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Abstract

In the thesis, we study new asymptotic conservation laws in electromagnetism

that could reproduce the loop effects in the soft expansion of QED amplitudes.

We also investigate certain unexplored properties of asymptotic expansions of

the classical as well as quantum gauge field.

Incorporating the effect of long range electromagnetic force (present in four

spacetime dimensions) acting on the scattered particles, we analyse the new

modes that arise in the asymptotic radiative field emitted in a generic classical

scattering process. We show that there exist new asymptotic conservation laws

(Qm;m = 1, 2) that are obeyed by the classical radiative field. Building on the

m = 1, 2 cases, we propose that there exists a conservation law for every m.

The corresponding charges are made of modes of the asymptotic electromagnetic

field that appear at O(e2m+1) and are expected to be conserved exactly.

The asymptotic behaviour of the gauge field is modified in the quantum

theory due to use of Feynman boundary condition. We derive the analogue

of the first of above asymptotic conservation laws upon imposing Feynman

boundary condition on the radiative field. We also discuss new modes in the

Feynman solution which are absent in the classical radiative solution. These

modes lead to quantum corrections to the asymptotic charges.

We anticipate that the Qm charges imply existence of m-loop soft theorems

for every m. In particular we show that the Ward identity for the Q1 charge

is equivalent to the 1-loop exact subleading soft photon theorem for loop level

QED amplitudes. We demonstrate this equivalence in the context of massless

scalar QED in presence of dynamical gravity. This asymptotic charge is directly

related to the dressing of fields due to long range forces. In presence of gravity,

the new feature is that the soft photon also acquires a dressing due to long

range gravitational force and contributes to the asymptotic charge.

We expect this story to hold beyond 1-loop as well. The Q2 conservation

law that we derived is expected to be related to the 2-loop exact soft photon

theorem that has been obtained recently in the literature. It would be very

interesting to explore this equivalence for m > 1.

Keywords : Asymptotic conservation laws, soft theorems.
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Chapter 1

Introduction and Goal

Recently many interesting features have been explored in the infrared regime

of gauge theories and gravitational theories. Soft theorems form an important

part of infrared physics. A particle is said to be soft if its energy is much

smaller than other energy scales of the process. Thus if we consider a quantum

scattering process, a soft particle is such that its energy is much smaller than

the energies/ masses of other (hard) particles. Scattering amplitudes involving

soft particles display remarkable properties which are encoded in soft theorems.

Let us focus on QED amplitudes. The leading order term in the soft limit of

an (n+ 1) point amplitude goes as inverse of the soft energy. At this order, the

amplitude factorises into a soft factor times the n point amplitude without the

soft photon. The information of the soft photon is contained entirely in the soft

factor and the form of the soft factor is same for all processess. Hence it is called

a soft theorem. The soft factor depends on the electric charges and momenta of

the hard particles and the direction of the soft momentum. It is insensitive to

the other properties of the scattered particles and also to the details of the short

range forces that are responsible for scattering. Consequently it is independent

of intermediate resonances that might be produced in the process. The form

of the leading soft factor is true to all loop orders and is same in all spacetime

dimensions ! It is uncorrected by non-minimal couplings or higher derivative

corrections. This kind of universality makes soft theorems an interesting topic

to study. This topic has been explored since 1950’s by Bloch, Gell mann,

Goldberger, Low, Weinberg and many others [1–24].

In the recent years, soft theorems have been studied for multiple soft particles

as well [25–34] . This line of study has an interesting application. Laddha and

Sen used multiple soft photon theorems to derive the low frequency spectrum

of electromagnetic radiation emitted in a generic classical scattering process

[35–39]. In the low frequency limit, the classical radiative field is universally
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given in terms of the charges and asymptotic momenta of the scattering particles

and is independent of other details of the scattering. The universal terms in the

’soft’ expansion of the classical field define classical soft theorems. The leading

order term in the classical radiation in the low frequency limit goes like inverse

of the frequency such that the coefficient of this term is the leading soft factor

that appears in the quantum soft theorem. This is called the leading classical

soft theorem and it has been amply discussed in the literature under the guise

of the electromagnetic memory effect [40–46]. This setup involves a test charge

placed in the asymptotic regime of the spacetime. This charge can be used to

detect the late time radiation emitted in a process. The leading term in the late

time radiation is related to the leading classical soft theorem and gives rise to

a shift in the velocity (components tranverse to the radial direction) of the test

charge. Thus the magnitude of this shift is controlled by the leading soft factor.

It is fascinating that the soft factors are directly observable in an experiment!

The universality in the soft expansion of amplitudes (or the classical field)

is manifestation of underlying symmetries of the theory. The leading soft

photon theorem is related to asymptotic symmetry group called large gauge

transformations. Large gauge transformations refer to the U(1) gauge transformations

that do not die off at infinity. The usual ’small’ gauge transformations vanish

at infinity and the corresponding charges vanish identically. Thus these charges

annihilate the physical states of the theory. On the other hand the large gauge

transformations lead to non-zero charges. These charges have a non-trivial

action on the physical states. It is well known that the vacuum state also

transforms under this symmetry i.e. this symmetry is spontaneously broken.

The leading soft theorem is exactly equivalent to the Ward identity of the

large gauge transformations. The relation between the leading soft theorem

and spontaneously broken large gauge transformations was studied by Ferrarri,

Picasso and others in 1970’s [47–52].

There has been a renewed interest in this equivalence since 2013 due to

new insights provided by Strominger [53, 54]. This work was followed by many

interesting papers that shed light on the relation between these two corners

of the IR sector of gauge theories and gravity [55–72]. Strominger and his

collaborators pioneered the study of equivalence between soft theorems and

asymptotic conservation laws. 1 The asymptotic conservation law corresponding

to the leading soft photon theorem was discussed in [56,69,73]. The subleading

1See eq (2.1) for the precise statement of an asymptotic conservation law.
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term in the soft expansion of tree level amplitudes goes like ω0 and was first

studied in [2–4]. This coefficient consists of a universal piece plus a term

that depends on the details of the non-minimal terms present in the theory

[74]. Ward identity corresponding to the subleading photon theorem has been

discussed in [62–64, 76]. The symmetry underlying this Ward identity or its

relation to U(1) gauge group is not well understood yet. In [75], Campiglia

and Laddha showed that the subleading soft photon theorem (for tree level

amplitudes) is equivalent to an asymptotic conservation law. In fact, in the same

paper Campiglia and Laddha showed that the classical radiative field at O(e)

admits an infinite number of conservation laws. They also provided evidence

that suggests that these conservation laws are equivalent to the infinite number

of tree level soft theorems derived in [77, 78]. Thus, tree level soft theorems in

QED can be related to asymptotic conservation laws.

It is well known that the loop level S-matrix becomes ill defined in four

spacetime dimensions due to infrared divergences. Infrared divergences are a

result of long range effects that arise due to presence of massless particles.

To discuss effect of loop corrections on soft theorems, it is necessary to have

a prescription to deal with these divergences. One approach is to study soft

behaviour of regulated amplitudes and it has been shown that the leading

soft factor does not receive any loop corrections. Beyond the leading order,

the soft factors admit loop corrections in four spacetime dimensions [79–81].

Another rigorous approach to deal with these divergences is to use either dressed

states [82–84] or a finite dressed S-matrix [85, 86]. Soft theorems have been

studied using dressed states in [87–89]. There are a few unresolved questions

yet. Physically we expect that the massless particles that make up the dressing

should have a cutoff [90] but introduction of a cutoff scale breaks Lorentz

invariance. Soft theorems need to be studied in presence of this cutoff. These

questions should be addressed in the future.

In 2018, Sahoo and Sen studied the subleading term in soft expansion of loop

amplitudes systematically using the regulating technique introduced in [92].

This subleading term in soft expansion is logarithmic in soft energy and it is

intimately tied to the long range forces present in four spacetime dimensions

[91]. They showed that this term is universal and also argued that it is 1-loop

exact. This is a significant result. A natural question is to probe if this new soft

theorem can be related to a new asymptotic conservation law. The first step in

this direction was taken in [93]. Campiglia and Laddha constructed asymptotic
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charges corresponding to the Sahoo-Sen soft theorem for massive scalar QED.

This is quite a remarkable result given the fact that the loop level soft factor

has a very complicated structure [91].

The goal of this thesis is to study new conservation laws in

electromagnetism that could reproduce the loop effects in the soft

expansion of QED amplitudes. As a subgoal we will also investigate

certain unexplored aspects of asymptotic expansions of the classical as

well as quantum gauge field in presence of long range electromagnetic

force. This thesis is based on the work carried out in [99–101]. The organisation

of this thesis is as follows.

• In Chapter 2 we lay out the background for our main calculations. We

discuss classical scattering of charged particles ignoring the effect of long

range electromagnetic forces. Rederiving the Q0 conservation law, we

discuss its relation to the leading soft theorem.

• In Chapter 3, we incorporate the effect of long range electromagnetic force

acting on the scattered particles and analyse the asymptotic radiative field

emitted in a generic classical scattering process. We show that there exist

new asymptotic conservation laws (Qm;m = 1, 2) that are obeyed by the

classical radiative field. We propose that such conservation laws should

exist for every m.

• The asymptotic behaviour of the gauge field is expected to change in

the quantum theory due to use of Feynman boundary condition. This

modification is the focus of Chapter 4. We study the new modes that

arise in the Feynman solution and show that the Q1 conservation law

is in fact violated by the Feynman solution. We show that the Feynman

solution obeys a modified conservation law denoted by Q̃1. We also discuss

certain unfavourable features of the Q̃1-charge.

• In Chapter 5, we revisit the classical Q1 conservation law and quantise

these charges. Upon quantisation these charges get extra ’quantum’ contribution

and we show that the corresponding Ward identity is equivalent to the

1-loop exact Sahoo-Sen soft photon theorem for massless scalar QED in

presence of dynamical gravity.

We expect this story to hold beyond 1-loop as well. The Q2 conservation

law that we derived is expected to be related to a new 2-loop exact soft photon



Chapter 1. Introduction and Goal 5

theorem. And indeed such a soft theorem was recently derived in [95]. The

relation between Qm charges and subsubleading universal modes in the soft

expansion needs to investigated at higher loop orders (m > 1). It is clear that

there is a rich structure in the IR physics at loop level that needs to explored

further.
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Chapter 2

Preliminaries

In this chapter we will setup our notations and review some important concepts

that we need to use later on. The asymptotic conservation laws proposed by

Strominger and his collaborators take following form in the classical theory :

Q+[λ+] | I+
−

= Q−[λ−] | I−+ . (2.1)

The future charge Q+ is defined at I+
− i.e. the u → −∞ sphere of the future

null infinity. Similarly, the past charge Q− is defined at I−+ which is the v →∞
sphere of the past null infinity. λ+ is an arbitrary function on 2-sphere and

parametrises the charge. The parameter at the past is related to it via antipodal

map : λ+(x̂) = λ−(−x̂).

Asymptotic conservation laws are related to soft theorems. In [56,59,73], the

authors discussed the symmetry underlying the leading soft photon theorem and

also showed that the corresponding charges Q0 obey an asymptotic conservation

law. In section 2.1, we will calculate the radial component of the asymptotic

electric field generated in a classical scattering process and derive theQ0 conservation

law. Then we will turn to the quantum theory. In 2.2 we discuss the asympotic

phase space of massless scalar field and photons. In 2.3, we will demonstrate

the equivalence between the Q0 asymptotic conservation law and the leading

soft photon theorem for massless scalar QED. In section 2.4, we will discuss the

new subleading soft photon theorem for loop amplitudes derived by Sahoo and

Sen in 2018. One of the goals of this thesis is to understand if there exists a

new conservation law related to this soft theorem.

2.1 The Q0 conservation law

In this subsection we will calculate the asymptotic electromagnetic field generated

by a general classical scattering process and show that certain modes are conserved.
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Hence we need to find the asymptotic expansion of the radiative field near future

null infinity denoted by I+. It is useful to work in retarded co-ordinate system.

The flat metric takes following form in these co-ordinates (u = t− r)

ds2 = −du2 − 2dudr + r2 2γzz̄ dzdz̄; γzz̄ =
2

(1 + zz̄)2
.

I+ corresponds to the limit r →∞ with u finite. We use x̂ or (z, z̄) interchangeably

to describe points on S2. We will often use following parametrisation of a 4

dimensional spacetime point (Greek indices will be used to denote 4d cartesian

components) :

xµ = rqµ + utµ, qµ = (1, x̂), tµ = (1,~0). (2.2)

It is useful to note that qµ is null. In terms of the stereographic co-ordinates,

we have

q =
1

1 + zz̄
{1 + zz̄, z + z̄,−i(z − z̄), 1− zz̄}.

Let us describe a general scattering setup. We have some n′ number of

charged particles coming in to interact. We denote the respective velocities by

V µ
i , charges by ei and masses by mi (for i = 1 · · ·n′). (n− n′) number of final

charged particles are produced as a result of the interaction that eventually

move away from each other. For outgoing particles we denote the velocities by

V µ
i , charges by ei and masses by mi (for i = n′ + 1 · · · (n − n′)) respectively.

We can divide the entire spacetime into two parts : a bulk region which is

a sphere of radius R around the origin such that the non trivial interaction

between the particles takes place within this sphere. In this region, the particles

in general move on complicated trajectories depending on short range forces

present between them. This short range interaction could be of any sort. The

second region is the asymptotic region r > L in which we can completely ignore

the short range forces. In the asymptotic region, we need to include the effect

of the long range electromagnetic interaction that starts at O( 1
r2 ). We will

carry out the calculations perturbatively in coupling e as well as in asymptotic

parameters 1/r (or 1/t).

In Lorenz gauge, the radiation can be obtained from the equation �Aµ =

−jµ. Using the retarded propagator, we get :

Aσ(x) =
1

2π

∫
d4x′ δ([x− x′]2) jσ(x′) Θ(t− t′). (2.3)
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We have chosen the retarded root of δ-function i.e. t > t′. The retarded root is

given by

t′0 = t− |~x− ~x′|. (2.4)

The form of t′0 at large r is t′0 = u + O(1
r
). Thus the field Aσ(r, u, x̂) at large

r gets contribution from t′ ∼ u. The bulk sources correspond to the region

|r′| < R or |t′| < R (as c = 1) and contribute to Aσ at |u| < R. It is a

characteristic of the retarded propagator that the asymptotic field at large u

does not get contribution from the bulk region |t′| < R. Thus we can focus only

on the asymptotic (t′ > R) trajectories.

Let us write down the form of the source current that describes our scattering

event. First we restrict to the leading order in coupling e, hence we can

ignore the effect of long range electromagetic interactions on the asymptotic

trajectories. Therefore the particles are free in the asymptotic region. Thus an

incoming particle has the trajectory:

xµi = [V µ
i τ + di]Θ(−T − τ). (2.5)

τ is an affine parameter, here T denotes the value of τ such that r(−T ) = R

hence the short range forces can be ignored for τ < −T . Similarly, an outgoing

particle has the trajectory :

xµj = [V µ
j τ + dj]Θ(τ − T ).

For ougoing particles, r(T ) = L hence the short range forces can be ignored

for τ > T . The form of the trajectories for |τ | < T is not known. The current

is given by summing over all particles that participate in the scattering. The

asymptotic part of this current can be written down as :

jasym
σ (x′) =

∫
dτ
[ n∑
i=n′+1

eiViσ δ
4(x′ − xi) Θ(τ − T ) +

n′∑
i=1

eiViσ δ
4(x′ − xi) Θ(−T − τ)

]
.(2.6)

Here, we have labelled the incoming particles by i running from 1 to n′ and

outgoing particles by i running from n′ + 1 to n.
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The asymptotic radiative field generated by the scattering process can be

obtained as follows

Aσ(x) =
1

2π

∫
d4x′ δ([x− x′]2) jσ(x′) Θ(t− t′) ,

=
1

2π

∫
dτ
[ n∑
i=n′+1

δ(τ − τ0) eiViσ
|2τ + 2Vi.(x− di)|

Θ(τ − T ) +
n′∑
i=1

δ(τ − τ0) eiViσ
|2τ + 2Vi.(x− di)|

Θ(−τ − T )
]
.

(2.7)

The retarded root of the delta function δ(|x− x′|2) is given by :

τ0 = −Vi.(x− di)−
[

(Vi.x− Vi.di)2 + (x− di)2
]1/2

. (2.8)

Hence, the total asymptotic field generated by the scattering process is given

by

Aσ(x) =
n∑

i=n′+1

1

4π

eiViσ Θ(τ0 − T )√
(Vi.x− Vi.di)2 + (x− di)2

+
n′∑
i=1

1

4π

eiViσ Θ(−T − τ0)√
(Vi.x− Vi.di)2 + (x− di)2

.

(2.9)

Next let us use the limit r → ∞ with u < r in eq.(2.9). We have τ0 =
u
|q.Vi| + O(1), hence (2.9) gives

Aσ(x)|I+ = − 1

4πr

[ n∑
i=n′+1

eiViσ
Vi.q

Θ(u− T ) +
n′∑
i=1

1

4π

eiViσ
Vi.q

Θ(−T − u) + ...
]

+ O(
1

r2
) .

(2.10)

At large values of u, we see that the 1
r
-term goes like u0. ’...’ denote u-fall

offs that are faster than any (negative) power law behaviour. The u0-mode is

related to the so called memory effect [43–45]. The memory effect refers to the

observed shift in velocity of a test particle (placed at large r and large u) due

to passage of electromagnetic radiation. As seen from above expression this

shift is universal and is controlled by the leading soft factor. We will see in

the forthcoming sections that the u0

r
-mode is uncorrected even when we go to

higher orders in e. The subleading behaviour changes substantially as we go to

next order in e.
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Let us study the frequency space radiative field. Given (2.10) for Aµ, the

the Fourier transformed function Ãµ at small ω turns out to be :

Ãµ(ω, r, x̂) =
eiωr

4πir

[ 1

ω

n∑
i=1

ηieiViµ
Vi.q

+ ...
]

as ω → 0. (2.11)

We see that the radiative field behaves as 1
ω

as the frequency ω of the radiation is

taken to 0. The coefficient of this term is proportional to the leading soft factor

given in (2.38). This is the statement of the classical leading soft theorem. This

shows the direct relation between the classical soft theorem and the memory

effect.

Extending to higher orders in 1
r
, we find that the asymptotic expansion of

the radiative field in (2.9) around I+ takes following form

Aµ(x)|I+ =
1

4π

∞∑
m=0,n=1
m<n

[A[n,−m]
µ (x̂)]

um

rn
+ ... , |u| → ∞. (2.12)

Here ’...’ denote the terms that fall off faster than any power law. It should

be noted that above expression is valid at O(e) as it was obtained ignoring the

asymptotic electromagnetic force present between the scattering particles.

Next we will study asymptotic conservation law satisfied by a particular

mode of the radial component of the electric field. As seen in (2.1) the future

charge Q+ is defined at I+
− . Let us calculate the asymptotic field strength

produced by the scattering event using (2.10) around u→ −∞ :

Fµν(x)|u→−∞ =
1

4π

n′∑
i=1

ei
[
Viµ(xν − diν)− (xµ − diµ)Viν

]
[(Vi.x− Vi.di)2 + (x− di)2]3/2

+ ... . (2.13)

We note that there are corrections to above expression when we go to higher

orders in e and will be discussed in the next chapter. Using (2.2), the coefficient

of the 1
r2 -term can be written down.

Fµν(x)|u→−∞ = − 1

4πr2

n′∑
i=1

ei
(Vi.q)3

[
Viµqν − qµViν + ...

]
+ O(

1

r3
). (2.14)
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Radial component of the electric field is given by Er = Fur. Performing a

co-ordinate transformation of above expression we get

Fur(x)|u→−∞ = − 1

4πr2
[

n′∑
i=1

ei
(Vi.q)2

+ ... ] + O(
1

r3
) . (2.15)

Next we need to derive the radial component of the electric field at past

null infinity and then compare it with the expression at the future null infinity.

Past null infinity is defined by the limit r → ∞ with v = t + r finite. In this

co-ordinate system, 4 dimensional spacetime point can be parametrised as :

xµ = rq̄µ + vtµ, q̄µ = (−1, x̂), tµ = (1,~0). (2.16)

q̄µ is a null vector. We need to expand all the quantities around I−. Around

I−, we have from (2.8) : τ0 = −2r Vi.q̄ + O(1). Using (2.9), we see that the

contribution of the outgoing particles to the field at I− comes with a factor

of Θ(τ0 − T ), hence it goes to 0. This is a consequence of retarded boundary

conditions. From (2.9), we get :

Aσ(x)|I− =
1

4πr

[ n′∑
i=1

eiViσ
Vi.q̄

+ ...
]

+ O(
1

r2
) . (2.17)

Calculating the field strength, we get (Er = Fvr)

Fvr(x)|v→∞ = − 1

4πr2
[

n′∑
i=1

ei
(Vi.q̄)2

+ ... ] + O(
1

r3
) . (2.18)

Next we can write down the Q0 conservation law [56,73]. Using (2.15) along

with above equation, we get :

F [u0/r2]
ur (x̂)|I+

−
= F [v0/r2]

vr (−x̂)|I−+ . (2.19)

Here, F
[u0/r2]
ur denotes the coefficient of u0

r2 -term of Fur. Hence it a function of

the sphere co-ordinates x̂. Similarly F
[v0/r2]
ur denotes the coefficient of v0

r2 -term

of Fvr. The future charge is defined as Q+
0 [λ+] =

∫
d2z λ+(x̂) F

[u0/r2]
ur (x̂). Q−0 is

defined analogously. We have :

Q+
0 [λ+] | I+

−
= Q−0 [λ−] | I−+ . (2.20)
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λ+ is an arbitrary function on 2-sphere and λ+(x̂) = λ−(−x̂). Thus this law

tells us that the leading order mode in the radial component of the electric

field is conserved in above asymptotic sense. This law is related to the leading

soft theorem. The leading soft theorem is equivalent to the Ward identity for

S-matrix : Q+
0 S − SQ−0 = 0 [56, 73] with Q0’s defined as given above. We will

discuss this equivalence for massless scalar QED in Section 2.3.

2.2 Asymptotic dynamics of massless scalars

and photons

We next turn to theory of a massless scalar φ minimally coupled to U(1) gauge

field Aµ. So, our system is described by following action :

S = −
∫
d4x
√
−g

[1

4
F 2 + ηµν (Dµφ)∗ (Dνφ)

]
, (2.21)

where Dµφ = ∂µφ − ieAµφ. Dynamics of massless scalar field is given by

ηµνDµDν φ(x) = 0. (2.22)

The free scalar field satisfies the box equation : �φ = 0 where � = −∂2
t + ~∂2.

Solution to this equation can be written as

φ(x) =
1

(2π)3

∫
d3p

2ω
[bp e

ip.x + d†p e
−ip.x ]. (2.23)

Here pµ is a massless momentum, hence ω = |~p|. And p.x = pµx
µ is the Lorentz

4-product. bp, d
†
p are arbitrary complex functions that parametrise the free data

of the massless scalar field.

We are interested in studying the asymptotic dynamics of massless fields.

The future null infinity denoted by I+ corresponds to r →∞ keeping u = t−r
finite. I+ provides a natural home to define the asymptotic phase space of

massless fields. Solution in (2.23) can be expanded around the future null

infinity. Let us parametrise the massless momentum by p = ω(1, x̂′). In the

retarded co-ordinates we get p.x = −ω(u + r − rx̂.x̂′). In the large r limit we

can use stationary phase approximation that sets x̂′ = x̂. The leading order

coefficient in asymptotic expansion for massless scalars turns out to be [56]

φ(u, r, x̂) =
1

r
φ1(u, x̂) + O(

1

r2
) , (2.24)
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where

φ1(u, x̂) =
−i
8π2

∫ ∞
0

dω [b(ω, x̂) e−iωu − d†(ω, x̂) eiωu ]. (2.25)

Thus the leading order term in the asymptotic expansion of the massless scalar

field is O(1
r
). The O( 1

r2 ) terms get fixed in terms of φ1 by the equation of

motion. The asymptotic phase space for massless scalar fields is made up of

complex functions {φ1(u, x̂), ∂uφ
1(u, x̂)} such that φ1(u, x̂)||u|→∞ = O( 1

uε
). This

condition ensures that the symplectic form and other charges (like Hamiltonian)

acting on this phase space are well defined [94].

In the quantum theory, b is identified as the annihilation operator for particles

while d is the annihilation operator for antiparticles. Thus there is a direct

correspondence between the asymptotic fields and the Fock states in the quantum

theory. The classical asymptotic field at I+ written in frequency space is a

function of ω and angle x̂ and gets mapped to a Fock state with momentum

p = ω(1, x̂).

Next we turn to the gauge field. Let us first consider the homogenous part

of the gauge field i.e. the free part. Choosing the ∂µA
µ = 0, the equations of

motion reduce to �Aµ = 0. Hence most of the analysis for the free part of the

gauge field is similar to the massless scalar field. And indeed we get [56]

Aµ(u, r, x̂) =
1

r
A1
µ(u, x̂) + ... , (2.26)

where using stationary phase approximation the leading order term is :

A1
µ(u, x̂) =

−i
8π2

∫ ∞
0

dω [aµ(ω, x̂) e−iωu − a†µ(ω, x̂) eiωu ]. (2.27)

Here the free data is parametrised by aµ =
∑

r=+,− ε
∗r
µ (x̂)ar(ω, x̂), where the

sum runs over the two physical helicities. εrµ is the polarisation vector for

electromagnetic field. Let us transform to retarded co-ordinates and use following

choice for polarisation vectors :

εµ−(x̂) =
1√
2

∂

∂z̄
[(1 + zz̄)qµ], εµ+(x̂) =

1√
2

∂

∂z
[(1 + zz̄)qµ]. (2.28)
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qµ has been defined in (2.2). It can be checked that q.ε± = 0 and that εµ± are

null. We have :

A0
z(u, x̂) =

−i
8π2

√
γzz̄

∫ ∞
0

dω [a+(ω, x̂) e−iωu − a†−(ω, x̂) eiωu ] (2.29)

and

A0
z̄(u, x̂) =

−i
8π2

√
γzz̄

∫ ∞
0

dω [a−(ω, x̂) e−iωu − a†+(ω, x̂) eiωu ]. (2.30)

Thus {A0
z(u, x̂), A0

z̄(u, x̂)} encode the free data of the U(1) gauge field. The

asymptotic phase space for U(1) gauge field is made up of functions {A0
z(u, x̂), A0

z̄(u, x̂),

∂uA
0
z(u, x̂), ∂uA

0
z̄(u, x̂)} such that 1

A0
B(u, x̂)||u|→∞ = u0 + O(

1

uε
). (2.31)

This condition is similar to the one required for massless scalar field except for

the u0-mode. This mode is absent in the massless scalar field. It is required

for photons since they have non-trivial zero mode (the 1
ω

-mode). Similar to the

case of massless scalar field, the free data of the U(1) gauge field gets identified

with the creation/ annihilation operators of positive/ negative helicity photons

in the quantum theory.

