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Abstract

We study the e�ective horizon dynamics of black holes in large number of
dimensions(D). To do this,we construct SO(D − p − 2) invariant solutions
to Einstein's equations in large number of dimensions D in a power series ex-
pansion in 1

D−3
holding p �xed and �nite. We �nd that the horizon dynamics

of black holes in large D can be recast into a well-posed initial value problem
of dynamics of a non gravitational co-dimension one membrane propagating
in �at space. The dynamical degrees of freedom of this membrane are its
shape function and a divergence free velocity �eld. We �nd the equation of
motion governing the dynamics of this membrane upto �rst subleading order
in 1

D−3
.
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Chapter 1

Introduction

Einstein's equations
Rµν = 0 (1.1)

capture all space times dynamics. One of the most interesting solutions of
these equations are black hole solutions. Black holes feature a space-time
singularity (a point where the curvature becomes in�nite). However this
singularity is always behind an event horizon. The event horizon causally
separates the interior of the black hole from the exterior. Black holes have
been of great interest since Schwarzschild found the solution to (1.1). We
study black hole space-times in large number of dimensions.

We �nd that the Einstein's equations simplify to ordinary di�erential
equations in large D [1, 2, 3, 4, 5, 6, 7, 8] Let us try to see why this is the
case. Consider a Schwarzschild black hole in D dimensions

ds2 = −(1− (
r0

r
)D−3)dt2 +

1

(1− ( r0
r

)D−3)
dr2 + r2dΩ2

d−2 (1.2)

When D →∞ with r held �xed at a greater value than r0 then ( r0
r

)D−3 → 0
and the space becomes �at. To see what happens near the horizon let us set
r = r0(1 + R

D−3
). Now with R held �xed we see that

limD→∞(
r0

r
)D−3 = limD→∞

1

(1 + R
D−3

)D−3
= e−R (1.3)

Thus the spacetime is not �at in a very thin region of O( r0
D

) from the horizon.
We call this the membrane region.

We see that there are two length scales in the problem of black holes in
large D. A length scale of O(r0), the radius of the black hole and another
length O( r0

D
) , the thickness of the membrane region. Emparan, Suzuki and

Tanabe have done the quasinormal modes analysis of Schwarzschild large D
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[6]. They found that a few light modes with frequencies of O( 1
r0

) decouple

from an in�nite tower of heavy modes with frequencies of O(D
r0

) at each
angular momentum. The heavy modes are supported all the way to in�nity
but the light modes are supported only in the membrane region and decay
exponentially fast.

Whenever low energy modes decouple from high energy modes in physics
we expect to �nd an e�ective theory of the low energy by integrating out the
high energy modes. Here also we �nd an e�ective theory for the dynamics
of the membrane governed by these light modes. We call this theory of the
light modes con�ned in the membrane region the "Membrane paradigm".

We �nd that the problem of �nding the horizon dynamics of black holes in
largeD can be recast into a well posed initial value problem of the dynamics a
non gravitational codimension one membrane propagating in �at space time.
In other words solutions to Einstein's equations in large D are in one to one
correspondence to the solutions of the equation of motion for the auxiliary
membrane in �at space time. The details of this duality will become clear as
we describe our solutions.

The thesis is divided in the following way. We start with an ansatz metric
having a SO(D − p − 2) isometry which solves the Einstein's equations at
leading order in 1

D
. I will discuss the details of this ansatz in chapter 2. In

chapter 3, I will review the Einstein's equations in large D where the Einstein-
Hilbert action has a SO(D− p− 2) isometry. I will discuss the perturbation
procedure that we adopt to correct our leading order ansatz to subsequent
order in 1

D
. I will review the �rst order calculation in this section. I will also

discuss how we get the equation of motion for the membrane in the auxiliary
space in this chapter. In chapter 4, I will give details of the second order
calculation. In section 5, I will discuss how the quasinormal modes of the
Schwarzschild black hole can be obtained from our membrane equation. In
chapter 6, I will summarise the �nal results of this work and discuss future
directions.

This thesis is based on work contained in the original research paper
[9] and the preprint [10]. This thesis mainly follows the structure of the
paper [11]. The �rst of these papers written in collaboration with Sayantani
Bhattacharya, Ravi Mohan, Shiraz Minwalla and Arunabha Saha [9] will not
appear in any other thesis. Chapters 2, 3 ,4 and parts chapter 5 are based
on the material contained in this paper. The preprint is being written in
collaboration with Yogesh Dandekar, Subhajit Mazumdar, Shiraz Minwalla,
Arunabha Saha and is the basis for the material contained in chapter 4 and
second order corrections to quasinormal modes in chapter 5. The content of
chapter 4 may also appear in the PhD theses of Subhajit and Yogesh.

5



Chapter 2

The Collective Co-ordinate

Ansatz

2.1 Schwarzschild Metric in Kerr-Schild Co-ordinates

The metric for Schwarzschild black holes in D dimensions is given by

ds2 = −
(

1−
(r0

r

)D−3
)
dt2 +

dr2(
1−

(
r0
r

)D−3
) + r2dΩD−2 (2.1)

The above metric can be written in an ingoing Eddington-Finklestein coor-
dinate system as

ds2 = 2dvdr −
(

1−
(r0

r

)D−3
)
dv2 + r2dΩD−2 (2.2)

using the coordinate transformation

dv = dt+
dr(

1−
(
r0
r

)D−3
)

We can now go to the Kerr-Schild form of the metric by using the coordinate
transformation dv = dT + dr to get the metric

ds2 = −dT 2 + dr2 + r2dΩD−2 +
(r0

r

)D−3

(dT + dr)2

= ds2
flat +

(r0

r

)D−3

(dT + dr)2 (2.3)
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The metric (2.3) is that of a Schwarzschild black hole at rest with velocity
uµ = (−1, 0, ..). We can boost the black hole with velocity u to get the metric

ds2 = ds2
flat +

OMON

ψD−3
dxMdxN

O = n− u, u = constant, u · u = −1, ψ =
r

r0

,

r2 = (ηMN + uMuN)xMxN , n = r0dψ, and n.u = 0 (2.4)

All the dot products above are with respect to �at space. The velocity �eld
also obviously satis�es

∇.u = 0 (2.5)

The advantage of writing the metric in this form is that it gives us a way to
view the one form �elds in the �at space , ie ηµν of (2.3).

2.2 Collective Co-ordinate Spacetimes from Boosted

Black Holes

We guess an ansatz metric from the form of the boosted Schwarzschild metric
in the Kerr-Schild co-ordinates above. Our metric is in terms of

• A function B in the D dimensional space-time. The surface B = 0
plays a special role in our ansatz as it corresponds to the horizon in the
black hole space time.

• The normal to this surface, given by n = dB, the extrinsic curvature
of this surface given by KAB = ∇AnB and the trace of the extrinsic
curvature given by K = ∇An

A.

• A velocity �eld u on this surface B = 0.

To get the zeroth order ansatz we generalise the vector �elds, u and n to be
arbitrary functions . Our metric is then

ds2 = ds2
flat +

OMON

ψD−3
dxMdxN

O = n− u, ψ = 1 +
K

D − 3
B, u.u = −1, u.n = 0 (2.6)

We demand that u and n satisfy the same constraints on the surface B = 0 as
they do for the Schwarzschild black hole. The velocity �eld is constrained by
∇.u = 0 with the covariant derivative on the surface B = 0. Our de�nition
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for ψ is satis�ed by the ψ de�ned in (2.4) for the Schwarzschild black hole at
leading order. For Schwarzschild black holes

B = r − r0, K =
D − 2

r0

ψ = 1 +
D − 2

(D − 3)r0

(r − r0) =
r

r0

(at leading order in D)
(2.7)

The surface B = 0 is assumed to be a smooth timelike submanifold of the
D dimensional Minkowski space. The surface B = 0 or equivalently ψ = 1
will be referred to as the membrane henceforth. The membrane separates its
interior ie B < 0 from its exterior ie B > 0. The function B is chosen so that
B > 0 is a connected spacetime and includes spatial in�nity as well as I+

and I−. The world volume B = 0 need not be connected.
The spacetimes (2.6) have the following properties.

• 1. The static black holes (2.3) are special cases of (2.6), upto corrections
of order 1/D with the ψ and u functions given as in (2.4). In these
special cases ψ = 1 is the black hole event horizon.

• 2.The membrane surface ψ = 1 is a null submanifold of the metric (2.6)
for a general spacetime of this form. This can be easily veri�ed.This
submanifold may be identi�ed with the spacetime event horizon when
(2.6) settles down to a stationary black hole at late times (as we will
assume). 1

• 3. Consider a point xµ0 on the membrane (ψ = 1) of the spacetime
(2.6). Let uµ0 and K0 denote the velocity and trace of membrane ex-
trinsic curvature at that point. Comparing with (2.4), we will see in
subsection 3.4.2 below that a patch of size of order 1

D
centered about

xµ0 is identical, at leading order in D, to the metric of a patch centered
about the membrane of a Schwarzschild hole of radius (D − 2)/K and
boost velocity uµ0 .

• 4. It seems plausible from point (3) above that every patch centered
about the membrane of the con�guration (2.6) obeys the Einstein equa-
tions at leading order in 1

D
. In subsection 3.4.2 below we demonstrate

that this is the case provided the spacetime (2.6) enjoys an SO(D−p−2)
isometry for any p that is held �xed as D is taken to in�nity.

1The dissipative nature of the membrane equations of motion we derive below suggests
that all solutions reduce to stationary solutions at late times.
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• 5. The deviation of the metric (2.6) from ds2
flat scales like e

−D(ψ−1). It
follows (2.6) approaches �at space exponentially fast for ψ− 1� 1/D.

• 6. Combining (4) and (5) above it follows that (2.6) also obeys the Ein-
stein equations at leading order in 1/D (or better) everywhere outside
its event horizon.

• 7.For 1− ψ � 1 the equations of motion do not admit solutions. But
since this lies inside the event horizon which is causally disconnected
from the outside we do not care about this region.

The metric (2.6) is made by stitching patches of event horizon of of length
1/D of the Schwarzschild black hole with arbitrary radius and boost velocity.
The only constraint is that the radius and the velocity �eld varies smoothly
over the horizon. Thus the metric (2.6) solves the Einstein's equations at
leading order in 1/D everywhere outside the horizon.

