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Abstract

In this thesis we study the relationship between Asymptotic symmetry group
of (Asymptotically flat) space-times at Null and Spatial Infinity. We first
review the basic framework concerning Null and Spatial Infinity and then
discuss the notion of asymptotic symmetry groups in these two regimes.
Former is known as the BMS group and the latter is known as SPI group
developed by Ashtekar and Hansen [1]. Based on the formalism developed by
Campiglia et al. [2] we then develop an approach to extend the BMS group
at Null infinity to Spatial infinity. For so-called super translation subgroup
of the BMS, we see how this extension precisely matches the corresponding
supertranslation subgroup of the SPI group. As both the BMS and SPI
groups are (semi-direct) products of super-translation groups with Lorentz
group, our work shows how the SPI group is just a manifestation of BMS at
spatial infinity.
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Chapter 1

Introduction

The study of symmetries in a theoretical models has been one of the most
important aspect in developing a consistent theory describing nature. This is
especially important because symmetries are associated to conserved quan-
tities which are observable in nature, thus allowing to not only validate the
correctness of a theory but also build constrains to develop a theoretical
model for a physical phenomenon.

Asymptotic structure of solutions to Einsteins equations with zero cos-
mological constant has been well studies in last 50 years with seminal work of
Bondi et al. [4] who defined the space of all asymptotically flat geometries and
showed how in a suitably defined system of co-ordinates (which are amenable
to the notion of Null infinity) Einsteins equations could be solved recursively
off null-infinity as a boundary value problem with Boundary data given by ra-
diative part of gravitational field at Null infinity. Following this work, Sachs
characterized the group of asymptotic symmetries which map one solution of
Einstein’s equations to another solution of Einstein’s equation by transform-
ing the radiative data at Null infinity. This group, to the surprise of many
was an infinite dimensional group (as opposed to 10 dimensional Poincare
group). The group is now known as BMS group and has a key role in math-
ematical aspects of Classical and Quantum gravity. Ashtekar and Hansen [1]
analyzed the structure of asymptotically flat space-times at spatial infinity
as opposed to Null infinity as done by Bondi et al earlier. Their motivation
was to understand Spatial infinity on the same footing as Null Infinity and
compute charges associated for isolated systems in gravity. Spatial infinity of
an asymptotically flat space-time unlike that of Null Infinity has an entirely
different structure being just a singular point. Ashtekar et al. [1] could char-
acterize symmetry group of Asymptotically flat space-time at spatial infinity
(known as the SPI group) and just as in the case of BMS the group it turned
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out to be infinite dimensional which contained Poincare group as a finite
dimensional subgroup. They showed that charges associated to this finite
dimensional subgroup are precisely Energy, Momentum and angular momen-
tum. However it was still not clear about what was the relationship between
the BMS group and the SPI group. If they were different manifestations of
same group or were they really two distinct groups of asymptotic symme-
tries in gravity. As far as Poincare subgroups are concerned, it has been
known for a long time that these subgroups are the same in the sense that
the conserved charges associated to them at null or spatial infinity give rise
to well known quantities like energy and angular momentum. Situation has
never been so clear for the so-called infinite dimensional super-translations
however. Building on a recent work of Campiglia et al. [2] who showed how
BMS could be extended to an infinite dimensional group at time-like infin-
ity, in this thesis we show that the SPI group and BMS group are isomorphic.

The organization of the thesis is as follows. In the next chapter we give
the basic motivations for studying Asymptotics and build the foundation to
discuss Asymptotic symmetries. In the next two chapters we briefly discuss
Null Infinity and Spatial Infinity. Here we review the standard definitions of
Asymptotic flatness of space-times at null and spatial infinities and discuss
the associated universal structure which is expected to be common for all
asymptotically flat space-times. Then the associated Asymptotic symmetries
are reviewed which keeps this universal structure invariant. In the next
chapter we develop the formulation based on [2] to arrive at a procedure
to obtain the asymptotic symmetry vector fields at spatial infinity starting
from the Asymptotic symmetry elements of null infinity, i.e, the BMS vector
fields. We will then show that we could successfully use this approach to
map the supertranslation vector fields of BMS to the supertranslation vector
fields at Spatial infinity as had been previously defined by Ashtekar et al. [1].
In the next chapter we discuss the scope of future work and the problems to
be addressed in the current approach.
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Chapter 2

Introduction to Asymptotics

Physical theories which describe nature can often become very complicated
mathematically. To overcome this we use a smaller and simplified model
retaining some key features. In other words instead of considering all the
minute details of the entire system we can isolate some part of it and neglect
the remaining system which seems to have a small effect on physical quanti-
ties. For example while studying the dynamics of planets in our solar system
we may neglect to a very good approximation the presence of other stars and
galaxies in the universe. But the recognition of these isolated bodies may
not always be very obvious and therefore we would need a standard working
definition of isolated systems whose conditions will be motivated by observ-
ing the properties displayed by physically obvious isolated systems in nature.
For example in Newtonian gravity we could call a system to be isolated if [5]
(i)the mass density vanishes outside some compact set in the Euclidean 3-
sphere and (ii) the Newtonian gravitational potential approaches zero in the
limit far from that compact set.

The advantage of isolated systems is not only that it would, to a great
extent simplify the mathematics related to within the the system, but also
we will be able to attach to this isolated system as a whole some physical
quantities like mass, angular momentum, etc.

Similar motivations encourage us to define isolated bodies in the Gen-
eral theory of relativity. But things here are not so obvious as it was in
Newtonian gravity or in Electrodynamics considered in Special theory of
relativity. The central reason for this is that the background geometry in
the General theory of relativity is itself a dynamical quantity. This can be
better appreciated if we understand the advantage electromagnetic theory
has. In Electromagnetism we could call a system to be isolated if [6] the
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charge-current density, ja, vanishes outside a “world tube” of compact spa-
tial support, Fµν = O(1/r2) as r → ∞ at fixed t, and that Fµν = O(1/r)
as r → ∞ along any null geodesics. But we could define such conditions
assuming that physical changes are occurring in the background of a fixed
Space-time(Minkowski). We lack such fixed background advantage in general
theory of relativity with respect to which we could formulate such conditions.