Let us discuss the asymptotic behaviour of inhomogenous solution to the

equation of motion of the gauge field. We will see that the presence of massless

sources leads to new modes in the gauge field. In presence of sources Maxwell’s

equations take following form

�Aµ = −jµ, jµ = ie (φDµφ
∗ − φ∗Dµφ) . (2.32)

Using the fall offs given in (2.24) for massless scalars, we get following asymptotic

behaviour for the current components :

ju =
j2
u(u, x̂)

r2
+ ..., jA =

j2
A(u, x̂)

r2
+ ..., jr =

j4
r (u, x̂)

r4
+ ... . (2.33)

1We denote the vector components on S2 by capital latin alphabets i.e. B = {z, z̄}.
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The asymptotic expansion of the resultant gauge field components is given by :

Ar =
A1
r(x̂)

r
+ Alog

r (u, x̂)
log r

r2
+ ... ,

Au = Alog
u (u, x̂)

log r

r
+
A1
u(u, x̂)

r
+ ... ,

AA = A0
A(u, x̂) + Alog

A (u, x̂)
log r

r
+ ... . (2.34)

The asymptotic expansion given in (2.34) leads to following fall offs for the field

strength :

Fru =
F 2
ru(u, x̂)

r2
+ ... , FuA = F 0

uA(u, x̂) + ... ,

FAB = F 0
AB(u, x̂) + ... , FrA =

F 2
rA(u, x̂)

r2
+ ... . (2.35)

It is important to note that FrA actually starts at FrA = F log
rA (u, x̂) log r

r2 + ... due

to presence of massless fields. Maxwell’s equations imply ∂uF
log
rA = 0, so we can

set this mode to 0 consistently.

The Maxwell’s equations are given by ∇νFσν = jσ and imply following

equations for the coefficients in (2.35) :

∂uF
2
ru + ∂uD

BA0
B = j2

u,

∂uF
2
rA −

1

2
∂AF

2
ru +

1

2
DBF 0

AB =
1

2
j2
A. (2.36)

We will need these equations in our subsequent calculations.

2.3 Leading soft theorem and the Q0 conservation

law

In this subsection, we will discuss the Ward identity associated with the Q0

charge defined in (2.20) in the context of massless scalar QED and show that it

is equivalent to the leading soft theorem. Soft theorems are universal statements

about quantum amplitudes in the low energy limit. In the limit when energy of

one of the scattering photons is taken to be small, the amplitude factorises into

the lower point amplitude without soft photon times a universal soft factor :

An+1(pi, k) =
S0

ω
An(pi) + ... . (2.37)
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S0 =
n∑
i=1

ηiei
ε.pi
pi.q

. (2.38)

S0 is the leading soft factor. Here ei, pi are respectively the charges and momenta

of the hard particles and we have used the standard convention of writing soft

factors with ηi such that ηi = 1(−1) for outgoing (incoming) particles. ε is the

polarisation vector of the soft photon and kµ = ωqµ is the soft momentum.

Let us rewrite the leading soft theorem using special variables that are well

suited for asymptotic calculations. We parametrise massless momenta by

pj = ωjqj, qj =
1

1 + zj z̄j
{1 + zj z̄j, zj + z̄j,−i(zj − z̄j), 1− zj z̄j}.

Similarly the soft momentum is parametrised by kµ = ωqµ. The polarisation

vectors are given by [56]

εµ− =
1√
2

∂

∂z̄
[(1 + zz̄)qµ], εµ+ =

1√
2

∂

∂z
[(1 + zz̄)qµ]. (2.39)

Using the expression for qµ in (2.39) we get :

εµ− =
1√
2
{z, 1, i, z}, εµ+ =

1√
2
{z̄, 1,−i, z̄}. (2.40)

Using above expressions we can rewrite the leading soft theorem for negative

helicity photon as

lim
ω→0

[ω An+1(ωi, z
A
i ;ω, zA,−)] =

√
γzz̄

n∑
i=1

ηiei
z̄ − z̄i

An(ωi, z
A
i ) . (2.41)

Here we have used the projector limω→0[ω ...] to isolate the leading order term.

Hence above expression is an exact statement.

Next we will show that the leading soft theorem i.e. (2.41) is equivalent to

Ward identity for S-matrix : Q+
0 S −SQ−0 = 0 where Q0’s are defined in (2.20).

Let us turn to the expression for the asymptotic charge Q0. The future charge

is given by (2.20)

Q+
0 [λ+] =

∫
d2z λ+(x̂) F 2,0

ru (x̂)|I+
−

=−
∫
du d2z λ+(x̂) ∂uF

2,0
ru (x̂) +

∫
d2z λ+(x̂) F 2,0

ru (x̂)|I+
+
. (2.42)

The second term vanishes for our case. It should be noted that this term is
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non-zero in presence of massive particles. Next we use (2.36) in the expression

for the future charge to get

Q+
0 [λ+] =

∫
du d2z λ+(x̂) [∂uD

BA0
B − j2

u]

:= Qsoft
+ [λ] +Qhard

+ [λ]. (2.43)

This defines the soft and hard parts of the asymptotic charge.

The soft charge is linear in the gauge field and leads to insertion of photon.

Let us analyse the expression for soft charge.

Qsoft
+ [λ] =

∫
du d2z λ+(x̂) γzz̄∂u[∂zA

0
z̄ + ∂z̄A

0
z]. (2.44)

Using (2.14), it is seen that the retarded solution satisfies Fzz̄|I+
±

= 0. Generically

the field is required to satisfy the condition
∫
du ∂uFzz̄ = 0 [59]. This condition

implies
∫
du ∂u∂zAz̄ =

∫
du ∂u∂z̄Az. Substituting in the expression for soft

charge, we get

Qsoft
+ [λ] = 2

∫
du d2z λ+(x̂) γzz̄∂u∂zA

0
z̄. (2.45)

It is useful to transform to the Fourier space basis Ãz̄.

Qsoft
+ [λ] =− 2i

∫
dω d2z λ+(x̂) δ(ω) γzz̄∂z(ωÃ

0
z̄). (2.46)

It should be noted that the integral over ω ranges from −∞ to ∞. It is clear

that only zero energy modes contribute to above expression. Hence the name

’soft’ charge. Also it is apparent from above expression that it is non zero only

if Ã0
z̄ has a pole at ω = 0.

To simplify our calculations we parametrise λ+ in following way, λ+(x̂) =
1

z̄−z̄a . After an integration by parts we get

Qsoft
+ [za] = 4πi

∫
dω δ(ω) ωÃ0

z̄(ω, x̂a). (2.47)

Here we have used the identity : ∂z
1

z̄−z̄a = 2πδ2(z−za). Next we quantise above

expression of the charge. The gauge field A0
z̄ can be expressed in terms of the
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creation and annihilation operators of photon. Using (2.30), we get

Ã0
z̄(ω, x̂) = −i

√
2
a−(ω, x̂)

4π(1 + zz̄)
... ω > 0, Ã0

z̄(ω, x̂) = i
√

2
a†+(−ω, x̂)

4π(1 + zz̄)
... ω < 0.

(2.48)

Above expression hints that there is a discontinuity at ω = 0 in the quantum

theory. Later on we will see that it plays an important role in the analysis

of the logω soft theorem. We use (2.48) in the expression for the soft charge.

Since Ã0
z̄(ω) is discontinuous at ω = 0, we need a prescription to define the limit

ω → 0. We define the soft limit from positive side to get

Qsoft
+ [z] =

√
γzz̄ lim

ω→0+
ω a−(ω, x̂). (2.49)

Next we turn to the expression of the hard charge given in (5.20). Using

λ+ = 1
z̄−z̄a , we get

Qhard
+ [za] =−

∫
du d2z

j2
u

z̄ − z̄a
. (2.50)

Since we have the complete expression for the asymptotic charge, we can write

down the Ward identity for the charge. The Ward identity for S matrix is[
Q0 , S

]
= 0,

⇒
(
Qsoft

+ S − S Qsoft
−

)
= −

(
Qhard

+ S − S Qhard
−

)
.

Using (2.49) and (2.50), we get

< out| lim
ω→0+

√
γzz̄ ω a−(ω, x̂) S |in >

=

∫
du′ d2z′

1

z̄′ − z̄
< out|

[
j2
u S − S j2

v

]
|in > . (2.51)

The action of above operators on the Fock states can be evaluated in a straightforward

way :

< out| lim
ω→0+

ω a−(ω, x̂) S |in > =
√
γzz̄

∑
i

ηiei
z̄ − z̄i

< out| S |in > . (2.52)

Comparing with (2.41) we see that this is the statement of leading soft theorem

for outgoing negative helcity theorem. Thus we have proved that the leading

soft theorem can be derived from the conservation law (2.20). These steps
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can be retraced to derive the conservation law from the soft theorem. This

establishes the equivalence between the classical asymptotic conservation law

for Q0 and the leading soft theorem.

2.4 Subleading soft photon theorem

Let us first discuss the subleading term in the soft expansion of tree level

amplitudes [2–4].

An+1(pi, k) =
[S0

ω
+ S1

]
An(pi) + O(ω) . (2.53)

The subleading term is O(ω0) and the coefficient is given by

S1 =
n∑
i=1

ei
εµkν J

µν
i

q.pi
+ ... .

We recall that ei, pi are respectively the charges and momenta of the hard

particles and ηi = 1(−1) for outgoing (incoming) particles. εµ is the polarisation

vector of the soft photon and kµ = ωqµ is the soft momentum. Jµνi = pµi ∂
ν
i −

pνi ∂
µ
i denotes the angular momentum of the ith hard particle. ’...’ are the

corrections due to non-minimal couplings that might be present in the theory.

These corrections have been studied in [74]. This should be contrasted with

the leading soft theorem that is uncorrected by non-minimal couplings. Ward

identity corresponding to this soft photon theorem has been studied in [62–64,

76]. But the symmetry underlying these charges is not clear yet. The asymptotic

conservation law underlying the tree level subleading soft photon theorem was

discussed in [75].

The leading soft photon theorem and the corresponding Ward identity are

true to all loop orders and hence are exact quantum statements. Beyond the

leading order, there are non-trivial loop corrections in four spacetime dimensions

[79–81]. The subleading term in the soft expansion of loop amplitudes was

systematically studied in [91]. Using the fact that the infrared divergences

for (n + 1) amplitude and n amplitude in QED cancel, they unambiguously

identified the soft factor corresponding to the subleading logω mode and showed

that it is universal. In this thesis, we will derive the asymptotic conservation

law underlying this loop level soft theorem.
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Let us state the soft expansion of loop amplitudes in QED. We have [91]

An+1(pi, k) =
S0

ω
An(pi) + Slog logω An(pi) + ... , (2.54)

here, S0 =
∑

i ηiei
ε.pi
pi.q

is the leading soft factor and

Slog =
i

4π

∑
i,j i 6=j
ηiηj=1

e2
i ej

εµqν

q.pi
m2
im

2
j

[piµpjν − piνpjµ]

[(pi.pj)2 −m2
im

2
j ]

3
2

− 1

8π2

∑
i,j
i 6=j

ηiηje
2
i ej

εµqν

q.pi
[piµ∂iν − piν∂iµ]

[ pi.pj

[(pi.pj)2 −m2
im

2
j ]

1
2

log
pi.pj +

√
(pi.pj)2 −m2

im
2
j

pi.pj −
√

(pi.pj)2 −m2
im

2
j

]
.

(2.55)

Thus the form of the subleading soft factor is much more complicated than the

leading soft factor. Hence it is quite amazing that the authors of [93] could

reproduce this complicated factor from an asymptotic charge. This soft factor

is related to the dressing of the hard particles under long range electromagnetic

force. The first line of Slog constitutes the classical soft factor. This is the

term that controls the low energy expansion of classical radiative field. It

is a direct effect of late time acceleration of the hard particles under long

range electromagnetic forces. The term in the second line is purely quantum.

This mode is absent in the classical theory. This can be checked by explicitly

calculating low energy radiative field emitted in a classical process [36,91].

The logω soft theorem receives corrections in presence of dynamical gravity.

The correction is as follows

Sgrav
log =

−i
8π

∑
i,j i 6=j
ηiηj=1

ei
εµqν

q.pi
[piµpjν − piνpjµ] pi.pj

[2(pi.pj)
2 − 3m2

jm
2
i ]

[(pi.pj)2 −m2
im

2
j ]

3
2

− i

4π

∑
i, ηi=1

q.pi
∑
j

ηjej
ε.pj
q.pj

− 1

16π2

∑
i,j
i 6=j

ηiηjei
εµqν

q.pi
[piµ∂iν − piν∂iµ]

[ 2(pi.pj)
2 −m2

im
2
j

[(pi.pj)2 −m2
im

2
j ]

1
2

log
pi.pj +

√
(pi.pj)2 −m2

im
2
j

pi.pj −
√

(pi.pj)2 −m2
im

2
j

]

+
1

8π2

∑
i

ηiq.pi log
(pi.q)

2

m2
i

∑
j

ηjej
ε.pj
q.pj

. (2.56)

Analogous to the electromagnetic soft factor, the first line of Sgrav
log constitutes

the classical soft factor. It is a direct effect of late time acceleration of the

particles under long range gravitational forces. The term in the second line is
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purely quantum and is absent in the classical theory. It is expected that the

gravitational correction to the soft factor can be derived by including the effect

of gravity in the analysis of [93].

The important takeaway point from above discussion is that the logω mode

is intimately tied to the long range forces present in 4 spacetime dimensions. In

the next section we will start by analysing the effect of long range electromagnetic

force on classical dynamics.
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Chapter 3

Asymptotic conservation laws in

Classical electromagnetism

In Chapter 2 we obtained the asymptotic field generated by a scattering event

ignoring the long range forces acting on the scattering particles. In this chapter

we will include the effect of long range forces present between the scattering

particles and study the new modes that arise in the asymptotic radiative field.

Further we will also derive the asymptotic conservation laws obeyed by these

new modes. We carry out the calculations perturbatively in coupling e and

asymptotic parameter 1
τ
. This chapter is based on our results derived in [99].

3.1 The Q1 conservation law

In this section we will obtain the asymptotic radiative field keeping the first

order correction in e. Therefore we need to take into account the leading order

effect of electromagnetic long range force acting on scattering particles. Due

to the presence of long range electromagnetic force, a particle continues to

accelerate at late times and this gives rise to new modes in the asymptotic field

starting at O(e3). In particular FrA gets a log u
r2 term because of the long range

interaction between particles :

FrA|u→−∞ =
1

r2
[ u F

[u/r2]
rA (x̂) + log u F

[log u/r2]
rA (x̂) + ...] + O(

1

r3
) . (3.1)

Similarly around the past null infinity we have : 1

FrA|v→∞ =
log r

r2
[v0 F

[log r/r2]
rA (x̂) + ...] + O(

1

r2
) . (3.2)

1The log r
r2 -mode was missed in [93].
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In this section we will derive the conservation law obeyed by these modes. 2

F
[log u/r2]
rA (x̂)|I+

−
= F

[log r/r2]
rA (−x̂)|I−+ . (3.3)

This is the first of the conservation laws that we discuss. It is important to

note that above modes are O(e3) and we expect that above modes will not get

corrected by higher order corrections in e.

Our goal is to derive above conservation law. In this process we will also

rederive the leading tail to the memory term in the radiative field. Let us find

the first order correction to equation of trajectory of particles in asymptotic

regions i.e. to eqn (2.5). This calculation has been done in [91], we reproduce

it here. The equation of trajectory of jth outgoing particle is given by :

mj

∂2xµj
∂τ 2

= ej F
µν(xj(τ)) Vjν . (3.4)

We need to find the field experienced by j which is generated by other particles

that interact with j. The field strength has been calculated in (2.13). The field

strength given in (2.13) needs to be evaluated at the position of the particle

i.e. x = xj(τ). Using xµ = xµj (τ) = V µ
j τ + dµj in (2.13) we see that the

electromagnetic force F felt by the scattered particle takes following form :

F (τ) =
∞∑
m=2

cm
τm

.

The O( 1
τ2 )-term depends only on the charges and asymptotic velocities of the

interacting particles. Dipole interactions and higher order moments contribute

to the terms for m > 2 and hence the m > 2 modes are sensitive to the

charge distribution of the scattering objects. The leading order term in the

field strength is given by

Fµν(xj(τ))|τ→∞ =
1

4πτ 2

n∑
i=m+1,
i 6=j

ei
(ViµVjν − VjµViν)
[(Vi.Vj)2 − 1]3/2

+ O(
1

τ 3
). (3.5)

Here, we have not included any incoming particles as they do not contribute to

the field at τ →∞. So, the asymptotic trajectory of the jth particle is given by

2We thank the authors of [93] for suggesting this new conservation law.
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following equation :

mj

∂2xµj
∂τ 2

= − ej
4πτ 2

n∑
i=m+1,
i 6=j

ei
(Viµ + VjµVi.Vj)

[(Vi.Vj)2 − 1]3/2
+ O(

1

τ 3
). (3.6)

Solving above differential equation we see that the asymptotic trajectories of

the particles are corrected with a logarithmic term.

xµi = V µ
i τ + cµi log τ + di + O(

1

τ
). (3.7)

where for outgoing particles we have :

cµi =
1

4π

n∑
j=m+1,
j 6=i

eiej
(Vi.Vj V

µ
i + V µ

j )

[(Vi.Vj)2 − 1]3/2
. (3.8)

Above expression carries an extra minus sign compared to [91] because of

difference in convention. For ith incoming particle, j runs over the incoming

particles :

cµi =
1

4π

m∑
j=1,
j 6=i

eiej
(Vi.Vj V

µ
i + V µ

j )

[(Vi.Vj)2 − 1]3/2
. (3.9)

Next we find the asymptotic field produced by an outgoing particle i with

the corrected trajectory given in (3.7). As a result of long range interactions,

the current corresponding to an ith particle is modified to j
(i)
σ (x′) =

∫
dτ ei

[
Viσ+

ciσ
τ

]
δ4(x′ − xi) Θ(τ − T ). Using the retarded propagator we can write down

the expression for classical radiation sourced by ith asymptotically accelerating

particle.

A(i)
σ (x) =

1

2π

∫
dτ δ([x− xi(τ)]2) ei

[
Viσ +

ciσ
τ

]
Θ(t− ti) Θ(τ − T ). (3.10)

This equation includes O(e3) corrections to eqn (2.9). Solving the δ-function

condition is highly difficult because of the logarithmic correction. We solve it

perturbatively. The details of the calculation are relegated to Appendix A. We

quote the solution to the delta function constraint from (A.5) :

τ1 = −Vi.(x− di)−
[

(Vi.x− Vi.di)2 + (x− di)2 − 2(x− di).ci log τ0

]1/2
.

(3.11)
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Here, τ0 is the zeroth order solution given in (2.8). We also have δ([x−xi(τ)]2) =
δ(τ−τ1)

|2τ+2Vi.(x−di)+
2(x−di).ci

τ
|
. The result of the integral is :

A(i)
σ (x) =

1

4π

Θ(τ1 − T ) ei
[
Viσ + ciσ

τ1

][
(Vi.x− Vi.di)2 + (x− di)2 − 2(x− di).ci log τ0

]1/2 − (x−di).ci
τ1

.

(3.12)

Since above expression is vaild only to O(e3), we can expand the denominator

to O(e3) as well. Summing over all the incoming and outgoing particles, we get

Aσ(x) =
1

4π

n∑
i=n′+1

ei
X

Θ(τ1 − T )
[
Viσ
[
1 +

1

X2
(x− di).ci log τ0 +

(x− di).ci
Xτ1

]
+
ciσ
τ1

]
+

1

4π

n′∑
i=1

ei
X

Θ(−τ1 − T )
[
Viσ
[
1 +

1

X2
(x− di).ci log τ0 +

(x− di).ci
Xτ1

]
+
ciσ
τ1

]
,

(3.13)

where X = [ (Vi.x− Vi.di)2 + (x− di)2 ]1/2. (3.14)

This is the asymptotic radiative field generated by the scattering process including

the leading effect of long range electromagnetic force on scattering particles.

Next we study the asymptotic expansion of above expression. Focussing on

the 1
r
-term of Aσ, we get :

Aσ(x)|I+ = − 1

4πr

n∑
i=n′+1

eiΘ(u− T )
[ Viσ
q.Vi
− 1

u

[
ciσ − Viσ

q.ci
q.Vi

]]
− 1

4πr

n′∑
i=1

eiΘ(−u− T )
[ Viσ
q.Vi
− 1

u

[
ciσ − Viσ

q.ci
q.Vi

] ]
+ ... . (3.15)

We can compare above fall offs to the leading order radiative fall offs in (2.10).

It is interesting to note that including even the first order correction in e has

altered the late time profile appreciably. The presence of the 1
u
-term leads to

the so called tail memory effect [37, 39]. Like the leading u0-mode the 1
u
-mode

is also universal and insensitive to details of the bulk trajectories.

It is interesting to study the frequency space radiative field. Given (3.15), we

can study its fourier transform. The Fourier transformed function has following

behaviour at small ω [39] :

Ãµ(ω, r, x̂) =
eiωr

4πir

[ S0
µ

ω
+ S1

µ logω + ...
]

as ω → 0. (3.16)
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This gives us the classical subleading soft theorem. Like the quantum subleading

soft term discussed in (2.54) the classical subleading term is also logarithmic.

The classical soft factor is

S1
µ = i

n∑
j=1

ηjej
[ Vjµ
Vj.q

q.cj − cjµ
]
. (3.17)

We note that the coefficient of logω in the classical field i.e. S1 is only a part of

Slog that appears in quantum soft theorem given in (2.55). As discussed earlier,

a part of Slog vanishes in the classical theory.

Let us conclude this discussion after studying the form of subleading corrections

to (3.15). We recall that the subleading terms in (3.7) were ignored. If we

include the effect of these subleading terms, then (3.15) takes following form :

Aµ(x) ∼ 1

4πr

[
e u0 + e3

∞∑
n=1

1

un

]
+ O(

1

r2
), u→ ±∞. (3.18)

Thus at O(e3), the radiative field is expected to have power law tails such

that the leading tail is universal. In the next section we will discuss the O(e5)

corrections to above expression.

Next we turn to the 1
r2 -term of Aσ and derive the conservation law that

we briefly discussed in (3.3). In the previous section, we rederived the Q0

conservation law by comparing the respective asymptotic expansions of the

radiative field around future and past. We will follow similar strategy here.

We need to expand all the terms in (3.13) around I+. Using (2.8), we have

log τ0|I+ ∼ log u + O(1). Then using (2.2) we find the leading order term in

(3.11) :

τ1|I+ = − u

q.Vi
− q.ci

q.Vi
log u+ O(1). (3.19)

Using (2.2) in (3.14), we get X = −rq.Vi+O(u). Substituting the limiting value

of X in (3.13), it is seen that the leading term in 1
r2 -term of Aσ is O(u) while

the subleading term is O(log u) as noted in (3.1). We can read off the coefficient

of the O( log u
r2 ) term in Aσ :

A[log u/r2]
σ (x)|I+ = − 1

4π

n∑
i=n′+1

Θ(u− T ) ei Viσ
q.ci

(q.Vi)3
− 1

4π

n′∑
i=1

Θ(−u− T )ei Viσ
q.ci

(q.Vi)3
.

(3.20)
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From here on, we just need to transform co-ordinates to get to FrA. We have :

Ar = qµAµ and AA = r(∂Aq
µ)Aµ. Using it in FrA = ∂rAA − ∂AAr, we get :

F
[log u/r2]
rA (x)|I+

−
=

1

4π

n′∑
i=1

ei q
µ(∂Aq

ν)

(q.Vi)3
[Viµciν − Viνciµ]. (3.21)

Let us derive the field configuration at past null infinity and compare above

expression with the coefficient of O( log r
r2 ) term at the past. So, we expand Aσ

in (3.13) around I−. Using (2.16) the leading order term in (3.11) is :

τ1|I− = −2r Vi.q̄ +
q̄.ci
Vi.q̄

log r + O(1). (3.22)

Using (2.8), we get log τ0|I− ∼ log r + O(1). Substituting in (3.13), we write

down the coefficient of the O( log r
r2 ) term in Aσ :

A[log r/r2]
σ (x)|I− =

1

4π

n′∑
i=1

ei Viσ
q̄.ci

(q̄.Vi)3
. (3.23)

Performing co-ordinate transformation :

F
[log r/r2]
rA (x)|I−+ = − 1

4π

n′∑
i=1

ei q̄
µ(∂Aq̄

ν)

(q̄.Vi)3
[Viµciν − Viνciµ]. (3.24)

Thus, from (3.21) and (3.24) we can indeed check that the modes are equal

under antipodal idenfication. The apparently extra minus sign in (3.24) is

compensated by the factors of qµ. Finally we have shown that a generic scattering

process obeys following conservation law :

F
[log u/r2]
rA (x̂)|I+

−
= F

[log r/r2]
rA (−x̂)|I−+ . (3.25)

The corresponding charges are defined as Q+
1 =

∫
d2z F

[log u/r2]
rA (x̂) WA(x̂)|I+

−

and Q−1 =
∫
d2z F

[log r/r2]
rA (−x̂)WA(−x̂)|I−+ . The charges are parametrised by

an S2 vector field WA and are expected to be conserved exactly.

Let us emphasise important points about this conservation law. The charges

are related to the logarithmic modes in the radiative field which arise as a

consequence of the long range interactions between the scattering particles.

These modes appear at O(e3) and are expected to be uncorrected at higher

orders in e. It is natural to expect that this conservation law would also be

related to a soft theorem. Using Maxwell’s equations it can be shown that the
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Q1 charge is related to the logω soft mode. In Chapter 5, we will quantise the

Q1 charge and show that it reproduces the full logω soft photon theorem [91].

3.2 The Q2 conservation law

In this section we will obtain the asymptotic radiative field keeping the subleading

corrections in e. Including these corrections we show that the mode expansion

of the 1
r3 term of FrA around future null infinity is :

F
[1/r3]
rA |u→−∞ = u2 F

[u2/r3]
rA (x̂) + u log u F

[u log u/r3]
rA (x̂) + (log u)2 F

[(log u)2/r3]
rA (x̂) + ... .

(3.26)

Expansion of FrA around the past null infinity is given by :

FrA|v→∞ =
log r

r2
[v0 F

log r/r2]
rA (x̂) + ...] +

(log r)2

r3
[ v0 F

[(log r)2/r3]
rA (x̂) + ...] + O(

1

r2
) .

(3.27)

In this section, we show that a generic classical scattering process obeys following

conservation law :

F
[(log u)2/r3]
rA (x̂)|I+

−
= −F [(log r)2/r3]

rA (−x̂)|I−+ . (3.28)

This is the second of the conservation laws that we derive.

Next we will calculate the asymptotic field configuration to prove above

conservation law. Let us first outline our steps. In the last section, we obtained

the asymptotic field including O(e3) corrections. The O(e3) modes in the radiation

arise due to acceleration of the charged particles under the long range electromagnetic

force. This radiation backreacts on the particles. When we go to higher orders

in e we need to include the effect of this backreaction. The backreaction leads

to deviation in the asymptotic trajectories of the particles. Let us estimate the

subleading correction to the equation of trajectory (3.6). The field strength can

be calculated using (3.13) and then is evaluated at the position of jth particle.