2.3 Subsidiary constraints on ψ and u

We use the metric (2.6) as the starting point for perturbative expansion of the
solutions to Einstein's equations in a power series in 1

D−3
.2 These spacetimes

are parameterised by two functions ψ and u. As we have seen the space time
becomes �at for ψ − 1 � 1, the functions which agree on the surface ψ = 1
and di�er only at O( 1

D
) serve as equivalent starting point for perturbation

theory. Di�erent evolutions of these functions away from the surface ψ = 1
gives di�erent perturbation expansions.

We demand that on the surface u and n satis�es the same condition as
those satis�ed by the u and n of the Schwarzschild metric.

n.n|B=0 = 0, u.u|B=0 = 0 u.n|B=0 = 0, ∇M .u = 0 (2.8)

where ∇M is the covariant derivative taken on the membrane. To determine
how they evolve o� the surface we choose a set of completely geometric rules
which makes the result of our perturbation theory simpler.

n.∇n = 0, n.∇u = 0 (2.9)

The constraints (2.9) tell us that n and u are parallely transported along n
o� the surface. This makes sure that the constraints (2.8)(except ∇M .u = 0)
are satis�ed everywhere outside the membrane.

2We �nd it convenient to use 1
D−3 rather than 1

D as this makes our metric corrections
simpler.
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2.4 Fixing Co-ordinate Rede�nition Invariance

In the next section we will describe the perturbative procedure that we used
to obtain the solutions to Einstein's equations upto O( 1

D
)2. We need to

�x co-ordinate rede�nition invariance to obtain unambiguous solutions to
Einstein's equations. We can write our solution as

gMN = ηMN + hMN (2.10)

We �x the co-ordinate rede�nition invariance by demanding

OMhMN = 0 (2.11)

where O = n − u. Note that the raising and lowering of indices are done
using ηMN . For our leading order ansatz (2.6),

hMN =
OMON

ψD−3
(2.12)

Since O.O = 0, where the dot is with respect to the �at metric the above
condition (2.11) is automatically satis�ed at the leading order.

2.5 Perturbation Theory

We want our metric to solve Einstein equations not only at leading order in
1

D−3
but also at subsequent orders. We expand our metric in a power series

in 1
D−3

so that at each order they solve the Einstein's equations. Our metric
can be written as

gMN = ηMN + hMN

hMN =
∞∑
n=0

h
(n)
MN

(D − 3)n

h
(0)
MN =

OMON

ψD−3
(2.13)
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Chapter 3

Perturbation Theory Assuming

SO(D − p− 2) isometry

3.1 Einstein's Equations in SO(D−p−2) Sector
We take the large D limit assuming a SO(D− p− 2) isometry of the metric
where D → ∞ while holding p �xed. We do this to �nd out how di�erent
quantities scale when we take the D → ∞ limit. Though we assume this
large isometry our �nal answers turn out to be independent of p.

In our intermediate calculations we assume our metric to be of the fol-
lowing form

ds2 = gµν(x
µ)dxµdxν + eφ(xµ)dΩ2

d

d = D − p− 3, µ = 1, 2, 3 . . . p+ 3 (3.1)

We derive the equations of motion for the above gµν(x
µ) and the scalar �eld

φ(xµ) from the Einstein-Hilbert action

S =
1

16πG

∫
dDx

√
g̃R̃ (3.2)

where
g̃= Determinant of the metric in the full D dimensional spacetime
R̃= Ricci Scalar in the full D dimensional spacetime
Substituting (3.1) in (3.2) we get the e�ective Lagrangian

S =

∫
dp+3x

√
ge

dφ
2

(
R + d(d− 1)e−φ +

d(d− 1)

4
(∂φ)2

)
(∂φ)2 = gµν(∂µφ)(∂νφ) (3.3)
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Varying the above action with respect to φ and Rµν we get the following
equations of motion.

e−φ(d− 1)− d

4
(∂φ)2 − 1

2
∇2φ = 0

Rµν =
d

2
∇µ∇νφ+

d

4
∇µφ∇νφ (3.4)

3.2 Setting up the Perturbative Computation

3.2.1 Convenient Co-ordinates for Flat Space

The metric (2.6) is completely determined in terms of the vector �eld u and
the function ψ. These functions live in D dimensional �at space. To study
SO(D − p − 2) invariant con�gurations, the following co-ordinates for �at
space are useful

ds2 = ηαβdx
αdxβ + dS2 + S2dΩ2

d

i = 1, 2 . . . p+ 1, d = D − p− 3 (3.5)

The SO(D-p-2) isometry in these co-ordinates imply that the functions u and
ψ which determine the metric are functions of (wa, S) = xµ only.

3.2.2 Auxiliary Embedding Space

The metric (3.5) describes �at RD as '�bration' of Sd over p+ 3 dimensional
base metric of the form

ds2
flat = ηαβdx

αdxβ + dS2 = ηµνdx
µdxν (3.6)

The membrane world volume with SO(D−p−2) symmetry can be thought of
as (p+2 dimensional) co-dimension one surface in the base space((3.6)) with
each point �bred over a d dimensional sphere. Consequently the functions
u and ψ can be thought of as vector �elds and functions in this base space
which are then extended to the full D dimensional space with a SO(d+1)
symmetry in the obvious way. The auxiliary space (3.6) does not have D.
When we formulate the perturbation theory with u and ψ moving in the
auxiliary space, the factors of D are manifest. This allows us to have a clean
formulation of the perturbation theory in this language.

The covariant derivatives of the �elds in the auxiliary space (3.6) do not
agree with the covariant derivatives in the D dimensional embedding space
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(3.5).1 We have given a dictionary between the covariant derivatives in (3.6)
and the covariant derivatives in (3.5) in (�ll up whereever you are giving the
dictionary). Though we do our calculation in this auxiliary space we can
recast our �nal result in the full D dimensional space.

3.2.3 Zooming into patches

In this section we discuss how we can take in interesting D → ∞ limit for
our SO(D-p-2) con�gurations. To do this, we look at the Einstein's equations
(3.4) for our con�gurations. We see that the derivatives of φ are weighted
with an extra factor of d as compared to the derivatives of gµν.

2 Thus there
are two length scales in the problem as discussed in the introduction. One is
of O( 1

D
) over which the metric gµν varies and the other is of O(1) over which

φ varies.
We want to employ a co-ordinate system in which both gµν and φ are of

O(1) but derivatives of g are of order d while the derivatives of φ are of order
unity. To do this, we zoom into patches of length 1

D−3
on the surface B = 0.

We view our manifoldB = 0 as the union of such patches. We zoom into a
point xµ0 , and use the following co-ordinates and the rescaled metric in the
patch centered about xµ0 ,

xµ = xµ0 + αµa
ya

D − 3

Gab = D2gab (3.7)

gµν = (D − 3)2αaµα
b
νgab = αaµα

b
νGab

χa = (D − 3)∇aφ = αµa∇µφ (3.8)

In these scaled co-ordinates the Einstein's equations are

1

2
∇aχ

a = e−φ
d

D − 3
− d

4(D − 3)
χ2

Rab =
d

2(D − 3)
∇aχb +

d

4(D − 3)2
χaχb (3.9)

All quantities(Christo�el symbols, curvatures) are constructed out of metric
Gab. We look for solutions of the equations (3.9) in a perturbative expansion
in 1

D−3
. The solutions of the Einstein's equations in each patch can be joined

smoothly to give the metric for the entire manifold.

1This is because of the contribution from the Christo�el symbol ΓSAB where A,B are
in the angular directions of the d-sphere in the space (3.5) which is not there in the space
(3.6).

2 The term d∇µ∇νφ has a term which is Γαµν∂αφ, so at leading order this term should
be thought of as one φ derivative and one metric derivative.
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3.3 Data at First Order

The di�erent quantities B and u are expanded in Taylor expansion in the
patch centred about the point xµ0 . This expansion is in the auxiliary space
discussed in 3.2.2 where covariant derivatives are replaced by partial deriva-
tives.

B = B(x0) + nµδX
µ +

1

2
∂µnνδX

µδXν +
1

6
∂α∂µ∂νBδX

µδXνδXα + . . .

uµ = uµ(x0) + ∂νuµδX
ν +

1

2
∂ν∂αuµδX

νδXα + . . . (3.10)

where

δXµ =
yµ

D
, µ = 1, 2, 3 . . . p+ 3 (3.11)

are the patch-co-ordinates in the auxiliary space.

The data at zeroth order is uµ(x0) and nµ(x0). 3. The data at �rst order
are ∂νuµ and ∂µnν . Since the evolution of the n is given by n.∇n = 0,
∇νnµ = Kµν the extrinsic curvature of the surface B = 0.

There are three special directions nµ,uµ and dS. The rest of the directions
are equivalent, so we can classify our data according to how they transform
under SO(p). However all this data is not independent since they are subject
to the constraints (2.8).

3.3.1 Independent Data in the Scalar Sector

From Kµν we can have scalars if both the indices are in the scalar directions
and from the trace of the tensor when both µ and ν are in the p directions.
However, one of the scalar directions do not exist since n.K = 0. So we get
2.3
2

+1 = 4 scalars from Kµν since it is symmetric. The indices of ∂µuν are not
symmetric. From the constraints u.n = 0 and uµ∂νuµ = 0 we see that when
ν index is along n or u, it does not give us independent data. The constraint
∇.u = 0 gives us = O( 1

D
as shown in , so ∂µuν = O( 1

D2 ) and contributes to
the next order. The only scalar we get is from the trace of the tensor when
both the indices are in the p directions.

3Though nµ appears with a factor of 1
D in the expansion (3.10), in the metric B

appears in 1
ψD−3 where ψ = 1 + K

D−3B.
K

D−3 is O(1) at leading order as is shown in .

limD→∞
1

ψD−3 = e−R where R = K
D−3nµy

µ and yµ are the patch co-ordinates. So nµ
contributes to the zeroth order
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Table 3.1: Independent Data in 3 Symmetry Channels
Scalars Vectors Tensors

S1 = dS.K.dS V1 = uαKαβP
β
µ T1 = P µ

αP
ν
β (Kµν − ηµν

p
PγθK

γθ)

S2 = u.K.u V2 = (dS)αKαβP
β
µ T2 = P µ

αP
ν
β (∂(µuν) − ηµν

p
Pγθ∂

γuθ)

S3 = u.K.dS V3 = uα∂αuβP
β
µ T3 = ∂[µuν]

S4 = P µνKµν V4 = dSα∂αuβP
β
µ

S5 = P µν∂µuν

3.3.2 Independent Data in the Vector Sector

We will get a vector from Kµν if one of the indices is along the scalar direc-
tions. Since n.K = 0, the scalar indices can only be along u and dS which
gives us two vectors from Kµν . As discussed in 3.3.1, in ∂µuν the ν index
cannot be in the scalar directions, so they are always vector index. The µ
index in the scalar direction will give us vectors but n.∇u = 0. So µ can
only be along u or s which gives us 2 vectors from ∂µuν .