Thus we could classify the fields into two broad categories [5], first the
universal or geometric fields and second, the physical fields. The universal
fields are those that provide a background or an arena for the physical fields
to live in, where as physical fields as those which are responsible for the
properties described by the system. For example, in the electrodynamics in
special relativity, Minkowski space-time behaves as the universal field and
the electromagnetic field as the physical field. In the light of this classifica-
tion we can now understand that the basic difficulty in general relativity is
that the geometric and the physical fields are not independent. The metric
behaves as both the geometric and the physical field at the same time.

From physical intuition we would call a system isolated if at very far dis-
tances the local properties would tend to behave as though the original body
was not present. Using this argument and the observation that Minkowski
space-time with Lorentz metric and zero stress energy tensor is a solution to
Einstein’s equation gives us the basic condition that any isolated body should
tend to approach Minkowski space-time in the asymptotic limits. Thus we
could call such isolated systems to be asymptotically flat (As Minkowski
space-time is referred to as flat space-time).

Time being a coordinate in general relativity, given a asymptotically flat
space-time we could travel far in asymptotic limits not just in spatial direc-
tion but also in null and time-like directions. Therefore while defining an
isolated system to be asymptotically flat we need to distinguish the flatness
is in respect to what direction. While trajectories to go “far” away from
the system can be easily seen in spatial and null directions, one should be
careful in selecting the trajectory for time-like infinity. For example, a per-
son just rotating around a star at some small distance is going far away in
“space-time” but he in no way has approached a asymptotic limit to apply
conditions of asymptotic flatness.

In the next two chapters we briefly describe the definitions of Asymptotic
flatness in Null and Spatial infinity. It should be noted that there are multiple
definitions but we only discuss the one which seemed relevant for the thesis.
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Chapter 3

Null Infinity

3.1 Introduction

The key idea in proceeding for an approach to define asymptotic flatness
in null direction is the use of conformal compactification and by observing
the fact that null geodesics remain null in conformally related space-times.
Therefore by going to a conformally related unphysical space-time that brings
infinity of the physical space-time to a finite distance in the unphysical one,
we can now take well defined limits while still remaining on the null geodesics.

The methodology is to attach to the physical space-time manifold M,
some additional points which represent infinity in the physical space-time
but are at a finite distance in the conformally related unphysical space-time
such that certain conditions motivated from simple space-times are satisfied.
In other words, asymptotic flatness of a space-time at null infinity can be
defined as the possibility of attaching such additional points to a physical
space-time.

3.2 Definition [3]

A space-time (M̂, ĝab) will be said to be asymptotically flat at null infinity
if there exists a manifold M with boundary = equipped with a metric gab
and a diffeomorphism from M̂ onto M\= (with which we identify M̂ and
M\=)such that :

(i) there exists a smooth function Ω on M with gab = Ω2ĝab on M̂ ; Ω = 0
on =; and na := ∇aΩ is nowhere vanishing on =;
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(ii) = is topologically S2 × R;

(iii) ĝab satisfies Einstein’s equations R̂ab − 1
2
R̂ĝab = 8πGT̂ab, where Ω−2T̂ab

has a smooth limit to =.

The first condition ensures that the boundary = is at an infinite distance
and that Ω falls off as 1

r
. The second condition makes sure that the topology

of = is the same as that in the Minkowski space and that null infinity can
be reached starting from any angular direction. The fall off condition of T̂ab
is motivated by observing the fall of field in Minkowski and Schwarzschild
space-time.

The definition implies that :
. i) = is null 3-Dimensional manifold

ii) na = ∇aΩ is null
iii) The pullback qab := g ab←− has signature (0,+,+) where gab is the metric

of the unphysical space-time.

We can now obtain various unphysical space-times by choosing different
Ω. Choose two unphysical spacetimes (M, gab) and (M ′, gab) with conformal
factors Ω and Ω′ = ωΩ where ω 6= 0 on = smooth on M. With this confor-
mal rescaling freedom it can be shown that we can choose an ω such that
∇an

a = 0 on =. Such a frame is called divergence free conformal frame.
Also it can be shown that ∇anb := ∇a∇bΩ=̂0. There still remains conformal
freedom such that £nω=̂0

The above definition however does not demand for completeness of = in
R direction. Therefore for the global structure of = for a general space-time
to be similar to that of Minkowski space-time we demand that = is complete
in any divergence free conformal frame. Such asymptotically flat space-times
are said to be asymptotically Minkowskian [3].

3.3 Asymptotic Symmetries at Null Infinity

As we have seen in the previous section, null infinity for an asymptotically
Minkowski space-time is the manifold with topology R× S2 and is equipped
with the pair of fields (qab, n

a) where qab is a degenerate metric with signature
(0,+,+) and qabn

b = 0.
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We can call (=, qab, na) as the universal structure, i.e, the structure shared
by all the asymptotically Minkowskian space-times at null infinity. The
asymptotic symmetry group B at null Infinity (also called BMS Group [4] [7]
) should therefore be the group of diffeomorphisms that preserve this univer-
sal structure.

The BMS group, B is therefore, Diff∞(M)/Diff◦∞(M) i.e the group of dif-
feomorphism which do not die down at infinity. Let the infinitesimal asymp-
totic vector fields ξa be the elements of lie algebra b of B which represents
the vector field along which the universal structure is left invariant.

This is true if (i) £ξqab = 2αqab (ii) £ξn
a = −αna where α is some func-

tion on = and satisfies £nα = 0. As opposed to the 10-parameter Poincare
group which is the symmetry group for Minkowski space-time the BMS group
comes out to be an infinite dimensional group.

The vector field given by ξa = fna with £nf = 0 satisfies the above
conditions and therefore are infinitesimal asymptotic symmetries. The sub-
group of such symmetries is called the BMS Supertranslations. The group of
BMS Supertranslation is such that : (i) It is infinite dimensional (ii) Abelian
normal subgroup of BMS group (iii) The factor obtained by quotienting the
BMS group by the supertranslation subgroup is isomorphic to the Lorentz
group.

