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SYNOPSIS 

Investigating the effects of complex fluctuating environments on the evolution of 

laboratory populations of Escherichia coli 

 

Name: Shraddha Karve 

Roll Number: 20093044 

Name of Supervisor: Dr. Sutirth Dey 

Department: Biology 

Date of Registration: 1st of January, 2010 

Indian Institute of Science Education and Research (IISER), Pune, India 

 

Introduction 

Environmental heterogeneity is an important driver of many ecological and evolutionary 

processes (Abele 1976, Hiltunen, Laakso et al. 2008, Harrison, Laine et al. 2013, reviewed in 

Chesson 2000, Lee and Gelembiuk 2008). This heterogeneity can be of different types: 

spatial/ temporal, exogenous / endogenous, biotic / abiotic, and so on. Temporal fluctuations, 

specifically, are widespread in occurrence. Environments can vary at different time scales, 

can be predictable or unpredictable in nature, and many environmental variables can fluctuate 

together or independent of each other (reviewed in Melbourne, Cornell et al. 2007). 

Experimental evolution studies conducted under controlled laboratory environments are an 

excellent tool to understand the evolutionary implications of such heterogeneity. However, in 

spite of the presence of a large body of theoretical work (Levins 1968, Gavrilets and Scheiner 
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1993, Whitlock 1996), experimental investigations of environmental heterogeneity are 

limited in number (Hallsson and Björklund 2012, Condon, Cooper et al. 2014, reviewed in 

Kassen 2014). Moreover, most of the existing studies look at fluctuations in a single 

environmental variable like temperature or pH (Hughes, Cullum et al. 2007, Alto, Wasik et 

al. 2013, Ketola, Mikonranta et al. 2013), whereas in nature, multiple components of the 

environment can fluctuate simultaneously.  

Here I study evolution of laboratory populations of Escherichia coli when exposed to an 

environment which has multiple stressors that fluctuate unpredictably over time. I also 

investigate the possible mechanisms leading to the observed fitness changes. I further study 

the effects of history of fluctuating environments on future adaptation events. The primary 

results are as follows: 

 

Complex, unpredictable fluctuations select for higher fitness in novel environments over 

short duration of selection (Chapter 2) 

Bacterial populations facing unpredictable fluctuations have been shown to improve fitness 

over all the selection environments (Turner and Elena 2000, Ketola, Mikonranta et al. 2013) 

or improve in some but not in others (Hughes, Cullum et al. 2007) or show no improvement 

in fitness (Alto, Wasik et al. 2013). I observed no improvement in fitness in the individual 

selection stresses after selection in complex, unpredictable fluctuations after ~170 

generations of selection. Surprisingly though, populations selected in the fluctuating 

environments showed improved fitness in the face of multiple novel environments like 

antibiotics, heavy metals and DNA intercalating agents. The fitness advantage was retained, 

though decreased in the magnitude, even after deteriorating selection for ~50 generations in 

novel environments. Moreover, the fitness advantage was evident at the level of individual 
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bacterial cells. I then investigated the various putative mechanisms that could have led to 

greater fitness under novel environments.  

 

Efficient energy dependent efflux is the most likely mechanism leading to fitness 

advantage in novel environments (Chapter 3) 

While the fitness outcomes of the different kinds of fluctuations are being experimentally 

investigated to some extent in microbes (Buckling, Wills et al. 2003, Hughes, Cullum et al. 

2007, Ketola, Mikonranta et al. 2013), study of underlying mechanisms is conspicuous by its 

near absence (but see Coffey and Vignuzzi 2011, Alto, Wasik et al. 2013). I investigated 

multiple candidate mechanisms which could have led to the observed fitness advantage in the 

face of novel environments. Results showed that populations facing fluctuating environments 

evolved enhanced energy dependent efflux ability. Additionally, contrary to theoretical 

predictions (Gillespie and Turelli 1989, Turelli and Barton 2004), standing variation or the 

ability to generate variation did not evolve. But this lack of increase in variation could have 

been due to the comparatively short duration of selection.  

 

Extended exposure to complex, unpredictable fluctuations does not affect the 

evolvability of the populations (Chapter 4)   

 If longer duration of exposure to fluctuating environments results in significant increase in 

standing genetic variation, the latter can in turn lead to increased evolvability i.e. higher 

speed of adaptation (Falconer, Mackay et al. 1996). I tested this hypothesis after ~560 

generations of selection in the fluctuating environment, by exposing the selected populations 

to a further round of directional selection for ~450 generations in a novel environment. 

Populations with an evolutionary history of fluctuating environments showed similar rate of 
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adaptation as the populations with the history of constant selection environment. In spite of 

the similar rates of adaptation, populations with a history of fluctuations showed superior 

fitness while adapting to the novel environments, suggesting that history of fluctuations can 

have long term effects.  

 

Populations facing complex, unpredictable fluctuations for longer duration can take ‘no 

cost’ routes to fitness improvement (Chapter 5) 

Short duration of selection (~170 generations) was hypothesized to be one reason behind the 

lack of fitness improvement observed under fluctuating environments. Selection over ~900 

generations supported this conjecture, as the selected populations showed adaptation for some 

of the selection environments which resulted in highest overall mean fitness and lowest 

variation for the fitness. But more importantly, populations facing complex, unpredictable 

environment, did not lose fitness in any of the selection environments. Populations selected in 

a single environmental stress on the other hand, showed a trade-off in at least one of the 

stresses to which they were not exposed during selection. Fluctuating selection regime thus 

forced the populations to take the ‘no cost’ routes to increase in fitness. This could have been 

a result of simultaneous exposure to multiple selection environments, which is expected to 

select for variation which is either favourable or neutral in all the selection environments. 

What role does unpredictability play in this context then, was addressed next. 

 

Predictability does not play a major role in shaping the fitness outcomes over short 

duration of the selection (Chapter 6) 

Selection under predictable fluctuations has been shown to result in improved fitness over all 

the different environmental values (Turner and Elena 2000, Alto, Wasik et al. 2013, Puentes-
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Téllez, Hansen et al. 2013). However, that does not seem to be the case for the unpredictable 

fluctuations, where fitness may or may not improve over all the selection environments 

(Hughes, Cullum et al. 2007, Alto, Wasik et al. 2013). I found that the fitness outcomes did 

not differ between predictable and unpredictable complex environments after ~260 

generations of selection.  

The results underline the far reaching implications of environmental heterogeneity, both in 

terms of clinical and evolutionary outcomes. Further empirical work should focus on less 

explored areas like fluctuations in complex environments and interaction of predictability and 

complexity, while theoretical line of work needs to generate solid predictions about what kind 

of mechanism will evolve in the face of environmental heterogeneity. 

 

 

Papers published / Manuscripts in preparation –  
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Chapter 1.  Introduction 
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In nature, environment varies over space and time and this heterogeneity is thought to be one 

of the driving features behind the staggering diversity of life on earth (Abele 1976, Hiltunen, 

Laakso et al. 2008, Stein, Gerstner et al. 2014). Not surprisingly therefore, understanding the 

causes and consequences of environmental heterogeneity has remained one of the 

fundamental goals in ecology and evolutionary biology. Environmental heterogeneity can be 

exogenous (i.e. arising due to external factors) or endogenous, (i.e. factors within the 

community or population). It can be biotic or abiotic in nature, and temporal, spatial or 

spatio-temporal in its manifestation. It can also be invader driven where an event of invasion 

modifies the environment, which in turn affects the invader along with the other life forms. 

Occurrence of these different kinds of heterogeneities is far from independent. For instance, 

biological heterogeneities can easily arise through endogenous processes while exogenous 

heterogeneities arise from both biotic and abiotic factors (reviewed in Melbourne, Cornell et 

al. 2007).  

Of all the kinds of environmental heterogeneities, those in terms of space and time have 

received the most attention in the literature (Levins 1968, Kassen 2002, Collins 2011, Sæther, 

Engen et al. 2013). In some cases, both temporal and spatial heterogeneity can lead to similar 

outcomes in communities, for instance by increasing the invasibility of the community 

(Melbourne, Cornell et al. 2007). But mostly, outcomes of spatial and temporal variation are 

very different. Spatial heterogeneity provides a refuge to the different phenotypes, as a result 

it is expected to maintain or even increase the genetic variation (Korona 1996, Rainey and 

Travisano 1998). Empirical studies confirm this prediction and populations facing spatial 

heterogeneity harbour higher amount of genetic variation as compared to the populations 

facing a constant environment (Reboud and Bell 1997, Rainey and Travisano 1998, Habets, 

Rozen et al. 2006). They have higher overall fitness across all the patches (as the different 



15 
 

environments across space are called) but for a given patch, their fitness is lower than the 

native population (Reboud and Bell 1997, Condon, Cooper et al. 2014).  

Outcomes of temporal heterogeneity are comparatively more difficult to predict due to factors 

like the complexity, grain size and predictability of the fluctuations, all of which interact with 

each other to affect the fitness and diversity in evolving populations. Environments can 

change within the lifetime of an organism (fine grained) or on timescales of tens of 

generations (intermediate grained) or over few hundred/thousand generations (coarse 

grained). Fine grained fluctuations are expected to select for enhanced phenotypic plasticity 

while coarse grained environments can lead to mutational sweeps in asexual organisms where 

a mutation favourable in the current environment gets fixed (Ancel 1999, Meyers, Ancel et 

al. 2005). In asexual organisms, fluctuations at an intermediate scale are a) less likely to 

select for higher phenotypic plasticity (since the environment remains constant over few 

generations) and b) less likely to lead to mutational sweeps (if the environment changes 

sufficiently fast). Outcomes of intermediate grain size are thus difficult to predict and 

critically depend on the underlying genetic structure (Chevin, Lande et al. 2010). Like grain 

size, predictability also affects the outcomes of the fluctuations. Environmental fluctuations 

can be predictable like that of seasonal fluctuations or unpredictable like those induced by 

some human activities like disposal of domestic sewage. Predictable fluctuations are expected 

to select for switching phenotypes where rate of switching evolves to match the rate of 

fluctuations (Acar, Mettetal et al. 2008). Unpredictable fluctuations on the other hand, are 

likely to favour bet-hedging where phenotype switch is random (Beaumont, Gallie et al. 

2009). Unfortunately, very few studies have investigated the effects of complex temporal 

fluctuations, i.e. environments that vary across multiple variables over time.  

Many of the theoretical predictions referred above have been empirically validated. Studies 

show that predictable fluctuations mostly lead to improvement in the fitness over all the 
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selection environments faced by the populations (Leroi, Lenski et al. 1994, Turner and Elena 

2000, Hughes, Cullum et al. 2007, Coffey and Vignuzzi 2011, Alto, Wasik et al. 2013, 

Puentes-Téllez, Hansen et al. 2013, Condon, Cooper et al. 2014 but see Buckling, Wills et al. 

2003). However, the fitness outcomes of unpredictable fluctuations are more equivocal and 

include increase (Turner and Elena 2000, Ketola, Mikonranta et al. 2013), no change (Alto, 

Wasik et al. 2013) or increase with respect to some environments but not others (Hughes, 

Cullum et al. 2007). Independent of the predictability of the environment, populations facing 

fluctuating environments minimize the variation in fitness over all the environments when 

compared with the populations which face only one constant environment (Kassen 2014). 

One peculiar feature of the populations facing fluctuating environments is the absence of 

trade-offs across environments i.e. populations gain fitness in some of the environments 

experienced during selection, without any accompanied fitness loss in the other environments 

experienced (Turner and Elena 2000, Hughes, Cullum et al. 2007, Condon, Cooper et al. 

2014 but see Reboud and Bell 1997). When fitness is assayed for novel environments, along 

with the selection environments, results show that temporal fluctuations in temperature 

clearly enhance the fitness in novel biotic environments but not in novel abiotic environments 

(Ketola, Mikonranta et al. 2013).  

In spite of the substantial corpus of empirical studies, several facets of how organisms adapt 

to complex environments, remain unexplored, particularly in the context of fluctuating 

environments. Complexity of the environment, both biotic and abiotic, is rarely incorporated 

in the experimental studies ( but see Barrett, MacLean et al. 2005, Cooper and Lenski 2010, 

Satterwhite and Cooper 2015). Different biotic and abiotic components of the environment 

interact with each other and fluctuations in any one component of these environments is 

likely to affect adaptation to the other components. Another underexplored area is that of 

long term effects of temporal fluctuations. Most of the studies focus on the immediate fitness 
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effects of fluctuations in the selection or novel environments (Hughes, Cullum et al. 2007, 

Alto, Wasik et al. 2013, Ketola, Mikonranta et al. 2013). But fluctuating environments are 

expected to affect the underlying genetic variation (Levins 1968, Gavrilets and Scheiner 

1993, Whitlock 1996) and hence are most likely to affect long term evolutionary outcomes. 

This conjecture is supported in the literature on invasive species which suggests that history 

of environmental disturbance is positively correlated with the invasive potential (Lee and 

Gelembiuk 2008). Whether temporal fluctuations affect the evolvability of the populations in 

longer run remains to be tested experimentally. Another missing link in understanding of 

temporal fluctuations is information on underlying mechanisms. Very few studies look at the 

underlying genetic or physiological changes that lead to the observed fitness outcomes of 

temporal fluctuations, though the trend has been changing recently (Coffey and Vignuzzi 

2011, Alto, Wasik et al. 2013). Only with an improved understanding in these areas can we 

move on to a more inclusive scenario where temporal fluctuations can be studied in 

conjunction with spatial heterogeneity, community structure and demography.  

In my thesis I attempt to fill some of the gaps in this area, focusing on the effects of 

unpredictable, complex environmental fluctuations in terms of the fitness outcomes, 

underlying mechanisms as well as the long term evolutionary effects. This kind of a study 

demands selection experiments lasting large number of generations as well as facility in 

terms of environmental modifications. This makes fast dividing microorganisms a very 

suitable experimental system. In addition to this, replicate populations facing different 

selection regimes can be initiated from the same ancestral population/clone. Large size of a 

population (~109 individuals/ population) and higher mutation rates (as compared to the 

multicellular organisms) facilitate the accumulation of variation during the course of 

experiment. Control over initial genetic variation increases the power of the experiment i.e. 

the outcomes of selection can be attributed to either selection treatment or chance, 
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eliminating the role of initial genetic variation. Moreover, microbial systems provide a luxury 

of storing the experimental populations for future assays, almost indefinitely. It is hardly 

surprising, hence, that majority of the studies on fluctuating environments use microbes as 

model organisms (Hughes, Cullum et al. 2007, Alto, Wasik et al. 2013, Ketola, Mikonranta et 

al. 2013, Barrett, MacLean et al. 2005, Cooper and Lenski 2010, Satterwhite and Cooper 

2015). With the same vein of reason I chose Escherichia coli as the model organism.   

I conducted three independent selection experiments. The first selection experiment 

compared the fitness outcomes of evolution under complex, unpredictably fluctuating 

environments to those under benign control environments. The results from this selection 

experiment are presented in chapters 2-4. Along with the fitness outcomes in selection and 

novel environments, I also investigated the possible mechanisms leading to the observed 

fitness changes. I also contrasted the evolvability and competitive ability of the populations 

with a history of fluctuations to those with a history of growth in unchanging, non-stressful 

environment.   

The fifth chapter describes a second selection experiment which looked at the fitness in 

selection environments in greater detail. Along with the populations facing fluctuating 

environment, we selected replicate populations under constant exposure of each of the 

selection environment which constituted the complex, unpredictable fluctuating selection 

regime. This design allowed us to study the underlying trade off structure as well as the mean 

and variance for the fitness over all the selection environments. Moreover, fitness assays 

performed at different stages provide information on how these attributes changed during the 

evolution.  

Results of this second selection experiment clearly outlined the role of complexity in shaping 

the fitness of the evolving populations, but the role of predictability, or rather the absence of 
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it, remained unclear. Hence, I used another selection experiment to investigate the fitness 

effects of predictable vs unpredictable fluctuations.  

In the last chapter, I highlight the important findings of my thesis and discuss the broader 

academic and applied implications of the same. I also outline some of the major questions 

arising out of my results which can potentially act as starting points for future research in the 

field.  
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Chapter 2. Complex, unpredictable fluctuations select for 

higher fitness in novel environments over short duration 

of selection 
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1 INTRODUCTION 

Environmental heterogeneity affects multiple ecological and evolutionary processes (Chesson 

2000, Hiltunen, Laakso et al. 2008, Lee and Gelembiuk 2008, Harrison, Laine et al. 2013). 

One of the less explored aspects of environmental heterogeneity in this context is that of 

simultaneous exposure to multiple selection pressures in the form of environmental stressors 

or resources (but see Barrett, MacLean et al. 2005, Cooper and Lenski 2010) (henceforth, 

complexity). Previous studies looking at resource complexity show that populations adapt to 

all the resources which are part of the environment and minimize the variation in the fitness 

across resources (Barrett, MacLean et al. 2005, Cooper and Lenski 2010). However, these 

results cannot be intuitively extended to complexity in terms of non-resource variables. 

Adapting to multiple environmental variables can be a daunting task, especially if some of 

the variables are negatively correlated with each other (Kassen 2002). Complexity when 

coupled with unpredictability poses an even greater challenge, since the adaptive landscape is 

continuously shifting. In spite of its ubiquity in nature, evolutionary outcomes of complex, 

unpredictable fluctuating environment remain poorly explored. This chapter summarizes the 

results of fitness outcomes of short term selection in such fluctuating environment. 

  The selection was carried out for short duration (~ 170 generations). Fitness was assayed in 

component environments, (i.e. environments that were part of the selection) and novel 

environments, i.e. environments that were not part of the selection. Selection results in no 

fitness advantage in component environments but in novel environments. The advantage is 

retained after deteriorating selection and somewhat after acclimation, at the population level. 

Results of fitness assessment at the level of individual cells corroborate the population level 

results.   
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2 METHODS 

2.1 Selection 

2.1.1 Selection under a stable environment 

This study was conducted on Escherichia coli (strain NCIM 5547) populations. We plated 

this strain on nutrient agar (see Appendix 2.1 for composition), and created a suspension 

using bacteria from three randomly picked colonies. This suspension was used to initiate six 

bacterial cultures. Three of these were randomly assigned to a regime wherein they were 

grown at 37ºC, 150 rpm in 100 ml conical flasks. These three populations were sub-cultured 

every 24 hours (1ml in 50 ml of nutrient broth) for 30 days and will be henceforth referred to 

as the S (Stable-Environment) populations. At the time of every sub-culturing, the optical 

density (OD600; measured using a NanodropTM, Thermo Scientific) was ~0.2, signifying 5.64 

generations every 24 hours (Bennett and Lenski 1997). The other three populations were 

subjected to unpredictably changing complex environments for 30 days (see below) and will 

henceforth be referred as F (Fluctuating-Environment) populations. For both these sets of 

populations, we created glycerol stocks at the time of each sub-culturing. 

 

2.1.2 Selection under complex, randomly changing environments 

In a pilot study, we observed the growth of this strain at various concentrations of salt 

(sodium chloride, NaCl), hydrogen peroxide (H2O2) and acidic / basic pH in nutrient broth 

(NB, see appendix 2.1 for composition). These four conditions are henceforth referred to as 

component environments. Based on these observations, we created 72 arbitrary combinations 

of NaCl, pH and H2O2 values such that in any combination, the magnitude of one component 

was equal to that found in NB (i.e. pH = 7.0 or [NaCl] = 0.5g% or [H2O2] = 0) and that of the 

other two were individually expected to negatively affect growth. Thus, for example, 
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combination # 46 denotes a NB containing 2 g% of NaCl + 9.5pH + no H2O2 whereas 

combination # 10 stands for 0.5 g% of NaCl + 9.5 pH + 0.01 M of H2O2 (see Appendix 2.2 

for all the combinations experienced). Each combination was assigned a tag between 0-71 

and a uniform-distribution random number generator was used to obtain a sequence of 

numbers (with replacement) in that range. Each replicate F population experienced 30 

combinations of the components according to this sequence. This ensured that the 

environments faced by these populations were not only unpredictable, but also complex, i.e. 

involved three different environmental variables. As a result, unlike the S populations, the F 

populations did not grow to similar OD600 values in every generation.  Therefore, we 

arbitrarily assigned an OD600 value ≥ 0.1 as a criterion for sub-culturing to the next 

environment. The volume used to inoculate the next culture was 1 ml, which translated to 

approximately 108 -109 cells. Any F population which did not reach an OD600 ≥ 0.1 was 

allowed to grow for another 24 hours in the same flask. Pooled over the three replicate 

populations, this event happened 22 times (out of 90 transfers) during the course of the 

experiment. If a population failed to cross the threshold even after 48 hrs post-inoculation, 

100 µl of glycerol stock from the previous environmental combination was revived in NB 

and then transferred to the next combination in the selection sequence (pooling over all 

replicates, this event happened 20 times over the entire experiment). The total exposure to 

composite environments was kept equal, i.e. each replicate F population experienced 30 

composite environments in which they could grow. All other culture conditions were 

identical to those experienced by the S populations.  
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2.2 Fitness Estimations 

2.2.1 Fitness under component environments 

Following a recent study (Ketola, Mikonranta et al. 2013), we estimated fitness as the 

maximum growth rate over the period of 24 hours. We estimated the fitness (see Appendix 

1.1 for details) of S and F populations (after ~170 generations in their respective selection 

regimes) under four conditions of the component environments i.e. salt, acidic pH, basic pH 

and H2O2. The concentrations used were the extreme values of the selected ranges for these 

environments (see Appendix 2.3). 

2.2.2 Fitness under complex environments 

In our study, what the selected populations actually experienced were combinations of 

stresses (i.e. pH+ salt +H2O2), which was designated as complex environments. Therefore, 

we also estimated the fitness (see Appendix 1.1 for details) of S and F populations (after 

~170 generations in their respective selection regimes) under six randomly chosen complex 

environments faced by F populations during the selection (see Appendix 2.3 for details). 

 

2.2.3 Fitness under novel environments 

We assayed the fitness of the S and F populations (after ~170 generations in their respective 

selection regimes) under four different stressful conditions: presence of two heavy metals 

(cobalt and zinc), one antibiotic (norfloxacin) and a DNA intercalating agent (ethidium 

bromide). All these four chemicals are known to reduce the growth rate of E. coli, and will be 

henceforth referred to as novel environments. Fitness was estimated (see Appendix 1.1 for 

details) at concentrations determined by range estimations (see Appendix 2.3 for 

concentrations). These four conditions were selected because we failed to find any study that 
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reports a correlated change in fitness in any of them due to selection for any of the 

component environments (salt, pH or H2O2). Thus, it is unlikely that resistance to any of the 

four novel environments can evolve as a correlated response to direct selection on the 

component environments (see section 4.3).  

 

2.2.4 Fitness after selection in deteriorating environments 

We then investigated whether the fitness advantage of the selected populations over the 

controls in the novel environments persisted even after deteriorating selection. For this, all F 

and S populations were further selected separately under continuously increasing 

concentrations of cobalt, zinc and norfloxacin for 8 days (see Appendix 2.3 for details). 

Deteriorating selection on ethidium bromide could not be performed for logistical reasons. 

The maintenance protocol was the same as that for the selection under fluctuating 

environments (see section 2.1.2). After the 8th day (i.e.~50 generations), populations were 

stored as glycerol stocks for fitness estimation. Fitness was assayed (see Appendix 1.1 for 

details) in the 8th day concentration (see Appendix 2.4) of the novel environments.  

 

2.2.5 Fitness after acclimation  

Acclimation response of S and F populations was characterized using the same four novel 

environments as above. 100 µl of glycerol stock of each 30 day selected S and F population 

was revived overnight in 50 ml NB. 100 µl of this revived suspension was then inoculated 

into the novel environment (see Appendix 2.3 for concentrations) and allowed to acclimate 

for 9 hours. Glycerol stocks were stored every 3 hours (to estimate the degree of acclimation) 

along with OD600 measurement on Nanodrop (Thermo, Waltham, MA, USA). The glycerol 

stocks made after every 3 hour were then used to determine the extent of acclimation. For this 
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purpose, 100 µl of well mixed glycerol stock was added to the fresh medium with the same 

novel environment, and OD600 was measured using Nanodrop at every two hour interval for 

24 hr duration. Fitness was determined as mentioned in protocol I (b). This measure of fitness 

across time points was used as an estimate of extent of acclimation.  

 

2.2.6 Fitness of the individual bacteria in the novel environments 

To estimate the fitness of individual bacterium and characterize the possible heterogeneity 

within a population, we employed a slide-based observation technique (Lele, Baig et al. 

2011). Pilot studies were conducted to determine the sub-lethal concentrations for the four 

novel environments when the bacteria were grown on slides (see Appendix 2.5 for 

concentrations). The identity of these novel environments were chosen such that there are no 

known correlations between the mechanism of stress resistance to them and the three stresses 

used in the fluctuating selection (see discussion 4.3). Glycerol stock for S or F population 

was revived overnight in 50 ml Nutrient Broth. This revived culture was used to flood the 

slide layered with nutrient agar (see Appendix 2.1 for composition) containing one of the 

novel environment. After the broth had dried off (~ 30 minutes at room temperature under 

aseptic conditions), the agar surface was covered with a cover slip, excess agar outside the 

cover slip was removed with the help of a scalpel, and the sides were sealed with the 

mounting medium DPX (Di-n-butyl phthalate in xylene). The slide was then placed on the 

stage of a microscope (Primo StarTM, Zeiss, Jena, Germany) which in turn was placed at 370 

C throughout the observation time.  

