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Abstract

Detection of temporally uncertain signals is a common motif in many real world and labo-
ratory settings including tasks that require sustained attention. While the role of attention
in these tasks has been studied extensively, there have not been many normative accounts
of attentional allocation in such tasks. In this study, we investigated optimal behavior in a
signal detection task with uncertain signal onset where we allowed attention to improve the
quality of sensory information collected. However, paying attention came at a cost and so,
attention had to be allocated wisely. Using dynamic programming, we estimated an optimal
policy for allocating attention within each trial of the task. Interestingly, we found that a
rational agent must pay attention only when there is enough (but not overwhelming) evi-
dence in favor of a signal. Further, for the same amount of evidence, it was optimal to pay
more attention later in the trial. Reward-cost trade-offs dictated that when a trial was too
tough or when there was too much bias towards a certain hypothesis, there is no advantage
in paying attention. The performance (as measured by the sensitivity index, d′) was a result
of complex interactions between factors like signal length, signal probability and attention
costs. It increased with signal length, decreased with attention costs only at short signal
lengths and remained unchanged with signal probability (despite a shift in the response
criterion). Equivalent results have been shown experimentally in sustained attention tasks
which are known to involve a similar temporal uncertainty.
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Chapter 1

Introduction

1.0.1 Signal Detection

The real world is replete with instances where one has to make choices based on incomplete

and imperfectly reliable information about the world. The signal detection paradigm pro-

vides a framework for modelling and analysing decision-making under uncertainty in a wide

range of tasks and scenarios [Green and Swets, 1966]. A typical task may involve indicating

whether a signal stimulus was present or absent on a given trial. Even in this simplest of

settings, a variety factors will influence the decision-maker, such as the stimulus strength,

the expected probability of a signal, and the relative payoffs for being correct or incorrect.

Signal detection theory provides both a normative account of how decisions should be made

in such settings, and a suite of tools to assess actual behaviour.

In this study, we are particularly interested in how attentional processes affect perfor-

mance in signal detection tasks, particularly those involving temporal uncertainty about

when a signal may arrive – if it arrives at all – within a trial. How to optimally integrate

sensory evidence across a trial becomes surprisingly complex in the face of such tempo-

ral uncertainty. That human subjects find such uncertainty a challenge is suggested by
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experiments showing that even a seemingly modest amount of uncertainty about signal

timing leads to a significant performance decrement [James P. Egan and Schulman, 1961,

Green and Swets, 1966].

The challenge of temporal uncertainty to detection performance is central in sustained

attention (or ‘vigilance’) tasks. These canonically involve prolonged periods of signal absence

interleaved with short, weak signals occurring at unpredictable times; to perform well, a

subject is taxed with having to continuously attend to the display in order to detect these

unpredictable signals [Parasuraman, 1979]. A brief review of the empirical findings in these

tasks therefore provides a perfect background for the current investigation into the role and

effects of attention in detecting temporally unpredictable signals.

1.0.2 Behaviour in Sustained Attention tasks

Behavior in sustained attention tasks has been characterised in detail, both in humans

[Warm et al., 2008] and rodents [McGaughy and Sarter, 1995]. A recurring finding is that

there is a drop in detection performance over time on the task, a phenomenon referred to

as ‘vigilance decrement’. Early theories attributed this decrement to a lack of arousal due

to low cognitive demands, due to both the scarcity of signals and repetitive nature of the

task [Warm et al., 2008]. However, to the contrary, more recent studies suggest that sus-

tained attention tasks are demanding on information-processing resources, and that increas-

ing perceptual or cognitive demands in these tasks actually tends to worsen the decrement

[Warm et al., 2008, Sarter et al., 2001].

Manipulation of several experimental variables have been shown to affect performance

on sustained attention tasks. One such is memory load. In signal detection tasks, signals

can be detected successively or simultaneously. Successive judgements involve distinguishing

signal events from non-signal events using information stored in memory. For simultaneous

judgements, all the information needed to detect a signal is found in the stimulus itself,
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leading to no memory requirement. It has been found that successive judgements lead to

a greater vigilance decrement than simultaneous judgements [Warm et al., 2008]. Another

way of increasing the memory load is to explicitly pair vigilance tasks with working memory

tasks. [Caggiano and Parasuraman, 2004] showed that performance in a spatial vigilance

task showed greater decrement with time when paired with a spatial working memory task.

Another important variable is the event rate, which refers to the rate of appearance

of stimulus events among which the targets may occur. Larger event rates cause a re-

duction in hit rates (i.e., correct detections) and this has been argued to be due not to

a decrease in sensitivity (i.e., ability to discriminate signal from non-signal), but due to a

shift in response criterion (i.e., a increased response bias towards not reporting a signal)

[Parasuraman et al., 1987].

Further variables of importance are signal salience/discriminability and event uncer-

tainty. For example, if the contrast between a signal and it’s background is decreased,

so that it is harder to discriminate, then there is a greater vigilance decrement over time

[Helton and Warm, 2008]. Similarly, making the time at which a signal appears more un-

predictable (‘event asynchrony’) or increasing spatial uncertainty about where a signal will

appear leads to greater vigilance decrement [Warm et al., 2008].

These results hint at which factors in vigilance tasks may be particularly important in en-

gaging attention and information processing systems of the brain. They also constrain expla-

nations for mechanisms that might be leading to the observed behavior. A leading theory is

that sustaining attention for long periods leads to depletion of finite attentional/information-

processing resources, and hence cause a decline in performance [Thomson et al., 2015]. This

theory predicts that increasing work load through changing the different task factors men-

tioned above should lead to larger decrements due to a greater rate of resource depletion

[Thomson et al., 2015].

However, it has also been shown that not all of these performance declines are due to
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a sensitivity decrement (that is, a decrement in signal detectability). Some of these effects

are due to the shifts in the response bias (that is, the threshold for responding in favor of

signal or non-signal hypotheses) [Parasuraman et al., 1987]. Further, not all manipulations

of task difficulty lead to sensitivity decrements. For example, a reliable sensitivity decrement

is observed only when a signal quality is low and the memory load is high (and not, for

example, when memory load is increased at high signal quality) [Parasuraman et al., 1987].

