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Abstract

We study the effective horizon dynamics of black holes in large number of
dimensions(D). To do this,we construct SO(D — p — 2) invariant solutions
to Einstein’s equations in large number of dimensions D in a power series ex-
pansion in ﬁ holding p fixed and finite. We find that the horizon dynamics
of black holes in large D can be recast into a well-posed initial value problem
of dynamics of a non gravitational co-dimension one membrane propagating
in flat space. The dynamical degrees of freedom of this membrane are its
shape function and a divergence free velocity field. We find the equation of
motion governing the dynamics of this membrane upto first subleading order
1
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Chapter 1

Introduction

Einstein’s equations
R, =0 (1.1)

capture all space times dynamics. One of the most interesting solutions of
these equations are black hole solutions. Black holes feature a space-time
singularity (a point where the curvature becomes infinite). However this
singularity is always behind an event horizon. The event horizon causally
separates the interior of the black hole from the exterior. Black holes have
been of great interest since Schwarzschild found the solution to (L.I). We
study black hole space-times in large number of dimensions.

We find that the Einstein’s equations simplify to ordinary differential
equations in large D [II, 2 3, 4], 5, 6], [7, 8] Let us try to see why this is the
case. Consider a Schwarzschild black hole in D dimensions

To

2 _ (2U\D-3 2 1
ds* = =(1= GOt + sy

dr® + r*dQ3 (1.2)
When D — oo with r held fixed at a greater value than ro then (22)P=3 — 0
and the space becomes flat. To see what happens near the horizon let us set
r=ro(1 + 555). Now with R held fixed we see that

limD_mo(? 3 = limp_so = (1.3)

1
(1+ 55)P3
Thus the spacetime is not flat in a very thin region of O(%5) from the horizon.
We call this the membrane region.
We see that there are two length scales in the problem of black holes in
large D. A length scale of O(rg), the radius of the black hole and another

length O(7%) , the thickness of the membrane region. Emparan, Suzuki and
Tanabe have done the quasinormal modes analysis of Schwarzschild large D
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[6]. They found that a few light modes with frequencies of O(%) decouple
from an infinite tower of heavy modes with frequencies of O(%) at each
angular momentum. The heavy modes are supported all the way to infinity
but the light modes are supported only in the membrane region and decay
exponentially fast.

Whenever low energy modes decouple from high energy modes in physics
we expect to find an effective theory of the low energy by integrating out the
high energy modes. Here also we find an effective theory for the dynamics
of the membrane governed by these light modes. We call this theory of the
light modes confined in the membrane region the "Membrane paradigm".

We find that the problem of finding the horizon dynamics of black holes in
large D can be recast into a well posed initial value problem of the dynamics a
non gravitational codimension one membrane propagating in flat space time.
In other words solutions to Einstein’s equations in large D are in one to one
correspondence to the solutions of the equation of motion for the auxiliary
membrane in flat space time. The details of this duality will become clear as
we describe our solutions.

The thesis is divided in the following way. We start with an ansatz metric
having a SO(D — p — 2) isometry which solves the Einstein’s equations at
leading order in %. I will discuss the details of this ansatz in chapter 2. In
chapter 3, [ will review the Einstein’s equations in large D where the Einstein-
Hilbert action has a SO(D — p — 2) isometry. I will discuss the perturbation
procedure that we adopt to correct our leading order ansatz to subsequent
order in %. I will review the first order calculation in this section. I will also
discuss how we get the equation of motion for the membrane in the auxiliary
space in this chapter. In chapter 4, T will give details of the second order
calculation. In section 5, T will discuss how the quasinormal modes of the
Schwarzschild black hole can be obtained from our membrane equation. In
chapter 6, I will summarise the final results of this work and discuss future
directions.

This thesis is based on work contained in the original research paper
[9] and the preprint [I0]. This thesis mainly follows the structure of the
paper [I1]. The first of these papers written in collaboration with Sayantani
Bhattacharya, Ravi Mohan, Shiraz Minwalla and Arunabha Saha [9] will not
appear in any other thesis. Chapters 2, 3 ,4 and parts chapter 5 are based
on the material contained in this paper. The preprint is being written in
collaboration with Yogesh Dandekar, Subhajit Mazumdar, Shiraz Minwalla,
Arunabha Saha and is the basis for the material contained in chapter 4 and
second order corrections to quasinormal modes in chapter 5. The content of
chapter 4 may also appear in the PhD theses of Subhajit and Yogesh.



Chapter 2

The Collective Co-ordinate
Ansatz

2.1 Schwarzschild Metric in Kerr-Schild Co-ordinates

The metric for Schwarzschild black holes in D dimensions is given by

2

ds* = — (1 B (%)D_S) e (1 _ Elf_o)D—?)) +7%dQp (2.1)

The above metric can be written in an ingoing Eddington-Finklestein coor-
dinate system as

D-3
ds? = 2dvdr — (1 - (17?) ) dv? + 1r2dQp_s (2.2)

using the coordinate transformation
dr
D—3
(1- ()"

We can now go to the Kerr-Schild form of the metric by using the coordinate
transformation dv = dT" + dr to get the metric

dv = dt +

D—-3

ds® = —dT? +dr® + 12dQp s + (T—f) (dT + dr)?

D-3

_ 2 To 2
= A%+ ( . ) (dT + dr) (2.3)



The metric (2.3 is that of a Schwarzschild black hole at rest with velocity
u, = (—1,0,..). We can boost the black hole with velocity u to get the metric

OnO
ds?® = dsfclat + %dede

O=n-—u, wu=constant, u-u=—1, w:L,
To
r* = (nun + UMUN)xMwN, n=rodp, and nu=0 (24)

All the dot products above are with respect to flat space. The velocity field
also obviously satisfies
Vu=0 (2.5)

The advantage of writing the metric in this form is that it gives us a way to
view the one form fields in the flat space , ie 7, of (2.3).

2.2 Collective Co-ordinate Spacetimes from Boosted
Black Holes

We guess an ansatz metric from the form of the boosted Schwarzschild metric
in the Kerr-Schild co-ordinates above. Our metric is in terms of

e A function B in the D dimensional space-time. The surface B = 0
plays a special role in our ansatz as it corresponds to the horizon in the
black hole space time.

e The normal to this surface, given by n = dB, the extrinsic curvature
of this surface given by Kap = Vanp and the trace of the extrinsic
curvature given by K = Vn”.

e A velocity field v on this surface B = 0.

To get the zeroth order ansatz we generalise the vector fields, u and n to be
arbitrary functions . Our metric is then

OMON | v, N
s e
O=n-— ¢—1+LB =1 =0  (2.6)
=n-—u, = D3> UU = ,  un = .

ds® = ds?clat +

We demand that u and n satisfy the same constraints on the surface B = 0 as
they do for the Schwarzschild black hole. The velocity field is constrained by
V.u = 0 with the covariant derivative on the surface B = 0. Our definition



for 1 is satisfied by the v defined in (2.4)) for the Schwarzschild black hole at
leading order. For Schwarzschild black holes

D -2
B=r—ry, K= "
D —2 ’ r (2.7)
Y=1+ DR (r—mo) = %(at leading order in D)

The surface B = 0 is assumed to be a smooth timelike submanifold of the
D dimensional Minkowski space. The surface B = 0 or equivalently ¢ = 1
will be referred to as the membrane henceforth. The membrane separates its
interior ie B < 0 from its exterior ie B > 0. The function B is chosen so that
B > 0 is a connected spacetime and includes spatial infinity as well as Z+
and Z~. The world volume B = 0 need not be connected.
The spacetimes have the following properties.

e 1. The static black holes (2.3) are special cases of (2.6)), upto corrections
of order 1/D with the 1 and u functions given as in (2.4). In these
special cases 1 = 1 is the black hole event horizon.

e 2. The membrane surface ¢) = 1 is a null submanifold of the metric
for a general spacetime of this form. This can be easily verified.This
submanifold may be identified with the spacetime event horizon when
settles down to a stationary black hole at late times (as we will
assume). [

e 3. Consider a point zf on the membrane (¢» = 1) of the spacetime
(2.6). Let ufj and Ky denote the velocity and trace of membrane ex-
trinsic curvature at that point. Comparing with (2.4)), we will see in
subsection below that a patch of size of order % centered about
xf is identical, at leading order in D, to the metric of a patch centered
about the membrane of a Schwarzschild hole of radius (D — 2)/K and
boost velocity uf.

e 4. It seems plausible from point (3) above that every patch centered
about the membrane of the configuration ([2.6)) obeys the Einstein equa-
tions at leading order in %. In subsection below we demonstrate
that this is the case provided the spacetime (2.6 enjoys an SO(D—p—2)
isometry for any p that is held fixed as D is taken to infinity.