 A suitable field containing 6 to 20 single, well-spaced cells was focused under 100X 

magnification. For each cell in the field of view, we manually scored the time taken by the 

cell and its progenies to divide over a period of 240 minutes from the preparation of the slide 
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i.e. from the time when broth was poured on the agar slide. Two trials were conducted for 

every replicate population of S and F in every novel environment (2 × 6 × 4 = 48 trials). The 

yield of each cell was estimated as the number of progenies produced by the cell at the end of 

240 minutes. We also measured the ‘lag’ as the time taken for the first division. Since the 

cells were not synchronized, the lag estimate is likely to be associated with some amount of 

error. However, there is no reason to believe that this would affect S and F populations 

differentially. Moreover, since we measured substantial number of cells per population, such 

errors arising due to lack of synchronicity should be further ameliorated. 

 

2.3 Statistical analysis  

2.3.1 Component, complex and novel assay environments  

Pooled data was analyzed using 4-way mixed model ANOVA. Selection (two levels: S and 

F) and assay environment were fixed factors while replication (three levels) was a random 

factor nested in selection. Trial was a random factor nested in selection × environment × 

replicate. Assay environment had four (acidic pH, basic pH, salt, H2O2), six (# 13, 22, 49, 51, 

54, 68) and four (cobalt, zinc, ethidium bromide, norfloxacin) levels for component, complex 

and novel assays respectively. To compare the performance of S and F populations in 

individual environment, we performed 3 way mixed model ANOVA with selection (two 

levels: S and F) as a fixed factor, replicate (three levels) as a random factor nested in 

selection and trial as a random factor nested in selection × replicate.   

 

2.3.2 Deteriorating environment 
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Pooled data was analyzed using 3-way mixed model ANOVA. Selection (two levels: S and 

F) and assay environment (three levels: cobalt, zinc and norfloxacin) were fixed factors while 

replication (three levels) was a random factor nested in selection. To compare the 

performance of S and F populations in every assay environment individually, we performed 

three different 2 way ANOVA with selection (two levels: S and F) as a fixed factor and 

replicate (three levels) as a random factor nested in selection.  

 

2.3.3 Acclimation  

Pooled data were analyzed using 4-way mixed model ANOVA. Selection (two levels: S and 

F) duration of acclimation (three levels: 3hr, 6hr and 9hr) and assay environment (four levels: 

cobalt, zinc, ethidium bromide and norfloxacin) were fixed factors while replication (three 

levels) was a random factor nested in selection. To compare the performance of S and F 

populations at every combination of acclimation duration and assay environment, we 

performed twelve different 2-way ANOVA with selection (two levels: S and F) as a fixed 

factor and replicate (three levels) as a random factor nested in selection.  

 

2.3.4 Fitness at individual level   

The yield and lag data were analyzed separately using mixed model ANOVA with novel 

assay environment (4 levels: Cobalt, Zinc, Norfloxacin and Streptomycin) and selection 

(three levels: S and F) as fixed factors and replication (three levels, nested within selection) 

and trial (two levels, nested in assay environment × selection × replication) as random 

factors. We also performed the individual mixed model ANOVAs for each of the novel assay 

environments. For this set of analysis, selection (two levels: S and F) was treated as a fixed 

factor and replication (three levels, nested within selection) and trial (two levels, nested in 
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selection × replication) as random factors. 

 

In case of multiple ANOVAs family-wise error rates were controlled through sequential 

Holm -Šidàk correction of the P values (Abdi 2010). To judge the biological significance of 

the differences in mean growth rates for F and S populations at different assay environments, 

we computed Cohen’s d statistic (Cohen 1988) as a measure of the effect sizes (Sullivan and 

Feinn 2012). Following existing guidelines (Cohen 1988), we interpreted the effect sizes as 

small, medium and large for 0.2<d<0.5, 0.5<d<0.8 and d>0.8, respectively. Cohen’s d 

statistics were estimated using the freeware Effect Size Generator v2.3.0 (Devilly 2004). 
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3 RESULTS  

3.1 Fitness under component environments:   

After ~170 generations of selection, the maximum growth rates of the F populations were 

significantly greater than the S, when measured under conditions that were components of the 

fluctuating selection regime, i.e. pH (4.5/10), high salt or H2O2 (F1,4 = 9.34, p = 0.038, Table 

2.1, Fig 2.1 A). However, the effect size for this difference was small (d = 0.2, Table 2.1) 

which indicated that the difference might be biologically insignificant. There was also a 

significant main effect of component environment (F3,12 = 79.92, p = 3.4E-08) which is not 

surprising as the different conditions (i.e. pH 4.5, H2O2, etc.) are not expected to affect the 

growth rates similarly. However, the component environment × selection interaction was also 

significant (F3,12 = 3.850, p = 0.038), implying that there were differences in terms of how the 

growth rates of F and S populations were getting affected by the various conditions. To 

investigate this in greater detail, we conducted separate ANOVAs for the effect of each 

condition of the component environment and found that the growth rates of the F and S 

populations did not differ significantly in any of the stresses (Table 2.2, Fig 2.1 A). The effect 

sizes of the differences were large for two conditions (pH4.5 and H2O2), medium for salt and 

small for pH10 (Table 2.2). Interestingly, in pH 4.5 although the difference has a large effect 

size, it is actually the S populations which have higher growth rates than the F. Overall, this 

set of analysis leads to the conclusion that in spite of a significant main effect, there is no 

evidence to indicate that the F populations generally performed better than the S under 

conditions that were components of the fluctuating selection regime. 
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3.2 Fitness under complex environments 

The pattern of fitness differences under complex environments was similar to those under 

component environments. When data from all six complex environments were analyzed 

together, there was no significant difference between the growth rates of F and S populations 

(F1,4 = 2.37, p = 0.199, Table 2.1) and the effect size was small (d = 0.34, Fig 2.1 B, Table 

2.1). When analyzed separately, the average maximum growth rates of the F populations 

were always larger than those of S populations (Fig 2.1 B), although none of the differences 

were significant at the 0.05 level, and only one effect size was large (Table 2.2). Overall, this 

suggests that the F populations did not show greater fitness in the complex environments.  

 

3.3 Fitness under novel environments:   

When analyzed together, the F populations had significantly higher maximum growth rates 

under the four novel environments that we investigated (F1,4 = 1320.48, p = 3.4E-06, Table 

2.1, Fig 2.2 A) and the effect size of this difference was large (d = 1.45, Table 2.1). As with 

component environments, there was a significant effect of the novel environment (F3,12 = 

20.38, p = 5.3E-05)  and a significant novel environment × selection interaction (F3,12 = 

48.90, p = 5.3E-07). When analyzed separately, F had significantly greater growth rate than S 

in three (Cobalt, Norfloxacin, Ethidium bromide) of the four novel environments and the 

effect size in each of these cases was large (Table 2.2, Fig 2.2 A). In the case of zinc, F still 

had a higher growth rate than S, although the differences were not statistically significant and 

the effect sizes were small. However, crucially, the S populations never had a larger growth 

rate than the F populations. This suggests that the F populations have evolved to counter at 

least three novel environments without becoming worse than the controls in at least one other 

novel environment.   
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3.4 Fitness after selection under deteriorating novel environments 

After directional selection for ~50 generations in three novel environments, F populations 

had significantly higher growth rates compared to the S and a medium effect size of the 

difference (F1,4 = 24.68, p = 0.008; d = 0.51, Table 2.1, Fig 2.2 B). When analyzed separately, 

the difference in growth rates in all three novel environments were significant after Holm-

Šidàk correction (p = 0.036, p = 0.039, p = 0.043 for Cobalt, Norfloxacin and Zinc 

respectively, Table 2.2) and the effect sizes of the differences were large (Table 2.2). 

 

3.5 Fitness after acclimation in novel environments 

F populations showed significantly higher fitness than S populations when pooled over all the 

four stresses for all the three time points (F1,4 = 49.61, p = 0.0001; d = 1.07, Table 2.1, Fig 

2.3) There was a significant interaction between selection and environment (F3,12 = 19.61, p < 

0.0001). There was significant effect of novel environment (F3,12 = 29.52, p < 0.0001), 

duration of acclimation (F2,8 = 23.54, p = 0.0004) and significant interaction between the two 

(F6,24 = 3.43, p = 0.013). When fitness at every combination of acclimation duration and 

novel environment was analyzed separately, 4 out of 12 comparisons turned out to be 

significant after Holm-Sidak correction with large effect sizes (Table 2.2, Fig 2.3). Though F 

populations had higher mean fitness at every individual comparison, the difference was 

significant in case of ethidium bromide alone (Fig 2.3). This suggests that F populations have 

higher post-acclimation fitness in some environments but not in others.     
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3.6 Fitness of individual bacterial cells 

When pooled over all the novel environments, individuals from F populations displayed 

significantly lower lag time (Fig 2.4 A) and higher yield (Fig 2.4 B) than individuals from S 

populations, with medium and large effect sizes respectively (Table 2.1). There was a 

significant effect of the novel environment in both cases (F3, 12 = 66.75, p < 0.001 for lag and 

F3, 12 = 88.93, p < 0.001 for yield) indicating that the difference in the fitness varies across 

different novel environments. This is intuitive as all the environments are not expected to 

affect fitness similarly. When analyzed separately for each novel environment, F populations 

had significantly and marginally significantly lower lag time in cobalt and streptomycin 

respectively (Table 2.2 , Fig 2.4 A) and significantly higher yield in cobalt, streptomycin and 

norfloxacin (Table 2.2, Fig  2.4 B). The effect sizes were large in all these cases (Table 2.2). 

It is important to note that in all the four novel environments, F populations showed lower lag 

time and higher yield compared to S populations.  Overall, these results demonstrate the 

growth advantage for individuals of F populations in the four novel environments, 

corroborating the population level outcomes observed earlier (section 3.3 and 3.4).  
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Assay 
Mean 

S 

Mean 

F 

ANOVA 

F(1,4) 

ANOVA p 

values 

Effect Size±95% 

CI 
Inference 

Fitness in Component Environments 
0.109 0.121 9.34 0.038 0.20±0.33 Small 

Fitness in Complex Environments 
0.074 0.088 2.37 0.199 0.34±0.27 Small 

Fitness in Novel Environments 
0.028 0.058 1320.48 3.4E-06 1.45±0.37 Large 

Fitness Post Acclimation 
0.014 0.026 49.61 0.002 1.08±0.29 Large 

Fitness Post Deteriorating 

Environments 

0.076 0.086 24.68 0.008 0.51±0.54 Medium 

Lag of the individual bacterial cells 
147.66 118.69 19.20  0.012 0.50±0.18 Medium 

Yield of the individual bacterial cells 
3.89 6.26 92.94  0.0006 0.94±0.19 Large 

 

Table 2.1 Summary of the main effects of selection in the pooled ANOVAs 
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Assay Environment Mean S Mean F 
ANOVA 

F(1,4) 

p values 

(Holm-Šidàk 

corrected) 

Effect 

Size 

±95% CI 

Inference 

Fitness in 

component 

environments  

pH 10 0.143 0.152 2.20 0.21 0.34±0.66 Small 

pH 4.5 0.0678 0.0455 3.22 0.27 0.82±0.68 Large 

Salt 0.0658 0.0939 4.19 0.29 0.56±0.67 Medium 

H2O2 0.161 0.193 6.54 0.23 1.22±0.71 Large 

Fitness in 

complex 

environments 
 

 

 
 

 

No. 51 0.037 0.054 4.05 0.38 0.75±0.68 Medium 

No. 54 0.047 0.058 1.16 0.71 0.42±0.66 Small 

No. 68 0.064 0.076 18.65 0.07 0.9±0.69 Large 

No. 49 0.126 0.155 5.67 0.32 0.79±0.68 Medium 

No. 22 0.078 0.084 0.15 0.71 0.29±0.66 Small 

No. 13 0.095 0.102 0.23 0.88 0.34±0.66 Small 

Fitness in 

novel 
environments 

Cobalt 0.019 0.079 308.37 2.4E-04 2.71±0.90 Large 

Norfloxacin 0.024 0.070 68.02 1.3E-03 3.34±1.01 Large 

EtBr 0.037 0.055 111.88 2.3E-03 1.14±0.70 Large 

Zinc 0.030 0.029 0.63 0.47 0.20±0.65 Small 

Fitness post 

acclimation  
Cobalt 3hr 0.01 0.015 0.5 0.767 0.63±0.95 Medium 

Cobalt 6hr 0.018 0.02 0.47 0.531 0.58±0.94 Medium 

Cobalt 9hr 0.018 0.03 14.87 0.135 2.92±1.33 Large 

Zinc 3hr 0.008 0.015 2.57 0.705 1.1±0.99 Large 

Zinc 6hr 0.01 0.016 11.48 0.18 2.4±1.21 Large 

Zinc 9hr 0.009 0.016 51.26 0.021 3.99±1.6 Large 

Norflox 3hr 0.024 0.028 0.609 0.859 0.49±0.94 Small 

Norflox 6hr 0.028 0.032 0.94 0.913 0.79±0.96 Medium 

Norflox 9hr 0.034 0.037 0.7 0.908 0.39±0.93 Small 

EtBr 3hr 0.001 0.029 40.42 0.027 3.16±1.39 Large 

EtBr 6hr 0.001 0.033 47.97 0.02 3.78±2.14 Large 

EtBr 9hr 0.001 0.035 417.5 0.01 7.59±2.64 Large 

Fitness post 
selection in 

deteriorating 

environments  

Cobalt 0.083 0.093 9.56 0.03 2.08±1.14 Large 

Norfloxacin 0.092 0.104 17.81 0.03 1.91±1.11 Large 

Zinc 0.054 0.060 13.15 0.04 1.20±1.00 Large 

Lag of the 

individual 
bacterial cells 

Cobalt 4.877 7.759 43.33 0.008 1.79±0.43 Large 

Norfloxacin 5.396 7.479 40.77 0.006 1.15±0.42 Large 

Zinc 1.897 3.306 6.47 0.064 0.69±0.34 Medium 

Streptomycin 4.000 7.519 99.53 0.002 1.77±0.42 Large 

Yield of the 
individual 

bacterial cells 

Cobalt 119.070 77.000 34.53 0.017 1.46±0.36 Large 

Norfloxacin 118.854 108.208 0.99 0.375 0.26±0.4 Small 

Zinc 206.059 185.056 1.62 0.47 0.42±0.33 Small 

Streptomycin 131.667 84.278 14.93 0.053 1.22±0.4 Large 

Table 2.2 Summary of the main effect of selection in the ANOVAs under individual 

environments 
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Assay 

Environment 

Mean 

C  

Mean  

F 

ANOVA 

p values  

Effect 

Size±95% 

CI  Inference 

Growth 

rate 

240C 0.31 0.34 <0.001 0.43±0.25 Small 

310C 0.46 0.51 <0.001 0.53±0.25 Medium 

380C 0.37 0.41 <0.001 0.61±0.25 Medium 

Yield 240C 0.086 0.089 <0.001 0.21±0.25 Small 

310C 0.1 0.11 0.478 0.12±0.25 Small 

380C 0.075 0.079 <0.001 0.45±0.25 Small 

 

Table 2.3 Effect size computed for the growth rates and yield measured in the three 

temperature environments from Figure 1 of Ketola et al 2013 (Ketola, Mikonranta et al. 

2013, Ketola, Mikonranta et al. 2013). Means and ANOVA p-values are as reported in 

that paper 
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4 DISCUSSION 

4.1 On measurement of fitness 

Most experimental evolution studies in microbes measure fitness in either of two ways. The 

first is a measure of fitness in terms of growth rate or yield (Holder and Bull 2001, Ketola, 

Mikonranta et al. 2013). The second involves measuring competitive fitness by mixing the 

evolved strains with the ancestors and scoring their relative densities after a period of growth 

(Travisano, Vasi et al. 1995, Silander, Tenaillon et al. 2007). It is sometimes argued that the 

second method is more preferable as it also includes a measure of the competitive ability and 

hence gives an estimate of the magnitude of adaptation that has occurred in the selected 

populations over the course of the experiment (Kassen 2014).  

By definition, measuring competitive fitness equates evolutionary change with change in 

competitive ability and thus equates evolution with the ability of one genotype to replace 

another. It is, therefore, a narrow definition of fitness in the context of a correspondingly 

narrow and strict concept of evolution. However, the present study employs a broader notion 

of evolution as change through time within a species (Losos, Baum et al. 2013) and fitness as 

a measure of number of offspring in a given unit of time (i.e. yield) or any trait that affects 

that number (i.e. lag time). This is because we intuitively find no reason to expect that 

exposure to randomly fluctuating environments would lead to a change in competitive ability. 

Furthermore, we explicitly aimed to study fitness at the level of individual bacterium, which 

also enabled us to investigate phenomenon like population-based resistance. The notion of 

competitive fitness is not congruous with this aim and hence is not used here. To summarize, 

our concept of fitness is similar to the usage some (Holder and Bull 2001, Ketola, Mikonranta 

et al. 2013) and may or may not correspond with a change in competitive fitness as used in 

some other studies (Travisano, Vasi et al. 1995, Silander, Tenaillon et al. 2007). 
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4.2 No significant adaptation to the component or complex environments 

 

 

Figure 2.1: Mean (±SE) fitness in component and complex environments. A. 

Component environments. In the first comparison of the pooled means over all four 

component environments, the selected (F) populations show significantly higher fitness 

than the control (S) populations.  The next four comparisons are for the individual 

component environments with no significant difference (individual ANOVAs) in the 

fitness of F and S populations. B. Complex environments.  There was no significant 

difference between the fitness of the F and S populations, either pooled over the six 

complex environments, or separately in each environment. Fitness was measured as 

maximum slope of the growth trajectory over 24 hours.  

* denotes p < 0.05. 
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When fluctuations in the selection environment are predictable, organisms often evolve to 

have higher fitness in the component environments (i.e. conditions experienced during the 

selection process) (Leroi, Lenski et al. 1994, Turner and Elena 2000, Hughes, Cullum et al. 

2007, Coffey and Vignuzzi 2011, Alto, Wasik et al. 2013, Puentes-Téllez, Hansen et al. 2013, 

Condon, Cooper et al. 2014), although some studies report no change in fitness relative to the 

ancestors or controls (Buckling, Wills et al. 2003). However, when the selection environment 

changes unpredictably, fitness in the component environments can increase (Turner and 

Elena 2000, Ketola, Mikonranta et al. 2013), show no change (Alto, Wasik et al. 2013), 

increase w.r.t some life-history traits and decrease w.r.t others (Hallsson and Björklund 2012) 

or increase in some of the environments but not all (Hughes, Cullum et al. 2007). In this 

study, although we observed an overall statistically significant increase in fitness under 

component environments (Fig 2.1 A), the magnitude of this increase was not biologically 

meaningful (Table 2.1), particularly on short time-scales. In terms of complex environments 

(i.e. the kind of environments actually faced during selection), the fitness of the selected 

populations did not differ significantly from the controls and the magnitude of the effect size 

was low. 

There can be multiple (and non-exclusive) reasons for the above observations. Firstly, it is 

known that the response to selection depends on the rate at which the environment is 

changing (Venail, Kaltz et al. 2011) and some evolutionary outcomes are possible only when 

the environments change relatively slowly (Lindsey, Gallie et al. 2013). In our experiment, 

the environment changed every 24 hours i.e. every ~6 generations, which might be too fast 

for the bacteria to adapt.  Secondly, earlier studies on effects of unpredictable environmental 

fluctuations have mostly been in the context of simple conditions like temperature (Hallsson 

and Björklund 2012, Alto, Wasik et al. 2013, Ketola, Mikonranta et al. 2013) or pH (Hughes, 

Cullum et al. 2007). However, our study looked at unpredictable combinations of multiple 
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values of three conditions (pH, salt and H2O2) leading to a total of 72 possible environments, 

out of which 24 were actually experienced during the course of this study (Appendix 2.2). 

This means that, on an average, our bacteria were forced to adapt to a novel combination 

almost every day. When the direction and target of selection changes stochastically, alleles 

that experience positive selection in a given environment might end up being neutral or 

negatively selected in the next environment. If the changes in environment happen 

sufficiently fast (as was the case in our populations), alleles with positive effects on fitness 

may not get sufficient time to get fixed before the environment changes. As a result of this, at 

least in the short run, a population might keep on evolving continuously, without really 

improving in terms of fitness in any of the component environments.   

Another reason for the insignificant change in growth rate in component and complex 

environments might be the relatively short duration of the selection experiment (30 days, 

~170 generations). This appears to contradict a recent study demonstrating that within three 

weeks of selecting Serratia populations under randomly fluctuating temperatures, the 

population growth rates can increase significantly (Ketola, Mikonranta et al. 2013). However, 

when we estimated the effect sizes from the fitness data of the previous study (Ketola, 

Mikonranta et al. 2013a), it was found that the Cohen's d for the differences in fitness of the 

control and the selected were small to medium (Table 2.3) and never large. It is evidently 

difficult to compare effect sizes across model organisms. However, if we adopt the same 

criteria for interpreting Cohen's d statistics for both studies, then the conclusions are 

identical: selection for short durations leads to statistically significant increase in fitness 

under component environments, but the magnitude of change is small. Interestingly, when E. 

coli are subjected to long term selection (~2000 generations), the magnitude of increase in 

fitness under unpredictable environments is typically less than that under predictably 

fluctuating environments (Hughes, Cullum et al. 2007). This suggests that somehow, 
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stochastic fluctuations hinder the evolutionary increase of fitness more than deterministic 

fluctuations, which is consistent with similar experiments on viruses (Alto, Wasik et al. 

2013). 

 

To summarize, given the fast rate of change of environment, large number of possible states 

that selection environment could take and the relatively short duration of the selection 

experiment, it is not surprising that the F populations in general failed to increase fitness in 

the component environments. By that line of reasoning, there was no reason to expect any 

changes in fitness under novel environments either. However, that was not the case. 
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4.3 Short-term and long-term increase in fitness under novel environments 

 

 

Figure 2.2: A. Mean (±SE) fitness in novel environments. Pooled over the four novel 

environments, F populations show significantly higher fitness than S populations. When 

compared separately for each novel environment, F populations show significantly higher 

fitness in cobalt, norfloxacin and ethidium bromide and similar fitness in zinc. B. Mean 

(±SE) fitness in novel environments after facing deteriorating environments. Pooled 

over the three novel environments, populations selected under fluctuating environments (F) 

show significantly higher fitness than the control (S) populations. When compared 

separately for each novel environment, the F populations still had significantly higher 

growth rate than the S populations. This indicates that the fitness advantages of the F 

populations were retained after ~50 generations of deteriorating selection.  

* denotes p < 0.05 (after Holm-Šidàk correction in the case of comparisons under 

individual environments). 
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Figure 2.3: Mean (±SE) fitness in novel environments after acclimation. F and S 

populations compared separately for the combination of each novel environment and 

duration of acclimation. F populations show significantly higher growth rate than the S 

populations in four out twelve instances.  

* denotes p < 0.05 (after Holm-Šidàk correction in the case of comparisons under 

individual environments). 
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When exposed to novel environments, the F populations had significantly higher fitness in 

three of the four environments and suffered no disadvantage compared to the controls in the 

remaining one (Fig 2.2 A, Table 2.2). This suggests that selection under fluctuating 

environments can increase the ability of populations to face completely novel stresses, which 

agrees with the results of a previous study (Ketola, Mikonranta et al. 2013). This is also 

consistent with observations from the literature on invasive species that organisms inhabiting 

disturbed habitats are often able to cope better with novel environments, thus becoming better 

invaders (reviewed in Lee and Gelembiuk 2008).  

The simplest explanation for the better performance of the F populations under novel 

environment could be the presence of cross-tolerance / correlated response to selection for 

pH, salt and H2O2. However, we failed to locate any study in the literature that has observed 

an increased growth rate under any of our novel stresses as a result of selection for any of the 

three stresses that we used as components for the fluctuating environment. This is perhaps not 

surprising since the four novel stresses that we used had very different modes of action. For 

example, while norfloxacin is a DNA gyrase and topoisomerase IV inhibitor (Drlica and 

Zhao 1997), ethidium bromide is a DNA intercalating agent which can cause frame-shift 

mutations (Singer, Lawlor et al. 1999).  Cobalt affects the activity of iron-sulfur enzymes 

(Ranquet, Ollagnier-de-Choudens et al. 2007) but zinc acts primarily by preventing 

manganese uptake by cells (McDevitt, Ogunniyi et al. 2011). Although, in principle, it is 

possible that the F populations had evolved four different mechanisms to fight each of these 

stresses through correlated response(s), the likelihood of such an event was low, particularly 

given the relatively short duration of the selection. While this lack of evidence from the 

literature cannot be construed as a proof, it at least forced us to explore the possibility of 

other mechanisms that might be at work to confer a growth advantage to the F populations 

upon exposure to novel environments.  
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Some theoretical studies suggest that environmental fluctuations spanning across a few 

generations (as in our study) can promote the maintenance of genetic variation in a 

population (Turelli and Barton 2004), presumably leading to advantages under novel 

conditions. A different modelling approach predicts that when environments fluctuate 

rapidly, organisms of intermediate fitness are selected, which can tolerate a multitude of 

conditions, but none too well (Meyers, Ancel et al. 2005). Intuitively, it is expected that any 

mechanism which allows a population to attain higher growth rates upon first exposure to a 

novel stress, will also be beneficial under acclimation and directional selection for that stress. 