Previous studies have not explained why resource depletion should lead to a diverse range

of effects. Why do some manipulations of task difficulty result only in shifts in response

criterion without an actual change in the sensitivity?

1.0.3 Attention

Sustained attention tasks, as their name suggests, involve the engagement of attentional

processes for a long period of time. But how, particularly if such attention carries some cost,

should attention be most effectively deployed in such tasks in order to successfully detect

signals? Reviewing previous findings and theories about the effects of attention, especially

in sustained attention tasks, may better equip us to locate the role of attention in our chosen

signal detection task. We start by reviewing studies about the regulation and effects of

attention in general, and then move to neuroscientific studies involving sustained attention

tasks that particularly implicate the neuromodulator acetylcholine in the engagement of

attention.

In simple terms, attention involves selecting particular information to concentrate on

while ignoring the rest [James, 1890]. Such selection is thought to be necessary because

there are limits on how much information brains can process in parallel at a time, commonly

referred to as a ‘bottleneck’ [Anderson, 2004]. If information processing resources are so

limited, then they must be ‘allocated’ strategically – the brain must select what to attend

to and when.
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The distribution of attention depends on ‘top-down’ and ‘bottom-up’ factors [Posner MI, 1990,

Anderson, 2004]. Top-down regulation involves the use of prior knowledge of the task struc-

ture, parameters, prior expectations and future goals to direct attention to relevant stim-

uli at appropriate locations and times [Posner MI, 1990]. On the other hand, bottom-up

processes are stimulus-driven shifts in attention to a salient target leading to detection

[Posner MI, 1990, Sarter and Lustig, 2019].

What are the effects of concentrating attention on something particular like a stimulus

or a location in space? There is a wealth of evidence that attention can improve behav-

ioral performance by boosting perception. For example, in the well known Posner cueing

paradigm, when the location of a target is cued in advance, this results in a faster re-

sponse and also better detection of weak stimuli, indicating faster and enhanced processing

[Posner et al., 1980, Prinzmetal et al., 2005]. It also has been shown that attention improves

discriminability in simpler detection tasks [Moray et al., 1976]. In tasks requiring visual

search of a target among distractors, enhancing attention by cueing or providing prior infor-

mation improves performance and signal discriminability while impairing attention has an

opposite effect [Verghese, 2001].

At a neural level, this might be an effect of improving neural activity to the target while in-

hibiting neurons responding to the distractors [Verghese, 2001]. [Cohen and Maunsell, 2010]

suggest that attention improves reliability of sensory information encoded by neuronal pop-

ulations by decreasing correlated variance. In addition, many other studies have demon-

strated this improvement in signal-to-noise ratio that attention has at a neurophysiological

level [Assad, 2003, Cohen and Maunsell, 2009, Reynolds and Chelazzi, 2004].

Similar effects of enhanced perception due to attention have also been shown specifically

in tasks involving temporal uncertainty. For example, [Ghose and Maunsell, 2002] showed

that sensory neuron responses in the visual cortex are modulated by attention depending on

the expectancy of a visual stimulus – there is greater attentional modulation when a stimulus

is expected with a high probability. [Jaramillo and Zador, 2011] showed that valid temporal
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expectations of an auditory signal improved speed and accuracy of responses and that this

is mediated by enhanced representation of sounds in the auditory cortex when a signal is

highly expected.

On the flip side, focusing attention on one particular source of information may come

at the cost of attenuating, or ignoring entirely, other sources that may carry important

information. For example, for an animal foraging in the wild, concentrating on search-

ing for food on the ground may reduce its ability to monitor for aerial predators, thereby

incurring greater predation risk. Indeed, behavioral ecologists have found evidence that

this is the case [Clark and Dukas, 2003]. It has also been argued, particularly in eco-

nomics, that allocating limited resources to a particular task or activity can lead to im-

plicit ‘opportunity costs’, which are benefits lost from resources not dedicated to other tasks

[Mackowiak and Wiederholt, 2009]. In addition, information processing during attention,

including evidence accumulation and perception, detection and response selection come with

physiological costs and are metabolically expensive [Laughlin et al., 1998, Gaulin and McBurney, 2003].

Neuromodulation and Sustained Attention

The neuromodulator acetylcholine (ACh) has been widely implicated in attentional control.

Cholinergic signaling appears to operate at multiple timescales, with both a slowly varying

‘tonic’ mode of signalling, and a rapidly changing ‘phasic’ mode. It has been suggested

that the former might support top-down stabilisation of attentional function, for example

in response to expected changes in attentional challenges [Sarter and Lustig, 2019], while

the latter appears to be more involved in detection of signals at faster, trial-level timescales

[Sarter et al., 2016, Sarter and Lustig, 2019].

The earliest evidence for a role of ACh in sustained attention comes from lesion studies.

For example, [McGaughy et al., 1996] in their Sustained Attention Task (SAT) specifically

adapted for rodents, showed that animals with lesions of cholinergic neurons in the basal fore-
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brain showed much worse detection performance (as measured by their sensitivity, d′) than

normal animals. While lesion studies demonstrated the necessity of ACh for attentional func-

tion, other evidence has come from studies that monitor extracellular ACh concentrations

during attentional tasks. [Arnold et al., 2002] used microdialysis to compare ACh efflux in

rats performing the SAT to two control tasks which had similar sensory and motor demands

as the SAT but which did not specifically engage attention. The ACh efflux was significantly

higher on the SAT compared to the other two tasks.

More recently, techniques have been developed which allow the measurement of ACh

concentrations at faster timescales, and these have led to new findings that suggest an

important role for fast ACh signalling in attention and signal detection. For example, using a

newly developed amperometric technique, [Howe et al., 2013] observed transient ACh signals

at a sub-second resolution that correlated with hit trials in the SAT. Intriguingly, this was

not observed on all hit trials, but only on those that were preceded by misses or correct

rejections. One speculation is that ACh transients might be mediating signal detection

by shifting from a state of monitoring for signals to a cue-activated state that could help

execute the appropriate, cue-associated response. Using optogenetics, [Gritton et al., 2016]

showed that generating transients in the medial prefrontal cortex on signal trials improved

detection of signals while generating transients on non signal trials increased false alarm rates.