! The dissipative nature of the membrane equations of motion we derive below suggests
that all solutions reduce to stationary solutions at late times.



e 5. The deviation of the metric (2.6) from ds%,, scales like e~ P~V Tt
follows ([2.6)) approaches flat space exponentially fast for ¢ — 1> 1/D.

e 6. Combining (4) and (5) above it follows that (2.6]) also obeys the Ein-
stein equations at leading order in 1/D (or better) everywhere outside
its event horizon.

e 7.For 1 —1 > 1 the equations of motion do not admit solutions. But
since this lies inside the event horizon which is causally disconnected
from the outside we do not care about this region.

The metric is made by stitching patches of event horizon of of length
1/D of the Schwarzschild black hole with arbitrary radius and boost velocity.
The only constraint is that the radius and the velocity field varies smoothly
over the horizon. Thus the metric solves the Einstein’s equations at
leading order in 1/D everywhere outside the horizon.

2.3 Subsidiary constraints on ¢ and u

We use the metric as the starting point for perturbative expansion of the
solutions to Einstein’s equations in a power series in ﬁ' These spacetimes
are parameterised by two functions ¥ and u. As we have seen the space time
becomes flat for ¢» — 1 > 1, the functions which agree on the surface ¢ = 1
and differ only at O(%) serve as equivalent starting point for perturbation
theory. Different evolutions of these functions away from the surface ¥ = 1
gives different perturbation expansions.

We demand that on the surface v and n satisfies the same condition as
those satisfied by the v and n of the Schwarzschild metric.

nnlp—o =0, wulp—o=0 un|p—o=0, V™u=0 (2.8)

where VM is the covariant derivative taken on the membrane. To determine
how they evolve off the surface we choose a set of completely geometric rules
which makes the result of our perturbation theory simpler.

n.Vn=0, nVu=0 (2.9)

The constraints (2.9 tell us that n and u are parallely transported along n
off the surface. This makes sure that the constraints (2.8 (except VM .u = 0)

are satisfied everywhere outside the membrane.

2We find it convenient to use ﬁ rather than % as this makes our metric corrections
simpler.



2.4 Fixing Co-ordinate Redefinition Invariance

In the next section we will describe the perturbative procedure that we used
to obtain the solutions to Einstein’s equations upto O(%)Q. We need to
fix co-ordinate redefinition invariance to obtain unambiguous solutions to
Einstein’s equations. We can write our solution as

guN = MmN + hun (2.10)
We fix the co-ordinate redefinition invariance by demanding
OMhyny =0 (2.11)

where O = n — u. Note that the raising and lowering of indices are done
using nyn. For our leading order ansatz (2.6)),

OnO
hyun = ﬁ (2.12)

Since 0.0 = 0, where the dot is with respect to the flat metric the above
condition (2.11)) is automatically satisfied at the leading order.

2.5 Perturbation Theory

We want our metric to solve Einstein equations not only at leading order in

ﬁ but also at subsequent orders. We expand our metric in a power series

in ﬁ so that at each order they solve the Einstein’s equations. Our metric

can be written as

guN = Nun + hun
= gy
h = N

RO OnOn

MN = T Dos (2.13)
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Chapter 3

Perturbation Theory Assuming
SO(D — p — 2) isometry

3.1 Einstein’s Equations in SO(D —p—2) Sector

We take the large D limit assuming a SO(D — p — 2) isometry of the metric
where D — oo while holding p fixed. We do this to find out how different
quantities scale when we take the D — oo limit. Though we assume this
large isometry our final answers turn out to be independent of p.

In our intermediate calculations we assume our metric to be of the fol-
lowing form

ds* = g, (z")datdz” + e dQ?
d=D—-p—-3, pu=1,23...p+3 (3.1)

We derive the equations of motion for the above g, (z*) and the scalar field
¢(x#) from the Einstein-Hilbert action

_ 1 D =D
S = 167rG/d z+\/gR (3.2)

where
g= Determinant of the metric in the full D dimensional spacetime
R= Ricci Scalar in the full D dimensional spacetime

Substituting (3.1) in (3.2)) we get the effective Lagrangian

S = / A", /geT (R +d(d—1)e™® + d<d4_ 2 (8¢>2>

(00)* = g"(9,9)(0s0) (3.3)

11



Varying the above action with respect to ¢ and R,, we get the following
equations of motion.

e(d— 1)~ S0 — %0 = 0

d d
R,u,l/ = Evuvugb + ZVM¢VV¢ (34)

3.2 Setting up the Perturbative Computation

3.2.1 Convenient Co-ordinates for Flat Space

The metric (2.6)) is completely determined in terms of the vector field v and
the function 1. These functions live in D dimensional flat space. To study
SO(D — p — 2) invariant configurations, the following co-ordinates for flat
space are useful

ds® = Napdr®da” + dS* + S*d03
i=12...p+1, d=D-p-—3 (3.5)

The SO(D-p-2) isometry in these co-ordinates imply that the functions u and
¢ which determine the metric are functions of (w®, S) = z* only.

3.2.2 Auxiliary Embedding Space

The metric (3.5]) describes flat RP as ’fibration’ of S over p + 3 dimensional
base metric of the form

ds?‘lat = naﬁdxadlﬂ + dSQ = nuudxudﬂjy (36)

The membrane world volume with SO(D —p—2) symmetry can be thought of
as (p+2 dimensional) co-dimension one surface in the base space((3.6)) with
each point fibred over a d dimensional sphere. Consequently the functions
u and 1 can be thought of as vector fields and functions in this base space
which are then extended to the full D dimensional space with a SO(d+1)
symmetry in the obvious way. The auxiliary space does not have D.
When we formulate the perturbation theory with v and ¢ moving in the
auxiliary space, the factors of D are manifest. This allows us to have a clean
formulation of the perturbation theory in this language.

The covariant derivatives of the fields in the auxiliary space do not
agree with the covariant derivatives in the D dimensional embedding space

12



E] We have given a dictionary between the covariant derivatives in (3.6))
and the covariant derivatives in (3.5 in (fill up whereever you are giving the
dictionary). Though we do our calculation in this auxiliary space we can
recast our final result in the full D dimensional space.

3.2.3 Zooming into patches

In this section we discuss how we can take in interesting D — oo limit for
our SO(D-p-2) configurations. To do this, we look at the Einstein’s equations
for our configurations. We see that the derivatives of ¢ are weighted
with an extra factor of d as compared to the derivatives of g,v. E] Thus there
are two length scales in the problem as discussed in the introduction. One is
of O(3) over which the metric g, varies and the other is of O(1) over which
¢ varies.

We want to employ a co-ordinate system in which both g,, and ¢ are of
O(1) but derivatives of g are of order d while the derivatives of ¢ are of order
unity. To do this, we zoom into patches of length ﬁ on the surface B = 0.
We view our manifold B = 0 as the union of such patches. We zoom into a
point zf, and use the following co-ordinates and the rescaled metric in the
patch centered about xy,

a

Y
Gu = D2gab (3'7)
Juv = (D — 3)2042&?,9@ = OéZOélb/Gab
Xo = (D = 3)Vep =V, (3.8)

In these scaled co-ordinates the Einstein’s equations are
d d 9
D-3 4D-3"

1
—V, X = -9
g VX T€

Ry, = Vaxs + > XaXb (3.9)

d
2(D - 3) 4(D - 3)

All quantities(Christoffel symbols, curvatures) are constructed out of metric
G- We look for solutions of the equations in a perturbative expansion
in ﬁ. The solutions of the Einstein’s equations in each patch can be joined
smoothly to give the metric for the entire manifold.

!This is because of the contribution from the Christoffel symbol 'Y ; where A,B are
in the angular directions of the d-sphere in the space (3.5 which is not there in the space

B9)-

? The term dV,V,¢ has a term which is I, 0a, so at leading order this term should
be thought of as one ¢ derivative and one metric derivative.

13



3.3 Data at First Order

The different quantities B and u are expanded in Taylor expansion in the
patch centred about the point zf. This expansion is in the auxiliary space
discussed in where covariant derivatives are replaced by partial deriva-
tives.

1 1
B = Bxo) +n,dX" + S0,m,0X"5X" + £0,0,0,BEX" X X+ ...

1
u, = uyu(zo) + Opu,d X" + EOV&NUMCSX”&X“ +... (3.10)
where
yﬂ
OXM =, pn=123...p+3 (3.11)

are the patch-co-ordinates in the auxiliary space.

The data at zeroth order is w,(zo) and n,(zo). ] The data at first order
are Jyu, and O,n,. Since the evolution of the n is given by n.Vn = 0,
V.n, = K,, the extrinsic curvature of the surface B = 0.

There are three special directions n,,u, and dS. The rest of the directions
are equivalent, so we can classify our data according to how they transform
under SO(p). However all this data is not independent since they are subject

to the constraints (2.8)).

