.66 3.7 8 0.48 2
5.88 2.62 9 0.34 1
6.07 2.33 10 0.31 2
6.22 2.17 12 0.3 2.2
8.86 1.00 4 0.14 1
9.13 1.09 6 0.15 0
9.34 0.93 4 0.13 1
9.54 1.27 4 0.17 0.6
9.74 0.87 4 0.12 0
9.88 0.92 4.5 0.13 1

• With scales > few hundreds of km the spectrum displays Kolmogorov
power law index (– = 11/3).

• For scales between few tens of km to few hundreds of km the spectrum
displays local flattening with – = 3.

• At smaller scales (< few kms) the spectrum exhibits abrupt steepening
indicative of the existance of the inner scale.

Figure (4) of Coles & Harmon (1989) indicates the evolution of the
“break” wavenumber i.e., the wavenumber at which power spectrum breaks
from steeper Kolmogorov like index to more flatter index, with as heliocen-
tric distance. At 5 R§ this break occures at ≥ 80 km, at 10R§ the break
occures at ≥ 250km and at 20 R§ power spectrum breaks at sim 1000km.
This hints to the scaling we are implimenting with respect to the baseline.
For 10R§ we need to use – = 11/3 with the Spangler & Sakurai observations
while – = 3 is appropriate for the baseline of 10km. After 20 R§ the power
law index – = 3 seems more appropriate to use with the Spangler & Sakurai
(1995) observations. Therefore for R> 20R§ we are justified to treat the
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Figure 4.7: D

„

(s) as a function of baseline s deduced from VLBI observations
at di�erent solar elongations and scaled to the wavelength of 12.6 cm. The
filled circles represent observations at impact parameter R

0

= 10R§ while
the open circles are for R

0

= 26.7R§, the dotted circles are for R

0

= 42.7R§
and the diamonds are for R

0

= 49.8R§. The solid lines are due the model
of Coles & Harmon (1989) at R

0

= 10, 20, 50R§. Adapted from (Spangler &
Sakurai, 1995))

observations of Spangler & Sakurai (1995) with the single power law index
and scale it to the 10 km baseline.

Using these values for D

„

(s) which are functions of solar elongation alone
we carry out the following exercise :

• Step 1 : Baseline scaling - We scale all the observations of Spangler
& Sakurai (1995) for each solar elongation to a baseline of 2000km
assuming a single power law, – = 11/3. : This is carried out by using
the GSF which includes the exponential cut-o� (Ingale et al., 2015),
instead of a phase structure function that is valid only for the inertial
range and was used by (Spangler & Sakurai, 1995) in their calculations.

• Step 2 : Averaging over the baseline - From step one we obtained four
sets of baselines corresponding to four di�erent solar elongations. We
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consider the average of each set of baselines as a representative baseline
at that perticular solar elongation.

• Step 3 : For 10R§ we use power law index – = 11/3 with the derived
structure function of (Spangler & Sakurai, 1995), obtained in above
step and scale it to the structure function at baseline of 10 km with
power law index – = 3.

• Step 4 : For rest of the heliocentric distances we scale measurements
of (Spangler & Sakurai, 1995) to the structure function at baseline of
10 km with a single power law index, i.e., – = 3.

This procedure yields values for D

„

(s) as a function of solar elongation.
However there is no information about the errors associated with the mea-
surements of D

„

given in Spangler & Sakurai (1995). Following Spangler &
Sakurai (1995) we set the errors to be one third of the mean values of D

„

obtained while averaging over the baseline (step 2). These measurements
are scaled to a wavelength of ⁄ = 12.6cm whereas previous measurements
of D

„

(s) by Armstrong et al. (1990) and Anantharamaiah et al. (1994) have
been scaled to ⁄ = 20cm. To maintain consistency between the datasets
we need to scale D

„

deduced from Spangler & Sakurai (1995) to the same
wavelength i.e. to ⁄ = 20cm. The wavelength dependence of the structure
function is given by :

D

„

(s) Ã ⁄

2

Using this dependence we scale the D

„

(s) values at ⁄ = 12.6cm to D

„

(s) at
⁄ = 20cm.

As discussed earlier we can use fl = 1 for all the observations of Spangler
& Sakurai (1995) except the one at 10R§. We use a least square fit to the
datapoints of figure (4.6) to obtain the value for fl at 10R§. The derived
values are given in Table (4.2).

In all cases discussed above, the measurements of D

„

(s) are scaled to a
baseline of s = 10km which is well within the regime where GSF should be
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Table 4.2: Resultant D

„

(s) derived using data points from Spangler & Saku-
rai (1995)

distance D

resaultant

fl error in D

reaultant

error in fl

10 0.96 4.44 0.13 1.37
26.7 0.09 1 0.01 0.3
42.7 0.01 1 0.002 0.3
49.8 0.003 1 0.0005 0.3

used (Ingale et al., 2015); also see figure 3.18).

IPS Observations

Observations of about 200 radio sources at 327MHz have been carried out
at the multi-station IPS observatory of STEL, Japan (Kojima & Kakinuma,
1990; Asai et al., 1998). Every source is observed each day as it moves over
the heliocentric distance of 0.2 AU (≥ 40R§) to 0.8 AU (≥ 174R§) over the
period of one year. Bisoi et al. (2014) shortlisted 27 radio sources from these
observations spanning the years 1998 to 2007 i.e., the entire solar cycle 23.

We use the data set for the scintillation index m for the 27 “shortlisted”
sources from Bisoi et al. (2014). This data set covers all of solar cycle 23 and
spans heliocentric distances between 0.26 to 0.8 AU (i.e., ≥ 40R§ ≠ 174R§).
In order to calculate the density fluctuations (and therefore the density mod-
ulation index) as a function of heliocentric distance at the dissipation scale
we processed the data as follows.

• Step 1 : Calculation of ”N

e

- Equation (4.7) gives relation between the
m and ”N . To compute ”N we need to specify a ≠ the spatial scale of
interest in the scattering screen and �L ≠ thickness of the scattering
screen.

Choice of a : To choose a, we note that, 327 MHz observations are
known to be sensitive only to a particular (or narrow range of) spatial
scales; between 10 km to 1000 km (Yamauchi et al., 1998; Bisoi et al.,
2014). An inner scale, governed by the ion-inertial length (Bruno &
Trenchi, 2014) lies in the range of few tens of km to few hundreds of
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km for the heliocentric distances between 50 ≠ 180R§. We therefore
choose a as an inner scale of the density turbulence.

Thickness of scattering screen : We assume that at a particular helio-
centric distance (z) the thickness �L is of the order of that distance
i.e., �L = z.

• Step 2 : We calculate density modulation index (‘
N

e

= ”N

e

N

e

) using ”N

e

from (step 1) and the background electron density (N
e

) due to Leblanc
et al. (1998). We adopt the procedure of Bisoi et al. (2014) who use
ACE data for N

e

and normalize the Leblanc et al. (1998) density model
with the value of N

e

at the Earth.

• Step 3 : Averaging ‘

N

e

- The Bisoi et al. (2014) data for m (and therefore
derived data of ‘

N

e

) contains spatial as well as temporal dependences.
To obtain ‘

N

e

as function of heliocentric distance alone we average ‘

N

e

over the entire time period of 1998≠2007 at each heliocentric distance.
This finally gives ‘

N

e

(z).

• Step 4 : Error calculation - Following Bisoi et al. (2014) we calculate
the standered deviation from the time averaged value of ‘

N

e

at each
heliocentric distance.

4.4 Data selection

We further divide the measurements according to the phase of the solar cycle;
i.e., we separate the measurements during solar minima from those during
solar maxima. The observations of Armstrong et al. (1990) were carried
out during solar minima. whereas those of Anantharamaiah et al. (1994)
and Spangler & Sakurai (1995) were carried out during solar maxima. The
IPS observations of Bisoi et al. (2014) spans an entire solar cycle; we have
therefore carefully separated observations corresponding to solar maximum
from those corresponding to the minimum period.

We select only ecliptic sources for the following reason : The slow solar
wind turbulence is usually thought to be fully developed, so that the radiation
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emitted from a distant ecliptic source is dominantly e�ected by the slow solar
wind It is well known that the properties of the solar wind depends on its
flow speed. Spangler & Sakurai (1995) shows that the bulk of radio wave
scattering occurs in the slow solar wind. Therefore we only consider ecliptic
sources so as to primarily study turbulence in the slow solar wind.

Figure 4.8: solar wind speed distribution adapted from Schwenn (2001),
(Courtesy J Woch, Max-Planck-Institute für Aeronomie). Slow solar wind
originates in the ecliptic region.

4.5 Results

In this section we present the calculations and our results obtained on the
basis of the formulation outlined in (§5.5.1) and (§5.5.2) using observational
inputs from (§3).
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4.5.1 Density modulation index

The GSF given by (4.2) includes the e�ect of anisotropy via the axial ratio
(fl) and the refractive index e�ect (1 ≠ f

p

(z)2

/f

2) as well. The symbols have
their usual meaning defined in chapter 3. Equation (4.2) is used to calculate
amplitude of density fluctuations C

2

N

as a function of heliocentric distance.