Furthermore, inhibiting the generation of transients on signal trials reduced the number of

hits. This suggests a causal role of ACh transients in signal detection.

Since we are particularly interested in the dynamics of attention in sustained attention

tasks, it is relevant to understand how ACh might be mediating signal detection at the neural

level.

One idea is that ACh acts to boost thalamic input to the cortex and suppress input from

other cortical areas, and hence facilitates processing of external stimuli [Hasselmo and Sarter, 2011].

ACh has also been shown to enhance the response of neurons to sensory input hence en-

hancing signal to noise ratios in sensory cortices [Newman et al., 2012]. ACh signals may
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contribute to active maintenance of stimuli and/or relevant task sets by enhancing persis-

tent spiking activity (activity that persists for a period after input stimulation) in the cortex

[Hasselmo and Sarter, 2011].

This rich set of data showing how ACh can mediate signal detection and attention shifts

on a fast timescale motivates us to address the question of attentional regulation within a

trial in our chosen signal detection tasks.

1.0.4 Aim of the study

In this study, our central goal is to investigate the computational problem of how attention

should be “optimally allocated" in signal detection tasks with temporally uncertain signals.

Firstly, we aim to construct normative models of behavior in these tasks. Normative

models aim to find the optimal solution to a given problem. For example, in a standard

signal detection task, an optimal decision is one that maximises accuracy (or more generally,

expected reward) in the task. Hence, these models can tell us how one ought to behave in a

given case. We start by discussing the optimal inference and decisions in a signal detection

task with unpredictable signal onset.

However, in reality, optimal decision making not only involves maximising final perfor-

mance but also taking into account the various constraints there exist on resources and

capabilities of a subject/ animal. In other words, optimal behavior must trade-off rewards

and costs. This logic of ‘resource-rationality’ is growing in popularity in neuro-cognitive

modelling due to its more realistic assumptions about animals’ abilities and its generation of

possible explanations for apparently irrational behaviour [Lieder and Griffiths, 2020]. Tak-

ing the particular case of attention, it is often considered to be a limited faculty; some have

viewed it as a finite resource that can be depleted [Parasuraman, 1979] while others have

have associated some costs with paying attention as we have argued in the previous section.
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In this work, we conduct a resource-rational analysis of the sustained attention task:

attention is conceptualized as a mechanism that improves sensory evidence but comes at a

cost. We ask how attention is deployed optimally so as to maximise performance-related

reward while also minimising the attention costs incurred.
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Chapter 2

Methods

2.1 HMM Model

We formulate a generative model for a generic signal detection task that comprises signal

and non-signal trials occurring with probabilities psignal and 1 − psignal. Each trial has a

fixed number of N time steps. Non-signal trials do not contain a signal while signal trials

have a short signal embedded in them. The task is to report whether a signal was present

(hypothesis H1) or absent (hypothesis H0).

We construct a Hidden Markov Model (HMM) to characterise the task. There are three

underlying states (denoted as Xt at time step t): pre-signal state (0), signal state (1) and

post-signal state (2). These are not directly accessible to the agent which instead, receives

observations Yt emitted by the latent states. Observations are discrete binary variables drawn

from a Bernoulli distribution (dependent on the hidden states):

P (Yt = 0|Xt = 0) = η0

P (Yt = 1|Xt = 1) = η1

P (Yt = 0|Xt = 2) = η2

(2.1)
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For simplicity, η0,1,2 = η. In other words, and as will be demonstrated below, η controls the

reliability of sensory evidence about whether there is currently a signal or not.

We assume there is a uniform probability of the signal occurring anywhere in the trial.

This leads to the hazard function, r(t) for the start time of the signal:

r(t) =
probability density function

1− cumulative density function

=

psignal

N

1− (t−1)·psignal

N

=
1

N
psignal

− t+ 1

(2.2)

where t is the time step within a trial. The signal is not assumed to have a fixed length.

Instead, we introduce a constant probability, q per time step of turning off. Once the signal

turns off, it cannot come on again. The reason we do this is because with a fixed signal

length, the belief update is not Markovian. Non-Markovian systems were not desirable

for us, especially when we do dynamic programming to optimise rewards and costs (this

will be described in the next few sections). These rules specify the transition probabilities,

P (Xt|Xt−1) between the hidden states as summarised in the table below:

Xt

P (Xt|Xt−1) 0 1 2

0 1-r(t) r(t) 0

Xt−1 1 0 1-q q

2 0 0 1
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Xt = 0

1− r(t)

Xt = 1

r(t)

1− q

Xt = 2

q

1

Yt = 0

η
1− η

η

Yt = 1

1− η
η

1− η

Figure 2.1: A schematic of the Hidden Markov Model

Assuming the agent knows all about the task structure and contingencies, it would then

be able to estimate the posterior belief, P (Xt|Y1:t) recursively in time through the trial

(online inference) using Bayes’ rule:

P (Xt |Y1:t) =
P (Yt |Xt, Y1:t−1)P (Xt |Y1:t−1)

P (Yt |Y1:t−1)

=
P (Yt |Xt)

∑
Xt−1

P (Xt |Xt−1, Y1:t−1)P (Xt−1 |Y1:t−1)
P (Yt |Y1:t−1)

=
P (Yt |Xt)

∑
Xt−1

P (Xt |Xt−1)P (Xt−1 |Yt−1)∑
Xt
P (Yt |Xt)

∑
Xt−1

P (Xt |Xt−1)P (Xt−1 |Y1:t−1)

(2.3)

The posterior belief at the end of the trial, P (XN |Y1:N) will then give the most likely

state at t = N given all the observations. This should inform the decision of the agent as

follows:

If P (XN = 0 |Y1:N) > [P (XN = 1 |Y1:N) + P (XN = 2 |Y1:N) ], then choose H0

else if P (XN = 0 |Y1:N) < [P (XN = 1 |Y1:N) + P (XN = 2 |Y1:N) ], choose H1

since P (XN = 1|Y1:N) + P (XN = 2|Y1:N) is the evidence that the signal is or was on, while

P (XN = 0|Y1:N) is the evidence in favor of no signal in the trial.
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Figure 2.2 shows a graphical representation of the HMM through the time steps.