Also it can be shown that there is a unique subgroup of the supertrans-
lation group such that it is a normal subgroup of the BMS group and in the
Minkowski space-time, this subgroup corresponds exactly to the translational
symmetries of Minkowski spacetime. A similar approach for rotations and
boosts fails and therefore at null Infinity for any general asymptotically flat
space-time there exists “pure translation” but we do not have any analogous
notion for “pure rotation” or “pure boosts”.

Concluding we see that the BMS group, B, is the semi-direct product
, B = S n L where S= group of supertranslations and L= Lorentz group,
and that the only difference between BMS group and the Poincare group is
that the 4-D Abelian group of translations is replaced by infinite dimensional
Abelian group of Supertranslations.

9



Chapter 4

Spatial Infinity

4.1 Ashtekar-Hansen Approach- Introduction

Previous approaches(like ADM formalism and [8]) to define spatial infinity
had a disadvantage that spatial infinity was seen as a boundary of space-
like 3-surfaces and the associated fields were “3-dimensional”. This was in
contrast to the way null infinity was defined. Null Infinity was seen as the
boundary of the space-time manifold as a whole and the associated fields
at null infinity were all “4-dimensional”. This difference between the two
proved to be a major hurdle in trying to bring about a unification between
null infinity and spatial infinity.

The approach by Ashtekar-Hansen [1] was therefore aimed at reformulat-
ing the structure of spatial infinity without the splitting of space and time
and thereby to bring spatial infinity in the same footing as null infinity.

The resulting structure of spatial infinity came out to be a 4-manifold
called “Spi” (Spatial Infinity) and was seen to have a principal fiber bundle
structure. This structure is very similar to Null Infinity ,=, in the Penrose
formulation [9]. Also the group of asymptotic symmetries at Spatial infinity
was seen to be very analogous to the group of asymptotic symmetries at null
infinity, i.e, the BMS group.

This new approach - defines a space-time that is asymptotically flat in
null direction as asymptotically flat also in the spatial direction if we are
able to attach a single point, i◦, to its null boundary, =, such that = is
the null cone of i◦. This was motivated from the observation that in the
Penrose diagram of Minkowski space-time, = comes as the null cone of i◦.
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Now appropriate differential conditions are to be applied at i◦ which are
strong enough to allow physically interesting notions to be developed and
weak enough to allow some space-time structures. The main difficulty, in
providing an easy differentiable structure at i◦, is that the physical fields at
i◦ admit direction dependent limits, i.e, moving in different directions from
the source, the physical field can be expected to attain different limits, but
in any direction the spatial infinity has to meet at the single point i◦ in the
completed structure.

4.2 Definition [1]

A Space-time (M, gab) will be said to be asymptotically empty and flat at
null and spatial infinity(AEFANSI) if :

(i) There exists a manifold M̄ with boundary (∂M̄ =: =) equipped with
a (C3) conformal structure, and, an embedding of M into M̄ which
displays (M, gab) as a weakly asymptotically simple space-time,

(ii) There exists a manifold M̂ with a (Lorentz) metric ĝab and a conformal-
structure-preserving imbedding ψ of M̄ into M̂ (which is C4 on M̄),

(iii) There exists a point i◦ in M̂ with the following properties :

(a) M̂ has a C>1 differential structure at i◦, and ĝab is C>0 at i◦,

(b) In M̂ , ψ(=) is a null cone of i◦,

(c) The function Ω defined on ψ(M) via ψ∗(ĝab) = Ω2gab admits a C2

extension at i◦, with Ω |i◦= 0, ∇̂aΩ̂ |i◦= 0, (∇̂a∇̂Ω− 2ĝab) |i◦= 0; and
finally

(iv) The Ricci tensor Rab of gab vanishes in the intersection in M̂ of the
image of the physical space-time with some neighborhood of = ∪ i◦ .

Condition (i) makes sure that the space-time is asymptotically flat in the
null direction and conditions (ii) and (iii) are required for the asymptotic
flatness in the space-like directions. Condition (iii)(a) is required for the
metric to admit direction dependent limit at i◦. Condition (iii)(b) is just the
extension of observation from Minkowski space-time. Similarly various other
requirements in the definitions have been motivated from observing simple
space-times. As is seen that the definition is not formulated using initial
data sets and all the aspects of it consider only 4-dimensional space-time
fields which was the primary aim of this approach.
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4.3 Universal Structure at Spatial Infinity

By definition, Spatial Infinity represented by i◦ is just a single point. There-
fore the study of various physical fields and conserved quantities at spatial
infinity becomes very complicated. It would therefore be convenient to in-
troduce an appropriate “blown up” structure at i◦, i.e, to take some sub-
manifold of the physical space-time and to attach i◦ to this sub-manifold
such that appropriate limits can be taken along it to reach i◦.

Because of the differentiability requirement for the completed manifold to
be C>1 at i◦, only first and second order tangent spaces can be constructed.
Therefore the blown up structure at i◦ is obtained using the space-like curves
in (M̂, ĝab). 3-manifolds can also be used but space-like curves have the ad-
vantage that the direction dependent limits at i◦ would appear smooth along
space-like curves as they would reach i◦ along a fixed direction while that
on the space-like 3-surfaces the limits would still remain direction depen-
dent . Also the space-like trajectories are in spirit with the “4-dimensional”
approach which is the central theme while the space-like Cauchy surfaces
will split the space-time into space and time. Thus each of these space-like
trajectory would represent a distinct way of approaching spatial infinity and
together they form the required blown up structure of i◦. This is similar
to = where each null geodesic represents a distinct way of approaching =.
Simply taking all the space-like trajectories will make the blown up struc-
ture too large and not useful. Therefore some conditions are to be put on
the space-like trajectories as in the null case the condition was to consider
only null geodesics that like any null curve. However for space-like curves
the concept of geodesics is not conformally invariant. So instead, space-like
geodesics were considered in the physical space-time, expressed the condi-
tion for geodesic in terms of the unphysical space-time fields and then the
limit to i◦ was taken. Let (M̂, ĝab) be the physical space-time and let ηa

be the tangent vector to the geodesic in M. Therefore η[aAb] = 0 where
Ab = ηa∇aη

b is the acceleration of the curve relative to gab. Let this curve
be parameterized by p(λ) in the unphysical space-time (M̂, ĝab). In terms of
ĝab the condition for geodesics in M becomes, η[aÂb] + Ω−1η[a∇̂b]Ω = 0, i.e,
ĥab(Â

b + Ω−1∇̂bΩ) = 0 where Âb = ηa∇̂aη
b is the acceleration of the curve

relative toĝab andĥab = ĝab− (ĝpqη
pηq)−1ηaηb is the projection operator in the

3-surface orthogonal to ηa. Now on taking the limit the condition becomes,

lim→i◦ĥab(Â
b + Ω−1∇̂bΩ) = 0
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Here, along with this condition on the space-like curve p(λ) as above, two
additional constraints are put. First one being, p(0) = i◦ and the second
one is that the tangent vector at i◦ is unit. The second condition is possible
because the metric at i◦ is conformal invariant, i.e, even if we rescale the
conformal factor Ω to ωΩ it is required that ω = 1 at i◦.

