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Abstract

This thesis is divided into three parts. In the first part, the protection of-
fered by decoherence free subspaces is quantified and compared against un-
protected spaces by means of noise spectroscopy. In the second part, deco-
herence is studied in two kinds of engineered systems, one model for phase
decoherence and the other for spin flip decoherence. In both models, the
combination of two noise sources viz. stochastic kicks and temporally ran-
domized flip operations, is shown to lead to frustration of decoherence under
certain resonant conditions. Finally, in the third part, the realization of a
universal set of gates on a spectroscopically indistinguishable pair of nuclear
spins is demonstrated, facilitating improved decoherence free subspaces.
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Chapter 1

Introduction

The dawn of quantum theory in the 1900s introduced a paradigm shift in our
perspective of the physical universe. Notions such as superposition of states
and entanglement were, and continue to be, extremely counterintuitive and
led to both physical and philosophical dilemmas, the most famous of them
being the Einstein-Podolsky-Rosen (EPR) [1] paradox and the Schrödinger’s
cat paradox [2]. During the initial years, experiments confirming quantum
theory were confined to the microscopic realm, so much that some were of
the opinion that there is a distinct dichotomy between theories describing
the classical world of everyday experience and the strange, non-intuitive mi-
croscopic realm where quantum mechanics reigned supreme. However, as
time progressed, quantum mechanical phenomena such as interference has
been demonstrated in the macroscopic limit as well. For instance, a land-
mark paper was published where C60 fullerene molecules were demonstrated
to produce an interference pattern in a double slit experiment [3].

Despite the observation of quantum mechanical phenomena in macro-
scopic physics, the boundary between the quantum and classical world was
still relatively blurred, giving rise to much research on the quantum-to-
classical transition. How does a quantum mechanical phenomenon like inter-
ference mysteriously disappear as one approaches the classical world? The
solution to this stemmed from the realization that one had rather hastily
carried over the notion of locality from classical physics to quantum theory
[4]. In classical physics, we often assume that a system (say a cricket ball)
preserves all it’s prior properties after an interaction with an environment
(such as a collisions with air molecules) and can be analyzed independently
after the event of an interaction. However, in the quantum realm, an interac-
tion leads to the system and environmental states to become entangled i.e. in
simple terms, neither of them can be described independently (locally) after
the interaction, even if they are spatially well separated. This interaction
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with the environment also leads to an irreversible dispersion of quantum co-
herence, the relative phase information between different quantum states of
the system, to the entangled system-environment state, thus taking it out of
our field of observation[4]. This irreversible loss of quantum coherence from
the system of interest, which also explains the absence of quantum phenom-
ena in the general macroscopic, interaction prone world, is generally termed
as decoherence.

Although the study of decoherence phenomena is an interesting topic in
itself, having implications to fundamental problems in physics, the emer-
gence of quantum information science has accelerated research in this field.
In quantum information science, we utilize quantum phenomena such as in-
terference and entanglement to perform tasks much more efficiency than a
classical computer can ever achieve. The classic example for this is the diffi-
cult problem of efficiently finding prime factors of a number, something which
is crucial to existing cryptography protocols. While the time for prime fac-
torization on a classical computer scales exponentially with input size, Peter
Shor gave a quantum algorithm which runs in polynomial time [5]. Another
quantum algorithm is Grover’s search algorithm [6] which performs with
O(
√
N) complexity whereas the classical counterpart has O(N) complexity.

Although the prospect of a large scale quantum computer promises to open
up a multitude of possibilities, the physical realization of such systems are
laden with difficulties, the most severe of them being decoherence. In order
to utilize quantum mechanical properties, one needs to preserve the quantum
coherence between states, a task which becomes exceedingly difficult as one
scales up from the microscopic domain due to increased decoherence.

1.1 Decoherence Suppression: An overview

Decoherence is a persistent problem in quantum information science, irre-
spective of the physical system chosen to represent the qubit. Various meth-
ods have been adopted to counter decoherence-dynamical decoupling [7, 8],
quantum error correcting codes [9], and decoherence free subspaces[10] being
some of them. Here, we deal with dynamical decoupling and decoherence
free subspaces.

1.1.1 Dynamical Decoupling

A dynamical decoupling (DD) sequence is a series of equidistant flip oper-
ations on the system qubit. Each flip operation reverses the ‘direction’ of
evolution of the qubit, effectively keeping the system from evolving under
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the noise operator. This is a very common method employed in NMR ex-
periments, where magnetic field inhomogeneities often cause nuclear spins to
precess at different frequencies leading to a loss of signal.

1.1.2 Decoherence Free Subspaces

While DD is an active suppression technique, decoherence free subspaces
achieve noise suppression by utilizing certain symmetry properties inherent
in the encoding. The idea is to create logical qubits using two or more
physical qubits such that the effect of noise gets nullified. For instance, say
we encode a logical qubit as follows:

|0〉L =
|01〉+ |10〉√

2
, |1〉L =

|01〉 − |10〉√
2

For an interaction of the type ,

Hint = Jσ1
zσ

2
z

between the two qubits which compose the logical qubit, since |0〉 and |1〉
are eigenstates of the Pauli operator σz, we have

σz |0〉 = |0〉

σz |1〉 = − |1〉

.
Therefore, when the interaction Hamiltonian Hint acts on the states |0〉L

and |1〉L at any time t, the phases accumulated by |0〉 and |1〉 cancel each
other:

e−iHintt |01〉 = e−iJσ
1
zσ

2
zt |01〉

= e−iJσ
1
zI

2t |0〉 e−iI1σ2
zt |1〉

= e−iJt |0〉 e+iJt |1〉 = |01〉

Hence, we say that the subspace spanned by |0〉L and |1〉L is a decoherence
free subspace.
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1.2 Thesis Outline
Oftentimes, an attempt to protect the system by isolating it from external
decohering influences also compromises the degree of control one has over
the system. Furthermore, although it has been shown that many techniques
will suppress decoherence, before one envisions a large scale quantum com-
puter, it is necessary to quantify and characterize the decoherence processes
which are relevant to the qubits in question. A better understanding of the
dynamics and characteristics of decoherence processes will enable one to fine
tune existing techniques while opening up possibilities of novel suppression
techniques. However, this requires the study of decoherence in a controlled
manner, which is often not possible in natural systems.

In this thesis, we tackle the issues mentioned above. Firstly, the per-
formance of decoherence free subspaces is characterized using noise spec-
troscopy and compared against unprotected qubits. Secondly, besides the
existing experimentally feasible model for phase decoherence [11], a model
for amplitude damping from our previous work is presented. Both kinds of
engineered decoherence processes are studied under the simultaneous action
of two noise sources, leading to a ‘frustration’ of decoherence under certain
resonant conditions [12]. Finally, we demonstrate how one may achieve uni-
versal control in a two qubit system while simultaneously protecting it from
noise, namely by utilizing a decoherence free subspace (DFS) composed of
effectively indistinguishable nuclear spins. Previous work [13] shows that a
full return to the DFS after state manipulation is not possible unless the
spins are chemically indistinguishable, whereas the use of indistinguishable
spins would mean the loss of universal control over the system. Our method,
which utilizes the anisotropic couplings between nuclear spins to effect quan-
tum gates, circumvents this quandary. The figure below summarizes how
this thesis is organized.
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Chapter 2

Noise Spectroscopy in a
Decoherence Free Subspace

Before we explain noise spectral density in the context of decoherence free
subspaces, we first describe the concept itself.