Using (3.7) in (3.13), we get following modes in the field strength

Fµν(xj(τ)) ∼ e

∞∑
m=2

1

τm
+ e3

∞∑
m=3

log τ

τm
. (3.29)
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We need to substitute above expansion in the equation of trajectory.

mj

∂2xµj
∂τ 2

= ej F
µν(xj(τ)) Vjν . (3.30)

Hence, we get

mj

∂2xµj
∂τ 2

∼ e2

τ 2
+ e4 log τ

τ 3
+
e2

τ 3
+ · · · . (3.31)

This gives us the leading O(e4) correction to (3.6). The log τ
τ3 term gives rises to

the subleading correction to the asymptotic trajectory. It takes following form

xµi = V µ
i τ + cµi log τ + di + fiσ

log τ

τ
. (3.32)

The exact form of fiµ is not relevant for the conservation law and we will

not discuss its derivation here. Nonetheless it is interesting to note that this

term is universal and fixed in terms of charges and asymptotic velocities of the

scattering particles. The explicit form of fiµ is given in [95,99].

Next we find the resultant correction to radiative field including the subsubleading

correction to the trajectory. The field generated by ith outgoing particle is given

using the retarded Green function :

A(i)
σ (x) =

1

2π

∫
d4x′ δ( (x− x′)2) j(i)

σ (x′) Θ(t− t′). (3.33)

Here we need to use the modified current calculated using the corrected trajectory

given in (3.32). We will ignore the O( 1
τ2 ) terms in the current.

j(i)
σ (x′) =

∫
dτ ei

[
Viσ +

ciσ
τ
− fiσ

log τ

τ 2

]
δ4(x′ − xi) Θ(τ − T ).

We have to solve (x − x′)2 = 0 to second order in coupling e. The solution is

given in (A.12) in Appendix A. Next we will use :

δ( (x− x′)2) =
δ(τ − τ2)

|2τ + 2Vi.(x− di) + 2(x−di).ci
τ

− 2fi.(x− di) log τ
τ2 + 2fi.(x−di)

τ2 − 2c2
i

log τ
τ
|
.

(3.34)
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Let us first discuss the qualitative behaviour of the leading 1
r

term in Aσ. The

solution to the asymptotic field at this order turns out to be :

A(i)
σ (x) =

1

4π

Θ(τ2 − T ) ei
[
Viσ + ciσ

τ2
− fiσ log τ2

τ2
2

]
|Vi.x+ x.ci

τ2
− fi.x log τ2

τ2
2

+ fi.x
τ2
2

+ O(r0)|
. (3.35)

Here we have ignored the terms in the solution that contribute at O( 1
r2 ) or

higher. Next it remains to subtitute the value of τ2. We get it from (A.13) :

τ2|I+ = −u+ q.di
q.Vi

− q.ci
q.Vi

log
u

(−q.Vi)
+ q.fi

log u

u
− (q.ci)

2

q.Vi

log u

u
+ O(

1

u
).

(3.36)

We will substitute above solution of τ2 in (3.35) and find the 1
r

term in Aσ.

A(i)
σ (x)|I+ =− eiΘ(τ2 − T )

4πr

[ Viσ
q.Vi

[
1 +

q.ci
u
− (q.ci)

2 log u

u2
+ q.fi q.Vi

log u

u2

]
− ciσ

u

[
1− q.ci

log u

u

]
− fiσ q.Vi

log u

u2
+ O(

1

u2
)
]
. (3.37)

Summing over contributions from all particles, we get

Aσ(x)|I+ = − 1

4πr

[ n∑
i=n′+1

Θ(u− T )
eiViσ
q.Vi

−
n′∑
i=1

Θ(−u− T )
eiViσ
q.Vi

]
+

1

4πru

[ n∑
i=n′+1

ei Θ(u− T )
[
ciσ − Viσ

q.ci
q.Vi

]
−

n′∑
i=1

Θ(−u− T ) ei
[
ciσ − Viσ

q.c−i
q.Vi

] ]
− 1

4πr

log u

u2

[ n∑
i=n′+1

ei Θ(u− T )
[
q.ci ciσ − Viσ

(q.ci)
2

q.Vi
+ Viσ fi.q − q.Vi fiσ

]
−

n′∑
i=1

eiΘ(−u− T )
[
q.ci ciσ − Viσ

(q.ci)
2

q.Vi
+ Viσ fi.q − q.Vi fiσ

] ]
+ ... .

(3.38)

Above expression gives the lower order terms in the late time radiation. As

discussed earlier, the leading term is O(u0) and gives rise to the so called memory

effect. The O( 1
u
) term is the leading order tail to the memory term [37, 39]

discussed in (3.15). From above expression, we see that the subleading tail to

the memory term is O( log u
u2 ). If we go back to (3.18), we see that such a mode is

absent if we restrict ourselves to O(e3). Though we have not derived the form

of fiσ, it is important to note that it is universal [95,99]. Similar to the first two
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terms, the subleading tail is fixed in terms of the charges and the asymptotic

velocities of the scattering particles. Interested readers can refer to [95, 99] for

detailed structure of this term.

Let us go back to (3.35) to obtain the Q2 conservation law. This charge is

defined in terms of the coefficient of the O( log u
r3 ) mode. Hence now we need to

retain the subleading corrections in 1
r
.

A(i)
σ (x) =

1

4π

ei
[
Viσ + ciσ

τ2
− fiσ log τ2

τ2
2

]
Θ(τ2 − T )

|τ2 + Vi.(x− di) + (x−di).ci
τ2

− fi.x log τ2
τ2
2

+ fi.x
τ2
2
− c2

i
log τ2
τ2
|
. (3.39)

We recall that τ2 is given in (3.36). At I+, the charge is expected to be defined

in terms of (log u)2

r3 -mode of Aσ. Using (3.36), we have :

1

τ2

= −q.Vi
u

[
1 + O(

log u

u
)
]
.

Let us dicuss the second term in the numerator i.e. ei
|τ2+Vi.x+...|

ciσ
τ2

. The expansion

of this term is of following form :

1

ur

[
1 +

log u

u
+ ...+

1

r
[u+ log u+ u0] +

1

r2
[u2 + u log u+ (log u)2 + ...] + ...

]
.

Thus the second term in the numerator does not contribute to (log u)2

r3 mode.

Next we turn to the third term in the numerator that can be expanded as

follows
log u

u2r

[
1 +

1

r
[u+ u0] +

1

r2
[u2 + ...] + ...

]
.

Thus the last term in the numerator also does not contribute to (log u)2

r3 . Similarly,

last four terms in the denominator do not contribute to (log u)2

r3 and hence are

irrelevant for subsequent analysis. So, we are left with following terms in (3.39)

:

A(i)
σ (x) ∼ 1

4π

eiViσΘ(τ2 − T )

|τ2 + Vi.(x− di)|
. (3.40)

We have used ’∼’ instead of ’=’ as we are ignoring certain terms in Aσ that do

not contribute to the charge given in (3.28). Next we need to substitute the

value of τ2 given in (3.36). Let us retain only the logarithmic terms in τ2 that

are of relevance to us. We get :

A(i)
σ (x)|I+ ∼ 1

4π

ei Viσ Θ(u− T )

X[1− 2x.ci
log u
X2 + c2

i
(log u)2

X2 ]1/2
. (3.41)
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We recall that X = [ (Vi.x − Vi.di)2 + (x − di)2 ]1/2. Hence, the limiting value

of X is X|I+ = −rq.Vi + O(u). Substituting the value of X the coefficient of
(log u)2

r3 comes out to be :

A(i)
σ (x)|I+ ∼ −Θ(u− T )

8π

(log u)2

r3

Viσ
q.Vi

[
3

(q.ci)
2

(q.Vi)4
− c2

i

(q.Vi)2

]
. (3.42)

Next we need to sum over the contributions from all particles. Let us write

down the coefficient at I+
− . The contribution around I+

− is from the incoming

particles, thus we get :

A[(log u)2/r3]
σ (x̂)|I+

−
= −

n′∑
i=1

ei
8π

Viσ
q.Vi

[
3

(q.ci)
2

(q.Vi)4
− c2

i

(q.Vi)2

]
. (3.43)

We just need to transform co-ordinates to go to FrA. Thus :

F
[(log u)2/r3]
rA (x̂)|u→−∞ =

n′∑
i=1

ei
4π

3(q.ci)

(q.Vi)5
qµ(∂Aq

ν) [Viµciν − Viνciµ]. (3.44)

Let us carry out the corresponding calculation at past null infinity. At I−,

the term of our interest is the (log r)2

r3 -mode of Aσ. Using (A.14), we follow earlier

logic and analogous to (3.41) we get following expression at past null infinity

we get :

A(i)
σ (x)|I− ∼

ei Viσ

X[1− 2x.ci
log r
X2 + c2

i
(log r)2

X2 ]1/2
.

Using (2.16) in X = [ (Vi.x− Vi.di)2 + (x− di)2 ]1/2, the limiting value at past

null infinity turns out to be X|I− = rq̄.Vi+O(r0). Expanding above expression,

we obtain the (log r)2

r3 term in Aσ :

A[(log r)2/r3]
σ (x)|I− =

n′∑
i=1

ei
8π

Viσ
Vi.q̄

[
3

(q̄.ci)
2

(Vi.q̄)4
− c2

i

(Vi.q̄)2

]
. (3.45)

Next we just need to use appropiate co-ordinate transformations to arrive at

FrA. We get :

F
[(log r)2/r3]
rA (x̂)|v→∞ = −

n′∑
i=1

ei
4π

3(q̄.ci)

(q̄.Vi)5
q̄µ (∂Aq̄

ν) [Viµciν − Viνciµ]. (3.46)
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Using (3.44) and (3.46), we can write down the conservation law for these modes

:

F
[(log u)2/r3]
rA (x̂)|I+

−
= −F [(log r)2/r3

rA (−x̂)|I−+ . (3.47)

It is important to note the minus sign. The charges can be defined as Q+
2 =∫

d2z Y A F
[(log u)2/r3]
rA (x̂)|I+

−
and Q−2 =

∫
d2z Y A F

[(log r)2/r3]
rA (−x̂)|I−+ . It is

expected that the charges conserved exactly. Y A is an S2 vector field which

is a free parameter.

Thus we have derived the second classical conservation law. Like the Q1-

charge, these charges are also related to long range interactions between the

scattering particles. These modes appear at O(e5) and are expected to be

uncorrected at higher orders in e. We anticipate that this conservation law

would also be related to a soft theorem. Since these charges are made of

O(e5) modes the corresponding soft mode should appear at 2-loop order. This

conservation law is expected to be related to the 2-loop level soft theorem

derived in [95].

3.3 Proposal for Qm conservation laws

In Section 3.1, we included the leading effect of long range electromagnetic

force on the scattering particles and showed that the asymptotic trajectories

get modified as follows (to O(e2))

xiσ = Viστ + ciσ log τ + diσ +
∞∑
n

c
(0,n)
iσ

1

τn
. (3.48)

The radiative field produced by the scattering has new logarithmic modes that

obey the Q1 conservation law. This law given in (3.25) relates the coefficient of

the log r
r2 mode at the past to the coefficient of the log u

r2 mode at the future.

In Section 3.2, we carried out similar calculations at subsubleading order in

e. Including the subleading effect of long range electromagnetic force on the

scattering particles, we showed that the asymptotic trajectories get modified as

follows (to O(e4))

xiσ = Viστ + ciσ log τ + diσ +
∞∑
n

c
(0,n)
iσ

1

τn
+
∞∑
n

c
(1,n)
iσ

log τ

τn
. (3.49)
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The radiative field has new modes that fall off as square of logarithm and obey

the Q2 conservation law. This law given in (3.47) relates the coefficient of the
(log r)2

r3 mode at the past to the coefficient of the (log u)2

r3 mode at the future.

Thus we see that these laws have a nice structure which hints that such laws

could exist for m > 2 as well. When we include the effect of long range forces

on the trajectory, the full correction to the trajectory is of the form :

xiσ = Viστ + ciσ log τ + diσ +
∞∑
m≤n

m=0,n=1

c
(m,n)
iσ

(log τ)m

τn
, (3.50)

where c
(m,n)
iσ ’s typically admit a series expansion in the coupling e. The leading

logarithmic terms are produced only from the asymptotic trajectories and are

not sensitive to the specifics of bulk dynamics. Other terms may depend on

details of scattering. So, not all the c
(m,n)
iσ ’s are universal.

The resultant radiative field includes various powers of logarithmic modes.

Based on the m = 1, 2 cases, we propose that there exists an asymptotic

conservation law for every m given by :

F
[(log u)m/rm+1]
rA (x̂)|I+

−
= (−1)m+1 F

[(log r)m/rm+1]
rA (−x̂)|I−+ . (3.51)

Here F
[(log u)m/rm+1]
rA denotes the coefficient of the (log u)m

rm+1 -mode in FrA. Similarly

F
[(log r)m/rm+1]
rA denotes the coefficient of the (log r)m

rm+1 -mode in FrA. These modes

are expected to appear at O(e2m+1) and should be conserved exactly. The mth

level future charge is defined as Q+
m =

∫
d2z Y A

m (x̂) F
[(log u)m/rm+1]
rA (x̂)|I+

−
and the

past charge is defined as Q−m =
∫
d2z Y A

m (−x̂) F
[(log r)m/rm+1]
rA (−x̂)|I−+ .

Thus, we expect that classical electromagnetism admits a hierarchy of infinite

number of asymptotic conservation laws. We have derived these laws for m =

1, 2. The corresponding charges Qm are closely related to the long range

electromagnetic force present between the scattering particles. A natural question

to investigate further is the implication of these charges for the quantum theory.

We anticipate that the Qm charges imply existence of m-loop soft theorems for

every m. In particular it is expected that the Q1 charge would be related to

the 1-loop exact logω soft photon theorem derived by Sahoo and Sen [91]. In

chapter 5, we will establish this equivalence in the context of massless scalar

QED coupled to gravity. Before going to this equivalence let us note that the
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conservation laws were obtained for retarded solutions of classical equation of

the electromagnetic field. In the quantum theory we need to use Feynman

boundary condition. It is not clear if the conservation laws (that we discussed

in this chapter) continue to hold in the quantum theory. We will address this

question in the next chapter.

In this chapter we also discussed the form of the tails in the late time

radiative field that arise as a result of long range interaction between scattering

particles in (3.38).

Aµ ∼
1

4πr

[
u0 +

1

u
+

log u

u2

]
+ O(

1

ru2
), u→ ±∞. (3.52)

In the next chapter we will also discuss the analogue of (3.52) for the Feynman

solution.
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Chapter 4

Asymptotic conservation law

with Feynman boundary

condition

The Q0 conservation law corresponding to the leading soft theorem has been

discussed in (2.20). In the last chapter it was shown that there exist new

asymptotic conservation laws for classical electromagnetism. Unlike the Q0

conservation law these new laws are asymmetric. The first of these laws given

in (3.25) relates the coefficient of the log r
r2 mode at the past to the coefficient

of the log u
r2 mode at the future. This asymmetry is expected to change in the

quantum theory due to the use of Feynman propagator. In this chapter we

will derive the analogue of this asymptotic conservation law upon imposing

Feynman boundary condition on the radiative field. We will also hightlight

some important differences between asymptotic expansion of the classical field

and that of the quantum gauge field. This chapter is based on our results

derived in [100].

Let us describe our setup. We consider a scattering process in which some n

number of charged particles come in to interact and eventually move away. The

details of this process have been discussed in Section 2.1. In this chapter we will

obtain the radiative field produced by scattering of n charged particles upon

imposing Feynman boundary condition. The solution so obtained is complex

in general. It is not an obervable quantity but serves as a prototype for the

behaviour of the quantum gauge field. Also it must noted that the concept

of point particle does not make sense quantum mechanically but it is a good

enough approximation for our purposes.1 Thus inspite of it being an unphysical

1A general wave packet can be approximated as a point particle to the zeroth order. The
subleading corrections involve derivatives of delta function and do not affect the modes of our
interest.
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problem, this simple setup allows us to explore certain modes of the Feynman

solution that have physical significance. We will also argue that presence of

such modes is universal feature of the quantum gauge field. Including the effect

of long range electromagnetic force, we will derive the analogue of the Q1 law

for Feynman solution. As earlier the calculations are carried out perturbatively

in e and asymptotic parameter 1
τ
.

4.1 Radiative field at O(e) with Feynman propagator

Let us calculate the asymptotic radiative field generated in scattering of charged

particles to leading order in e. Hence we can ignore the long range electromagnetic

force acting on the scattering particles. As discussed in (2.6), the scattering

event is described by following current

jasym
σ (x′) =

∫
dτ
[ 2n∑
i=n+1

eiViσ δ
4(x′ − xi) Θ(τ − T ) +

n∑
i=1

eiViσ δ
4(x′ − xi) Θ(−τ − T )

]
.(4.1)

Here, we have labelled the incoming particles by i running from 1 to n and

outgoing particles by i running from n + 1 to 2n. We do not have an explicit

form of the bulk trajectories xi(τ) for |τ | < T . The radiative field is given by

Aσ(x) =

∫
d4x′ G(x, x′) jσ(x′) , (4.2)

using the usual momentum representation of the Feynman propagator we have,

G(x, x′) =

∫
d4p

(2π)4

eip.(x−x
′)

p2 − iε
.

We can perform the momentum integral according to the given ε-prescription

and obtain the form of the propagator in the position space.

G(x;x′) =
1

4π2

[
πδ+( (x− x′)2) + πδ−( (x− x′)2) +

i

(x− x′)2

]
. (4.3)

The subscript ’+’ denotes the retarded root of the δ-function constraint i.e. t >

t′, while the subscript ’-’ denotes the advanced root of the δ-function constraint

i.e. t′ > t.

Since the first term in above expression is proportional to the retarded

propagator, the electromagnetic field generated by this term is similar to the

one obtained in the previous section. We denote the field generated by the first
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term in (4.3) by superscript ’+’. We have discussed in the previous section using

(2.4) that the asymptotic field gets contribution only from the asymptotic part

of the current. So using (4.1), we get

A+
σ (x) =

1

8π

2n∑
i=n+1

eiViσ Θ(τ+
0 − T )√

(Vi.x− Vi.di)2 + (x− di)2
+

1

8π

n∑
i=1

eiViσ Θ(−τ+
0 − T )√

(Vi.x− Vi.di)2 + (x− di)2
.

(4.4)

Here the retarded root is given by τ+
0 = −(Vi.x−Vi.di)−

√
(Vi.x− Vi.di)2 + (x− di)2.

The asymptotic expansion of above expression around I+ is similar to (2.12).

A+
µ (x)|I+ =

1

8π

∞∑
m=0,n=1
m<n

[A[n,−m]
µ (x̂)]+

um

rn
+ ... , (4.5)

where ’...’ denote the terms that fall off faster than any power law.

The second term in (4.3) is proportional to the advanced propagator, we

will denote the field generated by this term by the superscript ’−’. Due to the

reasons similar to the retarded case, this term also does not get any contribution

from the bulk current and it suffices to use (4.1). We have

A−σ (x) =
1

8π

2n∑
i=n+1

eiViσ Θ(τ−0 − T )√
(Vi.x− Vi.di)2 + (x− di)2

+
1

8π

n∑
i=1

eiViσ Θ(−τ−0 − T )√
(Vi.x− Vi.di)2 + (x− di)2

.

(4.6)

Here the advanced root is given by τ−0 = −(Vi.x−Vi.di)+
√

(Vi.x− Vi.di)2 + (x− di)2.

We can expand above expression around I+, an important point to notice here

is that τ−0 |I+ = 2r|q.Vi|+O(r0). Substituting this value in above expression, the

step function with the incoming particles goes like Θ(−r) hence the contribution

of the incoming particles in above expression goes to 0. The asymptotic expansion

takes following form,

A−µ (x)|I+ =
1

8π

∞∑
m=0,n=1
m<n

[A[n,−m]
µ (x̂)]−

um

rn
+ ... . (4.7)

The coefficients [A]− should be contrasted with [A]+ in (4.5). [A]− are same

throughout I+ from u → −∞ to u → ∞ while the coefficients [A]+ in the

retarded solution take differents values at u→ ±∞ respectively.

Finally we turn to the contribution from the third term in (4.3) i.e. from
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i
4π2(x−x′)2 , we denote it by superscript ’∗’. This term gets contribution from all

of spacetime including the bulk.

A∗µ(x) =
i

4π2

∫
d4x′

jµ(x′)

(x− x′)2
.

We will use (4.1) for the asymptotic part of the current. The explicit form of

the bulk current is not available. Using (4.1), we get

A∗σ(x) =
i

4π2

[ ∫ ∞
T

dτ

2n∑
i=n

eiViσ
(x− Viτ − di)2

+

∫ −T
−∞

dτ
n∑
i=1

eiViσ
(x− Viτ − di)2

+

∫
r′<R

d4x′
jσ(x′)

(x− x′)2

]
.

(4.8)

First we focus on the asymptotic contribution.

A∗asym
σ (x) = − i

4π2

[ ∫ ∞
T

dτ
2n∑
j=n

ejVjσ
(τ − τ+

0 )(τ − τ−0 )
+

∫ −T
−∞

dτ
n∑
j=1

ejVjσ
(τ − τ+

0 )(τ − τ−0 )

]
.

τ±0 are the solutions to the equation (x−Viτ − di)2 = 0 and the expressions are

given in (B.1). The integral involving the outgoing particles has a divergence at

the upper limit. Let us regulate it with an IR cutoff ’L’. Similarly we regulate

the second integral with a cutoff ’−L’ to get

A∗asym
σ (x) =

i

4π2

2n∑
j=n+1

ejVjσ
τ−0 − τ+

0

[
log

L− τ+
0

T − τ+
0

− log
L− τ−0
T − τ−0

]
− i

4π2

n∑
j=1

ejVjσ
τ−0 − τ+

0

[
log

L+ τ+
0

T + τ+
0

− log
L+ τ−0
T + τ−0

]
.

All the quantities appearing in the argument of the log function come with a

modulus sign which we do not write down explicitly. We expand the square

brackets in the limit L → ∞ and see that the divergent pieces cancel. Hence

the final expression is finite, we get

A∗asym
σ (x) =

i

4π2

2n∑
j=n+1

ejVjσ
τ−0 − τ+

0

log
τ−0 − T
τ+

0 − T
− i

4π2

n∑
j=1

ejVjσ
τ−0 − τ+

0

log
τ−0 + T

τ+
0 + T

.
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We will use (B.1) to substitute for τ−0 − τ+
0 and also rewrite above expression

in a succinit form

A∗asym
σ (x) =

i

8π2

2n∑
j=1

ηjejVjσ√
(Vj.x− Vj.dj)2 + (x− dj)2

log
τ−0 − ηjT
τ+

0 − ηjT
. (4.9)

Here ηj = 1(−1) for outgoing (incoming) particles. Next we will find the

asymptotic expansion of above expression. Using (B.2) we have

τ+
0 |I+ =

u+ q.di
|q.Vi|

+ O(
1

r
), τ−0 |I+ = 2r|q.Vi|+ O(r0).

Thus we get [
log

τ−0 − T
τ+

0 − T

]
I+

= log
r

u
+ O(1).

We find that there are logarithmic modes in the radiative field. This is an

interesting result as such kind of modes are absent in the retarded solution at

O(e) that was derived in (2.12). This tells us that the Feynman solution has

certain features very different from the retarded solution. Let us write down

the full asymptotic expansion of A∗asym
σ . Using (B.1), it is seen that

log τ−0 |I+ ∼ log r +
∞∑

m,n=0,
m≤n.

um

rn
.

Similarly

log τ+
0 |I+ ∼ log u +

∞∑
n=0,

m=−∞,
m≤n.

um

rn
.

We will write down the expansion for A∗asym
σ by substituting above expressions

in (4.9).

A∗asym
σ (x) ∼ log

u

r

∞∑
m=0,n=1
m<n

um

rn
+

∞∑
n=1,

m=−∞,
m<n.

um

rn
. (4.10)

Next we turn to the bulk contribution i.e. the r′ < R term in (4.8). We do

not have the explicit expression of the bulk current.

A∗bulk
σ (x) =

i

4π2

∫
r′<R

d4x′ jσ(x′)
1

(x− x′)2
. (4.11)
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Let us estimate the contribution of this integral around I+. 1
(x−x′)2 |I+ ∼

1
r

∑∞
n=1

1
un

+O( 1
r2 ). Hence the asymptotic expansion of A∗bulk

σ (x) takes following

form

A∗bulk
σ (x)|I+ ∼

∞∑
n=1,

m=−∞,
m<n−1.

um

rn
. (4.12)

Finally we write down the Feynman solution using (4.4),(4.6) and (4.9) :

Aσ(x) = A+
σ (x) + A−σ (x) + A∗σ(x)

=
1

8π

2n∑
i=1

eiViσ Θ(ηiτ
+
0 − T )√

(Vi.x− Vi.di)2 + (x− di)2
+

1

8π

2n∑
i=n+1

eiViσ Θ(τ−0 − T )√
(Vi.x− Vi.di)2 + (x− di)2

+
i

8π2

2n∑
j=1

ηjejVjσ√
(Vj.x− Vj.dj)2 + (x− dj)2

log
τ−0 − ηjT
τ+

0 − ηjT
+ A∗bulk

σ (x).

(4.13)

As before, ηj = 1(−1) for outgoing (incoming) particles. The first line and

the first term in the second line are sensitive only to charges and asymptotic

velocities of the scattering particles. We do not have an explicit form for A∗bulk
σ .

In general this term will depend on the details of the scattering process and

short ranges forces present between the particles. We are not interested in such

non-universal terms. Let us write down the asymptotic expansion of the full

solution in (4.13) (including A∗bulk
σ ). It is given by

Aσ(x)|I+ =
∞∑

m=0,n=1
m<n

um

rn
A[n,−m]
σ (x̂) + log u

∞∑
m=0,n=1
m<n

um

rn
L

[n,−m]
1σ (x̂)

+ log r
∞∑

m=0,n=1
m<n

um

rn
L

[n,−m]
2σ (x̂) +

∞∑
m,n=1

A
[n,m]
σ (x̂)

umrn
. (4.14)

Let us compare above solution with the retarded solution we have in (2.12).

The retarded solution has only A
[n,−m]
σ kind of modes. The other kind of modes

present in the Feynman solution that have log behaviour or fall off as negative

powers of u are absent in the retarded solution (at O(e)). This tells us that the

asymptotic expansion of the Feynman solution has modes that are absent in

the classical solution. We will refer to such modes as purely quantum modes.