Defining f(z, –) as :

f(z, –) = l

–≠2

i

(z)
(1 ≠ f

2

p

(z)/f

2)

Y
]

[1

F

1

S

U≠– ≠ 2
2 , 1, ≠

A
s

l

i

(z)

B
2

T

V ≠ 1
Z
^

\ .

We can write C

2

N

(z) as :

C

2

N

(z) = D

„

(z, s)fl
C

8fi

2

r

2

e

⁄

2�L

2–≠2(– ≠ 2)�
3

1 ≠ – ≠ 2
2

4
f(z, –)

D≠1

(4.10)

In calculating C

2

N

(z) we note that estimates of D

„

(s) using observations of the
angular and spectral broadening, are scaled to a wavelength of ⁄ = 20 cm and
the interferometric baseline s = 10km. We take �L = z as mentioned earlier.
There is some evidence that the power spectrum for the density fluctuations
exhibit flattening at spatial scales between 1000km and the inner scale (l

i

)
(Coles & Harmon, 1989). The power law index in this range of spatial scales
is usually approximated by – = 3. As we have scaled all the measurements
to s = 10km which is in the range of the spatial scales where flattening is
observed, we take – = 3 in our calculations.

The observed spatial power spectrum of density irregularities shows an abrupt
steepening at smaller scales, indicative of the existence of an inner scale (l

i

).
While there are typically multiple scales where steepening occures, proton
cyclotron damping due to magnetohydrodynamic (MHD) waves is often in-
voked as the physical process to explain the appearance of the inner scale
(Coles & Harmon, 1989; Harmon, 1989; Verma, 1996; Yamauchi et al., 1998;
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Figure 4.9: C

2

N

as a function of heliocentric distance z in units of R§. Filled
circles denotes the C

2

N

derived using estimates of D

„

(s) by Armstrong et al.
(1990), the open circle indicate C

2

N

used for estimates of D

„

(s) by Ananthara-
maiah et al. (1994) and the filled boxes are for Spangler & Sakurai (1995).
Data points in blue corresponds to solar minimum and data points in red
corresponds to solar maximum.

Leamon et al., 1999, 2000; Smith et al., 2001; Bruno & Trenchi, 2014). This
mechanism yields the following expression for the inner scale :

l

i

(z) = 684N

e

(z)≠1/2 km, (4.11)

where N

e

is the background electron density. A background density
model is required to calculate inner scale as well as the refractive index e�ect
(f

p

(z) Ã N

e

(z)). We use the Leblanc et al. (1998) model for the background
electron density which as a function of heliocentric distance (measured in the
units of solar radius) is given by :

N

e

(z) = 3.3 ◊ 105

z

≠2 + 4.1 ◊ 106

z

≠4 + 87

z

≠6 cm≠3 (4.12)
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Figure 4.9 shows a scatter plot of the amplitude of density turbulence C

2

N

as a function of heliocentric distance obtained by combining estimates of
D

„

(s) from various radio observations during solar maximum and minimum.
Having specified the parameters required to calculate C

2

N

(z) using equation
(4.10) we now turn to the calculation of the spectral density given by eq.
(4.1). We focus on the inner scale since most of the power in the perpendic-
ular cascade is present at Ÿ‹ ƒ Ÿ

i

(2fi/l

i

) and most of the dissipation occurs
for Ÿ‹ > Ÿ

i

(Chandran et al., 2009). We can further simplify expression (4.1)
by using the observations of anisotropy by Armstrong et al. (1990). Figure
(6) of Armstrong et al. (1990) illustrates two situations regarding the crucial
question of whether the inner scale is isotropic or anisotropic. They con-
clude that the inner scale is likely to be isotropic. Dastgeer & Zank (2004)
also found in their simulations of nearly incompressible turbulence that small
scale structures are isotropic. We can therefore consider the inner scale to
be isotropic. In this situation Ÿ‹ æ Ÿ

i

, the axial ratio fl æ 1, which implies
that :

Ÿ

2

‹ = fl

2

Ÿ

2

x

+ Ÿ

2

y

æ Ÿ

2

x

+ Ÿ

2

y

Thus spectral density (S
n

) at the inner scale (i.e. for Ÿ‹ = k

i

) can be written
as :

S

n

(z, Ÿ

i

) = C

2

N

(z)Ÿ≠3

i

e

≠1 (4.13)

We know that the Fourier transform of the variance of the density fluctuations
È”N

2

e

Í is the spatial power spectrum S

n

. The density fluctuations at the inner
scale (”N

k

i

) can be written as (Chandran et al., 2009) :

”N

2

Ÿ

i

(z) ≥ 4fiŸ

3

i

S

n

(z, Ÿ

i

) (4.14)

Combining equations (4.10) and (4.13) thus enables us to compute density
fluctuations using measurements of D

„

(s) derived from angular and spectral
broadening observations in the near Sun region (2 ≠ 50R§). Thus given
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density fluctuations at the inner scale (4.14) and the background electron
density N

e

, the density modulation index at the inner scale (‘
k

i

) can be
defined as :

‘

N

e

(z, Ÿ

i

) © ”N

Ÿ

i

(z)
N

e

(z) (4.15)

Figure (4.10)shows the modulation index ‘

N

e

(z, Ÿ

i

) at the inner scale as a
function of heliocentric distance (z) in R§ for the observations during solar
maximum of the solar cycle 23.

Figure 4.10: Density modulation index at the inner scale as a function of
heliocentric distance for the observations during solar maximum. Red data
points corresponds to the ‘

N

e

(z, Ÿ

i

) over the period of 1998 to 2007 for a par-
ticular solar elongation, whereas black data points are time averaged values
of ‘

N

e

(z, Ÿ

i

) associated with the error bars calculated in (§5.4)

It is clear from figure (4.10) that the mean values of ‘

N

e

(z, Ÿ

i

) (filled black
circles) at the inner scale during solar maximum don’t vary much over 40 ≠
174R§. Similarly, figure (4.11) shows the modulation index ‘

N

e

(z, Ÿ

i

) at the
inner scale as a function of the heliocentric distance (z) in R§ for observations
during the minimum of cycle 23.

Figure (4.11) shows that the mean value of ‘

N

e

(z, Ÿ

i

) at the inner scale (filled
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Figure 4.11: Density modulation index at inner scale as a function of helio-
centric distance for the observations during solar minimum. Blue data points
corresponds to the ‘

N

e

(z, Ÿ

i

) over the period of 1998 to 2007 for a particu-
lar solar elongation, whereas black data points are time averaged values of
‘

N

e

(z, Ÿ

i

) with error bars calculated as specified in (§5.4)

black circles) varies only by a small amount over the heliocentric distance 40≠
174R§ during solar minimum. A comparison of the scatter plots, (Figures
4.10 and 4.11) shows that the density modulation index at the inner scale
depends only weakly on the phase of the solar cycle as also noted by Bisoi
et al. (2014).

Figure (4.12) represents the density modulation index at the inner scale as
a function of heliocentric distance, calculated using radio scattering and IPS
observations. The density profile (4.12) is assumed in deriving ‘

N

e

(z, Ÿ

i

).
Blue data points are for solar minimum and red data points are for so-
lar maximum. Filled circles are due to observations from Armstrong et
al. (1990), open squares indicate data points due to Anantharamaiah et al.
(1994), dotted circle are for data from Spangler & Sakurai (1995) and open
circles represents data points due to Bisoi et al. (2014). The density mod-
ulation index (‘

N

(z)) increases initially reaching maximum at about 8R§

(‘
N

(10R§) ƒ 10%). Thereafter between 10 ≠ 50R§ no definiative trend can
be found. This might be due to the lack of observations over this range. For
heliocentric distances > 50R§ the density modulation index decreases.
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Figure 4.12: Density modulation index at the inner scale as a function of
heliocentric distance. Blue data points are for solar minimum and red data
points correspond to solar maximum. Filled circles are the observations of
Armstrong et al. (1990), open squares indicate data points from Ananthara-
maiah et al. (1994) dotted circle represent data from Spangler & Sakurai
(1995) and open circles represent data points from Bisoi et al. (2014)

This behavior roughly agrees with the recent observations of Miyamoto et al.
(2014). Miyamoto et al. (2014) calculated the fractional density amplitude,
equivalent to density modulation index ‘

N

, using a spacecraft radio occul-
tation technique. They found that ‘

N

increases with heliocentric distance
< 5R§ and reaches the maximum value of ≥ 0.3. For larger heliocentric
distances (> 5R§) definite trend could not be inferred. The background
electron density (4.12) is a monotonically decreasing function of heliocentric
distance. Therefore the peak observed in ‘

N

at ≥ 10R§ in figure (4.12) sug-
gests that the density fluctuations override the behavior of the background
electron density in the near-Sun region to produces the observed behavior of
the density modulation index (‘

N

).



102 4.6. Extended solar wind heating

4.6 Extended solar wind heating

We obtained density fluctuations and density modulation index at the inner
scale. This can be used to compute the heating rate in the extended solar
wind. We consider the compressive kinetic alfvén wave turbulence and obtain
the turbulent energy cascade rate at the inner scale. Details of the KAW
turbulence are discussed in the A.