Therefore from above condition it is seen that the component of acceler-
ation that is orthogonal to the tangent vector is completely fixed while that
along the tangent vector is completely arbitrary. These three conditions form
the regulatory conditions for the space-like curves that would form the blown
up structure at i◦. Such curves are said to be regular curves.

Definition [1]: A space-like curve p(λ) in (M̂, ĝab), passing through i◦

will be said to be regular if and only if (i) it is C>1 at i◦ and C3 elsewhere; (ii)
it is parameterized so that p(0) is i◦ and the tangent vector to the curve,η,
is unit at i◦ ; and (iii) ηa satisfies

lim→i◦ĥab(Â
b + Ω−1∇̂Ω) = 0

Two regular curves are said to be equivalent if the have the same tan-
gent vector and acceleration at i◦. Let S be the collection of these equivalence
classes of regular curves. A point on S will therefore be given by (ηa, ĝabη

aÂb).
Here each point of S can be seen as a distinct way of approaching i◦ just as
each point on = can be seen as a distinct way of approaching null infinity. S
is therefore the blown up structure of i◦.

S is seen to have a principal fibre bundle structure. This can be seen
because there is natural projection mapping π from S onto the unit time-like
hyperboloid κ in the tangent space of i◦. The hyperboloid κ is the time-like
3-surface perpendicular to the space-like curves we have chosen. Therefore
we can construct fibres over each point on κ such that at that point the fibre
and the tangent vector,ηa, coincide. Now each point on this fibre can be la-
beled by some possible value of acceleration in the equivalence class of regular
curves such that they have the same tangent vector, ηa. As the tangential
acceleration can have any real value we can parameterize the fibre by the
tangential component of the acceleration. Therefore F is homeomorphic to
the real line. It can also be shown that under conformal rescaling the coordi-
nization along the fibre does not remain invariant but shifts by some amount,
i.e, under a conformal transformation g̃ab = ω2ĝab for some function ω on M̂
which is C>0 at i◦, C2 elsewhere and such that ω = 1 at i◦, ã = â+[ηa∇̂aω]i◦ .
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But it is seen that â1 − â2 = ã1 − ã2. Therefore there is a mapping
from F×F to the reals. Therefore the blowing up of i◦ is seen to have the
structure of a principal fiber bundle where the base space is the unit time-
like hyperboloid and the structure group is the additive group of reals. The
motion along the fibres on conformal rescaling is seen to correspond to the
supertanslations at spatial infinity defined in the next section.

4.4 Asymptotic Symmetries at Spatial Infin-

ity

The “universal structure” of Spi or the structure which is common for all
the asymptotically flat space-times satisfying the above definition is the fibre
bundle character of S, the tensor field hab and the vertical vector field V a.
The asymptotic symmetries of Spi are therefore nothing but the group of
diffeomorphisms of S that keeps this universal structure invariant. Let ηa

denote the generator for this diffeomorphisms then,

(1) £ηhab = 0

(2) £ηv
a = 0

The collection of such vector fields has the structure of lie algebra denoted
by £G. For ηaε£G, let η̄a be the projection of ηa on the base space κ. The
condition (1) and (2) are equivalent to

(3) £η̄h̄ab = 0 on κ

(4) £ηv
a = 0 on S

where ĥab is the projection of hab on κ.

Supertranslations : Considering the special case where η̄a = 0, i.e the
projection of ηa on κ is zero, ηa can be written as ηa = fηv

a where fη is
some scalar function on S. Condition (4) becomes £vfη = 0 and holds true

if and only if fη is the pull back on S for some f̂η on κ. Therefore there
exists a 1-1 correspondence from scalar fields on κ to the elements of LG
satisfying the condition that their projection on κ is zero. Such elements
are defined as infinitesimal Spi supertranslations. It can be shown that the
subgroup of these supertransations,LS , is Abelian lie sub-algebra of LG and
also is an ideal of LG. LG is very similar to the group of supertranslations
in BMS with the only difference being that the BMS supertranslations are
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in 1-1 correspondence with the 2-sphere whereas Spi supertranslations are to
that of the functions on 3-manifold κ. Also it is seen that like in BMS the
quotient group of Spi supertranslations, i.e, LS is the Lorentz lie algebra.

It can be shown that for a sub-group of supertranslations of Spi, denoted
by LT , of the form ηa = f(k)va where f(k) = kaη

a where ka is some covector
at i◦ and ηa is the position vector of points on κ, in the tangent space of
i◦. The subgroup LT is a lie ideal of LG and that for Minkowski space-time
LG corresponds exactly to the asymptotic symmetry group of space-time
translations in Minkowski space-time. This subgroup LT is therefore called
Spi translations and this adds to the similarity of the BMS group and LG,
the asymptotic symmetry group at Spatial infinity.
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Chapter 5

New approach for Asymptotic
symmetries at Spatial infinty

5.1 Introduction

The approach here is based on the previous work by Campiglia et al. [2]. In
their paper they showed that we could map the BMS vector fields at Null
Infinity to that of the asymptotic symmetry vector fields at time-like infinity
using certain green’s functions. Here we take a similar approach but we aim
to map the BMS vector fields to the asymptotic symmetry vector fields at
Spatial Infinity. Here we only do the calculations starting from BMS super-
translations. We then compare these symmetry vector fields obtained from
BMS super-translations to the already known supertransation vector fields
obtained by Ashtekar et al. [1] and we see that both the approaches give the
same result for supertranslations at spatial infinity.