2.1 Noise Spectroscopy

Information regarding the characteristics of noise in a quantum system will
be beneficial in improving existing noise suppression techniques and develop-
ing new ones. An important technique which gives the spectral distribution
of noise is noise spectroscopy. In general, for a time series x(t), a power
spectrum gives the distribution of the variance of x(t) over the frequency do-
main. Correspondingly, the power spectral density gives the rate of variance
contributed by frequencies in the immediate neighborhood of a frequency f ,
to the variance of x(t) per unit frequency. Formally, we define the power
spectral density as the Fourier transform of the autocorrelation function.

Yuge et al [14] have described how to measure the dephasing noise spec-
trum of a single qubit attached to an environmental bath. The method
involves the use of a series of equidistant π pulses (a Carr-Purccell-Meiboom-
Gill or CPMG sequence) to the system qubit (schematically shown in Fig.
2.1). They have shown that at a frequency ω = π

2τ
, the spectral density is

given as [14]:

S(ω) ≈ π2

4T2

(2.1)

where T2 is the spin-spin relaxation time under the application of a CPMG
sequence at a frequency ω = π

2τ
.
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Figure 2.1: A CPMG sequence with the delay between π pulses equal to 2τ

Figure 2.2: Structure of 2,3,6-tricholorophenol. Red Hs are the spins used as
qubits

2.2 Experimental Implementation
To measure the noise spectrum, we chose the two qubit system 2,3,6-trichlorophenol
(see Fig. 2.2). 7.21mg of the compound was dissolved in 600 µL of dimethyl
sulfoxide-d6 (DMSO-D6).Before describing how the noise spectral density of
a decoherence free subspace was measured, we introduce the concept of long
lived coherences in NMR.

2.2.1 Long Lived Coherences

First, we write down the general two qubit Hamilitonian with a scalar cou-
pling constant JIS, where the I and S label the two qubits [15](setting h=1):

H = νIIz + νSSz + JIS
−→
I .
−→
S (2.2)

where the term JIS
−→
I .
−→
S describes the magnetic interaction between the two

qubits. For a weakly coupled system (∆ν = νI − νS � |J |), we may neglect
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the xx and yy products of Pauli operators from
−→
I .
−→
S

H = νIIz + νSSz + JISIzSz (2.3)

The eigenbasis of 2.3 is given by the product basis {|αα〉 , |αβ〉 , |βα〉 , |ββ〉}
where |α〉 , |β〉 take on the values

∣∣±1
2

〉
or |0, 1〉 in qubit notation. In the

absence of a magnetic field, the two states become degenerate or in other
words, equivalent. In this situation, the Hamiltonian may be written as

H = JIS
−→
I .
−→
S (2.4)

with an eigenbasis defined by singlet and triplet states [15]:

|T0〉 =
1√
2

(|01〉+ |10〉) (2.5)

|T+1〉 = |00〉 (2.6)
|T−1〉 = |11〉 (2.7)

|S0〉 =
1√
2

(|01〉 − |10〉) (2.8)

(2.9)

Sarkar et al [15] defines a long lives coherence as a superposition between
the singlet and zero quantum triplet states:

ρLLC = |S0〉 〈T0|+ |T0〉 〈S0| (2.10)

Now, we note that both |S0〉 and |T0〉 defined by 2.8 and 2.5 belong to
the decoherence free subspace defined in Sec. 1.1.2. Sarkar et al have shown
that if we transform the state defined by Ix − Sx in the product basis to the
singlet triplet basis, we will reach LLC state defined in 2.10. Physically, this
corresponds to making the spins degenerate once again by removing the effect
of the magnetic field. In practice, this is achieved by using the technique of
spin lock.

Spin lock is a technique used to nullify the effect of the main magnetic
field in NMR. When two spins are precessing at different precession frequen-
cies (chemical shifts) about the main field, the application of a strong RF
field having the same phase as the magnetization along another axis will sup-
press the differential precession between the spins, making them chemically
equivalent [16].For example, we may flip the magnetization from the longi-
tudinal direction (z-axis) to the transverse direction (x-axis) and then apply
a strong RF field along the x-axis as shown in Fig. 2.3:
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Figure 2.3: Schematic of spin lock. The longitudinal magnetization (black
arrow) is rotated into the transverse plane by a π/2 pulse about the y-axis.
A strong RF field (red arrow) is applied along the x-axis which causes the
magnetization to precess about the spin lock axis.

Under free precession about z-axis for time τ , the basis vectors evolve
under a chemical shift Ω as:

Ix → Ix cos(Ωτ) + Iy sin(Ωτ) (2.11)
Iy → Iy cos(Ωτ)− Ix sin(Ωτ) (2.12)
Iz → Iz (2.13)

If we set the RF frequency offset at νavg = νI+νS
2

, the chemical shifts
will be ±∆ν/2 where ∆ν = νI − νS which is equal to 105 Hz for 2,3,6-
trichlorophenol in a 500 MHz Bruker NMR spectrometer.

In order to prepare LLC of the two proton nuclei,we first apply a π/2
pulse along the x-axis. Then, we let the system evolve under the chemical
shift for a time τ = 1

2∆ν
so that the system reaches the state IIx−ISx and then

apply the spin lock along the x-axis to change to the singlet triplet basis, thus
creating LLC. The pulse sequence used to prepare the LLC is shown in Fig.
2.4. The corresponding change of state is:

IIz + ISz
(π/2)x−−−→ −IIy − ISy

τ= 1
2∆ν−−−−→ IIx − ISx

SpinLock−−−−−→ |S0〉 〈T0|+ |T0〉 〈S0| (2.14)
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Figure 2.4: Schematic of LLC preperation

Figure 2.5: An exponential fit to the decaying signal of LLC under a CPMG
sequence with the delay between π pulses τ = 2.02s

2.2.2 Measuring Noise Spectrum

By varying the duration 2τ between π pulses, we scan over the corresponding
range of frequencies ω. For each ω, we measure the T2 or dephasing time of
the qubit. This is done flipping the magnetization to the transverse plane
and monitoring the intensity of the signal obtained over the duration of the
CPMG sequence. In order to avoid phase modulation due to J-evolution, we
choose the time points (ti) of our measurement such that ti

1/J
= integer. We

fit an exponential to the decay of intensity and calculate the T2 value as the
inverse of the decay constant. A representative fit is shown in Fig. 2.5.