3.3.3 Independent Data in the Tensor Sector

There are no constraints in the tensor sector so we get one symmetric traceless
tensor from Kµν , one symmetric traceless tensor from ∂µuν and one anti-
symmetric tensor from ∂µuν .

The table 3.1 lists all the independent data in the 3 symmetry channels
and P µν = ηµν +uµuν −nµnν − (dS−nsn)µ(dS−nsn)ν

1−n2
s

is the projector orthogonal
to u, n and dS.

3.4 Solving the Einstein's Equations

3.4.1 Choice of Patch Co-ordinates

As mentioned in 3.2.3, we solve the Einstein's equations in each patch of
length 1

D
and then sew them together to get a smooth solution. We need to

make a local choice of co-ordinates to write our Einstein's equations in each
patch. We have already noted that there are three distinguished one form
�elds, nµ, uµ and dS. From these, we construct two one form �elds which
we are going to use as the basis for our metric,

Oµ = nµ − uµ
dX = dS − nSnµ (3.12)
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Let Y i be p- one form �elds such that

Y i.dX = Y i.n = Y i.O = 0, Y i.Y j = δij (3.13)

Let {xµ0 , S0} be a point on the surface B = 0 about which the patch is
centered. We solve the Einstein's equations in the following co-ordinates in
this patch

R = (D − 3)(ψ − 1)

V = (D − 3)(xµ − xµ0)Oµ(x0)

X = (D − 3)(xµ − xµ0)Xµ(x0)

yi = (D − 3)(xµ − xµ0)Y i(x0) (3.14)

3.4.2 The Perturbative Metric in the Patch

In the co-ordinates (3.14), the metric (2.6) at zeroth order looks like

ds2 = 2
S0

n0
S

dV dR− (1− e−R)dV 2 +
dX2

1− (n0
S)2

+

p∑
i=i

dyidyi (3.15)

where n0
S = dS.n|xµ=xµ0

. We call this the black brane metric. The Schwarzschild

metric (2.1) with radius n0
s

S0
when expanded in a patch about a point {xµ0 , S0}

on the membrane looks the same. It is easily veri�ed that (3.15) satis�es the
equations of motion (3.4) at leading order. Also each little patch of the hori-

zon is looks like the Schwarzschild metric with radius n0
s

S0
and boost velocity

u(x0) at leading order.
Our ansatz metric (2.6) no longer satis�es the Einstein's equations at �rst

order when the �elds B and u are Taylor expanded. In order to satisfy the
equations (3.4), we add �rst order corrections to (2.6) that are allowed by
the guage condition (2.11)

ds2 = (ds2)0 +
1

D − 3
(HV V dV

2 + 2HV XdV dX +HXXdX
2 +Hiidy

idyi

+2HV idV dy
i + 2HXidXdy

i +Hijdy
idyj)

φ = 2lnS0 +
1

(D − 3)2
δφ2 (3.16)

In the Einstein's equations (3.4), χ = D − 3(∂φ) appears; if φ had a �rst
order correction it would enter the equations of motion at zeroth order and
our ansatz (2.6) would no longer be a solution of (3.4) at zeroth order. So
the correction to φ starts at 1

(D−3)2
and enters the equations of motion at
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the �rst order. In addition to the four scalars in the metric we also have to
determine δφ2.

The equations that we have to solve schematically look like

Hv(1) = s(1) (3.17)

where H is some di�erential operator, h(1) represents the metric corrections
and the correction to φ in (3.16) and s(1) represents the sources. The inde-
pendent data listed in 3.1 forms a basis for the sources. The sources arise
from the Taylor expansion of the �elds n, u and ψ in (2.6). The equations
(3.4) also has an 1

D−3
expansion and the black brane metric (3.16) does not

solve the equations at the �rst order. As discussed in the introduction, the
normal to the membrane is the direction in which the metric varies very fast.
The derivative of the metric in the normal direction(which is captured by the
R co-ordinate should) should be of D times the derivatives in the directions
tangent to the membrane. In other words when we move distances of O( 1

D
)

from the point xµ0 in the patch, the metric remains constant in the directions
tangent to the membrane and only changes in the directions normal to the
membrane. This implies that

v(1) = v(R,
V

D
,
X

D
,
yi

D
) (3.18)

where R and the other scaled co-ordinates are as de�ned in (3.14). Since
these corrections are already at order 1

D−3
, the derivatives in the V,X, yi

contribute at the next order. So di�erential operator H is a operator only in
the variable R. The equations (3.4) become ordinary di�erential equations
in the variable R which can be easily solved.

Though the source functions s(1) arise from the Taylor expansion of n, u
and ψ in (2.6), they are not explicit functions of V,X, yi. There is a simple
reason for this. the locality of the Einstein's equations imply that the s(1)

contains the derivatives of the functions n, u and ψ only at order 1
D
. The

derivatives of n, u and ψ come from the Taylor expansion of these about the
point xµ0 and the terms proportional to V,X, yi are only order 1

D2 or smaller.

3.4.3 Equations in the Three symmetry channels

As we have seen that the metric corrections (3.16) contains 5 unknown scalar
functions, 2 unknown vector functions and 1 unknown tensor function.(The
scalar, vector and tensor are determined by their transformation under SO(p)
rotations). Since the black brane metric (3.15) is invariant under SO(p)
isometry we expect the �rst order corrections to preserve this isometry. the
equations in these three sectors decouple.
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Tensor

The equation in the tensor sector is turns out to be a single di�erential
equation for variable Tij(R)

∂R((1− e−R)∂RTij) = 0 (3.19)

This equation is solved easily and Tij is 0 from boundary conditions that are
discussed later.

Vector Sector

There are 3 coupled vector equations

ERi = 0, EV i = 0

EXi = 0

for two variables HV i and HXi. The combination of equations

∂R

[(
S0

n0
S

)
EV i + f0(R)ERi

]
+

[(
S0

n0
S

)
EV i + f0(R)ERi

]
+

[
1− (n0

S)2

S0

]
EXi = 0,

where f0(R) = 1− e−R
(3.20)

vanishes identically at �rst order. So we have two independent equations for
the two variables HV i and HXi which are easily solved.

Scalar Sector

There are 8 scalar equations for 5 unknowns

ERR = 0, ERV = 0, ERX = 0,

EV V = 0, EV X = 0, EXX = 0,
p∑
i=1

Eii = 0, Eφ = 0,

(3.21)
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At �rst order the following three combinations vanish identically.

Combination-1: ∂R

[
EV V +

(
n0
S

S0

)
f0(R)ERV

]
+

[
EV V +

(
n0
S

S0

)
f0(R)ERV

]
+

(
n0
S −

1

n0
S

)
EV X = 0,

Combination-2: ∂R

[(
n0
S

S0

)
f0(R)ERX + EV X

]
+

[(
n0
S

S0

)
f0(R)ERX + EV X

]
−
(
n0
S −

1

n0
S

)(
n0
S

S0

)
EXX = 0,

Combination-2: ∂R

[
Eφ + 2

(
n0
S

S0

)2

f0(R) ERR − 2[1− (n0
S)2] EXX − Eii

]
+ 2

(
n0
S

S0

)2

[∂Rf0(R) + 2f0(R)] ERR + 4

(
n0
S

S0

)
ERV = 0.

(3.22)

Thus we have exactly 5 independent equations to solve for the 5 unknowns
HV V , HV X , HXXHii and δφ2.

3.4.4 Equation of Motion from Regularity at horizon

We want the functions Hµν in (3.16) to be regular for all R ≥ 0. Our source
functions s(1) are regular at R = 0 but this does not guarantee that the
functions Hµν are regular at R = 0. This fact plays a very important in our
work. We study this fact and its consequences more closely in this section.

Let EMN denote the Einstein's equations obtained by varying the Einstein-
Hilbert action. One of aims is to determine the metric as a function of ψ.
To do this, we look at the 'evolution' of the Einstein's equations along dψ.
The equations

CM
Ein = EMNdψM = EMψ (3.23)

gives us the Einstein constraint equation on constant ψ slices. These equa-
tions do not give us the evolution of the metric along dψ but imposes con-
straints on it on constant ψ slices.

The dot product of CM
Ein with n and u does not play any role in the dis-

cussions of this section. So we can just consider CM
Ein projected orthogonal to

n and O. From the geometrical point of view(see below for more discussion),
CM
Ein is a vector equation but so far our perturbative procedure has not been

geometrical. We treat the isometry directions as special. In our current point
of view, CM

Ein can be decomposed into a SO(p) scalar CM
Ein.X and a vector

CM
Ein projected orthogonal to X.
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It can be easily veri�ed in the scalar sector

(CEin ·X) ∝
[(

S0

n0
S

)
EV X + f0(R)ERX

]
,

∝ f0(R)2 d

dR

[
H(V X)(R)

f0(R)

]
+ Σ(V X)(R) = 0,

(3.24)

Here Σ(V X)(R) is the full source for the combination S0

n0
S
EV X + f0(R)ERX .

From (3.24), we can see that HV X has a solution regular at R = 0 if the term

in
Σ(VX)(R)

f0(R)2
having a simple pole at R = 0 vanishes. We demand that this

happens which gives us the following scalar equation of motion

(
dS

nS
− u) ·K · (dS

nS
− u) =

(
1− n2

S

SnS

)
(3.25)

HV X is regular at R = 0 if and only if (3.25) is satis�ed.
In the vector sector, CM

Ein projected orthogonal to n, u and dS can be
shown to be proportional to[(

S0

n0
S

)
EV i + f0(R)ERi

]
∝ f0(R)

d

dR

[
V

(X)
i (R)

]
+ V(X)

i (R) = 0. (3.26)

where V(X)
i (R) is the full source of the combination

(
S0

n0
S

)
EV i+f0(R)ERi. We

can see that V
(X)
i (R) has regular at R = 0 if V(X)

i (R) vanishes at R = 0.
This gives us the vector equation of motion

P i
j

[(
dS

nS
− u
)
· ∂(n− u)i

]
= 0 (3.27)

It can be veri�ed that once the equations (3.25) and (3.27) exhaust the
conditions for regularity at R = 0; once these equations are satis�ed the
�rst order corrections to the black brane metric is regular everywhere on and
outside the horizon.