This is because a higher growth rate during the initial stages of exposure to a stress allows the 

bacterial population to undergo more divisions and hence an increased probability of 

acquiring a suitable beneficial mutation which can then spread in the population. Thus, the F 

populations were expected to have greater fitness after the acclimation as well under 

deteriorating selection in deteriorating environments. After ~50 generations, the F 

populations retained an overall higher growth rate than the S populations in all three novel 

environments (Fig 2.2 B, Table 2.2). However, the magnitude of difference in fitness between 

F and S populations reduced after 50 generations of deteriorating selection (see Fig 2.2). This 

observation is consistent with a scenario where the selected populations have more standing 

genetic variation but do not have an increased mutation rate. Greater standing genetic 

variation makes the existence of a favorable mutation in the population more likely, thus 

providing an early growth advantage. On the other hand, an increased mutation rate in the F 

populations is expected to increase the difference in fitness vis-à-vis the controls, at least in 

the short run (Wagner 1981), which was not found to be the case.  

 

Surprisingly, F populations did not show significantly higher mean growth rate than S 

populations after acclimation (Fig 2.3). Mean growth rate of F populations was always 
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greater than S populations but out of 12 such comparisons, only 4 were statistically 

significant with large effect size (Table 2.2, Fig 2.3). Moreover, the growth rates after 

acclimation are lower than those estimated at first exposure to the novel environment. This 

discrepancy is probably due to the lack of revival step before the growth rate estimation. 

Growth rate estimation was performed by inoculating the part of glycerol stock into the novel 

environment, which could have affected the growth rates of S and F populations. In spite of 

higher mean growth rates, F populations do not perform significantly better in the face of 

novel environment in post acclimation conditions.  
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4.4 Higher fitness of individuals in novel environments 

 

Figure 2.4: Fitness of individual bacterial cells. A.  Mean (±SE) lag time is significantly 

lower for F populations than S populations when pooled over four novel environments. 

When compared separately for each novel environment, F populations show significantly 

lower lag time in cobalt and streptomycin and similar lag time in norfloxacin and zinc. B.  

Mean (±SE) yield is significantly higher for F populations than S populations when pooled 

over four novel environments. When compared separately for each novel environment, F 

populations show significantly higher yield for cobalt, norfloxacin and streptomycin and 

similar yield for zinc.         

* denotes p < 0.05 (after Holm-Šidàk correction in the case of comparisons under 

individual environments). 
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For all the four novel environments, the lag times were lower for F populations and yields 

were higher (Fig 2.4) although the differences were not statistically significant for each 

comparison (Table 2.2). This corroborates similar observations at the population level (Fig 

2.2).  

Increased fitness in multiple novel environments can come about in at least two major ways: 

an increased rate of generating new variation or the existence of larger amount of standing 

variation. If the first case were true, then one would not expect the progenies of all 

individuals of the F populations to acquire the favorable mutations at the same time in a novel 

environment. If the F populations had increased standing variation which was contributing to 

their enhanced fitness under novel environments, then again one would expect that most 

individuals would fail to grow and the progenies of only few individuals would primarily 

contribute to the final population size.  However, we found no outliers in terms of 

contributions to the final size of the population (see Fig 3.2 and section 4.2 in chapter 3 for 

details) which suggests that whatever the mechanism that had evolved, was benefitting all the 

existing F individuals similarly. This observation does not fit with either increased rate of 

generation of variation or increased standing genetic variation.  
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5 SUMMARY 

The results of this chapter show that F populations do not improve fitness under component 

or complex environments but show improved fitness in the novel environmental 

backgrounds. Fitness advantage is retained over two different time scales of exposure to the 

novel environments as well as at the level of individuals. Next chapter looks at the possible 

mechanisms which could have led to the observed patterns of fitness advantage in the various 

novel environments.  
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Chapter 3. Efficient energy dependent efflux is the most 

likely mechanism leading to fitness advantage in novel 

environments 
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1 INTRODUCTION 

One previous study (Ketola, Mikonranta et al. 2013) and the previous chapter suggest that 

fluctuating environments can select for higher fitness in novel environments. The 

parsimonious explanation for such an increase could be a correlated response to fitness 

improvements in the selection environments. In such a case, common mechanism employed 

for fighting both the selection and novel environments is the most likely candidate for the 

mechanistic basis of the observed improvement in fitness. But contradictory to this premise, 

previous results show that F populations show fitness advantage in the face of novel 

environments without any similar outcome in the component environments. More 

importantly, the novel environments tested, are diverse in their mechanism of action. 

Norfloxacin is a DNA gyrase and topoisomerase IV inhibitor (Drlica and Zhao 1997), 

ethidium bromide is a DNA-intercalating agent which can cause frameshift mutations 

(Singer, Lawlor et al. 1999). Cobalt affects the activity of iron–sulphur enzymes (Ranquet, 

Ollagnier-de-Choudens et al. 2007), but zinc acts primarily by preventing manganese uptake 

by cells (McDevitt, Ogunniyi et al. 2011). Taking these observations into account, here we 

investigated two variation based mechanisms which can confer fitness advantage in the face 

of any novel environment, correlated or not. 

First one is the ability to generate greater genetic variation. This can be achieved by 

increasing the rate of generation of variation, which has been suggested to be one of the 

primary mechanisms by which evolvability can evolve (reviewed in Pigliucci 2008). 

Populations selected under constant glucose limitation have been previously shown to evolve 

the ability to generate higher amount of variation, aka the hypermutator phenotype 

(Sniegowski, Gerrish et al. 1997). Owing to faulty mismatch repair, hypermutators show 2 to 

3 orders of magnitude increase in the mutation rate and can help the corresponding genotype 

to acquire favourable variations faster. The hypemutator phenotype can then hitchhike with 
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the favourable variation generated. The second possible route to obtain greater amount of 

genetic variation is by increasing the standing variation in the population. Theoretical studies 

predict that fluctuating environments can select for higher standing variation (Gillespie and 

Turelli 1989, Turelli and Barton 2004) which, in turn, can increase the variation for fitness.  

We checked this possibility by looking at the distribution of fitness for individual cells in the 

novel environments. Additionally, we also compared the phenotypic variation across F and S 

populations as a meaningful proxy of standing genetic variation   

Next we investigated a system specific mechanism of energy dependent efflux which is 

known to play a role in resistance to heavy metals and antibiotics (Li and Nikaido 2009, 

Nikaido and Pagès 2012). In addition to F and S populations, we also estimated the efflux 

rate for populations exposed to constant concentration of component environments (see 

section 2.5 for details). 

Differential efflux abilities between F and S populations prompted us to investigate whether 

the fitness advantage in the face of novel environments can be extended to cold temperature 

where efflux is not likely to play any role. We also checked whether fitness advantage of F 

populations decays with increased duration of relaxation i.e. growth in NB for 5 to 6 

generations.  

We found that F populations do not differ from S populations in their variation based 

attributes. Instead they have evolved a systemic response of higher energy dependent efflux 

which can confer fitness advantage in multiple novel environments.  
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2 METHODS 

 2.1 Mutation rate measurement& Sequencing mutS and mutL genes 

For the presence of hypermutators, we estimated the mutation rates (see Appendix 1.2 for 

details) of S and F populations in presence of antibiotic rifampicin. Additionally, we 

sequenced the candidate genes from mismatch repair pathway (see Appendix 1.3 for details), 

mutS and mutL, for the presence of mutations. 

 

2.2 Population based resistance in novel environments 

Population-based resistance occurs when a small fraction of the individuals synthesize a 

chemical which is then available to the other individuals of the population. However, as in 

our assay for individual-level fitness (see section 2.2.6 of chapter 2), when the bacteria are 

immobilized over an agar surface at extremely low densities for short durations, exchange of 

such chemicals become almost impossible. Thus, only those bacteria can resist the stresses 

which are able to synthesize the stress-fighting chemical on their own. If such bacteria are an 

extremely small fraction of the population, then they are expected to show up as outliers in 

the growth rate assay (see discussion for further elaboration).  

Most formal tests of outlier detection assume the underlying data to be normally distributed 

(Barnett and Lewis 1994). Since our yield data did not meet this assumption, we used plots of 

the cumulative yield percentage to check for outliers. For this, we computed the percentage 

contribution of each parental bacteria to the final yield, arranged the values from both trials in 

ascending order and plotted the cumulative percentage yield against the percentage of the 

parental cells. In this plot, any cell(s) with disproportionate contribution to the overall yield 

can be easily identified by a sharp upward inflection towards the right of the graph.  
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2.3 Assay for phenotypic variation 

We assayed the phenotypic variation in the population using GEN III MicroPlateTM (Catalog 

no. 1030 Biolog, Hayward, CA, USA).  Each of these plates contains 94 separate substrates of 

which 71 can be utilized as carbon sources while 23 can act as growth inhibitors.  The 

presence or absence of growth is indicated with the help of tetrazolium redox dye where 

intensity of purple color is proportional to the amount of growth.  

From each of the F and S populations, we obtained 8 clones by streaking the glycerol stock 

on a Nutrient Agar plate and incubating overnight at 370C. Thus a total of 48 clones were 

isolated over the three S and three F populations. Every clone was then characterized for the 

94 different phenotypes on the Biolog plate using standard protocol (see Appendix 3.1 for 

details). An ancestral clone was processed in the same way to obtain the ancestral phenotypic 

profile.  

Following a previous study (Cooper and Lenski 2000), we measured absorbance of the plates 

at 590 nm using a microplate reader (SynergyHT BioTek, Winooski, VT, USA). For the 23 

wells with inhibitory compounds, considering the recommendations of the product manual, 

we scored optical densities that were 50% or more of the corresponding positive control as 1 

(i.e. no inhibition) and others as 0 (inhibition). Similarly, for the 71 wells with substrate 

utilization test, optical density that was ≥200% of the corresponding negative control was 

scored as 1 (i.e. utilized) while the others were scored as 0 (i.e. not-utilized). These binary 

scores were then used to determine standing phenotypic variation as well as the differences 

from the ancestral phenotypic profile. 33 phenotypes showed no variation in S and F (i.e. all 

individuals in S and F were either 0 or 1) and were ignored. For estimating standing 

phenotypic variation over the remaining 61 phenotypes, we computed the sum score of every 
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replicate population over the eight clones. These values, ranging from 0 to 8, denote the 

variation within every population for that phenotype. It should be noted here that in some of 

the 94 substrates, absence of growth (i.e. 0) was the dominant phenotype while for the other 

substrates, the presence of growth (i.e. 1) was the dominant one. We were not interested in 

the qualitative nature of the phenotype (1 or 0) and wanted to analyze the variation over the 

entire set of 94 phenotypes. Therefore, we mapped phenotypic variation values of 5, 6, 7 and 

8 to 3, 2, 1 and 0 respectively. In other words, a population in which three clones showed no 

growth (i.e. 3 zero values) and five clones showed growth (i.e. 5 values of 1), was deemed to 

have the same phenotypic variation for a given phenotype as a population which had five 

non-growers and three growers for a different phenotype. These mappings work only across 

phenotypes and fail if there are differences between the three replicates of S or F for the same 

phenotype. However, only three such cases were found in S populations and none at all in the 

F populations. The interpretations of our statistical analysis did not change with or without 

these points and hence we have retained these three data points.  

For estimating the phenotypic divergence from the ancestor, we recorded the number of 

clones displaying phenotype that was different from the ancestral one, for all the F and S 

populations.  

 

2.4 Efflux measurement 

Energy dependent efflux of 30 day selected F and S populations was measured (see Appendix 

1.4 for details).  

 

 



56 
 

2.5 Efflux activity under selection for adaptation to constant environment  

 Median values for each of the stress variable used in selection (Salt 4g%, pH5, pH9.5 and 

0.012M H2O2) were chosen for selection in constant environment. Escherichia coli (strain 

NCIM 5547) was revived overnight in Nutrient Broth. This revived culture was used to 

initiate three replicate populations in each of the selection environments and Nutrient Broth, a 

total of 15 populations. Culturing conditions and transfer volume was as mentioned in section 

2.1.1 in chapter 2. The selection lasted for seven days (i.e ~40 generations), without any 

extinction events, after which the populations were stored as glycerol stocks. These stocks 

were then used for efflux measurement (see Appendix 1.4 for details). 

 

2.6 Growth rate estimation in cold environment  

Based on range estimations with the ancestor, 220C was chosen as an assay temperature for 

fitness assessment of S and F populations in the face of broad novel stress (Bárria, Malecki et 

al. 2013). 100 µl of 30 day selected S and F populations were revived in 50 ml NB each. 4 µl 

of each of the revived culture was inoculated in 2 ml of NB in triplicates in a 24 welled plate. 

The plate was then incubated at 220C for 24 hr and fitness was assayed (see Appendix 1.1 for 

details). 

 

2.7 Effect of duration of relaxation on the response to novel environments  

The fitness of F populations in novel environments after 24 hr were compared to the fitness 

after 48 hr to check whether the fitness advantage of F populations stem from plastic 

mechanisms. These could be the carry over responses activated during selection in the 
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fluctuating stressful environment. If not inherited stably, such responses can deteriorate with 

the increase in the duration of relaxation.  

Fitness in novel environments after 48 hr were determined with one additional overnight 

passage in NB before the fitness assessment. After the second day growth in NB, fitness in 

novel environments was assayed (see Appendix 1.1 for details) and these fitness were 

compared with those after 24 hr (data represented in Fig 2.2 A).  

 

2.8 Statistical analysis 

2.8.1 Mutation rate estimation  

Estimated mutation rate was analyzed using 1-way ANOVA with selection (two levels: S and 

F) as a fixed factor.  

 

2.8.2 Phenotypic variation 

The phenotypic variations were analyzed by a two way ANOVA with phenotype (61 levels) 

and selection (2 levels: S and F) as fixed factors while the differences from the ancestor was 

analyzed using a two way ANOVA with phenotype (61 levels for Phenotypes) and selection 

(2 levels: S and F) as fixed factors. 

 

2.8.3 Efflux  

Efflux measurement after 30 days of selection was analyzed using 2-way ANOVA with 

selection (two levels: S and F) as a fixed factor and replicate (three levels) as a random factor 

nested in selection. For the efflux measurements after the selection in the constant 
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environments, the average of the three efflux measurements for each population was used for 

analyzing all the environments together. The pooled data was analyzed using 1-way ANOVA 

where Selection (five levels: Salt, pH5, pH9.5, H2O2 and NB) was a fixed factor. For 

analyzing each stress separately, we performed four separate 2-way mixed model ANOVAs 

where selection (two levels: selected and control) and replicates (three levels, nested in 

selection) were treated as fixed and random factors respectively. 

 

2.8.4 Growth rate in cold environment  

Fitness estimates in cold temperature were analyzed using a 3-way mixed model ANOVA 

with selection (two levels: S and F) as a fixed factor, replicate (three levels) as a random 

factor nested in selection and trial (two levels) as a random factor nested in selection × 

replication.  

 

2.8.5 Effect of duration of relaxation on the response to novel environments  

Fitness estimates were analyzed using 4-way mixed model ANOVA with duration of 

relaxation (two levels: 24 hr and 48 hr) and assay environment (four levels: cobalt, ethidium 

bromide, norfloxacin and zinc) as fixed factors, replicate (three levels) as a random factor and 

trial (two levels) as random factor nested in duration of selection × assay environment × 

replicate. We compared the effect of duration of relaxation in each of the assay environment 

using 3-way mixed model ANOVA with duration of relaxation (two levels: 24hr and 48 hr) 

as a fixed factor, replicate (three levels) as a random factor and trial (two levels) as a random 

factor nested in duration of selection × replicate. Family-wise error rates were controlled 

through sequential Holm-Šidàk correction of p values.  
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To judge the biological significance of the differences in mutation rate or efflux potential or 

growth rate of F and S populations, we computed Cohen’s d statistic (Cohen 1988) as a 

measure of the effect sizes (Sullivan and Feinn 2012). Following existing guidelines (Cohen 

1988), we interpreted the effect sizes as small, medium and large for 0.2<d<0.5, 0.5<d<0.8 

and d>0.8, respectively. Cohen’s d statistics were estimated using the freeware Effect Size 

Generator v2.3.0 (Devilly 2004). 
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3 RESULTS 

3.1 Mutation rates and presence of hypermutator  

 Although the F populations had higher mutation rates than the S populations with a large 

effect size (d = 1.65, Table 3.1), this difference was not statistically significant (F1,4 = 4.112, 

p  = 0.11; Table 3.1, Fig 3.1). More importantly, the mutation rates were of the order of 10-8 

to 10-9 which suggests that the ability of the F populations to face novel environments is not 

attributable to the evolution of hypermutators (i.e. alleles that cause 100-1000 fold increase in 

mutation rate) (Denamur and Matic 2006).  

mutS and mutL genes were sequenced for one clone each from every S and F population. 

When these sequences were aligned with the library sequence for the same genes, no gaps or 

insertions were found except an insertion of adenine residue at 540th position in mutS gene of 

one of the replicate F population. Similar event of insertion have been shown to result in a 

hypermutator phenotype in laboratory populations adapting to glucose limited environment 

(Shaver, Dombrowski et al. 2002). Populations with hypermutator phenotype show 100 to 

1000 times increase in the mutation rates (Sniegowski, Gerrish et al. 1997). However, such 

increase in mutation rate was not observed in this case (Fig 3.1). Results are summarized in 

Table 3.2. Overall, we concluded that there were no major mutations that can be classified as 

a hypernutator. 

 

 

3.2 Population based resistance in the novel environments 

Inspection of the data suggested that there were no individual cells whose progeny 

contributed disproportionately to the final population size. This can also be seen from the plot 
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of the cumulative percentage yield of the cells, where the F populations showed a linear trend 

in three out of the four novel environments (Fig 3.2).  Only in zinc, there was a small 

departure from the linearity (Fig 3.2 D). However, even then ~20% of the cells contributing 

to ~40-60% of the observed yield and hence, there was nothing to suggest the presence of a 

small number of outliers that contributed disproportionately to the growth. Interestingly, zinc 

was the only novel environment where F populations did not display a fitness advantage in 

terms of yield or lag (see discussion), thus ruling out the possibility of a few individuals 

conferring fitness advantage to the entire population.  

 

3.3 Phenotypic variation 

For 33 out of the 94 substrates tested, no variation was found i.e. all the 48 clones of S and F 

gave the same phenotype. In the remaining 61 substrates, at least 1 out of the 48 clones (8 

clones each for three S and three F populations) gave a different phenotype. ANOVA on the 

phenotypic distances showed a significant main effect of phenotype (F60, 244 = 3.69, p << 

0.001) suggesting some phenotypes explained more variation than others. This is intuitive as 

one does not expect similar number of variation for 61 traits over six populations.  However, 

more crucially, there was no significant difference for the phenotypic variation across S and F 

populations, with a low effect size for the difference (Table 3.1, Fig 3.3 A). Thus, we 

conclude that there was no evidence of an increased phenotypic variation in the F 

populations.  

61 out of 94 phenotypes (not the same 61 as above though) showed at least one clone that 

was phenotypically different from the ancestor. Although, averaged over the 61 phenotypes, 

the S populations showed greater divergence which was marginally statistically significant 

(Fig 3.3 B) the corresponding effect size of the difference was low (Table 3.1). More 
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crucially, there was no phenotype for which all S or F populations were different from the 

ancestor. Barring two cases, no consistent pattern was observed in terms of acquiring or 

losing a phenotypic trait. 43 out of all the 48 clones tested acquired the ability to utilize 

methyl pyruvate while 39 became capable of utilizing β-methyl- D-glucoside.  Although prior 

studies indicate that the ability to catabolize methyl pyruvate (Timonen, Jørgensen et al. 

1998) and β-methyl- D-glucoside (Perkins and Nicholson 2008) often evolves under different 

kinds of stresses, the reason for the same remains unknown.  Since, both S and F populations 

acquired the ability to utilize these compounds it is possible that there is some fitness 

advantage of these two phenotypes in nutrient broth. Crucially, there were no clear patterns in 

terms of phenotypic divergence from the ancestor, indicating that the variation accumulated 

is likely to be either neutral or have very weak effect on fitness. Apart from one replicate 

population of S in which all the individuals tested had lost the ability to utilize D-raffinose 

and pectin as a carbon source, there was not a single population in S or F in which all eight 

individuals had diverged from the ancestor. This suggests that the observed phenotypic 

variation is unlikely to be a result of a strong and /or directional selection pressure on one of 

the phenotypes. The divergence from ancestral phenotype varied significantly across different 

phenotypes (F60, 244 = 18.82, p << 0.001) with a significant interaction with selection (F60, 244 

= 2.98, p << 0.001). Both these results are intuitive since one neither expects similar levels of 

divergence over 61 substrates nor similar patterns of divergence in S and F populations.   

 

3.4 Efflux rates 

 The F populations had significantly higher activity of the ATP dependent efflux pumps with 

a large effect size of the difference (F1,4= 34.65, p = 0.004; d = 3.79, Table 3.1, Fig 3.4). This 

indicates the evolution of an increased rate of efflux of toxic materials from inside the cells, 
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which can explain the ability of the F populations to maintain a higher growth rate in novel 

environments.  

The observed increase in efflux activity could have been either due to exposure to 

unpredictable fluctuations in the environments, or merely due to the component stresses 

themselves. To distinguish between these two possibilities, we compared the efflux activities 

of populations directionally selected under the four component stresses (acidic pH, basic pH, 

salt and H2O2). When analyzed together, there was no main effect of selection in the ANOVA 

(F4,10= 0.577, p = 0.686) suggesting that efflux activity did not differ significantly among the 

populations subjected to the four stresses and those evolved under NB. When we analyzed 

the efflux activities separately for each stress, none of the differences turned out to be 

statistically significant at the 0.05 level (Table 3.3). In terms of the effect size of the 

difference, acidic pH (d = 0.29) and basic pH (d = 0.19) showed small effect sizes. In the case 

of salt, although the effect size was large (d = 1.13), the salt-selected populations actually had 

lower efflux activity than the controls. Only in case of H2O2, the selected populations had a 

larger efflux activity, and the effect size of the difference was large (d = 1.91). However, 

given that we failed to get a significant difference either in the pooled ANOVA or the 

individual one for H2O2, it is difficult to state that there was a significant change in efflux due 

to H2O2. Overall, these results suggest that exposure to unchanging component environments 

could not have been responsible for the observed increase in efflux activity of the F 

populations (see section 4.4 for discussion). 

 

3.5 Fitness in cold environment 

F populations displayed higher mean fitness than S populations with large effect size but the 

difference was not statistically significant (F1,4 = 4.88, p = 0.092, d = 1.3, Table 3.1, Fig 3.5).  
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3.6 Effect of duration of relaxation on response to novel environments  

Fitness differed marginally between 24 hr and 48 hr of relaxation when pooled over all the 

novel environments, but the effect size of the difference was small (F1,2 = 17.97, p = 0.051, d 

= 0.13, Table 3.4, Fig 3.6). Surprisingly though, the fitness increased after 48 hrs of 

relaxation. There was a significant effect of novel environment (F3,6 = 126.38, p <0.0001) 

along with the significant interaction with duration of relaxation (F3,6 = 114.19, p <0.0001). 

When each of the novel environments was analyzed separately, the fitness differed 

significantly with large effect size between 24 hr and 48 hr of relaxation (Table 3.4, Fig 3.6). 

However, the direction of difference was not the same for the four novel environments. F 

populations displayed higher fitness after 48 hr compared to 24 hr of relaxation in cobalt and 

zinc while this was reversed in presence of norfloxacin and ethidium bromide. Overall, these 

results indicate that fitness of F populations in novel environments does not decrease with 

increasing the duration of relaxation.  
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Assay  

Mean  

S 

Mean  

F 

ANOVA F 

(df effect, df 

error) 

ANOVA 

p values  

Effect 

Size±95% 

CI  Inference 

Mutation Rate 

 

1.0E-09 6.4E-09 4.11 (1,4) 0.11 1.65±1.85 Large 

Efflux potential 

 

0.204 0.364 34.65 (1,4) 0.004 3.79±1.55 Large 

Fitness in cold 

environment 

0.03 0.046 4.88 (1,4) 0.092 1.3±0.72 Large 

Phenotypic 

variation 

0.61 0.51 1.51 (1,244) 0.22 0.11±0.2 Small 

Phenotypic 

divergence from 

ancestor 

0.97 0.79 3.98 (1,244) 0.047 0.1±0.2 Small 

 

Table 3.1 Summary of the main effects of selection   
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Gene 
Product 

length (bp) 
Identity 

Read length 

(bp) 
Mismatch Gaps Comment 

mutS 2562 S 2435 4 1 (At the very end) 

  S 2415 0 0  

  S 2434 1 0 (T → A at the beginning) 

  F 1816 0 0 (Primer 1 did not work) 

  F 2411 0 0  

  F 2302 50 1 (Insertion of 'A' near 540th base) 

       

mutL 1850 S 1848 0 0  

  S 1848 7 0 (Between 660 and 1210 bp) 

  S 1848 0 0  

  F 1153 0 0  

  F 1848 2 0 (Both G→A, between 850 and 1200) 

  F 1515 1 0 (C→G, at the beginning) 

 

 

Table 3.2 Details of mismatch and gaps for the sequenced mutS and mutL gene from S 

and F populations 
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Selection 

environment 

Mean 

Control 

Mean 

Selected 

ANOVA 

F(1,4) 

ANOVA 

p values 

Effect 

Size±95% 

CI 

Inference 

Salt 
0.648 0.49 1.52 0.285 1.13±0.99 Large 

pH 5 
0.551 0.507 0.1 0.765 0.29±0.93 Small 

pH 9.5 
0.59 0.622 0.04 0.851 0.19±0.93 Small 

H2O2 
0.458 0.626 4.74 0.095 1.91±1.11 Large 

Note that no Holm-Šidàk correction was done since even the lowest p-value was not 

significant at the 0.05 level. 