Figure 4.13: Adapted from Howes, 2015; this figure shows the MHD tur-
bulence spectrum of magnetic energy (E

B

) as a function of Ÿ‹. The KAW
regime is marked with wavenumbers > 1/fl

i

. fl

e

indicates the electron gyro-
radius

4.6.1 Density fluctuations in KAW

At wavenumbers corresponding to Ÿ‹fl

i

∫ 1, MHD Alfvén waves, via nonlin-
ear interactions, transfer their energy to KAWs. As the wave-vector becomes
increasingly oblique, (Ÿ‹ ∫ ŸÎ), KAWs develop compressibility and induce
parallel magnetic field fluctuations. At this point it is possible for KAW to
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exchange energy with compressive slow modes, which contributes passively,
and becomes highly compressive. As the Alfvén wave turbulence cascades
to higher Ÿ‹ the “active” KAW contribution to the density fluctuations in-
creases rapidly, so that the density fluctuation spectrum “rises” at KAW
scales (Chandran et al., 2009).

Figure 4.14: Adapted from (Chandran et al., 2009), this figure shows ‘pre-
dicted’ one dimensional spatial power spectrum of density turbulence as a
function of perpendicular wavenumber (Ÿ‹). “active” KAW component is
shown as the dotted line. Notice the rise of the power spectrum for Ÿ‹fl

1

> 1,
which is the KAW regime.

(Harmon, 1989) showed that this dominance of “active” KAW contribu-
tion to the density fluctuations can be seen in the spatial power spectrum
of density irregularities in the solar wind derived from the radio scintillation
observations. He showed that for Ÿ‹ ¥ 10≠2 km≠1 KAW compressibility
dominates the density fluctuation spectrum and produces the observed flat-
tening (with power law index – = 3; Figure 4.15) in an otherwise steep
(Kolmogorov power law) power spectrum (Coles & Harmon, 1989; Harmon,
1989).
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Figure 4.15: Adapted from Coles & Harmon (1989). This figure shows the
model density fluctuation power spectra derived from radio observations.
The flattening is observed between 10≠3 and 10≠1 km≠1.

Hollweg (1999) derived the dispersion relation for the KAW using the two
fluid model and assuming Ÿ‹ ∫ ŸÎ. This equation relates density fluctuations
(”N

e

/N

e

) to the velocity fluctuations (”v/v

A

) in KAW, where v

A

is the Alfvén
speed.

-----
”N

e

N

e

----- = Ÿ‹d

i

1 + “

i

Ÿ

2

‹fl

2

i

-----
”v

v

A

----- (4.16)

The quantity ”v/v

A

is a measure of the first order amplitude of the Alfvén
wave (Hollweg, 1999; Chandran et al., 2009), and “

i

is the adiabatic index of
the ions.

This dispersion relation can help us use the measurements of density
fluctuation to constrain the KAW turbulence in the dissipation range and
can be useful in computing turbulent heating.

Using data from radio wave scattering and IPS observations we have derived
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the density fluctuations at inner scale (”N

k

i

). Assuming that the density
fluctuations at the inner scale (Ÿ≠1

i

) arise entirely from KAWs we can use
equation (A.17) for the KAW to estimate velocity fluctuations at the inner
scale. Following (Chandran et al., 2009) we can write (A.17) as :

”v

k

i

(z) =
A

1 + “

i

Ÿ

i

(z)2

fl

i

(z)2

Ÿ

i

(z)d
i

(z)

B

‘

N

e

(z, Ÿ

i

)V
A

(z) (4.17)

The symbols have their usual meaning specified in (§5.2). We assume that
the adiabatic index, “

i

= 1 (Chandran et al., 2009). The ion gyroradius is
given by :

fl

i

(z) = 1.02 ◊ 102

µ

1/2

T

1/2

i

B(z)≠1 cm (4.18)

Here µ denotes the ion mass expressed in terms of the proton mass; for our
purposes, µ ≥ 1. T

i

is the ion temperature in eV; we assume it to be 86.22
eV (corresponding to 106 K) for R < 50R§ and 8.622 eV (corresponding to
105 K) for R> 50R§. B(z) is the Parker spiral magnetic field in the ecliptic
plane (Williams, 1995). The inner scale model due to Coles & Harmon (1989)
can be used to compute Ÿ

i

(z) = 2fi/l

i

(z). The ion-inertial length is given by
d

i

= V

A

/Ê

c

, where Ê

c

is the proton cyclotron frequency and V

A

is the Alfvén
velocity given by :

V

A

(z) = 2.18 ◊ 1011

µ

≠1/2

N

e

(z)≠1/2

B(z) cm/sec (4.19)

The ion-inertial length (d
i

) in terms of the background electron density
is given by :

d

i

(z) = 1/Ÿ

i

(z) = 228N

e

(z)≠1/2 km (4.20)

Thus we obtain velocity fluctuations ”v

k

i

(z) using (4.17). This enables us to
compute the turbulent energy cascade rate ‘

k

i

(z) at the inner scale (Chandran
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et al., 2009) :

‘

k

i

(z) = c

0

fl

p

Ÿ

i

(z)”v

k

i

(z)3 erg cm≠3s≠1

, (4.21)

where c

0

is a dimensionless constant. The value of c

0

is not precisely known
but we follow Howes et al. (2008) and set c

0

= 0.25. The proton density
fl

p

= m

p

N

e

(z) gm cm≠3, where m

p

is the proton mass in gm.

4.6.2 Turbulent heating rate in the extended solar wind

The turbulent energy cascade rate at the inner scale ‘

k

i

(z) is obtained as a
function of heliocentric distance using (4.21) and for di�erent phases of the
solar cycle. We interpret this as an upper limit to the solar wind heating
rate. The result is shown in figure (4.16). The red points are for solar
maximum and the blue points are for solar minimum. Data points derived
using observations of Armstrong et al. (1990) are indicated by the filled
circles. Data points derived using observations of Anantharamaiah et al.
(1994) are denoted by the diamonds. Data points derived using observations
of Spangler & Sakurai (1995) are denoted by the open boxes. Data points
derived using observations of Bisoi et al. (2014) are denoted by the open
circles. We carried out a non-linear least square fitting to the data points in
Figure (4.16), the result is shown in figure (4.17).

Our results indicate that the cascade rate is sensitive to the phase of the
solar cycle. At a given heliocentric distance (‘

k

i

(z)), for solar maximum is
higher than that of for solar minimum. For heliocentric distances ranging
from 2 to 174 R§, we find that the cascade rate during solar maximum
ranges from 2.7◊10≠7 ergcm≠3s≠1 at 2R§ to 2◊10≠14 ergcm≠3s≠1 at 174R§,
whereas during solar minimum the cascade rate varies between 3 ◊ 10≠8 and
5 ◊ 10≠14 ergcm≠3s≠1. A non-linear least square fit to data points in Figure
(4.16) shows that ‘

k

i

(z) has a power law dependence on heliocentric distance
z (‘

k

i

(z) æ z

≠—) with the power law index — ≥ ≠3.48 ± 0.07 for the solar
maximum and — ≥ ≠3.19 ± 0.06 for the solar minimum. We compare the
estimate of ‘

k

i

(z) with the previous findings at 5R§ and 1AU. Our estimate
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Figure 4.16: Turbulent cascade rate ‘

k

i

(z) at inner scale as a function of
heliocentric distance (R

s

) in the units of solar radius. Data points in blue
indicate ‘

k

i

(z) during solar minimum and red data points indicates ‘

k

i

(z)
during solar maximum. Filled circles use data from Armstrong et al. (1990),
open squares use data from Anantharamaiah et al. (1994) and dotted circles
use data from Spangler & Sakurai (1995) measurements of D

„

(s). Open
circles use data from Bisoi et al. (2014).

of ‘

k

i

(z) at 1AU (≥ 10≠15) during solar minimum is consistent with the
findings of Leamon et al. (1999). Chandran et al. (2009) compute the upper
limit to ‘

k

i

(z) at 5 R§ and 1AU. They scale the value of S

n

due to Coles &
Harmon (1989), at the inner scale Ÿ

i

= 10≠1km≠1 and at 5R§, to a value
appropriate for coronal holes and find ‘

k

i

(z) . 1.5 ◊ 10≠8 erg cm≠3s≠1. This
result is for solar minimum (since the observations of Coles & Harmon (1989)
coincides with the period of solar minimum of cycle 21). For the slow solar
wind the value of S

n

is a factor ¥ 15 greater than that for the coronal holes
Coles et al. (1995). We therefore directly use the estimate of S

n

obtained
from figure (4) of Coles & Harmon 1989 at Ÿ ≥ Ÿ

i

(which is 15 times the
value of S

n

used by Chandran et al. (2009). Using the ecliptic magnetic field
(Williams, 1995) we obtained fl

i

, d

i

and v

A

at 5R§, equation (4.21) then
predicts ‘

k

i

(5R§) & 1.1 ◊ 10≠7 ergcm≠3s≠1. Our estimate of ‘

k

i

(z) ≥ 10≠9

erg cm≠3 s≠1 at 5R§ can be compared with this upper limit. It is clear that
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Figure 4.17: Turbulent cascade rate ‘

k

i

(z) at the inner scale as a function
of heliocentric distance in the units of R§. The red solid line indicates the
fitting for data points obtained during solar maximum and the blue solid line
denotes the fitting for data points obtained during solar minimum.

the upper limit is above the value we obtained by using radio scintillation
observations.