3.4.5 Conditions to Fix Integration Constants

As we have discussed above that we obtain the �rst order corrections to
(2.6) which solves the Einstein's equations (3.4) that turn out to be a set of
ordinary di�erential equations in each patch. In section 3.4.4 we discussed the
equations that has to be satis�ed so that Hµν in (3.16) is regular everywhere.
But these conditions do not give us unique solutions for (3.4). They are
unspeci�ed upto integration constants. Some of these constants are �xed by
the regularity condition at R = 0. However this condition is not enough to �x
all the integration constants. We will impose additional physically motivated
constraints to obtain unique solutions to our equations.
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Asymptotic Flatness

We want the corrections Hµν to vanish exponentially as R→∞. This is not
unreasonable since we want to recover the �at space metric as we move large
distance(in units of 1

D
) away from the horizon. This condition �xes many of

the integration constants.

Normalization Conditions

We are still left with two integration constants even after ensuring asymptotic
�atness; one in scalar sector and one in vector sector. This is what should
be expected on physical grounds. The metric (2.6) was parameterised by a
scalar function B and a vector function u. The metric is left invariant by the
transformation of the form B → B + 1

D
B1. Such a rede�nition will change

the �rst order correction. We are left with a two parameter ambiguity of our
�rst order solutions exactly as we expect. This is because we have not given
a precise all orders de�nition of our shape function B and velocity �eld u.

We �x this ambiguity of �eld rede�nition for B and u by providing ad-
ditional constraints on all subsequent order corrections to the metric. We
demand that HV V , V

(V )
i vanish at R = 0. This constraint written invariantly

amounts to

HMNn
N |B=0 = 0 (3.28)

We refer to these additional constraints which are e�ectively constraints on
B and u as normalisation conditions. These conditions together with asymp-
totic �atness �xes all integration constants and determines the �rst order
corrections to (2.6) uniquely.

3.5 Results for the �rst order metric correc-

tions in the patch

Hij(R) =0

HiX(R) =0

HiV (R) =Re−R
(
S

nS

)(
V2

nS
− V3

)
HV X(R) =Re−R

(
S

nS

)(
S1

n2
S

− S2

)
HV V (R) =Re−R

(
R

(
−1 +

S3

nS
+

S

2nS
S2

)
− 1

)
(3.29)
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3.6 Geometrical Form of the First Order Cor-

rections

3.6.1 Geometrical Form and Redistribution Invariance

The membrane equations of motion (3.25) and (3.27) are make special ref-
erence to S and nS and X. The expressions involving S, nS and X are well
de�ned only for con�gurations preserving SO(D-p-2) symmetry. Also the
de�nition of S2 = eφ(xµ) depends on the details of the isometry.

Unconstrained dependence on S, nS and X are not acceptable for the
following reason. A con�guration preserving SO(D − p− 2) symmetry must
also preserve SO(D − p′ − 2) symmetry for all p′ > p. Any solution to the
equations for a particular p must also be a solution for all p′ > p. We refer
to this property of the equations as redistribution invariance.

Our equations can be manifestly redistribution invariant if they can be
written down in terms of quantities of the full D dimensions. One might
wonder how this can be possible with explicit appearances of S, nS and X
in our membrane equations and metric corrections. However this is possible
in the large D limit. Consider the extrinsic curvature of the surface B = 0,
∇An

A = K which appears in the metric (2.6). This is a manifestly geomet-
rical quantity as A runs over all D dimensions. We compute this quantity
explicitly with the metric of the embedding D dimensional Minkowski space
written in the following co-ordinates

ds2 = ηαβdx
αdxβ + dS2 + dΩ2

d (3.30)

Then K is 4

∇An
A =

1

Sd
∂µ(Sdnµ) = d

nS
S

+ ∂µn
µ (3.31)

We see that this manifestly geometric quantity is given by dnS
S

at leading
order. So whenever we encounter this quantity we can replace it by K. A full
list of geometrical quantities and what they correspond to in terms of S and
nS is given in Appendix A. It turns out that �rst order metric corrections
Hµν and the equations of motion (3.25) and (3.27) can be geometrised.

3.6.2 Geometrised metric correction

Though we expect our metric to be geometrical on physical grounds, this is
non-trivial at algebraic level. The basis for one-forms in which we write our

4µ is not in the large angle directions as we are looking at con�gurations having SO(D-
p-2) symmetry, so n is a function of the p co-ordinates and S.
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metric hasXµ = (ds−nSn)µ which is not intrinsically geometrical because nS
and S explicitly depends on the details of the split. The only two geometrical
vector �elds we have in the set-up are n and u. Also the correction δφ2 which
is the correction to the radius of the large sphere is not geometrical by itself.
Let us consider the part that looks ungeometrical in (3.16)

Hiidy
idyi+HXXdX

2 +2HV XdV dX+2HV idV dy
i+2HXidXdy

i+2Hijdy
idyj

(3.32)
dyi in a covariant form can be written as dyµ = P µ

αdx
α where µ = 1, 2, 3 . . . D,

P µν = ηµν −nµnν +uµuν − XµXν

1−n2
S
and xµ are the Cartesian co-ordinates in D

dimensions. Rewriting the ungeometrical part again in terms of the above
quantities we get

Hiidy
idyi+HXXdX

2 + 2HV XdV dX + 2HV µdV P
µ
αdx

α+

2HXµdXP
µ
αdx

α + 2HµνP
µ
αdx

αP ν
β dx

β
(3.33)

We know that the only geometrical part in P µν is ηµν − nµnν + uµuν . The
above ungeometrical part can be geometrised if HV XdV dX cancels with
HV µ

XµXα
1−n2

S
dxα part of P µ

α and 2HXµdXP
µ
αdx

α cancels with 2Hµν
XµXα
1−n2

S
dxαP ν

β dx
β

part of 2HµνP
µ
αdx

αP ν
β dx

β . We see that indeed this is what happens. This
is a very impressive and non trivial check of our metric corrections.

Now we come to the trace part. Note that now we are looking at the full
D dimensional metric where eφ is the radius of the d-sphere. So the correction
to φ also enters the PµνHµν where Pµν is now the projector orthogonal to n
and u. The ηMN in (2.6) can be split in the following way.

ηµνdx
µdxν + eφdΩ2

d

µ = 1, 2, . . . p+ 2
(3.34)

The correction to φ changes the radius of the d-sphere and the metric in the
isometry directions look like

eφ(1 +
1

(D − 3)2
δφ)dΩ2

d = eφdΩ2
d +

δφ

(D − 3)2
dΩ2

d (3.35)

The trace over the d sphere part of the metric gives a correction δφ
(D−3)2

× d
which is equal to δφ

(D−3)
at leading order. The full geometrical form of the

correction is therefore HµνPµν = Hii+(1−n2
S)HXX +δφ. We �nd a separate

Einstein's equation for this whole combination which gives us HµνPµν . Now
we are ready to write (3.16) in a geometric basis( we replace dV by OMdx

M)

HMN = HV VOMON +HV APAMON +H
(T )
MN +H(Tr) (3.36)
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where

PAB = ηAB − nAnB + uAuB

H
(T )
MNP

MN = 0

H(Tr) = HMNPMN

(3.37)

The metric corrections (3.36) are now manifestly geometric as the indices run
over all D dimensions. The metric written has two scalars HV V and H(Tr),
one vector PMN HVM , and one traceless symmetric tensor, H

(T )
MN . The metric

in geometrical form upto �rst order is

ηMN +
OMON

ψD−3
− 2(ψ − 1)(D − 3)ψ−(D−3)(

D

K
(
∇NK
K
− (u.∇)uN))PN

MON

− (ψ − 1)(D − 3)ψ−(D−3)

(
1

K

(
(ψ − 1)(D − 3)

(
K
D
− u.∇K1

2
u.K.u

)
+K

))
OMON

(3.38)

3.6.3 Geometrised equations of motion

The equations (3.25) and (3.27) can be combined into one geometrical vector
equation. The geometrical vector equation is(

∇2uA
K
− ∇AK
K

+ uCK
C
A − u.∇uA

)
PAB = 0 (3.39)

The geometrised divergence of the above equation (3.39) to leading order is

∇2K
K2
− u.∇K
K

+ u.K.u− u.∇K
K

= 0 (3.40)

gives the scalar equation (3.25) at leading order. Thus the equations (3.25)
and (3.27) can be geometrised in to single equation (3.27).

(3.39) gives us an equation of the membrane dynamics which can be
solved independently of the gravitational problem of horizon dynamics in
large D. Note that the equation (3.39) has D − 2 components. We have
D−3 independent components of u owing to the three constraints u.u = −1,
u.n = 0 and ∇M .u = 0 and a shape function B. This gives us a total of D−2
unknown functions. Since we have D− 2 equations for D− 2 functions they
can be solved for in principle. The equation (3.39) gives us a closed system
for the membrane dynamics.
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Chapter 4

Second Order Calculation

We follow the same perturbative procedure that has been set up in the pre-
vious chapter to calculate the 1

(D−3)2
corrections to the metric. For this order

we use the geometric form of the metric (3.36) as our starting point for our
perturbation theory. We expand all the quantities in this metric to order

1
(D−3)2

. At this order the relevant data is the second derivatives of n and u

can be seen from there Taylor expansion in the patch (3.10). In addition to
the pure second order derivative data we also have bilinears of the �rst order
data appearing at this order. For our calulation at this order, we demand in
addition to the constraints (2.8) and eqrefsubcond the derivative of the lead-
ing order equation of motions (3.25) and (3.27) are 0 along the membrane.
More precisely we demand that

(∂i − nin.∂)

((
dS

nS
− u
)
·K ·

(
dS

nS
− u
)
−
(

1− n2
S

SnS

))
= 0

(∂k − nkn.∂)P i
j

[(
dS

nS
− u
)
· ∂(n− u)i

]
(4.1)

The �rst one gives us 2 scalar constraint and 1 vector constraint equation.
The second one gives us 2 vector constraints, 1 scalar constraint , 1 symmetric
tensor constraint and 1 antisymmetric constraint equation.

The Einstein's equations schematically look the same as (3.17).

Hv(2) = s(2) (4.2)

The argument that the sources and thus in turn the corrections v(2) are func-
tion of the fast varying direction R remain the same as given in 3.4.2.The
homogenous di�erential operator H acting on the corrections remain the
same, but the sources s(2) are more complicated and have many more ana-
lytical structures. The same combinations of Einstein's equations as given
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in (3.20) and (3.22) become identically 0. The �rst order correction to the
equation is determined in the same manner as discussed in 3.4.4.