The main difference between this approach and Ashtekar-Hansen ap-
proach is to use in the asymptotic limit the linearized metric rather than
working with the generalized metric. Here we work in the de Donder guage
where it is known that the gauge transformations that do not die down at
infinity puts the constraint on the asymptotic vector fields given by �ξa = 0.

5.2 Main Equations

We start by considering the region in space-time for which r > t. Let the
co-ordinate system (ρ, τ, θ, φ) be such that :

ρ =
√
r2 − t2 for r > t (5.1)
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τ =
r√

r2 − t2
(5.2)

Therefore writing Minkowski Space-time with signature(–+++) in the
above co-ordinates we have,

ds2 = dρ2 + ρ2dσ2 (5.3)

where

dσ2 =
−dτ 2

τ 2 − 1
+ τ 2γABdx

AdxB := hαβdx
αdxβ (5.4)

Therefore, g =


1 0 0 0

0 −ρ2
τ2−1

0 0

0 0 ρ2τ 2 0
0 0 0 ρ2τ 2sin2θ


where γAB is the metric on the unit sphere and hαβ is the metric on the

induced metric on the hyperboliod ρ = constant We always denote capital
letters A,B,... for the coordinates on unit sphere and α, β, .. for the coordi-
nates on the hyperboloid H.

We can write,
t = ρ

√
τ 2 − 1 (5.5)

x̂ =
x̄

r
(5.6)

x̂ = τρx̂ (5.7)

We can show that, ρ = constant surface is a space-like co-ordinate and τ
is a time-like co-ordinate and that ρ is a unit time-like hyperboloid. Here we
denote it by H.

Here we note that as τ is always greater that 1, the intrinsic metric hab
has signature (-++) as expected, as H is a time-like surface.

Now if we move on this unit hyperboloid H, i.e, on ρ = constant surface,
to null infinity, i.e, for u=constant and r →∞, we have,

As
u = t− r (5.8)

ρ =
√
r2 − t2 = constant =: c (5.9)

from equations (5.8) and (5.9) we get

u =
√
r2 − c2 − r = O(r−1) (5.10)
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Similarly,
u = t−

√
c2 + t2 = O(t−1) (5.11)

In the Penrose diagram we draw the hypersurfaces H as below :

Let ∇ be the derivative operator corresponding to gab and let D be the
derivative operator corresponding to hab on the hyperboloidH.Then the non-
zero Christoffel symbols Γabc are :

Γραβ = −ρhαβ Γαβρ = ρ−1δαβ Γτττ =
τ

1− τ 2

Γτθθ = τ(τ 2 − 1) Γτφφ = τ(τ 2 − 1)sin2θ Γθτθ =
1

τ

Γθτφ =
1

τ
Γθφφ = −sinθcosθ Γφθφ = cotθ

Now let ξa be the vector field in the space-time. We assume that in the
limit ρ→∞ we could write ξa as a series expansion in the inverse power of
ρ.

Therefore in the limit ρ→∞,

ξρ(ρ, τ, x̂) = ξ̊ρ(τ, x̂) +O(ρ−1) (5.12)

ξα(ρ, τ, x̂) = ξ̊α(τ, x̂) + ρ−1ξ(1)α(τ, x̂) +O(ρ−2) (5.13)

Now the residual guage symmetry in de Donder gauge is given by

�ξa = 0 (5.14)

We have , � = ∇µ∇µ

� = ∇2
ρ + ρ−2hαβ∇α∇β (5.15)
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Solving the de Donder guage condition, i.e, condition (5.14) using the
asymptotic vector fields at spatial infinity given by (5.12) and (5.13) gives
(Calculations are given in appendix):

�ξρ = (ρ−1)(−2Dαξ̊
α) + (ρ−2)(�̄ξ̊ρ − 2Dαξ

(1)α − 3ξ̊ρ) +O(ρ−3) (5.16)

�ξα = (ρ−2)(�̄ξ̊α + 2ξ̊α) +O(ρ−3) (5.17)

here �̄ = hαβDαDβ

from (5.14),(5.16),(5.17) we have,

Dαξ̊
α = 0 (5.18)

�̄ξ̊ρ − 2Dαξ
(1)α − 3ξ̊ρ = 0 (5.19)

and

�̄ξ̊α + 2ξ̊α = 0 (5.20)

Consider the divergence of vector field ξa:

ψ := ∇aξ
a = Dαξ̊

α + (ρ)(3ξ̊ρ+Dαξ(1)α) +O(ρ(−2)) (5.21)

It is known that the fall off of ψ at null O(r−1).

Here we make an assumption that at spatial infinity the fall-off condition
of ψ will be O(ρ−2).

Now to satisfy the assumed fall-off condition, from (5.18) we already have
the first term in (5.21) zero. For the second term to be zero we should have,

3ξ̊ρ +Dαξ
(1)α = 0 (5.22)

Substituting (5.22) in (5.19) we have:

�̄ξ̊ρ = −3ξ̊ρ (5.23)

Therefore the conditions on the vector field components to be satisfied
are given by Equations (5.18),(5.20) and (5.23).
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5.3 Boundary Conditions

The basic idea of this approach is to map the asymptotic symmetry vector
fields at null infinity, i.e, the BMS vector fields, to the bulk space-time which
in the limit of spatial infinity be the asymptotic symmetry vector field of the
defined Spatial infinity, i.e the hyperboloid H. We have expressed the vector
field in the bulk in the (ρ, τ, θ, φ)co-ordinates but the BMS vector fields are
expressed in the (u, r, θ, φ) co-ordinates. Therefore we re-express the vector
fields of bulk in the BMS co-ordinates and take the limit to null infinity, i.e
u=constant and r →∞

We have,
u = t− r (5.24)

Using (5.1) and (5.2),

u = ρ(
√
τ 2 − 1− τ) (5.25)

r = τρ (5.26)

Now we see that in the limit going to Null Infinity we have ρ → ∞ τ → ∞
with the condition that

−τ
2ρ

= u+O(r−1) = constant (5.27)

Note that as we are in the region r > t, so we always have u < 0.
BMS vector field is given by,

ξa(r, u, x̂) = f∂u + V A∂A + uα∂u − rα∂+... (5.28)

where 2α is the 2-D divergence of V A and the dots represent higher order
terms in the (1/r) expansion.