Figure 2.2: A graphical representation of the HMM through the time steps in a trial. The
transition function (P (Xt |Xt−1)) determines the transition between the latent states. The
observations depend on the latent states through the emission probabilities (P (Yt−1 |Xt−1))

2.2 Costs of attention

The model above describes the Bayes optimal inference for an agent that can accumulate

evidence at no costs – information comes for free. However, it is not unrealistic to consider

that there may be costs associated with collecting evidence, and that these may scale with

the quality of evidence collected. This is also intuitive – processes like attention presumably

improve the quality of evidence but come at a cost as we have argued in Chapter 1. This

raises an interesting question: how must an agent optimally modulate it’s attention so as

to maximise rewards from correct inference while minimising the attentional costs incurred?

In order to answer this question, we formalise the notion of modulating attentional states in

the following.

Let the belief state bt be the posterior probability P (Xt|Y1:t) at time step t in the trial.
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This quantity sufficiently captures the evidence gathered until time step t. In addition to

this, we introduce the internal state (ISt) of the agent. This is defined as a binary variable

which controls ηt and hence, the quality of evidence collected at t. ISt ∈ {L,H} where L is

the ‘low’ state with η = ηL, while H is the ‘high’ state with η = ηH . H is the more informative

state and so ηH > ηL. For simplicity, we let ηt be constant across the hidden states, Xt.

Together, this defines the complete state of an agent at time t: (bt, ISt). The state space is

therefore three dimensional: the belief space has two dimensions, say bt(1), bt(2) (which fixes

bt(0) = 1− bt(1)− bt(2) ) and there is an additional dimension for the binary variable ISt.

At each time step t, the agent can choose its internal state ISt by taking an action at.

Hence at are also binary such that at ∈ {choose ISt = L, choose ISt = H}. The outcomes

of the actions are assumed to be deterministic, so that taking action at = L always leads

to ISt = L, and vice versa, irrespective of the current or past states of the agent or the

environment. At the end of the final step N , the agent must make a decision in favor of

hypothesis H0 (‘trial is a non-signal trial’) or in favor of hypothesis H1 (‘trial is a signal

trial).

Action at is assumed to incur a cost cij based on the internal state ISt = j chosen and

the preceding internal state ISt−1 = i. This leads to the following cost table:

ISt

costs L H

L cLL cLH

ISt−1 H cHL cHH

On making a decision in favor of H0 or H1 at the end of the trial, the agent receives a

reward (Rij) based on the true identity of the trial. Correct responses are rewarded while

incorrect responses have no consequence:
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true trial

Rij H0 H1

H0 1 0

response H1 0 1

where i stands for the chosen hypothesis Hi and j stands for the true hypothesis Hj.

Given this formulation, our question about how an agent must modulate attention can

be re-framed as follows: what is the optimal strategy for choosing actions at each time step

t given the belief state and the internal state (bt−1, ISt−1)? An optimal strategy is one that

maximises the expected net reward. This can be found by maximising the value function,

V a∗(bt, ISt) which is the expected reward from following optimal behavior in the state at t

(bt, ISt) and thereafter. This quantity can be expressed recursively as the immediate reward

obtained on optimal action (a∗) at t, plus the expected value over the possible next states

at t+ 1 (assuming optimal behavior on future time steps):

V a∗( bt, ISt ) = max
a
R( bt, ISt, a ) +

∑
bt+1,ISt+1

P ( bt+1, ISt+1 | bt, ISt, a ) · V a∗( bt+1, ISt+1 )

= max
a

[Q( bt, ISt, a = L ), Q( bt, ISt, a = H ) ]

(2.4)

Here, Q( bt, ISt, a = L ) and Q( bt, ISt, a = H ) stand for the immediate plus expected future

rewards from following the two possible actions at t, L and H, respectively. V a∗( bt, ISt ) is

the maximum of the two.

This is the Bellman optimality equation for the optimisation problem. Due to the existence

of an optimal substructure in the problem, Dynamic Programming can be employed to solve

the equation. Solving it gives the optimal value function for each state at each time point t

and also the optimal set of actions (known as the optimal policy) that lead to the optimal

values. The optimal policy is hence a complete specification of the actions an agent must
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take for each possible belief state at each point in time in order to maximise net expected

reward.

2.2.1 Bellman equation for the task

Equation 2.4 lays out the general expression for the value function for the states of the

type (bt, ISt) with fixed rewards. To adapt the equation to the task at hand, we will have

to specify an expression for the transition function between the belief state-internal state

pairs P (bt+1, ISt+1|bt, ISt, a) and the reward function R(bt, ISt, a). As described above, the

reward function consists of costs of choosing an internal state (cij) as well as the payoffs at

the end of the trial (Rij).

The transition between internal states (ISt to ISt+1) is completely specified by the action

(a∗) chosen. The transitions to the future belief state, bt+1 depends on the present belief state

bt and possible subsequent observations (Yt+1). This is in turn dependent on the underlying

task states (Xt+1) and consequently, the structure of the task as specified by the emission

and transition probabilities. This sequence of simplifications on the expression is shown

below:

V a∗(bt, ISt) = R(bt, ISt, a
∗) +

∑
bt+1,ISt+1

P (bt+1, ISt+1|bt, ISt, a∗) · V a∗(bt+1, ISt+1) (2.5)

P (bt+1, ISt+1|bt, ISt, a∗)) can be written as follows:

P (bt+1, ISt+1|bt, ISt, a∗)) = P (bt+1|ISt+1, bt, ISt, a
∗) · P (ISt+1|bt, ISt, a∗) (2.6)

Since ISt+1 is fixed given ISt and a(= a∗), P (ISt+1|bt, ISt, a∗) = 1 for a single ISt+1 and is

0 for the rest. equation 2.4 thus reduces to:
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V a∗(bt, ISt) = R(bt, ISt, a
∗) +