Before beginning the discussion of the second order corrections to the
metric and the �rst order correction to the equation we list the pure second
order data which consists of ∂µ∂νnα and ∂µ∂νuα.

4.1 Independent Data at Second Order

Recall that we can divide the data into three symmetry channel in the re-
duced p+3 dimensional space depending on how they transform under SO(p)
rotations.

4.1.1 Independent Data in the Scalar Sector

Let us �rst consider the scalar data from ∂µ∂νnα. Recall that there are three
scalar directions n, u and dS. We can get a scalar if all the three indices
are in the scalar directions. But the pieces of data where one of the indices
are along n are not free because of the constraint n.K = 0. So the indices
along two scalar directions u and dS gives us independent data. There are
2×3××4

6
= 4 such pieces of data. We also get a scalar data if one of the indices

is in the scalar direction and the other two indices are traced over. Again
there are 2 ways to choose the scalar index, which gives us 2 more scalars
from ∂µ∂νnα. So there are a total of 6 scalar data two derivative shape data.

Let us consider the scalar data from ∂µ∂νuα now. As discussed in ?? u
is only in the vector directions. So the u index is can only be in the vector
direction. We can get get a scalar if one of the derivative indices is traced
over with the u index and the other derivative index is in the scalar direction.
Again due to the constraint n.∇u = 0, the derivative index can only be in
two scalar directions. Thus we have two scalar data from ∂µ∂νuα.

From (4.1) there are 3 scalar constraint equations. So there are total
6 + 2− 3 = 5 independent scalar data.

4.1.2 Independent Data in Vector Sector

From ∂µ∂νnα we get a vector if one of the indices is a vector index and
the other two are in the scalar directions. Again there are two free scalar
directions because of the constraint n.K = 0. Thus we get 2×3

2
= 3 vectors.

We get another vector when two of the indices in the p-direction is traced
over and the remaining one is also in the p-direction. In total we get 4 vectors
from ∂µ∂νnα.
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Table 4.1: Independent Data at Second Order in 3 Symmetry Channels
Scalars Vectors Tensors

S
(2)
1 = CSSS V

(2)
1 = CSSβP

β
µ T

(2)
1 = P µ

αP
ν
β (CSµν − ηµν

p
PγθC

Sγθ)

S
(2)
2 = uαCαSS V

(2)
2 = PαβKαβδP

δ
µ T

(2)
2 = P µ

αP
ν
β (uγCγµν − ηµν

p
P γθuαCαγθ)

S
(2)
3 = uαuβCαβS V3 = ∂S∂SuβP

β
µ T

(2)
3 = P µ

αP
ν
β (∂S∂µuν − ηµν

p
P γθ∂S∂γuθ)

S
(2)
4 = P µνCSµν V4 = Pαβ∂β∂αuδP

δ
µ

S
(2)
5 = P µν∂µ∂Suν V

(2)
5 = Pα

µ ∂α∂βuδP
βδ

V
(2)

6 = uαuβ∂α∂βuδP
δ
µ

As we have discussed the index on u in ∂µ∂νuα is always in the vector
direction. We get a vector if the derivatives are in the scalar directions. This
gives us 2×3

2
= 3 vectors. We also get vectors two of the derivative indices

are traced over the p directions or if one derivative index in the p-direction
is traced over with the index on u and one of the derivative index is a free
derivative index. So we have a total of 5 vectors from ∂µ∂νuα.

The (4.1) gives 3 vector constraint equations. So there are a total of
4 + 5− 3 = 6 independent vector data at second order.

4.1.3 Independent Data in Tensor Sector

From ∂µ∂νnα we get two traceless symmetric two-tensors when one of the
indices in the scalar direction and the other two are in the vector direction.
We also get a 3-tensor when all the three indices are in the p-directions. From
∂µ∂νuα also we get two symmetric traceless 2-tensor and two anti-symmetric
2-tensor data when one of the derivative index is in the scalar direction. We
also get a 3-tensor when all the indices are in the p-directions.

The (4.1) gives one symmetric tensor constraint. So there are 2+2−1 = 3
independent symmetric traceless 2 tensors.

In 4.1 we list the independent data at the second order. We denote
∂αKβγ = Cαβγ

4.2 Correction to Membrane Equation of Mo-

tion

We obtained our membrane equation of motion at �rst order by demanding
regularity at the horizon ie R = 0 for the corrections H

(1)
V X and H

(1)
V i . This
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regularity condition was got from the Einstein constraint equations EMN ·dψN
as discussed in 3.4.4. We look at the same combination as (3.24) and (3.26)
at second order. Since the homogenous di�erential operator does not change
at each order the form of the equations remain the same. The regularity
condition for the solutions H

(2)
V X and H

(2)
V i give us constraint on our second

order data. This is the �rst order correction to the zeroth order equations of
motion (3.27) and (3.25).

To geometrise this �rst order correction, we �rst expand the geometric
form of the equation of motion (3.39) and its divergence (3.40) to �rst sub-
leading order explicitly in terms of our data given in 3.1 and 4.1. We subtract
this subleading part from the equations that regularity at second order gives
us, as this is the part that gives us the new constraints on our data arising
purely in second order. We see that we are able to geometrise this equation.
Also the equation obtained from the regularity of H

(2)
V X turns out to be the

divergence H
(2)
V i when geometrised. We present the �nal geometrised form of

the equation with �rst order correction over here.(
∇2u

K
− ∇K
K

+ u ·K − (u · ∇)u+
1

D

(
D
∇2∇2u

K3
−D∇(∇2K)

K3

+ 3D
(u ·K · u)(u · ∇u)

K
− 3D

(u ·K · u)(u · ∇n)

K
− 6D

(u · (∇2n))(u · ∇u)

K2

+ 6D
(u · (∇2n))(u · ∇n)

K2
+ 3u · ∇u− 3u · ∇n

))
P = 0

where
PAB = ηAB − nAnB + uAuB (4.3)

where the ∇ is space-time covariant derivative in D dimensions taken with
respect to the metric (3.5). We can convert the equation into an equation
with quantities on the membrane world-volume using the dictionary given in
Appendix B. The equation in membrane world volume quantities is given by[(

∇2uA
K
− uCKCBK

B
A

K

)
− ∇AK
K

+ uBKBA − u · ∇uA

+

(
∇2∇2uA
K3

− u · ∇K∇AK
K3

− ∇
BK∇BuA
K2

− 2
KCD∇C∇DuA

K2

)
+

(
−∇A∇2K
K3

+
∇A

(
KBCK

BCK
)

K3

)
+ 3

(u ·K · u)(u · ∇uA)

K
− 3

(u ·K · u)(uBKBA)

K

− 6
(u · ∇K)(u · ∇uA)

K2
+ 6

(u · ∇K)(uBKBA)

K2
+

3

D
u · ∇uA −

3

D
uBKBA

]
PAC = 0(4.4)
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4.3 Solving Einstein's Equations at Second Or-

der

The Einstein equation for the tensor sector is

e−R
d

dR
((eR − 1)

d

dR
(PM

A PN
B HMN)) =

e−RT
(1)
AB −Re

−RT
(2)
AB − e

−2RT
(2)
AB +Re−2RT

(3)
AB −R

2e−2RT
(2)
AB

2

⇒ d

dR
(PM

A PN
B HMN) =

1

eR − 1

∫ R

0

(
T

(1)
AB − xT

(2)
AB − e

−xT
(2)
AB + xe−xT

(3)
AB − x

2e−x
T

(2)
AB

2

)
dx

(4.5)

where

T
(1)
AB =

2D2

K2
PM
A PN

B

((
K
D

(KMN −∇(MuN))

)
− (KMC −∇CuM)PCD(KDN −∇DuN) + VMVN

)
−2D2

K2

ηAB
D

PMN

((
K
D

(KMN −∇(MuN))

)
− (KMC −∇CuM)PCD(KDN −∇DuN) + VMVN

)
and

T
(2)
AB =

2D2

K2

(
PM
A PN

B VMVN −
PMNVMVNηAB

D

)
and

T
(3)
AB =

4D2

K2

(
PM
A PN

B VMVN −
PMNVMVNηAB

D

)
where,

VA = uCK
C
A − u.∇uA

The RHS above is regular at R→ 0 provided the integral vanishes at R = 0,
which is implemented manifestly above as the integrand is regular at R =
0. Integrating once again the above solution and then implementing the
boundary condition that PM

A PN
B HMN = 0 at R→∞ we get

PM
A PN

B HMN =− e−R(3T
(2)
AB − T

(3)
AB) +Re−R(T

(3)
AB + T

(2)
AB)−∫ ∞

R

R
(
T

(1)
AB + T

(3)
AB + T

(2)
AB

)
eR − 1

(4.6)

The φ equation is given by
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1

2

d2

dR2

(
PMNHMN

)
= e−RSφ − e−RRSφ

PMNHMN = φ+ 2Hii + (1− ns2)Hyy

(4.7)

where

Sφ =
D2

K2
(u ·K − u · ∇u) · P · (u ·K − u · ∇u)

Now, the boundary condition on φ is that both φ and its derivative van-
ish at R → ∞.The P µνHµν solution written above satis�es this condition.
Integrating the above equation once we get

1

2

d

dR

(
PMNHMN

)
= −

∫ ∞
R

(
e−xSφ − e−xxSφ

)
dx (4.8)

From the above expression we see that the boundary condition on φ′ is satis-
�ed. Integrating once more the solution for φ satisfying the above mentioned
boundary condition can be written as

PMNHMN = 2

∫ ∞
R

(∫ ∞
y

(
Sφe

−x − Sφxe−x
)
dx

)
dy (4.9)

The geometrised sources for Hvi and Hvy give

e−2R(−1 + eR)
d

dR
(eR

d

dR
PM
A HVM) =

R2e−2RSv(1) +Re−2RSv(2) + e−2R
(
−Sv(2) − 2Sv(1)

)
+R2e−R

(
−Sv(1)

)
+Re−R

(
−Sv(2) + Sv(3)

)
+ e−R

(
Sv(2) + 2Sv(1)

)
(4.10)

where

Sv(1) =
3

2

D

K

(
1 + 2

u · ∇K D

K2
− u ·K · u D

K

)
(u · ∇u− u ·K) .P

Sv(2) =
D

K

(
D

K3

(
∇∇2K −∇2∇2u

)
+ 8(u ·K − u · ∇u) + u ·K +

∇2u

K

)
· P

Sv(3) =

(
−2

D2

K2

(
∇MK
K
− uAKAM

)
PMN (∇NuC −KNC) +

D

K

(
u ·K − ∇

2u

K

))
.P
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The solution to the above equation can be written as

eR
d

dR
PM
A HVM =∫

1

1− e−R

(
R2e−RSv(1) +Re−RSv(2) + e−R

(
−Sv(2) − 2Sv(1)