3.3.1 Independent Data in the Scalar Sector

From K, we can have scalars if both the indices are in the scalar directions
and from the trace of the tensor when both p and v are in the p directions.
However, one of the scalar directions do not exist since n.K = 0. So we get
% +1 = 4 scalars from K, since it is symmetric. The indices of J,u, are not
symmetric. From the constraints v.n = 0 and u*d,u, = 0 we see that when
v index is along n or u, it does not give us independent data. The constraint
V.u =0 gives u, = O(3 as shown in , so d,u, = O(3;) and contributes to
the next order. The only scalar we get is from the trace of the tensor when
both the indices are in the p directions.

3Though n, appears with a factor of & in the expansion (3.10), in the metric B
appears in ﬁ where ¢ = 1 + %B. % is O(1) at leading order as is shown in .
limpﬁooﬁ = e ® where R = 5n,y" and y" are the patch co-ordinates. So n,
contributes to the zeroth order

14



Table 3.1: Independent Data in 3 Symmetry Channels

Scalars Vectors Tensors
S1 =dS.K.dS Vi=u” aBPf T, = Pg‘Pg(KW — ";” 79}(79)
Sy=uKu |Vy=(dS)*KuosP] | Ty = PP§ () — "”T”Pwa“/ue)
Sy = u.K.dS Vi = uaaauﬁpf 15 = Oy
Sy=PK,, | Vi= dSaaauﬁP/f
S5 = P*0,u,

3.3.2 Independent Data in the Vector Sector

We will get a vector from K, if one of the indices is along the scalar direc-
tions. Since n.K = 0, the scalar indices can only be along u and dS which
gives us two vectors from K. As discussed in in 0,u, the v index
cannot be in the scalar directions, so they are always vector index. The p
index in the scalar direction will give us vectors but n.Vu = 0. So u can
only be along u or s which gives us 2 vectors from 0,u,.

3.3.3 Independent Data in the Tensor Sector

There are no constraints in the tensor sector so we get one symmetric traceless
tensor from K, one symmetric traceless tensor from J,u, and one anti-
symmetric tensor from 0,u,.

The table lists all the independent data in the 3 symmetry channels
and PRV = phv 4 yhqy? — iy — @Enemt @S5 nan)” 4o the brojector orthogonal

1—n2
to u, n and dS.

3.4 Solving the Einstein’s Equations

3.4.1 Choice of Patch Co-ordinates

As mentioned in [3.2.3] we solve the Einstein’s equations in each patch of
length % and then sew them together to get a smooth solution. We need to
make a local choice of co-ordinates to write our Einstein’s equations in each
patch. We have already noted that there are three distinguished one form
fields, n,, u, and dS. From these, we construct two one form fields which
we are going to use as the basis for our metric,

O, =n, —uy,

dX =dS —ngn, (3.12)

15



Let Y be p- one form fields such that
YVidX =Y'n=Y.0=0, Y.Y/=§ (3.13)

Let {x},So} be a point on the surface B = 0 about which the patch is
centered. We solve the Einstein’s equations in the following co-ordinates in
this patch

(3.14)

3.4.2 The Perturbative Metric in the Patch
In the co-ordinates (3.14]), the metric (2.6) at zeroth order looks like

ds? So -R 2 dX? - Q7,0
s* =2 pdVdR — (1 - e ")V +W+Zdy dy (3.15)
S B i=i

where n2 = dS.n!xu:xS. We call this the black brane metric. The Schwarzschild

metric (2.1]) with radius Z*_Z when expanded in a patch about a point {zf, So}
on the membrane looks the same. It is easily verified that (3.15|) satisfies the
equations of motion (3.4]) at leading order. Also each little patch of the hori-

zon is looks like the Schwarzschild metric with radius % and boost velocity
u(zp) at leading order.

Our ansatz metric (2.6) no longer satisfies the Einstein’s equations at first
order when the fields B and u are Taylor expanded. In order to satisfy the
equations (3.4), we add first order corrections to that are allowed by
the guage condition (2.11)

1 . .
ds* = (ds*)’ + 55 (HyvdV? + 2HyxdVdX + HxxdX? + Hidy'dy
+2Hy,;dVdy' + 2Hx;dX dy' + H;;dy'dy’)
1
=2l — 1
¢ = 2nSo + 7553300, (3.16)

In the Einstein’s equations (3.4), x = D — 3(0¢) appears; if ¢ had a first
order correction it would enter the equations of motion at zeroth order and

our ansatz (2.6) would no longer be a solution of (3.4) at zeroth order. So

the correction to ¢ starts at ﬁ and enters the equations of motion at
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the first order. In addition to the four scalars in the metric we also have to
determine d¢o.
The equations that we have to solve schematically look like

HoW = s (3.17)

where H is some differential operator, h(!) represents the metric corrections
and the correction to ¢ in (3.16) and sY) represents the sources. The inde-
pendent data listed in forms a basis for the sources. The sources arise
from the Taylor expansion of the fields n, v and v in (2.6). The equations
(3.4) also has an ' expansion and the black brane metric does not
solve the equations at the first order. As discussed in the introduction, the
normal to the membrane is the direction in which the metric varies very fast.
The derivative of the metric in the normal direction(which is captured by the
R co-ordinate should) should be of D times the derivatives in the directions
tangent to the membrane. In other words when we move distances of O(5)
from the point xf in the patch, the metric remains constant in the directions
tangent to the membrane and only changes in the directions normal to the
membrane. This implies that
(2
oV = (R, L XY
D D' D
where R and the other scaled co-ordinates are as defined in . Since
these corrections are already at order DL{%, the derivatives in the V, X, ¢’
contribute at the next order. So differential operator H is a operator only in
the variable R. The equations become ordinary differential equations
in the variable R which can be easily solved.

Though the source functions s(!) arise from the Taylor expansion of n, u
and ¢ in , they are not explicit functions of V, X, y*. There is a simple
reason for this. the locality of the Einstein’s equations imply that the s
contains the derivatives of the functions n, v and ¢ only at order %. The
derivatives of n, u and v come from the Taylor expansion of these about the

point zf and the terms proportional to V, X, 4" are only order 55 or smaller.

(3.18)

3.4.3 Equations in the Three symmetry channels

As we have seen that the metric corrections contains 5 unknown scalar
functions, 2 unknown vector functions and 1 unknown tensor function.(The
scalar, vector and tensor are determined by their transformation under SO(p)
rotations). Since the black brane metric is invariant under SO(p)
isometry we expect the first order corrections to preserve this isometry. the
equations in these three sectors decouple.
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Tensor

The equation in the tensor sector is turns out to be a single differential
equation for variable 7;;(R)

Or((1 — e ™OrTi;) =0 (3.19)

This equation is solved easily and 7;; is 0 from boundary conditions that are
discussed later.

Vector Sector

There are 3 coupled vector equations

Eri=0, &Evi=0
Ex;i=0

for two variables Hy; and Hx;. The combination of equations

aR[ (5—8) Evi + fo(R)sRi] + [(%) Evi + fo(R)eRi} + {%ﬂgq Exi =0,

S S 0
where fo(R)=1—¢ %
(3.20)

vanishes identically at first order. So we have two independent equations for
the two variables Hy,; and Hyx; which are easily solved.

Scalar Sector

There are 8 scalar equations for 5 unknowns

Err=10, Eryv =0, &rx =0,
Evv =0, & x=0, Exx=0,

ign — O, 5¢ — O,
i=1

18

(3.21)



At first order the following three combinations vanish identically.
ng n2
Combination-1: 8R |:5VV -+ (S—S> f()(R)gRV:| + |:8VV + (S—S) fO(R)ERV‘|
0 0

1
+ (n%——()) gVX :0,

0

+2(82) OnfalR) + 2R Enn+4 (52 ) e 0.
(3.22)

Thus we have exactly 5 independent equations to solve for the 5 unknowns
Hyv, Hyx, Hxx H;; and d¢,.

3.4.4 Equation of Motion from Regularity at horizon

We want the functions H,, in to be regular for all R > 0. Our source
functions s are regular at R = 0 but this does not guarantee that the
functions H,, are regular at R = 0. This fact plays a very important in our
work. We study this fact and its consequences more closely in this section.
Let EMY denote the Einstein’s equations obtained by varying the Einstein-
Hilbert action. One of aims is to determine the metric as a function of .
To do this, we look at the ’evolution’ of the Einstein’s equations along di).

The equations
cM = EMN oy, = EMY (3.23)

gives us the Einstein constraint equation on constant v slices. These equa-
tions do not give us the evolution of the metric along diy but imposes con-
straints on it on constant 1 slices.