∑
bt+1

P (bt+1|bt, ISt, a∗) · V a∗(bt+1, ISt+1) (2.7)

The quantity P (bt+1|bt, ISt, a∗) can be conditioned on the possible future observations (Yt+1)

hence giving:

P (bt+1|bt, ISt, a∗) =
∑
Yt+1

P (bt+1|bt, ISt, Yt+1, a
∗) · P (Yt+1|bt, ISt, a∗) (2.8)

By the Bayesian update equation 2.3, bt+1 is completely determined by the current belief,

bt, future internal state It+1 (also given by It, a∗) and the future observation, Yt+1. Hence,

P (bt+1|bt, ISt, Yt+1, a
∗) =

1, given bt, Yt+1, It, a
∗

0, otherwise
(2.9)

Hence, the Bellman equation reduces to:

V (bt, ISt) = R(bt, ISt, a
∗) +

∑
Yt+1

P (Yt+1|bt, ISt, a∗) · V (bt+1, ISt+1) (2.10)

where both bt+1 and ISt+1 are fixed. Now, all that remains to be specified is P (Yt+1|bt, ISt, a∗)

which can be simplified by invoking the task structure (given by the emission and transition

probabilities):

P (Yt+1|bt, ISt, a∗) =
∑
Xt+1

P (Yt+1|Xt+1, ISt, a
∗) ·

∑
Xt

P (Xt+1|Xt)bt (2.11)

2.2.2 Solving for optimal policy

The optimal policy (which is a complete description of the optimal behavior for the agent

for each possible state at each time point) can be found by solving the Bellman equation.

We assume that the structure of the task, including emission and transition probabilities for

20



the different latent states and the reward and cost functions are known. Hence, equation

2.10 can then be solved for the optimal value and actions at each bt, ISt.

We solve the equation numerically by discretising the two-dimensional belief space. The

belief states, running from b = 0 to b = 1 along each axis (bt(1) and bt(2) axes), are discretised

in steps of db = 0.01. This results in a two dimensional grid for the belief states. The other

variables (IS, X, Y ) are already discrete. Given this completely discrete space, we apply

backward induction (dynamic programming) to solve for V a∗(bt, ISt) backward in time from

t = N to t = 1.

For this,V a∗(bN , ISN) must be given as an initial condition in order to work backwards.

After the final time point, the agent must make a decision in favor of either hypothesis- H0 :

(non-signal trial) or H1 : (signal trial). This choice is made based on the final belief, bN

and the payoffs, Rij (reward from choosing Hi when Hj is true) according to the following

decision rule: choose H1 if [bN(1)+bN(2)]·R11+bN(0)·R10 > bN(0)·R00+[bN(1)+bN(2)]·R01

and H0 otherwise. These quantities are the immediate expected payoffs from choosing H0 or

H1 (this simply means that the reward from a decision in favor of a hypothesis is weighted

by the posterior belief for the hypothesis). Hence, the value at N is the maximum of the

expected payoffs for each hypothesis:

V a∗(bN , ISN) = max
H0,H1

[ (bN(1) + bN(2)) ·R11 + bN(0) ·R10,

bN(0) ·R00 + (bN(1) + bN(2)) ·R01 ]
(2.12)

Since this doesn’t depend on ISN , the value function at t = N is the same for both internal

states. This results in a (2D) V-shaped value function with highest value for extreme belief

states b(XN = 0) = 1 or b(XN = 1) + b(XN = 2) = 1 and the lowest for b(XN = 0) =

b(XN = 1) + b(XN = 2) = 0.5. This function is shown in a 2D plot in Figure 2.3a. Figure

2.3b shows the corresponding regions where H0 and H1 have the highest expected payoff as

per equation 2.12. The function is not defined for the lower right triangle of belief states

where b(X = 1) + b(X = 2) > 1.
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(a) Value function after t = N for choos-
ing between H0 and H1

(b) Policy function after t = N for
choosing between H0 and H1

Figure 2.3: Initial condition for the value function (and the corresponding policy) to be used
for backward induction. This is obtained by finding the immediate expected payoff from
deciding in favor of H0 or H1 after the final time step, N

Given this initial V a∗(bN , ISN), V a∗(bN−1, ISN−1) can be calculated using the Bellman

equation 2.10 for each bN−1 and ISN−1. V a∗(bN−1, ISN−1) can then be used to calculate

V a∗(bN−2, ISN−2) and so on, all the way back to t = 1. The actions that lead to the

maximum value at each state form the policy function.

Numerical issues While calculating V a∗(bt, ISt) by backward induction, the Bayesian

belief update equation 2.3 gives the possible future beliefs bt+1. These future beliefs are then

used to get the future values, V a∗(bt+1, ISt+1) to be used in the Bellman equation. As the

belief space has been discretised, V a∗(bt+1, ISt+1) is defined only at the belief values in the

2D grid at steps of db = 0.01. Since bt+1 obtained from the belief update may not fall on the

belief grid, interpolation of the value function (at t+ 1) from the neighboring corners of the

grid is used to find the value at bt+1.

While finding the maximum between Q(bt, It, a = L) and Q(bt, It, a = H) in order to get

the value, V a∗(bt, It), we use a softmax rule (with β = 50) instead of the max function. The
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softmax function is given by:

softmax(xi ) =
eβxi∑
j e

βxj
(2.13)

This finds a smooth maximum between the input numbers, xi. When β = ∞, the softmax

is equivalent to the max (technically, it is equivalent to the argmax). Doing this prevents

small numerical errors from being picked up as actual differences between the values.

2.3 Forward runs

Given the value/policy functions for the entire belief space at all internal states at each time

point, the agent can choose internal states (L or H) using the optimal policy as evidence is

collected (hence, belief is updated) through the trial. Starting at a prior belief, bt=0, and

initial internal state, IS0, an action a1 is chosen based on the value function. This sets the

η1 parameter for the emission functions, and we can accordingly sample an observation y1

from state x1. x1 is reached from x0 according to the transition probabilities. The sampled

observation leads to a belief update and the cycle continues, leading to a sampled ‘forward

run’ of the policy.