Let us comment on some important differences between the Feynman solution
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and the retarded solution. The leading order term of (4.13) is O( log r
r

). If we

study (2.12), we see that such kind of modes are completely absent in the

retarded solution! The retarded solution discussed in (2.12) starts at O(1
r
). The

1
r
-component of the Feynman solution given in (4.13) takes following form

Aσ(x)|I+ ∼ 1

4πr
[ log u+ u0 +

∞∑
n=1

1

un
+ ... ] . (4.15)

Above expression should be contrasted with (2.10). The log u
r

mode is absent

in the classical field. It is very important to note that this mode violates the

Ashtekar-Struebel fall offs for the radiative field [94]. The consequences of this

fact need to be studied in the future. This mode will play an important role in

the quantum part of the logω soft factor in Chapter 5. Here we have derived

the log u
r

mode in a toy process of scattering of point charged particles. Next we

will argue that the presence of such a mode is a general feature of the quantum

gauge field.

The log u
r

mode in Aσ

Let us write down the coefficient of the log u
r

mode. Using the radiative field

calculated in (4.13), we see that this mode arises from the second line of (4.13).

The contribution from the first term in the second line of (4.13) is given by

A[1,log]
σ (x) =

i

8π2

2n∑
j=1

ηjejVjσ
Vj.q

. (4.16)

Here A
[1,log]
σ has been used to denote the coefficient of the log u

r
mode. We see

that this mode is proportional to the leading soft factor. This hints that this

mode is tied to the 1
ω

-mode. We will next derive this log u
r

mode in an alternative

way that brings out its relation to the 1
ω

-mode [93].

Let us study the quantum gauge field Âµ. In momentum space the expansion

of Âµ is given by

Âσ(x) =
1

(2π)3

∫
d3p

2|~p|
[aσ(p) eip.x + a†σ(p) e−ip.x ]. (4.17)

Here, aσ(p) =
∑

r=+,− ε
∗r
σ ar(p) such that ar(p) is identified as the annihilation

operator for the respective helicity photons and εrσ(x̂) is the polarisation vector.

The leading order term around I+ is O(1
r
) and its coefficient Â

[1]
µ (u, x̂) is given
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by (2.27)

Â[1]
σ (u, x̂) = − i

8π2

∫ ∞
0

dω [aσ(ω, x̂) e−iωu − a†σ(ω, x̂) eiωu ]. (4.18)

Above expression can be rewritten as

Â[1]
σ (u, x̂) = − i

8π2

∫ ∞
−∞

dω Ãσ e
−iωu ,

here Ãσ = [ aσ(ω, x̂) Θ(ω)− a†σ(−ω, x̂)Θ(−ω) ]. (4.19)

We define a function Â
[1]+
µ (u, x̂) that has contribution from only positive frequencies

i.e.

Â[1]+
µ (u, x̂) = − i

8π2

∫ ∞
0

dω Ãµ(ω, x̂) e−iωu.

We know that around ω ∼ 0, the behaviour of the radiative data is given by

Ãµ(ω, x̂) = 1
ω
Ã+0
µ (x̂) + ... . This low energy behaviour dictates the large u

behaviour. The interval ω ∈ [0, u−1] gives rise to a log mode.

Â[1]+
µ (u, x̂) = − i

8π2

∫ ∞
0

dω
[ 1

ω
Ã+0
µ (x̂) + ...

]
e−iωu,

= − i

8π2

∫ u−1

0

dω
[ 1

ω
Ã+0
µ (x̂) + ...

]
,

= − i

8π2
log(u−1) Ã+0

µ (x̂) + ... . (4.20)

’...’ denote terms that are subleading at large u. Simlarly for negative frequencies,

we have :

Â[1]−
µ (u, x̂) =

i

8π2
log(u−1) Ã−0

µ (x̂) + ... . (4.21)

Collecting the positve and negative frequency terms we get :

Â[1,log]
µ (x̂) =

i

8π2

[
Ã+0
µ (x̂) − Ã−0

µ (x̂)
]
.

=
i

8π2

[
lim
ω→0+

ωÃµ(ω, x̂)− lim
ω→0−

ωÃµ(ω, x̂)
]
.

Above expression tells us that the log u term is governed by the discontinuity

in ωÃµ as ω → 0. This term is absent in the classical radiative field wherein

we have to use retarded propagator. For such solutions, ωÃz is continuous at
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ω = 0 [35] and the coefficient of log |u| term vanishes. We will see that it is non-

trivial quantum mechanically. This is because of the fact in the quantum field,

the positive frequencies involve annihilation operator while negative frequencies

involve creation operator as seen in (4.19). We get

Â[1,log]
µ (x̂) =

i

8π2

[
lim
ω→0+

ωaµ(ω, x̂)− lim
ω→0+

ωa†µ(ω, x̂)
]
. (4.22)

Thus the log u mode is tied to the leading soft mode2. We can evaluate the

insertion of above operator using leading soft theorem.

< out|Â[1,log]
µ (x̂)S|in > =

i

8π2

[
ε+µ ε
−
ν + ε−µ ε

+
ν

] 2n∑
j=1

ηjejV
ν
j

Vj.q
< out|S|in >,

=
i

8π2

2n∑
j=1

ηjejVjµ
Vj.q

< out|S|in > . (4.23)

Here, |in > = |1, 2, ..., n′ > and < out| = < n′+1, ..., 2n|. We see that when the

quantum operator in inserted between generic states, the coefficient of the log

u mode matches with our expression obtained from Feynman radiative solution

in (4.16). It is clear from above derivation that the existence of the log u
r

mode

is tied to the 1
ω

-mode. Since the 1
ω

-mode is universal we expect that the log u
r

mode is also universal.

In [100], we also established that the 1
ur

-mode in (4.15) is related to the tree

level subleading soft mode (ω0). This hints that all the 1
unr

-modes in (4.15)

should be controlled by the ωn−1 soft modes. This also tells us that though

we obtained (4.15) for a toy example the presence of log u and 1
unr

modes is a

general feature of the quantum gauge field. Hence, we expect that the quantum

gauge field should in general contain modes as given in (4.14).

4.2 Effect of long range forces on asymptotic

trajectories

At large distances, the electromagnetic force present between the scattering

particles falls off as O( 1
r2 ) and gives rise to logarithmic correction to the straight

line trajectory at late times as discussed in (3.7). In this section we will obtain

2It is interesting to note that this log u mode has appeared in equation (A.2) of [97].
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the the explicit form of this logarithmic correction which arises due to the

Feynman solution.

We need to find the leading order term in the asymptotic electromagnetic

field strength using (4.13). This leading O( 1
r2 )-mode has an imaginary piece.

Thus the corrected equation of trajectory will also have an imaginary piece!

This should be compared with the Faddeev-Kulish dressing of scalar fields under

electromagnetic force. The logarithmic correction to the trajectory of a particle

is in one to one correspondence with the logarithmic dressing of the scalar

field [84] as we will discuss below.

The equation of trajectory of jth outgoing particle is given by :

mj

∂2xµj
∂τ 2

= ej F
µν(xj(τ)) Vjν . (4.24)

Here, we need to find the field strength generated at the position of the outgoing

particle i.e. at x = xj(τ) using (4.13). It will get contribution from other

particles that interact with the jth particle. Since the outgoing jth particle

approaches I+
+ asymptotically, we need to evaluate (4.13) around u → ∞. It

is important to note some subtle points. As seen from (4.13), the contribution

from the first line to the field around u → ∞ contains contribution only from

outgoing particles. While the second line of (4.13) contains contribution from

both incoming and outgoing particles. The leading order field at large τ is given

by

Fµν(xj(τ))|I+
+

=
1

4πτ 2

2n∑
i=n+1,
i 6=j

ei
(ViµVjν − VjµViν)
[(Vi.Vj)2 − 1]3/2

+
2n∑
i=1,
i 6=j

iηiei
8π2τ 2

(ViµVjν − VjµViν)
[(Vi.Vj)2 − 1]3/2

[
log
−Vi.Vj +

√
(Vi.Vj)2 − 1

−Vi.Vj −
√

(Vi.Vj)2 − 1
+ 2Vi.Vj

√
(Vi.Vj)2 − 1

]
+ O(

1

τ 3
).

(4.25)

Substituting (4.25) in (4.24), the leading order correction to the asymptotic

trajectories of the particles is

xµj = V µ
j τ + (cµj + icµj ) log τ + dj + O(

1

τ
),
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where we get (for outgoing particles)

cµj =
1

4π

2n∑
i=n+1,
i 6=j

eiej
(Viµ + VjµVi.Vj)

[(Vi.Vj)2 − 1]3/2
,

c
µ
j =

1

8π2

2n∑
i=1,
i 6=j

ηieiej
(Viµ + VjµVi.Vj)

[(Vi.Vj)2 − 1]3/2

[
log
−Vi.Vj +

√
(Vi.Vj)2 − 1

−Vi.Vj −
√

(Vi.Vj)2 − 1
+ 2Vi.Vj

√
(Vi.Vj)2 − 1

]
.

(4.26)

Thus we see that the logarithmic correction to the trajectory has two parts. The

real part matches with eqn (3.8) that arose due to the retarded solution. The

imaginary correction is an artefact of the Feynman solution. Let us compare

the logarithmic correction in the trajectory with the logarithmic dressing of the

scalar field [84]. cµj is related to the Φ term in the dressing of scalar field as given

in eqn (11) of [84] while c
µ
j is related to the R term in the dressing of scalar

field as given in eqn (10) of [84]. For jth incoming particle, the corresponding

terms are given by

cµj = − 1

4π

n∑
i=1,
i 6=j

eiej
(Viµ + VjµVi.Vj)

[(Vi.Vj)2 − 1]3/2

c
µ
j =

1

8π2

2n∑
i=1,
i 6=j

ηieiej
(Viµ + VjµVi.Vj)

[(Vi.Vj)2 − 1]3/2

[
log
−Vi.Vj +

√
(Vi.Vj)2 − 1

−Vi.Vj −
√

(Vi.Vj)2 − 1
+ 2Vi.Vj

√
(Vi.Vj)2 − 1

]
.

(4.27)

It should be noted that in the first term, the sum over i includes only the

incoming particles.

For conciseness, let us define Cµ
j = cµj + icµj so that

xµj = V µ
j τ + Cµ

j log τ + dj + O(
1

τ
). (4.28)

Because of this O(e2) correction to the asymptotic trajectories, the current given

in (4.1) also gets corrected.

jasym
σ (x′) =

∫
dτ
[ 2n∑
j=n+1

ej
[
Vjσ +

Cjµ
τ

]
δ4(x′ − xj) Θ(τ − T )

+
n∑
j=1

ej
[
Vjσ +

Cjµ
τ

]
δ4(x′ − xj) Θ(−τ − T )

]
. (4.29)
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Next we will find the electromagnetic field generated by above current.

4.3 Radiative field at O(e3) with Feynman propagator

In this section we will obtain the asymptotic radiative field keeping the leading

order effect of long range electromagnetic force acting on the particles. Using

(4.29) we get

Aσ(x) =

∫ ∞
T

dτ
2n∑

j=n+1

G(x, xj) ej
[
Vjσ +

Cjσ
τ

]
+

∫ −T
−∞

dτ

n∑
j=1

G(x, xj) ej
[
Vjσ +

Cjσ
τ

]
+

∫
r′<R

d4x′ G(x, x′) jbulk
σ (x′) .

We recall the expression of the Feynman propagator

G(x;x′) =
1

4π2

[
πδ+( (x− x′)2) + πδ−( (x− x′)2) +

i

(x− x′)2

]
. (4.30)

Let us first write down the contribution from the first two terms of (4.30).

As disscussed in the beginning of Section 4.2, these terms get contribution only

from asymptotic sources and it suffices to use (4.29). We cannot solve the

δ-function condition exactly because of the logarithmic correction. We solve

it perturbatively in Appendix 4 and quote the solution to the delta function

constraint from (B.5)

τ±1 = −Vi.(x− di)∓
[

(Vi.x− Vi.di)2 + (x− di)2 − 2(x− di).Ci log τ±0
]1/2

.

(4.31)

Here, τ±0 is the zeroth order solution given in (B.1). Hence we get

A+
σ (x) + A−σ (x)

=
1

4π

∫
dτ

2n∑
i=n+1

[δ+( (x− x′)2) + δ+( (x− x′)2) ] ei
[
Viσ +

Cjσ
τ

]
Θ(τ − T ) + in.

=
1

4π

∫
dτ

2n∑
i=n+1

δ(τ − τ+
1 ) + δ(τ − τ−1 )

|2τ + 2Vi.(x− di) + 2
τ
Ci.(x− di)|

ei
[
Viσ +

Cjσ
τ

]
Θ(τ − T ) + in.

We have not written the contribution if the incoming particles explicitly. Above

expression is vaild only to O(e3). Expanding the roots in (4.31) to O(e3), we
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have :

τ±1 = −Vi.(x− di)∓
[

(Vi.x− Vi.di)2 + (x− di)2
]1/2 ± (x− di).Ci

log τ±0
X

.

Hence we get

A+
σ (x) + A−σ (x) =

1

8π

2n∑
i=n+1

Θ(u− T ) ei
X

[
Viσ
[
1 +

(x− di).Ci
X2

log τ+
0 +

(x− di).Ci
Xτ+

0

]
+
Ciσ
τ+

0

]
+

1

8π

n∑
i=1

Θ(−u− T ) ei
X

[
Viσ
[
1 +

(x− di).Ci
X2

log τ+
0 +

(x− di).Ci
Xτ+

0

]
+
Ciσ
τ+

0

]
+

1

8π

2n∑
i=n+1

ei
X

[
Viσ
[
1 +

(x− di).Ci
X2

log τ−0 −
(x− di).Ci

Xτ−0

]
+
Ciσ
τ−0

]
,

(4.32)

where X = [ (Vi.x− Vi.di)2 + (x− di)2 ]1/2.

We can study the expansion of above expression around I+. Using (B.1) and

(B.14) we have

[
A+
σ (x) + A−σ (x)

]
|I+

=
∞∑
n=1,

m=−∞,
m<n.

A[n,−m]
µ (x̂)

um

rn
+ log u

∞∑
n=2,m=0,
m<n−1

A
[n,−m]
1µ (x̂)

um

rn
+ log r

∞∑
n=2,m=0,
m<n−1

A
[n,−m]
2µ (x̂)

um

rn
+ ... .

(4.33)

Above expression should be compared with (4.5) and (4.7). The logarithmic

modes present in above expression appear only at O(e3) and are a direct consequence

of the long range electromagnetic forces present between the scattering particles.

These modes are absent in (4.5) and (4.7). ’...’ denote terms that fall off faster

than any power law.

Let us turn to the contribution from the third term of (4.30).

A∗σ(x) =
i

4π2

∫
d4x′

jσ(x′)

(x− x′)2
. (4.34)
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Using (4.29), we write down the asymptotic contribution to above expression.

The integral needs to be regulated with an IR cutoff ’R’.

A∗asym
σ (x) =

i

4π2

[∫ R

T

2n∑
j=n+1

dτ ej[Vjσ +
Cjσ
τ

]

(x− Vjτ − dj − Cj log τ)2
+

∫ −T
−R

n∑
j=1

dτ ej[Vjσ +
Cjσ
τ

]

(x− Vjτ − dj − Cj log τ)2

]
,

=
i

4π2

∫ R

T

dτ
2n∑

j=n+1

[ ej[Vjσ +
Cjσ
τ

]

(x− Vjτ − dj)2
+

2(x− dj).Cj
(x− Vjτ − dj)4

log τ
]

+ in.

In above expression we have not written the contribution of the incoming

particles explicitly to avoid clutter. Let us rewrite the expression using τ±0 .

A∗asym
σ (x)

=
i

4π2

∫ R

T

dτ
2n∑

j=n+1

[
ej

[Vjσ +
Cjσ
τ

]

τ−0 − τ+
0

[ 1

τ − τ+
0

− 1

τ − τ−0

]
+ ejVjσ

2(x− dj).Cj log τ

(τ − τ−0 )2(τ − τ+
0 )2

]
+ in.

(4.35)

τ±0 given in (B.1) are the solutions to the equation (x− Viτ − di)2 = 0. Above

integrals have been discussed in Appendix B. The final expression of (4.35) is
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given in (B.13). To this expression, we add the contribution of (4.32) to get

Aσ(x) =
i

4π2

2n∑
j=1

ηjejVjσ
τ−0 − τ+

0

[
log

1

τ+
0 − ηjT

− log
1

τ−0 − ηjT

]
+

i

4π2

2n∑
j=1

ηjejCjσ
(τ−0 − τ+

0 )

[ 1

τ+
0

log
T

τ+
0 − ηjT

− 1

τ−0
log

T

τ−0 − ηjT
]

+
i

4π2

2n∑
j=1

2ηjejVjσ(x− dj).Cj
(τ−0 − τ+

0 )2
log(T )

[ 1

T − τ+
0

+
1

T − τ−0

]
+

i

4π2

2n∑
j=1

2ηjejVjσ(x− dj).Cj
(τ−0 − τ+

0 )2

[ 1

τ−0
log

T

τ−0 − ηjT
+

1

τ+
0

log
T

τ+
0 − ηjT

]
+

i

4π2

2n∑
j=1

4ηjejVjσ(x− dj).Cj
(τ−0 − τ+

0 )3

[
ln τ−0 ln(τ−0 − ηjT )− ln τ+

0 ln(τ+
0 − ηjT ) +

[ln2 τ+
0 − ln2 τ−0

]
2

− i

4π2

2n∑
j=1

4ηjejVjσ(x− dj).Cj
(τ−0 − τ+

0 )3

[
Li2(1− ηjT

τ−0
)− Li2(1− ηjT

τ+
0

)
]

+
1

8π

2n∑
i=n+1

Θ(u− T ) ei
X

[
Viσ
[
1 +

(x− di).Ci
X2

log τ+
0 +

(x− di).Ci
Xτ+

0

]
+
Ciσ
τ+

0

]
+

1

8π

n∑
i=1

Θ(−u− T ) ei
X

[
Viσ
[
1 +

(x− di).Ci
X2

log τ+
0 +

(x− di).Ci
Xτ+

0

]
+
Ciσ
τ+

0

]
+

1

8π

2n∑
i=n+1

ei
X

[
Viσ
[
1 +

(x− di).Ci
X2

log τ−0 −
(x− di).Ci

Xτ−0

]
+
Ciσ
τ−0

]
+ A∗bulk

σ (x).

(4.36)

X = [ (Vi.x−Vi.di)2 + (x− di)2 ]1/2. This is the result of this section. A∗bulk
σ (x)

denotes the contribution of the bulk sources to (4.34). As this term depends on

the the detailed form of bulk trajectories, the exact form of this term cannot

be obtained. This term has been estimated in (4.12).

We can write down the asymptotic expansion of above solution around the

future null infinity. Using (4.33), (B.15) and (4.12), we get

Aσ(x)|I+ = (log r)2

∞∑
n=2,
m=0,

m<n−1.

[A
[n,−m]
`1µ

(x̂)]
um

rn
+ log r

∞∑
n=1,
m=0,
m<n.

[A
[n,−m]
`2µ

(x̂)]
um

rn
+ (log u)2

∞∑
n=2,
m=0,

m<n−1.

[A
[n,−m]
`3µ

(x̂)]
um

rn

+ log u
∞∑
n=1,

m=−∞,
m<n.

[A
[n,−m]
`4µ

(x̂)]
um

rn
+

∞∑
n=1,

m=−∞,
m<n.

[A[n,−m]
µ (x̂)]

um

rn
. (4.37)
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It is interesting to study the O(e3) corrections to 1
r

term of Aσ :

Aσ(x)|I+ ∼ 1

r
[ log u+ u0 +

∞∑
m=1

log u

um
+
∞∑
n=1

1

un
+ ... ] . (4.38)

This expression should be compared with its retarded analogue given in (3.18).

The log u
um

-modes are absent in (3.18). These are new ’quantum’ modes that

appear at O(e3) as a result of long range electromagnetic interactions between

the scattering particles. In [100], we have demonstrated that the log u
ur

- mode is

controlled by the universal soft logω-mode. This tells us that the such modes

are universally present in the quantum gauge field. Using (4.36), it can be

shown that the log u and the u0 modes are not modified at O(e3) . It should be

noted that the coefficients of the 1
un

-modes are modified at O(e3).

4.4 The Q̃1 conservation law

In (4.36) we obtained the asymptotic field including O(e3) corrections. In this

section we will obtain an asymptotic conservation law obeyed by certain modes

in the asymptotic field.

FrA calculated using (4.36) takes following form

FrA|I+
−

=
log r

r2
F

[log r]
rA (x̂) +

1

r2
[ u log u F

[u log u]
rA (x̂) + (log u)2 F

[(log u)2]
rA (x̂)

+ u F
[u]
rA(x̂) + log u F

[log u]
rA (x̂) + ...] . (4.39)

Let us compare above expression with (3.1). (3.1) is the corresponding expansion

for the retarded solution.

F ret
rA |I+

−
=

1

r2
[ u F

[u/r2]
rA (x̂) + log u F

[log u/r2]
rA (x̂) + ...] + O(

1

r3
) .

Thus the Feynman solution contains modes like log r
r2 ,

(log u)2

r2 at future that are

absent in the retarded solution. The Feynman solution around the past null

infinity gives

FrA|I−+ =
log r

r2
F

[log r]
rA (x̂) +

1

r2
[ v log v F

[v log v]
rA (x̂) + (log v)2 F

[(log v)2]
rA (x̂)+

v F
[v]
rA(x̂) + log v F

[log v]
rA (x̂) + ...] . (4.40)

From (4.39) and (4.40), we see that the expansion around future and past is
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symmetric. This is expected for Feynman propagator. In contrast, the retarded

solution is not symmetric as seen in (3.1) and (3.2).

In this section we will show that above modes obey an conservation equation

given by

[F
[log u]
rA (x̂)− F [log r]

rA (x̂)] |I+
−

= [−F [log v]
rA (−x̂) + F

[log r]
rA (−x̂)] |I−+ . (4.41)

Above equation should be compared with (3.25) which is obeyed by the retarded

solution. It is important to note that (3.25) is violated by the Feynman solution.

Modes at Future null infinity

Let us find the full log u
r2 -mode of Aσ at the future null infinity. We need to

expand all the terms in the Feynman solution given in (4.36) around I+. There

are many terms that contribute to the log u
r2 -mode. We will list them. From the

first line of (4.36), using (B.19) we get

i

8π2

2n∑
j=1

ηj
ejVjσ

(Vj.q)2
[
q.dj

(Vj.q)
+ Vj.dj ]. (4.42)

From the second line of (4.36), we get using (B.17) and (B.19)

− i

16π2

2n∑
j=1

ηjejCjσ [
1

(Vj.q)2
− 1 ]. (4.43)

The third line of (4.36) does not have a log u term. From the fourth line of

(4.36), we get using (B.17) and (B.19)

− i

8π2

2n∑
j=1

ηj
ejVjσ
Vj.q

[
q.Cj[−

3

2(Vj.q)2
−

V 0
j

(Vj.q)
+

1

2
] + C0

j

]
. (4.44)

Using (B.19), the fifth line of (4.36) gives

− i

8π2

2n∑
j=1

ηjejVjσ
q.Cj

(q.Vj)3
ln |q.Vj|. (4.45)

As shown in Appendix 4, the sixth line of (4.36) and A∗bulk
σ do not have any

logarithmic modes. We turn to the seventh and eighth lines of (4.36). Using

(B.7), we have log τ0|I+ ∼ log u+O(u0). Using (2.2), we get X = −rq.Vi+O(r0).
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Substituting the limiting value of X, we can read off the coefficient of the O( log u
r2 )

term in the seventh and eighth lines of (4.36) :

− 1

8π

2n∑
i=n+1

Θ(u− T ) ei Viσ
q.Ci

(q.Vi)3
− 1

8π

n∑
i=1

Θ(−u− T )ei Viσ
q.Ci

(q.Vi)3
(4.46)

We have the full coefficient of the log u
r2 term.

A[log u/r2]
σ |I+

−
= − 1

8π

n∑
i=1

ei Viσ
q.Ci

(q.Vi)3
+

i

8π2

2n∑
j=1

ηj
ejVjσ

(Vj.q)2
[
q.dj

(Vj.q)
+ Vj.dj ]

− i

16π2

2n∑
j=1

ηjejCjσ [
1

(Vj.q)2
− 1 ]− i

8π2

2n∑
j=1

ηjejVjσ
q.Cj

(q.Vj)3
ln |q.Vj|

− i

8π2

2n∑
j=1

ηj
ejVjσ
Vj.q

[
q.Cj[−

3

2(Vj.q)2
−

V 0
j

(Vj.q)
+

1

2
] + C0

j

]
.

(4.47)

Next we need to write down the coefficient of the log r
r2 -term in Aσ. From the

first line of (4.36), using (B.19) we get

− i

8π2

2n∑
j=1

ηj
ejVjσ

(Vj.q)2
[
q.dj

(Vj.q)
+ Vj.dj ]. (4.48)

From the second line of (4.36), using (B.18) and (B.19) we get

i

16π2

2n∑
j=1

ηj
ejCjσ
(q.Vj)2

. (4.49)

The third line of (4.36) does not have a log r term. From the fourth line of

(4.36), using (B.18) and (B.19) we get

i

16π2

2n∑
j=1

ηj
ejVjσ

(Vj.q)3
q.Cj. (4.50)

The fifth line of (4.36) contributes as follows

− i

8π2

2n∑
j=1

ηjejVjσ
q.Cj

(q.Vj)3
ln(2|q.Vj|). (4.51)
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Substituting X = −rq.Vi + O(r0) in the eighth line of (4.36), we get

− 1

8π

2n∑
i=n+1

ei Viσ
q.Ci

(q.Vi)3
. (4.52)

We have the full coefficient of the log r
r2 term.

A[log r/r2]
σ (x)|I+ = − 1

8π

2n∑
i=n+1

ei Viσ
q.Ci

(q.Vi)3
− i

8π2

2n∑
j=1

ηj
ejVjσ

(Vj.q)2
[
q.di

(Vi.q)
+ Vj.dj ]

+
i

16π2

2n∑
j=1

ηj
ejCjσ
(q.Vj)2

+
i

16π2

2n∑
j=1

ηj
ejVjσ

(Vj.q)3
q.Cj −

i

8π2

2n∑
j=1

ηjejVjσ
q.Cj

(q.Vj)3
ln(2|q.Vj|).