Once the LLC is prepared, we measure the noise spectrum by the method
described in Sec. 2.1, the only difference being that in place of the delay time
τ , we have the spin lock. The method is shown pictorially in Fig. 2.6. A
point to be noted is that one should ensure that the phase of the spin lock
and π pulses should coincide with that of the coherence to be preserved e.g.
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Figure 2.6: Schematic of LLC preperation. For different spin lock durations
between the π pulses, we measure the T2 value of LLC from which the noise
spectrum is calculated

spin lock and π pulses should be about x-axis if we wish to prepare LLC from
I1
x − I2

x and along y-axis if we are doing the reference state I1
y − I2

y .
We measure the noise spectrum of LLC in three fields- 400 MHz,500 MHz

and 600 MHz- and compare it to −IIy − ISy which corresponds to the state
i√
2
(|T0〉 〈T+| − |T0〉 〈T−| − |T+〉 〈T0|+ |T−〉 〈T0|) under spin lock. This state is

outside the decoherence free subspace and helps us to quantify and compare
the performance of the protection offered by the decoherence free subspace.
We do this comparison at three different magnetic field strengths, since under
strong fields, we expect LLC lifetime to be less as a stronger field’s symmetry
breaking strength being more, it will be more difficult to nullify it’s effect
using a spin lock. Hence, under the same spin lock strength, we would expect
LLCs to have shorter lifetimes in stronger fields.

2.3 Results
The noise spectral densities at different fields (400 MHz,500 MHz and 600
MHz) are shown in Figs. 2.7, 2.8 and 2.9. We can clearly see that the noise
in the decoherence free subspace i.e. the long lived coherence (LLC) given
by,

ρLLC = |S0〉 〈T0|+ |T0〉 〈S0|
is much less than that of the unprotected state, which are states that do not
belong to the decoherence free subspace. They are given by,

ρunprotected =
i√
2

(|T0〉 〈T+| − |T0〉 〈T−| − |T+〉 〈T0|+ |T−〉 〈T0|)

.
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Figure 2.7: Noise spectral density profile of LLC and and the unprotected
state at 400 MHz field

Figure 2.8: Noise spectral density profile of LLC and the unprotected state
at 500 MHz field
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Figure 2.9: Noise spectral density profile of LLC and and the unprotected
state at 600 MHz field

(a) At 600 MHz (b) At 500 MHz (c) At 400 MHz

Figure 2.10: T2 values (in seconds) at different CPMG frequencies ω for each
field. ω is shown in units of rad/s.

2.4 Conclusion and Discussion

Although theoretical calculations clearly indicate that logical qubits encoded
in decoherence free subspaces are better protected against noise than un-
encoded qubits, as far as we are aware, a measurement of the degree of pro-
tection offered by decoherence free subspaces has not been made via noise
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spectroscopy before. We quantified and characterized this protection by mea-
suring the spectral distribution of noise in the decoherence free subspace in
NMR systems. By measuring the noise spectrum of states within and out-
side the DFS under three different magnetic field strengths (400 MHz,500
MHz, 600 MHz), we confirm and quantify the protection offered by the DFS.
Encoding in the DFS increases the lifetime (T2) of the quantum state by
as much as 2.84 s in 400 MHz field, 2.34 s in 500 MHz field and 1.8 s in
600 MHz field. In the noise spectrum, we also observe that there is a peak
in the noise amplitude at around 394 Hz. We conclude by reiterating that
the measurement of spectral distribution of noise over a frequency range will
enable us to improve existing dynamical decoupling sequences, forming the
platform for more efficient decoherence suppression methods.
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Chapter 3

Frustrated Decoherence

This chapter is based on the paper http://arxiv.org/abs/1602.03026 by
the author.

In this chapter, two models of decohrence engineering, one proposed by
Teklemariam et al [11] and the other by Kondo et al [17], are presented. We
also introduce a model for amplitude damping from our previous work. In
both models of decoherence viz. dephasing and spin flip models, we combine
the two methods of engineering deocoherence in finite dimensional systems,
namely the stochastic kick method and the temporally randomized π pulse
method. We report the suppression of decoherence in the presence of two
noise sources at certain resonant conditions, analogous to the frustration of
spins in condensed matter systems -hence termed frustrated decoherence. We
also note that the use of two noise sources can preserve the coherence better
than dynamical decoupling sequences at low frequencies. The studies in this
chapter are numerical and are likely to be explored experimentally in the
future.

3.1 Engineered Decoherence

3.1.1 Stochastic Kick Method

Zurek considered n two level systems interacting via the zz interaction in
order to model dephasing [18]. If we take n = 1 as the system of interest
and consider the interaction between this qubit and the remaining two level
systems, the combined two level system will have the Hamiltonian

Hint =
n∑
k=2

J1kσ
1
zσ

k
z . (3.1)

17

http://arxiv.org/abs/1602.03026


where J1j are the coupling constants. The evolved system-environment
density matrix for a time t is

ρSE(t) = e−iHinttρSE(0)e−iHintt

Now, we trace out the environmental degrees of freedom to obtain the
system density matrix.

ρS(t) = TrE{ρSE(t)}

ρS(t) =

(
ρS00(t) ρS01(t)
ρS10(t) ρS11(t)

)
.

The diagonal terms, ρ00 and ρ11, remain unchanged under zz interaction
(since the total Hamiltonian commutes with σz, the states |0〉S and |1〉S,
being eigenstates, do not evolve) while the off diagonals, which characterize
the system coherence, evolve. Assuming the initial environmental qubits to
be in an arbitrary states |φ〉k = αk |0〉k + βk |1〉k and the system to be in
the initial pure state |ψ〉 = a |0〉 + b |1〉, the system coherence at time t is
calculated as

ρS01(t) = 〈0| ρS(t) |1〉

ρS01(t) = ab ∗ z(t)

with

z(t) =
n∏
k=2

|αk|2 exp(−2iJ1kt) + |βk|2 exp(2iJ1kt). (3.2)

It has been shown [18] that z(t) will return arbitrarily close to it’s initial
value unless n→∞, an unfeasible situation in physical realizations.

Cory’s group proposed a simple, solvable model [11] composed of one
environmental qubit (E) and one system qubit(S).

H0 = π(νSσ
S
z + νEσ

E
z +

Ω

2
σSz σ

E
z ) (3.3)

where νS and νE are chemical shifts and Ω
2
is the coupling strength.

In order to compensate for the limited number of environmental qubits,
which in turn leads to a quasiperiodicity in the coherence factor, random
amplitude kicks are applied to the environmental qubit, which are of the
form

KE
m = exp

(
−iεmσEy

)
18



where εm is randomly chosen from the range (−α, α). For a total evolution
time T , these kicks are applied at every T/n intervals. We may define the
kick rate as Γ = n

T
. The evolution operator is thus

Utotal(T ) = KnU(T/n)Kn−1U(T/n)...K1U(T/n)

where U(t)=exp{−iH0t}.
The system density matrix at time T is obtained by averaging over all

realizations of εm and tracing out the environmental degrees of freedom

ρS(T ) =

∫ α

−α

dεm
2α

...

∫ α

−α

dε1
2α

TrE{Utot(T )ρSE(0)U †tot(T )}. (3.4)

Now, we consider an initial separable state and expand the system density
matrix in the eigenbasis of σz,

ρSE(0) = (
∑
i,j=0,1

ρSij(0) |i〉 〈j|)⊗ ρE(0). (3.5)

Next, we convert the evolution operator of T
n
seconds under 3.3 and a kick

KE
1 to an operator acting only on the environmental qubits by conditionally

evaluating them for the two possible states |0〉 and |1〉 of the system qubit.
Repeating this for the next n− 1 iterations and averaging, we get

ρS(T ) =
∑
i,j=0,1

ρSij(0)fij(T, n) |i〉 〈j| . (3.6)

The factor fij is calculated as

fij(T, n) =

∫ α

−α

dεm
2α

...