Verma et al. (1995) derived an expression for the evolution of temperature
gradient in the spherically symmetric solar wind. Using this relation Vasquez
et al (2007) obtained the turbulent energy dissipation rate as a function of
heliocentric distance. Setting the appropriate values for the ion temperature
and solar wind speed at 1 AU with this model, yields ‘

k

≥ 1.7 ◊ 10≠15 erg
cm≠3 s≠1 which agrees well with our estimate of ‘

k

i

≥ 10≠15 erg cm≠3 s≠1 at
1 AU.

Allen et al. (1998) and Esser et al. (1997) have constructed a model for
the parametrized heating rate and calculated the value of ‘

k

i

(z). At 5R§ the
range of values of the turbulent energy cascade rate, due to these models,
is between 2 ◊ 10≠10 erg cm≠3 s≠1 and 1.4 ◊ 10≠8 erg cm≠3 s≠1. We find that
our value of the ‘

k

i

(z) at 5R§, (≥ 10≠9 ergcm≠3 s≠1), is within this range.
The discussion above suggests that the radio observations can constrain the
turbulent heating rate over the wide range of heliocentric distances spanning
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2 ≠ 174R§.

4.7 Summary and Conclusion

The heliocentric distance profile of the density modulation index ‘

N

in the
near Sun region and the heating of the extended solar corona and solar wind
have been a subject of considerable interest. Numerous observations indicate
strong perpendicular ion heating (Cranmer & Van Ballegooijen, 2003) within
a few R§ as well as non adiabatic temperature profile at heliocentric distances
between ≥ 0.3 to 50 AU (Richardson & Smith, 2003; Lamarche et al., 2014).
This observed heating likely plays a crucial role in accelerating the solar wind
and considerably impacts plasma properties in the inner heliosphere.

Several heating mechanisms have been proposed, (including turbulent and
non-turbulent heating), to explain these observations. We envisage a sce-
nario, where obliquely propagating Alfvén waves undergoes an anisotropic
(Ÿ‹ ∫ kÎ) turbulent cascade developing high wavenumber as well as high
compressibility at Ÿ‹fl

i

∫ 1 (Hollweg, 1999; Chandran et al., 2009). This
enables us to use observations of density fluctuations in computing the heat-
ing rate.

We use existing observations of radio wave scattering and interplanetary
scintillations to calculate the amplitude of density fluctuations. Taken to-
gether, these measurements yield density turbulence spectra spanning a wide
range of spatial scales, including the important high frequency region where
dissipation is expected to take place. The density fluctuations are inferred
using a combination of recently developed theoretical tools (Ingale et al.,
2015) to analyze radio wave scattering data and existing analysis methods
to treat interplanetary scintillation data. We use radio scattering data from
(Armstrong et al., 1990; Anantharamaiah et al., 1994; Spangler & Sakurai,
1995) and IPS data from Bisoi et al. (2014). We selected only ecliptic sources
and divided data according to the phase of the solar cycle.

We estimate the density modulation index ‘

N

using (4.12) and (4.14) at
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the inner scale. We found that the ‘

N

increases for heliocentric distance
< 10R§ reaching maximum ≥ 10% and decreases for larger distances. This
behavior roughly agrees with the recent observations by Miyamoto et al.
(2014). Our values for ‘

N

are an order of magnitude lower than the values
obtained by Miyamoto et al. (2014). This di�erence in the magnitude of
‘

N

can be attributed mainly to the di�erent spatial scales to which the two
studies are primarily sensitive. The spatial scales we employ are an order of
magnitude larger than those used by Miyamoto et al. (2014). If we consider
the scales similar to those used by Miyamoto et al. (2014) we find that our
estimates of ‘

N

agree well with the values obtained by Miyamoto et al. (2014).

We evaluate the turbulent energy cascade rate using (4.21) from 2R§ to
174 R§ at the dissipation scale of the MHD turbulence, assuming that the
density fluctuations are due to kinetic Alfvén waves. Our results provide use-
ful upper limits to the rate at which the extended solar wind is heated The
cascade rate is found to depend on the phase of the solar cycle. It ranges from
2.7 ◊ 10≠7 erg cm≠3s≠1 during solar maximum to ≥ 5 ◊ 10≠14 erg cm≠3s≠1

during solar minimum over 2≠174R§. Our results are consistent with previ-
ous findings at 5R§ and 1 AU. A heating rate required to produce observed
non-adiabatic temperature profile of protons and electrons can be estimated.
Using Voyager 2 data e.g., (Matthaeus et al., 1999b) and parameters appro-
priate to 1 AU, Chandran et al. (2009) find that the required heating rate
is ‘

k

i

(1AU) ≥ 3 ◊ 10≠15 erg cm≠3s≠1. This matches closely with the heating
rate we found, (≥ 10≠15 erg cm≠3s≠1) at 1 AU during solar minimum. Our
results are also in good agreement with Verma et al. (1995) and Vasquez et
al (2007), who predicts the heating rate to be ≥ 10≠15 erg cm≠3s≠1 at 1 AU.

We therefore conclude that radio scintillation observations can provide much
needed observational constraints to account for the observed heating and
acceleration of the solar wind.
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Conclusions and future work

In this chapter we summarize the main conclusions from this thesis. We also
give a flavour of future work arising from the work done in this thesis.

5.1 Conclusions

This thesis has dealt with the nature of density fluctuations near the inner
scale and has shown that it impinges on several problems of current interest.

In particular, we have dealt with radio wave scattering due to density
turbulence in plasma which leads to a wide variety of observed phenomena
and is quantified by the structure function. Most treatments of radio wave
scattering so far have employed asymptotic approximations to the structure
function which valid in the limits where interferometric baseline, s is either
π or ∫ than the inner scale, l

i

of the density turbulence spectrum. We have
used an anisotropic density power spectrum characterized by a power law
in the inertial range multiplied by an exponential cut-o� at the inner scale.
We have quantitatively demonstrated that the predictions of the general
structure function (GSF) are more accurate than those of the asymptotic
approximations for the region where s ≥ l

i

. This is of practical relevance, for
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s is comparable to l

i

for several interferometers in current use, with commonly
used models for l

i

. Our results therefore emphasize the necessity of using the
GSF for accurate quantitative estimates of radio wave scattering phenomena.

We combine published observations of radio wave scattering and inter-
planetary scintillations to infer density fluctuations at the inner scale of the
turbulent spectrum. We analyze radio wave scattering using the GSF and
existing analysis methods for interplanetary scintillations. We evaluate the
density modulation index (defined as ‘

N

(z, Ÿ

i

), chapter 4) at the inner scale
from the Sun to the Earth. Our results show an initial increase in the density
modulation index for R< 10R§ followed by a decrease for larger distances.
This behavior agrees qualitatively with the measurements of Miyamoto et al.
(2014).

Hypothesizing that the density fluctuations at the inner/dissipation scale
are due to kinetic Alfvén waves, we obtained an upper limit on the turbulent
cascade rate at the inner scale. Our results are among the first instances
where distributed solar wind heating has been computed from the near-Sun
region to the Earth. Our results are consistent with previous findings for
solar wind heating rates at 1 AU and support the claim that the dissipation of
compressive KAW turbulence may be the principal mechanism for extended
solar wind heating.

5.2 Future work

5.2.1 Density fluctuations in the inner solar wind

Several aspects of the behavior of density fluctuations in the inner solar wind
remain unclear. We have seen that (chapter 4) radio scintillation techniques
- angular broadening and interplanetary scintillations taken together can
provide useful information density fluctuations from the Sun to the Earth.
There is a fair amount of IPS observatons available for the outer solar corona,
from which one can garner information regarding density fluctuations. Ob-
servations in the inner solar corona are rarer; an exception is recent work
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by Miyamoto et al. (2014) and Imamura et al. (2014). There are also a
few angular broadening observations by Armstrong et al. (1990) and Anan-
tharamaiah et al. (1994) closer to the Sun (2 to 16 R§) which provide very
useful information. Zank et al. (2012) using nearly incompressible magneto-
hydrodynamics (Dastgeer & Zank, 2009; Zank & Matthaeus, 1992) derived
the transport equation for the variance of density fluctuations in the solar
wind. However, there is a lack of concrete theory for the transport of density
fluctuations and therefore the evolution of density turbulence spectrum with
heliocentric distance. For R > 50R§ IPS observations are useful and serves
as a very good proxy for the density fluctuations. However for R < 50R§

which is believed to be the region of strong scattering as well as the region
where solar wind accelerates, there are very few observations. Thus for bet-
ter understanding of the behavior of density fluctuations and thereby the
properties of the solar wind in the near Sun region more observations are
required.

5.2.2 Scintillation enhancement factor (g) and density
fluctuations

A model for the background electron density N

e

is essential, e.g. to describe
the refractive index e�ects for angular broadening (chapter 3). Also, inner
scale e�ects depends on the model for the N

e

. It is therefore crucial to
have a reliable estimate of the background electron density as a function of
heliocentric distance.