Algorithm 1: Forward run
Result: b1:N , IS1:N

Require transition functions, emission probabilities;
set initial b0, IS0;
for t ≤ N do

choose optimal action at using V a∗(bt−1, ISt−1);
update internal state ISt based on at;
observe yt based on ISt and xt;
update bt based on yt;

end
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2.4 Measures of performance

In the results, we report average performance of the model using the signal detection mea-

sures of sensitivity index (d′) and response criterion (c). d′ is a measure of how detectable

a signal is, that is, how separated the underlying signal distribution is from the non-signal

distribution. This can be calculated as: z(Hit Rate )− z(False alarm Rate ). z is the inverse

of the standard cumulative normal distribution.

c is a measure of how likely it is to respond in favor of the signal. It is calculated as:

−0.5 · [z(Hit Rate )+ z(False alarm Rate )]. Lower the c, greater is the tendency to respond

in favor of the signal.

These two quantities are independent measures of performance in the task.
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Chapter 3

Results

3.1 Task description

We begin by providing a brief summary of the task we modelled. Details of the task structure

and the Hidden Markov Model (HMM) of the task may be found in Chapter 2.

The signal detection tasks we consider consist of trials of fixed length in which a signal

may be present with probability (psignal). Signal trials have a signal embedded in them while

non-signal trials have no underlying signal throughout the trial. The task for an agent is to

decide in favor of either of the hypotheses:

H0 : This is a non-signal trial

H1 : This is a signal trial
(3.1)

We don’t fix the signal length for reasons described in Chapter 2; instead, we allow a signal

to end with constant probability q once it comes on. The signal has a uniform probability

of coming on anywhere in the trial (which leads to an increasing hazard function). Figure

3.1 shows a schematic of a trial in the task.
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Figure 3.1: A schematic of a trial in the task. The trial is of fixed length N = 10. The
probability per time step of the signal coming on is given by the hazard rate, r(t) which is
shaped differently for different psignal as shown in the figure. The probability per time step
of the signal turning off is given by the constant q. Once the signal turns off, it cannot come
on again

3.2 Bayes optimal agent

Figure 3.2 shows the plots for the underlying signal, observations and inferred posterior

probabilities within a single example trial. In this particular example, the signal comes on

before t = 25 and turns off around t = 40. This is accompanied by a rise in bt(1) which

drops after t = 40 after which bt(2) rises.

To further understand the behavior of the model, consider the average d′ as a function

of different parameters, namely trial length (N) and q.

Figure 3.3 shows that as q decreases, d′ decreases. This is because smaller q leads to

signals staying on for longer, allowing better detection on signal trials. On non-signal trials,

when small signal lengths are expected at high q, a few noisy observations can easily be

confused with a short signal – leading to more false alarms.
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(a) Hidden states and observations (b) Posterior probabilities

Figure 3.2: An example trial of the HMM with no attention costs. Parameters: psignal = 0.5,
q = 0.1, η = 0.7, N = 50

Trial length interacts with q. For smaller q, d′ increase as trial length rises – a larger trial

provides more chances for longer signals allowing better detection of the signal. However,

for large values of q, d′ decrease as trial length increases. This might be because signals tend

to be short even as the trial is longer – where it is easier to miss a signal and confuse noise

with signals.

Figure 3.3: Performance (d′) of the HMM with no attention costs as a function of trial length
(N) and q. Parameters: psignal = 0.5, η = 0.9
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3.3 Resource limited agent

Given that the task structure is known, equation ?? gives the optimal inference strategy in

the task and hence guarantees the best performance possible. However, this optimality is

unbounded: it doesn’t take into account realistic limits on information processing resources

of an agent.

Here, we consider a resource-limited agent that experiences costs when accumulating

evidence. These costs depend on the quality of evidence an agent is collecting. In our task,

the greater the value of η, the greater is the quality of evidence – and hence the greater the

cost. One can imagine that attention improves the quality of the evidence, but at a cost.

As described in Chapter 2, for simplicity, we allow our agent to collect evidence at two

levels, ηH and ηL in two internal (or attentional) states (ISt): high (ISt = H) and low

(ISt = L). We assume the agent has control on the internal state at every time point.

ηH > ηL and so, the cost of collecting evidence at ISt = H is higher than the cost of

choosing ISt = L. Further, choosing an ISt also depends on ISt−1: the cost of switching

between different internal states might be higher than maintaining a particular state, for

example.

Given these assumptions, we can find the optimal policy via the (Bellman) equation 2.10.

3.3.1 Signal stays on: A first model

The HMM consists of three states: the pre-signal(0), signal(1) and post-signal(2) states.

Since bt(1) + bt(2) = 1− bt(0), the corresponding belief space is two dimensional.

As a first case, we set q = 0. This means that there is zero probability that state 1 will

go to state 2 (i.e., there is no post-signal state – if a signal comes on, it stays on until the end

of the trial). Effectively, this reduces to an HMM with 2 states with the following transition
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matrix: Xt

P (Xt|Xt−1) 0 1

0 1-r(t) r(t)

Xt−1 1 0 1
where r(t) = 1

N
psignal

−t . This leads to a one-dimensional belief space where bt(1) = 1− bt(0).

We start by characterising this model before moving on to the more complex case where the

belief space is two dimensional.

Behavior of the model

Consider the edge case when ηH = 1.0 and ηL = 0.5 – the H state provides completely

reliable information while the low state gives completely unreliable information. In addition,

all the costs are set to 0. In this case, Q(bt, It, a = H) > Q(bt, It, a = L) for all belief values

at t = N and Q(bt, It, a = H) = Q(bt, It, a = L) for all time points before as seen from the

policy function in Figure 3.4a. Increasing the costs of choosing H even slightly will cause

Q(bt, It, a = H) to dip below Q(bt, It, a = L) for t < N as seen in the policy function from

Figure 3.4b. In other words, getting completely certain information at the final time point is

enough to detect a signal and the belief on the previous steps do not matter. This is because

q = 0 and so, a signal is guaranteed to stay on once it turns on.