The dot product of C3 with n and u does not play any role in the dis-
cussions of this section. So we can just consider C4  projected orthogonal to
n and O. From the geometrical point of view(see below for more discussion),
CM is a vector equation but so far our perturbative procedure has not been
geometrical. We treat the isometry directions as special. In our current point
of view, C¥  can be decomposed into a SO(p) scalar CM X and a vector

C¥  projected orthogonal to X.
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It can be easily verified in the scalar sector

(Cpin - X) K%) Evx + fO(R)gRX} |

S
d {H wvx)(R)
dR | fo(R)

Here X x)(R) is the full source for the combination f—égvx + fo(R)Erx-.
From (3.24), we can see that Hy y has a solution regular at R = 0 if the term

Zwx)(B) having a simple pole at R = 0 vanishes. We demand that this

(3.24)

(0.8 fo(R)2 :| + E(VX)(R) = 0,

fo(R)?
happéns which gives us the following scalar equation of motion
dS ds 1 —n2
WK (22 ) = S 3.25
()i (2 = (1) 3:29)

Hyx is regular at R = 0 if and only if (3.25) is satisfied.
In the vector sector, C¥ projected orthogonal to n, u and dS can be
shown to be proportional to

Kf_;) Evit fo(R)SRZ} < fo(B) 2 [VOR)] + VR =0, (3.26)

where VZ»(X)(R) is the full source of the combination (5—0) Evi+ fo(R)ERri. We

ng
can see that V;(X)(R) has regular at R = 0 if VZ»(X)(R) vanishes at R = 0.
This gives us the vector equation of motion

P Kﬁ - u) O(n - u)z} 0 (3.27)

It can be verified that once the equations and exhaust the
conditions for regularity at R = 0; once these equations are satisfied the
first order corrections to the black brane metric is regular everywhere on and
outside the horizon.

3.4.5 Conditions to Fix Integration Constants

As we have discussed above that we obtain the first order corrections to
(2.6) which solves the Einstein’s equations that turn out to be a set of
ordinary differential equations in each patch. In section [3.4.4we discussed the
equations that has to be satisfied so that H,, in (3.16) is regular everywhere.
But these conditions do not give us unique solutions for . They are
unspecified upto integration constants. Some of these constants are fixed by
the regularity condition at R = 0. However this condition is not enough to fix
all the integration constants. We will impose additional physically motivated
constraints to obtain unique solutions to our equations.
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Asymptotic Flatness

We want the corrections H,, to vanish exponentially as R — oo. This is not
unreasonable since we want to recover the flat space metric as we move large
distance(in units of 5) away from the horizon. This condition fixes many of
the integration constants.

Normalization Conditions

We are still left with two integration constants even after ensuring asymptotic
flatness; one in scalar sector and one in vector sector. This is what should
be expected on physical grounds. The metric was parameterised by a
scalar function B and a vector function u. The metric is left invariant by the
transformation of the form B — B + %Bl. Such a redefinition will change
the first order correction. We are left with a two parameter ambiguity of our
first order solutions exactly as we expect. This is because we have not given
a precise all orders definition of our shape function B and velocity field w.

We fix this ambiguity of field redefinition for B and w by providing ad-
ditional constraints on all subsequent order corrections to the metric. We
demand that Hy vy, Vi(v) vanish at & = 0. This constraint written invariantly
amounts to

Hynn™|p=o =0 (3.28)

We refer to these additional constraints which are effectively constraints on
B and u as normalisation conditions. These conditions together with asymp-
totic flatness fixes all integration constants and determines the first order

corrections to (2.6)) uniquely.

3.5 Results for the first order metric correc-
tions in the patch

Hyy (R) =Re™" (n_SS) (n% B V‘Q’) (3.29)



3.6 Geometrical Form of the First Order Cor-
rections

3.6.1 Geometrical Form and Redistribution Invariance

The membrane equations of motion and are make special ref-
erence to S and ng and X. The expressions involving S, ng and X are well
defined only for configurations preserving SO(D-p-2) symmetry. Also the
definition of S? = e?(*") depends on the details of the isometry.

Unconstrained dependence on S, ng and X are not acceptable for the
following reason. A configuration preserving SO(D — p — 2) symmetry must
also preserve SO(D — p’ — 2) symmetry for all p’ > p. Any solution to the
equations for a particular p must also be a solution for all p’ > p. We refer
to this property of the equations as redistribution invariance.

Our equations can be manifestly redistribution invariant if they can be
written down in terms of quantities of the full D dimensions. One might
wonder how this can be possible with explicit appearances of S, ng and X
in our membrane equations and metric corrections. However this is possible
in the large D limit. Consider the extrinsic curvature of the surface B = 0,
Van? = K which appears in the metric (2.6). This is a manifestly geomet-
rical quantity as A runs over all D dimensions. We compute this quantity
explicitly with the metric of the embedding D dimensional Minkowski space
written in the following co-ordinates

ds? = Napda®da” + dS* + dQ3 (3.30)
Then K is [ |
" ns "
VATLA = ﬁﬁu(Sdn’ ) = dg + a,m’ (331)

We see that this manifestly geometric quantity is given by d% at leading
order. So whenever we encounter this quantity we can replace it by . A full
list of geometrical quantities and what they correspond to in terms of S and
ng is given in Appendix [A]l Tt turns out that first order metric corrections
H,, and the equations of motion (3.25)) and (3.27) can be geometrised.

3.6.2 Geometrised metric correction

Though we expect our metric to be geometrical on physical grounds, this is
non-trivial at algebraic level. The basis for one-forms in which we write our

4,1 is not in the large angle directions as we are looking at configurations having SO(D-
p-2) symmetry, so n is a function of the p co-ordinates and S.
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metric has X,, = (ds—ngn)" which is not intrinsically geometrical because ng
and S explicitly depends on the details of the split. The only two geometrical
vector fields we have in the set-up are n and u. Also the correction d¢o which
is the correction to the radius of the large sphere is not geometrical by itself.
Let us consider the part that looks ungeometrical in ([3.16])

Hydy'dy' + HxxdX? +2HyxdVdX +2Hy;dVdy' +2Hx;dX dy' + 2H;;dy'dy’

(3.32)
dy' in a covariant form can be written as dy* = P#dz® where p = 1,2,3... D,
PrY = nhY —nkn” +ubu” — )fff; and z* are the Cartesian co-ordinates in D
dimensions. Rewriting the ungseometrical part again in terms of the above

quantities we get

Hydy'dyi + HxxdX? + 2HyxdVdX + 2Hy,dV P'dxz®+

3.33
2Hy,dX Ptdz® + 2H,, P*dx® P} dz” (3.33)

We know that the only geometrical part in P* is n** — n#*n" + u*u”. The
above ungeometrical part can be geometrised if HyxdVdX cancels with
Hy, )fﬁfg dx® part of P¥ and 2H x,dX P!dx® cancels with QHW)I(Z—%da:O‘Pgd:):B
part of QHWP(Q‘de‘Pgd:vB . We see that indeed this is what happens. This
is a very impressive and non trivial check of our metric corrections.

Now we come to the trace part. Note that now we are looking at the full
D dimensional metric where e? is the radius of the d-sphere. So the correction
to ¢ also enters the P*”H ,, where P*” is now the projector orthogonal to n

and u. The nyn in (2.6) can be split in the following way.

N datdz” + e?dQ

3.34
u=12_...p+2 ( )

The correction to ¢ changes the radius of the d-sphere and the metric in the
isometry directions look like
1 0,

The trace over the d sphere part of the metric gives a correction % X d
which is equal to (D‘S—fg) at leading order. The full geometrical form of the

correction is therefore H,, P* = H;;+ (1 —n%)Hxx +d¢. We find a separate
Einstein’s equation for this whole combination which gives us H,,P*’. Now
we are ready to write (3.16]) in a geometric basis( we replace dV by Oyrdz?)

Hyy = HyyOyOy + HysPOy + H + HTY (3.36)
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where

PAB — pAB _ pApB L AyB

HD YN — (3.37)

H(TT) — HMNP]\/[N
The metric corrections (3.36]) are now manifestly geometric as the indices run
over all D dimensions. The metric written has two scalars Hyy and HT"),

. T .
one vector Pyl Hy s, and one traceless symmetric tensor, HJ(VI ])V The metric
in geometrical form upto first order is

OnmOn 2 VK

nvN + b 2 —1)(D — 3)¢_(D_3)(K (T — (u.V)uy)) POy
— (1 = 1)(D = 3)y~P=3) (% (w —1)(D - 3) (% - u.VIC%u.K.u) + IC)) Oy On
(3.38)

3.6.3 Geometrised equations of motion

The equations (3.25)) and (3.27) can be combined into one geometrical vector
equation. The geometrical vector equation is

(VQUA _ VA/C

© =+ ucK§ — u.VuA) Py =0 (3.39)

The geometrised divergence of the above equation (3.39) to leading order is

V2K  u.VK K u.VI

i K +u. KLU — c
gives the scalar equation (3.25)) at leading order. Thus the equations
and can be geometrised in to single equation ([3.27).

(3.39) gives us an equation of the membrane dynamics which can be
solved independently of the gravitational problem of horizon dynamics in
large D. Note that the equation has D — 2 components. We have
D — 3 independent components of u owing to the three constraints u.u = —1,
u.n = 0and VM 4 = 0 and a shape function B. This gives us a total of D —2
unknown functions. Since we have D — 2 equations for D — 2 functions they
can be solved for in principle. The equation gives us a closed system
for the membrane dynamics.