IPS observations are a good proxy for the electron density fluctuations �N

e

.
Though the IPS technique does not measure background plasma density,
Hewish et al. (1985) showed that the IPS measurements of the density fluc-
tuations are sensitive to the variations in the background plasma density.
They defined a quantity called scintillation enhancement factor g as :

g = �S

�S

, (5.1)
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where �S is the r.m.s. deviation of flux density at certain frequency and
�S is an average value for a given source at particular elongation. Hewish
et al. (1985) found a strong correlation between the plasma density and
g. The observations at a solar elongation of 90¶ satisfy the relation g =
(N cm≠3

/9)0.52±0.05.

This indicates that the quantity g serves as a good proxy for the back-
ground plasma density. By exploring the relation between the density fluc-
tuations and the scintillation enhancement factor g, (5.1), we can constrain
the background density model in the solar corona and solar wind. This in
turn will be useful to obtain an accurate estimate of the density modulation
index ‘

N

for small solar elongations.

5.2.3 Relating the anisotropy of scatter-broadened im-
ages to that of the turbulent spectrum

Although there is intense research activity with regard to the anisotropy,
there is relatively little work in relating the anisotropy of the observed scatter-
broadened images to the anisotropy of the underlying turbulence. We have
used some results pertaining to this aspect in this thesis. The work of Chan-
dran & Backer (2002) investigates some other interesting issues such as the
inclination of the line of sight to the large scale magnetic field, which can sub-
stentially influence the anisotropy (or lack thereof) of the observed scatter-
broadened image. This aspect is especially important for sources in the solar
corona. Chandran & Backer (2002) consider radio wave scattering due to
density fluctuations elongated in the direction of the ambient magnetic field
and characterized by the anisotropic Goldreisch Sridhar (GS) power spec-
trum. They derive an expression for the wave phase structure function D

„

and thereby the quantities characterizing radio wave scattering.

Chandran & Backer (2002) assume the GS power spectrum in the inertial
range i.e. wavenumber satisfying l

≠1

out

< Ÿ‹l

≠1

i

with sharp cuto� at wavenum-
ber Ÿ‹ < l

out

and Ÿ‹ > l

i

, where l

out

and l

i

are the outer and inner scale of
the density turbulence respectively. This spectrum therefore does not include
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a dissipation range of the density turbulence. We (Ingale et al., 2015) have
demonstrated that the appropriate form of the phase structure function to be
used in case of radio wave scattering due to density turbulence in the solar
corona and solar wind, is the general structure function (GSF). The GSF
requires the general form of the density power spectrum which includes the
inertial range, (characterized by the power law), together with dissipation
characterized by the exponential cuto� (Eq. 4.1).

We intend to include the exponential cut-o� to the GS power spectrum
used by the Chandran & Backer (2002) and generalize their treatment of
radio wave propagation. This allows us to derive a general expression for the
wave phase structure function and therefore help to generalize the results of
Chandran & Backer (2002).

5.2.4 Validity of the WKB approximation for density
fluctuations

The WKB approximation is frequently used to describe the transport of fluc-
tuations in the MHD Alfvén waves. In this approximation small scale MHD
fluctuations must satisfy the Alfvén wave dispersion relation (eq. A23) i.e.
only the leading order terms contribute significantly. The order parameter
is defined as ”

WKB

= 1/ŸL, where Ÿ is the wavenumber that satisfies Alfvén
wave dispersion relation and L is the length-scale of the inhomogeneities in
the flow (Barnes, 1979). Thus the WKB approximation is valid when the
characteristic length scale (Ÿ≠1) is smaller than the length scale of the inho-
mogeneities, L, i.e. ”

WKB

π 1.

However there exists several situations where the WKB approximation
is not expected to be valid (Jokipii & Kota, 1989; Velli et al., 1989; Holl-
weg, 1990; Barnes, 1992). For the density fluctuations near the inner scale,
addressed in (chapter 4) of this thesis, there are reasons to believe that the
WKB paradigm may not be realistic. Bale et al. (2005) and Malaspina et al.
(2010); use measurements of the electric field fluctuation spectrum. The spec-
trum is found to agree well with the MHD spectrum over the inertial range
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but shows an enhancement at the dissipation scale. This change is consistent
with the dispersion relation of Kinetic Alfvén waves (KAWs), which deviates
from that of the MHD Alfvén waves for Ÿ‹fl

i

Ø 1. Malaspina et al. (2010)
carried out observations over the frequency range of 7 ≠ 152 Hz and showed
that for this range of frequencies the WKB approximation is not valid Kellog
et al. (1999) Thus there is conclusive evidence for the fact that for scales
where phase-mixing and active cascades (dissipation range) dominates and
the WKB approximation is not valid.

It is therefore important to define precise limits for the applicability of
WKB approximation for fluctuations in the solar wind.

5.2.5 Parallel electron heating

Strong anisotropy in MHD turbulence for large wavenumbers (Ÿ) indicates
dominant spectral cascade occurs in a direction perpendicular to the back-
ground magnetic field. However Cranmer & Van Ballegooijen (2003) found
that as much as 30 % of the input cascade energy remains unaccounted for in
the total Alfvén wave damping. They argue that this might be a consequence
of abruptly turning down the Alfvén solution branch at high wavenumbers.
We should consider the “leakage” of power to high values of ŸÎ and follow the
complete turbulent cascade of energy on more than one dispersion branch.

It is therefore important to investigate the parallel heating rate. We
know that an important characteristic of Alfvén wave is the existence of
electric field fluctuations (EÎ) parallel to the background magnetic field. Any
process that produces energy-conserving cascade, such as phase mixing or
turbulence, leads to amplification of EÎ associated with the Alfvén wave
(Bian & Kontar, 2011). In a collisionless plasma this gives rise to enhanced
electron Landau damping causing parallel electron heating. This in turn
leads to the production of the EPHs (Electron-Phase holes) and undergoes
collision like interaction with protons. The e�ective charge density of the
EPHs is proportional to ”N/N

e

. This results in perpendicular heating of the
protons (Cranmer & Van Ballegooijen, 2003).
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Thus parallel and perpendicular heating rates together gives a complete
estimate of “mode-coupled’ energy which is an important subject for future
work.
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Appendix A

Kinetic Alfvén Waves

In the magnetohydrodynamic (MHD) approximation, Lorentz self-forces (J◊
B forces) in a plasma predict the existence of an incompressible wave mode
propagating parallel to the mean magnetic field, causing transverse magnetic
field oscillations, called the Alfvén wave. In this chapter we review the salient
features of the physics of the Alfvén waves, paying particular attention to
obliquely propagating waves as they cascade to large wavenumbers and develop
a strong anisotropy. In this regime they are called Kinetic Alfvén Waves
(KAW) and are known to exhibit compressibility. We briefly review the linear
eigenfunction of KAW which relates density fluctuations with the fluctuations
in the Alfvén velocity. This is then used to derive the heating rate at the
dissipation scale of the KAW turbulence.

A.1 Plasma wave modes

In this section we present a sketch of the derivation of kinetic Alfvén wave
(KAW) dispersion relation starting from the linear eigenmodes of the Magne-
tohydrodynamics (MHD) waves. In particular we concentrate on the KAW
dispersion relation based on the two fluid model. We begin with the ideal

119
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MHD equations which describe electrically conducting fluids subject to the
presence of external and internal magnetic field and can be approximated as
single-fluid of density fl and current density j. Though the scope of one-fluid
MHD model restricted to low frequencies (Ê π Ê

p

or equivalently, the time
scales involved should be ∫ the inverse of the plasma frequency (Ê

p

)), its an
elegant and clean dynamical theory which successfully predicts the existence
of plasma wave modes. Ideal MHD is well described by the field lines moving
exactly with the highly conducting fluid while magnetic stresses push on the
fluid. The interplay between Maxwell and Reynold stresses e�ectively forces
the dynamics to be formulated in terms of the large-scale bulk velocity v
and magnetic field B, in addition to the usual hydrodynamic variables (e.g.
pressure p and density fl). Since ideal MHD is a low frequency theory dis-
placement current can be neglected. The governing equations of the ideal
MHD also neglect transport coe�cients (such as viscosity and resistivity).
Continuity equation describe conservation of mass :

ˆfl

ˆt

= ≠flÒ · v (A.1)

The Faraday induction equation with a generalized Ohm’s law, E + (v ◊
B) = 0 can be written as,

ˆB
ˆt

= Ò ◊ (v ◊ B) (A.2)

The momentum equation for ideal MHD is just the familiar hydrodynamic
equation with the addition of “Lorentz self-force” given by j◊B. The current
density j can be eliminated by using Ampere’s law Ò ◊ B = µ

0

j, and we can
write :

fl

ˆv
ˆt

+ fl(v · Ò)v = ≠Òp + (Ò ◊ B) ◊ B/µ

0

(A.3)

The system of equations can be closed by considering the adiabatic pres-
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sure law :

d
dt

A
p

fl

“

B

= 0 (A.4)

Where “ is the adiabatic index of the “plasma fluid”. To define initial state
of the single fluid plasma we assume stationary and homogeneous conditions
which implies that magnetic stresses, average velocity, electric field and over-
all pressure vanish. We can decompose plasma density, velocity, magnetic
and electric field in two parts - sums of their initial values and space and
time dependent fluctuations e.g.,(Baumjohann & Treumann, 2004),

fl(r, t) = fl

0

+ ”fl(r, t)
v(r, t) = ”v(r, t)
E(r, t) = ”E(r, t)
B(r, t) = B

0

+ ”B(r, t) (A.5)