∫ α

−α

dε1
2α

TrE{(AEi )nρ
E(0)(AEj )n} (3.7)

where
(AEj )n = KE

n V
E
j ...K

E
2 V

E
j K

E
1 V

E
j . (3.8)

The operator V E
j is obtained after tracing out the system qubit from U(T/n)

i.e. V E
j =S 〈j|U(T/n) |j〉S .It is clear that fjj = 1. Hence, the final system

density matrix is

ρS(T ) =

(
ρS00(0) f01(n, T )ρS01(0)

f ∗01(n, T )ρS10(0) ρS11(0)

)
.

The system coherence is quantified by the off diagonal term f01(n,T),
which may be calculated by the repeated application of a superoperator
formed from 3.8.

O(ρ) = c(e−iπ( Ω
2

+νE)σzT/nρe−iπ( Ω
2
−νE)σzT/n) (3.9)

+d(σye
−iπ( Ω

2
+νE)σzT/nρe−iπ( Ω

2
−νE)σzT/nσy) (3.10)
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Figure 3.1: Schematic representation of Kondo’s method: First π pulse is
applied at time t1 and second π pulse at time t1 + δ

where c = 1
2

+ sin(2α)
4α

and d = 1
2
− sin(2α)

4α
. Using this superoperator, we

calculate the system coherence f01 as,

f01(T, n) = TrE[OnρE(0)] (3.11)

Teklemariam et al [11] have analyzed the deocoherence factor f01 in dif-
ferent regimes of the parameters α and Γ. It has been shown that f01 goes
to zero for appropriate limits of α and Γ, thus describing phase damping.

3.1.2 Kondo’s method

Instead of the random kicks used in the previous method, Kondo et al sug-
gested a sequence of temporally randomized π pulses to preempt the use of
a large number of environmental qubits [17]. Here also, an interaction of the
kind in equation (3.1) is assumed with n = 2. We suppose that the initial
state of the environmental qubit is |0〉 and that it is flipped by a π pulse to
|1〉 at a time t1. At a time t1+δ, it is flipped back into it’s initial state |0〉 and
we make our observation of the system qubit at a time T. It is schematically
shown in figure 3.1. Here, we have two situations

Hint |Ψ〉 |0〉 = J12σ
S
z |Ψ〉 |0〉 (3.12)

Hint |Ψ〉 |1〉 = −J12σ
S
z |Ψ〉 |1〉 . (3.13)

This means that two different operators (3.12) and (3.13) act on the sys-
tem qubit, conditional on the state of the environmental qubit. To evaluate
the state of the system qubit at time T, we apply the unitary

e−iJ12σz(T−t1−δ)eiJ12σzδe−iJ12σzt1 = S(2J12δ)S(−J12T ) (3.14)
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where S(θ) = eiθσz . Assuming that δ takes on random values from the range
0 6 2J12δ 6 2π from time 0 to T, the resultant system density matrix at
time T is given by:

ρS(T ) =
1

2π

∫ 2π

0

dθS(θ)ρS(0)S(θ)† (3.15)

where we have taken θ = 2J12δ. This simplifies to

ρS(T ) =

(
ρS00(0)

〈
eiθ
〉
ρS01(0)〈

e−iθ
〉
ρS10(0) ρS11(0)

)
.

For J12δ uniformly distributed in [0, 2π]

ρS(T ) =

(
ρS00(0) 0

0 ρS11(0)

)
. (3.16)

which indicates complete dephasing.

3.1.3 Spin Flip Decoherence

In this section, we introduce the xx interaction into Zurek’s model [18] and
show how this leads to spin flip decoherence. We look at n two level systems
with a coupling Hamiltonian of the form

HSE =
n∑
k=2

J1kσ
1
xσ

k
x. (3.17)

With the corresponding unitary operator

USE(t) = e−iHSEt = e−i
∑n
k=2 J1kσ

1
xσ
k
xt. (3.18)

Now, we consider a factorisable initial state and express both the system
qubit (k=1) and the environmental qubits (k>2) in the eigenbasis of σx.
Dropping the subscript k=1 for the system qubit,

|Ψ(0)〉SE = (a′ |+〉+ b′ |−〉)⊗
n∏
k=2

(α′k |+〉k + β′k |−〉k). (3.19)
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The combined state at a time t is given by

|Ψ(t)〉SE = USE(t) |Ψ(0)〉SE

= a′ |+〉 ⊗
n∏
k=2

e−iJ1kσxt(α′k |+〉k + β′k |−〉k)

+ b′ |−〉 ⊗
n∏
k=2

eiJ1kσxt(α′k |+〉k + β′k |−〉k)

= a′ |+〉 ⊗
n∏
k=2

e−iJ1ktα′k |+〉k + eiJ1ktβ′k |−〉k

+ b′ |−〉 ⊗
n∏
k=2

eiJ1ktα′k |+〉k + e−iJ1ktβ′k |−〉k). (3.20)

Now, we trace out all the environmental qubits in order to get the system
density matrix in the {|+〉 , |−〉} basis

ρS(t) = TrE{ρSE(T )}
= TrE{|Ψ(t)〉SESE 〈Ψ(t)|}.

Plugging in equation (3.20) and simplifying using the constraints α′2
k +

β
′2
k = 1 and a′2 + b′2 = 1, we obtain

ρS(t){|+〉,|−〉} = a′2 |+〉 〈+|+ a′b′∗z(t) |+〉 〈−|
+ a′∗b′z∗(t) |−〉 〈+|+ b′2 |−〉 〈−| (3.21)

where z(t) is given by (3.2) with αk, βk replaced by their primed versions.
This is the density matrix in the {|+〉 , |−〉} basis. For converting to the
computational basis, we apply the Hadamard transform

ρS(t){|0〉,|1〉} = HρS(t){|+〉,|−〉}H
† (3.22)

with
H =

1√
2

(
1 1
1 −1

)
.

On solving, we get

ρS(t){|0〉,|1〉} =
1

2

(
1 + (ω + ω∗) a′2 − b′2 − (ω − ω∗)

a′2 − b′2 + (ω − ω∗) 1− (ω + ω∗)

)
. (3.23)

where ω = a′b′∗z(t). In the limit n→∞, we have ω → 0.

ρS(t){|0〉,|1〉} =
1

2

(
1 a′2 − b′2

a′2 − b′2 1

)
. (3.24)
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By considering the case n = 2, we can clearly see that the term (ω+ω∗) causes
oscillations in the population levels quantified by the diagonal elements of
the density matrix. For large n, we see that the populations of |0〉 and |1〉
become equal. It is worth noting that although the physical situations are
very different, mathematically, the form of state (3.24) is related by a simple
Hadamard transform to the state (3.16).