Table 3.3 Results of individual ANOVA show no difference in the energy dependent 

efflux of control and any of the selected populations when analyzed separately 
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Table 3.4 Effect of duration of relaxation on the response to novel environments along 

with the results of individual ANOVA in each of the novel environment. 

Assay 

environment 

Mean 

after 

24 hr of 

relaxation 

Mean 

after  

48 hr of 

relaxation 

ANOVA F 

(1, 2) 

ANOVA 

/ Holm-

Šidàk p 

values  

Effect 

Size±95% 

CI  

Inference 

Pooled  
0.059 0.064 17.99 0.052 0.13±0.33 Small 

Cobalt  
0.079 0.047 56.51 0.017 1.37±0.72 Large 

Norfloxacin 
0.07 0.1 83.1 0.023 1.07±0.7 Large 

Ethidium 

bromide 

0.055 0.09 262.2 0.011 1.01±0.69 Large 

Zinc  
0.03 0.011 681.5 0.006 2.41±0.85 Large 



69 
 

4 DISCUSSION 

4.1 No significant change in mutation rates 

 

 

Figure 3.1: Mean (±SE) mutation rate for S and F populations estimated in the 

Rifampicin background. Although the F populations had slightly increased mutation rates 

than the S populations, the difference was not statistically significant. More importantly, 

the mutation rates are of the order of 10-9, which indicates that hypermutators did not 

evolve in either of the populations. 
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Fluctuating environments are expected to favor an increase in the rate of generation of 

genetic variation through an increase in mutation rates of the populations (Leigh Jr 1970, 

Ishii, Matsuda et al. 1989). Although the average mutation rate of our F populations was 

larger than that of the S (Fig 3.1), the difference was not statistically significant. There can be 

multiple (not mutually exclusive) reasons for this observation. Firstly, ~170 generations of 

selection might have been insufficient for the mutation rates of the selected populations to 

have diverged enough to be statistically distinguishable from those of the controls. The fact 

that the magnitude of the difference is ~6 folds and the effect size of the differences is large 

(Table 3.1) is consistent with the notion that mutation rates in the selected populations are 

increasing. Secondly, constitutively-expressed mutator alleles are typically thought to spread 

in a population by hitch-hiking with a beneficial allele (Sniegowski, Gerrish et al. 1997, 

Taddei, Radman et al. 1997, Gentile, Yu et al. 2011), although see (Torres-Barceló, Cabot et 

al. 2013). However, as in our experiments, if the direction of selection keeps on changing 

very often, then it is unlikely that a particular mutation would be favorable for long. This will 

also make it difficult for an attached mutator allele to hitch-hike to fixation with the selected 

mutation. In spite of this reduced chances of retaining the mutator allele, F populations could 

benefit from the increased mutation rate and hence increased variation, over short time scales. 

The results of sequencing mutS allele revealed an insertion of adenine residue near 540th base 

pair in one of the replicate F populations. Such frameshift mutation can potentially hamper 

the mismatch repair mechanism and increase the mutation rate (Sniegowski, Gerrish et al. 

1997, Shaver, Dombrowski et al. 2002). In line with this possibility, the same replicate F 

population with the insertion showed an order of magnitude increase in the mutation rate, 1.1 

× 10-8, as opposed to 1.3 × 10-9 and 7.8 × 10-9 of the other two replicates. But when we 

looked at the growth rates estimates, cobalt was the only novel environment in which the 

replicate carrying the insertion mutation in mutS outperformed the other two replicates.  
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Thus, although it is difficult to pin-point the reason, the chief result here is that the difference 

between  the mutation rates of the selected and the control populations was relatively small 

and not statistically significant. In other words, there is no evidence to suggest that 

fluctuating environments select for large increases in mutation rate. Coupled with the 

relatively short period of selection (~170 generations) it is unlikely that the observed growth 

rate differences in the novel environments are due to the selected populations generating or 

accumulating genetic variation faster than the control populations. This prompted us to look 

at another variation based mechanism that can lead to broad based stress resistance. 
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4.2 No evidence for population-based resistance  

 

Figure 3.2: Population-based resistance in F populations.   The cumulative percentage 

contribution of parental bacteria to the final yield is plotted for three replicate F 

populations in four novel environments. Each line in a figure stands for a replicate 

population of F. A. Cobalt, B. Norfloxacin, C. Streptomycin, D. Zinc. In this kind of a 

graph, the presence of outliers is detected as a sharp inflection towards the right, which was 

not observed. This indicates that no individual cells contributed disproportionately to the 

total yield. 
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When the magnitude and direction of selection fluctuates continuously, traits that are 

favorable under one set of conditions, might become neutral or even deleterious when the 

environment changes. This can lead to a scenario where a population is continuously 

changing with each shift in environment, without really evolving to greater fitness. One way 

by which a population can escape such a stasis is through the evolution of cooperation which 

allows subsets of the population to specialize in countering particular stresses and then confer 

resistance to the population as a whole (West, Griffin et al. 2007). For example, it has been 

shown that in populations of the bacteria Pseudomonas aeruginosa, the proportion of 

individuals that synthesize the iron-scavenging siderophore pyoverdin, changes based on the 

kind of competition and genetic relatedness (Griffin, West et al. 2004). Similarly, when E. 

coli populations are challenged with antibiotics, a very small percentage (0.1 ˗ 1%) of the 

individuals secret excess amounts of indole to the external environment, which then allows 

the entire population to become antibiotic resistant (Lee, Molla et al. 2010). Since only a 

small fraction of the population needs to evolve the resistant mechanism for a given stress, in 

principle, this mechanism allows different subsets of the population to evolve resistance to 

different stresses. This should increase the population level variation in terms of the ability to 

resist diverse stresses, and hence increase fitness in different kinds of novel environments. 

Given that antibiotics were among the novel environments that we studied, population-based 

resistance was a possible explanation for the fitness advantages of F populations. Our assay 

for individual fitness was expected to detect the resistant subset as outliers with exceptionally 

high yield. This is because immobilization of cells at extremely low density over an agar 

surface limits the diffusion of extracellular metabolites over long distances and only those 

cells which synthesize the resistant factors can resist the stresses. However, we did not find 

any outliers in terms of the yield and, except in the case of zinc, all the plots of cumulative 

yield were linear (Fig 3.2). Even in the case of zinc, where there was a slight departure from 
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linearity, at the point of inflection, ~20% of the parents contribute to ~40-60% of the yield. 

Overall, the conclusions are unambiguous, the observed increase in yield of the F populations 

were not attributable to a small fraction of the population. 

The above result could have arisen in at least two other ways. It was possible that the F 

populations do exhibit population-based resistance, but we had managed to sample only those 

bacteria that conferred resistance to the population. The chances of such an event happening 

are probably negligible since, as stated already, the fraction of bacteria that confer the 

population-wide resistance is typically very low (Lee, Molla et al. 2010). As we had sampled 

around 12- 40 bacteria out of ~2 × 108(over two trials) for each F population, it is highly 

unlikely that only individuals with altruistic capacities were sampled. In fact, the second 

possibility was far more likely, namely that we had sampled only those bacteria that did not 

confer any resistance to the population. In principle, this could also explain the absence of 

outliers in the F populations in terms of overall yield. However, in that case, we could not 

have observed an increase in the yield when compared to the S populations. Since the F 

populations did show a significantly larger yield compared to S populations (see Fig 2.4 from 

chapter 2), we conclude that whatever mechanism was responsible for it, was not present only 

in a small number of individuals.  

There can be multiple, non-exclusive reasons for which population-based resistance failed to 

evolve in our F populations. Our F populations were sub-cultured every 24 hours with 1/50 of 

the existing population forming an inoculum for the next generation (see section 2.1.2 from 

chapter 2). It is difficult for population-based resistance to evolve in such a system due to a 

high chance of losing the resistant cells (which are in very low frequency) during each sub-

culture. Moreover, it is known that when the environment changes, the production of the 

chemical that benefits the whole population can be costly for the producer cell (Lee, Molla et 

al. 2010). Thus, in our F populations, there could have been a strong selection against the 
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resistant cells, each time the environment changed. Taken together, perhaps it is not 

surprising that population-based resistance did not evolve in our F populations.  
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4.3 Fluctuating selection does not increase standing variation 

 

Figure 3.3: Phenotypic variation and divergence from ancestors. A. Mean (±SE) 

phenotypic variation for S and F populations. B. Mean (±SE) phenotypic divergence from 

the ancestors. The S populations show slightly higher variation and divergence albeit with 

small effect sizes.  

* denotes p < 0.05. 
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Populations with greater standing variation are expected to respond faster to selection 

pressures compared to those with increased mutation rates. This is because with standing 

variation, the population need not wait for a beneficial mutation and such mutations are 

typically at a slightly higher frequency than those that arise de novo after exposure to the 

selection pressure (Barrett and Schluter 2008). Furthermore, theoretical studies show that 

fluctuating environments are expected to promote standing variation in the populations 

(Gillespie and Turelli 1989, Turelli and Barton 2004). Taken together, the greater fitness of 

the F populations in novel environments can be potentially explained if such populations 

have greater standing variation. We note here that a larger standing variation does not 

automatically guarantee that a population would be better able to face novel environments, it 

merely increases its chances for the same. However, it is difficult to visualize how large 

standing variation can be maintained when the direction of selection is changing very often 

(Via and Lande 1987). One way out of this problem is contextual neutrality, i.e. the 

assumption that at least some genetic changes are neutral in some environments (thus 

escaping selection) but affect fitness in other environments (thus contributing to standing 

genetic variance)(Wagner 2005). Thus, a population with a greater “neutral space” (i.e. 

contextually neutral variation) would be expected to have greater fitness across novel 

environments (Wagner 2005).  Although some studies have directly measured genetic 

diversity through quantification of the number of mutations present (Coffey and Vignuzzi 

2011), it is hard to determine how much of that diversity is functionally relevant.  This is 

because, practically speaking, it is difficult to ascertain from the sequence data, whether a 

particular genomic mutation is deleterious, neutral or contextually neutral. Therefore, we 

favored a direct measurement of the phenotypic variation in the populations, through their 

ability to grow on 94 different conditions on the Biolog GEN III MicroPlateTM plate (Cooper 
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2002). This way, we quantify those variations that can cause an observable change at the 

phenotypic level and hence, are functionally important.  

 

Our results suggest that selection for unpredictable fluctuations did not increase the 

phenotypic variation in F populations. If anything, the mean phenotypic variation was slightly 

larger for the S populations (Fig 3.3A), although the difference was not statistically 

significant. This is consistent with a previous study on viruses demonstrating that genetic 

diversity (as measured by genomic mutations) is larger in populations that experience a 

steady environment as opposed to those facing fluctuating ones (Coffey and Vignuzzi 2011). 

Our results are also in sync with a previous observation that constant selection environments 

lead to increase in the genetic variance for fitness in novel environments (Travisano, Vasi et 

al. 1995). In terms of the phenotypic divergence from the ancestors, we found no consistent 

differences or reversal of phenotypes that were specific to the F or S populations (Fig 3.3B).  

There might be several reasons for which phenotypic variation did not increase in the F 

populations. The duration of selection (~170 generations) might have been too less to lead to 

a significant divergence in terms of phenotypic variation. Moreover, the fact that the 

environment (and hence the selection pressure) changed every ~6 generations, might have 

caused a much stronger selection pressure that prevented maintenance of phenotypic 

variation. One way by which standing variation can be increased even in the face of changing 

environments, is through increased mutation rates (Ishii, Matsuda et al. 1989). However, 

since the mutation rates of the F populations did not evolve to be significantly larger than the 

S populations (Fig 3.1), this route was closed to the selected populations. It is important to 

note here that we only scored the presence or absence of phenotypes, a process that is biased 

towards catching large phenotypic differences. In principle, one can also think of variations 
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which affect the rate at which the substrates are metabolized or the intensity of the effect of 

stress substrates on the bacterial cells. However, quantifying such effects would require 

replicate measurements at the level of single clones and increased number of replicate clones 

due to the inherent variation in the metabolic rates of the cells, and hence was beyond the 

scope of this work.  
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4.4 Evolution of increased efflux activity 

 

 

Figure 3.4: Mean (±SE) energy dependent efflux in S and F populations. F populations 

had significantly greater efflux activity than the S populations, which might have led to 

their greater fitness in novel environments.  
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Over the last two decades, bacteria have become resistant to a large number of antibiotics due 

to, inter alia, the action of a variety of multidrug efflux pumps (MEPs) (Li and Nikaido 2009, 

Nikaido and Pagès 2012). As the name suggests, MEPs are protein systems that throw out a 

wide range of antibiotics and biocides from the cells and can also play a role in combating 

environmental stresses like bile salts (Thanassi, Cheng et al. 1997) or organic solvents 

(Fernandes, Ferreira et al. 2003). Our results indicate that the F populations have evolved 

significantly higher efflux activity as compared to the controls (Fig 3.4). Increased activity of 

MEPs can lead to resistance to norfloxacin (Morita, Kodama et al. 1998, Nishino, Nikaido et 

al. 2009) and ethidium bromide (Ma, Cook et al. 1993, Nishino, Nikaido et al. 2009) in E. 

coli, both of which were observed here (Fig 2.2 from chapter 2). Multiple drug resistance is 

known to be associated with higher MEP activity in different kinds of bacteria (Li and 

Nikaido 2009, Nishino, Nikaido et al. 2009, Nikaido and Pagès 2012 and references therein) 

including E coli (Pena-Miller, Laehnemann et al. 2013). However, to the best of our 

knowledge, this is the first laboratory experimental evolution study in E. coli that reports the 

evolution of increased energy-dependent MEP activity and the concomitant change in growth 

rate in the presence of an antibiotic (norfloxacin) and a mutagen/biocide (ethidium bromide), 

after an exposure to fluctuating complex environments.  

An increased efflux activity could have evolved in our F populations in several ways. Firstly, 

it could have been accidentally fixed in the population due to genetic drift. However, the 

chances of such an event are low due to the relatively large population sizes involved in 

bacterial systems and the observation that the increase in efflux happened in all three 

replicate F populations. Secondly, increased efflux might have also evolved as a result of a 

direct or a correlated response to selection. Prima facie, this appears counter-intuitive because 

multi-drug efflux pumps are often studied in the context of drugs or  biocides, although of 

late they have been shown to confer resistance to components of the E. coli environment like 
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bile salts (Thanassi, Cheng et al. 1997) or steroid hormones (Elkins and Mullis 2006). Since 

none of these stressors were present during the selection process, it is hard to see how 

increased efflux activity could have been directly selected for. This inconsistency gets 

resolved if we take into account the suggestion made by some authors that MEPs have more 

functions than removing drugs, including clearing out different kinds of secondary 

metabolites (Poole 2005) and virulence (Piddock 2006). Recently it has been  shown that a 

MEP called norM can reduce the intracellular levels of reactive oxygen species and increase 

the ability of E. coli cells to survive H2O2 (Guelfo, Rodríguez-Rojas et al. 2010). Since H2O2 

was a constituent of our fluctuating environment, all else being equal, any change leading to 

increased levels of norM should be favored. Incidentally, among all the component 

environments, the effect size of the difference between S and H was the maximum for H2O2 

(Table 2.2 from chapter 2). This is again consistent with the expectation that resistance to 

H2O2 has experienced positive selection. Moreover, the resistance to low pH in E. coli is 

mediated by a regulator called GadX (Ma, Richard et al. 2002) which has been shown to 

elevate the levels of another MEP called mdtEF (Nishino, Senda et al. 2008). Finally, the 

levels of acrAB (a well-studied MEP), are increased by higher concentrations of NaCl (Ma, 

Cook et al. 1995). Thus it was possible that somehow, the efflux activity had evolved due to a 

direct response to the component environments, without any role of the unpredictable 

fluctuations. 

When exposed to constant stress (acidic pH or basic pH or salt or H2O2), replicate bacterial 

populations failed to evolve significantly larger efflux activity, compared to populations 

evolving in constant benign environment (see Appendix 3.2 for details). Although 40 

generations seems a relatively short duration, it should be noted here that the F populations 

experienced a different environment every ~5.64 generations whereas the populations 

selected for the constant stresses did not. Thus, if indeed the component environments were 
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selecting for increased efflux activity, the latter set of populations were under much stronger 

directional selection for the same and hence were expected to show appreciable response to 

selection.  Although the H2O2 selected populations had somewhat greater mean efflux 

activity compared to the controls (d = 1.91), the lack of statistical significance in the pooled 

or the individual ANOVA prevents us from concluding that exposure to H2O2 alone led to 

appreciable change in efflux activity during this span of time. It is possible that further 

exposure to H2O2 might have led to greater changes in efflux activity in the constant stress 

selected populations. However, given that the F populations never experienced 7 or more 

continuous runs of exposure to H2O2, the evolution of efflux activity under such a scenario 

has no bearing on the results of the present study.    

It should be noted here that there is also a possibility of an interaction between unpredictable 

fluctuations and the component environments in terms of evolution of efflux activity. In other 

words, some of the component environments (and not others) when fluctuated unpredictably, 

might have led to the evolution of increased efflux activities. It is also possible that the 

evolution of increased efflux activity is due to the complex environments (i.e. the 

combinations of stresses) or an interaction of the complex environments with unpredictable 

fluctuations. Given that our F populations experienced the complex environments randomly 

and not every complex environment is likely to select for increased efflux, it is not intuitively 

obvious that complex environments, by themselves, would lead to the evolution of efflux 

activity. However, the possibility for the same cannot be completely ruled out, thus forming a 

fruitful avenue for future research. 
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4.5 No difference in fitness in cold environment  

 

Figure 3.5: Mean (±SE) fitness in cold environment. No significant difference between 

the fitness of F and S populations.  
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Is elevated efflux activity the sole mechanism responsible for the better performance of the F 

populations under novel environments? To answer this question, we assayed the growth rates 

of F and S populations at 220C, since elevated efflux cannot assist growth in case of cold 

temperature. E. coli populations can grow in the range of 210C to 490C with optimum at 

370C. Exposure to temperatures less than 370C induces cold shock in E. coli populations 

which is followed by an acclimation phase and adaptation (reviewed in Bárria, Malecki et al. 

2013). GroEL and GroES are the rate limiting cellular determinants at lower growth 

temperatures (Ferrer, Chernikova et al. 2003, Strocchi, Ferrer et al. 2006).  Both the proteins 

function as chaperonins and are involved in folding and/or assembly of approximately 30% 

of cellular proteins (Ferrer, Chernikova et al. 2003). We find that F populations do not show 

significantly better fitness in the face of cold environment. This indirectly strengthens the role 

of energy dependent efflux in previously observed fitness advantage in antibiotics and heavy 

metals.   

An alternate explanation could be that fluctuating environments do not result in fitness 

improvement on exposure to broad stresses like cold temperature, salt, hydrogen peroxide 

and pH (see section 4.2 from chapter 2 for details). However, higher fitness of F populations 

in ethidium bromide, an intercalating agent with system wide effects, does not support this 

possibility (Table 2.2, Fig 2.2 A from chapter 2).  
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4.6 Response to novel environments does not decay with the longer duration of 

relaxation in F populations  

 

Figure 3.6: Mean (±SE) fitness in novel environments for F populations after two 

different durations of relaxation (24 hr and 48 hr). First pair of bars denote no 

significant difference in growth rate when pooled over all the four novel environments. 

Following four comparisons in individual environment show significance difference in the 

growth rate after two different durations of relaxation. 24 hr relaxation leads to higher 

growth rate in cobalt and zinc while 48 hr relaxed populations perform better in 

norfloxacin and ethidium bromide.  

* denotes p < 0.05 (after Holm-Šidàk correction in the case of comparisons under 

individual environments). 
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Exposure to stressful environments activates multiple cellular resistance responses. For 

example, acid resistance system 1 and 2 are activated in response to acidic pH while alternate 

sigma factor RpoS are activated in response to multiple stresses (Notley-McRobb, King et al. 

2002, Foster 2004).  Such broad stress fighting mechanisms can provide protection against 

multiple environmental stresses (Cheville, Arnold et al. 1996, Chung, Bang et al. 2006). We 

deliberately chose the novel environments to avoid such cross protection (see section 4.3 

from chapter 2) and introduced a relaxation step spanning over ~ 9 generations before the 

growth rate estimation.  .  

Fitness estimates in two out of four novel environments (Norfloxacin and Ethidium Bromide) 

showed that fitness improved after longer duration of relaxation (Fig 3.6). In the other two 

environments (cobalt and zinc) F populations had reduced fitness after longer duration of 

relaxation (Fig 3.6). But F populations had fitness comparable to S populations in zinc (Table 

2.2, Figure 2.2 A). Thus cobalt is the only novel environment where carry over responses 

could have possibly played any role in the observed fitness advantage of F populations. 

However, in order to entertain that possibility, we need to hypothesize that resistance to 

cobalt is due to a mechanism which is very different from the one that leads to resistance to 

the other stresses. While the possibility cannot be overruled, it seems somewhat less probable 

that multiple mechanisms have evolved to face novel environments. Coupled with the fact 

that the F populations were not exposed to any of the novel environments during selection, 

these results make it unlikely that metabolic carry over was a mechanism leading to observed 

fitness advantage of F populations in novel environments.  
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5 SUMMARY 

Exposure to complex, unpredictably fluctuating environment for short duration neither leads 

to increased phenotypic variation, nor a significantly increased rate of acquiring such 

variation. Our F populations did not evolve population-based resistance either. These 

observations rule out three of the most widely-believed mechanisms that are expected to 

enable a population to face novel environments. Instead, it was the evolution of efficient 

energy dependent efflux which likely conferred the advantage in the face of novel 

environments.   
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Chapter 4. Extended exposure to complex, unpredictable 

fluctuations does not affect the evolvability of the 

populations 
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1 INTRODUCTION 

The assays described in the previous two chapters suggested that selection in complex, 

unpredictably fluctuating environment can elevate fitness in novel environments. Effect of 

selection lingers even after ~50 generations of directional selection under the novel 

environments. This suggests that fluctuating selection can have long-lasting effects. To 

further investigate the evolutionary effects of fluctuating environments, we assayed the 

evolvability and collateral sensitivity profiles after ~560 generations of selection.   

There exist multiple definitions of evolvability (Pigliucci 2008) in the evolutionary literature. 

Here the term evolvability is defined as rate of change of fitness (i.e. growth rate) over time 

(Griswold 2006). Both selected (F) and control (S) populations are expected to adapt to 

constant/ directionally changing environment. Population with higher evolvability will not 

only show higher fitness at every junction in selection but also display higher rate of increase 

in fitness.  

Recent studies show that resistance to one antibiotic can be accompanied by sensitivity to few 

others (Pál, Papp et al. 2015). These trade off profiles have been shown to be robust across 

multiple strains of Escherichia coli (Imamovic and Sommer 2013). This implies that cyclic 

treatment with ‘antagonistic’ drugs can minimize the incidence of multi drug resistance, an 

observation that has been hailed as replacement to the standard cocktail approach (reviewed 

in Pál, Papp et al. 2015).   

The assays described in this chapter sought to validate these two hypotheses.  
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2 METHODS 

2.1 Selection  

Glycerol stocks of 30 day selected F and S populations were revived in 50 ml NB overnight. 

These revived cultures were used to restart the selection in constant and fluctuating 

environment (see section 2.1 of chapter 2). The selection was continued for another 70 days 

i.e. a total of 100 days, which translates into~ 564 generations. These populations will be 

henceforth referred to as the 100-day selected populations. 

2.2 Fitness assays and mechanisms  

Fitness was estimated (see Appendix 1.1) in component and novel environments. Component 

environments are those which were part of the selection i.e. salt, pH and hydrogen peroxide 

while novel environments are those which were not part of the selection i.e. cobalt, 

norfloxacin, ethidium bromide and zinc (see Appendix 2.3 for concentrations). We also 

determined the energy dependent efflux activity (see Appendix 1.4) and mutation rate (see 

Appendix 1.2) of 100 day selected populations. We followed the same statistical procedures 

as mentioned in section 2.3 of chapter 2 and section 2.8 of chapter 3, for each of the fitness 

and mechanism assay.  