Our aim is to linearize the ideal MHD equations subjected to the per-
turbations given by (A.5), and thereby obtain the dispersion relation for the
eigenmodes of the plasma. Since the MHD equations are non-linear the per-
turbations should be small enough for linearization to be valid. As we have
assumed most of the quantities to have zero initial values, we can represent
them by a single variable whose value remains free. This can be readily
achieved if the ambient magnetic field is strong enough (which is often is the
case in the astrophysical plasma), so that the fluctuations ”B(r, t) are weaker
than the stationary magnetic field, (Baumjohann & Treumann, 2004) :

|”B| π B

0

(A.6)

With this assumptions we can write the set of linearized equations for an
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ideal MHD system. The continuity equation (A.1) becomes :

ˆ”fl

ˆt

+ fl

0

(r · ”v) = 0 (A.7)

Using a vector identity Ò ◊ (F ◊ G) = (G · Ò)F ≠ G(Ò · F ) in (A.2) and
then applying perturbations in (A.5), Faraday’s induction equation can be
linearized (i.e. neglecting second and higher order terms) to yield,

ˆ”B
ˆt

= (B · r)”v ≠ B

0

(r · ”v) (A.8)

The plasma is typically unable to damp out the rapid temperature variations
caused by the fluctuations; one can therefore use the adiabatic pressure law
(A.4). Linearizing the pressure fluctuation ”p gives :

ˆ”p

ˆt

= v

2

s

ˆ”fl

ˆt

= ≠fl

0

v

2

s

(r · ”v) (A.9)

where we make use of (A.7) and the quantity v

s

= (“p

0

/fl

0

)1/2 is the sound
speed.

Similarly, after linearizing, the momentum equation (A.3) can be written as,

fl

0

ˆ”v
ˆt

+ Ò”p + B0
µ

0

◊ (r ◊ ”B) = 0 (A.10)

Equations (A.7)≠(A.9) represents a linear and homogeneous system of
equations for ”fl, ”v and ”B. Equations (A.8), (A.10) and (A.9) together
form a closed system of first order di�erential equations in magnetic field,
velocity and pressure. We derive a second order “wave equation” for one of
the field variables. The physics is more transparent if we consider the second
order wave equation of velocity fluctuations ”v and eliminate the other two
variables, pressure and magnetic field fluctuations, ”p and ”B respectively.

Di�erentiating (A.10) with respect to time and using (A.8) and (A.9) we
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can write the second order wave equation for ”v as follows :

fl

0

ˆ

2

”v
ˆt

2

≠ fl

0

v

2

s

r(r · ”v) + B0
µ0

{r ◊ [r ◊ (”v ◊ B0)]} = 0. (A.11)

The large scale magnetic field B
0

can be represented in terms of velocity
units by using the Alfvén velocity (Alfvén, 1942) :

v
A

= B
0Ô

µ

0

fl

0

(A.12)

Thus we can write (A.11) using (A.12) :

ˆ

2

”v
ˆt

2

≠ v

2

s

r(r · ”v) + vA ◊ {r ◊ [r ◊ (”v ◊ vA)]} = 0. (A.13)

We now assume plane wave ansatz :

”v(r, t) = ”v exp[i · r ≠ iÊt] (A.14)

and replace the derivatives :

r æ i and ˆ

ˆt

æ iÊt (A.15)

to obtain the dispersion relation :

≠Ê

2

”v + v

2

s

( · ”v) ≠ v
A

◊ { ◊ [ ◊ (”v ◊ v
A

)]} = 0 (A.16)

We can further expand the term in the curly brackets by repeated use of
a vector triple product E ◊ (F ◊ G) = (E · G)F ≠ (E · F)G, which gives :
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≠ Ê

2

”v + (v2

s

+ v

2

A

)( · ”v)
+ ( · v

A

)[( · v
A

)”v ≠ (v
A

· ”v) ≠ ( · ”v)v
A

] = 0 (A.17)

This is the desired dispersion relation for the MHD plasma wave modes.
The presence of a large scale magnetic field causes a preferred direction in
the MHD system. If we assume a uniform plasma with straight magnetic
field lines, then the direction of the ambient magnetic field represents this
preferred direction and it is the only direction of symmetry. We choose the
direction of an ambient magnetic field to be along the z axis of our orthogonal
coordinate system. Thus we can write :

B
0

= B

0

ez (A.18)

Consequently :

v
A

= v

A

ez (A.19)

The propagation vector can be decomposed into the parallel and per-
pendicular components defined with respect to the ambient magnetic field.
From symmetry arguments, it is easy to see that the x and y coordinates
are interchangeable and thus without loss of generality we can set one of the
perpendicular components, say Ÿ

y

= 0. Then for a right handed coordinate
system, a perpendicular component is parallel to the x axis and we can write
a wavevector as :

 = Ÿ‹e
x

+ ŸÎez

(A.20)

where Ÿ‹ = Ÿ sin ◊ and ŸÎ = Ÿ cos ◊.

Equation (A.17) is actually a set of three separate equations for ”v =
(”v

x

, ”v

y

, ”v

z

), which are coupled equations and can be written in matrix
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Figure A.1: The parallel and perpendicular wave-vectors are defined with
respect to the direction of the ambient magnetic field B which is taken to be
along the z axis.

form :

A”v = ≠Ê

2

”v (A.21)

where

A =

Q

ccca

≠ŸÎv
2

A

≠ (v2

s

+ v

2

A

)Ÿ2

‹ 0 ≠v

2

s

ŸÎŸ‹

0 ≠v

2

A

ŸÎ 0
≠v

2

s

ŸÎŸ‹ 0 ≠v

2

s

ŸÎ

R

dddb

The problem of MHD modes is therefore the eigenvalue-eigenvector prob-
lem with eigenvalues provide dispersion relations. Since A is a 3 ◊ 3 matrix,
there are three fundamental MHD wave modes and any disturbance can be
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expressed as linear combination of these three basic modes. Meaningful so-
lution can be obtained if :

|A ≠ Ê

2I| = 0 (A.22)

it may be noted that the y-component of the velocity fluctuations de-
couples from the rest of the fields representing a wave with linear dispersion
relation :

Ê

A

= ±ŸÎvA

(A.23)

The wave propagates parallel to the ambient magnetic field and is a type
of magnetohydrodynamic wave known as Alfvén wave.

Figure A.2: (a) Alfvén waves propagating along the B

0

. The fluid motion and
the magnetic perturbations are normal to the field lines. (b) Magnetosonic
wave propagates normal to B

0

compressing and releasing magnetic lines of
force as well as conducting fluid tied to the field.

From (A.8) it is clear that the Alfvén waves are associated with the mag-
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netic field fluctuations parallel to the velocity component :

”B‹

B

0

= ”v‹

v

A

(A.24)

and thus there are no electric field fluctuations along the ambient mag-
netic field (Baumjohann & Treumann 2012). Electric field fluctuations asso-
ciated with the Alfvén waves are given by using Faraday law :

”E‹ = ”B‹

v

A

(A.25)

The eigenvalues of the determinant formed by other four elements of the
(A.22) gives the other two modes, known as magnetosonic modes. The solu-
tion to the eigenvalue equation for this determinant yields two roots :

Ê

2

ms

= Ÿ

2

2

Y
]

[(v2

s

+ v

2

A

) ±
C

(v2

A

≠ v

2

s

)2 + 4v

2

A

v

2

s

Ÿ

2

‹
Ÿ

2

D
1/2

Z
^

\ (A.26)

Where the root with positive sign is known as the fast magnetosonic wave
and the root with negative sign is known as the slow magnetosonic wave. The
behavior of the three modes can be conveniently expressed with the help of
the phase velocity diagram.

Figure (A.3) shows the three magnetohydrodynamics wave modes repre-
sented by the vector arrows of their phase velocities.

A.2 MHD in Elssäser variables

We now focus on the Alfvén wave modes as they are the fundamental modes of
incompressible MHD. They are ubiquitous in the solar corona and solar wind
(Tomczyk et al., 2007; Velli & Pruneti, 1997) and play an important role for
the turbulent motions in the MHD plasma. The physics of the Alfvén waves
is more transparent when expressed in terms of Elssäser variables (Elssäser,
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Figure A.3: Wave-normal diagram for the MHD wave modes. The length
of the arrow from the origin to a point on the associated closed curve is
proportional to the wave-phase velocity.

1950). Elssäser variables are defined as the sum and di�erence of the bulk
velocity v and the magnetic field B, expressed in the units of velocity :

z± = v ± BÔ
µ

0

fl

0

(A.27)

Equations (A.1)≠(A.4) can then be expressed in the form of following set
of equations :

ˆz±

ˆt

û v
A

· rz± = ≠zû · rz± ≠ ÒP/fl

0

(A.28)

rz± = 0 (A.29)

Where P is the total pressure, P

thermal

+P

magnetic

. This formulation o�ers
number of advantages and an important physical insights into the Alfvén
turbulence. If one looks carefully at the above system of equations, the
divergence free condition, (A.29) closes the system and we don’t actually
need to specify the equation of state. The divergence of (A.28) with (A.29)
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yields for pressure :

Ò2

P = ≠fl

0

r · (zû · rz±) (A.30)

An important thing to note here is that, both the terms on the right
side of equation (A.28) are non-linear and pressure at any point responds
instantaneously, as expected in case of incompressible flows. Linearization of
(A.28) gives (Bruno & Carbone, 2013) :

ˆz±

ˆt

= ±(v
A

· r)z± (A.31)

Which predicts the existence of counterpropagating Alfvén wave modes,
z

±(x ± v
A

t) with respect to the ambient magnetic field. Thus we can un-
derstand (A.28) as follows, the second term (linear) on the left side gives the
propagation of the Elssäser fields with the Alfvén speed. The first term on
the right hand side specifies the non-linear interaction between the counter-
propagating Alfvén waves and the second term on the right hand side ensures
incompressibility.