(4.53)

Modes at Past null infinity

Next we need to derive the field configuration at past null infinity and then
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compare the two expressions. Analogous to (4.36), around I− we have

Aσ(x) =
i

4π2

2n∑
j=1

ηjejVjσ
τ−0 − τ+

0

[
log

1

τ+
0 − ηjT

− log
1

τ−0 − ηjT

]
+

i

4π2

2n∑
j=1

ηjejCjσ
(τ−0 − τ+

0 )

[ 1

τ+
0

log
T

τ+
0 − ηjT

− 1

τ−0
log

T

τ−0 − ηjT
]

+
i

4π2

2n∑
j=1

2ηjejVjσ(x− dj).Cj
(τ−0 − τ+

0 )2
log T

[ 1

τ+
0 − ηjT

+
1

τ−0 − ηjT
]

+
i

4π2

2n∑
j=1

2ηjejVjσ(x− dj).Cj
(τ−0 − τ+

0 )2

[ 1

τ−0
log

T

τ−0 − ηjT
+

1

τ+
0

log
T

τ+
0 − ηjT

]
+

i

4π2

2n∑
j=1

4ηjejVjσ(x− dj).Cj
(τ−0 − τ+

0 )3

[
− ln τ+

0 ln(τ+
0 − ηjT ) + ln τ−0 ln(τ−0 − ηjT ) +

1

2
[ln2 τ+

0 − ln2 τ−0
]

− i

4π2

2n∑
j=1

4ηjejVjσ(x− dj).Cj
(τ−0 − τ+

0 )3

[
Li2(−ηjT − τ

−
0

τ−0
)− Li2(−ηjT − τ

+
0

τ+
0

)
]

+
1

8π

2n∑
i=n+1

Θ(v − T ) ei
X

[
Viσ
[
1 +

(x− di).Ci
X2

log τ−0 −
(x− di).Ci

Xτ−0

]
+
Ciσ
τ−0

]
+

1

8π

n∑
i=1

Θ(−v − T ) ei
X

[
Viσ
[
1 +

(x− di).Ci
X2

log τ−0 −
(x− di).Ci

Xτ−0

]
+
Ciσ
τ−0

]
+

1

8π

n∑
i=1

ei
X

[
Viσ
[
1 +

(x− di).Ci
X2

log τ+
0 +

(x− di).Ci
Xτ+

0

]
+
Ciσ
τ+

0

]
. (4.54)

Here, X = [ (Vi.x− Vi.di)2 + (x− di)2 ]1/2.

Let us write down the full coefficient of the log v
r2 -mode. We need to take the

limit r → ∞ with v = t + r finite. In this co-ordinate system, 4 dimensional

spacetime point can be parametrised as given in (2.16). From the first line of

(4.54), we get using (B.23)

i

8π2

2n∑
j=1

ηj
ejVjσ

(Vj.q̄)2
[
q̄.dj

(Vj.q̄)
+ Vj.dj ]. (4.55)

From the second line of (4.54), using (B.22) and (B.23) we get

− i

16π2

2n∑
j=1

ηjejCjσ [
1

(Vj.q̄)2
− 1 ]. (4.56)
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The third line of (4.54) does not have a log v term. From the fourth line of

(4.54), using (B.22) and (B.23) we get

− i

8π2

2n∑
j=1

ηj
ejVjσ
Vj.q̄

[
q̄.Cj[

V 0
j

(Vj.q̄)
− 3

2(q̄.Vi)2
+

1

2
]− C0

j

]
. (4.57)

The fifth line of (4.54) gives

− i

8π2

2n∑
j=1

ηjejVjσ
q̄.Cj

(q̄.Vj)3
ln |q̄.Vj| . (4.58)

From seventh line of (4.54) we get

1

8π

2n∑
i=n+1

Θ(v − T ) ei Viσ
q̄.Ci

(q̄.Vi)3
+

1

8π

n∑
i=1

Θ(−v − T )ei Viσ
q̄.Ci

(q̄.Vi)3
. (4.59)

Hence we have

A[log v/r2]
σ (x) = +

1

8π

2n∑
i=n+1

ei Viσ
q̄.Ci

(q̄.Vi)3
+

i

8π2

2n∑
j=1

ηj
ejVjσ

(Vj.q̄)2
[
q̄.dj

(Vj.q̄)
+ Vj.dj ]

− i

16π2

2n∑
j=1

ηjejCjσ [
1

(Vj.q̄)2
− 1 ]− i

8π2

2n∑
j=1

ηjejVjσ
q̄.Cj

(q̄.Vj)3
ln |q̄.Vj|

− i

8π2

2n∑
j=1

ηj
ejVjσ
Vj.q̄

[
q̄.Cj[−

3

2(Vj.q̄)2
+

V 0
j

(Vj.q̄)
+

1

2
]− C0

j

]
. (4.60)

Next we turn to the log r
r2 -mode. From the first line of (4.54), we get

− i

8π2

2n∑
j=1

ηj
ejVjσ

(Vj.q̄)2
[
q̄.dj

(Vj.q̄)
+ Vj.dj ]. (4.61)

From the second line of (4.54), we get

i

16π2

2n∑
j=1

ηjejCjσ
1

(Vj.q̄)2
. (4.62)

The third line of (4.54) does not have a log r term. From the fourth line of

(4.54), we get

i

16π2

2n∑
j=1

ηj
ejVjσ

(Vj.q̄)3
q̄.Cj. (4.63)
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The fifth line of (4.54) gives

− i

8π2

2n∑
j=1

ηjejVjσ
q̄.Cj

(q̄.Vj)3
ln |2q̄.Vj| . (4.64)

We get following contribution from the last line of (4.54)

1

8π

n∑
i=1

ei Viσ
q̄.Ci

(q̄.Vi)3
. (4.65)

The total coefficient is

A[log r/r2]
σ (x)|I− =

1

8π

n∑
i=1

ei Viσ
q̄.Ci

(q̄.Vi)3
− i

8π2

2n∑
j=1

ηj
ejVjσ

(Vj.q̄)2
[
q̄.dj

(Vj.q̄)
+ Vj.dj ]

+
i

16π2

2n∑
j=1

ηjejCjσ
1

(Vj.q̄)2
+

i

16π2

2n∑
j=1

ηj
ejVjσ

(Vj.q̄)3
q̄.Cj −

i

8π2

2n∑
j=1

ηjejVjσ
q̄.Cj

(q̄.Vj)3
ln |2q̄.Vj| .

(4.66)

From (4.47), (4.53), (4.60) and (4.66) we can indeed check that following

modes are equal under antipodal idenfication.

[A[log u/r2]
σ (x̂)− A[log r/r2]

σ (x̂)] |I+
−

= [A[log v/r2]
σ (−x̂)− A[log r/r2]

σ (−x̂)] |I−+ . (4.67)

Using co-ordinate transformation, it can be shown that the quantum gauge field

is expected to obey following conservation equation :

[F
[log u/r2]
rA (x̂)− F [log r/r2]

rA (x̂)] |I+
−

= [−F [log v/r2]
rA (−x̂) + F

[log r/r2]
rA (−x̂)] |I−+ .

(4.68)

Compared to (4.67), the RHS of above expression has extra minus sign as it

has an extra factor of ∂Aq̄
µ due to co-ordinate transformation. Finally we have

derived the Q̃1-conservation equation such that the future charge is defined

by Q̃+
1 =

∫
d2z Y A(x̂) [F

[log u/r2]
rA (x̂) − F [log r/r2]

rA (x̂)]|I+
−

and the past charge by

Q̃−1 =
∫
d2z Y A(−x̂) [−F [log v/r2]

rA (−x̂) +F
[log r/r2]
rA (−x̂)]|I−+ . It should be possible

to prove (4.68) in general by following analysis of [78] albeit with Feynman

boundary condition.

In this chapter we have obtained the radiative field produced by scattering of

n charged point particles using Feynman propagator. This problem is unphysical

but the Feynman radiative solution so derived is useful to illustrate interesting
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features of the quantum gauge field. This chapter shows that the asymptotic

expansion of the quantum gauge field contains new modes that are absent in the

retarded classical field. Let us summarise two key differences that are relevant

for our analysis. As discussed in (3.18), the 1
r

term in retarded Aµ at O(e3)

takes following form :

Aret
µ (x)|I+ =

1

4πr
[ u0 +

∞∑
n=1

1

un
] + O(

1

r2
) . (4.69)

In (4.38) we showed that the 1
r
-term in the Feynman solution at O(e3) has

following behaviour

Afeyn
σ (x)|I+ ∼ 1

r
[ log u+ u0 +

∞∑
m=1

log u

um
+
∞∑
n=1

1

un
+ ... ] + O(

1

r2
) .

Here, ’...’ denote terms that fall off faster than any power law in u. Thus the
log u
r

-mode is a purely quantum mode and it will play an important role in the

analysis of Chapter 5.

Incorporating the effect of long range electromagnetic force on the scattering

particles, we obtained the Feynman solution including the O(e3) corrections in

(4.36). In Chapter 3, we had shown that the analogous modes in the retarded

solution obey the conservation law in (3.25) such that the coefficient of the log r
r2

mode at the past is related to the coefficient of the log u
r2 mode at the future. This

law is violated by the Feynman solution. We discussed the modified asymptotic

conservation equation obeyed by the O(e3) logarithmic modes in the Feynman

solution. This equation has been derived in (4.68) and relates the difference

in the coefficients of the log u
r2 and log r

r2 modes in FrA at I+
− to the difference

in the coefficients of the log r
r2 and log v

r2 in FrA at I−+ . Q̃1 charges are defined

accordingly.

Q̃1 charges are expected to be related to the soft logω-mode. Let us

discuss some features of Q̃1 that make Q̃1 an unfavourable candidate to be

the asymptotic charge. The second term in (4.47), (4.53), (4.60) and (4.66)

respectively are O(e) and not related to long range interaction between scattering

particles, hence these terms in Q̃1 are certainly not related to the logω-mode.

Some of the contributions to Q̃1 are not Lorentz invariant. A close inspection

tells us that many O(e3) terms in Q̃1 are not related to the logω-mode. All

these ’irrelevant’ terms that contribute to Q̃1 are expected to drop out of the

final Ward identity such that the logω soft theorem is reproduced. This has
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not been checked explicitly yet.

In the next chapter we will show that there is a better prescription to

define the asymptotic charge corresponding to the logω soft theorem. The

prescription is to use the Q1 charges we studied in (3.25) in Chapter 3 and then

quantise the expressions. Though the classical Q1-law in (3.25) is violated in

the quantum theory, we will show that this law can be used to reproduce the

full logω soft theorem in (2.54) including the purely quantum terms. This will

be demonstrated in Chapter 5.
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Chapter 5

The logω soft theorem and the

Q1 conservation law

In this chapter, we will start with the Q1-conservation law derived in (3.25).

This conservation law relates the coefficient of the log r
r2 -mode at the past to the

coefficient of the log u
r2 -mode at the future :

F 2,log
rA (x̂) |I+

−
= F log,0

rA (−x̂) |I−+ . (5.1)

We will construct the associated charges for massless scalar QED and show

that the quantised charges reproduce the full logω soft theorem. This chapter

is based on our calculations that appeared in [101].

Let us state the subleading soft theorem for loop amplitudes in presence of

massless scattering particles [91]

An+1(pi, k) =
S0

ω
An(pi) + (Slog + Sgrav

log ) logω An(pi) + ... , (5.2)

Sgrav
log is the correction to the soft factor in presence of dynamical gravity. Let

us first focus on the purely electromagnetic term.

Slog = − 1

4π2

∑
i,j;i 6=j

ηiηjei
εµqρ
pi.q

eiej
pi.pj

(pρjp
µ
i − p

ρ
i p
µ
j ) (5.3)

Above expression is obtained by taking massless limit of (2.55). We recall

that ei, pi are respectively the charges and momenta of the hard particles and

ηi = 1(−1) for outgoing (incoming) particles. εµ is the polarisation vector of the

soft photon and kµ = ωqµ is the soft momentum. An interesting observation is

that the classical part of the soft factor which is non zero for the massive case

goes to 0 in the massless limit. We will see that this result comes out naturally

from the asymptotic charge as well.
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As we discussed earlier in (2.56) the logω soft factor gets corrected by

gravitational couplings. For massless scattering particles this correction is given

by

Sgrav
log =

i

4π

∑
i,j;i 6=j
ηiηj=1

ei
εµqρ
pi.q

(pρjp
µ
i − p

ρ
i p
µ
j )− i

4π

∑
i

ηiei
ε.pi
pi.q

∑
j,ηj=1

q.pj

− 1

4π2

∑
i,j;i 6=j

ηiηjei
εµqρ
pi.q

(pρjp
µ
i − p

ρ
i p
µ
j ) log[pi.pj]

1 +
1

4π2

∑
i

ηiei
ε.pi
pi.q

∑
j

ηjq.pj log pj.q.

(5.4)

The first line in above expression also appears in the soft expansion of the

classical radiative field [91]. The second line is absent in the classical theory

and represents purely quantum contribution. It was noted in [91] that if we

assume the momenta of the hard particles is O(~0), neither the classical nor the

quantum terms in (5.4) have any power of ~. Thus, an intriguing aspect of the

’quantum’ terms is that these terms are independent of ~ and do not trivially

vanish in the limit ~→ 0.

The presence of such purely quantum terms is a significant feature of this

soft theorem which is absent in the case of leading soft theorem. So we wish

to highlight how the asymptotic charge reproduces the quantum contribution

to the soft theorem without going into the details of the calculation. We start

by constructing the classical expression for the Q1 charge in massless scalar

QED. This charge is very closely related to the long range forces present in four

spacetime dimensions and gets contribution from dressing of free fields due to

long range forces. The leading order dressing of massless scalar field is given by

(5.8):

φ(x) = −ie
ieA1

r(x̂) log r

8π2r

∫
dω [b(ω, x̂) e−iωu − d†(ω, x̂) eiωu].

A1
r defined in (2.34) is the electromagnetic dressing. This dressing contributes

to the charge via (5.31) and the contribution can be schematically written as

Q1 ∼ Ŝ1 A
1
r, where Ŝ1 closely resembles the tree level subleading soft operator.

1Similar to the purely electromagnetic term, there could be a potential gravitational term
:

− 1

4π2

∑
i,j;i 6=j

ηiηjei
εµqρ
pi.q

(pρjp
µ
i − p

ρ
i p
µ
j ) (5.5)

that vanishes because of momentum conservation.
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Then we quantise the charge. In the quantum theory the A1
r mode gets

additional contribution i.e. A1
r =

class

A1
r +

quan

A1
r . The classical mode is obtained by

evolving the sources with retarded propagator (and turns out to be trivial).
quan

A1
r

is absent in the classical theory and is related to the quantum log u
r

-mode that is

present in the quantum photon field and has been discussed in (4.22). Classical

radiative fields are continous in ω → 0 hence the log u
r

-mode is absent in the

classical theory.
quan

A1
r reproduces the quantum corrections to the soft theorem.

Another important point to be noted is that there are certain divergences

that appear due to the presence of massless particles. The quantum contributions

to the dressing have divergent pieces arising from collinear configurations. The

divergent part of electromagnetic dressing is a constant and does not contribute

to the charge. Thus, the charge is rendered finite.

Gravitational corrections to the asymptotic charge have been discussed in

Section 5.4.

5.1 Dressing of the massless scalar field

In this section we will study the effect of long range forces on massless scalar

field and find the corresponding contribution to the asymptotic charge given in

(5.1). In absence of long range forces, asymptotic fields satisfy free equations of

motion. Including the correction to the asymptotic dynamics due to long range

interactions leads to dressing of the free fields. We will show that the long range

electromagnetic force results in a new mode in the asymptotic radiative field

that falls off as 1/u.

For massive fields the effect of long range forces is obtained perturbatively by

studying asymptotic potential order by order around t→∞. This leads to the

well known Faddeev-Kulish dressing of massive scalars [84]. For massless scalars,

the asymptotic states live at null infinity. So, we will study the corrections to

the free equation of motion at null infinity. Massless scalars satisfy following

equation :

ηµνDµDν φ(x) = 0. (5.6)
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Let us expand above equation around future null infinity. Using the fall offs

given in (2.34), we find that the leading order equation is (at O( 1
r2 )) :

−2∂u∂rφ−
2

r
∂uφ = −2ie

A1
r(x̂)

r
∂uφ. (5.7)

Thus, the leading order effect of long range forces on the massless field is given

by A1
r. The solution of above equation is given by :

φ(x) = −ie
ieA1

r(x̂) log r
r0

8π2r

∫
dω [b(ω, x̂) e−iωu − d†(ω, x̂) eiωu], (5.8)

where, b and d† are the free data for massless scalar. First we will restrict

ourselves to classical dynamics. Upon quantisation, b can be interpreted as the

annihilation operator for free particles while d would become the annihilation

operator for free antiparticles (see (2.25)). r0 depends on scales of short range

interactions, hence r0 << r. For our analysis we can set r0 = 1 to avoid

clutter. From (5.8), we see that the effect of long range electromagnetic force is

to associate a cloud of photons to a free massless scalar particle. The dressing

factor A1
r is analogous to the Fadeev-Kulish dressing of a free massive scalar

particle. Next we find the resultant correction to the U(1) current. Dressing of

scalar field leads to a new logarithmic fall off in the current (2.33) :

jA = jlog
A

log r

r2
+
j2
A

r2
+ ... , (5.9)

where

jlog
A = 2e2 ∂AA

1
r |φ1|2. (5.10)

We also have :

jr = jlog
r

log r

r4
+
j4
r

r4
+ ... , ju =

j2
u

r2
+ jlog

u

log r

r3
+ ... .

We can change to Cartesian co-ordinates and get following fall offs for the U(1)

current

jµ =
j2
µ

r2
+ jlog

µ

log r

r3
+ ... . (5.11)

Let us find the the gauge field generated by the new logarithmic fall off in the

current. In Lorenz gauge, we have �Aµ = −jµ. Using the retarded propagator,
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the solution to the gauge field is given by :

Aσ(x) =
1

2π

∫
d4x′ δ( (x− x′)2) Θ(t− t′) jσ(x′). (5.12)

We will substitute the new logarithmic modes of the current in above expression

and find the resultant contribution to the field. The details of the calculation

have been relegated to Appendix C. We show that the log modes give rise to a
1
u

term in A0
A such that the coefficient is given by (C.11) :

A0,1
z̄ (x̂) =

1

4π

√
2

1 + zz̄

∫ ∞
−∞

du′
∫
S2

d2z′
εµ−q

σ

q.q′
q′[µD

′Aq′σ] j
log
A . (5.13)

This 1
u
-term has been discussed in the context of scattering of point particles in

Chapter 3. In above expression we have used the following basis for polarisation

vectors [56]:

εµ− =
1√
2

∂

∂z̄
[(1 + zz̄)qµ], εµ+ =

1√
2

∂

∂z
[(1 + zz̄)qµ]. (5.14)

The expression for Az can be obtained from the expression for Az̄ by replacing ε−

by ε+. Next we need to show how above 1
u
-mode contributes to the asymptotic

charge defined using (5.1). From (2.36), we have,

∂2
uF

2
rA +

1

2
∂u∂AD

BA0
B −

1

2
∂2
uD

BF 0
AB =

1

2
∂uj

2
A. (5.15)

So, for A = z component, we get :

∂2
uF

2
rz = −DzD

z̄∂uA
0
z̄ +

1

2
∂uj

2
z (5.16)

Above equation relates 1
u

term in Az̄ to log u
r2 term in F 2

rz. From above equation

we get the precise relations :

F 2,log
rz = −γzz̄ D2

zA
0,1
z̄ and F 2,log

rz̄ = −γzz̄ D2
z̄A

0,1
z . (5.17)

These relations will be needed when we write down the expression for the

asymptotic charge.
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5.2 The classical asymptotic charge for massless

scalar QED

Let us start with the asymptotic conservation law given in (5.1)

F 2,log
rA (x̂) = F log,0

rA (−x̂). (5.18)

We recall that the LHS is the coefficient of the log u
r2 -mode present at the future.

Similarly the RHS is the coeffficient of the log r
r2 mode living at the past. We

multiply above equation with an arbitrary parameter V A and integrate over the

sphere to get∫
I+
−

d2z V A(x̂)F 2,log
rA (x̂) =

∫
I−+

d2z V A(−x̂)F log,0
rA (−x̂). (5.19)

The charge at the future is defined by Q+
1 [V A

+ ] = −
∫
d2z V A

+ F
log,0
rA | I+

−
. The past

charge is defined similarly. Our claim is that upon quantisation, these charges

reproduce the outgoing soft photon theorem given in (5.2). There exists a log v

mode at past if there is incoming soft photon. Similar conservation law (that

involves advanced propagator) relating log v
r2 mode at I−+ to log r

r2 mode at I+
−

can be used to reproduce the incoming soft theorem. In this section we will

restrict to the classical theory.

Let us study the future charge :

Q+
1 [V ] = −

∫
d2z V AF 2,log

rA | I+
−
,

= u2∂2
u

∫
d2z V AF 2

rA | u→−∞.

The u-operator isolates the coefficient of the log u term of F 2
rA. We can rewrite

the future charge as an integral over entire future null infinity minus the term

at I+
+ .

Q+
1 [V ] = −

∫ ∞
−∞

du′
∫
d2z V A∂u [u2∂2

uF
2
rA]−

∫
d2z V AF 2,log

rA | I+
+
,

:= Qsoft
+ [V ] +Qhard

+ [V ]. (5.20)

This defines the soft and hard parts of asymptotic charge. We can simplify the

soft charge expression further. Using Maxwell’s equations given in (2.36) for
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∂uF
2
rA, we get :

Qsoft
+ = −1

2

∫ ∞
−∞

du′
∫
d2z′ V A∂u

[
u2∂u[∂AF

2
ru −DBF 0

AB + j2
A]
]
. (5.21)

j2
A does not have a 1

u
-term, so j2

A also drops out of above expression and we get

Qsoft
+ =

∫ ∞
−∞

du′
∫
d2z′

[
V z(x̂′)∂u [u2∂uDzD

z̄A0
z̄(u, x̂

′)] + z′ ↔ z̄′
]
,

=

∫ ∞
−∞

du′
∫
d2z′

[
D′2z V

z γzz̄ ∂u [u2∂uA
0
z̄(u, x̂

′)] + z′ ↔ z̄′
]
. (5.22)

The last line was derived using integration by parts. Next it is instructive to

go to the frequency space :

Qsoft
+ =

∫
d2z′

[
D′2z V

z γzz̄ lim
ω→0

ω ∂2
ω ω Ã0

z̄(ω, x̂
′) + z′ ↔ z̄′

]
.

It should be recalled that as yet above expression is classical and the limit is

well defined. The ω-derivatives isolate the coefficient of soft logω mode of Ã0
z̄.

This shows that the Q1-charge is indeed related to the soft logω mode.

Next let us turn to the expression of future hard charge :

Qhard
+ = −

∫
d2z′ V A F 2,log

rA (x̂′).

Using (5.17) in the expression for the hard charge, it can be written in terms

of coefficient of the 1
u

mode.

Qhard
+ =

∫
d2z′ V z γzz̄ D2

zA
0,1
z̄ (x̂′) +

∫
d2z′ V z̄γzz̄ D2

z̄A
0,1
z (x̂′) (5.23)

To avoid unnecessary cluttering of equations we will work with V z̄ = 0. Then

we can integrate by parts to get following equation :

Qhard
+ =

∫
d2z′ D′2z V

z γzz̄ A0,1
z̄ (x̂′), (5.24)

Using (5.13) and (5.10) we get :

A0,1
z̄ (x̂) =

√
γzz̄

4π

∫ ∞
−∞

du′
∫
d2z′

qµ εσ−
q.q′

q′[σ∂
′
qµ] [ 2e2A1

r(x̂
′)|φ1(x̂′)2 ]. (5.25)

Equations (5.24) and (5.25) provide us the expression of the future hard charge.

Thus the hard part of the Q1-charge is related to the dressing of the massless
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scalar field under long range electromagnetic force.

Let us turn to the the expression of the past charge. We have :

Q−1 [V ] = −
∫
d2z V AF log,0

rA | I−+ .

We know from (C.14) that F log,0
rA depends only on particle currents i.e. it has

no contribution from radiation. Thus, at past the charge is entirely made of

hard modes.

Q−1 [V ] = −
∫
d2z V AF log,0

rA | I−+ := Qhard
− [V ].

The conservation law that we have started with in (5.19) involves only outgoing

soft radiation. Using (C.14), the charge at past can be recast as :

Q−1 = −
∫
d2z′ D′2z V

z γzz̄ Blog(x̂′), (5.26)

where,

Blog(x̂) =
1

4π

√
2

1 + zz̄

∫ ∞
−∞

dv′
∫
S2

d2z′
qσεµ−
q.q̄′

q̄′[µ∂
′
q̄σ ] [ +2e2A1

r(−x̂′)|φ1(−x̂′)|2 ].

(5.27)

To summarise we have the obtained the classical expression of the Q1-charge. It

consists of contribution from soft as well as hard modes. The expression of soft

charge is given in (5.29). This operator isolates soft logω mode. The expression

of hard charge is given in (5.24) and (5.25). The hard charge is given in terms

of dressing A1
r.

5.3 The Ward identity for massless scalar QED

In this section we will turn to the quantum theory. We will use the classical

expression for asymptotic charge Q1 from the previous section and quantise it.

The Ward identity for S matrix for the asymptotic charge is[
Q1 , S

]
= 0,

⇒
(
Qsoft

+ S − S Qsoft
−

)
= −

(
Qhard

+ S − S Qhard
−

)
.
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Quantising the soft charge we express the gauge field in terms of Fock

operators (2.30) :

Ã0
z̄(ω, x̂) = −i

√
2
a−(ω, x̂)

4π(1 + zz̄)
... ω > 0, Ã0

z̄(ω, x̂) = i
√

2
a†+(−ω, x̂)

4π(1 + zz̄)
... ω < 0.

(5.28)

So we get :

Qsoft
+ = − i

4π

∫
d2z′

[
D′2z V

z
√
γ′zz̄ lim

ω→0+
ω ∂2

ω ω a−(ω, x̂′) + z′ ↔ z̄′
]
. (5.29)

Thus, the action of Qsoft
+ involves insertion of zero energy photon modes. We

have defined the soft limit from positive side which is consistent with the fact

that we have only outgoing radiative modes in (5.19). Hence Qsoft
− = 0 as we

discussed in the last section.

Using (5.24) and (5.26), we get

−
(
Qhard

+ S − S Qhard
−

)
= −

∫
d2z′ D′2z V

z γzz̄
(
A0,1
z̄ (x̂′) S − S Blog(x̂′)

)
.

(5.30)

Next we need to evaluate the action of above operators on a Fock state. From

(5.25), we have following expression for A0,1
z̄ .

A0,1
z̄ (x̂) =

√
γzz̄

2π

∫ ∞
−∞

du′
∫
d2z′

qµ εσ−
q.q′

q′[σ∂
′
qµ] e

2A1
r(x̂
′)|φ1(x̂′)2| . (5.31)

It is interesting to note that the hard charge resembles tree level subleading soft

operator acting on A1
r. The action of (5.31) on an outgoing Fock state can be

easily evaluated.

< out| Qhard
+ = < out| 4π

∑
i ε out

Uσµ(qi) e
2
i qi[σ∂qµi ]

A1
r(z

A
i )

ωi
]. (5.32)

where we have defined

Uσµ(qi) =

∫
d2z′ D′2z V

z(z, z′)

√
γ′zz̄

16π2

εσ−q
′µ

q′.qi
, (5.33)

to make the expressions compact. Similarly we can use (5.27) to get the action

of the past hard charge on an incoming state. Then we need to substitute for

A1
r.
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This mode has a classical and a quantum part : A1
r =

class

A1
r +

quan

A1
r . The classical

mode is obtained by evolving the sources with retarded propagator. We obtain

the quantum contribution in a slightly roundabout way. The quantum gauge

field contributes to
quan

A1
r via (5.42). We will find these modes explicitly and write

down the Ward identity.