2.3 Evolvability 

100 day selected populations were used to assess the effect of fluctuating environments on 

the evolvability.  

 

2.3.1 Selection for evolvability 

Glycerol stocks of 100 day selected S and F populations were revived overnight in 50 ml of 

NB. These revived cultures were used to initiate three different selection regimes which 

differed in the way the concentration of cobalt changed over time. These three regimes were:  
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 Treatment 1 - Constant concentration of cobalt throughout the duration of selection 

(0.2mg/ml) 

 Treatment 2 - Directional increase in concentration every 10th day (from 0.2mg/ml to 

0.4mg/ml with a step size of 0.04 mg/ml) 

 Treatment 3 - Directional increase in the concentration every 2nd day (from 0.2mg/ml 

to 0.4mg/ml with a step size of 0.007 mg/ml)  

First day concentration was same for all the three treatments and treatments 2 and 3 reached 

the same concentration by the end of the selection. Each selection (S or F) × treatment (1,2,3) 

combination had four replicate populations The selection for evolvability was carried out in 

24 welled plates with 2 ml of culture volume. 4 µl of suspension was transferred to the new 

well every 24 hr. The selection was continued for 60 days i.e. ~ 530 generations, except for 

treatment 2, which was continued for another 10 days (i.e. ~620 generations) to reach the 

same end concentration as that of treatment 3. Two different rates of environmental change 

allowed us to study the effect of step sizes on the rate of adaptation during directional 

selection. Glycerol stocks were stored every 10th day for all the populations. Due to an 

unfortunate event we lost the 60th day’s glycerol stocks of treatment 2. To maintain parity, we 

restricted our fitness assays to populations selected for 50 days (i.e. ~ 440 generations) for all 

the three treatments.   

 

2.3.2 Fitness measurement  

Fitness was assayed at the stress concentration same as that of the last selection environment 

experienced by the populations, i.e. stress concentration at which glycerol stock was made. 

Thus, for example glycerol stocks of treatment 2, experienced 0.24 mg/ml of cobalt on day 20 
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of selection, and hence were assayed at the same concentration. Every selection population 

was assayed for fitness (see Appendix 1.1) in triplicates.   

2.3.3 Statistical analysis  

Fitness was averaged over the three replicate measurements and each of the treatments (I, II 

and III) were analyzed separately. For every treatment, fitness estimates over time were 

analyzed together using 3-way mixed model ANOVA. Selection (two levels: S and F) and 

time (five levels: 10th, 20th, 30th, 40th and 50th day of selection) were the fixed factors while 

replicate (three levels) was a random factor nested in selection. To compare the performance 

of S and F populations after different durations of selections, we performed separate 2-way 

mixed model ANOVA with Selection (two levels: S and F) as a fixed factor and replicate 

(three levels) as a random factor.  

The design of the evolvability-selection treatments no. 2 and 3 allowed us to test the effects 

of large vs small step size of environmental changes in the case of directional selection. Due 

to the different step sizes of increase, the assay and selection concentration of treatment 3 

lagged that of treatment 2 by 10 days. To test the effect of different step sizes at a given 

concentration, we analyzed fitness estimates from four different time durations, 20th, 30th, 40th 

and 50th day for treatment 2 and 10th, 20th, 30th and 40th day for treatment 3. This way, fitness 

is assayed at a time when both populations are at the same stress concentration in the course 

of their selection. The pooled data were analyzed using a 4-way mixed model ANOVA. 

Selection (two levels: S and F), Concentration (four levels) and Treatment (two levels) were 

taken as fixed factors while Replicate (three levels) was a random factor nested in Selection. 

We conducted eight different 2-way mixed model ANOVA for every combination of 

Concentration × Selection to look at the effect of large vs small step size. Treatment (two 
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levels) was a fixed factor and replicate (three levels) was a random factor nested in 

Treatment.  

In case of multiple ANOVAs family-wise error rates were controlled through sequential 

Holm -Šidàk correction of the P values (Abdi 2010). To judge the biological significance of 

the differences in mean growth rates for F and S populations at different assay environments, 

we computed Cohen’s d statistic (Cohen 1988) as a measure of the effect sizes (Sullivan and 

Feinn 2012). Following existing guidelines (Cohen 1988), we interpreted the effect sizes as 

small, medium and large for 0.2<d<0.5, 0.5<d<0.8 and d>0.8, respectively. Cohen’s d 

statistics were estimated using the freeware Effect Size Generator v2.3.0 (Devilly 2004). 

 

2.4 Collateral sensitivity  

Following schematic shows the sequence of steps involved.  

 

 

Fig 4.1 Schematic representation of the sequence of steps followed during experimentation 

 

We used seven different antibiotics from five different antibiotic classes, to check the 

consistency of collateral sensitivity as reported by Immamovic et al (Imamovic and Sommer 

2013). These antibiotics were as follows, kanamycin (aminoglycosides), chloramphenicol 
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(chloramphenicol), tetracycline (tetracyclines), ampicillin (penicillins), gentamycin 

(aminoglycosides), streptomycin (aminoglycosides) and rifampicin (antimycobacterials). 

Within these seven antibiotics, 9 instances of 2 fold decrease, 3 instances of 4 fold decrease 

and 2 instances of 8 fold decrease in MIC for one antibiotic after achieving resistance for 

certain other antibiotic have been reported (Imamovic and Sommer 2013).  

 

2.4.1 Determination of MIC  

We first determined the antibiotic concentration which could reduce the growth of F 

populations by 80 to 90% (IC90). For this purpose, glycerol stocks of 100 day selected F 

populations were revived in 50 ml NB overnight. These revived cultures were then inoculated 

into wide range of antibiotic concentrations in triplicates along with the 6 replicates in plain 

NB (as control). 200 µl of culture volume with 10 µl of inoculum was used in 96 welled plate 

with the relevant antibiotic purpose and OD600 was measured after 24 hr using plate reader. % 

inhibition was computed for every antibiotic as  

Average population density in antibiotic  

1 -     { ---------------------------------------------------------------------  × 100 } 

Average population density in NB 

 

IC90 determined by this procedure was taken as the determined MIC. We also obtained the 

MIC values determined for E. coli MG 1655 for the same seven antibiotics from literature.  

 

2.4.2 Selection for resistance 

To check whether these collateral sensitivities are retained even after selection under 

fluctuating environments, we first selected the three replicate F populations for resistance in 

all seven antibiotics. The selection was performed on agar plates using gradient plate 
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technique (Szybalski and Bryson 1952). The starting concentration (termed as sub lethal 

concentration) was chosen in such a way that it reliably produced some growth with gradient 

plate technique. Following table gives the sub lethal concentration and the final concentration 

reached after selection for the seven antibiotics used along with the MIC determined by us 

and the literature MIC values.  

Antibiotic  Sub lethal 

conc on agar 

(µg/ml) 

Final conc on 

agar 

(µg/ml ) 

MIC in 

broth 

(µg/ml ) 

Literature 

MIC 

(µg/ml ) 

Kanamycin 5 50 5 7 

Chloramphenicol 6.8 13.6 5 8 

Tetracycline 2.5 15 1 4 

Ampicillin 10 150 20 8 

Gentamycin 4 20 1 4 

Streptomycin 25 - 10 4 

Rifampicin 8.75 100 20 4 

Table 4.1 : Literature MIC values along with the lab determined MIC values for the seven 

antibiotics chosen 

 

The final concentration reached on agar was found to be much higher than the MIC values in 

broth. Well isolated colony of each population was chosen from the plates with final 

concentration of each antibiotic and allowed to grow overnight in NB. A glycerol stock made 

from this was used for assessing the sensitivity to other antibiotics.  

 

2.4.3 Antibiotic sensitivity after selection 

Glycerol stocks made from the selected clones were revived in 50 ml NB overnight. 10 µl of 

this revived culture was used to assess growth at the determined MIC and literature MIC of 

antibiotics. Every measurement had three replicates with 200 µl of culture volume. After 24 

hr of growth OD600 was measured using a plate reader and IC90 values were computed as 

mentioned above. These IC90 values were then compared with the previously outlined 

sensitivity profiles.  
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3 RESULTS 

3.1 No difference in fitness under component environments   

After ~564 generations of selection, the maximum growth rates of the F populations did not 

differ, when measured under conditions that were components of the fluctuating selection 

regime, i.e. pH (4.5/10), high salt or H2O2 (F1,4 = 0.017, p = 0.9, Table 4.2, Fig 4.2). The 

effect size for this difference was small (d = 0.03, Table 4.2). There was also a significant 

main effect of component environment (F3,12 = 17.5, p = 0.0001) which is not surprising as 

the different conditions (i.e. pH 4.5, H2O2, etc.) are not expected to affect the growth rates 

similarly. However, there was no significant difference between the fitness of F and S 

populations when analyzed separately for each of the component environment (Table 4.3, Fig 

4.2). The effect size was medium for a single component environment, pH10 and small for 

the remaining three component environments (Table 4.3).  

 

3.2 No difference in fitness under novel environments   

When analyzed together for the four novel environments, there was no significant difference 

between the fitness of F and S populations (F1,4 = 0.87, p = 0.404, Table 4.2, Fig 4.3) and the 

effect size of this difference was small (d = 0.04, Table 4.2). As with component 

environments, there was a significant effect of the novel environment (F3,12 = 1457.8, p < 

0.0001). Fitness did not differ between S and F populations, when analyzed separately for 

each of the novel environment (Table 4.3, Fig 4.3). The effect sizes of the difference were 

small for cobalt and norfloxacin, medium for ethidium bromide and large for zinc (Table 

4.3). Interestingly though, S populations showed higher fitness than F in zinc, unlike the case 

in the other three novel environments.  
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3.3 No difference in mutation rates  

Although the S populations had higher mutation rates than the F populations with a medium 

effect size (d = 0.73, Table 4.2), this difference was not statistically significant (F1,4 = 1.028, 

p  = 0.368; Table 4.2, Fig 4.4). The results suggest that F populations did not evolve higher 

mutation rates even after ~560 generations of selection in fluctuating environments.  

 

3.4 No difference in energy dependent efflux 

F populations had higher mean energy dependent efflux abilities. But the difference was 

statistically insignificant with low effect size (F1,4= 0.138, p = 0.729; d = 0.34, Table 4.2, Fig 

4.5). The results suggest that the difference in energy dependent efflux, which was observed 

after the short duration of selection, vanishes over longer time scales.   

 

3.5 No difference in evolvability  

Treatment 1 - Fitness did not differ significantly between S and F populations when pooled 

over 5 measurements over 50 days of selection (F1,4 = 6.67, p = 0.061, d = 0.77, Table 4.2). 

Duration of selection had marginally significant effect on the fitness (F4,16 = 3.43, p = 0.033). 

When fitness was analyzed separately, there was no significant difference between the fitness 

of S and F populations for any of the time points (Table 4.3, Fig 4.6). Additionally, effect size 

for day 20 was large while all other effect sizes were either medium or small (Table 4.3).  

Treatment 2 - Fitness did not differ significantly between S and F populations when pooled 

over 5 measurements over 50 days of selection (F1,4 = 7.07, p = 0.056, d = 0.5, Table 4.2). 

Duration of selection had significant effect on the fitness (F4,16 = 118.92, p < 0.0001). When 

fitness was analyzed separately, there was no significant difference between the fitness of S 
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and F populations for any of the time points (Table 4.3, Fig 4.6). Effect sizes for day 30 was 

large while all other effect sizes were either medium or small (Table 4.3). But it is important 

to note that F populations displayed higher fitness than S populations at every measurement 

point.  

Treatment 3 - Fitness did not differ significantly between S and F populations when pooled 

over 5 measurements over 50 days of selection (F1,4 = 4.88, p = 0.092, d = 0.48, Table 4.2). 

Duration of selection had significant effect on the fitness (F4,16 = 80.33, p < 0.0001). When 

fitness was analyzed separately, there was no significant difference between the fitness of S 

and F populations for any of the time points (Table 4.3, Fig 4.6).Effect size of difference was 

large for three time points, day 30, 40 and 50 (Table 4.3). Not unlike treatment 2, F 

populations displayed higher fitness than S populations at every measurement point.  

The lack of significant difference between fitness of S and F populations suggests that F 

populations are not more evolvable than S populations when exposed to the constant or 

directionally increasing concentration of cobalt.  

Effect of magnitude of step size was significant with medium effect size in the pooled 

analysis (F1, 4 = 394.05, p < 0.001, d = 0.5, Table 4.2). Concentration affected the fitness 

measurement significantly (F3, 12 = 60.35, p < 0.00010) while selection had marginal effect 

(F1, 4 = 7.32, p = 0.054). 7 out of 8 individual ANOVAs showed a significant difference for 

each concentration × selection combination between small and large step size of increase and 

6 out of 8 comparisons had large effect size (Table 4.4, Fig 4.7). For the first concentration 

(i.e. 20th day of selection for treatment 2 and 10th day of selection for treatment 3), small step 

size of the increase showed a higher mean fitness as compared to the large step size. But at 

the next concentration, the pattern reversed and stayed consistent for next two concentrations 

as well (Fig 4.7). The pattern was consistent for both S and F populations. This suggests that 



100 
 

smaller step size during directional selection is advantageous initially but large step size of 

change leads to the higher rate of adaptation in long term scenario.  

 

3.6 Collateral sensitivity  

For the 7 antibiotics tested here (7×7 matrix), 3 instances of conflict are noted for F 

populations. Selection for kanamycin resistance should collaterally increase the sensitivity for 

tetracycline and rifampicin and selection for resistance to ampicillin should increase the 

sensitivity for streptomycin (Imamovic and Sommer 2013). In all three cases sensitivity did 

not increase collaterally, instead decreased.  These results suggest that the history of 

fluctuations can be one of the possible reasons leading to modification of the collateral 

sensitivity profiles. 
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Assay 
Mean 1 

 

Mean 2 

 

ANOVA 

F(1,4) 

ANOVA 

p values 

Effect 

Size±95% 

CI 

Inference 

Fitness in Component 

Environments 
0.104 (S) 0.105 (F) 0.017 0.902 0.03±0.33 Small 

Fitness in Novel Environments 0.066 (S) 0.069 (F) 0.87 0.404 0.05±0.33 Small 

Mutation rate 6.39E-09 (S) 3.73E-09 (F) 1.03 0.368 0.73±1.65 Medium 

Efflux potential 0.691 (S) 0.74 (F) 0.138 0.729 0.34±0.93 Small 

Evolvability Treatment 1 0.131 (S) 0.14 (F) 6.67 0.061 0.77±0.37 Medium 

Evolvability Treatment 2 0.138 (S) 0.148 (F) 7.07 0.056 0.50±0.36 Medium 

Evolvability Treatment 3 0.128 (S) 0.135 (F) 4.88 0.09 0.48±0.36 Small 

Effect of step size in directional 

selection 
0.146 (T2) 0.127 (T3) 394.1 3.8E-05 1.07±0.3 Large 

 

Table 4.2: Summary of the main effects of selection in the pooled ANOVAs 
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Assay Environment 
Mean 

S 

Mean 

F 

ANOVA 

F(1,4) 

p values 

(Holm-

Šidàk 

corrected) 

Effect Size 

±95% CI 
Inference 

Fitness in 

component 

environments  

pH 10 0.146 0.133 0.78 0.427 0.70±0.67 Medium 

pH 4.5 0.091 0.098 0.38 0.569 0.248±0.66 Small 

Salt 0.11 0.129 0.57 0.493 0.336±0.66 Small 

H2O2 0.0708 0.0634 7.33 0.0536 0.106±0.65 Small 

Fitness in 

novel 

environments 

Cobalt 0.033 0.04 1.32 0.314 0.4±0.66 Small 

Norfloxacin 0.134 0.135 0.22 0.665 0.03±0.65 Small 

EtBr 0.09 0.096 3.93 0.119 0.74±0.68 Medium 

Zinc 0.009 0.004 5.59 0.077 0.9±0.69 Large 

Evolvability 

Treatment 1 

Day 10 0.129 0.132 0.33 0.84 0.23±0.46 Small 

Day 20 0.136 0.148 8.8 0.19 0.97±0.49 Large 

Day 30 0.13 0.14 1.58 0.62 0.73±0.48 Medium 

Day 40 0.13 0.137 2.48 0.57 0.34±0.47 Small 

Day 50 0.129 0.142 18.68 0.07 0.73±0.48 Medium 

Evolvability 

Treatment 2 

Day 10 0.129 0.132 0.33 0.6 0.23±0.46 Small 

Day 20 0.11 0.118 11.05 0.16 0.64±0.47 Medium 

Day 30 0.147 0.163 5.55 0.22 0.9±0.48 Large 

Day 40 0.155 0.166 7.24 0.24 0.65±0.47 Medium  

Day 50 0.15 0.162 5.78 0.26 0.68±0.48 Medium 

Evolvability 

Treatment 3 

Day 10 0.135 0.136 0.054 0.83 0.09±0.46 Small 

Day 20 0.116 0.126 3.55 0.43 1.11±0.5 Large 

Day 30 0.11 0.119 4.75 0.39 1.06±0.49 Large 

Day 40 0.133 0.143 7.52 0.27 1.07±0.49 Large 

Day 50 0.147 0.15 1.67 0.46 0.35±0.47 Small 

 

Table 4.3: Summary of the main effect of selection in the ANOVAs under individual 

environments 
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Selection Concentration 
Mean 

T2 

Mean 

T3 

ANOVA 

F(1,18) 

p values 

(Holm-

Šidàk 

corrected) 

Effect Size 

±95% CI 
Inference 

S 

One 0.11 0.147 3098.02 0.002 3.87±1.36 Large 

Two 0.155 0.15 59.37 0.048 0.55±0.82 Medium 

Three 0.135 0.116 1939.6 0.003 3.24±1.22 Large 

Four 0.11 0.133 13.07 0.069 2.76±1.12 Large 

F 

One 0.118 0.163 89.84 0.043 4.57±1.52 Large 

Two 0.166 0.162 418.09 0.014 0.32±0.81 Small 

Three 0.136 0.126 120.56 0.04 1.2±0.87 Large 

Four 0.119 0.143 40.97 0.046 3.99±1.38 Large 

 

Table 4.4: Summary of the main effect of treatment in the ANOVAs under individual 

concentrations of cobalt. T2 denotes treatment 2 and T3 denotes treatment 3. 
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4 DISCUSSION 

4.1 No adaptation to component environments  

 

Figure 4.2: Mean (±SE) fitness in component environments. The first comparison is of 

the pooled means over all four component environments and the next four comparisons are 

for the individual component environments. For all the comparisons, no significant 

difference (individual ANOVAs) in the fitness of F and S populations. Fitness was 

measured as maximum slope of the growth trajectory over 24 hours. 
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Predictable changes in the environment are likely to result in adaptation for the component 

environments (Leroi, Lenski et al. 1994, Turner and Elena 2000, Hughes, Cullum et al. 2007, 

Coffey and Vignuzzi 2011, Alto, Wasik et al. 2013). But when the environment changes 

unpredictably, fitness in component environmnets can increase or decrease or remain 

unchanged (Hallsson and Björklund 2012, Alto, Wasik et al. 2013, Ketola, Mikonranta et al. 

2013). Fitness assessment after ~170 generations of selection had showed no difference in 

fitness for the component environments between S and F populations (Fig 2.1 A). But the 

lack of adaptation at that stage could have been attributed to the relatively short duration of 

selection (see dicussion 4.2 of chapter 2).  However, after ~560 generations of selection, F 

and S populations had similar fitness in component environments. This result indicates that 

even 560 generations of selection is not enough to induce difference in fitness in component 

environments. F populations, facing unpredicatble fluctuations, can experience the change of 

direction of selection every ~6 generations. Thus, a population adapting towards a certain 

peak for few generations can be taken in a completely different direction after every 24 hr. 

Such a scenario can result in little overall change in fitness, even though the F populations are 

continuously evolving. The results suggest that adaptation to individual stresses is diffecult to 

achieve even after hundreds of generations of selection when environment flutuates in 

complex, unpredictable manner.  
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4.2 No fitness difference in novel environments and no change in efflux activity 

 

Figure 4.3: Mean (±SE) fitness in novel environments. The first comparison is of the 

pooled means over all four novel environments and the next four comparisons are for the 

individual novel environments. For all the comparisons, no significant difference 

(individual ANOVAs) in the fitness of F and S populations. Fitness was measured as 

maximum slope of the growth trajectory over 24 hours. 

 

 

 

 

 



107 
 

 

 

Figure 4.4: Mean (±SE) energy dependent efflux in S and F populations. S and F 

populations show comparable efflux activity.  
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In spite of lack of adaptation to the component or complex environments, F populations 

displayed fitness advantage in the novel environmental backgrounds after ~170 generations 

of selection (Fig 2.2 A). However, the fitness advantage disappeared after ~560 generations 

of fluctuating selection (Fig 4.3). Although in terms of a trend, F populations did have a 

marginally larger mean fitness in three out of four novel environments (cobalt, norfloxacin 

and ethidium bromide), none of the differences are statistically significant and effect sizes 

were low for all the comparisons. This suggests that somewhere between generations 170 and 

560, the difference between the control and the selected populations in terms of resisting 

novel environments disappeared. This observation was corroborated by the fact that the 

difference in efflux activity between the S and F populations had also disappeared (Fig 4.4) .  

 

Based on this data alone, it is not possible to infer why longer-term exposure to fluctuating 

environments erased the difference between the S and F populations in terms of efflux 

activity. One possibility might be that since efflux is an energy-intensive process, it is not 

possible to have a continuously elevated rate of efflux. However, comparing Fig 3.4 with Fig 

4.4 suggests that the efflux rates of the F populations did not come down during this time. 

The difference between the F and the S populations had actually disappeared because the 

efflux activity of the S populations had increased about four times during the same duration, 

while that of the F populations merely doubled. This suggests that the S populations were 

actually evolving even under the NB environments, which is not a surprising result, given the 

ability of microbes to keep on evolving for a very long time, even under completely static 

environments (Satterwhite and Cooper 2015).  What is more surprising is the fact that efflux 

activity increased in the S populations even though they were under no obvious stress. One 

reason for this might be the fact that the benign conditions for the S populations ensured that 

they reached the stationary phase in almost every generation. It is known that the stationary 
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phase leads to oxidative stresses and enhanced efflux activity could be one response to 

increased oxidative stress (Guelfo, Rodríguez-Rojas et al. 2010). One can speculate that 

perhaps the selection pressure imposed by these conditions is relatively less than those 

imposed by the fluctuating environments, which is why efflux ability takes longer to evolve 

in the S populations. However, at present, I am unable to comment any further on this issue 

and leave this as a potential avenue for future work. 

Since the efflux activity of the S populations had increased, it was reasonable to assume that 

their ability to fight the novel stresses would also increase across the board. This prediction 

seemed to be borne out by the overall increase in the fitness of the S populations in the 

pooled data (see figure Fig 4.3 and Fig 2.2). However, when we looked at fitness under the 

individual stresses, the interpretations were not very intuitive. For example, increased efflux 

activity of the S populations in generation 560 did not seem to increase fitness under cobalt or 

zinc, although both are heavy metals that are expected to be cleared by the activity of the 

efflux pumps. This is consistent with the observation in chapter 3 that while increased efflux 

seems to be one mechanism that determines the fitness of the F populations in the novel 

environments, it is, by no means, the only one. 
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4.3 No significant difference in the mutation rates  

 

Figure 4.5: Mean (±SE) mutation rate for S and F populations estimated in the 

Rifampicin background. The mutation rates for S and F populations are not significantly 

different.  
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Since we observed that the S populations had also evolved over ~560 generations, we also 

checked the mutation rates of both these populations at this point in the evolutionary 

trajectory. Fluctuating environments are expected to favour the increase in the mutation rates 

(Leigh Jr 1970, Ishii, Matsuda et al. 1989). Short term selection in fluctuating environments 

did not agree with this expectation (Fig 3.1). Long duration of selection under unpredictable 

fluctuations supports the previous results. Mutation rates of S and F poulations are not 

significantly different from each other. The order of magnitude of the mutation rates (10-9) 

shows that they did not evolve in response to the complex, unpredictable fluctuations. 

Constitutively-expressed mutator alleles are known to spread through population by hitch-

hiking with a beneficial allele (Sniegowski, Gerrish et al. 1997, Taddei, Radman et al. 1997, 

Gentile, Yu et al. 2011), although see (Torres-Barceló, Cabot et al. 2013). In case of 

fluctuating selection though, identity of beneficial alleles keep changing frequently. This will 

also make it difficult for an attached mutator allele to hitch-hike to fixation with the selected 

mutation.   
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4.4 Evolvability 

 

Fig 4.6 Mean (±SE) fitness for S and F populations over 50 days of selection. Filled 

circles denote S populations while empty circles denote F populations. A. Populations were 

selected over 50 days in constant concentration of cobalt B. Populations were selected over 

50 days in cobalt with increase in concentration every 10th day. C. Populations were 

selected over 50 days in cobalt with every 2nd day increase in concentration.  