The sphere components are given by

ξA = V A +O(r−1) (5.29)

from this and eq.(5.18),i.e, Dαξ̊
α = 0 we get,

ξ̊τ = −τα +O(1) (5.30)

From Eq.(5.27) we get the radial component as,

ξr = −rα +O(1) (5.31)

Now,
ξr = (∂ρr)ξ

ρ + (∂τr)ξ
τ (5.32)
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∂rρ = τ ; ∂rτ = ρ (5.33)

From above equations,
− rα = τξρ + ρτ (5.34)

− rα = τ ξ̊ρ +
τ

ρ
ξ(1)ρ + ρξ̊τ + ξ(1)τ (5.35)

From Eqs.(5.30) and (5.35),

− rα = τ ξ̊ρ +
τ

ρ
ξ(1)ρ + ρ(−τα) + ξ(1)τ (5.36)

τ ξ̊ρ + ξ(1)τ = O(ρ−1) (5.37)

For the null coordinate u we have to first order,

ξu = f + uα (5.38)

Now,
ξu = (∂uρ)ξρ + (∂uτ)ξτ (5.39)

We know,
u = ρ(

√
τ 2 − 1− τ) (5.40)

Therefore,

∂uρ =
√
τ 2 − 1− τ =

−1

2τ
+O(τ−3) (5.41)

and
∂uτ =

ρτ√
τ 2 − 1

− ρ =
ρ

2τ 2
+O(τ−4) (5.42)

Therefore,

ξu = (
−1

2τ
)ξρ + (

ρ

2τ 2
)ξτ (5.43)

ξu = (
−1

2τ
)ξ̊ρ + (

ρ

2τ 2
)ξ̊τ − ξ(1)ρ

2ρτ
+ (

1

2τ 2
)ξ(1)τ + ... (5.44)

Using Eq.(5.30),

ξu = (
−1

2τ
)ξ̊ρ + (

ρα

2τ
)− ξ(1)ρ

2ρτ
+ (

1

2τ 2
)ξ(1)τ + ... (5.45)

Using Eq.(5.27)

ξu = (
−1

2τ
)ξ̊ρ + uα− ξ(1)ρ

2r
+ (

1

2τ 2
)ξ(1)τ (5.46)

21



Now from Eqn.(5.28), we know

lim
r→∞

ξu = f + uα (5.47)

From Eqs.( 5.46 ) and (5.47)

lim
τ→∞

−ξ̊ρ

2ρ
+

1

2ρ2
ξ(1)τ = f (5.48)

To satisfy(5.48) and (5.30) simultaneously we should have,

ξ̊ρ = −τf +O(1) (5.49)

ξ(1)τ = τ 2f +O(τ) (5.50)

Equations (5.29),(5.49)and (5.50) are the required boundary conditions.

5.4 The Supertranslation subgroup

From the above two sections we see that the vector field ξa should satisfy the
following conditions :

�̄ξρ = −3ξρ lim
τ→∞
−τ−1ξ̊ρ(τ, x̂) = f(x̂) (5.51)

�̄ξ̊α = −2ξ̊α Dαξ̊
α = 0 lim

τ→∞
ξ̊A(τ, x̂) = V A(x̂) (5.52)

Here we recall that �̄ = hαβ∇α∇β where hαβ is the metric on the time-
like hyperboloid H.

These equations can be solved using Green’s functions techniques. Let
GST (τ, x̂; q̂) and GαA(τ, x̂; q̂) be the Green’s functions associated to the equa-
tions (5.51) and (5.52) respectively, where q̂ is a unit vector on 2-sphere.

Therefore we have,

ξ̊ρ(τ, x̂) =

∫
S2

d2qGST (τ, x̂; q̂)f(q̂) (5.53)

ξ̊α(τ, x̂) =

∫
S2

d2qGαA(τ, x̂; q̂)V A(q̂) (5.54)

The Green’s function should satisfy,
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�̄GST = −3GST lim
τ→∞
−τ−1GST = δ

(2)
(x̂,q̂) (5.55)

�̄GαB = −2GαB DαGαB = 0 lim
τ→∞
GAB = δABδ

2(x̂, q̂) (5.56)

Here we calculate only GST (τ, x̂; q̂) , while GαA(τ, x̂; q̂) will be calculated in
future. We take the ansatz of the form of G(τ, x̂; q̂) motivated from [10] :

G(n)(τ, x̂; q̂) =
(n− 1)

2n−1

√
γ(q̂)

2π

(
q · x

ρ

)−n
(5.57)

where qµ = (1, q̂) is a null 4-vector and xµ = (t, r) is 4-vector in space-
time.

Now in spherical coordinates, xµ = (t, r) = ρ(
√
t2 − 1, τ x̂) where x̂ = x̄

ρτ

Here x̂ is a unit vector on a 2-sphere which is common to both the co-
ordinate systems (t, r, θ, φ) and (ρ, τ, θ, φ).

Now to check for the first part of equation (5.55),

�̄G(n)(τ, x̂; q̂) = �̄
[(n− 1)

2n−1

√
γ(q̂)

2π

(
q · x

ρ

)−n]
(5.58)

�̄G(n)(τ, x̂; q̂) =
(n− 1)

2n−1

√
γ(q̂)

2π
�̄
[(
q · x

ρ

)−n]
(5.59)

We know,
� = ∇µ∇µ = gµν∇µ∇ν

= ∇2
ρ + ρ−2hαβ∇α∇β

= ∇2
ρ + ρ−2�̄

(5.60)

Therefore,
�̄ = ρ2(�−∇2

ρ) (5.61)

From equations (5.59) and (5.61) :

�̄G(n)(τ, x̂; q̂) =
(n− 1)

2n−1

√
γ(q̂)

2π
ρ2(�−∇2

ρ)
(
q · x

ρ

)−n
(5.62)

Now,
(
q · x

ρ

)
= (−

√
τ 2 − 1 + τ q̂ · x̂) is a scalar and not a function of ρ

and therefore , ∇2
ρ

(
q · x

ρ

)
= 0.
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Therefore,

�̄G(n)(τ, x̂; q̂) =
(n− 1)

2n−1

√
γ(q̂)

2π
ρ2�

(
q · x

ρ

)−n
(5.63)

As shown in the appendix this form of G satisfies the required Equation
(5.55) for n=3.