3.2 Combining the two methods of engineered
decoherence

In this section, we describe how the methods of engineering decoherence as
mentioned in 3.1.1 and 3.1.2 are combined, in both the phase damping model
and spin flip decoherence model. For both interactions, analysis is done for
three cases:

1. Under the application of random amplitude kicks

2. Under the application of random kicks and a dynamical decoupling
(DD) sequence to suppress decoherence.

3. Under the combined application of random amplitude kicks and a tem-
porally randomized π pulse sequence

3.2.1 Phase damping model

Using the superoperator formalism described in Sec. 3.1.1, we can easily
analyze the time evolution of the coherence factor f01(t) for various kick
rates in the random amplitude kick model. In order to see the effect of a
dynamical decoupling sequence, one only needs to incorporate π pulses after
the required number of iterations of the superoperator as determined by
the frequency of the decoupling sequence. To see the effect of a temporally
randomized π pulse sequence on the environmental qubit, one applies a π
pulse about the x-axis to to the environmental qubit after a random number
of iterations of the superoperator. Here, we generate a random number after
each iteration and apply the π pulse if the number is greater than 0.5. The
crucial part of the temporally randomized π pulse sequence is the averaging
procedure, which is carried out at each point where the coherence factor
needs to be calculated.
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3.2.2 Spin flip model

As noted before, except for a change of basis, the mathematical formalism
for the spin flip model is more or less the same as that of the phase damp-
ing model, although we are looking to analyze different quantities viz. the
coherence factor in phase damping and the population levels in amplitude
damping. The change is that the σz operators in the superoperator changes
to σx operators and we give initial states in the {|+〉 , |−〉} basis. To see how
the population levels vary over time for different kick rates and how they are
affected by dynamical decoupling sequences, we simply utilize the superoper-
ator formalism once more in our simulations. However, while incorporating
the temporally randomized π pulse sequence, there is an important distinc-
tion. Since a π pulse about the x-axis (σx operator) commutes with the noise
operator, we apply randomized π pulse about the y-axis (σy operator) which
does not commute with the noise operator σx. All other procedures remain
same for calculating the population levels.

3.2.3 Bloch Sphere Distortions

To get a pictorial representation, we can also calculate how the Bloch sphere
evolves over time in both phase damping model and the spin flip model.
Once we calculate the density matrix at time t, ρ(t), we can calculate the
coordinates of the Bloch vector as nx,y,z(t) = Tr[σx,y,zρ(t)]. This way, we can
reconstruct the Bloch sphere at any time t.

3.3 Results

3.3.1 Dephasing Model

Although the decoherence rate is enhanced as expected at most kick rates,
there is a suppression of decoherence when the kick rate is close to the system-
environment coupling, given by Ω

2
. Furthermore, it can be shown that this

suppression outperforms the dynamical decoupling sequence composed of a
series of equidistant π pulses for low frequencies of the decoupling pulses.
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Figure 3.2: Time evolution of decoherence factor f01 under different kick
rates. Coupling constant Ω/2 = 150 Hz.

Figure 3.3: Time evolution of decoherence factor f01 under different decou-
pling frequencies. Kick rate is 152 kicks/s, Coupling constant Ω/2 = 150
Hz

For simulations, we assume that the system starts from the initial state
ρS(0) = 1

2
(I + σx) and the environmental qubit is in the thermal equilibrium

state ρE(0) = 1
2
(I + σz). A coupling constant Ω/2 = 150 Hz is assumed. A

larger kick rate leads to faster decoherence as shown in Fig. 3.2 . However,
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Cory and group have shown that in the limit of very large kick rates, the
system gets decoupled from the environment and decoherence is suppressed
[11].

On incorporating a randomized π pulse sequence to random amplitude
kick model, we observe that the system coherence drops very quickly com-
pared to the decay under random amplitude kicks alone, at most kicks rates
as shown in figure 3.4, 3.5. However, when the kick rate is close to the
system-environment coupling(Ω/2 = 150Hz), we observe a suppression of
decoherence, as show in in figures 3.6, 3.8 when compared to only apply-
ing random amplitude kicks. Furthermore, we see that this suppression due
to random π pulses can outperform low frequency dynamical decoupling se-
quences when the kick rate is close to the resonant frequency of Ω/2. This
is shown in figures 3.7, 3.9.

Figure 3.4: Time evolution of decoherence factor f01 under a kick rate of
52 kicks/s alone (green), in the presence of kicks and randomized π pulses
(blue) and kicks and a DD sequence(red). Coupling constant Ω/2 = 150 Hz
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Figure 3.5: Time evolution of decoherence factor f01 under a kick rate of
102 kicks/s alone (green), in the presence of kicks and randomized π pulses
(blue) and kicks and a DD sequence(red). Coupling constant Ω/2 = 150 Hz

Figure 3.6: Time evolution of decoherence factor f01 under a kick rate of
152 kicks/s alone (green), in the presence of kicks and randomized π pulses
(blue) and kicks and a DD sequence(red). Coupling constant Ω/2 = 150 Hz
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Figure 3.7: Time evolution of decoherence factor f01 under a kick rate of 152
kicks/s in the presence of kicks and randomized π pulses (green) and kicks
and a DD sequences at 76 Hz(red) and 7.6 Hz (blue). Coupling constant
Ω/2 = 150 Hz.

Figure 3.8: Time evolution of decoherence factor f01 under a kick rate of
148 kicks/s alone (green), in the presence of kicks and randomized π pulses
(blue) and kicks and a DD sequence(red).Coupling constant Ω/2 = 150 Hz.
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Figure 3.9: Time evolution of decoherence factor f01 under a kick rate of 148
kicks/s in the presence of kicks and randomized π pulses (blue) and kicks
and a DD sequences at 14.8 Hz(red) and 7.4 Hz (green).Coupling constant
Ω/2 = 150 Hz.

Fig. 3.11 gives an integrated picture of how the coherence is affected by
coupling strength and kick rates in the presence of temporally randomized π
pulses and random amplitude kicks whereas Fig. 3.10 gives the same picture
under the influence of random amplitude kicks alone. We observe that at kick
rates close to the coupling constant, there is an enhancement in coherence
on applying a sequence of π pulses randomized over time.
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Figure 3.10: Plot of the variation of coherence factor with coupling strength
and kick rate at the end of 1s of evolution under the application of random
amplitude kicks alone
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Figure 3.11: Plot of the variation of coherence factor with coupling strength
and kick rate at the end of 1s of evolution under the application of random
amplitude kicks and randomized π pulses

From Fig. 3.10 it is clear that there is no decoherence when the condition
Ω
2Γ

= integer or 1
2
integer is satisfied. This can be explained as follows. Each

step of evolution under random amplitude kicks is defined by the superoper-
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ator 3.10:

O(ρ) = c(e−iπ( Ω
2

+νE)σzT/nρe−iπ( Ω
2
−νE)σzT/n)+d(σye

−iπ( Ω
2

+νE)σzT/nρe−iπ( Ω
2
−νE)σzT/nσy)
(3.25)

We may set νE = 0 without loss of generality since while calculating the
coherence factor f01(n, T ), it comes out as a trivial phase factor. We stress
that this does not mean no environmental qubit- it only means that the
independent evolution of the environmental qubit has no effect on the system
coherence. In other words, here, decoherence is caused due to the interaction
or coupling with the environmental qubit, which is present even if we set
νE = 0. Using n/T=Γ, we write:

O(ρ) = cA+ dσyAσy (3.26)

where,

A = [cos

(
π

Ω

2Γ

)
I − iσz sin

(
π

Ω

2Γ

)
] × ρ× [cos

(
π

Ω

2Γ

)
I − iσz sin

(
π

Ω

2Γ

)
].