More realistically, what if the H state doesn’t provide exact information (i.e. ηH < 1)?

In this case, it is not necessarily sufficient to choose H only on the final time step since there

are belief states earlier in time where choosing H has higher value as seen in Figure 3.5a.

Therefore, as the quality of information reduces, it is optimal to pay for attention earlier in

time. In addition, if choosing H is made costlier or if the L state is more informative, then

the decision to choose H can be pushed to a later time point. Figure 3.5b and c shows these

results.

In summary, for the case when q = 0, it is optimal to choose H as late in the trial as

possible, simply because the signal doesn’t turn off once it comes on.
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(a) costs = 0 - L and H have the same value
before N = 10

(b) costsiH = 0.03 - Optimal to choose H
only on final time point

Figure 3.4: Optimal policy overlaid by average forward runs (average posterior and average
action) at each time step when ηH = 1.0, ηL = 0.5, N = 10. The optimal policy is shown
for all belief states at each time step. The label ‘L’ refers to the region where it is optimal
to choose the low state, ‘H’ refers to where it is optimal to choose the high state and ‘L/H’
refers to where both actions have equal value

3.3.2 The three state model

With intuition from examining inference from the no-cost case and also the optimal policy

and inference for the simple case with q = 0, we now turn to investigating the behavior of

the full model.

We begin by fixing the task parameters to the following: N = 10, q = 0.2, psignal = 0.5,

ηH = 0.9, ηL = 0.6 and costs

c00 = 0.0 c01 = 0.04

c10 = 0.0 c11 = 0.02

. It was natural to allow costs of

switching to the H state (c01) to be greater than the costs of maintaining the H state (c11).

We allowed there to be equal probability for a signal and non-signal trial (psignal = 0.5).

Finally we set q = 0.2 because the expected signal length (1
q

= 5) is not too high or low

compared to our trial length N = 10. These form our default set of parameters for the rest

of the report. When the value of any of the parameters is not explicitly mentioned, they can

be taken to be the above.

We use the Bellman equation 2.10 to solve for the time-dependent optimal value and

policy functions for each belief and internal state.
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(a) costsiH = 0.03, ηH = 0.8, ηL = 0.5 - de-
creasing ηH makes it optimal to choose H ear-
lier in time

(b) costsiH = 0.05 - increasing costs of choos-
ing H makes it optimal to choose H later in
time

(c) costsiH = 0.05, ηL = 0.7 - increasing ηL
makes it optimal to choose H later in time

Figure 3.5: Optimal policy overlaid by average forward runs (average posterior and average
action) at each time step when N = 10 at different costs and ηH,L. The optimal policy is
shown for all belief states at each time step. The label ‘L’ refers to the region where it is
optimal to choose the low state, ‘H’ refers to where it is optimal to choose the high state
and ‘L/H’ refers to where both actions have equal value

To understand the policy, we begin by examining the value and policy functions for the

3D state space at the final time step. Figures 3.6, 3.7 show these functions for all belief

states and for both, IS = L and IS = H as shown in Figures 3.6, 3.7. To recall,

V a∗(bt, ISt) = max
a
{Q(bt, It, a = L), Q(bt, It, a = H)},

policy(b, IS) = argmaxa{Q(bt, It, a = L), Q(bt, It, a = H)} = a∗, and,

∆Q = Q(bt, It, a = L)−Q(bt, It, a = H)

(3.2)

Based on the sign of ∆Q (that is, if Q(L) > Q(H) or the opposite), the belief space

(at each internal state) is partitioned into different regions: regions where it is optimal to
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(a) Value Function (b) ∆Q Function (c) Policy Function

Figure 3.6: Value, ∆Q and policy functions (with IS = L) at the final time step, t = 10
using the standard parameter range

(a) Value Function (b) ∆Q Function (c) Policy Function

Figure 3.7: Value, ∆Q and policy functions (with IS = H) at the final time step, t = 10
using the standard parameter range

choose H, and regions where it is optimal to choose L. This is shown by the policy function

as shown in Figures 3.6c, 3.7c. There exist two boundaries that separate these regions. The

first boundary on the top-left corner (shown in green) represents the belief states above

which b(Xt = 0) is large enough (and where b(Xt = 1), b(Xt = 2) are low enough), that it is

not worth paying the costs for better information (in H state) on the next time step. The

second boundary (shown in red) are the belief states beyond which b(Xt = 1), b(Xt = 2)

are high enough such that a costlier state which provides better information is not worth

choosing (in other words, there is enough evidence in favor of the signal trial). It is only in

an intermediate range of the belief space where it is advantageous to choose the H state.
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(a) t = 1 (b) t = 2

(c) t = 3 (d) t = 4

(e) t = 5 (f) t = 6

(g) t = 7 (h) t = 8

(i) t = 9 (j) t = 10

(k) Final decision (between H0 and
H1)

Figure 3.8: Policy functions overlaid by scatter plots showing the states occupied by
actual forward runs of the model. This is shown for all time steps for the entire state
space (the 2D belief space and the two internal states, IS = L and IS = H). The
forward runs are obtained by staring at the initial belief: b(0) = 1,internal state:
IS = L and using the standard parameters
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Figure 3.8 shows the policy plots for all N = 10 time steps, overlaid by scatter plots

showing the states occupied by actual forward runs of the model obtained using this optimal

policy (procedure for this is discussed in Chapter 2). They are obtained by staring at the

initial belief: b(0) = 1,internal state: IS = L and using the standard parameters. Each

scatter point exists in a 3D space (2D belief state and a variable for the internal state). The

region where it falls in the space determines what action is chosen (according to the policy

function) and hence the internal state for the next time point. The next belief state is found

by a Bayesian belief update. Notably, the policy is time-dependent: the boundaries move

further apart in time leading to the ‘choose H’ region expanding – in general, it is more

useful to choose ISt = H later in the trial because q is still low and so there is a decent

probability for signals to stay on till the end of the trial.