Therefore,
�̄G(n)(τ, x̂; q̂) = −3G(τ, x̂; q̂) (5.64)

Now to get the second condition of Eq. (5.55);

We see that

lim
τ→∞

(q · x
ρ

) =

{
O(τ−4) q̂ 6= x̂

O(τ 2) q̂ = x̂
(5.65)

Now we calculate the integral of G(n)(τ, x̂; q̂) over the unit sphere q̂ , i.e,∫
d2q̂G(n)(τ, x̂; q̂) =

∫
d2q̂

(n− 1)

2n−1

√
γ(q̂)

2π

(
q · x

ρ

)−n
(5.66)

We change the co-ordinates to τ = iρ and we use the result of integration
already given in [cite campiglia paper] to get,

∫
d2q̂G(n)(τ, x̂; q̂) =

1

2n−1τ

(
(
√
τ 2 − 1− τ)n−1 − (

√
τ 2 − 1 + τ)n−1

)
(5.67)

and therefore we see that

lim
τ→∞

(−τ 2−n)

∫
d2q̂G(n)(τ, x̂; q̂) = 1 (5.68)

as expected. Therefore from (5.55),(5.64),(5.65) and (5.68)we see that

G(3)(τ, x̂; q̂) = GST (τ, x̂; q̂) (5.69)

and from 5.53

ξ̊ρ(τ, x̂) =

∫
S2

d2q̂
(n− 1)

2n−1

√
γ(q̂)

2π

(
q · x

ρ

)−3

f(q̂) (5.70)

Thus the asymptotic vector field component ξρ(τ, x̂) at spatial infinity
upto first order is given by Equation (5.70)
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5.5 Comparison with the Supertranslations

in Ashtekar-Hansen approach

We first briefly recall here the way in which Ashtekar-Hansen defined super-
translation vector fields at Spatial Infinity.

Spatial Infinity, Spi, was seen as the blown up structure at i◦. It is a
4-manifold having a fibre bundle structure with base space as the unit time-
like hyperboloid κ and vertical vector field va as its fibres. The fibres were
parametrized by the tangential component of the acceleration along the reg-
ular curves and each fibre corresponded to the tangent vectors of regular
curves at i◦.

The universal structure was the fibre bundle character of S, the tensor
field hab, and vertical vector field va. If ξa denoted the generators of dif-
feomorphism which kept this universal structure constant it was shown that
they satisfied (i)£ξ̄h̄ab = 0 on κ and (ii)£ξv

a = 0 on S, where h̄ab and ξ̄a are
the projections of hab and ξa on κ.

Supertranslation vector fields, ξa, were defined as the one for which ξ̄a

vanishes, i.e, ξa = fξv
a where fξ is the pull back to S of some scalar f̄ξ on κ.

the elements of LG are thus in one-one correspondence between scalar fields
on κ.

As we can see from Equation(5.12) and (5.13) the symmetry vector fields
at spatial infinity were given by:

ξρ(ρ, τ, x̂) = ξ̊ρ(τ, x̂) +O(ρ−1) (5.71)

ξα(ρ, τ, x̂) = ξ̊α(τ, x̂) +O(ρ−1) (5.72)

and from equation (5.70) and (5.54) we know,

ξ̊ρ(τ, x̂) =

∫
S2

d2q̂
(n− 1)

2n−1

√
γ(q̂)

2π

(
q · x

ρ

)−3

f(q̂) (5.73)

ξ̊α(ρ, x̂) =

∫
S2

d2qGαA(τ, x̂; q̂)V A(q̂) (5.74)

Now we consider the case where we start with only pure supertranslation
vector fields at null infinity, i.e as seen from equation (5.28),

ξa(r, u, x̂) = f∂u (5.75)
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which we get when we take V a = 0. We then see from the above equa-
tions that starting from pure supertranslations at null infinity the only non-
zero component of the asymptotic vector fields we get at spatial infinity is
ξρ(ρ, τ, x̂) given by equation (5.71) and (5.73).

We also note that from (5.73), that up to first order the ξa(ρ, τ, x̂) can
be completely specified by the functions on the ρ =constant hyperboloid κ.
Thus we can write ξa(ρ, τ, x̂) = fηa where ηa is any tangent vector to the
space-like curves orthogonal to the hyperboloid κ and f is some function on κ.
But this is exactly the form of supertranslations defined by Ashtekar-Hansen
as discussed above.

The other part of the SPI group is just the Lorentz group which is the
same as that in the BMS group. Thus we see that we could get all the
elements in the symmetry group at spatial infinity (SPI group) stating from
elements in the BMS group at Null infinity using the above procedure.
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Chapter 6

Discussion and future work

In this thesis we hope to have provided some evidence that there really is one
symmetry group in gravity. The symmetry group at spatial infinity (SPI)
is isomorphic to the BMS group. However in recent work [11], the BMS
group itself was extended to a larger group which unlike the BMS which is a
semi-direct product of Super translations with Lorentz group is a semi-direct
product of super translations with an infinite dimensional group Diff(S2)
which is the group of diffeomorphisms of the conformal sphere. Hence we
would like to see if the SPI group also admits the same extension. This is
important due to the fact that unlike super-translations whose corresponding
charge at Null infinity is known to contain information about gravitational
radiation, the charges associated to Diff(S2) admit no clear physical inter-
pretation in classical gravity. Perhaps by studying these charges at spatial
infinity, one could hope to understand their physical significance better. The
calculation of the charges associated to super translations of the SPI group
has already been done by compere et al. We would in the future like to
extend this computation to all the symmetries of above mentioned extension
of BMS.
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Chapter 7

Appendix

7.1 Calculations for main Equations

(1) Calculation for ξρ

�ξρ = hαβ∇α∇β

= [∇2
ρ + ρ−2hαβ∇α∇β]