)
+R2

(
−Sv(1)

)
+R

(
−Sv(2) + Sv(3)

)
+
(
Sv(2) + 2Sv(1)

))
dR + C1

(4.11)

For regularity we need the numerator of RHS above to vanish at R → 0,
which is manifestly true. The �nal solutions is

PM
A HVM = −

∫ ∞
R

e−R
∫
P1(R)e−R + P2(R)e−2R

1− e−R
dR− C1e−R (4.12)

where,

P1(R) = R2Sv(1) +RSv(2) − (Sv(2) + 2Sv(1))

and,

P2(R) = −R2Sv(1) +R(Sv(3) − Sv(2)) + 2Sv(1) + Sv(2)

We can �x the integration constant C1 with the boundary condition that
P µ
αHνµ = 0 at R = 0. This gives

C1 = − 1

12

(
9Sv(1) + 3Sv(2) +

(
3− 4π2

)
Sv(3)

)
The Hvv equation is

e−R(
d

dR

(
eR

d

dR
Hvv

)
− 1

2
e−R

(
φ′ + 2H ′ii + (1− n2

s)H
′
yy

)
=

e−RSvv(1) +Re−RSvv(2) +R2e−RSvv(3) +R3e−RSvv(4) +Re−2RSvv(5)

+R2e−2RSvv(6) + e−RSvv(7)

∫
RdR

1− e−R
(4.13)

where,

Svv(1) = 2 +
1

2

D2

K2

(
∇[MuN ]∇[PuQ]P

NPPMQ

)
− 2

D2

K2

(
KMNKPQP

NPPMQ

− K2

D − 3

)
+
D2

K2

(
u · ∇uMu · ∇uNPMN

)
+ 2

D

K

(
u.∇K
K

)
+ 2

D

K
u.K.u

+ 2
D2

K2

(
uMKMNu

PKPQP
NQ

)
− D

K
∇.C1
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Svv(2) = −2 + (
D2

K2

(
∇2uM
K
∇2uN
K

PMN

)
− 2

D2

K2

(
∇2uM
K

uP∇PuNP
MN

)
−D

2

K2

(
∇MuN∇PuQP

NPPMQ

)
+ 2

D2

K2

(
∇MuNKPQP

NPPMQ

)
+
D2

K2

(
KMNKPQP

NPPMQ − K2

D − 3

)
− D2∇2∇2K

K5

−D
2

K2

(
u · ∇uMu · ∇uNPMN

)
− 28

D

K

(
u.∇K
K

)
+ 9

D2

K2

(
u.∇K
K

)2

+7
D

K
(u ·K · u)− 12

D2

K2

(
(u.K.u)

u.∇K
K

)
+

3
D2

K2

(
u.K.u

)2

− 2
D2

K2

(
uMKMNu

PKPQP
NQ

)
(4.14)

Svv(3) = −1

2

D2

K2

(
∇2uM
K
∇2uN
K

PMN

)
+
D2

K2

(
∇2uM
K

uP∇PuNP
MN

)
+
D2∇2∇2K
K5

− D2

K2

(
u · ∇uMu · ∇uNPMN

)
+ 19

D

K

(
u.∇K
K

)
+

3

2

D2

K2

(
u.K.u

)2

− 7
D

K
(u ·K · u) (4.15)

Svv(4) = −2
D

K

(
u.∇K
K

)
− 2

D2

K2

(
u.∇K
K

)2

+
D

K
(u ·K · u)

+2
D2

K2

(
(u.K.u)

u.∇K
K

)
− 1

2

D2

K2

(
u.K.u

)2

(4.16)

Svv(5) = −2
D2

K2

(
u · ∇uMu · ∇uNPMN

)
+ 4

D2

K2

(
u · ∇uMuPKPQP

MQ

)
−2

D2

K2

(
uMKMNu

PKPQP
NQ

)
(4.17)

Svv(6) = −1

2
Svv(5)

Svv(7) =
2

K

(
D

K

(
∇MK
K
− uAKAM

)
PMN

(
∇NK
K
− uAKAN

)
+
u.∇K
K
− u.K.u

)
(4.18)
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Substituting (4.8) in (4.13) we get

e−R(
d

dR

(
eR

d

dR
Hvv

)
=

e−RSvv(1) +Re−RSvv(2) +R2e−RSvv(3) +R3e−RSvv(4) +Re−2RSvv(5) +R2e−2RSvv(6) +

e−RSvv(7)

∫
RdR

1− e−R
+Re−2RSφ (4.19)

Integrating the above equation once we get

d

dR
Hvv = e−R

(∫
dR

(
Svv(1) +RSvv(2) +R2Svv(3) +R3Svv(4) +Re−R(Svv(5) + Sφ)

+R2e−RSvv(6) + Svv(7)

∫
RdR

1− e−R

))
+ Cvve

−R (4.20)

The right hand side of the above equation is regular at R = 0 and 0 at
R =∞. We integrate the above equations with limits such that Hvv is 0 at
in�nity. We set the integration constant Cvv such that Hvv is 0 at R = 0.

Hvv = −
∫ ∞
R

(
e−x
(∫

dx

(
Svv(1) + xSvv(2) + x2Svv(3) + x3Svv(4) + xe−x(Svv(5) + Sφ)

+x2e−xSvv(6) + Svv(7)

∫
xdx

1− e−x

)))
−
∫ ∞
R

dxCvve
−x (4.21)

where

Cvv = Svv(1)+Svv(2)+2Svv(3)+6Svv(4)−3Svv(5)

4
−7Svv(6)

4
+
π2Svv(7)

3
+2Svv(7)ζ(3)

(4.22)
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Chapter 5

Spectrum of Light Quasinormal

Modes about Schwarschild Black

Holes

Our membrane equations (4.4) should describe all SO(D-p-2) invariant black
hole dynamics at large D. As an application of our membrane equations of
motion we obtain the light quasinormal modes of the Schwarzschild black
hole( not the ones whose frequencies are O(D)). The Schwarzschild black
hole is dual to a perfectly spherical stationary membrane. To calculate the
quasinormal modes from the membrane we look at linear �uctuations about
this spherical membrane.

We �nd it convenient to work in spherical polar co-ordinates

ds2 = −dt2 + dr2 + r2dΩ2
D−2 . (5.1)

The exact solution to our leading order equation of motion (3.39) dual to
Schwarzschild black hole in the co-ordinates (5.1) is given by

r = 1 u = dt (5.2)

We have chosen the size of the membrane to be unity. 1

1We do not loose generality by making this choice. The classical Einstein equations
studied in this paper enjoy invariance under the following `scaling' symmetry:

g̃MN = α2gMN .

This scale transformation together with the coordinate change x̃M = αxM transforms a
Schwarzschild black hole with Schwarzschild radius r0 into a Schwarzschild black hole with
Schwarzschild radius αr0. It follows that the quasinormal mode frequencies of the black
hole parameterized by (r0) are simply 1

r0
times those for the black hole parameterized by

(1). For this reason we will perform all computations in this section with black holes of
radius unity, and simply reinsert factors of r0 in the �nal answer.
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We consider the most general linearised perturbations around (5.2).

r = 1 + ε δr(t, θ),

u = −dt+ ε δuµ(t, θ)dxµ.
(5.3)

The light modes correspond to the functions f and u which live on the
membrane world volume. To get them we simply plug in (5.3) into the
membrane equation of motion (4.4) and expanding it to linear order in ε.
This gives us an e�ective equation for f and u. We write the induced metric
on the membrane world volume in the co-ordinates θa on ΩD−2 and time.
The induced metric on the world volume can be found by substituting (5.3)
into (5.1). The induced metric on the membrane to linear order in ε is given
by

ds2 = −dt2 + (1 + 2εδr) dΩ2
D−2 . (5.4)

We develop a dictionary to go between vectors and one forms in the space
time and on the membrane world volume. A vector �eld on the membrane
worldvolume can be uplifted to the whole space time. The di�erent compo-
nents of this vector �eld will be given by

Aa(ST ) = Aa, At(ST ) = At, Ar(ST ) = ε
(
At∂tf + Aa∂af

)
. (5.5)

Similarly a one-form de�ned in the space time can be pulled back to the
membrane easily.

Ba = B(ST )
a + εB(ST )

r ∂af, Bt = B
(ST )
t + εB(ST )

r ∂tf. (5.6)

We will treat uµ as a one form �eld on the membrane world volume. Recall
that ∇.u = 0 where ∇ is the covariant derivative taken with respect to the
metric (5.4). To evaluate the equation of motion (4.4), we need to evaluate
the extrinsic curvature, its trace, its derivatives and the derivatives of u on
the membrane. We list the di�erent quantities that we will require in our
computation. We �nd it convenient to de�ne the following notations for the
di�erent metrics that appear in our computation.

gµνdx
µdxν = −dt2 + (1 + 2εf(t, θ))dΩ2

D−2

ĝµνdx
µdxν = −dt2 + dΩ2

D−2

gabdx
adxb = (1 + 2εf(t, θ))dΩ2

D−2

ĝabdx
adxb = dΩ2

D−2

(5.7)

The index µ runs over time and angular co-ordinates , ie (µ = (t, a)) and the
a, b runs over angular co-ordinates on a sphere ΩD−2. We list the quantites
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that we require to compute the equation of motion below.

uMt = −1 u.u = −1⇒ δut = 0

ua = εδua

nt = −ε∂tf
na = −ε∇̂af

Ktt = −ε∂2
t f

Kta = −ε∂t∇̂af

Kab = −ε∇̂a∇̂bf + (1 + εf)ĝab

(∇tut) = 0

(∇aut) = 0

(∇tua) = ε∂tδua

(∇aub) = ε∇̂aδub − ε∂tfĝab
(∇̂aδu

a) = −(D − 2)∂tf

K = (D − 2)− ε∇2
f − ε(D − 2)f

(5.8)

All covariant derivatives in (5.8) are taken with respect to the background
metric ĝµν as de�ned in (5.7). The equation of motion (4.4) evaluates to
linear order in ε evaluates to

∇2δua
D − 2

− ∂t∂af

D − 2
+
∇a∇2f

D − 2
+∇af − ∂a∂tf + δua − ∂tδua

+
∇2∇2

δua
(D − 2)3

− 2(∇̂2δua − ∂a∂tf)

(D − 2)2
− ∇a∇

2
(∇2f + f(D − 2))

(D − 2)3

−9∇a(f(D − 2)2 − (D − 2)(9∇̂2f − ∂2
t f))

3(D − 2)3
+

3∂tδua
D

− 3(−∂t∂af + δua)

D
= 0

(5.9)

The �rst line in (5.9) comes from the leading order equation of motion and
the last two lines come from the 1

D−3
correction to it. ∇ is with respect

to the back ground metric ĝµν , ∇ is with respect to the full metric on the

membrane gµν and ∇̂ is with respect to the metric on ΩD−2.
The condition ∇.u = 0 where ∇ is with respect to the full metric on the

membrane to linear order in ε is

∇aδu
a = −(D − 2)∂tf (5.10)
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We split u into a gradient of a scalar and a divergence free vector to solve
(5.9).