A.2.1 Non-Linear properties

The non-linear term zû · (rz±) in (A.28) is crucial in understanding the
mechanism of turbulence in the MHD system. It reveals several impor-
tant properties of incompressible MHD turbulence; for instance the vector
form of the (A.28) demonstrates that the incompressible MHD turbulence is
an inherently three dimensional phenomenon. Consider the non-linear term
z≠ · (rz+) from equation (A.28); the contribution due to this term is non-
zero only when both z

≠ ”= 0 and z

+ ”= 0, i.e. the two waves must propagate
in opposite directions along the magnetic field. The presence of z

+ and z

≠

at the same point of the space suggests that the z≠ distorts the counterprop-
agating z+ wave and vice-versa. Consider the non-linear interaction between
two plane waves with wavevectors, 

1

and 
2

. For Alfvén waves, Ê

1

= ŸÎ1

v

A

and Ê

2

= ŸÎ2

v

A

, with wave frequency Ê

1

, Ê

2

> 0. The direction of the propa-



130 A.2. MHD in Elssäser variables

gation along the magnetic field is therefore specified by the sign of ŸÎ. It can
be shown that the the non-linear term in (A.28) is maximized when perpen-
dicular components of the counterpropagating Alfvén waves are orthogonal,
i.e. ‹1

· ‹2

= 0. This gives rise to the anisotropic turbulent cascade of
energy, where turbulent energy is preferentially transferred to small scales
perpendicular to the local magnetic field direction. Thus equation (A.28)
demonstrates two crucial properties of the incompressible MHD turbulence,

• Non-linear interaction occurs only when counterpropagating waves “col-
lide”, this serves as a building block of MHD turbulence and,

• This non-linear interaction leads to an anisotropic cascade in the sense
Ÿ‹ ∫ ŸÎ

Figure A.4: The counter-propagating Alfvén waves parallel and anti parallel
to the B

0

. Alfvén waves overlap for non zero (zû · Ò)z±. (Adapted from ?)

A.2.2 Turbulent Cascade

Following significant developments in incompressible MHD in recent years
through numerical simulations and laboratory experiments (Howes et al.,
2012; Drake et al., 2013), we can present a qualitative picture of a process of
“collision” of counterpropagating Alfvén waves (Howes et al., 2013). Howes et
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al., (2013) presents Elssäser variables in terms of Elssäser potentials defined
by :

z

± = ẑ ◊ Ò‹’

± (A.32)

Equation (A.28) with Elssäser potentials defined by (A.32) gives Elssäser
potential equation. The asymptotic solution of which can be obtained in the
weak turbulence limit given by :

z

±

v

A

≥ ÷ π 1 (A.33)

We can express the solution by expanding ’

± in the powers of ÷ :

’

± = ’

±
0

+ ÷’

±
1

+ ÷

2

’

±
2

+ ÷

3

’

±
3

+ · · · (A.34)

Where ’

±
1

is the primary solution which constitute the couterpropagating
Alfvén wave modes, ’

±
2

is the secondary solution, ’

±
3

- tertiary solution and
so on. Intuitive picture of the turbulence cascade is presented in following
figure :

From figure we can understand the process of turbulent cascade as follows,
the primary modes at O(÷) corresponds to the counterpropagating Alfvén
waves with wavevectors +

1

= Ÿ‹x̂ ≠ ŸÎẑ and ≠
1

= Ÿ‹ŷ + ŸÎẑ and frequency
Ê

0

= ŸÎvA

. The primary modes are denoted by filed circles in Figure().
These two primary Alfvén modes interact with each other according to the
non-linear terms on the right hand side of (A.28). This interaction generates
a secondary mode at O(÷2) :

0

2

= +

1

+ ≠
1

= Ÿ‹x̂ + Ÿ‹ŷ (A.35)

This is an inherently nonlinear and purely magnetic mode, denoted by
filled triangle in figure (A.5). Note that the secondary mode has ŸÎ = 0
and frequency = 2Ê

0

. The primary modes then interact nonlinearly with the
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Figure A.5: Adapted from Howes (2013), the figure represents nonlinear
interaction between the counter propagating Alfvén waves.

secondary mode and gives rise to tertiary mode with wavevector +

3

and ≠
3

at O÷

3. The process can be expressed as :

+

3

= 0

2

+ +

1

= 2Ÿ‹x̂ + Ÿ‹ŷ ≠ ŸÎẑ

≠
3

= 0

2

+ ≠
1

= Ÿ‹x̂ + 2Ÿ‹ŷ + ŸÎẑ
(A.36)

The tertiary modes ±
3

denoted by filled squares in figure (A.5), each have
linear Alfvén frequency Ê

0

and and propagates in a direction of the primary
modes (i.e. along the z direction). This sequence of interaction guided by
the nonlinear terms in equation (A.28) therefore leads to the secular transfer
of energy from low wavenumbers (±

1

) to higher wavenumber, e.g. ±
3

. It is
clear from the Figure (A.5) and above discussion that the nonlinear transfer
of energy or the turbulent cascade proceeds only along the contours of con-
stant ŸÎ with increasing Ÿ‹. Thus we can easily demonstrate the anisotropic
cascade implied by (A.28). We have seen parallel components of counter-
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propagating Alfvén waves ŸÎ1

and ŸÎ2

, must be opposite in sign. We can see
therefore in case of cascade to tertiary mode, equations (A.35) and (A.36)
with ‹1

·‹2

= 0, implies that ŸÎ3

Æ ŸÎ1

and ŸÎ3

Æ ŸÎ2

, whereas Ÿ‹3

Ø Ÿ‹1

and Ÿ‹3

Ø Ÿ‹2

(Goldreich & Sridhar 1995, Howes et al., 2013). In other
words the cascade gets stronger in the perpendicular direction giving rise to
an anisotropy in a sense Ÿ‹ ∫ ŸÎ.

Above discussion is based on the three wave interaction (two ounterprop-
agating wave modes leads to secondary wave mode), which in general is valid
for weak turbulence (A.33), many of the general qualitative properties of the
process persists in strong turbulence.

A.3 Kinetic Alfvén waves

Starting from incompressible MHD equation (A.28) we have seen how Alfvén
waves undergo turbulent cascade, preferentially in the direction perpendicu-
lar to the ambient magnetic field and transfer energy to higher wavenumbers
i.e., to smaller scales. At high wavenumbers a typical astrophysical plasma
is characterized by ion mean free path (⁄

i

), ion gyroradius (fl
i

) and electron
gyroradius (fl

i

). These scales are ordered as ⁄

i

> fl

i

> fl

e

; thus the ion mean
free path is usually reached first. The length scale ⁄

i

characterizes colli-
sionality in the direction of ambient magnetic field and thus the inequality
ŸÎ⁄i

Ø 1 marks the transition from collisional to non-collisional dynamics.
Using critical balance condition (Goldreich & Sridhar 1995) the equivalent
transition to the collisionless dynamics in perpendicular wavenumber occurs
for the scales Ÿ‹fl

i

Ø 1. As the fl

i

reached in the turbulent cascade the ions
decouples from the turbulent electromagnetic fluctuations. This leads to the
transition of non-dispersive Alfvén waves to dispersive kinetic Alfvén waves
(KAW). This also marks the break down of MHD description as well as the
one fluid model, we used for the description of MHD wave modes.

To obtain the physical picture of the dispersive KAW in the range of high
wavenumber (Ÿ‹) it is convenient to explore the nonlinear term in (A.28)
through the turbulent electric and magnetic field fluctuations. The definition
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of Elssäser variables (A.27) with the assumption |”B| π B

0

implies that the
term of the form ”v·r contributes significantly to the nonlinearity. Following
ohms law for ideal MHD we can write :

E + (”v ◊ B)
c

= 0 (A.37)

Thus the term ”v · r in the fluid equation transforms to the form of
non-linearity, represented by E‹ ◊ B‹. This suggests that the lowest order
contribution to the plasma velocity fluctuations is given by :

”v = cE ◊ B
B

2

0

(A.38)

The E‹ ◊ B‹ nonlinearity is the dominant nonlinear mechanism under-
lying the turbulent cascade in MHD as well as kinetic regimes.

A.3.1 KAW : Hollweg 1999

We briefly review the dispersion relation for the KAW, derived by Hollweg
1999 using the two fluid model. Alternate derivations of the KAW dispersion
relation that incorporate slightly di�erent physics can be found in (Hasegawa
& Chen, 1974; Lysak & Lotko, 1996). As we have seen for wavenumber
Ÿ‹fl

i

Ø 1, kinetic e�ects dominates and the single fluid MHD description
breaks down. However the MHD description can be applied to demonstrate
some important properties of the Alfvén waves in a kinetic regime.