Fitness was measured as maximum slope of the growth trajectory over 24 hours every 10th 

day of selection. For all the comparisons, there was no significant difference (individual 

ANOVAs) between the fitness of F and S populations. 
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Fig 4.7 Mean (±SE) fitness for treatment 2 and 3 over four directionally increasing 

selection environments. A. S populations with large step size of increase (represented by 

filled circles) show significantly lower fitness than those selected with small step size of 

increase (denoted by empty circles) for the first environment. The pattern reverses for next 

three comparisons. B. F populations with large step size of increase (filled circles) show 

significantly lower fitness than those selected with small step size of increase (empty 

circles) for first environment. The pattern reverses for next three comparisons.  

* denotes p < 0.05 (after Holm-Šidàk correction in the case of comparisons under 

individual environments) 
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Fluctuating environments are expected to promote the standing genetic variation of a 

population (Gillespie and Turelli 1989, Turelli and Barton 2004). This in turn can potentially 

increase the speed of adaptation to novel environments, i.e. evolvability (reviewed in 

Pigliucci 2008). To test this, previously 100 day selected F and S populations were subjected 

to a second round of selection, either in the constant dosage of cobalt or directionally 

increasing concentration of the same. It should be noted here that we had no a priori reason to 

believe that any one of these three conditions would lead to greater or lesser evolvability than 

the other. We merely sought to use these three environments as three different ways of 

imposing directional selection, and wished to assay for differences in evolvability between S 

and F populations under three different conditions. When the change in fitness over time was 

analyzed, F populations do not show superior adaptability compared to S populations (Fig 4.6 

A, B and C). It is important to note that at every time point of every treatment, F populations 

showed higher mean fitness as compared to the S populations, but the difference was not 

statistically significant. Further investigation with different novel environment might magnify 

this difference.   

Two different step sizes of directional selection allowed us to test the effect of magnitude of 

the step size during directional selection. In laboratory populations of Chlamydomonas 

smaller step size of environmental change leads to the higher fitness increase as compared to 

the large step size (Collins, de Meaux et al. 2007, Collins and De Meaux 2009). But this 

pattern was observed only for a short duration of directional selection in our case. 

Interestingly, we find the same to be true for the first assay concentration (20th day for 

treatment 2 and 10th day for treatment 3) but continued selection showed reversal of the 

pattern (Fig 4.7). Both S and F populations showed the same behaviour. This is intuitive as 

each time the concentration of the stress increases in the environment, the populations can 

potentially face selection. Populations facing the large step increase will be subjected to a 
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much stronger selection pressure and hence will show higher speed of adaptation (Falconer, 

Mackay et al. 1996). It is also important to note that at the time of the fitness assay, 

populations with large step size have already spents10 days in that specific concentration. 

Populations with smaller step size increase on the other hand, would have experienced not 

more than two days of the same concentration. Unlike the theoretical predictions (Collins, de 

Meaux et al. 2007), our results show that a large-magnitude environmental change followed 

by stasis leads to higher fitness over time, compared to a gradual change over time. This 

observation needs to be investigated in future due to its serious implications for phenomenon 

like antibiotic resistance. For instance, our results predict that sudden environmental changes 

in the clinical concentration of antibiotics might be a more potent selective force for 

evolution of antibiotic resistance as compared to a continuous, gradually increasing exposure 

to antibiotics.  
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4.6 Fluctuating selection can modify the collateral sensitivity profile 

 

Fig 4.8: Collateral sensitivity matrix. Black coloured cells denote the instances of 

conflict with the proposed collateral sensitivity profiles by Imamovic et al 2013 (Imamovic 

and Sommer 2013). Abbreviations denote the names gentamycin, kanamycin, 

streptomycin, ampicillin, chloramphenicol, tetracycline and rifampicin (left to right and top 

to bottom).   
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Evolution of drug resistant pathogens is a global challenge to healthcare and overuse of drugs 

has been underlined as one of the primary causes (O'Neill 2014). A common practice of 

administrating antibiotic cocktails can accelerate the evolution of multi drug resistance and 

alternative effective approaches are being desperately sought.  

Cyclic treatment of drugs which are known to have collateral sensitivity can be one of the 

ways to combat with the menacing problem of multi drug resistance (Pál, Papp et al. 2015). 

Such treatments involve cyclic dosage of paired drugs and combine effective treatment with 

reduced chances of evolution of multidrug resistance. The strategy heavily relies on the 

robust sensitivity profiles of the antibiotics involved where resistance to one antibiotic has to 

be accompanied by the increased sensitivity towards the other. Previous work has shown that 

such collateral sensitivity profiles remain robust for different populations of Escherichia coli 

(Imamovic and Sommer 2013, Lázár, Singh et al. 2013, Oz, Guvenek et al. 2014).  

Our results suggest that these collateral profiles might not be robust after all. With the 7 

antibiotics tested, we found 3 instances contradicting with the previously suggested collateral 

sensitivity profiles. The kanamycin resistance clone shows increase in MIC for rifampicin 

and tetracycline rather than the proposed 2 times and 4 times increase in the sensitivity 

respectively. Similarly, streptomycin selected clone shows increased MIC as opposed to 2 

times increase in the sensitivity. Whether the modified sensitivity profiles are the outcome of 

fluctuating selection or is it the inherent property of the strain chosen, remains unanswered. 

Parallel experiment with S populations will distinguish between the two possibilities. But 

these results clearly warrant further investigation and put forward a note of caution. The 

proposed collateral sensitivity profiles are not universally robust after all and might change 

depending on the evolutionary history/strain under consideration. One needs to be cautious 

while designing treatments based on the collateral sensitivity profiles. Diverse evolutionary 

history of pathogens will demand case by case investigation of sensitivity profiles.    
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5 SUMMARY 

The increase in efflux activity of the S populations over time underlines the importance of  

proper controls in the context of any experimental evolution study. In much of the literature 

on microbial evolution, all changes are measured relative to the ancestor, which does not 

experience any of the treatment conditions (Kassen 2014). However, in a study on 

evolutionary effects of fluctuating environments, it is equally valid to consider the effects of 

evolution under constant environments to be the appropriate control (as was done here). 

There is no a priori reason to believe that the two comparisons would lead to similar 

conclusions. As far as this study is concerned, the fact that the S populations evolved efficient 

efflux over long term but not over short term, underlines the importance of evolution in 

laboratory/control conditions. However, the crucial point to note is that there is no obvious 

reason to suggest that either of these controls is anyway superior / preferable to the other. 

Thus, an ideal (albeit logistically nightmarish) scenario would be to incorporate both kinds of 

controls in a study, which is what has been attempted in the next two chapters. 
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Chapter 5. Populations facing complex, unpredictable 

fluctuations for longer duration can take ‘no cost’ routes 

to fitness improvement 
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1 INTRODUCTION 

Populations adapting to temporally fluctuating environments face very different challenges 

compared to those facing a constant environment. This has resulted in a substantial corpus of 

theoretical (Levins 1968, Gavrilets and Scheiner 1993, Whitlock 1996, Lande 2008) and 

empirical (Leroi, Lenski et al. 1994, Reboud and Bell 1997, Hallsson and Björklund 2012, 

Alto, Wasik et al. 2013, Ketola, Mikonranta et al. 2013, Condon, Cooper et al. 2014) studies 

exploring the fitness outcomes of heterogeneous environments. One major observation 

emerging out of such empirical studies on microbial systems is the absence of trade-offs 

across different values of a given environmental variable (Turner and Elena 2000, Hughes, 

Cullum et al. 2007, Condon, Cooper et al. 2014). One reason for this observation could be the 

fact that adaptation to different values of the same variable is very likely to be correlated. For 

instance, adaptation to pH 6 is more likely to be positively than negatively correlated to 

adaptation to pH 5. What remains largely unknown is whether these fitness outcomes remain 

same in the face of complexity i.e. environments where more than one environmental 

variables vary across multiple values (but see section 4.2 of chapter 2). Such environment is 

likely to pose more constraints to the adaptation and hence more likely to reveal trade-offs.    

Trade-offs can be observed between two different life history traits in a given environment or 

between two different environments for a given life history trait (Agrawal, Conner et al. 

2010). The latter has been thoroughly investigated in microbial systems. In such systems, 

trade-offs are thought to arise primarily due to two major reasons: antagonistic pleiotropy, 

where mutations beneficial in one environment are deleterious in another (Travisano and 

Lenski 1996, Cooper and Lenski 2000, MacLean, Bell et al. 2004) and mutational 

accumulation, where mutations neutral in one environment accumulate and prove to be 

deleterious in another environment (Reboud and Bell 1997) (reviewed in Kassen 2002). 

Antagonistic pleiotropy will always lead to trade-offs but the experimental evidence for the 
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same has been hard to come by (Kassen 2014 but see Travisano and Lenski 1996, Cooper and 

Lenski 2000, MacLean, Bell et al. 2004). On the other hand, trade-offs arising due to 

mutational accumulation can be easily offset by exposure to multiple environments (Barrett, 

MacLean et al. 2005) as selection would work against mutations which are conditionally 

neutral (i.e. deleterious in one environmental context but neutral in other).  Experimental 

evidence till date favours mutational accumulation as the primary source of trade-offs 

(Kassen 2014). Hence, not surprisingly, when populations face multiple environments 

predictably during selection, they evolve to become generalists and show fitness 

improvements over all the environments experienced during the selection (Leroi, Lenski et al. 

1994, Hughes, Cullum et al. 2007, Coffey and Vignuzzi 2011, Ketola, Mikonranta et al. 

2013).  

If pleiotropic interactions are nearly absent, adaptation to one selection environment can be 

thought of as independent to that of the other. All else being equal, the extent of adaptation 

will then be governed by how far the ancestor is from the different fitness optima. When 

pleiotropic interactions are present, the evolutionary trajectory will depend upon the sign of 

the interaction. Positive pleiotropic interactions will increase the speed of adaptation, since 

exposure to one selection environment will improve the fitness across multiple selection 

environments. But this will not be the case if negative genetic interactions dominate, where, 

in the absence of ‘no cost’ routes to improvement in fitness, a population will become 

evolutionarily stalled. On the other hand, simultaneous exposure to multiple selection 

environments will always disfavour the mutations which are deleterious in any one of the 

selection environments, leading to decreased variation for fitness and potentially stronger 

selection for no-cost route to fitness.  

Here we test these alternate possibilities using laboratory populations of Escherichia coli. 

Replicate populations were exposed to complex, unpredictable fluctuating environment. The 
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selection regime consisted of four distinct selection environments, salt, pH4.5, pH9 ad 

hydrogen peroxide. In parallel, we select replicate bacterial populations in constant exposure 

to each one of the four selection environments. After ~900 generations of selection, fitness of 

all populations were assayed in all the selection environments. We further looked at the 

extent of adaptation, as compared to the ancestor. Results show that populations facing 

complex, unpredictable environments could adapt to the selection environments, as long as 

the ancestor was not already close the fitness optimum. Variation for fitness over all the 

selection environments was minimized due to the simultaneous exposure. Interestingly 

though, we observe that some selection environments act differentially across different 

components of the fitness.   
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2 METHODS 

2.1 Selection experiment  

Kanamycin resistant Escherichia coli strain K12 (see Appendix 5.1 for details) was used for 

this study. A single colony grown on Nutrient agar with Kanamycin (see Appendix 2.1 for 

composition) was inoculated in 2 ml of Nutrient broth with Kanamycin (NBKan, Appendix 2.1 

for composition) and allowed to grow for 24 hr at 370C, 150 rpm in 24 welled plates. 4 µl of 

this suspension was used to initiate each of the 120 replicate populations.  

These 120 replicate populations were equally divided into five treatment- and one control- 

regime, which led to 20 replicate populations per regime. Control populations were 

subcultured in NBKan for the entire duration of the selection. Four out of five selection 

regimes were a constant environment with either salt, basic pH, acidic pH or hydrogen 

peroxide in NBKan. The remaining selection environment was complex and stochastically 

fluctuating (henceforth termed as F) (see Appendix 5.2 for details of all selection regimes).  

The detailed design of the fluctuating selection regime have been mentioned elsewhere 

(section 2.1.2 of chapter 2).  

24 welled plates with 2 ml of appropriate growth medium and 4 µl of inoculum volume for 

each well were used for the selection and assay experiments. The growth conditions were 

maintained at 370C, 150 rpm. All he populations were sub-cultured every 24 hr. Extinctions 

were identified visually and revived using 20 µl of the previous day’s culture stored at 40C. 

The selection lasted for 100 days i.e. ~ 900 generations (Bennett and Lenski 1997). Every 

10th day the populations were stored as glycerol stocks at -80 0C for future assays.   
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2.2 Fitness assay in selection environments 

After 100 days of selection, all the populations were assayed for fitness in every selection 

environment, except the fluctuating environment. Selection environments comprised of 

NBKan with salt or basic pH or acidic pH or hydrogen peroxide or control (see Appendix 5.2 

for details).  

For comparison with the ancestor, we revived the ancestral population of Kanamycin 

resistant Escherichia coli strain K12 in NBKan for 18 hrs. 20 replicate wells were inoculated 

with this revived culture for every selection environment. This resulted in the same number 

of replicates of ancestral culture for every assay environment as that of the selected 

populations.   

Following previous studies, maximum growth rate during 24 hr of growth was used as a 

fitness measure (Ketola, Mikonranta et al. 2013). For the growth rate measurement, 4 µl of 

relevant glycerol stocks were revived in 2 ml of in NBKan. After 18 hr of growth, these 

revived cultures were inoculated in the appropriate assay environment. OD600 was measured 

every 2 hr on a plate reader (Synergy HT, BioTek, Winooski, VT, USA) for the duration of 

24 hr. We used a QBASIC (v 4.5) script to determine the maximum growth rate of the 

bacterial populations. The program fits a straight line on overlapping moving windows of 

three points on the time series of OD600 values. The maximum slope obtained by this method 

is taken as the maximum growth rate for that population.  

For estimation of trade off, we computed the difference in the fitness of every selected 

population from the mean fitness of ancestor (over 20 replicates) in every selection 

environment.  
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2.3 Replicates and statistical analysis  

We conducted two measurements for every population in every selection environment. This 

resulted in a total of 1400 growth measurements (140populations × 5 assay environments × 2 

measurements.  

 

2.3.1 Overall mean fitness  

1200 fitness estimates (6 selection lines × 5 assay environments × 20 replicates × 2 

measurements, excluding the ancestor) were analysed using 3-way mixed model ANOVA. 

Selection (six levels) and assay environment (5 levels) were fixed factors crossed with each 

other. Replicate (twenty levels) was taken as a random factor nested in selection. To compare 

the overall mean fitness of all selected populations with ancestor, we performed the Dunnett 

post hoc test (Zar 1999) with ancestor as the reference group.  

 

2.3.2 Variation for fitness  

Since variance/ standard deviation scales with mean, we estimated coefficients of variation 

(CV) as a measure of variation in fitness. Two fitness estimates in a given assay environment 

were averaged and CV was calculated for every replicate population over five such fitness 

estimates. Every selection regime thus yielded 20 CV estimates. These were then analyzed 

using one way ANOVA with selection (six levels) as a fixed factor. To compare variation in 

fitness for all the selected populations with that of the ancestor, we performed Dunnett post 

hoc test (Zar 1999) with the ancestor as the reference group. 
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2.3.3 Trade off  

For a given selection environment, every replicate of each selection regime had two fitness 

estimates. Average of these two values provided the mean fitness for every population 

resulting in 20 different mean fitness values for every selection regime, in every selection 

environment. The mean fitness of ancestor for every selection environment was computed as 

the average of 40 measurements (20 replicates × 2 measurements). This value was then 

subtracted from the mean fitness for every replicate population in the same environment. This 

resulted in 20 difference measurements for every selection regime, in every selection 

environment.  

We then performed 30 different t tests (6 selection lines × 5 assay environments) for every set 

of difference computed from ancestor. The family-wise error due to multiple tests was 

controlled using Holm- Šidàk correction (Abdi 2010).  

To estimate the biological significance of the difference in fitness of F populations compared 

to other selected populations, we computed Cohen’s d statistics (Cohen 1988) as a measure of 

effect size. It was interpreted as small, medium and large for 0.2 < d < 0.5, 0.5 < d < 0.8 and 

d > 0.8, respectively. 

All the ANOVAs were performed on STATISTICA v7.0 (Statsoft Inc.). Cohen’s d statistics 

were estimated using freeware Effect size generator v2.3.0 (Devilly 2004).  
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3 RESULTS 

3.1 Overall mean fitness and variation for fitness 

When pooled over all the selection environments, effect of selection was highly significant 

(F6, 700 = 12.07, p < 0.0001, Fig 5.1). The effect of assay environment was highly significant 

(F4, 700 = 247.04, p < 0.001) along with the significant interaction of selection with assay 

environment (F24, 600 = 31.73, p < 0.001). The fitness of the selected populations was 

compared to that of the ancestor using the Dunnett’s test. F populations showed highest 

overall mean fitness, which was significantly higher than the overall mean fitness of the 

ancestor with medium effect size (Table 5.1, Fig 5.1). None of the other selected populations 

differed significantly from the ancestor.  

Selection had a significant effect on the variation in fitness in the pooled data (F6, 133 = 61.65, 

p < 0.0001, Fig 5.2). F populations showed lowest coefficient of variation compared to all 

other selected populations, and was significantly lower than the ancestor with large effect size 

(Table 5.1). Other than F, populations selected in salt also had significantly lower variation 

for fitness with large effect size (Table 5.1). We note however that pooled over the six 

environments, there is no significant relationship between standard deviation and mean 

(Appendix 5.4). 

 

These results suggest that selection in fluctuating environments leads to a modest increase in 

overall mean fitness along with lower variation for fitness. Populations selected in salt also 

minimized the variation effectively but show loss of fitness as compared to the ancestor.   

 

3.2 Fluctuating environments minimize the trade-offs  
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F populations did not show any significant loss in fitness compared to the ancestor, in any of 

the selection environments. In contrast to this, populations selected in constant environments 

showed a significant loss of fitness in at least one of the selection environment (Table 5.2, Fig 

5.3). All the selected populations showed significant increase in fitness in hydrogen peroxide 

and all of them, except F populations, show loss of fitness in salt. Interestingly, even the 

populations selected in salt showed reduction in fitness when assayed in salt, albeit to a lesser 

magnitude (see section 4.3).  

Taken together, these results show that fluctuating environments can minimize trade-offs 

across environments. 
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Assay 
Selection 

regime 
Mean 

Dunnett’s 

Test p 

values 

Effect 

Size±95% 

CI 

Interpretation 

Overall 

mean fitness 

Ancestor 0.125 - - - 

pH4.5 0.129 0.826 0.07±0.19 Small 

pH9 0.114 0.016 0.2±0.19 Small 

NB 0.125 1 0.002±0.19 Small 

H2O2 0.133 0.185 0.14±0.19 Small 

Salt 0.133 0.278 0.17±0.19 Small 

F 0.146 0.00003 0.5±0.19 Medium 

Coefficient 

of variation 

for mean 

fitness 

Ancestor 0.284 - - - 

pH4.5 0.367 0.007 1.13±0.67 Large 

pH9 0.491 7.0E-06 1.6±0.82 Large 

NB 0.357 0.02 0.75±0.64 Medium 

H2O2 0.433 7.0E-06 2.91±0.89 Large 

Salt 0.133 7.0E-06 3.13±0.92 Large 

F 0.129 7.0E-06 2.23±0.79 Large 

Table 5.1 Summary of the main effect of selection in the ANOVAs for individual 

selection regimes. Dunnett’s post hoc test was conducted with ancestor as a control 

group, Dunnett’s test p values and effect size is thus in comparison with the ancestor. 
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Assay 

environment ↓ 

Selection environment → 

pH4.5 pH9 NB H2O2 Salt F 

pH4.5 0.14 1.3E-12(-) 0.96 0.95 0.02(-) 0.78 

pH9 0.0004(+) 0.001(+) 0.84 0.22 0.71 0.0001(+) 

NB 0.95 0.85 0.97 0.001(+) 0.02(-) 0.14 

H2O2 3.1E-07(+) 2.4E-05(+) 3.1E-08(+) 1.1E-12(+) 6.4E-15(+) 2.2E-14(+) 

Salt 5.4E-06 (-) 2.5E-05(-) 9.6E-05(-) 6.7E-15(-) 0.006(-) 0.01(+) 

Table 5.2: Holm – Šidàk corrected p values of all 30 t tests are given for the differences 

in fitness as compared to the ancestor. The differences were computed for all selection 

regimes in all assay environments. In case of significant difference, sign in the bracket 

denotes direction of the change. ‘-’ represents decrease while ‘+’ represents increase in 

fitness from ancestor.  
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4 DISCUSSIONS 

4.1 Complex, unpredictable fluctuations select for higher overall mean fitness  

 

Fig 5.1 Overall mean fitness (±SE) for all the selection regimes. Overall mean fitness 

was computed for every selection regime over all assay environments. Fitness estimated as 

maximum slope of the growth trajectory over 24 hours.  

* denotes significantly higher overall mean fitness (p < 0.05, Dunnett’s post hoc statistics) 

than ancestor while # denotes lower overall mean fitness than ancestor.    
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When subjected to predictable oscillations in a single environmental variable over long time 

scales, microbial populations typically evolve to have higher fitness over the entire range of 

environments faced (Leroi, Lenski et al. 1994, Turner and Elena 2000, Hughes, Cullum et al. 

2007, Coffey and Vignuzzi 2011, Puentes-Téllez, Hansen et al. 2013, Condon, Cooper et al. 

2014). However, the evolutionary outcomes become much more complicated when the 

environment undergoes unpredictable fluctuations even for a single variable (reviewed in 

Collins 2011). It can result in no change (Alto, Wasik et al. 2013) or increase (Turner and 

Elena 2000, Ketola, Mikonranta et al. 2013) in fitness. In some cases, there is increase in 

fitness in with respect to a few life history traits while decrease with respect to others 

(Hallsson and Björklund 2012), whereas another study reported improve in fitness only in a 

subset of the selection environments (Hughes, Cullum et al. 2007).  Moreover, natural 

environments typically consist of multiple variables that can change simultaneously and 

unpredictably (Lindow and Brandl 2003, Okafor 2011), which can potentially further 

constrain the evolutionary trajectories of populations. Our results show that when subjected 

to such complex, unpredictable fluctuations for ~ 900 generations, the bacterial populations 

show modest but significant overall increase fitness in the stresses under which they evolved 

(Fig 5.1).   

Increase in overall mean fitness across different environmental variables is a challenging task 

as compared to the improvement in fitness for different values of the same environmental 

variable.  Firstly, mutations advantageous in a given selection environment could have 

negative pleiotropic effects in other selection environments and thus get selected against 

when the environment changes (Travisano and Lenski 1996, Cooper and Lenski 2000). 

Secondly, in the absence of such trade-offs, mutations which are beneficial in one 

environment might be neutral in other environments. Conditionally beneficial mutations of 

this kind will have a lower chance of getting fixed (Whitlock 1996) and their fate will 
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primarily be governed by an interaction between the forces of drift and mutations rate. Due to 

these constraints on the fixation of beneficial mutations in unpredictably fluctuating complex 

environments, it can be difficult for populations to show improvement in fitness for any given 

component of the environment. In line with these expectations, we found little improvement 

in overall mean fitness when selected in complex, unpredictable fluctuations over a short 

duration of ~170 generations (section 4.2 in chapter 2). Our results here show that, over a 

longer duration of selection, populations facing complex, unpredictable fluctuations can 

improve fitness even for the selection environments.   

Along with retarding the fixation of conditionally beneficial mutations, complex, 

unpredictable fluctuations will strongly select against those mutations which can reduce 

fitness in any of the selection environments (i.e. pH, salt or H2O2). This should reduce the 

loss of fitness across selection environments which, in turn, should lead to reduction in the 

variation for fitness. Our results for variation in fitness across the five selection environments 

support this expectation (Fig 5.2). 

 

  



134 
 

4.2 Fluctuating environments minimize the variation for fitness 

 
Fig 5.2 Mean coefficient of variation for fitness (±SE) for all the selection regimes. 

Coefficient of variation (CV) was computed for every selection regime over all the assay 

environments. Fitness estimated as maximum slope of the growth trajectory over 24 hours. 

* denotes significantly lower CV (p < 0.05, Dunnett’s post hoc statistics) than ancestor 

while # denotes significantly higher CV than ancestor.   
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When evolved under predictable or unpredictable temporal fluctuations, microbial 

populations show reduced variation for fitness over the whole range of selection 

environments (Kassen 2014). This is because, when the environment changes temporally, it is 

the geometric mean (and not the arithmetic mean) of the fitness over the entire evolutionary 

time that plays a more important role in determining the long-term evolutionary success 

(Gavrilets and Scheiner 1993). Since reducing the variation in a series increases its geometric 

mean (Orr 2007), populations facing fluctuating environments are expected to have lower 

variation in fitness across the selection environments. This prediction is supported by 

empirical studies where temperature or host type fluctuates across time (Turner and Elena 

2000, Hughes, Cullum et al. 2007). However, reducing the variation in fitness when multiple 

selection environments are changing unpredictably is expected to be much more challenging 

particularly in the presence of negative pleiotropic interactions between traits (Rainey and 

Travisano 1998). Our results show that mandatory negative pleiotropic interactions, where 

decrease in fitness in one environment is indispensable to the gain in fitness in other, were 

almost absent. Populations selected under complex, unpredictable fluctuations minimized the 

variation in the fitness across all selection environments as compared to the ancestor (Fig 

5.2).  