When Ω
2Γ

= m ∈ Integers,

A = (−1)mρ(−1)m = (−1)2mρ = ρ

O(ρ) = cA+ dσyAσy

Now, the coherence factor f01 is given by

f01(n, T ) = TrE(OnρE(0))

After the first iteration in this case,

O(ρ) = cρ+ dσyρσy (3.27)

and,

TrE(O(ρ)) = cTrE(ρ) + dTrE(σyρσy) (3.28)
= cTrE(ρ) + dTrE(ρ) (3.29)
= (c+ d)TrE(ρ) (3.30)
= TrE(ρ) (3.31)

where we used the fact that c + d = 1. In this case, for n iterations of the
superoperator, we will have:

TrE(On(ρ)) = TrE(On−1(ρ))... = TrE(On(ρ)) = TrE(ρ). (3.32)
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This means that the coherence factor remains identical to the initial coher-
ence factor throughout the evolution of the system.

For the case where Ω
2Γ

= (2m+ 1)/2,m ∈ Integers,

A = −iσz(−1)mρ− iσz(−1)m = −σzρσz

Now, the superoperator becomes,

O(ρ) = −cσz × ρ × σz − diσx × ρ×−iσx

. And the coherence factor becomes,

TrE(O(ρ)) = −cTrE(ρ)− dTrE(σxρσx) (3.33)
= −cTrE(ρ)− dTrE(ρ) (3.34)
= −(c+ d)TrE(ρ) (3.35)
= −TrE(ρ) (3.36)

Hence, after n iterations,

TrE(On(ρ)) = (−1)nTrE(ρ). (3.37)

Hence, the absolute value of the coherence factor remains same through-
out the evolution of the system.

From Fig. 3.11, we may see that the inclusion of the temporally random-
ized π pulse sequence drastically increases the decoherence rate at most pa-
rameter regimes except when the kick rate is close to or equal to the coupling
strength. We also note that the absence of decoherence at Ω

2Γ
= 1

2
integer

values is not observed on including the randomized π pulse sequence. This is
because in this case, the coherence flips between -1 and 1 and the averaging
procedure wipes out the coherence.

3.3.2 Spin flip Model

For the xx interaction, we work in the {|+〉 , |−〉} basis. Hence, we start from
the initial state ρS(0){|+〉,|−〉} = 1

2
(I+σx) which is equivalent to ρS(0){|0〉,|1〉} =

1
2
(I + σz) in the computational basis. The environmental qubit is assumed

to be in the thermal equilibrium state ρE(0) = 1
2
(I + σz). In this case, we

monitor the populations of the two states |0〉 and |1〉} reflected in the diagonal
entries ρS00, ρ

S
11 and look for the oscillations predicted by equation (3.23).

We observe that for higher kick rates, the oscillations damp quickly and
approach the value 0.5, as predicted. This is illustrated in figure 3.12. Figure
3.13 depicts the sustained oscillations on applying a dynamical decoupling
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sequence to the system qubit. We also note that the frequency of oscillation
decreases as one approaches the resonant kick rate Ω/2 and then increases
again.

Figure 3.12: Oscillations in population level of state |0〉 under different kick
rates. Coupling constant Ω/2 = 150 Hz

Figure 3.13: Oscillations in population level of state |0〉 at a kick rate=102
kicks/s with different DD frequencies. Coupling constant Ω/2 = 150 Hz

In this situation, applying a random π pulse sequence causes the oscilla-
tions in the system population to damp very quickly to it’s equilibrium value
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1
2
(shown in figure 3.14). However, on applying a DD sequence when the

kick rate is close to the resonant value, we observe that the system’s initial
population is conserved, with only a slight leakage over time(figure 3.15).
This effect can be explained by considering how the DD sequence works.
If the DD sequence is applied at a time t, it attempts to keep the system
from evolving from the state in which it existed at time t. Hence, the point
of time at which the DD sequence starts is of crucial importance. In other
words, the correlation time of the π pulse sequence must be much shorter
than the correlation time of the noise to be suppressed. As mentioned before,
at the resonant values of the kick rates, the frequency of oscillations decrease.
Hence, when the first π pulse of the DD sequence is applied, the system is
still not very far away from it’s initial state. Thus, the DD sequence is able
to arrest the evolution of the system very close to it’s initial state.

Similar to the result obtained on combining random amplitude kicks and
temporally randomized π pulses in the phase damping model, we see that
when the kick rate is close to the coupling constant between the qubits,
damping of the population level oscillations is suppressed. In Fig. 3.15, we
see that the suppression offered on combining the two noise sources performs
slightly better than a DD sequence.

Figure 3.14: Oscillations in population level of state |0〉 under random ampli-
tude kicks alone(green)-kick rate=102 kicks/s-, random amplitude kicks and
temporally randomized π pulses (blue), and random amplitude kicks and a
DD sequence (red). Coupling constant Ω/2 = 150 Hz
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Figure 3.15: Oscillations in population level of state |0〉 under random ampli-
tude kicks alone(green)-kick rate=152 kicks/s-, random amplitude kicks and
temporally randomized π pulses (blue), and random amplitude kicks and a
DD sequence (red). Coupling constant Ω/2 = 150 Hz.

3.4 Conclusion and Discussion

As opposed to existing models for phase damping, a model using xx cou-
pling was proposed which can successfully model amplitude damping. This,
along with techniques developed by Cory and Kondo, facilitates a controlled
study of decoherence using finite resources. It is important to study both
kinds of decoherence, phase and amplitude damping, in order to facilitate the
development of control strategies to suppress a general decoherence process.

We have also shown that on combining the random kick model and the
randomized π pulse sequence method, we obtain faster decoherence rates
in the phase damping case. However, when the kick rate is close to the
system-environment coupling, it is observed that decoherence is suppressed
on applying a temporally randomized π pulse sequence. Viola and Knill
[19] have previously identified cases where a random dynamical decoupling
sequences can have more relaxed time scale requirements as compared to
periodic π pulses and can become superior to existing techniques. Banerjee
et al [20] have done similar work on the enhancement of geometric phase by
frustrated decoherence. In their work, two independent noise baths coupled
to the system were considered. A frustration of geometric phase was observed
when the coupling strengths to the two baths were equal [20].
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The results obtained here demonstrate that a random π pulse sequence
to the environmental qubit can help in the preservation of system coherence,
sometimes even outperforming a periodic π pulse sequence. In the case of
xx interaction, the combination of the two randomization techniques achieve
a faster decoherence rate, but exhibit suppressed decoherence when the kick
rate is close to the coupling constant between the two qubits. Furthermore,
due to decreased oscillation frequency when the kick rate is close to the
coupling to the environment, dynamical decoupling proves to be very effective
at this kick rate.
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Chapter 4

Quantum Control in Equivalent
Spins

In this chapter, we first introduce the notion of qubits, the Bloch sphere
representation and the group theoretic formulation of quantum control. We
then describe the use of actuator qubits for quantum control in the context of
decoherence free subspaces. Theoretically, the possible quantum mechanical
operations on a quantum system can be understood and calculated in terms
of the dynamical Lie algebra of the system and control Hamiltonians. This
is also described in this chapter. Finally, the experimental method used to
realize universal quantum control, which enables improved decoherence free
subspaces, and the corresponding results are presented.