0 (3.40)
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Chapter 4

Second Order Calculation

We follow the same perturbative procedure that has been set up in the pre-
vious chapter to calculate the ﬁ corrections to the metric. For this order
we use the geometric form of the metric as our starting point for our
perturbation theory. We expand all the quantities in this metric to order
ﬁ. At this order the relevant data is the second derivatives of n and u
can be seen from there Taylor expansion in the patch (3.10). In addition to
the pure second order derivative data we also have bilinears of the first order
data appearing at this order. For our calulation at this order, we demand in
addition to the constraints and eqrefsubcond the derivative of the lead-
ing order equation of motions and are 0 along the membrane.

More precisely we demand that

awn (-2 (89 (55)-

o-mnay (%) o] (e

ngs

The first one gives us 2 scalar constraint and 1 vector constraint equation.
The second one gives us 2 vector constraints, 1 scalar constraint , 1 symmetric
tensor constraint and 1 antisymmetric constraint equation.

The Einstein’s equations schematically look the same as .

Ho® = 5@ (4.2)

The argument that the sources and thus in turn the corrections v are func-
tion of the fast varying direction R remain the same as given in [3.4.2] The
homogenous differential operator H acting on the corrections remain the
same, but the sources s® are more complicated and have many more ana-
lytical structures. The same combinations of Einstein’s equations as given
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in and become identically 0. The first order correction to the
equation is determined in the same manner as discussed in [3.4.4]

Before beginning the discussion of the second order corrections to the
metric and the first order correction to the equation we list the pure second
order data which consists of 9,0,n, and 0,0,u,.

4.1 Independent Data at Second Order

Recall that we can divide the data into three symmetry channel in the re-
duced p+3 dimensional space depending on how they transform under SO(p)
rotations.

4.1.1 Independent Data in the Scalar Sector

Let us first consider the scalar data from 9,0,n,. Recall that there are three
scalar directions n, u and dS. We can get a scalar if all the three indices
are in the scalar directions. But the pieces of data where one of the indices
are along n are not free because of the constraint n.K = 0. So the indices
along two scalar directions u and dS gives us independent data. There are
2x3xx4 — 4 such pieces of data. We also get a scalar data if one of the indices
is in the scalar direction and the other two indices are traced over. Again
there are 2 ways to choose the scalar index, which gives us 2 more scalars
from 0,,0,n4. So there are a total of 6 scalar data two derivative shape data.

Let us consider the scalar data from 9,0,u, now. As discussed in 77 u
is only in the vector directions. So the w index is can only be in the vector
direction. We can get get a scalar if one of the derivative indices is traced
over with the u index and the other derivative index is in the scalar direction.
Again due to the constraint n.Vu = 0, the derivative index can only be in
two scalar directions. Thus we have two scalar data from 0,0,u,.

From there are 3 scalar constraint equations. So there are total
6 + 2 — 3 = 5 independent scalar data.

4.1.2 Independent Data in Vector Sector

From 0,0,n, we get a vector if one of the indices is a vector index and
the other two are in the scalar directions. Again there are two free scalar
directions because of the constraint n.K = 0. Thus we get % = 3 vectors.
We get another vector when two of the indices in the p-direction is traced
over and the remaining one is also in the p-direction. In total we get 4 vectors
from 0,0,n,.
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Table 4.1: Independent Data at Second Order in 3 Symmetry Channels

Scalars Vectors Tensors

552) = Osgg VI(Z) _ CSS,BPf T1(2) _ PQ‘PE(CSW _ 7);1/ 790579)
87 = uCass | V3 = PP KagsFy | 1, = PLPY(/Clyy — 2 P17uf Cog)
S =uufCops | Va=0s0susPy | Ty" = PPy (Ds0,u, — "2 P0050,up)
S = PrCs,, | Vi=P*050,us P

S = P, dsu, | VP = Pr0,dpus PP

VG(Q) = uo‘uﬁaaaﬁu(;Pg

As we have discussed the index on w in 0,0,u, is always in the vector
direction. We get a vector if the derivatives are in the scalar directions. This
gives us % = 3 vectors. We also get vectors two of the derivative indices
are traced over the p directions or if one derivative index in the p-direction
is traced over with the index on uw and one of the derivative index is a free
derivative index. So we have a total of 5 vectors from 0,0,u,.

The gives 3 vector constraint equations. So there are a total of

4 4+ 5 — 3 = 6 independent vector data at second order.

4.1.3 Independent Data in Tensor Sector

From 0,0,n, we get two traceless symmetric two-tensors when one of the
indices in the scalar direction and the other two are in the vector direction.
We also get a 3-tensor when all the three indices are in the p-directions. From
0,,0,uq also we get two symmetric traceless 2-tensor and two anti-symmetric
2-tensor data when one of the derivative index is in the scalar direction. We
also get a 3-tensor when all the indices are in the p-directions.

The gives one symmetric tensor constraint. So there are 24+2—1 = 3
independent symmetric traceless 2 tensors.

In we list the independent data at the second order. We denote
0oy = Capy

4.2 Correction to Membrane Equation of Mo-
tion

We obtained our membrane equation of motion at first order by demanding

regularity at the horizon ie R = 0 for the corrections H‘(/l))( and H‘(/ll.). This
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regularity condition was got from the Einstein constraint equations EMN .y
as discussed in [3.4.4] We look at the same combination as and ([3.26)
at second order. Since the homogenous differential operator does not change
at each order the form of the equations remain the same. The regularity
condition for the solutions H‘%)( and H‘(/?i) give us constraint on our second
order data. This is the first order correction to the zeroth order equations of

motion (3.27) and (3.25)).

To geometrise this first order Correction, we first expand the geometric
form of the equation of motion and its divergence ([3.40)) to first sub-
leading order explicitly in terms of our data given in[3.1]and 4.1l We subtract
this subleading part from the equations that regularity at second order gives
us, as this is the part that gives us the new constraints on our data arising
purely in second order. We see that we are able to geometrise this equation.
Also the equation obtained from the regularity of HVQX turns out to be the

divergence Hv when geometrised. We present the final geometrised form of
the equation with first order correction over here.

V2 VK 1/ V2V V(VK)
<T—T+U-K—(U-V)U+B(D o3 - D o3
(u- K -u)(u-Vu) (u- K -u)(u-Vn) (u- (V?n))(u - Vu)
+ 3D o —3D 2 — 6D =
L gpl (VPn)(u- V)

2 +3u-Vu—3u-Vn>>P—O

where

PAB — pAB _nAnB 4y B (4.3)
where the V is space-time covariant derivative in D dimensions taken with
respect to the metric (3.5). We can convert the equation into an equation
with quantities on the membrane world-volume using the dictionary given in
Appendix [Bl The equation in membrane world volume quantities is given by

(VQUA CchKf) . VAIC

+uPKpa—u-Vuy

K

PAC

= 0(4.4)

K K
V2V2UA u - VK:VA’C VBICVBUA KCDVCVDUA
K3 T e K2
VAV% Va (KpcKPOK) (u-K-u)(u-Vug) (u-K-u)(uPKps)
+ +3 -3
& K

(u- V) (u-Vuy) (u-VK)(uPKga) 3 3 5

— 0 IC2 + 6 IC2 +5U'VUA—5U KBA
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4.3 Solving Einstein’s Equations at Second Or-
der

The Einstein equation for the tensor sector is

s d d
e RdR(( el 1)dR(P£4PéVHMN))
7@
e’RTf(‘% - Re’RTf@, — e’QRTIEfE); + Re 72RT 3) — R%e2R /213
d o von (4.5)
= E(PA PBHMN>:
1 ey @) —am(@) cor® 2 —aTan
p— Typ—al g —e T +re T 5 —x%€ 5 dz
0
where
(1) 2D? M pN K CD
Ty = ’C_PA Pg E(KMN — Vuny) | = (Kne — Veun) P  (Kpn — Vpuy) + ViV
2D K
i 77?)3 pMN <<E(KMN - V(MUN))) — (Kume — Veun )PP (Kpy — Vpuy) + VMVN)
and .
2D? PV Vi
THh =% <Pj4 PY Vi Vi — L NmB)
and 2 MN
4D PV Vi
Ty = el <P£4PgVMVN Ag NnAB)
where,

Va= uCKg —u.Vuy

The RHS above is regular at R — 0 provided the integral vanishes at R = 0,
which is implemented manifestly above as the integrand is regular at R =
0. Integrating once again the above solution and then implementing the
boundary condition that P} PY Hyy =0 at R — oo we get

P PY Hyy = — e R(3T% — T4)) + Re (T5) + Ti3))—
2
/oo R(Ti+ 15+ 15) (4.6)
R 6 — 1

The ¢ equation is given by
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1 d?
5@ (PMNHMN) = €_RS¢ — G_RRS¢