δua = δaΦ + va (5.11)

where
∇.v = 0 (5.12)

It follows from (5.10) that

∇2Φ = −(D − 2)∂tf (5.13)

We will eliminate Φ in favour of f in (5.9). Note that the LHS of (5.13)
is always 0 if Φ lies in the kernel of ∇2, ie if Φ is a constant function on
the sphere. It follows that for (5.13) to be solved consistently the spatially
constant part of f (the l = 0 mode) has to be time independent. Once this
condition is obeyed, Φ can be solved in terms of f . Plugging in the expansion
(5.11) into (5.9)(

∇2

D − 2
+ 1− ∂t +

∇2∇2

(D − 2)3
− 2(∇̂2)

(D − 2)2
+

3∂t
D
− 3

D

)
va =

−

(
− ∂t∂a
D − 2

+
∇a∇2

D − 2
+∇a − ∂a∂t +

2∂a∂t
(D − 2)2

− ∇a∇
2
(∇2 + (D − 2))

(D − 2)3

− 9∇a((D − 2)2 − (D − 2)(9∇̂2 − ∂2
t ))

3(D − 2)3
+

3∂t∂a
D

)
f

−

(
∇2

D − 2
+ 1− ∂t +

∇2∇2

(D − 2)3
− 2(∇̂2)

(D − 2)2
+

3∂t
D
− 3

D

)
∇aΦ

(5.14)

5.1 Spectrum of shape �uctuations

Taking the divergence of (5.14) and plugging in (5.12) and (5.13) we get the
following equation for f

− (∇2 +D − 3)∂tf −
∂t∇̂2f

D − 2
+
∇̂2∇̄2f

(D − 2)
+ ∇̂2f − ∂t∇̂2f − (D − 2)∂tf + (D − 2)∂2

t f

+
∇̂2∂tf + (D − 2)∂tf

D − 2
− (∇2 +D − 3)2(D − 2)∂tf + (∇2 +D − 3)∇̂2∂tf

(D − 2)3

+ 2
(∇2 +D − 3)(D − 2)∂tf + ∇̂2∂tf

(D − 2)2
+
∇̂2∇2(∇2f + f(D − 2))

(D − 2)3
− ∇̂

2(3∇̂2f − ∂2
t f + 3f(D − 2))

(D − 2)2

− 3
D − 2

D
∂2
t f +

3

D
(∂t∇̂2f + (D − 2)∂tf) = 0
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2 The most general function linear �uctuation f on a sphere can be expanded
as

δr =
∑
l,m

almYlme
−iωrl t . (5.17)

where Ylm are spherical harmonics on SD−2, l labels the spherical harmonic
representation, m is a collective label for all the internal quantum numbers
within a given spherical harmonic representation.

To understand the solutions better we give a more complete description
of scalar spherical harmonics in arbitrary dimensions, and in particular the
computation the eigenvalue under ∇2 acting on the lth spherical harmonic.
The lth spherical harmonic, Ylm, are composed of the collection of functions
on SD−2 obtained by restricting homogeneous degree l polynomials in RD−1

to the unit sphere. The polynomials in questions are linear combinations of
monomials of the form aµ1µ2µ3...µlx

µ1xµ2 . . . xµl where aµ1µ2µ3...µl are symmetric
and traceless tensors. It is easily shown that

−∇2
SD−2Ylm = l(D + l − 3)Ylm. (5.18)

3 So we have

∇2f = ω2f − l(D + l − 3)f

∇̂2f = −l(D + l − 3)f
(5.20)

We plug in (5.20) into (5.17) to get a relation between ω and l. To solve this
equation we expand ω as ω0 + 1

D
ω1. This is easily solved for ω0 and ω1 to get

ωrl = i(l − 1)±
√
l − 1 +

1

D

(
−i(l − 1)(l − 2)±

√
l − 1

(
3l

2
− 2

))
(5.21)

2In order to obtain (5.15) we have used and

∇a∇2δua = ∇2∇aδua +Rab∇aδub,
= ∇2∇aδua + (D − 3) gab∇aδub,

(5.15)

Using the above formula twice

∇a∇2∇2δua = −(D− 2)∇2∇2∂tf − 2(D− 3)(D− 2)∇2∂tf − (D− 3)2(D− 2)∂tf (5.16)

3This may be demonstrated as follows. The condition of tracelessness ensures that the
degree l polynomials described above obey the equation ∇2Φ = 0, where ∇2 is evaluated
in RD−1. But

0 = ∇2
RD−1Φ =

1

rD−2
∂r
(
rD−2∂rr

l
)

+
∇2
SD−2Φ

r2
. (5.19)

(the RHS of this equation is ∇2 of the function in RD−1 evaluated in polar coordinates).
Here ∇2

SD−2 is the Laplacian evaluated on the unit sphere. (5.18) follows from (5.19).
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Reinserting the factor of r0 as discussed in the beginning of this section we
�nd that

r0ω
r
l = i(l− 1)±

√
l − 1 +

1

D

(
−i(l − 1)(l − 2)±

√
l − 1

(
3l

2
− 2

))
(5.22)

This result matches with the frequencies obtained by Emparan and collab-
orators in (5.21) gives us the formula for ωrl for all l > 1. But it needs
clari�cation for the modes in which l = 0 and l = 1. Let us �rst consider
the case l = 0. For this case, (5.22) gives r0ω

r
l = 0 and r0ω

r
l = 2i − 1

D
2i.

As discussed below (5.13), that equation is consistent only if l = 0 mode is
does not have time dependence. Thus we have only one mode at l = 0 ie
r0ω

r
l = 0. This mode has a simple physical interpretation, it corresponds to

a rescaling of the black hole radius. 4

Now let us look at the l = 1. In this case we have a degeneracy of the
quasinormal mode frequencies; r0ω

r
l = 0. The formula (5.22) was obtained

by assuming harmonic time dependence of the function f and solving for
the harmonic frequencies but it is well known that this procedure has to be
modi�ed when the frequencies are degenerate. To see how this works let us
look at (5.15) for l = 1. It turns out to be

∂2
t f +

1

D
∂2
t f(−4 + ∂tf) (5.23)

The solutions of the above equations has the same form f = Y m
1 = (am+tbm)

where am and bm are arbitrary constants at zeroth order and �rst order.
These two zero modes have a very simple physical interpretation. The mode
multiplying am corresponds to an in�nitesimal translation and the mode
multiplying bm corresponds to a boost.

5.2 Spectrum of velocity �uctuations

The divergence of the LHS of (5.14) is 0. This ensures that the LHS itself is
0 whixh gives us the equation for vector �uctuations.

The �uctuation �eld δv may be expanded in vector spherical harmonics

δva =
∑
l,m

blmY
lm
a e−iω

v
l t (5.24)

4 If r0ω
r
l = 2i − 1

D2i was an acceptable frequency it would imply that the there is a
mode growing exponentially with time which would mean that the Schwarzschild black
hole is unstable. But it is a well-known result that Schwarzschild black holes are stable
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We pause here to describe vector spherical harmonics in arbitrary dimen-
sion in more detail. A vector �eld on RD−1 restricted to a unit sphere SD−2

gives us a vector spherical harmonic. The lth vector spherical harmonic is
a polynomial valued vector �eld of degree l which is made up of linear sum
of monomials of the form Vµµ1µ2...µlx

µ1xµ2 . . . xµl where Vµµ1µ2...µl is traceless,
symmetric in all of its indices except the �rst one, and it is zero when it's
�rst index is symmetrized with any of the others. In particular, tracing the
�rst index of V with any of the others gives zero.

Each of the vector valued monomials listed above obeys the equations

∇.V = 0, ∇2V = 0 (5.25)

where the covariant derivatives are taken in the �at space RD−1. The above
vector �eld in RD−1 when restricted to SD−2 lies only in the tangent space
(note that the r component of these vector �eld is 0. This vector �eld dotted
with r̂ is same is dotting the �rst index with xµ which vanishes. Let this
vector �eld be denoted by V . It is easily veri�ed that ∇.V = 0 (where the
covariant derivative is now taken on the unit sphere). We demonstrate in
Appendix C that

∇2V = −[(D + l − 3)l − 1]V (5.26)

where, in this equation, V is a vector �eld on SD−2 and ∇ is the covariant
derivative on the unit sphere.

We plug the expansion of va into vector spherical harmonics (5.24) into
(5.14). The coe�cient of each independent vector spherical harmonic has to
be set to 0 which gives us to �rst subleading order in 1

D
the frequencies

ωvl = −i(l − 1)− 1

D
i(l − 1)2. (5.27)

This formula agrees with the formula for the spectrum of vector quasinormal
modes presented in obtained in Reinstating factors of r0 we have

r0ω
v
l = −i(l − 1) (l = 1, 2, 3 . . . .) (5.28)

The pure (negative) imaginary part of the velocity quasinormal modes rep-
resent that they decay without any oscillation. Vector harmonics with l = 1
are zero modes. These modes transform in the representation (1, 1, 0, 0, . . . 0)
- i.e. the adjoint representation - of SO(D − 1) and have a simple physical
interpretation. These zero modes correspond to on an in�nitesimal rotation
of the black hole which gives us a version of the Kerr black holes in large D.
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Chapter 6

Conclusion and Future Directions

We see that the e�ective dynamics of the horizon of black holes in large D
governed by the light modes can be recast into a problem of dynamics of a
membrane propagating in �at space. The dynamics of the membrane in �at
space is given by an equation of motion. The dynamics of the membrane
can be determined fully from these equations of motions since there are as
many equations as there are unknowns. Thus this forms a well posed initial
value problem which can be solved independent of the black hole problem in
principle. For every solution of the membrane equation of motion there is a
corresponding well de�ned solution to Einstein's equations in large D in a
1
D
expansion. We have found a class of metrics which solves the Einstein's

equations till second order in 1
D
which are non-singular if and only if our

membrane equation is satis�ed.