The significantly lower variation for fitness in F populations compared to the ancestor needs 

to be interpreted together with the observation that the F populations also showed 

significantly higher overall mean fitness (Fig 5.1). This indicates that F populations did not 

only improve the fitness in some environments but also gained fitness in at least few selection 

environments. To confirm this, we estimated the differences in fitness from the ancestors 

under different environments.  
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4.3 Change in fitness from ancestor is environment specific 

 

Fig 5.3 Difference in maximum growth rate from ancestor (±SE) for all the selection 

regimes. Difference in mean fitness (estimated as maximum growth rate) from ancestor 

was computed for every selection regime in every environment. Negative values indicate 

loss of fitness from ancestral value while positive values indicate gain of fitness, as 

compared to the ancestor. Every selection regime, except F, shows loss of fitness in at least 

one of the environments.  

* denotes p < 0.05 after individual ANOVAs followed by Holm-Šidàk correction.   
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Fig 5.4 Difference in K from ancestor (±SE) for all the selection regimes. Difference in 

mean fitness (estimated as maximum density reached i.e. K) from ancestor was computed 

for every selection regime in every selection environment. Negative values indicate loss of 

fitness while positive values indicate gain of fitness, as compared to the ancestor. Every 

selection regime, except F, shows loss of fitness in at least one of the environments.  

* denotes p < 0.05 after individual ANOVAs followed by Holm-Šidàk correction.   
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In a simplistic scenario, adaptation to multiple selection environments can be thought of as 

independent of each other. In that case, if the ancestor is already close to the fitness maxima 

in a given selection environment, then neither the populations with constant exposure to that 

environment nor the F populations will show any improvement in fitness (Kassen 2014). On 

the other hand, when the ancestor is far away from the fitness maxima for a given 

environment, populations facing only that environment, along with the F populations, will 

show a definite improvement in fitness. However, when the fitness improvements in different 

environments are correlated, the fitness of F populations can increase only via ‘no cost’ 

routes i.e. F populations can increase the fitness in one environment without loss of fitness in 

other.  

Since trade-offs are fairly ubiquitous (Roff and Fairbairn 2007, Agrawal, Conner et al. 2010), 

populations facing multiple environments are expected to show lesser increase in fitness as 

compared to that of the specialists (Kawecki 1994, Whitlock 1996). However, results of 

empirical studies, involving both predictable and unpredictable fluctuations in single 

environmental variable or host, suggest that populations facing multiple values of a given 

environmental variable can improve fitness over all or some of the selection environments 

without a loss of fitness in other selection environments (Turner and Elena 2000, Hughes, 

Cullum et al. 2007, Condon, Cooper et al. 2014). Our results extend this understanding to 

complex environments where multiple variables fluctuate at the same time. F populations did 

not lose fitness in any of the selection environments as compared to the ancestor (Fig 5.3). 

The populations selected under constant exposure to hydrogen peroxide and pH9 showed 

increase in fitness in the respective selection environment. This increase in fitness was 

accompanied by the loss of fitness in salt for both populations and additionally in pH4.5 for 

populations selected in ph9.  F populations on the other hand showed fitness improvements in 

pH9, salt and hydrogen peroxide, without any loss of fitness in any environment (Fig 5.3). 
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This suggests that the ancestor was not only away from the fitness maxima of some of the 

selection environments but also that F populations could access a ‘no cost’ route to increase 

in fitness in these environments. In case of pH4.5, neither F populations nor the populations 

selected under constant pH4.5 environment, improved fitness over the ancestor (Fig 5.3). 

Thus, the ancestor was most likely well adapted to pH4.5 which is not surprising given that 

Escherichia coli are known to be well-adapted to acidic environments (reviewed in Foster 

2004). The control environment of NBKan showed similar pattern, which is intuitive given that 

ancestral Escherichia coli strain K12 is expected to be well adapted to the laboratory 

conditions.  

Surprisingly F populations showed significant increase in fitness from ancestors in salt, while 

the populations selected in salt showed a loss of fitness in the selection environment (Fig 

5.3). This counterintuitive observation is resolved when we look at a different proxy of 

fitness, namely, maximum density achieved or K (Vasi, Travisano et al. 1994, Novak, 

Pfeiffer et al. 2006). Populations selected in salt showed increased K relative to the ancestor 

(Fig 5.4).  This improvement in K and lack of the same in maximum growth rate could be due 

to an underlying trade-off between these two aspects of fitness. Higher concentration of salt 

will result in strong selection for robust membrane structures, which can be negatively 

correlated with the growth rate of the cells (Carlquist, Fernandes et al. 2012). Consistent with 

the observations for maximum growth rate as a proxy of fitness, even the F populations 

showed corresponding improvement in K. In the light of these results, we repeated the 

analysis for the mean and variance for K. The patterns in overall mean and variance remained 

consistent with maximum growth rate, i.e. F populations showed highest mean fitness with 

lowest variation for fitness (Appendix 5.3). But all the selected populations, including the F 

populations, showed reduced K in pH4.5, (Fig 5.4). In the light of these results though, the 

choice of fitness proxy demands further attention.  
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4.4 On the measurement of fitness  

In many studies on microbial experimental evolution, competitive ability relative to the 

ancestor is used as a proxy of fitness (Leroi, Lenski et al. 1994, Hughes, Cullum et al. 2007, 

Alto, Wasik et al. 2013). This measure is preferred because it integrates over all phases of a 

growth cycle (i.e. lag phase, log phase etc.) and is expected to show how much better the 

evolved population has become in terms of evolutionarily replacing the ancestor (Kassen 

2014). However, we refrained from using this measure. This is because change in competitive 

fitness compared to the ancestor is an appropriate measure in case of constant or directionally 

changing selection environments, where populations are adapting towards a fixed fitness peak 

(Collins 2011). As opposed to this, adaptation to unpredictable environments will involve 

sudden changes in the underlying fitness landscape. Populations facing such environments 

will not show monotonic change in the fitness as compared to the ancestor, which renders the 

measure of competitive fitness inappropriate (Collins 2011). In addition to the 

unpredictability, our selection environment features complexity. Different selection 

environments can select different life history components which might not get detected in the 

composite measure of competitive fitness (Vasi, Travisano et al. 1994).  The fitness measures 

employed in this study estimate the growth, either in terms of rate or yield, independent of the 

competitor. Abiotic environment is the major driver of these two parameters and hence more 

appropriate for the point measurement performed at the end of the fluctuating selection.   

Following previous studies, we thus use maximum growth rate and maximum density 

achieved as two different measures of fitness (Vasi, Travisano et al. 1994, Novak, Pfeiffer et 

al. 2006, Ketola, Mikonranta et al. 2013). The results of maximum growth rate and K are 

comparable in case of overall mean fitness and variation for fitness (Fig 5.1, 5.2 and 

Appendix 5.3). But this is not the case when we consider the change in fitness from ancestor 

(Fig 5.4). Populations selected in salt show reduced maximum growth rate as compared to the 
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ancestor but significantly higher K. Secondly, in pH 4.5, maximum growth rate does not 

evolve in comparison to the ancestor in all the selected populations but K shows significant 

reduction (Fig 5.4). These results clearly indicate that different selection environments can 

select for different components of fitness. Our results suggest that widely used fitness 

measures like relative fitness or logistic growth rates can mask this effect and thorough 

investigation into all the components of fitness is more desirable.   
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5 SUMMARY  

To our knowledge, this is the first study which shows that populations can simultaneously 

improve fitness and minimize the variation for fitness when exposed to complex, 

unpredictable fluctuating environments. Simultaneous exposure can result in fitness increase 

in some selection environments without any loss of fitness in other selection environments, 

though, selection at even longer timescale, i.e. few thousands of generations, might lead to 

different outcomes (Satterwhite and Cooper 2015). More importantly, our results suggest a 

possible explanation for the absence of trade-offs across environments in microbial 

populations by showing that other kind of trade-offs can exist i.e. trade-offs between different 

measures of fitness in the same environment. Estimating different components of fitness 

separately might be fruitful for future experimental studies.  
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Chapter 6. Predictability does not play a major role in 

shaping the fitness outcomes over short duration of the 

selection                                                                                                   
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1 INTODUCTION 

Laboratory studies using bacterial populations have showed that when exposed to 

environments containing multiple resources, populations adapt to use all the resource 

components of the environment (Barrett, MacLean et al. 2005, Cooper and Lenski 2010). We 

found that Escherichia coli populations subjected to complex fluctuating environments also 

showed improvement in fitness with respect to some of the component environments, without 

the loss of fitness in the others (Fig 5.3 and 5.4 from chapter 5). Simultaneous exposure to 

multiple environmental variables seems to result in adaptation through ‘no cost’ routes where 

gain of fitness in some environments is not accompanied by loss of fitness in other 

component environments. However, the role of unpredictability of the environment by itself, 

in terms of affecting evolution, remained to be investigated. For instance, one could ask 

whether environmental complexity, in the absence of temporal unpredictability, will result in 

similar patterns of fitness gains or losses.  

Previous experimental studies with microbial populations show that in the presence of 

predictable fluctuations between different values of a given stress (say pH or temperature) 

fitness of the selected populations improve over all the values of the stress experienced 

(Turner and Elena 2000, Hughes, Cullum et al. 2007, Coffey and Vignuzzi 2011, Alto, Wasik 

et al. 2013). On the other hand, unpredictable fluctuations can result in increase in fitness 

(Turner and Elena 2000, Ketola, Mikonranta et al. 2013), show no change in fitness (Alto, 

Wasik et al. 2013) or fitness can increase in some of the environments but not all (Hughes, 

Cullum et al. 2007). However, except for the systems employing host-parasite systems, 

fluctuating environments in these studies are almost entirely composed of different values of 

same environmental variable (Hughes, Cullum et al. 2007, Alto, Wasik et al. 2013). In this 

part of the study, we look at the evolutionary effects of predictability when the populations 

are exposed to qualitatively different environments (i.e. salt and pH4.5). The environmental 
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complexity in this study is introduced in terms of the different nature of the stresses, namely 

salt and pH, and the environment fluctuates predictably or unpredictably between these two 

different kinds of environments. In other words, the complexity is not ‘simultaneous’, like the 

prior selection regimes but ‘temporal’.  
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2 METHODS 

2.1 Selection experiment  

Kanamycin resistant Escherichia coli strain K12 (see Appendix 5.1 for details) was used for 

this selection experiment. A single colony grown on Nutrient agar with Kanamycin (see 

Appendix 2.1 for composition) was inoculated in 50 ml of Nutrient broth with Kanamycin 

(NBKan) (see Appendix 2.1 for composition) and allowed to grow for 24 hr at 370C, 150 rpm. 

4 µl of this suspension was used to initiate each of the 120 replicate populations.  

120 replicate populations were equally divided into five treatment and one control regime, 

thus resulting in 20 replicate populations per regime. Control populations (henceforth termed 

as Control) were sub-cultured in NBKan for the entire duration of the selection. Two out of 

five selection regimes constituted a constant environment with either pH 4.5 or salt in NBKan. 

Out of the remaining three environments, one environment alternated between pH 4.5 and 

salt 5g% predictably (henceforth termed as PBin, for Predictable Binary) and the other faced 

these two environments unpredictably (henceforth termed as UpBin, for Unpredictable 

Binary). The remaining environment fluctuated unpredictably over a range of values of salt 

and acidic pH (henceforth termed as UpRange, see Appendix 6.1 for details of all selection 

regimes).  The following table summarizes the selection regimes – 

Codes Environment Fluctuations Predictability 

Control NB Constant Predictable 

Acid pH4.5 Constant Predictable 

Salt Salt 5 Constant Predictable 

PBin pH 4.5 <=> Salt 5 Binary Predictable 

UpBin pH 4.5 <=> Salt 5 Binary Unpredictable 

UpRange pH4.5/pH5/S2/S3/S/3.5/S4/S4.5 Range Unpredictable 

 

Summary of selection regimes 
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24 welled plates with 2 ml of appropriate growth medium and 4 µl of inoculum volume for 

each well were used throughout the selection and assay experiments. The growth conditions 

were maintained at 370C, 150 rpm. All the populations were sub-cultured every 24 hr. 

Extinctions were identified visually and revived using 20 µl of the previous day’s culture 

stored at 4 0C. The selection lasted for 30 days i.e. ~ 260 generations. Every 10th day, the 

populations were stored as glycerol stocks at -80 0C for future assays.   

 

2.2 Fitness measurement  

Growth rate was assayed (see Appendix 1.1 for details) for all the selected populations and 

ancestor in pH 4.5, salt 5g% and NBKan. 

 

2.3 Statistical analysis  

Pooled data were analyzed using 3 way mixed model ANOVA. Selection (seven levels: 

control, salt, pH 4.5, pbin, upbin, uprange, ancestor) and assay environment (two levels: pH 

4.5 and salt 5g %) were fixed factors while replication (twenty levels) was a random factor 

nested in selection. The data were also analyzed separately for each of the assay environment 

to see whether predictability produces different effects across the assay environments. 2 way 

mixed model ANOVA was used with selection (seven levels: control, salt, pH 4.5, pbin, 

upbin, uprange, ancestor) was a fixed factor and replication (twenty levels) was a random 

factor nested in selection.  

In all cases where there was a significant main effect of selection, post hoc analysis was 

performed using Tukey’s HSD to determine which selected populations differed significantly 

between each other.   
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3 RESULTS  

When analyzed together, both selection (F6, 280 = 10.23, p < 0.0001) and assay environment 

had a significant effect on fitness (F1, 280 = 38.29, p < 0.0001). Additionally, there was a 

significant interaction between assay environment and selection (F6, 280 = 16.57, p < 0.0001). 

Variation for fitness between replicates of a given selection regime was marginally 

significant (F133, 280 = 1.35, p = 0.041). When analyzed separately for pH 4.5 and salt, 

selection had significant effect in both assay environments (F6, 140 = 7.51, p < 0.0001, for pH 

4.5 and F6, 140 = 13.58, p < 0.0001 for salt, Fig 6.1). Populations selected under constant pH 

4.5 environment showed significant improvement in fitness in pH 4.5, compared to all other 

populations except upbin (Fig Table 6.1). Populations evolved in constant salt environment 

showed significant improvement in fitness from the ancestor but did not differ significantly 

from any of the other selected populations (Table 6.2). But surprisingly none of the three 

fluctuating treatments (pbin, upbin, uprange) differed significantly from each other in either 

salt or pH 4.5 environments (Table 6.1 and 6.2). Overall, the results suggested that while 

environmental fluctuations might play a role in affecting the evolutionary outcomes, the 

nature of predictability does not play a consistent role in the same, at least in the given 

environmental contexts.  
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 NB Salt uprange upbin pbin pH4.5 Ancestor 

NB  0.020197 0.843100 0.811992 0.996018 0.022912 0.088557 

Salt 0.020197  0.463815 0.000097 0.120268 0.000026 0.998810 

uprange 0.843100 0.463815  0.097953 0.992966 0.000143 0.790924 

upbin 0.811992 0.000097 0.097953  0.410202 0.531997 0.000757 

pbin 0.996018 0.120268 0.992966 0.410202  0.002459 0.343842 

pH4.5 0.022912 0.000026 0.000143 0.531997 0.002459  0.000026 

Ancestor 0.088557 0.998810 0.790924 0.000757 0.343842 0.000026  

 

Table 6.1 Tukey’s HSD p values for all the pairwise comparisons of mean fitness for all 

the selection regimes, when assayed in pH 4.5.  
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  NB Salt uprange upbin pbin pH4.5 Ancestor 

NB   0.000026 0.000026 0.000026 0.000026 0.000698 0.000263 

Salt 0.000026   0.675101 0.927518 0.906883 0.199029 0.314658 

uprange 0.000026 0.675101   0.998749 0.999415 0.001199 0.003032 

upbin 0.000026 0.927518 0.998749   1.000000 0.008427 0.018685 

pbin 0.000026 0.906883 0.999415 1.000000   0.006719 0.015149 

pH4.5 0.000698 0.199029 0.001199 0.008427 0.006719   0.999987 

Ancestor 0.000263 0.314658 0.003032 0.018685 0.015149 0.999987   

 

Table 6.2 Tukey HSD p values for all the pairwise comparisons of mean fitness for all 

the selection regimes when assayed in salt.  
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4 DISCUSSION 

 

Fig 6.1 Mean (±SE) fitness in salt and pH 4.5 A. Mean fitness in salt for each selection 

regime and ancestor is plotted. B. Mean fitness in pH 4.5 for each selection regime and 

ancestor is plotted. None of the three fluctuating selection regimes i.e. uprng, upbin and 

pbin, are significantly different from each other in either salt or pH 4.5. For other 

significant differences, see tables 6.1 and 6.2. Fitness was measured as maximum slope of 

the growth trajectory over 24 hours.  
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Little is known about the effect of predictability on evolution in the presence of complexity. 

We previously showed that complex, unpredictable fluctuations do not increase fitness in the 

selection environments over short duration of ~ 170 generations (Fig 2.1 in chapter 2). Long 

term selection of ~ 900 generations results in improved fitness in selection environments 

(Table 5.2, Fig 5.1 in chapter 5). But we could not comment on the specific role of 

unpredictability in this case, due to the absence of corresponding complex predictable 

control. Here we compared the fitness outcomes of predictable and unpredictable fluctuations 

across two qualitatively different environments, salt and pH4.5.  

Results show that predictability does not affect the fitness outcome in this case (Fig 6.1). 

Both predictable and unpredictable fluctuations show higher mean fitness as compared to the 

ancestor but the difference is not significant (Table 6.1 and 6.2, Fig 6.1). On the other hand, 

populations selected in the constant concentration of salt or pH 4.5 did show significant 

improvement in fitness, suggesting the scope for increase in fitness in both these 

environments. This lack of significant fitness increase in pbin and upbin populations cannot 

be attributed to  underlying trade-off since previous results have shown that fitness (estimated 

as maximum growth rate) can improve in salt without any significant loss in pH 4.5 (Fig 5.3 

in chapter 5). Though the ancestral population and the environmental variables are identical 

in this case, it is important to note that bacterial populations were simultaneously exposed to 

salt and pH 4.5 in the previous selection while here the exposure was sequential.  

It has been shown previously that unpredictable binary fluctuations can result in higher 

fitness as compared to fluctuations over a range of values for the same environmental 

variable (Alto, Wasik et al. 2013). One possible reason for this observation is the greater 

exposure received by the populations to the assay environment, i.e. the extreme value of the 

chosen variable, in case of binary fluctuations. For instance, a population facing binary 

unpredictable fluctuations between two temperatures will face the assay temperature (one of 



153 
 

the two values) more often than a population selected over a range of temperatures, with one 

of the values being the assay temperature. We tested the possible effects of number of 

exposures during selection on fitness by including a selection regime with an unpredictable 

sequence of multiple salt and acidic pH values. The fitness of range- selected (i.e. uprange) 

populations was comparable to that of the predictable (pbin) or unpredictable (upbin) binary 

fluctuations in both the assay environments (Fig 6.1). This suggests that the number of times 

a population faces an environment identical to the assay environment during the process of 

selection, does not affect its fitness significantly.  
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5 SUMMARY 

Our results thus suggest that predictability of the environment does not play a major role in 

shaping the fitness outcomes of populations in case of salt and pH 4.5. Moreover, differences 

in fitness of populations facing binary vs range of values unpredictably, cannot be attributed 

to the number of times the populations have been exposed to that particular environment. 

Longer duration of selection might yield a different picture but ~260 generations of selection 

in salt and pH 4.5 indicate that predictability plays little role in shaping the fitness outcomes 

of the evolving populations.  
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Chapter 7. Conclusions 
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In my thesis, I have used laboratory populations of Escherichia coli, to study short term and 

long term fitness effects of unpredictable, complex fluctuating environments on microbial 

populations. I show that selection under complex, unpredictable fluctuations over short 

duration (~170 generations) leads to fitness advantage in novel environments like antibiotics 

and heavy metals through the evolution of elevated energy dependent efflux. This 

observation can have serious practical implications. 

Wide-spread antibiotic resistance in pathogenic bacteria is a challenge for health systems and 

economies worldwide. Infections by these resistant pathogens claim ~50,000 lives per year, 

in Europe and US alone. Though no reliable data exists for other parts of the world, the 

suspected numbers are no less than hundreds of thousands. By year 2050, ~10 million people 

are predicted to lose their lives every year, due to antimicrobial resistant pathogens (O'Neill 

2014).  

Increased clinical and commercial use of antibiotics is considered to be the primary driver for 

evolution of antibiotic resistance (O'Neill 2014). However, over the last few years, number of 

studies has shown that antibiotic resistance can evolve even in the absence of exposure to 

antibiotics (Clemente, Pehrsson et al. 2015, McArthur, Fletcher et al. 2015) This puzzling 

observation is typically explained in terms of horizontal gene transfer (Frost, Leplae et al. 

2005, Perry and Wright 2013) or evolution of efflux activity due to exposure to heavy metals 

(Stepanauskas, Glenn et al. 2006, Wright, Peltier et al. 2006).  My results show that even in 

the absence of all these causes, fluctuations in environmental variables can lead to the 

evolution of higher efflux abilities, which can in turn lead to multi-drug resistance. My results 

can potentially explain how recently discovered Amazonian tribes, who have never 

experienced antibiotics in their evolutionary history, can harbour microbes showing MDR 

(Clemente, Pehrsson et al. 2015). More critically, these results can have potential public 

health implications, particularly given that environmental variability has increased in many 
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parts of the world (Bhutiyani, Kale et al. 2010, Medvigy and Beaulieu 2012). It is already 

known that habitats that have a history of disturbance often harbour species that turn out to 

have a high invasive potential, when introduced to other areas (Lee and Gelembiuk 2008). 

My results sound a similar cautionary note for potential pathogens. However, the 

environmental complexity in nature is evidently much greater than those experienced by the 

E. coli populations in my study. Therefore, much more work needs to be done to ascertain the 

effects of environmental fluctuations on natural microbial and non-microbial populations. 

One fruitful direction for further study in this context is an investigation of the effects of 

duration of exposure to fluctuating environments. I show that evolved superior efflux ability, 

and the associated fitness advantage under novel environments, vanishes over time (~560 

generations). This suggests that over longer periods of time, elevated efflux might carry a 

fitness cost and hence face negative selection. Change in efflux abilities with time thus needs 

to be studied along with the antibiotic resistance properties. Simultaneous loss of antibiotic 

resistance and efflux abilities, in the absence of antibiotics in the selection environment, will 

confirm that antibiotic resistance evolved as a correlated response with efficient efflux. If it 

turns out that even under natural conditions, elevated efflux is just a transient mechanism and 

not a long-term one, then the potential effects of environmental fluctuations on evolved MDR 

is going to be less serious. 

Fitness outcomes of fluctuating environments revealed intriguing patterns, not only in novel 

environments but also in the selection environments. There was no fitness improvement for 

selection environments, even after ~560 generations of selection.  Approximately 900 

generations of selection on the other hand, resulted in fitness improvement for environmental 

stresses that were part of the selection regime. This observation is very unusual given that 

large population sizes and substantial mutation rates in bacteria typically result in rapid 

adaptation in many laboratory selection experiments (Reboud and Bell 1997, Collins and De 
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Meaux 2009, Ketola, Mikonranta et al. 2013). However, majority of these selection regimes 

depict ‘standard ecological scenario’ (SEE) where environments remain constant throughout 

the selection or change monotonically (Collins 2011). Natural environments on the other 

hand fluctuate over time and my results show that our understanding of adaptation rates based 

on results coming from SEE, do not necessarily extrapolate to these fluctuating environments.      

It is not only the slow rate of adaptation but also the large extent of adaptation that is 

surprising when bacterial populations evolve in fluctuating environments for extended 

duration. After ~900 generations, extent of adaptation to individual environmental stress is 

comparable between populations getting constant exposure to that environment and 

populations facing the complex, unpredictable environments (see chapter 5). But this 

improvement in fitness seems to be achieved through a different adaptive route by the 

populations facing fluctuations. This is evident when change in fitness from ancestor is 

characterized in all the selection environments for all the selected populations. Populations 

facing a single constant environment throughout the selection lose fitness in at least one of 

the other environments while the populations facing complex environments do not show loss 

of fitness in any environment. This observation suggests that trade-offs across environments 

(i.e. fitness advantage in one environment being accompanied by fitness loss in the other is 

perhaps rare in microbes which agrees in general with several studies (Turner and Elena 

2000, Hughes, Cullum et al. 2007, Condon, Cooper et al. 2014 but see Reboud and Bell 

1997). This is somewhat unexpected given the ubiquity of trade-offs in most organisms in the 

literature. I provide empirical evidence for a probable explanation for this conundrum. I show 

that trade-offs might exist across two different components of fitness in the same 

environment, for instance maximum growth rate and maximum density reached, rather than 

across different environments. The two different proxies of fitness can evolve to different 

extents and sometimes even in different directions where increase in one can be accompanied 
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by decrease in other, in a given environment (see chapter 5 for details). However, these 

results in turn raise the question as to what is the best proxy of the fitness for bacteria.  