PMNHyy = ¢+ 2H; + (1 — ns®)Hy,

(4.7)

where

So=-—=Ww-K—u-Vu)-P-(u-K —u-Vu)

Now, the boundary condition on ¢ is that both ¢ and its derivative van-
ish at ® — 0o.The P* H,, solution written above satisfies this condition.
Integrating the above equation once we get

- (P]V[NHMN) = —/ (e’xng — €7II‘S¢) dx (48)
R

From the above expression we see that the boundary condition on ¢’ is satis-
fied. Integrating once more the solution for ¢ satisfying the above mentioned
boundary condition can be written as

PMNHyn = 2/ (/ (Spe™ — Syze™) da:) dy (4.9)
v

R

The geometrised sources for Hvi and Hvy give

d d
e 2 (—1+ eR)E(eREP%HVM) =

R 2Ry 4 Re7 2Ry 4 72 (—SU(2) - 251}(1)) + R?e* (—Sv(l))

+ Re™ (=50 + Sv@) + 7 (S0® + 250)
(4.10)

D (D Vu
2) 2 272
2
SU(3)= —2D—2 (VTM,C—UAKAM> PMN(VNUC—KNC)—l—%(u-K—_

30



The solution to the above equation can be written as

rd
dR

/ ! (R2€RSU(1) + Re BS5y®@ 4 e~ R (—Sv(z) — 281)(1)) (4.11)

1—e R

+ R (=SvW) + R (=Sv® 4+ 50®)) + (Sv® 4 2500 ))dR+Cl

For regularity we need the numerator of RHS above to vanish at R — 0,
which is manifestly true. The final solutions is

o0 1 —R P2 —2R
PMHyy = —/ eR/P (R)e "+ PAR)ET o cre ' (412)
R

1—e R
where,

P1(R) = R*Sv™ + RSv® — (Sv®@ 4 250W)

and,
P2(R) = —R2SvW + R(Sv® — Sv@) + 2801 4+ 5@

We can fix the integration constant C'l with the boundary condition that
PtH,, =0 at R =0. This gives
1
Cl=-—— (950" 4 350 + (3 — 47?) Sv®)

The Hvv equation is
d d 1
-R R -R 2 _
e (E (6 IRH'UU> - 56 (¢/ + 2HZ/Z + (1 — ns)H;y) =

e ESvv® + Re S50 + R2e ESuu® + R3e ESuu™ + Re 28 Gyp®)
RdAR

+R?e RS0 ©® 4 7RGy / — (4.13)
where,
S = 24 %2—2 (V ] Viptg) PNPPMQ> — 22—2 (KMNKPQPNPPMQ
— DIC2 ) ll;z (u Vuyu - VuNPMN) 2E <UZ,C> —I—Q%U.K.u

2

D D
+ 255 (u Kynvu KPQPNQ> -Vl

31



VU 2 UM UNP N 2D2 2UM P
+ (—= — Py u 'V PUNP N)

(IC2 K K
D? N
= v u V NP pM
K2 ( munVpugP" TP @ Ty
D2 Q IC VMU,NKPQPNPPMQ)
+ﬁ (KMNKPQPNPPMQ ) DQVQVQ
D2
—ﬁ(u V- quPMN> — 987 (“ VY | D" (uVK
i K K K2 K
+7— (u- K -u) — 12D2 VK
i i (u.K.u) >+
D? 2
3— D?
e (wm) — 255 (uMKMNuPKpQPNQ) (4.14)
3 1 D2 2
SUU( ) _ _Eﬁ(v Un V2UNPMN D2 VQUM
x K + = e\ 1 u”V pu PMN)
+D2V2V21C D?
— % k2 (u Vupyu - VuNPMN> + 19— (u VK
3 D2 > D et
e (4.15)
Gy — oD (u.VIC) D (wVENT D
£\ K 2\ K ) g lu i)
2
—i-Q% ((u.K.u)u'VIC> — lD—Q i
e 5 K2 u.K.u) (4.16)
Svp® = —2D—2( :
2 u - Vupu - VuNPMN) D
° +4IC U - VuMuPKpQPMQ)
—ZE( MKMNUPKPQPNQ>
(4.17)

Sv'® = —%va@

SvoM = 2
K



Substituting (4.8]) in (4.13]) we get

d d
-R; 7 R_H —
“ (R (6 R 1”)
e S + Re ESvv® + R2e 500 + Rie ESv® + Re 2ESvv®) + R2e~ 2 Su0©) +

d
e_Rvam/ 115 eRR + Re?fS, (4.19)

Integrating the above equation once we get

%HW = " ( / dR (va(l) + RSvv@ 4 R*Svo® + R*Svu™ + Re B(Svv® 4 S,)

+R%e BSvv©® + Spo™® / %)) + Cppe™ (4.20)

The right hand side of the above equation is regular at R = 0 and 0 at
R = oco. We integrate the above equations with limits such that H,, is 0 at
infinity. We set the integration constant C',, such that H,, is 0 at R = 0.

Hy,, = —/ (e‘z(/dx (va(l) + 25v0® 4 22500 + 23 Sve™® + ze T (Svu® + Ss)
R
d o0
+ﬁg%w@+swm/ xx))>_/ dzClpe™® (4.21)
1—e® R
where

3Svv®  7Syp® N w2 Svv(™

(7
1 1 +2Svv'((3)

(4.22)

Cpo = SvvW+5v0@ 425003 6500 —
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Chapter 5

Spectrum of Light Quasinormal
Modes about Schwarschild Black
Holes

Our membrane equations should describe all SO(D-p-2) invariant black
hole dynamics at large D. As an application of our membrane equations of
motion we obtain the light quasinormal modes of the Schwarzschild black
hole( not the ones whose frequencies are O(D)). The Schwarzschild black
hole is dual to a perfectly spherical stationary membrane. To calculate the
quasinormal modes from the membrane we look at linear fluctuations about
this spherical membrane.
We find it convenient to work in spherical polar co-ordinates

ds® = —dt* + dr* + r*dQ3_, . (5.1)

The exact solution to our leading order equation of motion (3.39)) dual to
Schwarzschild black hole in the co-ordinates (5.1)) is given by

r=1 u=dt (5.2)

We have chosen the size of the membrane to be unity. []

'We do not loose generality by making this choice. The classical Einstein equations
studied in this paper enjoy invariance under the following ‘scaling’ symmetry:

~ 2
gMN = @ gMN-

This scale transformation together with the coordinate change ¥ = ax™ transforms a
Schwarzschild black hole with Schwarzschild radius r( into a Schwarzschild black hole with
Schwarzschild radius arg. It follows that the quasinormal mode frequencies of the black
hole parameterized by (rg) are simply % times those for the black hole parameterized by
(1). For this reason we will perform all computations in this section with black holes of
radius unity, and simply reinsert factors of g in the final answer.
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We consider the most general linearised perturbations around (j.2)).

r=1+¢dr(t0),

5.3
u = —dt + € ou,(t,0)dz". (5:3)

The light modes correspond to the functions f and w which live on the
membrane world volume. To get them we simply plug in into the
membrane equation of motion (4.4) and expanding it to linear order in e.
This gives us an effective equation for f and u. We write the induced metric
on the membrane world volume in the co-ordinates 6 on p_, and time.
The induced metric on the world volume can be found by substituting
into (5.1). The induced metric on the membrane to linear order in € is given
by

ds® = —dt* + (1 + 2¢67) dQF,_, . (5.4)

We develop a dictionary to go between vectors and one forms in the space

time and on the membrane world volume. A vector field on the membrane

worldvolume can be uplifted to the whole space time. The different compo-
nents of this vector field will be given by

Similarly a one-form defined in the space time can be pulled back to the
membrane easily.

B, = B8 4+ ¢BSDg, f, B, = BT 4+ eBE g, f. (5.6)

We will treat u, as a one form field on the membrane world volume. Recall
that V.u = 0 where V is the covariant derivative taken with respect to the
metric . To evaluate the equation of motion , we need to evaluate
the extrinsic curvature, its trace, its derivatives and the derivatives of u on
the membrane. We list the different quantities that we will require in our
computation. We find it convenient to define the following notations for the
different metrics that appear in our computation.