Quasinormal modes are linearised solutions about black hole back grounds.
We have reproduced the quasinormal modes frequencies of Schwarzschild
black holes in large D from our membrane equation of motion upto the �rst
subleading order. This serves as a check for our equations of motion. We
have also found that our equations of motions admit solutions of rotating
membranes. The velocity �eld u for such membranes are given by the angu-
lar velocity. We see that the shape function for such a con�guration turns
out to be the horizon shape we would expect for a rotating black hole.

Our results have been generalised to the charged case in [11]. We would
like to understand our equations of motion as the conservation of some stress
tensor on the membrane. Some of my collaborators are working on �nding
this stress tensor. We would also like to �nd the gravitational radiation
from the �uctuating membrane. We �nd that our equations of motion to be
dissipative since linearised solutions of the membrane equations give decaying
frequencies for the quasinormal modes. We would like to calculate entropy
production to understand dissipation better.
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We would like to see if the problem of black hole collision can be set up in
large D. If the process can be analytically solvable then we can make some
approximations for 4 dimensions. We could then compare our predictions
with LIGO's data to check if the large D is really a good approximation for
real processes.
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Appendix A

Geometrical quantities in terms of

data in auxiliary space

We divide count the quantities as the number of derivatives on zeroth order
geomterical quantities n and u.

A.1 Zero derivative quantities

(1)nA

(2)uA
(A.1)

A.2 One derivative quantities

(1)(∇AnD)projected traceless = PAB∇BnCP
CD − 1

D − 2
PADPCE∇CnE

(2)uA∇AnBP
BC = (Kti)

C + Kts
(dS − nsn)C

1− n2
s

PCA(∇AuB)nB ⇒ −PCA(∇AnB)uB

(3)uA∇AnBu
B = Ktt

uA(∇AuB)nB ⇒ −uA(∇AnB)uB

(4)(∇AuD)projected traceless = PAB∇BuCP
CD − 1

D − 2
PADPCE∇CuE

(5)uA∇AuBP
BC = (∂tui)

C +
(dS − nsn)C

1− n2
s

nsKtt

(6)
K
D

=
1

D

(
dns
S

+Ki
i −Ktt +

Kss

1− n2
s

)
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A.3 Two space-time derivatives

Here PAB = ηAB − nAnB + uAuB, the geometrical projector, Ktt = u.K.u
at leading order, Kabc = ∂aKbc, apqr = ∂q∂rup. Let us de�ne ungeometrical

projector as P ′AB = PAB + XAXB

1−n2
S
. Then Kij = P ′Ai P

B
j KAB. In other words

i, j, k denote the isometry directions p in the auxiliary space.

(1)PAB∇2uA = (∂α∂
αui)

B +
d

S
(∂sui)

B +
XB

1− n2
s

∂α∂
αus +

nsX
B

1− n2
s

(
2∂αuβ∂αnβ

+ Kα
tα

)
+
d

S

XB

1− n2
s

nsKts −
d

S2
XBus

where

(∂α∂
αui)

B = (aij
j)B − (aitt)

B +
(aiss)

B

1− n2
s

+
2ns

1− n2
s

(∂sn
β)(∂βui)

B

(2)uA∇2uA = −∇BuA∇BuA

(3)nA∇2uA = uA∇2nA − 2∇An
B∇AuB

(4)PAB∇2nA = (Kα
iα)µ +

d

S
(Ksi)

µ +
Xµ

1− n2
s

kαsα +
Xµns
1− n2

s

KαµK
αµ

+
d

S

Xµ

1− n2
s

Kss −
d

S2
Xµns

where

Kα
iα = Kijj −Kitt +

Kiss

1− n2
s

+
2ns

1− n2
s

KiαK
α
s

and

KiαK
α
s = KijKsj −KtsKti +

KssKsi

1− n2
s

(5)uA∇2nA = Kα
tα +

d

S
Kts −

d

S2
nsus

(6))nA∇2nA = −∇BnA∇BnA = −∂µnν∂µnν −
d

S2
n2
s

(7)uαuβKαβγ = uAuB∂A∂BnCP
CD = (btti)

D +
XD

1− n2
s

(
Ktts + nsK

α
t Ktα

)
(8)uAuB∇A∇BuCP

CD = (aitt)
D +

XDns
1− n2

s

(
Kttt +Kα

t aαt

)
(9)nγ∇α∇βuγ = uαKαβγ (already calculated)
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A.4 Three space-time derivatives

(1)∇2K = d2

(
Kss

S2
− ns
S3

)
+ d

(
2Kµ

µ s

S
− 2Kss

S2
+

2ns
S3

)
whereKβ

s β = Ksii −Kstt +
Ksss

1− n2
s

+
2ns

1− n2
s

P µνKsµKsν

− 2ns
1− n2

s

KtsKts +
2ns

(1− n2
s)

2
K2
ss

(2)nA∇A∇BKPBC = − d
S

(Ki
A)CbAS −

dns
S2

(Ksi)
C − d

S
(KA

s bAS)
XC

1− n2
s

− dns
S2(1− n2

s)
KssX

C +
2dn2

sX
C

S3

where

(Ki
A)CKA

S = Ki
jKjs −Ki

tKts +
Ki
sKss

1− n2
s

(3)uA∇A∇BKPBC =
d

S
(Ktsi)

C − nsd

S

XC

1− n2
s

bBt KsB −
dXC

S(1− n2
s)
Ktss −

d

S2
KtsX

C

(4)nD∇C(∇2uD)PBC = − d
S

(
(KD

i aDS)B + (KD
S aDi)

B + (Ktsi)
B +

XB

1− n2
s

KD
S aDS

+
XB

1− n2
s

KD
S aDCX

C + btsC
XCXB

1− n2
s

− XBKts

S

)
(5)uD∇C(∇2uD)PBC = − d

S
(aiDKSD)B − d

S

XB

1− n2
s

aDSKSD

(6)uD∇D(∇2uC)PBC =
d

S

(
(aits)

B +
XBnsu

D

1− n2
s

(
∂su

C∂DnC + uC∂S∂DnC + ∂sn
C∂DuC

))
(7)nD∇D(∇2uC)PBC = − d

S

(
(∂Sn

D∂Du
i)B + ns(∂Su

i)B +
XBns
1− n2

s

(KD
t KSD) +

XBn2
s

1− n2
s

Kts

)
(8)(u.∇)(u.∇K) =

d

S
Ktst +

2d

S

(
aisKis +

ns
1− n2

s

KttKss

)
(9)∇2(u ·K · u) =

d

S
Ktst +

2d

S

(
aisKit +

ns
1− n2

s

K2
ts

)
(10)u · ∇(∇2K) = d2

(
Ktss

S2
− Kts

S3

)
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A.5 Four space-time derivatives

(1)∇2∇2K =
d3

S3

(
Ksss − 3

Kss

S
+ 3

ns
S2

)
(A.2)
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Appendix B

Converting Spacetime quantities

to Geometric Quantities

The membrane quantities are denoted by overhead bar. Here we list the
conversion from the relevant spacetime quantities to membrane quantities.
We also neglect subleading terms while calculating corresponding membrane
quantities. Note that any free indices inside bar are supposed to be projected
on the worldvolume.

K = K
KAB = KAB

∇CuA = ∇CuA

uCKCA = uCKCA

uC∇CuA = uC∇CuA

∇AK = ∇AK
∇2uA = ∇2uA − uBKBCKC

A

uCKCDu
D = uCKCDuD

uA∇AK = uA∇AK
∇2K = ∇2K −KKABKAB

∇C∇2K = ∇C∇2K −∇C(KKABKAB)

∇2∇2uA = ∇2∇2uA − u · ∇K∇AK −K∇BK∇BuA − 2KKBC∇B∇CuA
(B.1)
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Appendix C

Eigenvalues of the Laplacian for

Vector Spherical Harmonics

In this Appendix we calculate the eigenvalue of the Laplacian acting on the
lth vector spherical harmonic. This spherical harmonic was de�ned in terms
of the restriction of a collection of vector valued monomials to the unit sphere
in subsection 5.2.

We evaluate the Laplacian of Vµµ1µ2...µlx
1x2 . . . xl in spherical polar co-

ordinates in RD−1. The Laplacian of this vector valued monomial vanishes
(see subsection 5.2). We use this fact to evaluate the Laplacian of the same
vector �eld restricted to unit sphere.

Consider any divergenceless vector �eld on RD−1 with vanishing radial
component, i.e. Vr = 0. Using explicit expressions for the Christo�el symbols
for �at space in polar coordinates we �nd

∇rVr = 0,

∇rVa = ∂rVa −
Va
r
,

∇aVr =
Va
r
,

∇aVb = ∇̂aVb,

(C.1)

where ∇̂ denotes the covariant derivative taken on a unit sphere.
We will now use these results to evaluate ∇2V on RD−1 in spherical polar
coordinates. The result of this computation depends on the free index in this
equation. Let us �rst consider the case with the free index equal to r. In
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this case

∇2Vr = ∇r(∇rVr) +
1

r2
gab∇a∇bVr,

=
1

r2
∇̂a∇̂aVr −

1

r2
∇̂aV

a,

= 0.

(C.2)

In other words the vanishing of the r component of ∇2V is just a triviality -
it follows as an identity upon assuming Vr = 0 and ∇.V = 0.

Let us now turn to the more interesting case of the free index being an
angular direction on the unit sphere. In this case

∇2Vc =∇r(∇rVc) +
1

r2
gab∇a∇bVc,

=∂r

(
∂rVc −

Vc
r

)
− Γarc

(
∂rVa −

Va
r

)
+

1

r2
∇̂a∇̂aVc

+ Γaar

(
∂rVc −

Vc
r

)
+

1

r2
Γrac

Aa

r
,

=∂r

(
∂rVc −

Vc
r

)
− 1

r

(
∂rVc −

Vc
r

)
+

1

r2
∇̂a∇̂aVc

+
D − 2

r

(
∂rVc −

Vc
r

)
− Vc
r2

.

(C.3)

Let us now specialize to Vc is the vector �eld corresponding to the lth vector
spherical harmonic. In this case Vc ∝ rl+1. Using this fact and ∇2Vc = 0 we
get

− 1

r2
∇̂2Vc = (l(l+ 1)− l− l+ (D− 2)l− 1)Vc = [(D+ l− 3)l− 1]Vc. (C.4)
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