= −∂2
ρρ

2 +
1

ρ2
hαβ
(
Dα∇βξ

ρ − Γραβ∂ρξ
ρ + Γραµ∇βξ

ρ
)

=
1

ρ2
hαβ
(
Dα(Dβξ

ρ + Γρβµξ
µ)− Γραβ∂ρξ

ρ + Γραµ(Dβξ
µ + Γµβρξ

ρ
)

=
hαβ

ρ2
DαDβ +

hαβ

ρ2
(−ρhβµ)

(
Dαξ̊

µ +
Dαξ

(1)µ

ρ

)
+

hαβ

ρ2
(−ρhαµ)

(
Dβ ξ̊

µ +
Dβξ

(1)µ

ρ

)
+
hαβ

ρ2
(−ρhαµ)

(δµβ ξ̊ρ
ρ

)
=

�̄ξ̊ρ

τ 2
− Dαξ̊

α

ρ
− Dαξ

(1)α

ρ2
− Dβ ξ̊

β

ρ2
− Dβξ

(1)β

ρ
− 3ξ̊ρ

ρ2

�ξρ = (ρ−1)(−2Dαξ̊
α) + (ρ−2)(�̄ξ̊ρ − 2Dαξ

(1)α − 3ξ̊ρ) +O(ρ−3)
(7.1)

(2) Calculation for ξγ

�ξγ = hαβ∇α∇β

= [∇2
ρ + ρ−2hαβ∇α∇β]ξγ

(7.2)
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•

∇ρ(∇ρξ
γ) = ∂(∇ρξ

γ) + Γγρα(∇ρξ
α)

= ∂2
ρξ

γ + ∂ρ(Γ
γ
ραξ

α) + Γγρα∂ρξ
α + ΓγραΓαρβξ

β

= ∂2
ρξ

γ − 1

ρ2
ξγ +

1

ρ
∂ρξ

γ +
1

ρ
∂ρξ

γ +
1

ρ2
ξβ

= O(ρ−3)

(7.3)

•

1

ρ2
hαβ∇α∇βξ

γ =
1

ρ2
hαβ∇α(∇βξ

γ)

=
1

ρ2
hαβ
(
Dα(∇βξ

γ)− Γραβ∇ρξ
γ + Γγαρ∇βξ

ρ
)

=
1

ρ2
hαβ
(
DαDβξ

γ +Dα(Γγβρξ
ρ)
)

=
1

ρ2
hαβ
(
DαDβξ

γ + (DαΓγβρ)ξ
ρ − Γραβ∂ρξ

γ − ΓραβΓγρµξ
µ+

Γγαρ∂βξ
ρ + ΓγαρΓ

ρ
βµξ

µ
)

=
1

ρ2

(
�̄ξγ +

1

ρ
Dγξρ + 3ρ∂ρξ

γ + 3ξγ +
1

ρ
Dγξρ + ξγ

)
=

1

ρ2

(
�̄ξγ + 4ξγ

)
(7.4)

Therefore,

�ξγ =
1

ρ2

(
�̄ξγ + 4ξγ

)
+O(ρ−3) (7.5)

7.2 Green’s function calculations

Here we show that for Green’s function of the form :

�̄G(n)(τ, x̂; q̂) = N(q̂)ρ2�
(
q · x

ρ

)−n
(7.6)

satisfies the required Equation (5.51) for n=3, i.e,

�̄G(n)(τ, x̂; q̂) = −3G(τ, x̂; q̂) (7.7)
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Consider first,

�

(
q · x

ρ

)−n
= ∂µ∂µ

(
q · x

ρ

)−n
= ∂µ

[
(−n)

(
q · x

ρ

)−n−1

∂µ

(
q · x

p

)]

= ∂µ

[
(−n)

(
q · x

ρ

)−n−1{
qµ
ρ
− 1

ρ2

1

ρ
xµ(q · x)

}]

= ∂µ

[
(−n)

(
q · x

ρ

)−n−1{
qµ
ρ
− 1

ρ3
xµ(q · x)

}]

= gµν(−n)

[
(−n− 1)

(
q · x

ρ

)−n−2

∂ν

(
q · x

ρ

){
qµ
ρ
− (q · x)

ρ3
xµ

}
+

(
q · x

ρ

)−n−1

∂ν

{
qµ
ρ
− 1

ρ3
xµ(q · x)

}]

= gµν

[
(−n− 1)

(
q · x

ρ

)−n−2(
qν
ρ
− (q · x)xν

ρ3

)(
qµ
ρ
− (q · x)

ρ3
xµ

)
+

(
q · x

ρ

)−n−1{
−qµ
ρ3
xν +

3

ρ5
xνxµ(q · x)− xµ

ρ3
qν −

(q · x)

ρ3
δµν

}]

= −(n)

[
(−n− 1)

(
q · x

ρ

)(−n−2)(
0

ρ2
− (q · x)2

ρ4
− (q · x)2

ρ4
+

(q · x)

ρ6
(x · x)

)
+

(
q · x

ρ

)−n−1{
−(q · x)

ρ3
+

3

ρ5
(x · x)(q · x)− (q · x)

ρ3
− (q · x)

ρ3
(2)

}]

= (−n)

(
q · x

ρ

)−n [
(−n− 1)

(
− 1

ρ2

)
− 3

ρ2

]
=

(
q · x

ρ

)−n
(n)

[
(n+ 1)

(
−1

ρ2

)
+

3

ρ2

]
=

(−n)(n− 2)

ρ2

(
q · x

ρ

)−n
(7.8)

Therefore,

ρ2�

(
q · x

ρ

)−n
= (−n)(n− 2)

(
q · x

ρ

)−n
(7.9)
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We have,
�̄ G(n)(τ, x̂; q̂) = (−n)(n− 2) G(n)(τ, x̂; q̂) (7.10)

�̄ G(n)(τ, x̂; q̂) = (−n)(n− 2) G(n)(τ, x̂; q̂) (7.11)

We see that the above equation reduces to the required form (5.51) for
n=3.

Therefore for n=3 we get,

�̄G(n)(τ, x̂; q̂) = −3G(τ, x̂; q̂) (7.12)
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