4.1 Qubits and the Bloch Sphere

A qubit is the quantum analogue of a classical bit. In theory, any two level
quantum system may be considered as a qubit. Many systems have been
adopted as qubits-such as electronic spins in diamonds, nuclear spins, pho-
tons, spins in quantum dots and trapped ions. The crucial difference between
a bit and a qubit is that while a bit can only exist in one of the possible
states 0 or 1, the qubit, being a quantum mechanical object, may exist in
an arbitrary superposition of 0 and 1 which allows one to utilize quantum
phenomena.

|Qubit〉 =
α |0〉+ β |1〉√

2

where |α|2+|β|2 = 1. Without loss of generality, we may obtain a pictorial
representation of a qubit by putting α = cos

(
θ
2

)
and β = eiφ sin

(
θ
2

)
. This
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Figure 4.1: Bloch sphere representation of an arbitrary qubit state |Ψ〉 =
cos
(
θ
2

)
|0〉+ eiφ sin

(
θ
2

)
|1〉. Image by Glosser.ca, Wikimedia Commons

yields the representation of a unit sphere with 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π as
denoted in the figure 4.1

4.2 Quantum Control

In this section, we briefly review the definition of Lie algebras before de-
scribing how it relates to quantum control. Simply put, we say that we have
universal control over a qubit when we can rotate it to anywhere on the Bloch
sphere through one or more operations. The use of Lie algebra formalism
will help us to formally calculate the set of control operations possible on the
qubit, given the internal and control Hamiltonians.

4.2.1 Lie Algebras and Lie Groups

We define a Lie algebra as follows[21]:

Definition 4.2.1. A vector space over a field F , along with an added binary
operation called the Lie bracket [., .] : L × L → L, is called a Lie algebra
L. For every ordered pair of elements {x, y}, the Lie bracket associates an
element [x, y] in L . The Lie bracket satisfies the following axioms:

1. Bilinearity: For all x, y, z ∈ L and α, β ∈ F
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[αx+ βy, z] = α[x, z] + β[y, z],

[x, αy + βz] = α[x, y] + β[x, z],

2. Alternativity:
[x, x] = 0∀x ∈ L

3. Jacobi identity: For all x, y, z ∈ L

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0

For a Lie group, we use the following definition[21]:

Definition 4.2.2. A Lie group is a kind of group which is also an analytic,
differential manifold where the operations of multiplication {x, y} → xy and
inversion x→ x−1 are analytic

4.2.2 Controllability

Consider the Schrödinger equation,

i~
∂ψ

∂t
= H(g)ψ (4.1)

where g belongs to a space of functions G. The set of possible control oper-
ations on the state ψ are unitary matrices of the form e−

i
~
∫
H(g)dt. Formally,

we may define them as given below[21]:

Definition 4.2.3. The set of possible control operations U on a state obeying
Eqn. 4.1 is the connected Lie group corresponding to the Lie algebra L,
generated by the span of − i

~H(g), g ∈ G.

The Lie algebra thus generated is called the dynamical Lie algebra of
the system. In general, for an n dimensional state vector, the dynamical
Lie algebra will always be a subalgebra of u(n), the Lie algebra of n × n
skew-Hermitian matrices. We have complete control over the system when
dim(L) = dim(u(n)), which is equal to n2. Correspondingly, the Lie group
eL = U(n), the set of all unitary matrices in n dimensions. This means that
with the suitable choice of control parameters g ∈ G, one may obtain any
n× n unitary matrix.
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4.2.3 Basis of a dynamical Lie Algebra

Given a set of vectors {v1, v2, v3...vn} in a Lie algebra L, a repeated Lie
bracket of these elements will yield another element of L. By repeatedly cal-
culating the Lie bracket until no new linearly independent vector is produced
or until the dimension of the Lie algebra becomes equal to n2 or n2 − 1, one
may obtain the dynamical Lie algebra.

4.2.4 Quantum Control in Deoherence Free Subspaces

Although theoretical work [22, 23] indicate that fault tolerant universal quan-
tum control is possible in decoherence free subspaces(DFS), Cappellaro et al
[13] have shown that leakage from DFS during state manipulation using ra-
diofrequency pulses in nuclear magnetic resonance (NMR) implementation
of qubits is an effectively inevitable problem. Specifically, they have shown
that in a DFS encoding of two physical qubits protected against collective
dephasing, the use of RF fields necessarily cause the state to go out of the
protected subsystem into other parts of the larger Hilbert space where it is
subject to decoherence.

A plot of the function,

p(t) =
Tr[(PLρ(t))2]

Tr[ρ(t)2]

where PL is the projection operator onto the DFS against time clearly
illustrates this point. Assuming an initial state σLz = 1

2
(σ1

z − σ2
z) within the

DFS, the evolution of the density matrix under the application of a logical π
pulse, equivalent to a π pulse to both the physical qubits,

Px(π) = e−i
π
2

(σ1
x+σ2

x)

is considered. The density matrix at time t is given by

ρ(t) = e−iωrf (σ1
x+σ2

x)tσLz e
iωrf (σ1

x+σ2
x)t

,
where ωrf is the RF frequency. ∆ω denotes the chemical shift between

the two physical spins comprising the logical qubit. It is observed that a full
return to the DFS occurs only in the case where ∆ω = 0, which means that
the two spins should be chemically equivalent i.e. have the same precession
frequency under the applied magnetic field. However, on making the two
spins equivalent, one will lose the ability to selectively control the two spins,
which means that universal control of the logical qubit will be lost.
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4.2.5 Actuator Based Quantum Control

Although direct control of qubits is possible in many situations, attempts to
protect the qubit from noise as well as intrinsically weak interactions with
control fields often makes this a difficult task. For example, the interaction
strength of nuclear spins is several orders of magnitude smaller than that of
electronic spins, which poses additional difficulties in qubit systems which
include both electronic and nuclear spins, such as nitrogen vacancy centers
in diamond.

Recent works [24, 25] have demonstrated that it is possible to achieve
indirect control via actuator qubits coupled to the qubit which we want to
control. It has even been shown that actuator based gate times are faster
than direct driving in certain situations [26]. The procedure to calculate the
possible control operations is as given in Section 4.2.3. We write the total
Hamiltonian as:

H = HA +HT +HAT
where HA is the internal Hamiltonian of the actuators, HT is the internal
Hamiltonian of the targets HAT is the actuator-target coupling Hamiltonian.
Given a control Hamiltonian which acts only on the actuator qubits HC, the
possible actuator based control operations can be calculated by repeatedly
evaluating the commutators between the control Hamiltonian HC and the
drift Hamiltonian H [25].