We consider the right hand coordinate system as shown in the figure(A.6),
where B0, the ambient magnetic field is in the direction along the z axis.
Consider the Alfvén wave with frequency Ê propagates in the x ≠ z plane as
exp[i(Ÿ

x

+ Ÿ

z

≠ Êt)]. The magnetic field fluctuations, ”B

y

in the y direction
gives rise to the velocity fluctuations ”v

y

, which can be interpreted as the
lowest order contribution due to the nonlinearity E◊B to the plasma velocity
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Figure A.6: Geometry for the Alfvén wave propagation and the perturbed
components associated with the wave propagating along the B

0

given by :

”v

y

= c

”E

x

B

0

(A.39)

This expression can alternately be obtained by using the Alfvén wave
properties, (A.24) and (A.25). The presence of ”E

x

suggests that there is
a current in the x direction carried mainly via the polarization drift of the
ions. For Ê π Ê

ci

we write :

”v

px

= 1
Ê

ci

B

0

ˆ

ˆt

(”E

x

) = q

i

m

i

Ê

Ê

2

ci

”E

x

(A.40)

Where q

i

and m

i

are the ion charge and mass, Ê

ci

= q

i

B

0

/m

i

c is the ion
cyclotron frequency. The polarization drift involves the charge and the mass
of the particle. As the polarization e�ect becomes significant local charge
separation occurs and single fluid theory breaks down. We therefore need
to consider the e�ects of charged particles, constituting plasma, separately.
Since the polarization drift involves charge and the mass of the particle it
gives rise to the compressional e�ects on the ions and therefor causes density
perturbations ”n

i

. With ”fl

i

= m

i

”n

i

where m

i

is the ion mass and n

0i

is the
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ion number density, we can write the linearized continuity equation (A.7),

ˆ

ˆt

”n

i

= ≠n

0i

r”v. (A.41)

From which we get the x-component of the ion drifting ”n

i

/n

0i

= Ÿ

x

”v

x

/Ê.
Using (A.39) and (A.40) with the x-component of (A.41) we can write,

i

”n

i

n

0i

= Ÿ

y

Ê

ci

”v

y

(A.42)

Note that the ion inertial length is given by d

i

= v

A

/Ê

ci

, thus we can
write equation (A.42) as,

i

”n

i

n

0i

= Ÿ

y

d

i

”v

y

v

A

(A.43)

Where ”v

y

/v

A

is interpreted as the measure of the first order amplitude
of the Alfvén wave. Starting from the dominant nonlinearity E ◊ B in the
MHD equations we arrived at an approximate estimate of the condition where
compressible e�ects becomes important. We see from (A.43) that for higher
wavenumbers where Ÿ

≠1

y

is comparable with the ion inertial length or in
other words for Ÿ

y

d

i

≥ 1, Alfvén wave exhibits compressibility. The disper-
sion relation, specifying the properties of the wave departs from that of the
incompressible MHD Alfvén wave. In this region Ÿ

y

d

i

Ø 1 the Alfvén wave
is known as Kinetic Alfvén wave.

We have seen that the electron E ◊ B drift coupled with the ion polar-
ization drift of the charged particles gives rise to a compressible e�ects for
ions at higher wavenumber (A.43). Similarly coupling of ion E ◊ B drift
with electron polarization drift gives rise to electron compressibility, when
the electron inertia is significant. This improves (A.42), and consequently
the condition for the transition to KAW.

A fluid approach to the collision-less plasma constitute two dominant
forces on charge particles that transfer momentum. First ≠ charged particles
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responds to electric and magnetic field via Lorenz force, and second they also
respond to the pressure gradient force.

With m and n denoting the mass and number density of particles respec-
tively, we can write the fluid momentum equation for any species in the two
fluid case as :

mn

dv
dt

= mn

C
ˆv
ˆt

+ (v · r)v
D

= qn(E + v ◊ B0) ≠ rp. (A.44)

The linearized momentum equation in the direction of ambient magnetic
field is therefore given by :

mÊ”v

z

= ≠iq(”E

z

) + Ÿ

z

“k

—

T

0

”n

n

0

(A.45)

Here we make use of the plane wave ansatz with wave propagating in x≠z

direction. Where pressure fluctuations ”p = “k

—

T

0

”n, with “ is the adiabatic
index, k

—

is the Boltzmann constant, T

0

temperature of plasma species.

The electrons moving parallel to the ambient magnetic field constitute
the electric field fluctuations along z-axis. Assume quasi-neutrality ”n

i

/n

0i

≥
”n

e

/n

0e

and using (A.42), the z component of (A.45) for electrons is given
by :

e”E

z

= i m

e

Ê”v

ze

≠ (“
e

k

—

T

0e

)Ÿ

x

Ÿ

z

Ê

c

”v

y

(A.46)

Using (A.41) and (A.42) we can write, ”v

ze

= (Ê/Ÿ

z

)”n

e

/n

0e

= (Ê Ÿ

x

/i Ÿ

z

Ê

c

)”v

y

,
which implies :

”E

z

=
A

m

e

Ê

2

e Ÿ

2

z

≠ “

e

k

—

T

0e

e

B
Ÿ

x

Ÿ

z

Ê

c

”v

y

(A.47)

The presence of ”E

z

, field aligned electric field, which is an important
property of the Alfvén wave, suggests that the Faraday’s law can be written
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as :

Ÿ

x

”E

z

≠ Ÿ

z

”E

x

= Ê

c

”B

y

(A.48)

Consequently the polarization drift (A.40) gets modified to :

”v

px

= ≠ i q Ê

m Ê

2

c

”E

x

A

1 + “Ÿ

2

x

k

—

T

0

m Ê

c

B≠1

(A.49)

Corresponding density fluctuations are then given by :

”n

n

0

= ≠i

q Ÿ

x

mÊ

2

c

A

1 + “Ÿ

2

x

k

—

T

0

m Ê

c

B≠1

”E

x

(A.50)

Now using E ◊ B drift with the definition Ê

c

= q B

0

/mc we can write :

”E

x

= ”v

y

mÊ

c

q

(A.51)

which gives :

i

”n

n

0

= Ÿ

x

1 + Ÿ

2

x

L

2

”v

y

Ê

c

. (A.52)

Where, L = k

—

T

0

/(m Ê

2

c

). The first order amplitude of the Alfvén wave
”v

y

/v

A

is therefore can be given by :

i

”n

n

0

= Ÿ‹ d

i

1 + “Ÿ

2

‹L

2

”v‹

v

A

, (A.53)

where we make use of the definition of inertial length d = v

A

/Ê

c

. In writ-
ing (A.53) we adopted the notation where the components in the transverse
direction, defined with respect to the ambient magnetic field B

0

, are written
as Ÿ

x

, Ÿ

y

æ Ÿ‹ and ”v

x

, ”v

y

æ ”v‹.
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For the special case of warm plasma where ion dynamics dominates we
can write (A.53) as follows :

i

”n

i

n

0i

= Ÿ‹ d

i

1 + “

i

Ÿ

2

‹fl

2

i

”v‹

v

A

(A.54)

Using (A.50) we can modify the expression (A.47) and then eliminate
”E

x

, ”E

z

using (A.48) to yield :

Ê

2 = 1 + Ÿ‹L

2

1 + Ÿ

2

‹c

2

/Ê

2

pe

Ÿ

2

Îv
2

A

(A.55)

Here Ê

pe

is the electron plasma frequency. The equation (A.55) is known
as the dispersion relation for the KAWs in the cold plasma described by
the two fluid model. The dispersion relation (A.55) contains the thermal
e�ect of the ions but additionally takes into account the electron inertia of
the background plasma. If we look at the dispersion relation (A.55) it is
immediately clear that for Ÿ‹L π 1 we recover the dispersion relation for
MHD Alfvén wave (A.17). Usually the quantity L is considered as L =
fl

i

, ion gyroradius and therefor the more familiar condition for transition
to KAW can be written as Ÿ‹fl

i

≥ 1. This implies the transition from
incompressible MHD Alfvén waves to compressible kinetic Alfvén waves takes
place well before the ion inertial length is reached, however the wave becomes
completely dispersive for wavenumbers Ÿ‹d

i

Ø 1.



140 A.3. Kinetic Alfvén waves



References

Alexandrova O., Lacombe C., Mangeney A., Grappin R., Maksimovic M.,
2012, ApJ, 760, 1

AlfvÃ�n, H. 1942, Nature, 150, 3805, 405â��406

Allen L. A., Habbal S. R., Hu Y. Q., 1998, J. Geophys. Res., 103, 6551

Anantharamaiah K. R., Gothoskar P., Cornwell T. J., 1994, J. Astrophys.
Astr., 15, 387

Armstrong J. W., Woo R., 1980, Rept IOM 3331-80-070, Jet Propulsion
Lab., California.

Armstrong J. W., Coles W. A., Kojima M., Rickett B. J., ApJ, 358, 685

Asai K., Kojima M., Tokumaru M., et al. 1998, J. Geophys. Res., 103, 1991

Biermann L., 1953, Mém. Soc. Roy. Sci., Lieǵe (ser. 4), 13, 291
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