Gudatds” = —dt® + (1 + 2¢f(t,0))dQ3,_,
Gudatds” = —dt* + dQ3,

Tupdrdz’® = (1 + 2¢£(t,0))dQ% _,
Gapdz’da® = dQ3_,

(5.7)

The index p runs over time and angular co-ordinates , ie (u = (¢,a)) and the
a,b runs over angular co-ordinates on a sphere {2p_ 5. We list the quantites
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that we require to compute the equation of motion below.

ul = -1 wu=—1= du, =0
Uqg = €0U,
ng = —€o f
Ng = —e@af
Ktt = —Eaff
Ko = —€0,Vof
Koy = —=€VaVof + (14 €f)das (5.8)
(Vtut =0
(Vaut =0

= eVaduy, — €0, f
— —(D-2)0,f
K=(D—-2)—eVf—eD-2)f

)
)
(Viu,) = €0ydu,
)
)

All covariant derivatives in (5.8]) are taken with respect to the background
metric g, as defined in (5.7). The equation of motion (4.4) evaluates to
linear order in € evaluates to

V3u, 00.f | V.Vf
D—2 N D—2 + D—29 + Vof — 0.0 f + dug — 010,

VViou,  2(Vu,— 0.0 f) VoV (V2f+ f(D-2)

-2 (-2 (D —2)°
IVa(f(D =2 = (D= 2OV ~02f) | 30dua _ 3(-00uf +0u) _
- 3(D —2)° T~ D -
(5.9)

The first line in (5.9 comes from the leading order equation of motion and

the last two lines come from the ﬁ correction to it. V is with respect
to the back ground metric g,,, V is with respect to the full metric on the

membrane [ and V is with respect to the metric on Qp_s.
The condition V.u = 0 where V is with respect to the full metric on the
membrane to linear order in € is

Vodu® = —(D — 2)d,f (5.10)
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We split v into a gradient of a scalar and a divergence free vector to solve

9.
Sty = 0,® + v, (5.11)
where
V=0 (5.12)
It follows from that
V20 = —(D —2)0,f (5.13)

We will eliminate @ in favour of f in (5.9). Note that the LHS of
is always 0 if @ lies in the kernel of V2, ie if ® is a constant function on
the sphere. It follows that for to be solved consistently the spatially
constant part of f (the [ = 0 mode) has to be time independent. Once this
condition is obeyed, ® can be solved in terms of f. Plugging in the expansion
(5.11f) into (|5.9))

Vo o VY 2V ECNNE A

D—2 ""(D-2% (D-22 D DJ

000 VaV? 20,0, V.V (V+(D—2))
_(_D—Z D—2+V“_a“a’f+(p—2)2_ (D —2)3
V(D —2)* = (D -2)(9V* - &})) N 30,0, ;

3(D —2)3 D

V2 Vakva 20v2) 39, 3

_(D—2+1_at+(0—2)3_(D—2)2+6_5 Va®

5.1 Spectrum of shape fluctuations

Taking the divergence of (5.14]) and plugging in (5.12) and (5.13)) we get the

following equation for f

(V24D —3)0,f — %V_2£+ Z;Yzf) + V2 — V2 — (D — 2)0,f + (D — 2)82f

V2, f + (D —2)8,f (V24D —3)%D —2)d,f + (V2+ D — 3)V2d,f

D—2 (D —2)?
L (VD =3) (D= 20f + VIO | VEVAVEf+ f(D—2)) VEEVEf - O +3f(D - 2)
(D —2)? (D —2)? (D —2)?
= 3P 2 B 02 1 (D= 20uf) = 0
D ¢V DY !
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E]The most general function linear fluctuation f on a sphere can be expanded
as o
or = Z i Yime it (5.17)

lm

where Y}, are spherical harmonics on SP~2, [ labels the spherical harmonic
representation, m is a collective label for all the internal quantum numbers
within a given spherical harmonic representation.

To understand the solutions better we give a more complete description
of scalar spherical harmonics in arbitrary dimensions, and in particular the
computation the eigenvalue under V? acting on the [** spherical harmonic.
The [ spherical harmonic, Yj,,, are composed of the collection of functions
on SP~2 obtained by restricting homogeneous degree [ polynomials in RP~!
to the unit sphere. The polynomials in questions are linear combinations of
monomials of the form a,, ,p,.. 2" 2 ... 2" where ay, 1,5, are symmetric
and traceless tensors. It is easily shown that

— Vip oYy, =1(D 41— 3)Yi,. (5.18)

Bl So we have
Vif=wf —U(D+1-3)f
Vif=—I(D+1-3)f

We plug in (5.20) into (5.17) to get a relation between w and [. To solve this
equation we expand w as wg + %wl. This is easily solved for wy and w; to get

(5.20)

wf =i(l — 1) i\/l——1+% <—2’(l —1)(1 - 2) i\/l——l(%l —2)) (5.21)

2In order to obtain (5.15)) we have used and

VoV26u, = V2V, 0u® + RV ,6up,

9 u b (5.15)
= V*V.ou® + (D — 3) g*°Vadup,

Using the above formula twice

VeV2AV3u, = —(D —2)V2V20,f —2(D — 3)(D — 2)V20; f — (D —3)*(D —2)0;f (5.16)

3This may be demonstrated as follows. The condition of tracelessness ensures that the
degree | polynomials described above obey the equation V2® = 0, where V? is evaluated

in RP-1. But )
V2, .0
r2

0=V23r.®= oy (r?20,r") + (5.19)

rD—2

(the RHS of this equation is V? of the function in RP~! evaluated in polar coordinates).
Here V%,_, is the Laplacian evaluated on the unit sphere. (5.18) follows from (5.19).
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Reinserting the factor of ry as discussed in the beginning of this section we
find that

row] = z’(l—l)i\/l——1+% (—i(l — 1) -2)£Vi-1 (%l -~ 2)) (5.22)

This result matches with the frequencies obtained by Emparan and collab-
orators in ([5.21]) gives us the formula for w; for all [ > 1. But it needs
clarification for the modes in which [ = 0 and [ = 1. Let us first consider
the case [ = 0. For this case, gives row] = 0 and row] = 2i — 52i.
As discussed below (5.13), that equation is consistent only if I = 0 mode is
does not have time dependence. Thus we have only one mode at [ = 0 ie
row; = 0. This mode has a simple physical interpretation, it corresponds to
a rescaling of the black hole radius. [

Now let us look at the [ = 1. In this case we have a degeneracy of the
quasinormal mode frequencies; row; = 0. The formula (5.22) was obtained
by assuming harmonic time dependence of the function f and solving for
the harmonic frequencies but it is well known that this procedure has to be
modified when the frequencies are degenerate. To see how this works let us

look at (5.15) for [ = 1. It turns out to be
1
OFf + 0 f(~4+0.f) (5.23)

The solutions of the above equations has the same form f = Y = (a,,+1tb,,)
where a,, and b,, are arbitrary constants at zeroth order and first order.
These two zero modes have a very simple physical interpretation. The mode
multiplying a,, corresponds to an infinitesimal translation and the mode
multiplying b,, corresponds to a boost.

5.2 Spectrum of velocity fluctuations

The divergence of the LHS of (5.14) is 0. This ensures that the LHS itself is
0 whixh gives us the equation for vector fluctuations.
The fluctuation field dv may be expanded in vector spherical harmonics

0va = Y i Y, e 1 (5.24)
l,m

YIf row! = 2i — %22’ was an acceptable frequency it would imply that the there is a
mode growing exponentially with time which would mean that the Schwarzschild black
hole is unstable. But it is a well-known result that Schwarzschild black holes are stable
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We pause here to describe vector spherical harmonics in arbitrary dimen-
sion in more detail. A vector field on RP~! restricted to a unit sphere SP—2
gives us a vector spherical harmonic. The [th vector spherical harmonic is
a polynomial valued vector field of degree [ which is made up of linear sum
of monomials of the form V,,,, 4, 2" 2t ... 2" where Vi, ., is traceless,
symmetric in all of its indices except the first one, and it is zero when it’s
first index is symmetrized with any of the others. In particular, tracing the
first index of V' with any of the others gives zero.

Each of the vector valued monomials listed above obeys the equations
VV =0, VV=0 (5.25)

where the covariant derivatives are taken in the flat space R”~!. The above
vector field in RP~! when restricted to SP~2 lies only in the tangent space
(note that the r component of these vector field is 0. This vector field dotted
with 7 is same is dotting the first index with x* which vanishes. Let this
vector field be denoted by V. It is easily verified that V.V = 0 (where the
covariant derivative is now taken on the unit sphere). We demonstrate in
Appendix [C] that

V2V =—[(D+1-3)]-1V (5.26)

where, in this equation, V is a vector field on SP~2 and V is the covariant
derivative on the unit sphere.

We plug the expansion of v, into vector spherical harmonics into
. The coefficient of each independent vector spherical harmonic has to
be set to 0 which gives us to first subleading order in % the frequencies

wy = —i(l —1) — %z(z — 1) (5.27)

This formula agrees with the formula for the spectrum of vector quasinormal
modes presented in obtained in Reinstating factors of ry we have

row! = —i(l—1) (1=1,2,3....) (5.28)

The pure (negative) imaginary part of the velocity quasinormal modes rep-
resent that they decay without any oscillation. Vector harmonics with [ =1
are zero modes. These modes transform in the representation (1, 1,0,0,...0)
- i.e. the adjoint representation - of SO(D — 1) and have a simple physical
interpretation. These zero modes correspond to on an infinitesimal rotation
of the black hole which gives us a version of the Kerr black holes in large D.
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Chapter 6

Conclusion and Future Directions

We see that the effective dynamics of the horizon of black holes in large D
governed by the light modes can be recast into a problem of dynamics of a
membrane propagating in flat space. The dynamics of the membrane in flat
space is given by an equation of motion. The dynamics of the membrane
can be determined fully from these equations of motions since there are as
many equations as there are unknowns. Thus this forms a well posed initial
value problem which can be solved independent of the black hole problem in
principle. For every solution of the membrane equation of motion there is a
corresponding well defined solution to Einstein’s equations in large D in a
% expansion. We have found a class of metrics which solves the Einstein’s
equations till second order in % which are non-singular if and only if our
membrane equation is satisfied.