4.3 Experimental Implementation

The spin system chosen in for experiments on universal control was fumaric
acid 4.2. In fumaric acid, we see that two protons are chemically equivalent.
Hence we do not have the ability to selectively control these spins by direct
control. In order to get a third spin to be used as an actuator, we utilize
the naturally available 13C atoms present in the sample. Since the relative
abundance of 13C is only 1.1%, we take a high concentration of fumaric acid
so that the signal from fumaric acid molecules having 13C are strong enough
to be detected. Here, we took 25mg of fumaric acid in 600µL of dueterated
methanol (CD3OD). Apart from permitting the use of deuterium field lock,
the use of a deuterated solvent also replaces the protons attached to the
oxygen atoms with deuterium, hence removing unwanted signals from the
protons attached to the oxygens.

We now have a three qubit system-two protons which are the target qubits
and one 13C molecule which is the actuator qubit. Although the presence of
the 13C breaks the chemical equivalence between the two protons in theory,
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Figure 4.2: Structure of fumaric acid. The red Hs, labelled 1 and 2, are the
target nuclear spins. The red star indicates one possible position of the 13C
nucleus. Numbers indicate coupling strengths between nuclei in Hz.

the isotopic shift introduced is extremely small (<1ppm). Hence, the system
has two effectively equivalent protons and one 13C spin. The couplings be-
tween these spins are: JH1H2 = 15Hz, J13CH1 = 168Hz, J13CH2 = 4.15Hz.
The anisotropy between coupling strengths of 13C and the chemically equiva-
lent protons breaks the magnetic equivalence between the two protons. This
allows us to indirectly control the two protons independently, even though
they are chemically equivalent and cannot be selectively controlled via direct
control.

4.3.1 Universal Gates

As NAND and NOR gates are universal in classical logic, for two qubits, a
set of universal quantum gates are [27]:

1. Controlled NOT gate: CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


2. Hadamard gate: H = 1√

2

(
1 1
1 −1

)
3. The π/8 gate: R(π/4) =

(
1 0
0 ei

π
4

)
If we are able to realize these three gates, any other unitary gate operation
can be constructed from them. We generated and optimized these gates
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Figure 4.3: Fidelity of the CNOT gate on the two proton nuclei

numerically using the bang-bang control method described by Gaurav et al
[28] and converted to a pulse program compatible with a Bruker 500 NMR
spectrometer in Matlab. The simulated spectra of these three gates are used
to compare with and verify the experimental spectra. The fidelities of the
three gates and their variation with RF inhomogeneity using this method are
as indicated in the Figs. 4.3,4.4and 4.5.

Figure 4.4: Fidelity of the Hadamard gate on the first proton nuclei
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Figure 4.5: Fidelity of the π/8 gate on the first proton nuclei

4.3.2 Suppressing Superfluous Signals

The bulk of the fumaric acid sample will be composed of molecules which
do not have a 13C nuclues in it. Hence, the most intense signal will be a
single peak from the equivalent protons, originating from the fumaric acid
molecules which do not have a 13C nucleus. However, 1.1% of the molecules
will have a 13C nucleus at the position indicated by a star in 4.2. Another
1.1% will have 13C atoms at a symmetrically opposite position, which has
an identical spectral signature as the other symmetric molecule. In total, we
will get useful signal from only 2.2% of the total sample volume.

While measuring the spectrum of the molecule, we will get signals from
both kinds of molecules-those having 13C nuclei and those which do not pos-
sess 13C nuclei. Since the high intensity signal from molecules which do not
possess 13C nuclei interfere with our experiments, which depend on only the
signals from molecules which have 13C nuclei, we initially suppress the proton
magnetization by the two methods described below. More importantly, we
want to ensure that our gates are acting only on molecules having 13C nuclei
and that the resulting spectrum is entirely produced by the action of gates
on such molecules. Once the proton magnetization is killed, we regenerate
magnetization from 13C nuclei and use it for our experiments.

Magnetic Field Gradients

In many NMR experiments, the magnetic field about which the spins are
precessing is deliberately made as homogeneous as possible. Ideally, one
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Figure 4.6: Spectrum of fumaric acid without suppression

Figure 4.7: Spectrum of fumaric acid after suppression of central peak
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Figure 4.8: Application of a magnetic field gradient along z-axis. Im-
age source: http://chem.ch.huji.ac.il/nmr/techniques/other/diff/
diff_files/gradientpulse.gif

would want a magnetic field of the form:

−→
B (r) = B0êz

A magnetic field gradient is a spatially inhomogeneous magnetic field. For
example,

−→
B (r) = B0êz +G0zêz

. Since the Larmour precession frequency of the nuclei is directly proportional
to the magnetic field, the application of a field gradient will cause nuclei
different at different spatial locations to precess with different precession
frequencies. The result is that there will be no net transverse magnetization
4.8.

Torrey Oscillations

On applying a strong RF pulse along a direction perpendicular to the initial
magnetization direction, the magnetization will start precessing about that
axis in the rotating field of the RF pulse. Due to spatial RF field inhomo-
geneity which arises due to various reasons, the magnetization damps and
gets suppressed (Torrey oscillations). In our experiment, we use this method
to suppress proton magnetization(125 Hz power field for 2ms).
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4.4 Results
Here, we present the simulated and experimental spectra confirming the real-
ization of the set of universal quantum gates for a two qubit system, described
in 4.3. Here, we label the two proton qubits as 1,2 and the 13C qubit as 3
and Ix,y,z = 1

2
σx,y,z.

4.4.1 CNOT gate

Starting from the initial state ρinit = I1
y , the CNOT gate was applied. The

spectrum after the CNOT gate was found to match well with the simulated
spectrum as shown in figure 4.9a.
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(a) Simulated CNOT spectrum

(b) Experimental CNOT spectrum

Figure 4.9: CNOT gate on H1, conditional on H2

4.4.2 Hadamard gate

Starting from the initial state ρinit = I1
yI

3
z , the Hadamard gate was applied

on the first spin. The spectrum after applying the gate was found to match
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well with the simulated spectrum (Imaginary part), the global phase of 180◦

being irrelevant.

(a) Simulated Hadamard spectrum

(b) Experimental Hadamard spectrum

Figure 4.10: Hadamard gate on H1
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4.4.3 π/8 gate

Starting from the initial state ρinit = I1
x, the phase gate was applied on

the first spin. The spectrum after applying the gate was found to match
fairly well with the simulated spectrum (Real part). There is more room for
improvement in gate optimization. We can compare this to the signal from
reference state ρinit = I1

x.
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(a) π/8 gate simulated spectrum

(b) π/8 gate experimental spectrum

(c) π/8 gate reference spectrum

Figure 4.11: π/8 gate on H151



4.5 Conclusion and Discussion
In this chapter, we demonstrated that it is possible to achieve universal con-
trol in a pair of effectively chemically equivalent qubits by means of actuator
qubits. This may have important implications in implementing decoherence
free subspaces, since unlike in usual cases, the use of equivalent qubits will
enable the logical qubit to return completely to the decoherence free sub-
space after undergoing evolution under some control field. At the same time,
we maintain full control, although indirectly, over the qubits by means of an
actuator qubit. Furthermore, this approach may be relevant to many other
qubit realizations such as spin qubits in quantum dots and electronic spins
in silicon and diamond.
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