 

Following previous authors  (Collins 2011), I argue that the most commonly employed 

measure of fitness i.e. relative fitness or competitive ability vis-a-vis the ancestor, is of little 

relevance when populations are not adapting to constant or monotonically changing 

environments. The measure of relative fitness assumes that the population is monotonically 

progressing towards an adaptive peak and hence comparison with ancestor provides a good 

measure of extent of adaptation. Populations adapting to fluctuating environments on the 

other hand, face multiple different environments and the adaptation trajectory is far from 

monotonic. Relative fitness thus needs to be computed with respect to the immediate 

ancestor, i.e. the starter population from which growth took place in the current environment, 

under such a scenario. Estimating such ‘fitness flux’, though rewarding, is logistically not 

possible in case of long term evolution studies. Instead, I used maximum growth rate of the 

population as the proxy of fitness. This is one of the simple and direct measures of fitness and 

logistically less demanding. The growth curve studies performed to estimate this parameter, 

also allowed me to estimate another components of fitness, namely ‘K’ (maximum density 

reached). In fact, comparison of ‘r’ (maximum growth rate) with ‘K’ reveals that different 

fitness proxies can evolve in different directions and to different extent in some environments 

(see chapter 5). This observation supports previous results which point out that trade-offs in 

the different life history components (or fitness proxies) are not absent in microorganisms 

(Vasi, Travisano et al. 1994, Novak, Pfeiffer et al. 2006). More importantly, this calls for 

cautious use of composite measures of fitness like logistic growth rate or relative fitness, as 

they will fail to reveal the interplay between these various facets of fitness.  
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I investigated some of the aspects of the evolutionary effects of complex, unpredictable 

fluctuations in my thesis. Along with several insights, my results also raised many questions 

which can be pursued in the future. For example, the role of complexity in shaping the fitness 

outcomes needs to be empirically investigated in greater detail. What if the fluctuations are 

biotic in nature rather than abiotic, and dependent on the growth and evolution of the 

populations rather than independently changing in background, as was studied here? What if 

we consider spatial heterogeneity along with the temporal one at hand?  Most theoretical 

studies on evolutionary effects of fluctuating environments seek to model changes in 

mutation rates and standing variation (Leigh Jr 1970, Ishii, Matsuda et al. 1989, Taddei, 

Radman et al. 1997). My results suggest that such studies have perhaps failed to consider the 

critical mechanism that enables organisms to adapt to such situations in nature and a new 

class of theoretical modelling is needed to investigate this issue.  Finally, although my thesis 

concentrated entirely on effects of environmental fluctuations on bacteria, such fluctuations 

are also experienced by multi-cellular organisms. Although there has been some studies on 

how organisms like fruit-flies (Condon, Cooper et al. 2014, Ketola, Kellermann et al. 2014), 

green algae (Reboud and Bell 1997) and seed beetle (Hallsson and Björklund 2012), cope 

with environmental heterogeneity, very little is known about the corresponding mechanisms. 

Thus, elucidation of the effects of fluctuating environments is likely to be a major line of 

work in the near future and one can safely predict interesting days ahead for this field.   
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Appendix 1.1 Estimating fitness 

For all growth rate measurements mentioned, the relevant glycerol stocks were revived for 18 

to 20 hours. The culture volumes for revival were same as that of the selection. 4 µl of this 

revived culture (20 µl in case of selection under deteriorating environment) was inoculated 

into 2 ml of medium in 24-well cell culture plates in triplicates and kept under 150 rpm at 

37ºC. The OD600 of each well was measured every two hours over a period of 24 hours on a 

plate reader.  

Following a recent study (Ketola, Mikonranta et al. 2013), we estimated fitness as the 

maximum growth rate over the period of 24 hours. The maximum growth rate of the bacterial 

population was computed using a QBASIC (v 4.5) script (available on request to the author at 

s.dey@iiserpune.ac.in) to fit straight lines on overlapping moving windows of three points on 

the time series of OD600 values obtained as per mentioned in the previous section. The 

maximum slope obtained among all the fitted lines for a given time series, was taken as an 

estimate of the maximum growth rate for the corresponding population. 

 

  



173 
 

Appendix 1.2 Mutation rate measurement 

We used the method suggested by Crane et al (Crane, Thomas et al. 1996) for estimating 

mutation rates. One control population and one selected population were processed with a 

given batch of media.  Glycerol stocks of control S and F populations were revived in NB for 

18 hours. The revived culture was then diluted 10 fold. Eleven replicate flasks, each 

containing 50 ml of nutrient broth, were inoculated with 10 µl each of this diluted suspension. 

These replicate cultures were then allowed to grow for another 18 hours and then plated on 

nutrient agar with and without 100 micrograms/ml Rifampicin (Torres-Barceló, Cabot et al. 

2013) for estimating mutant counts and total numbers respectively. Colonies were counted 

manually, after 24 hours of incubation at 37ºC.  Median estimator (λmed) was estimated using 

following formula (Jones 1994):  

λmed =
rm s⁄ −  0.693

ln(
rm

s⁄ ) + 0.367
 

where rm = Number of mutants found in the median culture  

        s = Proportion of culture plated  

Mutation rate,   

μ = λmed / N  

where,  N = Total number of living bacteria in 50 ml culture (as counted on 

Nutrient Agar). 
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Appendix 1.3 Sequencing mutS and mutL genes 

Along with the mutation rate measurement, we sequenced candidate genes involved in 

mismatch repair pathway to address the possibility of evolution of hypermutators.  

100 µl of glycerol stock from each replicate population of S and F was streaked on separate 

NA plates and incubated at 370C. After 24 hours, 3 to 4 well isolated colonies from each plate 

were mixed in sterile miliQ water separately. 20 minutes of heating on thermocycler 

(Eppendorf) was followed by 15 minutes of centrifugation. The supernatant obtained was 

used as a sample for the PCR reaction.  

Both the genes of interest were amplified using Advantage 2 polymerase mix (Clontech 

Laboratories, Inc., CA, USA, Catalogue number 639137) to obtain high fidelity 

amplification.   

mutS 

Primers – Forward 5' GAGTGCAATAGAAAATTTCGA 3' 

      Reverse 5' TCTTCTGGTACTGACAGCAAA 3' 

mutS gene is 2562 bp long. To eliminate the errors associated with long sequence reads we 

designed 4 additional primers with expected coverage of less than 800 bp.  

Sequencing primers – mutS_619 5'CCGCTGTGGGAGTTTGAAAT 3' 

mutS_1342 5'GACGGCGCGACCGATTATCTG 3' 

mutS_1702 5'CGGGCCTATACCCTGAACTA 3' 

mutS_2227 5'CCGGAGAAAATGGAAGGGGT 3' 

mutL 

Primers – Forward 5' GGCGAGCGACGATTACCAACC 3' 
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      Reverse 5' GCGACAACCCTTCCAGCAAT 3' 

mutL gene is 1850 bp long. To eliminate the errors associated with long sequence reads we 

designed 2 additional primers with expected coverage of less than 800 bp. 

Sequencing primers – mutL_673 5'GCGCTGGCGAATGAATGGCA 3' 

mutL_1200 5'ACAGCAAGGTGAAGTGTATCG 3' 

Reaction mix for both mutS and mutL – For 1 reaction of 25 µl 

 Volume (µl) Comment 

Buffer 2.5  

dNTP 1 2.5 mM concentration, MgCl2 not needed 

Forward + Reverse Primer 1 + 1 Final concentration needed 10 µM 

Water 14  

Template  5  

Enzyme 0.5 Added separately for every reaction 

 

PCR program for both mutS and mutL – 

Lid = 1050C  

Wait 

T = 940C for 5 min 

T = 940C for 30 sec 

T = 600C for 30 sec 

T = 680C for 2 min 



176 
 

Go to 2 rep 35 

T = 680C for 10 min 

Hold 40C 

The overlapping sequences obtained were aligned using MEGA (Version 5, Arizona State 

University, USA) and stitched together to form a whole sequence. These sequences were then 

compared with the library sequence in NCBI using BLAST. Any base pair substitutions or 

frame shift mutations were noted for each of the S and F population.  

 

Appendix 1.4 Energy dependent efflux estimate 

For characterization of efflux properties of our populations, we modified an existing protocol 

(Webber and Coldham 2010) for fluorescent-based estimation of active efflux in Gram 

negative bacteria. Glycerol stocks of S and F populations were revived for 18 to 20 hours in 

NB. OD600 was adjusted, by diluting with NB, in the range of 0.03 to 0.06 OD units on 

Nanodrop (Thermo scientific 2000c). 2 ml of the OD600 adjusted cultures were then 

centrifuged, supernatant was discarded and the pellet was re-suspended in the PBS buffer (pH 

7.4). Part of each suspension was then boiled at 600C for 10 minutes to be used as positive 

controls. The live cells and corresponding positive controls were then loaded in 96 welled 

plates in triplicates (168 μl and 180 μl respectively). 20 μl of Bis-benzimide (Excitation λ 355 

nm and Emission λ 465 nm) was then added to all the wells. Bis benzimide is a small 

molecule which can easily enter the cell and fluoresce after intercalating with DNA. Live 

cells were also supplied with glucose since we wanted to look at the ATP dependent active 

efflux (8 μl of 1% glucose solution). The total volume of each well with live cell was 196 μl 

and with dead cells was 200 μl.  
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Fluorescence was measured on a plate reader (Tecan Infinite M200 Pro) at 370C for forty 

minutes. By 35 minutes the fluorescence levels in all wells reached their steady state.  The 

level of fluorescence at 35 minutes was taken as the total fluorescence. The reader was then 

paused and 4 μl of Carbonyl Cyanide m-Chlorophenylhydrazone (C2759 Sigma) was added 

to all the wells with live cells. Carbonyl Cyanide m-Chlorophenylhydrazone (CCCP) is a 

non-specific inhibitor of active efflux in Gram negative bacteria (Webber and Coldham 

2010). Fluorescence measurement was continued for another 30 minutes for steady state to 

reach and the reading at 70th minute was taken as fluorescence without efflux.  
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The contribution of efflux was measured as –  

𝐹𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒 𝑜𝑓 𝑙𝑖𝑣𝑒 𝑐𝑒𝑙𝑙𝑠 𝑎𝑡 70 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 –  𝐹𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒 𝑜𝑓 𝑙𝑖𝑣𝑒 𝑐𝑒𝑙𝑙𝑠 𝑎𝑡 35 𝑚𝑖𝑛𝑢𝑡𝑒𝑠

𝐹𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒 𝑜𝑓 𝑙𝑖𝑣𝑒 𝑐𝑒𝑙𝑙𝑠 𝑎𝑡 35 𝑚𝑖𝑛𝑢𝑡𝑒𝑠
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Appendix 2.1 Composition of Nutrient broth -  

 

Ingredients 

 

Gms/litre 

Peptic digest of animal tissue 

 

5.00 

Sodium chloride 

 

5.00 

Beef extract 

 

1.50 

Yeast extract 

 

1.50 

Final pH (at 250C) 7.4 ± 0.2 

 

For slide based technique in section 2.2.6, we added 12 g/L of agar to the above mixture to 

make Nutrient Agar. 

 

For making NBKan, 0.05 mg/ml of Kanamycin was added to above mixture after autoclaving.  

 

 

 

Component space for fluctuating selection regime described in section 2.1.2 –                           

Salt (g%) - 1, 2, 3, 4, 4.5, 5 

pH - 4.5, 5, 6, 7, 8, 9, 9.5, 10 

H2O2 (M) – 0, 0.01, 0.012, 0.014 
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Appendix 2.2 Details of the selection regime faced by F populations for first 30 days 

 

Transfer 

# 

Combination 

# 
pH 

Salt 

(g%) 

H2O2 

(M) 

1 46 9.5 2 0 

2 54 9.5 4 0 

3 31 7 5 0.014 

4 64 4.5 5 0 

5 31 7 5 0.014 

6 30 7 4.5 0.014 

7 26 7 1 0.014 

8 13 7 2 0.012 

9 10 9.5 0.5 0.01 

10 68 8 5 0 

11 51 10 3 0 

12 20 6 0.5 0.012 

13 22 8 0.5 0.012 

14 15 7 4 0.012 

15 55 10 4 0 

16 1 7 5 0 

17 16 7 4.5 0.012 

18 53 5 4 0 

19 71 10 5 0 

20 54 9.5 4 0 

21 8 4.5 0.5 0.01 

22 29 7 4 0.014 

23 38 9.5 0.5 0.014 

24 37 9 0.5 0.014 

25 32 4.5 0.5 0.014 

26 68 8 5 0 
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27 15 7 4 0.012 

28 49 5 3 0 

29 49 5 3 0 

30 51 10 3 0 
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Appendix 2.3 Novel, component, complex, acclimation environments used for fitness 

assays after fluctuating selection 

 

 

 

 

** These are the concentrations used for the growth curve assay for cobalt and zinc. The 

concentrations for acclimation were slightly lower (14.4 mg% and 16 mg%).  

  

 Assay Environment Concentration 

Novel 

environments 

Cobalt chloride 14.2 mg% 

Zinc sulfate 18.4 mg% 

Ethidium bromide 2.5 mg% 

Norfloxacin 0.004 mg% 

Component 

environments 

Salt 5 g% 

Acidic pH 4.5 

Basic pH 10 

Hydrogen peroxide 0.058 M 

 

 

 

Complex 

environments 

#51 pH 10 + salt 3g% + 0 H2O2 

#54 pH 9.5 + salt 4g% + 0 H2O2 

#68 pH 8 + salt 5g% + 0 H2O2 

#49 pH 5 + salt 3g% + 0 H2O2 

#22 pH 8 + salt 0.5g% + 0.01M H2O2 

#13 pH 7 + salt 2g% + 0.01M H2O2 

Acclimation 

environments 

Cobalt chloride 17.2 mg% ** 

Zinc sulfate 18.4 mg% ** 

Ethidium bromide 2.5 mg% 

Norfloxacin 0.004 mg% 

Fitness at individual 

level 

Cobalt chloride 28.5 mg% 

Zinc sulfate 120 mg% 

Streptomycin 0.0065mg% 

Norfloxacin 0.0032 mg% 
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2.4 Selection under deteriorating environment 

 

Environment Concentrations 

Day I DayVIII Step size 

Cobalt 6 mg% 13 mg% 1 mg% 

Zinc 5 mg% 12 mg% 1 mg% 

Norfloxacin 0.4 µg% 1.1 µg% 0.1 µg% 
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Appendix 2.5 – Novel Environments used for estimating fitness at the individual level 

  

Assay Environment Concentration 

Cobalt chloride  28.5 mg% 

Zinc sulfate 120 mg% 

Streptomycin   0.0065mg% 

Norfloxacin 0.0032 mg% 
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Appendix 2.6 – Effect size computed for the growth rates and yield measured in the 

three temperature environments from Figure 1 of Ketola, Mikonranta et al. 2013. 

Means and ANOVA p-values are as reported in that paper. 

 

 
Assay 

Environment 

Mean 

C 

Mean 

F 

ANOVA 

p values 

Effect 

Size±95% 

CI 

Inference 

Growth 

rate 

240C 0.31 0.34 <0.001 0.43±0.25 Small 

310C 0.46 0.51 <0.001 0.53±0.25 Medium 

380C 0.37 0.41 <0.001 0.61±0.25 Medium 

Yield 

240C 0.086 0.089 <0.001 0.21±0.25 Small 

310C 0.1 0.11 0.478 0.12±0.25 Small 

380C 0.075 0.079 <0.001 0.45±0.25 Small 
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3.1 Protocol for using the Biolog plates 

 

We used GEN III MicroPlateTM along with inoculating fluid A (IF-A) for estimating the 

phenotypic variation. Both plates and inoculating fluid were stored at 40C and thawed at 

room temperature before use.  

A part of glycerol stock was streaked on nutrient agar plate for every replicate population of 

S and F.  The plates were incubated at 370C overnight. 8 isolated clones of comparable sizes 

were selected for every population and inoculated into the separate inoculation fluid tube.  

The transmittance was in the range of 95% to 98% for the selected clones. 100 µl of this well 

mixed inoculation fluid was used to inoculate the GEN III plate. The plates were incubated at 

370C for 24 hours after which they were stored at 40C for another day, during which time we 

measured optical density for all the 48 plates at 590 nm (Cooper and Lenski 2000) using a 

microplate reader (SynergyHT Biotek, Winooski, VT, USA).  
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Appendix 3.2 Efflux activity under selection for adaptation to constant environment  

 Median values for each of the stress variable (Salt 4g%, pH5, pH9.5 and 0.012M H2O2) were 

chosen for the selection in constant environment. Escherichia coli (strain NCIM 5547) was 

revived overnight in Nutrient Broth. This revived culture was used to initiate three replicate 

populations in each of the selection environments and Nutrient Broth, a total of 15 

populations. Culturing conditions and transfer volume was as mentioned in section 2.1.1. The 

selection lasted for seven days (i.e ~40 generations), without any extinction events, after 

which the populations were stored as glycerol stocks. These stocks were then used for efflux 

measurement as per Appendix 1.4.  

Statistical Analysis – The average of the three efflux measurements for each population was 

used for analyzing all the environments together. The pooled data was analyzed using 1-way 

ANOVA where Selection (5 levels: Salt, pH5, pH9.5, H2O2 and NB) was a fixed factor. For 

analyzing each stress separately, we performed four separate 2-way mixed model ANOVAs 

where selection (2 levels: selected and control) and replicates (3 levels, nested in selection) 

were treated as fixed and random factors respectively. 

Results – Efflux did not differ across environments (F4,10= 0.577, p = 0.686). Results of 

individual ANOVA, summarized in the following table, show no difference in the energy 

dependent efflux of control and any of the selected populations when analyzed separately. 

Selection 

environment 

Mean 

Control 

Mean 

Selected 

ANOVA 

F(1,4) 

ANOVA 

p values 

Effect 

Size±95% CI 
Inference 

Salt 
0.648 0.49 1.52 0.285 1.13±0.99 Large 

pH 5 
0.551 0.507 0.1 0.765 0.29±0.93 Small 

pH 9.5 
0.59 0.622 0.04 0.851 0.19±0.93 Small 
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H2O2 
0.458 0.626 4.74 0.095 1.91±1.11 Large 

Note that no Holm-Šidàk correction was done since even the lowest p-value was not 

significant at the 0.05 level.   



189 
 

Appendix 5.1 Details of the ancestral Escherichia coli population used for the selection 

lacY gene from lac chromosome was deleted in Escherichia coli K12 MG1655. Kanamycin 

resistance gene was inserted in this place creating a non-revertible Kanamycin resistant 

bacteria. Colonies of this bacterium are white colored on MacConkey’s agar as opposed to 

the red colored colonies as opposed to the red colored colonies produced by other 

Escherichia coli.   
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Appendix 5.2 Details of all the selection regimes  

 

1. Salt – 5g% of sodium chloride  

2. Acidic pH – pH 4.5 

3. Basic pH – pH 9 

4. Hydrogen peroxide –  

5. Component space for fluctuating selection regime –  

a. Salt – 0.5 g%, 2 g%, 3 g%, 3.5 g%, 4 g%, 4.5 g%, 5 g% 

b. pH – 4.5, 5, 7, 8.5, 9 

c. Hydrogen peroxide – 2.4 mM, 2.9 mM, 3.4 mM, 3.9 mM 

Selection regime faced by F populations for 100 days  

Transfer 

# 

Combination 

# 
Salt g% pH 

H2O2 

mM 

1 39 5 7 2.9 

2 59 5 7 3.9 

3 2 3.5 5 0 

4 46 3.5 7 3.4 

5 23 5 10 0 

6 10 4.5 4.5 0 

7 62 0.5 8.5 3.9 

8 1 3 5 0 

9 19 3 10 0 

10 9 4 4.5 0 

11 9 4 4.5 0 

12 30 0.5 5 2.4 

13 7 3 4.5 0 

14 39 5 7 2.9 

15 45 3 7 3.4 

16 32 0.5 8.5 2.4 
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17 44 2 7 3.4 

18 58 4.5 7 3.9 

19 60 0.5 5 3.9 

20 36 3.5 7 2.9 

21 9 4 4.5 0 

22 45 3 7 3.4 

23 25 3 7 2.4 

24 12 2 8.5 0 

25 8 3.5 4.5 0 

26 11 5 4.5 0 

27 25 3 7 2.4 

28 34 2 7 2.9 

29 26 3.5 7 2.4 

30 26 3.5 7 2.4 

31 53 0.5 9 3.4 

32 18 2 9 0 

33 55 3 7 3.9 

34 43 0.5 9 2.9 

35 27 4 7 2.4 

36 24 2 7 2.4 

37 48 4.5 7 3.4 

38 1 3 5 0 

39 21 4 9 0 

40 14 3.5 8.5 0 

41 48 4.5 7 3.4 

42 63 0.5 9 3.9 

43 30 0.5 5 2.4 

44 49 5 7 3.4 

45 30 0.5 5 2.4 

46 21 4 9 0 

47 46 3.5 7 3.4 

48 62 0.5 8.5 3.9 

49 17 5 8.5 0 
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50 49 5 7 3.4 

51 41 0.5 4.5 2.9 

52 63 0.5 9 3.9 

53 25 3 7 2.4 

54 25 3 7 2.4 

55 28 4.5 7 2.4 

56 16 4.5 8.5 0 

57 46 3.5 7 3.4 

58 55 3 7 3.9 

59 31 0.5 4.5 2.4 

60 3 4 5 0 

61 30 0.5 5 2.4 

62 5 5 5 0 

63 42 0.5 8.5 2.9 

64 28 4.5 7 2.4 

65 2 3.5 5 0 

66 47 4 7 3.4 

67 1 3 5 0 

68 24 2 7 2.4 

69 22 4.5 9 0 

70 38 4.5 7 2.9 

71 7 3 4.5 0 

72 18 2 9 0 

73 46 3.5 7 3.4 

74 2 3.5 5 0 

75 0 2 5 0 

76 11 5 4.5 0 

77 40 0.5 5 2.9 

78 24 2 7 2.4 

79 25 3 7 2.4 

80 37 4 7 2.9 

81 56 3.5 7 3.9 

82 21 4 9 0 
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83 43 0.5 9 2.9 

84 62 0.5 8.5 3.9 

85 53 0.5 9 3.4 

86 4 4.5 5 0 

87 63 0.5 9 3.9 

88 42 0.5 8.5 2.9 

89 62 0.5 8.5 3.9 

90 33 0.5 9 2.4 

91 48 4.5 7 3.4 

92 43 0.5 9 2.9 

93 50 0.5 5 3.4 

94 11 5 4.5 0 

95 8 3.5 4.5 0 

96 35 3 7 2.9 

97 17 5 8.5 0 

98 59 5 7 3.9 

99 11 5 4.5 0 

100 15 4 8.5 0 

 

Transfer #5 and #9 comprised of pH 10 which was initially part of the fluctuating component 

space. Both the environments lead to extinction and hence the component space was modified 

to the present state. 
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Appendix 5.3 Overall mean and coefficient of variation for fitness, measured as 

maximum density reached 

 

Overall mean fitness (±SE) for all the selection regimes. Overall mean fitness was 

computed for every selection regime over all assay environments. Fitness estimated as 

maximum density reached (K) during 24 hours growth period.  

* denotes significantly higher overall mean fitness (p < 0.05, Dunnett post hoc statistics) 

than ancestor.    
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Mean coefficient of variation for fitness (±SE) for all the selection regimes. Coefficient 

of variation (CV) was computed for every selection regime over all the assay 

environments. Fitness estimated as maximum density reached in 24 hours growth period. 

* denotes significantly lower CV (p < 0.05, Dunnett post hoc statistics) than ancestor while 

# denotes significantly higher CV than ancestor.   

 

 

  



196 
 

Appendix 5.4 Relationship between overall mean and standard deviation for fitness, 

measured as maximum density reached 

 

Relationship between overall means of all the selection regime and corresponding 

standard deviations. Standard deviation and means were computed for every selection 

regime over all the assay environments. The relationship between these two estimates is 

not significant with R2 = 0.41. 
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Appendix 6.1 Details of all the selection regimes  

1. Continuous growth in NB   

2. Continuous growth in pH 4.5  

3. Continuous growth in 5 g% salt 

4. pbin – predictable fluctuations every 24 hr, between  pH 4.5 and 5 g% salt 

5. upbin - predictable fluctuations every 24 hr, between  pH 4.5 and 5 g% salt 

6. uprange –  

Component space for selection –  

pH: 4.5, 5  

salt: 2 g%,  3g%, 3.5 g%, 4 g%, 4.5 g%, 5 g%   

 

Following table shows 30 environments faced in 30 days of selection 
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Transfer # Environment 

1 pH 4.5 

2 Salt  5 

3 Salt 3.5 

4 pH 4.5 

5 pH 4.5 

6 pH 4.5 

7 pH 4.5 

8 pH 4.5 

9 Salt  5 

10 pH 4.5 

11 Salt 4 

12 Salt 4 

13 Salt 3.5 

14 Salt  5 

15 pH 4.5 

16 Salt 4.5 

17 Salt 4 

18 Salt 3.5 

19 Salt 4 

20 pH 4.5 

21 Salt 3 

22 Salt 3 

23 Salt 4 

24 Salt 2 

25 Salt 3.5 

26 Salt 2 

27 Salt 4 

28 Salt 2 
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29 Salt 3.5 

30 Salt 4.5 
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