Classical part

Let us find the classical contribution to A1
r using retarded propagator. We

know that the solution for gauge field in Lorenz gauge is given by

Aµ(xµ)|class =
1

2π

∫
d4x′ δ

(
(x− x′)2

)
Θ(t− t′) jµ(x′), (5.34)

where we have used the retarded propagator. We need the 1
r

component of

above expression to find classical part of A1
r. Taking large r limit we get :

Aµ(u, r, x̂)|class = − 1

4πr

∫ ∞
−∞

du′
∫
d2z′

j2
µ(x̂′, u′)

q.q′
.

It can be checked that above expression is consistent with the fall offs mentioned

in (2.34). In particular we have :

class

A1
r (x̂) =

1

4πr

∫ ∞
−∞

du′
∫
d2z′ j2

u(x̂
′, u′). (5.35)

This part of A1
r(x) is just a constant (i.e. independent of u, x̂). Thus, the

classical electromagnetic dressing is trivial.

Let us go back to the action of the hard charge (5.32)

< out|
[
Qhard , S

]
class
|in > = −

∑
i

ei U
σµ(qi) < out|

[
qi[σ∂qµi ]

class

A1
r (x̂i) , S

]
|in > .

(5.36)

Using (5.35), we see that above term vanishes. This reflects the absence of

classical logω term in soft electromagnetic radiation (in absence of gravitational

coupling) [91].

Quantum part
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Next we want to check if there is a part of A1
r that has not been captured

by the retarded propagator. Let us work in r, u → ∞ limit (u < r) where the

sources have died down and we can use the homogenous solution. It is useful

to work with Herdegen’s representation [96] of homogenous Aµ. This is a way

to write a generic homogenous solution for gauge field in Lorenz gauge in terms

of free data A0
A. (A0

A = limr→∞AA).

hom

Aµ (x) = − 1

(2π)

∫
d2z′

1 + z′z̄′√
2

[
ε−µ Ȧ0

z(u = −x · q′, q̂′) + ε+µ Ȧ0
z̄(u = −x · q′, q̂′)

]
.

(5.37)

q′µ is defined according to (2.2). From above expression it can be seen that

A0
B ∼

log

AB log u gives rise to a 1
r

term in Aµ. We had discussed the presence

of such a log u mode in (4.15). Let us write down the A1
r term by co-ordinate

transformation. We will denote it with a ’quan’ overtext.

quan

A1
r (x) =

1

2π

∫
d2z′

1 + z′z̄′√
2

1

q′.q
[ε−.q

log

Az(x̂
′) + ε+.q

log

Az̄(x̂
′)]. (5.38)

In (4.15), we had discussed that the quantum gauge field admits following

asymptotic expansion

AA =
log

AA log |u|+ O(u0) + ... , u→ ±∞, (5.39)

here,
log

AA can be obtained using a co-ordinate transformation in (4.22). We get

log

Az(u, x̂) =
i

8π2

√
2

1 + zz̄
lim
ω→0+

ω[a+(ω, x̂)− a†−(ω, x̂)] . (5.40)

And

log

Az̄(x̂) =
i

8π2

√
2

1 + zz̄
lim
ω→0+

ω[a−(ω, x̂) + a†+(ω, x̂)]. (5.41)

The log u mode is tied to the discontinuity of the quantum gauge field. The

classical field is continuous as ω → 0 hence this mode vanishes classically. An

important point to note is that we are not introducing a new independent mode

in the quantum system, the free data for classical system is sufficient to describe

the quantized system as well. For scalars, ωφ̃ is trivial as ω → 0. Hence there

is no log |u| term for scalars.
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The
quan

A1
r operator has a non-trivial action when inserted in the expression

for charge. We will use the leading soft theorem to evaluate action of (5.40) and

(5.41) and substitute for
log

AB in the expression of
quan

A1
r given in (5.38). Action of

A1
r on a generic put state is given by :

< out|
quan

A1
r (x) S |in >

= i < out|
∫

d2z′

16π3

[ε−.q
q′.q

∑
j

ηjej
ε+.pj
q′.pj

+
ε+.q

q′.q

∑
j

ηjej
ε−.pj
q′.pj

]
S |in > .

(5.42)

Next we need to do the sphere integral. We have relegated this calculation to

Appendix C and we will quote the results here. The finite part of the integral

is (C.21) :

< out|
quan

A1
r (x̂) S |in > = − i

4π2

∑
j

ηjej log(q.pj). (5.43)

Let use this expression to evaluate the action of hard charge and obtain the

quantum contribution. Using (5.43) for A1
r in (5.32), we get

< out|
[
Qhard , S

]
quan
|in >

= − i
π

∑
i,j;i 6=j

ηiηj
e2
i ej
ωi

Uσµ(qi) qi[σ∂qµi ] log[
2(pj.qi)

m2
j

]
]

An. (5.44)

Here, we have An = < out| S |in > . Uσµ has been defined in (5.33). The term

that depends on mj is the divergent piece in A1
r. It is killed by the derivative

operator qi[σ∂qµi ] and the final expression is finite.

The Ward identity

Collecting together (5.36) and (5.44) we get the complete action of the hard

charge and we can write down the Ward identity. Thus, the S-matrix needs to

satisfy following Ward identity for a generic V z that lives on S2 :[
Qsoft(V z) , S

]
= − i

π

∑
i,j;i 6=j

ηiηjei U
σµ(qi)

eiej
qj.qi

(qjµqiσ − qjσqiµ ) . (5.45)

Qsoft(V ) defined in (5.29) inserts soft modes of photon. Dependence on V z is
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via the U defined in (5.33). Ward identity involving V z̄ can be written down

similarly.

The Sahoo-Sen soft theorem

Let us derive the Sahoo-Sen soft theorem from above Ward identity. To derive

negative helicity soft theorem we choose :

V z(z, z′) =
√

2(1 + z′z̄′)
z − z′

z̄ − z̄′
, V z̄ = 0. (5.46)

Performing the sphere (z′, z̄′) integral in (5.29), we get :

Qsoft
+ = −i lim

ω→0
ω ∂2

ω ω a−(ω, x̂). (5.47)

Next we will use (5.46) in the expression for hard charge (5.45). The sphere

integral in the expression for U in (5.33) can be done easily. So, the Ward

identity can be recast as :

lim
ω→0

ω ∂2
ω ω An+1 = − 1

4π2

∑
i,j;i 6=j

ηiηjei
εµkρ
pi.k

eiej
pi.pj

(pρjp
µ
i − p

ρ
i p
µ
j ) An. (5.48)

This is exactly the statement of the logω soft theorem (5.2) given by Sahoo and

Sen for massless scalar QED (without dynamical gravity). In this analysis we

have derived the soft theorem from the Ward identity. The Ward identity (with

V z̄ = 0) can be derived from the soft theorem by multiplying both sides of the

statement of soft theorem with
∫
d2z D2

z̄V
z(z)

√
γzz̄

16π2 . Thus, we can conclude

that the Ward identity (5.68) is exactly equivalent to the Sahoo-Sen soft photon

theorem for massless scalar QED.

5.4 Corrections in presence of dynamical gravity

In this section we will briefly discuss the gravitational corrections to the Ward

identity. We will not give the entire derivation but only highlight the important

points. Interested readers can refer to [101] for details.

Let us write down the asymptotic behaviour of the gravitational field. We

will work in the perturbative linear gravity regime where gravitational dynamics

is confined to perturbations around flat space time : gµν = ηµν + hµν . In the de

Donder gauge ∂µh̄
µν = 0, where h̄µν = hµν − 1

2
ηµνh

σ
σ. In this gauge, the metric
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field satisfies �h̄µν = −2Tµν and admits following expansion : 2

hrr =
h1
rr(x̂)

r
+ hlog

rr (u, x̂)
log r

r2
+ ... , hur =

h1
ur(u, x̂)

r
+ hlog

ur (u, x̂)
log r

r2
+ ... ,

huu = hlog
uu (u, x̂)

log r

r
+
h1
uu(u, x̂)

r
+ ... , hrA = h0

rA(x̂) + hlog
rA(u, x̂)

log r

r2
+ ... ,

huA = h0
uA(u, x̂) + hlog

uA(u, x̂)
log r

r
+ ... , hAB = r h−1

AB(u, x̂) + log r hlog
AB(u, x̂) + ... .

(5.49)

Gravitational dressing of massless scalar field

First we will discuss the dressing of massless scalar field in presence of dynamical

gravity. The equation of motion of the scalar field is given by gµνDµDνφ = 0.

We will use (5.49) in above equation for the scalar field and obtain the solution.

The leading order gravitational correction to (5.8) is given by :

φ(x) = −ie
ieA1

r(x̂) log r

8π2r

∫
dω [b(ω, x̂) e−iωueiω log r

h1
rr(x̂)

2 − d†(ω, x̂) eiωue−iω log r
h1
rr(x̂)

2 ],

(5.50)

The dressing of the massless scalar field contributes to the charge via (5.13).

The gravitational correction to (5.13) is given by

A0,1
z̄ (x̂)|scal =

√
γzz̄

4π

∫ ∞
−∞

du′
∫
d2z′

qµ εσ−
q.q′

q′[σ∂
′
qµ] [− 1

2
h1
rr(x̂

′)j2
u(x̂
′) + 2e2A1

r(x̂
′)|φ1(x̂′)2 ].

(5.51)

We have added a subscript ’scal’ to highlight the fact that this contribution

arises from scalar field dressing. There is an additional contribution to above

mode from the dressing of the gauge field.

Gravitational dressing of U(1) gauge field

Next we discuss the effect of long range gravitational force on gauge fields.

We start with the homogenous equation �Ahomµ = 0. Asymptotically such a

2Some of the coefficients are independent of u, this follows from the de Donder gauge
condition itself.
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solution exhibits following form (2.27)

Ahomσ (u, r, x̂) = − i

8π2r

∫
dω [aσ(ω, x̂) e−iωu − a†σ(ω, x̂) eiωu ], (5.52)

where aσ =
∑

r=+,− ε
∗r
σ ar. Let us turn on the sources. Choosing the generalised

Lorenz gauge ∇µA
µ = 0, Maxwell’s equations reduce to :

∇2Aµ = −jµ +Rµ
νAν . (5.53)

Rµν is the Ricci tensor. jµ is the U(1) current. The gravitational corrections

can be expanded in perturbative gravity regime. Ignoring the U(1) current, we

have

�Aσ = jgrav
σ , (5.54)

where we have defined :

jgrav
σ = hµν∂µ∂νAσ+ηµνΓρµν∂ρAσ+2ηµνΓρµσ∂νAρ +ηµν Aλ ∂µΓλνσ+[∂µΓµνσ−∂νΓµµσ]Aν+ O(G2).

Next jgrav
σ can be evaluated on the zeroth order solution. Using (5.49) and

(5.52), we see that the source has following behaviour around future null infinity

jgrav
σ (x) =

1

r2
h1
rr∂

2
uA

1
σ + O(

1

r3
). (5.55)

The O( 1
r3 ) terms in jgrav

σ (x) produce subleading corrections, hence are not relevant

for our analysis. The leading order gravitational current gives rise to following

dressing of the gauge field

Aσ(u, r, x̂) = − i

8π2r

∫
dω [aσ(ω, x̂) e−iωueiω log(rω)

h1
rr(x̂)

2 − a†σ(ω, x̂) eiωue−iω log(rω)
h1
rr(x̂)

2 ].(5.56)

This expression represents the effect of gravitational field on outgoing photons.

Thus, we see that the log r dressing of photons is exactly similar to the log r

dressing of massless scalars. There is an additional logω dressing of the soft

photons. This mode contributes to the charge. By co-ordinate transformation

of (5.56) we get analogous to (5.51)

A0,1
z̄ (x̂)|grav dress = − 1

8π

√
2

1 + zz̄
h1
rr(x̂) lim

ω→0
ωa−(ω, x̂). (5.57)
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The gravitational contribution to the charge depends on h1
rr. For A0,1

z , we

have to replace negative helicity operators with positive helicity operators. For

incoming soft photon, above analysis needs to be repeated at past null infinity.

The Ward identity

We know that the Ward identity for S matrix for the Q1 asymptotic charge

can be written down as : [
Q1 , S

]
= 0,

⇒
(
Qsoft

+ S − S Qsoft
−

)
= −

(
Qhard

+ S − S Qhard
−

)
.

Analogous to (5.30), we get

Qsoft
+ S = −

∫
d2z′ D′2z V

z γzz̄
(
A0,1
z̄ (x̂′) S − S Blog(x̂′)

)
. (5.58)

We discuss the gravitational corrections to soft charge in Appendix C in (C.29)

and show that these corrections vanish.

Next we need to evaluate the action of above operators on a Fock state.

From (5.51) and (5.57), we get the expression of A0,1
z̄ .

A0,1
z̄ (x̂) =

√
γzz̄

4π

∫ ∞
−∞

du′
∫
d2z′

qµ εσ−
q.q′

q′[σ∂
′
qµ] [− 1

2
h1
rr(x̂

′)j2
u(x̂
′) + 2e2A1

r(x̂
′)|φ1(x̂′)2 ]

−
√
γzz̄

8π
h1
rr(x̂) lim

ω→0
ωa−(ω, x̂). (5.59)

It is interesting to note that the first line resembles tree level subleading soft

operator acting on h1
rr + A1

r. Similarly the second line is h1
rr times the leading

soft operator. The action of (5.59) on an outgoing Fock state gives

< out| Qhard
+ = < out| 4π

∑
i ε out

Uσµ(qi) qi[σ∂qµi ] [
ei
2
h1
rr(zi) + e2

i

A1
r(zi)

ωi
]

− < out|
∫
d2z′ D′2z̄ V

z(z′)

√
γ′zz̄

8π

∑
i

ei ε
−. pi
q′.pi

h1
rr(z

′). (5.60)

where as before we have defined

Uσµ(qi) =

∫
d2z′ D′2z V

z(z, z′)

√
γ′zz̄

16π2

εσ−q
′µ

q′.qi
, (5.61)
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to make the expressions compact. The gravitational correction to the the past

hard charge is given by

Blog(x̂) =

1

4π

√
2

1 + zz̄

∫ ∞
−∞

dv′
∫
S2

d2z′
qσεµ−
q.q̄′

q̄′[µ∂
′
q̄σ ] [− 1

2
h1
rr(−x̂′)j2

u(−x̂′) + 2e2A1
r(−x̂′)|φ1(−x̂′)2 ].

(5.62)

Classical part

Let us write down the gravitational term. The classical part of h1
rr calculated

using the retarded propagator is

class

h1
rr (x̂) = − 1

2πr

∫ ∞
−∞

du′
∫
d2z′ q.q′ T 2

uu(x̂
′, u′). (5.63)

Hence we get

< out|
[
Qhard , S

]
class
|in >

= −
∑

i,j;ηiηj=1

ei U
σµ(qi) qi[σ∂qµi ] (pj.qi) An +

∑
i

ηiei qiσ U
σµ

∑
j;ηj=1

pjµ An

(5.64)

Here, we have defined An =< out| S |in > .

Quantum part

Next we turn to the quantum contribution to h1
rr from (C.22) and (C.23).

Substituting in the expression for hard charge we get :

< out|
[
Qhard , S

]
quan
|in >

= − i
π

∑
i,j;i 6=j

ηiηjei U
σµ(qi) qi[σ∂qµi ] pj.qi log[

2(pj.qi)

m2
j

] An

+ i

∫
d2z′ D′2z̄ V

z(z′)

√
γ′zz̄

16π3

∑
i

ηi
ei ε

−. pi
q′.pi

∑
j

ηjq
′.pj log[

2(pj.q
′)

m2
j

] An. (5.65)

The terms that depend on mj are divergent. The two divergent terms in above

expression cancel each other. Thus, we get a finite action of the charge. The
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full quantum term is given by :

< out|
[
Qhard , S

]
quan
|in >

= − i
π

∑
i,j;i 6=j

ηiηjei U
σµ(qi) qi[σ∂qµi ]

[
pj.qi log(pj.qi) +

eiej
ωi

log(pj.qi)
]
An

+
i

π

∑
i

ηiei qiσ
∑
j

ηjŨ
σµ
j pjµ An. (5.66)

here we have defined

Ũσµ
j (qi) =

∫
d2z′ D′2z V

z(z, z′)

√
γ′zz̄

16π2

εσ−q
′µ

q′.qi
log(q′.pj). (5.67)

Collecting together (5.64) and (5.66) we get the complete action of the hard

charge and we can write down the full Ward identity including the purely

electromagnetic term. Thus, the S-matrix needs to satisfy following Ward

identity for a generic V z that lives on S2 :[
Qsoft(V z) , S

]
= − Chard(V z) S. (5.68)

Qsoft(V ) defined in (5.29) inserts soft modes of photon. We have :

Chard(V z) =
∑
i

ηiei qiσ U
σµ

∑
j;ηj=1

pjµ −
∑

i,j;ηiηj=1

ei U
σµ(qi) (pjµqiσ − pjσqiµ )

− i

π

∑
i,j;i 6=j

ηiηjei U
σµ(qi)

[ eiej
qj.qi

(qjµqiσ − qjσqiµ ) + (pjµqiσ − pjσqiµ ) log(−pj.pi)
]

3

+
i

π

∑
i

ηiei qiσ
∑
j

ηjŨ
σµ
j pjµ . (5.69)

Dependence on V z is via the U ’s defined in (5.61) and (5.67). Ward identity

involving V z̄ can be written down similarly.

The Sahoo-Sen soft theorem

Let us derive the Sahoo-Sen soft theorem from above Ward identity. To derive

negative helicity soft theorem we choose as before

V z(z, z′) =
√

2(1 + z′z̄′)
z − z′

z̄ − z̄′
, V z̄ = 0. (5.70)

3The first term in (5.64) produces a term that vanishes due to conservation of momenta.
This is the term discussed in (5.5).
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Performing the sphere (z′, z̄′) integral in (5.29), we get :

Qsoft
+ = −i lim

ω→0
ω ∂2

ω ω a−(ω, x̂). (5.71)

Next we will use (5.70) in the expression for hard charge given in (5.69). The

sphere integral in the expression for U (5.61) and for Ũ in (5.67) can be done

as earlier. We get :

Chard =
1

4π

∑
i

ηiei
ε.pi
pi.k

∑
j;ηj=1

k.pj −
1

4π

∑
i,j;i 6=j
ηiηj=1

ei
εµkρ
pi.k

(pρjp
µ
i − p

ρ
i p
µ
j )

− i

4π2

∑
i,j;i 6=j

ηiηjei
εµkρ
pi.k

[ eiej
pi.pj

(pρjp
µ
i − p

ρ
i p
µ
j ) + (pρjp

µ
i − p

ρ
i p
µ
j ) log[pi.pj]

]
+

i

4π2

∑
i

ηiei
ε.pi
pi.k

∑
j

ηjk.pj log pj.q . (5.72)

So, the Ward identity can be recast as :

lim
ω→0

ω ∂2
ω ω An+1

=

[
− i

4π

∑
i

ηiei
ε.pi
pi.k

∑
j;ηj=1

k.pj +
i

4π

∑
i,j;i 6=j
ηiηj=1

ei
εµkρ
pi.k

(pρjp
µ
i − p

ρ
i p
µ
j )

− 1

4π2

∑
i,j;i 6=j

ηiηjei
εµkρ
pi.k

[eiej
pi.pj

(pρjp
µ
i − p

ρ
i p
µ
j ) + (pρjp

µ
i − p

ρ
i p
µ
j ) log[pi.pj]

]
+

1

4π2

∑
i

ηiei
ε.pi
pi.k

∑
j

ηjk.pj log pj.q

]
An. (5.73)

This is exactly the Sahoo-Sen soft theorem (5.2) for massless scalar QED

including the gravitational correction given in (5.4). The Ward identity (with

V z̄ = 0) can be derived from the soft theorem by multiplying both sides of the

statement of soft theorem with
∫
d2z D2

z̄V
z(z)

√
γzz̄

16π2 . Hence we can conclude

that the Ward identity (5.68) is exactly equivalent to the Sahoo-Sen soft photon

theorem for massless scalar QED coupled to dynamical gravity.

Thus in this chapter, we have demonstrated that the 1-loop exact logω soft

photon theorem [91] can be recast as Ward identity of an asymptotic charge for

massless scalar QED in presence of dynamical gravity. We used the Q1 classical

law given in (5.1) to contruct the asymptotic charge. This asymptotic charge

is directly related to the dressing of fields due to long range forces. In presence
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of gravity, the new feature is that the soft photon also acquires a dressing due

to long range gravitational force and contributes to the asymptotic charge.

Upon quantisation the Q1 charge reproduces the full logω soft theorem

including the quantum corrections. This is inspite of the fact that the law (5.1)

is itself violated in the quantum theory. We expect that this prescription can

be used to define the asymptotic charges for higher loop order soft theorems as

well. Starting from the classical charges for m ≥ 2 given in (3.51), it is expected

that the quantised Qm charges should reproduce (a part of)4 the ωm−1(logω)m

soft modes including purely quantum terms.

4Beyond subleading order there are remainder terms that are not controlled by these
Qm-charges
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Chapter 6

Summary and Outlook

Recent investigations have shed light on rich structure of IR physics of gauge

theories and gravity. These results have been very elegantly cast as ’IR triangles’

by Strominger and his collaborators. Let us consider the first of these triangles

for electromagnetism.

In the soft limit, the leading 1
ω

-mode in QED amplitudes is universal as seen in

(2.53). This is the statement of the leading soft photon theorem and forms the

first corner of this triangle. The second corner is the velocity memory effect.

This is a classically observable effect in which the passage of electromagnetic

radiation waves produces a permanent shift in the velocity of a test charge. The

third corner is that of asymptotic symmetries. In this case we have large gauge

transformations that form a subgroup of the U(1) group that acts non trivially

on the physical states. These three corners bring out the universal features of

IR physics and are interrelated.
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In 2018 Sahoo and Sen derived the subleading soft photon theorem for loop

amplitudes [91] given in (2.54). The memory effect corresponding to this soft

theorem was discussed in [37]. So it seems likely that there exists a Strominger’s

triangle for this case as well.

In this thesis we have explored the third corner of above triangle.

Incorporating the effect of long range electromagnetic force on scattering

particles we showed that the classical radiative field obeys the Q1 conservation

law given in (3.25). While it seems natural to use above charges to reproduce

the logω soft theorem there are certain things that needed to be clarified. The

asymptotic behaviour of the gauge field is modified in the quantum theory due to

use of Feynman boundary condition. We discussed the purely quantum modes

in the Feynman solution which are absent in the classical radiative solution in

(4.38). These modes lead to quantum corrections to the asymptotic charges.

Incorporating the effect of long range electromagnetic force in (4.36), it was

shown that the Q1 conservation law is violated by the Feynman solution. The

Feynman solution satisfies a modified version of this law given in (4.68).
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Nonetheless we showed that the classical Q1 conservation law given in (5.19)

can be used to reproduce the full logω soft theorem. Upon quantisation the

Q1 charge gets contribution from an additional mode (absent in the classical

theory) which gives rise to the quantum corrections to the logω soft theorem.

We proved that the logω soft photon theorem for massless scalar QED coupled

to gravity is equivalent to the Ward identity corresponding to the Q1 charge.

This leads us to following IR triangle

It must however be noted that the nature or existence of a well defined symmetry

associated to this conservation law is not clear at this point. The action of the

soft part of Q1 charge is trivial on the asymptotic phase space that is normally

constructed (as described in Section 2.2). This phase space needs to be extended

so that the Q1 charge has a well defined action on the extended phase space.

This question is under investigation.
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We expect this story to hold for m > 1. In this thesis we have also shown

that the classical radiative field obeys the Q2 conservation law given in (3.47).

These charges are made up of O(e5) modes and hence are expected to be related

to a 2-loop soft photon theorem. And indeed such a theorem has been derived

in [95]. We expect an IR triangle for the m = 2 case with following corners.

The equivalence between the Q2-law and the ω(logω)2 soft theorem is also under

investigation.

We have proposed that the classical radiative field should satisfy an infinite

number of conservation laws as given in (3.51). We expect that upon quantisation

these Qm charges should get related to the universal ωm−1(logω)m modes in soft

expansion of loop amplitudes giving rise to an IR triangle at every m. This is

quite intriguing. We believe that this proposal for Qm-conservation law can

be proved for generic m by incorporating the effects of long range force in the

analysis of [75]. Several questions are in order about the conserved charges Qm.

Most importantly, it needs to be checked if indeed all the {Qm,m ≥ 1} charges

are independent or if they are related. What is the underlying symmetry? Do

these charges correspond to new kind of large gauge transformations? These

questions promise to bring out interesting aspects of low energy physics of QED.
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It is clear that infrared regime of loop level QED has a rich structure. This

structure needs to explored further. Similar questions should be probed in the

context of gravity and QCD to uncover the structure underlying infrared physics

of these theories at loop level.
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Appendix A

Appendix for Chapter 3

Perturbative solution

The retarded Green function for d-Alembertian operator has δ([x−xi(τ)]2).

We will find the solution of this delta function perturbatively in coupling e.

Here, xµi (τ) is the equation of trajectory that gets corrected as we go to higher

orders in e.

At zeroth order, we have free particles :

xµi = V µ
i τ + di.

Hence, the root of delta function δ([x− xi]2) is given by :

τ0 = −Vi.(x− di)−
[

(Vi.x− Vi.di)2 + (x− di)2
]1/2

. (A.1)

The sign of the square root has been chosen to ensure retarded boundary

condition i.e. t > ti. Now, let us study above expression in the limit r → ∞
with u finite. Around I+, using (2.2) we get

τ0|I+ = − u

q.Vi
+ O(1). (A.2)

Let us take the limit r → ∞ limit in (A.1) keeping v finite. Using (2.16), we

get :

τ0|I− = −2r Vi.q̄ + O(1).

Next we include the leading order effect of long range electromagnetic force.

We know that the first order correction to the trajectory is given by (3.7) :

xµi = V µ
i τ + cµi log τ + di.
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Using the corrected trajectory, the solution of delta function δ([x − xi(τ)]2) is

given by :

τ 2 + 2τVi.(x− di)− (x− di)2 = −2(x− di).ci log τ + c2
i (log τ)2. (A.3)

We have used Vi.ci = 0. Noting that cµ is O(e2), the RHS of above equation

can be treated as a perturbation. Hence we substitute the zeroth order solution

(A.1) in RHS of (A.3) that leads to following equation for τ :

τ 2 + 2τVi.(x− di)− (x− di)2 = −2(x− di).ci log τ0. (A.4)

We ignored the c2
i term as it is O(e4). Now, above equation is just a quadratic

equation in τ and the solution is given by :

τ1 = −Vi.(x− di)−
[

(Vi.x− Vi.di)2 + (x− di)2 − 2(x− di).ci log τ0

]1/2
.