Quasinormal modes are linearised solutions about black hole back grounds.
We have reproduced the quasinormal modes frequencies of Schwarzschild
black holes in large D from our membrane equation of motion upto the first
subleading order. This serves as a check for our equations of motion. We
have also found that our equations of motions admit solutions of rotating
membranes. The velocity field u for such membranes are given by the angu-
lar velocity. We see that the shape function for such a configuration turns
out to be the horizon shape we would expect for a rotating black hole.

Our results have been generalised to the charged case in [II]. We would
like to understand our equations of motion as the conservation of some stress
tensor on the membrane. Some of my collaborators are working on finding
this stress tensor. We would also like to find the gravitational radiation
from the fluctuating membrane. We find that our equations of motion to be
dissipative since linearised solutions of the membrane equations give decaying
frequencies for the quasinormal modes. We would like to calculate entropy
production to understand dissipation better.
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We would like to see if the problem of black hole collision can be set up in
large D. If the process can be analytically solvable then we can make some
approximations for 4 dimensions. We could then compare our predictions
with LIGO’s data to check if the large D is really a good approximation for
real processes.
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Appendix A

Geometrical quantities in terms of
data in auxiliary space

We divide count the quantities as the number of derivatives on zeroth order
geomterical quantities n and wu.

A.1 Zero derivative quantities

(L (A1)
(2)ua '
A.2 One derivative quantities
i 1
(1)(vAnD)pr0Jected traceless _ PABVBnCPCD o 5o 2PADPCEVCnE
dS — ngn)®
(2)UAVA7LBPBC = (Kti)c + Kts%
PV qup)n® = —PYYVnp)u®
(3)uVangu? = Ky
uA(VAuB)nB = —uA(VAnB)uB
) 1
(4) (VAUD)prOJected traceless _ PABVBUCPCD o 5o QPADPCEVCUE
dS — ngn)®
(5)u'V qup PP = (8yu;)° + ( 7 _7;271) n. K
K 1 (dng i K.,
O = 5( g T Kt 1_ng)



A.3 Two space-time derivatives

Here PAB = A8 — pAn®B 4+ w4u®P, the geometrical projector, Ky = u.K.u
at leading order, Kope = 0ufpe, Gpgr = 0y0rup,. Let us define ungeometrical
projector as P'AB = pAB 4 XZX_ XAX . Then K;; = P*PPK4p. In other words

1, 7, k denote the isometry dlrectlons p in the auxiliary space.

WPV, = (0,0%0)° + L0u0° + 0,07, + 2 (200,
« 7 g s Wi 1 nz « s 1 nz allp
o d XP d
R
where
. Qiss B 2”8
(8a3aui)3 = (CL@'jJ)B - (aitt>B + (iss) + 2(83715)(85%)3

1—-n2 1-—n

S S

(2)uAV2uA = —VzusVEut
(3)nAV2uA = uV?ny — 2V anPVAug
« d X" a X" Ns (e97)
(4)PABV2n, = (K" + E(Ksi)“ + 1 ka T oKk /
d X* d
2 g% xn
ToeT e T e
where
a Kzss Qns a
K, = Kj — Ky + —n2 + =2 ialls
and
a KssKsi
KoKy = K Kg; — KKy + =
d d
(5)uAV2nA = K + gKts — ﬁnsus
d
(6))nAV2nA = —VBnAVgn, = —0,n,0'n” — §n§
XD
(7)u°‘uBK'aﬁ7 = uPo,0pnePCP = (bees)” —i—l 5 (Ktts —i—nstKta)
D,
(8)UAUBVAVBUCPCD = (au)” + 1=n <Kttt+K aat)

9NV, Veu, = u“K,p, (already calculated)
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A.4 Three space-time derivatives

(Q)HAVAVB,CPBC

where

(K4)“Kg
(3)utV 4,V PB¢

(4)nPVo(V:iup)PEC

(5)u”Vo(Viup) PP¢
(6)u”V p(Vuc)PP¢
(T)nPV p(V?uc) PPC
(8)(u. V) (1w.VK)
(9)V2(u- K - u)

(10)u - V(V?K)

Kgi — Koy + 1Iin2 +3 2_” EPHVKSMKsy

12713 gKtsKts n i inég)g 2

_g(Kg)%g‘ dnS(Ksz)C %(K;“bAs)l)_(cg
%KSSXC 2d7§?:)(0

KK — KKy + ?_K;LQ

g(Kwi)C = ”gd 1Xc bEK s S(TL_C@KM - %KtsXc
_g (<KiDaDS>B + (K ap)® + (Kiai)® + 1 —Jjﬁ Ksaos

1XB SKS apcX© + btsc)l(i):; - XB;QS)

—%(G%KSD)B - %1)_(—Ba§)KSD

% ((aits)B + XlB_Li (6 udpne + u“dsdpnc + Osn 8DUC))
_% ((aSnDaDui)B + ng(Osu’)? + iXBZZ (KP Ksp) + 1= ggK )
d

S

2d
_Ks o iSK’LS
tst T+ g (CL + 11—

Ktths)
TL

s

d 2d
§Ktst + g (aiust + 1= SKES)

d2 Ktss Kts
S
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A.5 Four space-time derivatives

d? K n
2v72 ss S
(1)V V IC = ?(Ksss_i% S +3§

46

)

(A.2)



Appendix B

Converting Spacetime quantities
to Geometric Quantities

The membrane quantities are denoted by overhead bar. Here we list the
conversion from the relevant spacetime quantities to membrane quantities.
We also neglect subleading terms while calculating corresponding membrane
quantities. Note that any free indices inside bar are supposed to be projected
on the worldvolume.

K=K
Kap = Kap
Veoua = Veoua
uWCKeoyq = m
uCchA = m
VaK = V4K
Vius = Veu, — m
wCKopuP = W
uAV K = W
V’K = V2K — KK 4pKAP
VeViK = VeV2K — V(KK 5 KAB)

VV2u4 = V2V2uus — u - VKV UK — KV KV Buy — 2KK 5o VBV Cu 4
(B.1)
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Appendix C

Eigenvalues of the Laplacian for
Vector Spherical Harmonics

In this Appendix we calculate the eigenvalue of the Laplacian acting on the
[ vector spherical harmonic. This spherical harmonic was defined in terms

of the restriction of a collection of vector valued monomials to the unit sphere
in subsection

We evaluate the Laplacian of V,,,, ,2'2?... 2" in spherical polar co-
ordinates in RP~!. The Laplacian of this vector valued monomial vanishes
(see subsection [5.2)). We use this fact to evaluate the Laplacian of the same
vector field restricted to unit sphere.

l

Consider any divergenceless vector field on RP~! with vanishing radial
component, i.e. V. = 0. Using explicit expressions for the Christoffel symbols
for flat space in polar coordinates we find

V,V, = 07
VT‘/(Z = arva - %7
(1)
Vav;” = Ea
r
Va‘/b = va%a

where V denotes the covariant derivative taken on a unit sphere.

We will now use these results to evaluate V2V on RP~! in spherical polar
coordinates. The result of this computation depends on the free index in this
equation. Let us first consider the case with the free index equal to r. In
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this case
1
VIV, = Vo(ViVo) + 50"V ViV,
1. - 1 _~
— _2vava‘/r _ _2Va‘/'a7 (02)
T T
= 0.

In other words the vanishing of the r component of V2V is just a triviality -
it follows as an identity upon assuming V, = 0 and V.V = 0.

Let us now turn to the more interesting case of the free index being an
angular direction on the unit sphere. In this case

1
V2V, =V,.(V,V.) + ﬁga”vavbv&

=0, (arvc —~ %) -, (arva - %) + =V, V.
V. 1 A
+ Fgr (81“‘/0 - _) + _QFZC_’ (03)
T T r
:ar <a7“‘/c - %) - % (87“‘/0 - E) + l@a@a‘/c

"
D—2 g g
+ (ar%——v>——v .

r r 72

Let us now specialize to V, is the vector field corresponding to the [ vector
spherical harmonic. In this case V, oc r/*1. Using this fact and V2V, = 0 we
get

Y ) = 1 (D= D= )V, = [(D+1—3) — 1]V, (C.4)

r2
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