(A.5)

We have used a subscript 1 to denote that it includes the first order perturbative

effects. We can expand the squareroot to O(e2) :

τ1 = −Vi.(x− di)−
[

(Vi.x− Vi.di)2 + (x− di)2
]1/2

+
(x− di).ci

X
log τ0 .

(A.6)

Here, we have defined X = [ (Vi.x−Vi.di)2 + (x−di)2 ]1/2. Thus, the first order

solution is the zeroth order solution plus a perturbation :

τ1 = τ0 +
(x− di).ci

X
log τ0 . (A.7)

Expanding around I+, we get :

τ1|I+ = − u

q.Vi
− q.ci

q.Vi
log u+ O(1). (A.8)

Thus, in u → ±∞ limit, the correction to τ0 is suppressed by log u
u

in addition

to the suppression due to e2 factor. Expanding (A.6) around I−, we get :

τ1|I− = −2r Vi.q̄ +
q̄.ci
Vi.q̄

log r + O(r0). (A.9)

Second order in perturbation

Let us repeat above steps after including second order effects of long range
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forces. The subsubleading correction to the trajectory is (3.32)

xiσ = Viστ + ciσ log τ + diσ + fiσ
log τ

τ
,

here fi ∼ O(e4) . Hence at O(e4), δ([x− xi(τ)]2) implies following equation for

τ :

τ 2 + 2τVi.(x− di)− (x− di)2 = −2(x− di).ci log τ1 − 2(x− di).fi
log τ1

τ1

+ c2
i (log τ1)2.

(A.10)

We have used the fact that Vi.ci = Vi.fi = 0. Here, we have substituted the

first order solution for the terms in the RHS. τ1 is given in (B.5). The second

order solution is

τ2 =− Vi.(x− di)−
[

(Vi.x− Vi.di)2 + (x− di)2 − 2(x− di).ci log τ1

− 2(x− di).fi
log τ1

τ1

+ c2
i (log τ1)2

]1/2
. (A.11)

We can expand the squareroot :

τ2 = τ0 + (x− di).ci
log τ0

X
− c2

i

(log τ0)2

2X
+ (x− di).fi

log τ0

Xτ 0
+ (x.ci − di.ci)2 (log τ0)2

2X3

+ (x.ci − di.ci)2 log τ0

τ0 X2
. (A.12)

We have used (B.6) for τ1 to derive above expression. And as before X =

[ (Vi.x− Vi.di)2 + (x− di)2 ]1/2. Now, let us study above expression in the limit

r →∞ with u finite. We have :

τ2|I+ = −u+ q.di
q.Vi

− q.ci
q.Vi

log
u

(−q.Vi)
+ q.fi

log u

u
− (q.ci)

2

q.Vi

log u

u
+ O(

1

u
).

(A.13)

The O(1
r
) term in τ2 starts at O(u2). This produces O(u

2

r3 )-term in Aµ (see

(3.39)). We see from (A.12) that there is a O( (log u)2

r
) term, this contributes to

the O( (log u)2

r3 )-term in Aµ. We can expand (A.12) in large r limit keeping v finite

to get :

τ2|I− = −2r Vi.q̄ +
q̄.ci
Vi.q̄

log r +
(q̄.ci)

2

(Vi.q̄)3

(log r)2

2r
− c2

i

q̄.Vi

(log r)2

2r
+ O(v).

(A.14)
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Perturbative solution

Let us study both the roots of the δ([x− xi]2) perturbatively in coupling e.

Here, xµi (τ) is the equation of trajectory that gets corrected as we go to higher

orders in e. At zeroth order, we have free particles :

xµi = V µ
i τ + di.

The roots of delta function δ([x− xi]2) are given by

τ±0 = −Vi.(x− di)∓
[

(Vi.x− Vi.di)2 + (x− di)2
]1/2

. (B.1)

τ+
0 satisifies retarded boundary condition while τ−0 satisifies advanced boundary

condition. Let us study above expression in the limit r →∞ with u finite. Thus,

around I+, using (2.2) we get :

τ+
0 |I+ =

u+ q.di
|q.Vi|

+ O(
1

r
), τ−0 |I+ = 2r|q.Vi|+ O(r0). (B.2)

Now we take r →∞ limit of (B.1) keeping v finite, using (2.16), we get :

τ+
0 |I− = −2r Vi.q̄ + O(r0), τ−0 |I− =

v + q̄.di
q̄.Vi

+ O(
1

r
).

Next we include the leading order effect of long range electromagnetic force.

We know that the first order correction to the trajectory is given by (4.28) :

xµi = V µ
i τ + Cµ

i log τ + di.



92 Appendix B. Appendix for Chapter 4

Using the corrected trajectory, the solution of delta function δ([x−xi]2) is given

by :

τ 2 + 2τVi.(x− di)− (x− di)2 = −2(x− di).Ci log τ + C2
i (log τ)2. (B.3)

Here we have used the fact that Vi.Ci = 0. Noting that Cµ
i is O(e2), the RHS

of above equation can be treated as a perturbation. Hence we substitute the

zeroth order solution (B.1) in RHS of (C.4) that leads to following equation for

τ :

τ 2 + 2τVi.(x− di)− (x− di)2 = −2(x− di).Ci log τ±0 . (B.4)

We ignored the C2
i term as it is O(e4). Now, above equation is just a quadratic

equation in τ and the solution is given by :

τ±1 = −Vi.(x− di)∓
[

(Vi.x− Vi.di)2 + (x− di)2 − 2(x− di).Ci log τ±0
]1/2

.

(B.5)

We have used a subscript 1 to denote that it includes the first order perturbative

effects. We can expand the squareroot to O(e2) :

τ±1 = −Vi.(x− di)∓
[

(Vi.x− Vi.di)2 + (x− di)2
]1/2 ± (x− di).Ci

X
log τ±0 .

(B.6)

Here, we have defined X = [ (Vi.x− Vi.di)2 + (x− di)2 ]1/2 and τ±0 are given in

(B.1). Expanding around I+, we get :

τ+
1 |I+ = −u+ q.di

q.Vi
− q.Ci

q.Vi
log u+ O(1),

τ−1 |I+ = 2rq.Vi +
q.Ci
q.Vi

log r + O(r0). (B.7)

Expanding (B.6) around I−, we get :

τ+
1 |I− = −2r Vi.q̄ +

q̄.Ci
Vi.q̄

log r + O(r0),

τ−1 |I− =
v + q̄.di
q̄.Vi

− q̄.Ci
q̄.Vi

log v + O(1). (B.8)
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Integrals in section 4.3

The indefinite integrals in the first term of (4.35) are simple.∫
dx [1 +

1

x
] [

1

x− τ+
0

− 1

x− τ−0
]

= ln
x− τ+

0

x− τ−0
+

1

τ+
0

log
x− τ+

0

x
− 1

τ−0
log

x− τ−0
x

. (B.9)

The indefinite integral in the second term of (4.35) is given by∫
dx log x

(x− τ−0 )2(x− τ+
0 )2

=
2

(τ−0 − τ+
0 )3

[
ln τ+

0 ln(x− τ+
0 )− ln τ−0 ln(x− τ−0 )

]
+

2

(τ−0 − τ+
0 )3

[
Li2

(
−x− τ

−
0

τ−0

)
− Li2

(
−x− τ

+
0

τ+
0

)]
− lnx

(τ+
0 − τ−0 )2

[ 1(
x− τ+

0

) +
1(

x− τ−0
)]

− 1

(τ+
0 − τ−0 )2

[ 1

τ−0
log

x

(x− τ−0 )
+

1

τ+
0

log
x

(x− τ+
0 )

]
(B.10)

Above integral is to be integrated from T to R for outgoing particles. Let us

consider the upper limit and show that the divergent terms (in the R → ∞
limit) indeed cancel and also find if there is any finite contribution.

2

(τ−0 − τ+
0 )3

[
ln τ+

0 lnR− ln τ−0 lnR + Li2

(
−R− τ

−
0

τ−0

)
− Li2

(
−R− τ

+
0

τ+
0

)]
+ O(

lnR

R
).

(B.11)

Let us use following property of the dilogarithm function (for x < −1) [98].

Li2(x) = −π
2

6
− 1

2
log(1− x) [2 log(−x)− log(1− x)] + Li2(

1

1− x
).

Thus we have

Li2

(
−R− τ

+
0

τ+
0

)
= −π

2

6
− 1

2
log(

R

τ+
0

) [2 log(
R

τ+
0

− 1)− log(
R

τ+
0

)] + Li2(
τ+

0

R
)

= −π
2

6
− 1

2
log2(

R

τ+
0

) + O(
1

R
).

Hence (B.11) is equal to

1

(τ−0 − τ+
0 )3

[ln2 τ+
0 − ln2 τ−0 ] + O(

lnR

R
).
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Now we can write down the result of the definite integral.∫ R

T

dx log x

(x− τ−0 )2(x− τ+
0 )2

=

2

(τ−0 − τ+
0 )3

[
ln τ+

0 ln
1

τ+
0 − T

− ln τ−0 ln
1

τ−0 − T
+

1

2
[ln2 τ+

0 − ln2 τ−0 ]
]

− 2

(τ−0 − τ+
0 )3

[
Li2

(
−T − τ

−
0

τ−0

)
− Li2

(
−T − τ

+
0

τ+
0

)]
+

lnT

(τ+
0 − τ−0 )2

[ 1(
T − τ+

0

) +
1(

T − τ−0
)]

+
1

(τ+
0 − τ−0 )2

[ 1

τ−0
log

T

τ−0 − T
+

1

τ+
0

log
T

τ+
0 − T

]
(B.12)

Hence we can write down the result of the both integrals in (4.35).

A∗asym
σ (x)

=
i

4π2

2n∑
j=n+1

ejVjσ
τ−0 − τ+

0

[
log

1

τ+
0 − T

− log
1

τ−0 − T

]
+

i

4π2

2n∑
j=n+1

ejCjσ
(τ−0 − τ+

0 )

[ 1

τ+
0

log
T

τ+
0 − T

− 1

τ−0
log

T

τ−0 − T
]

+
i

4π2

2n∑
j=n+1

2ejVjσ(x− dj).Cj
(τ−0 − τ+

0 )2
log T

[ 1

T − τ+
0

+
1

T − τ−0

]
+

i

4π2

2n∑
j=n+1

2ejVjσ(x− dj).Cj
(τ−0 − τ+

0 )2

[ 1

τ−0
log

T

τ−0 − T
+

1

τ+
0

log
T

τ+
0 − T

]
+

i

4π2

2n∑
j=n+1

4ejVjσ(x− dj).Cj
(τ−0 − τ+

0 )3

[
− ln τ+

0 ln(τ+
0 − T ) + ln τ−0 ln(τ−0 − T ) +

1

2
[ln2 τ+

0 − ln2 τ−0 ]
]

− i

4π2

2n∑
j=n+1

4ejVjσ(x− dj).Cj
(τ−0 − τ+

0 )3

[
Li2(−T − τ

−
0

τ−0
)− Li2(−T − τ

+
0

τ+
0

)
]

+ in.

(B.13)

Let us study the expansion of various terms in above expression. Using

(B.1), it is seen that

τ+
0 |I+ ∼ u [ 1 +

1

u
+

∞∑
0≤m≤n,
n=1

um

rn
].

τ−0 |I+ ∼ r + u+ r0u0 +
∞∑

0≤m≤n+1,
n=1

um

rn
.
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log τ−0 |I+ ∼ log r +
∞∑

m,n=0,
m≤n.

um

rn
.

log τ+
0 |I+ ∼ log u +

∞∑
n=0,

m=−∞,
m≤n.

um

rn
. (B.14)

1

(τ−0 − τ+
0 )

1

τ+
0

log
T

(T − τ+
0 )

∼ [log u+ O(1)]
∞∑

m=−∞,
m≤n,
n=1

um

rn
.

1

(τ−0 − τ+
0 )

1

τ−0
log

T

(T − τ−0 )

]
∼ [O(1) + log r]

∞∑
0<m<n−1,

n=2

um

rn
.

(x− dj).Cj
(τ+

0 − τ−0 )2

1(
T − τ+

0

) ∼ ∞∑
m=−∞,
m<n,
n=1

um

rn
.

(x− dj).Cj
(τ+

0 − τ−0 )2

1

τ+
0

log
T

(T − τ+
0 )

∼ [log u+ O(1)]
∞∑

m=−∞,
m≤n,
n=1

um

rn
.

(x− dj).Cj
(τ+

0 − τ−0 )2

1

τ−0
log

T

(T − τ−0 )
∼ [O(1) + log r]

∞∑
0<m<n−1,

n=2

um

rn
.

(x− dj).Cj
(τ+

0 − τ−0 )3
ln τ+

0 ln(T − τ+
0 ) ∼ 1

r2

[
(log u)2 [1 +

∞∑
0≤m≤n,
n=1

um

rn
] + [O(1) + log u]

[
1 +

∞∑
m=−∞,
m≤n,
n=0

um

rn
] ]
.

(x− dj).Cj
(τ+

0 − τ−0 )3
ln τ−0 ln(T − τ−0 ) ∼ 1

r2
[O(1) + (log r)2 + log r] [1 +

∞∑
0≤m≤n,
n=1

um

rn
].

(x− dj).Cj
(τ+

0 − τ−0 )3
Li2(−T − τ

+
0

τ+
0

) ∼ 1

r2

∑
n=0,

m=−∞,
m≤n.

um

rn
.

(x− dj).Cj
(τ+

0 − τ−0 )3
Li2(−T − τ

−
0

τ−0
) ∼ 1

r2

∑
m,n=0,
m≤n.

um

rn
. (B.15)

Terms relevant for section 4.4
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To find the coefficients of log u
r2 and log r

r2 modes in Aσ, we need to calculate

some lower order terms in the asymptotic expansion of (4.36) explicitly. Here

we list the asymptotic expansions of various quantities that appear in (4.36).

Around I+

Let us start with the retarded root

τ+
0 = −Vi.(x− di)−

[
(Vi.x− Vi.di)2 + (x− di)2

]1/2
.

Around future null infinity, we get using (2.2)

τ+
0 |I+ = −Vi.x+ Vi.di + rVi.q

[
1− 2

uV 0
i + Vi.di
rVi.q

+
(uV 0

i + Vi.di)
2

r2(Vi.q)2
+

(x− di)2

r2(Vi.q)2

] 1
2

= −u+ q.di
(Vi.q)

− u2

2r(Vi.q)
− u2V 0

i

r(Vi.q)2
− u2

2r(Vi.q)3
+ O(

u

r
). (B.16)

Hence we have

1

τ+
0

= −(Vi.q)

u

[
1− q.di

u
+ O(

1

u2
)− u

r
[
1

2
+

V 0
i

(Vi.q)
+

1

2(Vi.q)2
] + O(

u0

r
)
]
.

(B.17)

Next we turn to the advanced root.

τ−0 = −Vi.(x− di) +
[

(Vi.x− Vi.di)2 + (x− di)2
]1/2

.

Around future null infinity, we get using (2.2)

τ−0 = −Vi.x+ Vi.di − rVi.q
[
1− 2

uV 0
i + Vi.di
rVi.q

+
(uV 0

i + Vi.di)
2

r2(Vi.q)2
+

(x− di)2

r2(Vi.q)2

] 1
2

= −2rVi.q + 2uV 0
i + 2Vi.di +

u+ q.di
(Vi.q)

+ O(
1

r
).

1

τ−0
= − 1

2(Vi.q)r

[
1 +

uV 0
i + Vi.di
r(Vi.q)

+
u+ q.di
2r(Vi.q)2

+ O(
1

r2
)
]
. (B.18)

Also we can write down the asymptotic expansion of following term.

2

τ−0 − τ+
0

=
1

r|Vi.q|
[
1− 2

uV 0
i + Vi.di
rVi.q

+
(uV 0

i + Vi.di)
2

r2(Vi.q)2
+

(x− di)2

r2(Vi.q)2

]− 1
2 ,

= −1

r

1

Vi.q

[
1 +

1

r

uV 0
i

Vi.q
+

1

r

Vi.di
Vi.q

+
1

r

u+ di.q

(Vi.q)2
+ O(

1

r2
)
]
. (B.19)
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.

Around I−

We start with the advanced root .

τ−0 = −Vi.(x− di) +
[

(Vi.x− Vi.di)2 + (x− di)2
]1/2

.

Around past null infinity, we get using (2.16)

τ−0 = −Vi.x+ Vi.di + rVi.q̄
[
1− 2

vV 0
i + Vi.di
rVi.q̄

+
(vV 0

i + Vi.di)
2

r2(Vi.q̄)2
+

(x− di)2

r2(Vi.q̄)2

] 1
2

=
v − q̄.di
(Vi.q̄)

− v2

2r(Vi.q̄)
+

v2V 0
i

r(Vi.q̄)2
− v2

2r(Vi.q̄)3
+ O(

v

r
). (B.20)

Hence we have

1

τ−0
=

(Vi.q̄)

v

[
1 +

q̄.di
v

+ O(
1

v2
) +

v

r
[

1

2
− V 0

i

(Vi.q̄)
+

1

2(Vi.q̄)2
] + O(

v0

r
)
]
.(B.21)

Similarly for the retarded root we get

τ+
0 = −Vi.x+ Vi.di − rVi.q̄

[
1− 2

vV 0
i + Vi.di
rVi.q̄

+
(vV 0

i + Vi.di)
2

r2(Vi.q̄)2
+

(x− di)2

r2(Vi.q̄)2

] 1
2

= −2rVi.q̄ + 2vV 0
i + 2Vi.di −

v − q̄.di
(Vi.q̄)

+ O(
1

r
)

1

τ+
0

= − 1

2(Vi.q̄)r

[
1 +

vV 0
i + Vi.di
r(Vi.q̄)

− v − q̄.di
2r(Vi.q̄)2

+ O(
1

r2
)
]

(B.22)

and

2

τ−0 − τ+
0

=
1

rVi.q̄

[
1− 2

vV 0
i + Vi.di
rVi.q̄

+
(vV 0

i + Vi.di)
2

r2(Vi.q̄)2
+

(x− di)2

r2(Vi.q̄)2

]− 1
2 ,

=
1

r

1

Vi.q̄

[
1 +

1

r

vV 0
i

Vi.q̄
+

1

r

Vi.di
Vi.q̄

− 1

r

v − di.q̄
(Vi.q̄)2

+ O(
1

r2
)
]
. (B.23)
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Appendix C

Appendix for Chapter 5

Calculating the 1
u
-mode in A0

A

Dressing of scalars under long range forces lead to logarithmic modes in the

current :

jA = jlog
A

log r

r2
+
j2
A

r2
+ ... .

We also have :

jr = jlog
r

log r

r4
+
j4
r

r4
+ ... , ju =

j2
u

r2
+ jlog

u

log r

r3
+ ... .

For the Cartesian components of the U(1) current we have :

jµ =
j2
µ

r2
+ jlog

µ

log r

r3
+ ... . (C.1)

We will substitute above current source in :

Aσ(x) =
1

2π

∫
d4x′ δ( (x− x′)2) Θ(t− t′) jσ(x′). (C.2)

Let us take the limit r →∞ keeping u finite :

Aσ(u, r, x̂)

=
1

4πr

∫ ∞
−∞

du′
∫ ∞

0

dr′
∫
S2

d2z′

−q.q′
δ(r′ +

u− u′

q.q′
)
[
j2
σ(u′, z′) + jlog

σ (u′, z′)
log r′

r′
+ j3

σ(u′, z′)
1

r′
+ ...

]
,

=
1

4πr

∫ ∞
−∞

du′
∫
S2

d2z′

[
j2
σ(u′, z′)

−q.q′
+ jlog

σ (u′, z′)
log(u− u′)
u− u′

+
[j3
σ(u′, z′)− jlog

σ (u′, z′) log(−q.q′)]
u− u′

]
.

(C.3)

We are interested in studying the u-behaviour in u→∞ limit. In (C.3), the j2
σ

term contributes to u0 term as u → ∞. The next dominant fall off in u → ∞
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limit is log u
u

. It comes from the region u′ << u. Thus, we have :

Aσ(u, r, x̂) =
1

4πr

∫ ∞
−∞

du′
∫
S2

d2z′

[
j2
σ(u′, z′)

−q.q′
+ jlog

σ (u′, z′)
log u

u
+ ...

]
. (C.4)

First we rewrite the coefficient in retarded co-ordinates (Recalling that qµ =

(1, x̂).) :

jlog
σ = −qσjlog

u + γAB∂Bqσ j
log
A . (C.5)

jlog
u can be eliminated using the conservation equation of current :

jlog
u = ∂uj

log
r −DAjlog

A . (C.6)

Substituting in the expression for jlog
σ :

jlog
σ = −qσ∂ujlog

r +DA[qσ j
log
A ]. (C.7)

Thus, jlog
σ is a total derivative. When (C.7) is substituted in (C.4), theDA[qσ j

log
A ]

term vanishes trivially due to sphere integral. Using the logarithmic fall off of

the gauge field : Ar = A1
r

r
+ Alog

r
log r
r2 + ... in the expression of U(1) current we

get

jlog
r = −2e2Alog

r |φ1|2. (C.8)

Using (C.8) let us study the behaviour of jlog
r as |u| → ∞. Following the logic

of [63], we use the fall off φ ∼ 1
u1+ε as |u| → ∞1. Now, let us find the u-fall off

of Alog
r . Using the gauge condition we have : ∂uA

log
r = −Alog

u . Then Alog
u can be

related to the current by Maxwell’s equation : 2∂uA
log
u = j2

u. Hence, Alog
r can

have a O(u) term as |u| → ∞. Using these u-fall offs in the expression (C.8) we

get jlog
r → 0 as |u| → ∞. Thus, the first term in (C.7) also gives a vanishing

contribution. Hence the coefficient of log u
u

vanishes.

The next term falls off as 1/u and this is the term that is relevant for loop

level charge. Let us rewrite the 1/u-term in a nice form. To start with, we have

:

Aσ(u, r, x̂) =
1

4πru

∫ ∞
−∞

du′
∫
S2

d2z′
[
j3
σ(z′)− jlog

σ (z′) log(−q.q′)
]
.

1This is more restrictive than the fall offs discussed in Section 2.2 as given in [94]
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We manipulate j3
σ in similar fashion :

j3
σ = −qσj3

u + γAB∂Bqσ j
2
A = −qσ∂uj4

r − qσjlog
u +DA[ qσ j

2
A], (C.9)

and we get :

Aσ(u, r, x̂) =
1

4πru

∫ ∞
−∞

du′
∫
S2

d2z′
[
− q′σ[jlog

u + ∂′uj
4
r ] +

[
q′σ∂uj

log
r −D′A[q′σ j

log
A ]
]

log(−q.q′)
]
.

We again substitute for jlog
u using (C.6). Upto total sphere derivative terms,

above expression can be rewritten as :

Aσ(u, r, x̂)

=
1

4πru

∫ ∞
−∞

du′
∫
S2

d2z′
[
q′σ[D′Ajlog

A + jlog
A D′A log(−q.q′)]− q′σ ∂′u[jlog

r + j4
r − jlog

r log(−q.q′)]
]
.

We have already checked that jlog
r → 0 as |u| → ∞. Using similar logic it can

be shown that j4
r → 0 as |u| → ∞. We can rewrite the first term as

Aσ(u, r, x̂) =
1

4πru

∫ ∞
−∞

du′
∫
S2

d2z′ qµ
q′[σD

′Aq′µ]

q.q′
jlog
A , (C.10)

where, q[µ D
Aqν] = qµ D

Aqν − qν D
Aqµ. Finally we perform a co-ordinate

transformation (using (2.2)) to get :

A0,1
z̄ (u, x̂) =

1

4π

√
2

1 + zz̄

∫ ∞
−∞

du′
∫
S2

d2z′
εσ−q

µ

q.q′
q′[σD

′Aq′µ] j
log
A . (C.11)

Thus we have showed that the log dressing give rise to a 1/u term in A0
A such

that the coefficient is given by (C.11). The expression for Az can be obtained

from the expression for Az̄ by replacing ε− by ε+. The polarisation vectors are

given in (5.14).

Hard charge at past null infinity :

We recall that the charge at past is defined in terms of following mode log r
r2 FrA(x̂)|I−+

(5.1). To study this mode first we will expand Maxwell’s equations in large r

at finite v and take v → ∞ limit in the solution. Around I−, the gauge field
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equation �Aµ = −jµ is :

[2∂v∂r +
2

r
∂v +

2

r
∂r + ∂2

r +
D2

r2
] Aσ = −jσ.

Using the asymptotic expansion for current :

jµ = j2
µ

1

r2
+ jlog

µ

log r

r3
+ ... ,

we get :

Aµ = Alog 1
µ

log r

r
+ A1

µ

1

r
+ Alog 2

µ

log r

r2
+ ... .

The coefficients satisfy :

2∂vA
log 1
σ = −j2

σ,

−2∂vA
log 2
σ +D2Alog 1

σ = −jlog
σ .

The log r
r2 term in FrA comes from Alog 2

σ . Alog 1
σ is O(e) term and does not

contribute to FrA. So, we ignore it henceforth :

Alog 2
σ (x) =

1

2

∫ v

−∞
dv′

log

jσ(v′, x̂). (C.12)

In above solution, we have chosen the integration constant such that Alog 2
σ → 0

as v → −∞. With a co-ordinate transformation, we get :

F log 0
rz |I−+ = −1

2
∂z q̄

µ

∫ ∞
−∞

dv′
log

jµ(v′, x̂). (C.13)

This can be rewritten as :

F log 0
rz |I−+ = −1

2

∫ ∞
−∞

dv′
log

jz (v
′, x̂),

= −1

2

∫ ∞
−∞

dv′d2z′ δ2(x̂+ x̂′)jz(v
′,−x̂′),

=
1

4π

∫ ∞
−∞

dv′
∫
d2z′ D2

z

[qν∂z̄qµ
q.q̄′

q̄′[µD
′Aq̄′ν]

log

jA(v′,−x̂′)
]
.

In the last line we have used an identity. Above expression can be rewritten as

F log 0
rz |I−+ =

1

4π

√
2

1 + zz̄

∫ ∞
−∞

dv′
∫
S2

d2z′ D2
z

[εµ−qν
q.q̄′

q̄′[µD
Aq̄′ν] j

log
A (v′,−x̂′)

]
.

(C.14)
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The polarisation vectors are given in (5.14). q̄ has been defined in (2.16).

Quantum modes in h1
rr and A1

r

Let us start with the expression for
quan

A1
r given in (5.42) :

< out|
quan

A1
r (x) S |in >

= i < out|
∫

d2z′

16π3

[ε−.q
q′.q

∑
j

ηjej
ε+.pj
q′.pj

+
ε+.q

q′.q

∑
j

ηjej
ε−.pj
q′.pj

]
S |in > .

(C.15)

Using completeness relations for polarisation tensors :

ε−.q

q′.q

∑
j

ηjej
ε+.pj
q′.pj

+
ε+.q

q′.q

∑
j

ηjej
ε−.pj
q′.pj

=
∑
j

ηjej
q.pj

q.q′ q′.pj
. (C.16)

Thus, in (C.15), we need to do following integral :

I =

∫
d2z′

1

q.q′ q′.pj
=

∫
d2z′

∫ 1

0

dx
1

[q̂′.(xq̂ + (1− x)ωj q̂j)− x− (1− x)ωj]2
,

= 2π

∫ 1

0

dx
1

[x(1− x)ωj(1− q̂j.q̂)]
. (C.17)

But I is divergent. These are collinear divergences that appear as we are dealing

with massless particles. We will see that the diverging terms cancel and the

charge is finite. Let us regulate the integral by introducing a regulator mj by

making pj massive. Repeating previous steps for a massive pj, we get :

I =
4π

q.pj

∫ 1

0

dx
1

[2x(1− x) +
m2
j

q.pj
(1− x)2]

.

Thus, I still has divergence coming from x = 1. But we will see that x = 1

term vanishes due to conservation of momentum.

I =
4π

q.pj

m2
j − 2q.pj

(−2q.pj)

[
lim
x→1

log(1− x) + log[
m2
j

m2
j − 2q.pj

]
]

(C.18)

Let us study above expression in the limit when the regulator is taken to 0 :

lim
mj→0

I =
4π

q.pj

[
lim
x→1

log(1− x) + log[m2
j ] − log[−2q.pj] + ...

]
. (C.19)
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Here, ’...’ denote terms that vanish when regulator is set to 0. The infinite

piece is as follows :

< out|
quan

A1
r (x) S |in > |inf =

i

4π2

∑
j

ηjej

[
lim
x→1

log(1− x) + log[−
m2
j

2
]
]

=
i

4π2

∑
j

ηjej logm2
j . (C.20)

Here, the first piece vanishes due to conservation of charge. We could have

regulated the x = 1 divergence right from the beginning by introducing a mass

for the null vector qµ and gotten the same result for I. Thus, the infinite piece

is a constant. We have for the finite part :

< out|
quan

A1
r (x̂) S |in > = − i

4π2

∑
j

ηjej log(q.pj). (C.21)

Next we will repeat the calculation for the metric field. The infinite piece is as

follows [101]

< out|
quan

h1
rr (x) S |in > |inf =

i

2π2

∑
j

ηj(q.pj) log[m2
j ]. (C.22)

The finite piece is :

< out|
quan

h1
rr (x) S |in > = − i

2π2

∑
j

ηj(q.pj) log(q.pj). (C.23)

The soft charge in presence of gravity

Here we write down Maxwell’s equations in presence of gravitational fluctuations

given by (5.49).

Let us study the ∇µFuµ = ju equation. Expanding the equation around

r →∞, at O( 1
r2 ) we get :

∂u
2

F ru + ∂uD
BA0

B − j2
u = −γCB h0

Cr ∂uF
0
uB. (C.24)
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In the equation ∇µFAµ = 0, there appears a gravity correction even at O(1
r
) :

∂u
1

F rA − h1
rr ∂u

0

FAu = 0. (C.25)

This implies log r dressing ofAA that has also been discussed in (5.56). ∇µFAµ =

0 at O( 1
r2 ) gives :

2∂u
2

F rA − ∂A
2

F ru +DBF 0
AB − j2

A

= h1
rr ∂u

1

FAu + h2
rr ∂u

0

FAu − γCB h0
Cr ∂uF

0
AB − γCB h0

Cr DBF
0
Au − γBCh−1

ABF
0
uC

+ ∂uh
2
rr

0

FAu +
1

2
h1
rr

0

FAu −
1

2
γBCh−1

BCF
0
Au − γBCDBh

0
Ar F

0
uC −DBh0

Br F
0
Au − 2h1 ur F 0

Au.

(C.26)

We use above equation to substitute for ∂u
2

F rA in (5.20) i.e. in

Qsoft
+ = −

∫
du d2z′ V A∂u

[
u2∂2

u

2

F rA

]
, (C.27)

and we get (5.21) i.e.

Qsoft
+ = −1

2

∫
du d2z′ V A∂u

[
u2∂u[∂A

2

F ru −DBF 0
AB + j2

A]
]

+ ..., (C.28)

where ”...” refers to the gravity corrections that come from RHS of (C.26)

and (C.24). We will analyse them one by one. Out of the metric components

appearing in Maxwell’s equations only h2
rr and h−1

AB depend on u, rest of them

are u-independent. This simplifies the analysis for most of the terms.

Term h1
rr ∂uF

1
Au

Qcor
1 = −1

2

∫
du d2z V z∂u

[
u2∂u[h

1
rr ∂u

1

F uz]
]

+ z ↔ z̄. (C.29)

Using Bianchi identities we can simplify above expression to :

Qcor
1 = −1

2

∫
d2z V z

∫
du h1

rr ∂u

[
u2∂2

uD
2
zA

0
z̄

]
+ z ↔ z̄. (C.30)

The operator picks out difference between boundary values of log u piece of AA

which is 0.
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Term h2
rr ∂uF

0
uA

Qcor
2 = −1

2

∫
du d2z V A∂u

[
u2∂u[h

2
rr ∂u

0

F uA]
]
. (C.31)

h2
rr has atmost a O(u) term. Using the u-behaviour of

0

F uA we see that this

term is also 0.

Term γBCh−1
BA F 0

uC

Qcor
3 =

1

2

∫
du d2z V A∂u

[
u2∂u[γ

BCh−1
BA F

0
uC ]
]
.

This term vanishes trivially for classical fall offs of F 0
uC . For the quantum log u

fall offs we get 2 terms for A=z (the analysis is similar for A= z̄) :

Qcor
3 = −1

2

∫
du d2z V zγ z̄z ∂uh

−1
zz A0,log

z̄ +
1

2

∫
du d2z V zγ z̄z ∂uA

0
z̄ h
−1,log
zz .

(C.32)

Upto unimportant overall factors that are common to both terms, the first

integrand is : limω→0 ω[c+(ω) + c†−(ω)] limω→0 ω[a−(ω)− a†+(ω)]. Similarly the

second integrand is : limω→0 ω[c+(ω)− c†−(ω)] limω→0 ω[a−(ω) + a†+(ω)]. Thus,

Qcor
3 = 0.

Term h0
rC ∂uF

0
AB

Qcor
4 =

1

2

∫
du d2z V A∂u

[
u2∂u[γ

CB h0
Cr ∂u

0

FAB]
]
,

=
1

2

∫
du d2z γCB h0

Cr V
A∂u [u2∂2

u∂(BA
0
A)]. (C.33)

This is similar to (C.30) and vanishes by same logic. The analysis for rest of

the terms is exactly similar.



107

Bibliography

[1] F. Bloch and A. Nordsieck, “Note on the Radiation Field of the

electron,”Phys. Rev.52(1937) 54–59.

[2] M. Gell-Mann and M. L. Goldberger, “Scattering of Low-Energy Photons

by Particles of Spin 1/2”, Phys. Rev. 96, 1433 (1954).

[3] F. E. Low, “Scattering of light of very low frequency by systems of spin

1/2,” Phys. Rev. 96, 1428 (1954).

[4] F. E. Low, “Bremsstrahlung of very low-energy quanta in elementary

particle collisions,” Phys. Rev. 110, 974 (1958).

[5] E. Kazes, “Generalized current conservation and low energy limit of

photoninteractions,”Il Nuovo Cimento (1955-1965)13 no. 6, (Sep, 1959)

1226–1239.

[6] S. Saito, “Low-energy theorem for Compton scattering”, Phys. Rev. 184,

1894 (1969).

[7] T. H. Burnett and N. M. Kroll, “Extension of the Low Soft-Photon

Theorem”, Phys. Rev. Lett. 20, 86 (1968).

[8] J. S. Bell and R. Van Royen, “On the low-burnett-kroll theorem for soft-

photon emission”, Nuovo Cim. A60, 62 (1969).

[9] V. Del Duca, “High-energy bremsstrahlung theorems for soft photons”,

Nucl. Phys. B345, 369 (1990).

[10] S. Weinberg, “Photons and Gravitons in s Matrix Theory: Derivation of

Charge Conservation and Equality of Gravitational and Inertial Mass,”

Phys. Rev. 135, B1049 (1964).

[11] S. Weinberg, “Infrared photons and gravitons,” Phys. Rev. 140, B516

(1965).



108 BIBLIOGRAPHY

[12] D. J. Gross and R. Jackiw, “Low-Energy Theorem for Graviton

Scattering,” Phys. Rev. 166, 1287 (1968).

[13] R. Jackiw, “Low-Energy Theorems for Massless Bosons: Photons and

Gravitons,” Phys. Rev. 168, 1623 (1968).

[14] C. D. White, “Factorization Properties of Soft Graviton Amplitudes,”

JHEP 1105, 060 (2011) [arXiv:1103.2981 [hep-th]].

[15] F. Cachazo and A. Strominger, “Evidence for a New Soft Graviton

Theorem,” arXiv:1404.4091 [hep-th].

[16] B. U. W. Schwab and A. Volovich, “Subleading Soft Theorem in Arbitrary

Dimensions from Scattering Equations,” Phys. Rev. Lett. 113, no. 10,

101601 (2014) [arXiv:1404.7749 [hep-th]].

[17] J. Broedel, M. de Leeuw, J. Plefka and M. Rosso, “Constraining subleading

soft gluon and graviton theorems,” Phys. Rev. D 90, no. 6, 065024 (2014)

[arXiv:1406.6574 [hep-th]].

[18] Z. Bern, S. Davies, P. Di Vecchia and J. Nohle, “Low-Energy Behavior of

Gluons and Gravitons from Gauge Invariance,” Phys. Rev. D 90, no. 8,

084035 (2014) [arXiv:1406.6987 [hep-th]].

[19] C. D. White, “Diagrammatic insights into next-to-soft corrections,” Phys.

Lett. B 737, 216 (2014) [arXiv:1406.7184 [hep-th]].

[20] M. Zlotnikov, “Sub-sub-leading soft-graviton theorem in arbitrary

dimension,” JHEP 1410, 148 (2014) [arXiv:1407.5936 [hep-th]].

[21] C. Kalousios and F. Rojas, “Next to subleading soft-graviton theorem in

arbitrary dimensions,” JHEP 1501, 107 (2015) [arXiv:1407.5982 [hep-th]].

[22] A. Sen, “Soft Theorems in Superstring Theory,” JHEP 06 (2017) 113,

arXiv:1702.03934 [hep-th].

[23] A. Sen, “Subleading Soft Graviton Theorem for Loop Amplitudes,” JHEP

11 (2017) 123, arXiv:1703.00024 [hep-th].

[24] A. Laddha and A. Sen, “Sub-subleading Soft Graviton Theorem in Generic

Theories of Quantum Gravity,” JHEP 10 (2017) 065, arXiv:1706.00759

[hep-th].



BIBLIOGRAPHY 109

[25] F. Cachazo, S. He and E. Y. Yuan, “New Double Soft Emission Theorems,”

Phys. Rev. D 92, no. 6, 065030 (2015), [arXiv:1503.04816 [hep-th]].

[26] T. Klose, T. McLoughlin, D. Nandan, J. Plefka and G. Travaglini,

“Double-Soft Limits of Gluons and Gravitons,” JHEP 1507, 135 (2015),

arXiv:1504.05558 [hep-th].

[27] A. Volovich, C. Wen and M. Zlotnikov, “Double Soft Theorems in Gauge

and String Theories,” JHEP 1507, 095 (2015), [arXiv:1504.05559 [hep-th]].

[28] T. McLoughlin and D. Nandan, “Multi-Soft gluon limits and extended

current algebras at null-infinity,” JHEP08(2017) 124, arXiv:1610.03841

[hep-th].

[29] A. P. Saha, “Double Soft Theorem for Perturbative Gravity,” JHEP 1609,

165 (2016), [arXiv:1607.02700 [hep-th]].

[30] A. P. Saha, “Double Soft Theorem for Perturbative Gravity II: Some

Details on CHY Soft Limits,” Phys.Rev.D 96 (2017) 4, 045002,

arXiv:1702.02350 [hep-th].

[31] S. Chakrabarti, S. P. Kashyap, B. Sahoo, A. Sen and M. Verma,

“Subleading Soft Theorem for Multiple Soft Gravitons,” JHEP 1712, 150

(2017), [arXiv:1707.06803 [hep-th]].

[32] S. Chakrabarti, S. P. Kashyap, B. Sahoo, A. Sen and M. Verma, “Testing

Subleading Multiple Soft Graviton Theorem for CHY Prescription,” JHEP

1801, 090 (2018), [arXiv:1709.07883 [hep-th]]

[33] A. H. Anupam, A. Kundu and K. Ray, “Double soft graviton theorems

and Bondi-Metzner-Sachs symmetries,” Phys. Rev. D 97, no. 10, 106019

(2018), [arXiv:1803.03023 [hep-th]].

[34] J. Distler, R. Flauger and B. Horn, “Double-soft graviton amplitudes and

the extended BMS charge algebra,” JHEP 08 (2019) 021, arXiv:1808.09965

[hep-th].

[35] A. Laddha and A. Sen, “Gravity Waves from Soft Theorem in General

Dimensions,” JHEP 09 (2018) 105, arXiv:1801.07719 [hep-th].

[36] A. Laddha and A. Sen, “Logarithmic Terms in the Soft Expansion in Four

Dimensions,” JHEP 10 (2018) 056, arXiv:1804.09193 [hep-th].



110 BIBLIOGRAPHY

[37] A. Laddha and A. Sen, “Observational Signature of the Logarithmic

Terms in the Soft Graviton Theorem,” Phys.Rev.D 100 (2019) 2, 024009,

arXiv:1806.01872 [hep-th].

[38] A. Laddha and A. Sen, “A Classical Proof of the Classical Soft Graviton

Theorem in D ¿ 4,” Phys.Rev.D 101 (2020) 8, 084011, arXiv:1906.08288

[gr-qc].

[39] A. P. Saha, B. Sahoo and A. Sen, “Proof of the Classical Soft Graviton

Theorem in D=4,” JHEP 06 (2020) 153, arXiv:1912.06413 [hep-th].

[40] L. Susskind, “Electromagnetic Memory,” arXiv:1507.02584 [hep-th].

[41] L. Bieri and D. Garfinkle, “An electromagnetic analogue of gravitational

wave memory”, Class. Quant. Grav. 30 (2013) 195009, arXiv:1307.5098

[gr-qc].

[42] S. Pasterski, “Asymptotic Symmetries and Electromagnetic Memory”,

JHEP 09 (2017) 154, arXiv:1505.00716 [hep-th].

[43] K. S. Thorne, “Gravitational-wave bursts with memory: The

Christodoulou effect”, PRD, Volume 45, Number 2.

[44] V. B. Braginsky, K. S. Thorne, “Gravitational-wave bursts with memory

and experimental prospects,” Nature 327.6118, 123-125 (1987).

[45] M. Ludvigsen, “Geodesic Deviation At Null Infinity And The Physical

Effects Of VeryLong Wave Gravitational Radiation,” Gen. Rel. Grav.21,

1205 (1989)

[46] A. Strominger and A. Zhiboedov, “Gravitational Memory, BMS

Supertranslations and Soft Theorems”, JHEP 01 (2016) 086,

arXiv:1411.5745 [hep-th].

[47] R. Ferrari and L. E. Picasso, “Spontaneous breakdown in quantum

electrodynamics ”, Nucl. Phys.B31(1971).

[48] R. Ferrari and L. E. Picasso, “Dynamical consequences of spontaneous

breakdown of symmetries”, Nucl. Phys.B20(1970).

[49] R. A. Brandt and N. Wing-Chiu, “Gauge invariance and mass”, Phys. Rev.

D 10, 4198 (1974).



BIBLIOGRAPHY 111

[50] A. B. Borisov and V. I. Ogievetskii, “Theory of dynamical affine and

conformal symmetries as the theory of the gravitational field”, Theoretical

and Mathematical Physics volume 21 (1974).

[51] E.A.Ivanov, V.I.Ogievetsky, “Gauge theories as theories of spontaneous

breakdown ”, Lett.Math.Phys. 1 (1976) 309-313,

[52] F. Strocchi, “Spontaneous symmetry breaking in local gauge quantum field

theory; the Higgs mechanism”, Comm. Math. Phy. volume 56, (1977).

[53] A. Strominger, “Asymptotic Symmetries of Yang-Mills Theory,”

JHEP07(2014) 151, arXiv:1308.0589 [hep-th].

[54] A. Strominger, “On BMS Invariance of Gravitational Scattering,” JHEP

1407, 152 (2014), [arXiv:1312.2229 [hep-th]].

[55] T. He, V. Lysov, P. Mitra and A. Strominger, “BMS supertranslations

and Weinberg’s soft graviton theorem,” JHEP 1505, 151 (2015),

[arXiv:1401.7026 [hep-th]].

[56] T. He, P. Mitra, A. P. Porfyriadis and A. Strominger, “New Symmetries

of Massless QED,” JHEP 1410, 112 (2014), [arXiv:1407.3789 [hep-th]].

[57] D. Kapec, V. Lysov and A. Strominger, “Asymptotic Symmetries of

Massless QED in Even Dimensions,” Adv. Theor. Math. Phys. 21, 1747

(2017), [arXiv:1412.2763 [hep-th]].

[58] T. He, P. Mitra, and A. Strominger, “2D Kac-Moody Symmetry of 4D

Yang-Mills Theory,” JHEP10(2016) 137, arXiv:1503.02663 [hep-th].

[59] M. Campiglia and A. Laddha, “Asymptotic symmetries of QED and

Weinberg’s soft photon theorem,” JHEP07(2015) 115, arXiv:1505.05346

[hep-th]

[60] M. Campiglia and A. Laddha, “Asymptotic symmetries of gravity and soft

theorems for massive particles,” JHEP 1512, 094 (2015), [arXiv:1509.01406

[hep-th]].

[61] D. Kapec, M. Pate and A. Strominger, “New Symmetries of QED,” Adv.

Theor. Math. Phys. 21, 1769 (2017), [arXiv:1506.02906 [hep-th]].



112 BIBLIOGRAPHY

[62] V. Lysov, S. Pasterski and A. Strominger, “Low’s Subleading Soft Theorem

as a Symmetry of QED,” Phys. Rev. Lett. 113, no. 11, 111601 (2014),

[arXiv:1407.3814 [hep-th]].

[63] M. Campiglia and A. Laddha, “Subleading soft photons and large gauge

transformations,” JHEP 1611, 012 (2016) [arXiv:1605.09677 [hep-th]].

[64] E. Conde and P. Mao, “Remarks on asymptotic symmetries and the

subleading soft photon theorem,” Phys. Rev. D 95, no. 2, 021701 (2017),

[arXiv:1605.09731 [hep-th]].

[65] M. Campiglia and A. Laddha, “Sub-subleading soft gravitons: New

symmetries of quantum gravity?,” Phys. Lett. B 764, 218 (2017),

[arXiv:1605.09094 [gr-qc]].

[66] M. Campiglia and A. Laddha, “Sub-subleading soft gravitons and large

diffeomorphisms,” JHEP 1701, 036 (2017), [arXiv:1608.00685 [gr-qc]].

[67] E. Conde and P. Mao, “BMS Supertranslations and Not So Soft

Gravitons,” JHEP 05 (2017) 060, arXiv:1612.08294 [hep-th].

[68] T. He, D. Kapec, A. M. Raclariu and A. Strominger, “Loop-Corrected

Virasoro Symmetry of 4D Quantum Gravity,” JHEP 08 (2017) 050,

arXiv:1701.00496 [hep-th].

[69] A. Strominger, “Lectures on the Infrared Structure of Gravity and Gauge

Theory,” arXiv:1703.05448 [hep-th].

[70] G. Barnich and C. Troessaert, “Symmetries of asymptotically flat

4 dimensional spacetimes at null infinity revisited,” Phys. Rev.

Lett.105(2010) 111103, arXiv:0909.2617 [gr-qc].

[71] M. Campiglia, L. Coito and S. Mizera, “Can scalars have asymptotic

symmetries?,” Phys Rev D 97 046002, arXiv:1703.07885 [hep-th].

[72] H. Hirai and S. Sugishita, “Conservation Laws from Asymptotic

Symmetry and Subleading Charges in QED,” JHEP 1807, 122 (2018),

[arXiv:1805.05651 [hep-th]].

[73] M. Campiglia and R. Eyheralde, “Asymptotic U(1) charges at spatial

infinity”, JHEP 11 (2017) 168, arXiv:1703.07884 [hep-th].



BIBLIOGRAPHY 113

[74] H. Elvang, C. R. T. Jones and S. G. Naculich, ”Soft Photon and Graviton

Theorems in Effective Field Theory,” Phys. Rev. Lett. 118, 231601,

arXiv:1611.07534 [hep-th].

[75] M. Campiglia and A. Laddha, “Asymptotic charges in massless QED

revisited: A view from Spatial Infinity,” JHEP 05 (2019) 207,

arXiv:1810.04619 [hep-th].

[76] A. Laddha and P. Mitra, “Asymptotic Symmetries and Subleading Soft

Photon Theorem in Effective Field Theories,” JHEP 1805, 132 (2018)

[arXiv:1709.03850 [hep-th]].

[77] Y. Hamada and G. Shiu, “Infinite Set of Soft Theorems in Gauge-Gravity

Theories as Ward-Takahashi Identities,” Phys. Rev. Lett. 120, 201601,

arXiv:1801.05528 [hep-th].

[78] Z. Z. Li, H. H. Lin and S. Q. Zhang, “Infinite Soft Theorems from Gauge

Symmetry,” Phys.Rev.D 98 (2018) 4, 045004, arXiv:1802.03148v2 [hep-th].

[79] Z. Bern, S. Davies and J. Nohle, “On Loop Corrections to Subleading

Soft Behavior of Gluons and Gravitons,” Phys. Rev. D 90, 085015,

arXiv:1405.1015 [hep-th].

[80] S. He, Y. t. Huang and C. Wen, “Loop Corrections to Soft Theorems in

Gauge Theories and Gravity,” JHEP 12 (2014) 115, arXiv:1405.1410 [hep-

th].

[81] Z. Bern, S. Davies, P. Di Vecchia, and J. Nohle, “Low-Energy Behavior

of Gluons and Gravitons from Gauge Invariance,” Phys. Rev.D 90 no. 8,

(2014) 084035, arXiv:1406.6987 [hep-th].

[82] V.Chung “Infrared Divergence in Quantum Electrodynamics”, Phys. Rev.

140, B1110 (1965).

[83] T. W. B. Kibble, “Coherent Soft-Photon States and Infrared Divergences.

I. Classical Currents ”, J. Math. Phys.9, 315 (1968).

[84] P. P. Kulish and L. D. Faddeev “Asymptotic conditions and infrared

divergences in quantum electrodynamics”,Theor. Math. Phys.4,745 (1970).

[85] H. Hannesdottir and M. D. Schwartz, “A Finite S-Matrix”,

arXiv:1906.03271 [hep-th].



114 BIBLIOGRAPHY

[86] H. Hannesdottir and M. D. Schwartz, “S -Matrix for massless particles”,

Phys. Rev. D 101 (2020) 10, 105001, arXiv:1911.06821 [hep-th].

[87] B. Gabai and A. Sever, “Large Gauge Symmetries and Asymptotic States

in QED”, JHEP12(2016)095, arXiv:1607.08599 [hep-th].

[88] D. Kapec, M. Perry, A.-M. Raclariu, and A. Strominger, “Infrared

Divergences in QED, Revisited,” Phys. Rev. D 96 no. 8, (2017) 085002,

arXiv:1705.04311[hep-th].

[89] S. Choi and R. Akhoury, “BMS Supertranslation Symmetry Implies

Faddeev-Kulish Amplitudes,” JHEP 02 (2018) 171, arXiv:1712.04551 [hep-

th].

[90] N. Tomaras and N. Toumbas, “IR dynamics and entanglement entropy”,

Phys Rev D.101.065006, arXiv:1910.07847 [hep-th].

[91] B. Sahoo and A. Sen, “Classical and Quantum Results on Logarithmic

Terms in the Soft Theorem in Four Dimensions,” JHEP 02 (2019) 086,

arXiv:1808.03288 [hep-th].

[92] G. Grammer, Jr., D.R. Yennie “Improved treatment for the infrared

divergence problem in quantum electrodynamics” Phys. Rev. D8 (1973)

4332-4344

[93] M. Campiglia and A. Laddha, “Loop Corrected Soft Photon Theorem as

a Ward Identity,” JHEP 10 (2019) 287, arXiv:1903.09133 [hep-th].

[94] A. Ashtekar and M. Streubel. “Symplectic Geometry of Radiative Modes

and Conserved Quantities at Null Infinity.” Proc. Royal Society of London.

Series A, Mathematical and Physical Sciences, vol. 376, no. 1767, 1981,

JSTOR.

[95] B.Sahoo, ”Classical Sub-subleading Soft Photon and Soft Graviton

Theorems in Four Spacetime Dimensions”, arXiv:2008.04376 [hep-th].

[96] A. Herdegen, “Asymptotic structure of electrodynamics revisited,”

[arXiv:1604.04170 [hep-th]]

[97] T. He and P. Mitra, ”New Magnetic Symmetries in (d + 2)-Dimensional

QED”, arXiv:1907.02808[hep-th].



BIBLIOGRAPHY 115

[98] R. Morris, ”The Dilogarithm Function of a Real Argument”, Math. Comp.,

Vol. 33, No. 146 (1979).

[99] S. A. Bhatkar, “New Asymptotic Conservation laws for

Electromagnetism.”, JHEP 02 (2021) 82, arXiv:2007.03627 [hep-th].

[100] S. A. Bhatkar, “Asymptotic Conservation law with Feynman boundary

condition.”, accepted in PRD, arXiv:2101.09734 [hep-th].

[101] S. A. Bhatkar, “Ward identity for loop level soft photon theorem for

massless QED coupled to gravity”, JHEP 10 (2020) 110, arXiv:1912.10229

[hep-th].


	Acknowledgements
	Abstract
	Introduction and Goal
	Preliminaries
	The Q0 conservation law
	Asymptotic dynamics of massless scalars and photons
	Leading soft theorem and the Q0 conservation law
	Subleading soft photon theorem

	Asymptotic conservation laws in Classical electromagnetism
	The Q1 conservation law
	The Q2 conservation law
	Proposal for Qm conservation laws

	Asymptotic conservation law with Feynman boundary condition
	Radiative field at O(e) with Feynman propagator
	Effect of long range forces on asymptotic trajectories
	Radiative field at O(e3) with Feynman propagator
	The 1 conservation law

	The log soft theorem and the Q1 conservation law
	Dressing of the massless scalar field
	The classical asymptotic charge for massless scalar QED
	The Ward identity for massless scalar QED
	Corrections in presence of dynamical gravity

	Summary and Outlook
	Appendix for Chapter 3
	Appendix for Chapter 4
	Appendix for Chapter 5