To get a better feel for the trends in our trajectories, we first consider single example

trials as shown in Figure 3.9. Figure 3.9a shows an example non-signal trial. The trial begins

at an initial belief of b0(0) = 1 and internal state, IS0 = L. For the first five time points, the

belief states lie below the first boundary (i.e., there is not enough evidence in favor of the

signal/ post-signal states to trigger shifting to the H state). Beyond this, the belief states

fall in the regions where it is optimal to choose the H and hence obtain better evidence

about the underlying signal.

Figure 3.9b shows an example of a signal trial. Similar to the previous case, IS = H is

chosen only after the fourth time step. However, in this case, a signal comes on at t = 6. This

leads to increased evidence in favour of a signal and so b(Xt = 1) + b(Xt = 2) rise leading

the belief states to cross the second boundary at t = 8. Due to the nature of the transition

function between the 3 underlying signal, states, there is always a transfer of probability

density in favor of Xt = 1, 2 through time – this means that (b(Xt = 1) + b(Xt = 2))

increases with time irrespective of the observations. Hence, crossing the second boundary

means that the ‘choose H’ region will not be reached again. In other words, once the belief

in favor of the signal trial crosses a boundary, there is no need to pay for better information
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since the agent can be sure that a signal is/was present – a ‘decision’ is already reached

before the end of the trial!

(a) Example non-signal trial (b) Example signal trial

Figure 3.9: Example trials generated using the standard parameters. Each plot shows the
following at each time step through the trial: underlying signal state (in blue) and observa-
tions (as purple scatter points) in the top graph; posteriors (for Xt = 1 in blue and Xt = 2
in orange) and the internal state (in green) in the bottom graph

Now that we have looked at single example trials, we now examine average performance.

In a fixed duration signal detection task, the main measures of behavior are the hit (correct

signal detection) and false alarm (false signal detection) rates. Alternatively, the correct

rejection (correct response to non-signal trials) and miss (failure to detect signal) rates may

also be reported. The hit and false alarm rates can be used to find the sensitivity index (d′)

which measures how well an agent can distinguish a signal from noise. In addition, they can

be used to find the response bias (c) which represents the criterion for responding in favor

of the signal. As seen in table 3.1, the d′ is well above 0 meaning that the signal is really

being discriminated from the noise. c is slightly over 0 implying there is a bias for reporting

in favor of the non-signal (irrespective of the underlying signal state).

hit= 0.725 FA= 0.201 d′ = 1.435

miss= 0.275 CR= 0.799 c = 0.119

Table 3.1: Average performance obtained using the standard set of parameters

We also examine the ‘attentional dynamics’, or how likely it is to choose the ‘H’ internal
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state through time within a trial. Some natural questions include the following:

1. What fraction of a trial is spent in IS = H ? For an experimenter, this is akin to

asking how attentive a subject is, on an average.

2. Where in the trial is IS = H chosen the most? In an experimental terms, does the

subject pay attention uniformly through the trial?

3. How do these measures differ between signal and non-signal trials?

4. What is the relationship between accuracy and the occupancy of IS = H? That is, do

subjects perform better when they pay more attention?

We find the frequency of choosing IS = H at each time step averaged across multiple

trials. Figure 3.10 shows this expected occupancy of the H state at each time step. As

Figure 3.10: Average occupancy of IS = H at each time step in the trial, found using the
standard parameters. This is shown for signal, non-signal and all trials

expected from the policy plots in Figure 3.8, occupancy in the earlier time steps is low and

rises in time. This is followed by a drop and quick rise at the final time step. This means

that it is optimal to pay the most for better quality information at the final time point. At

q = 0.2, the expected signal length is 1
q

= 5 and so there is a good chance of detecting a

signal at the final time point. However, as there is also a significant probability of a signal

switching off before the end, it is advantageous to pay attention at intermediate time points

as well. A possible reason for a dip at t = 7 to 9 might be as follows: if a signal has not
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been detected when IS = H was chosen before, then it is a non-signal trial or the signal

has already ended or is yet to come on. For the first and last cases, increasing attention in

the final time step should be enough to infer correctly in most of the trials. If the signal

has already ended, then there is no utility in attending to the signal. If a signal has already

been detected, there is again not much of a gain in paying more attention.

Figure 3.10 compares the occupancy through the trial for signal and non-signal trials.

They are mostly similar except for some small differences. The occupancy is slightly higher

at earlier time points and lower at later ones (especially the end point) for the signal trials:

this may again be explained by the observation that if a signal is detected earlier (which can

happen for early signals), then there is no need to pay for more information later.

To calculate the average occupancy of the H state, we find the percentage of a trial that

is spent in IS = H, averaged over multiple (5000) trials. The average rate of occupancy for

the entire trial is: 0.206± 0.001. This means that, on an average, 0.206 fraction of a trial is

spent in the high attentional state. For signal trials, the proportion is 0.186± 0.002, and for

non-signal trials it is 0.226± 0.002. There is also no real difference in occupancy of IS = H

between accurate trials (where the average occupancy is 0.215± 0.095) and inaccurate trials

(with average 0.205± 0.092). Intuitively, one would expect that spending more time points

in the higher attention state would lead to higher certainty about the underlying signal.

However, there are many confounds to this: for example, once an early signal is detected

there is not much added utility of going to IS = H. Hence if a more certain belief state is

reached quickly, attention can be turned off without much effect on the accuracy.

Having looked at the performance and ‘attention’ trends under the default parameters,

the next natural question is how the behavior is affected by varying these parameters.
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Effects of Signal Length

The first parameter we look at is q – the probability per time step that a signal turns off

once on. If q is higher, then signals will tend to be shorter. Since q is a constant number,

the resultant signal lengths follow a geometric distribution with expected value 1/q – this

therefore gives the expected signal length. In effect, the tail of the geometric distribution is

always truncated because the trial length is finite. It is hence good to keep in mind that the

expected signal length of 1/q is only an approximate estimate.

What should be the effect of increasing q (that is, reducing the average signal length)

on behavior? Firstly, we would expect that shorter signals are harder to detect – because a

shorter signal implies a shorter interval where there are more signal than non-signal obser-

vations and so it is harder to detect the signal from the background noise. Intuitively, as a

signal gets harder to detect, we predict that attention should be engaged more to improve

chances of detection.

In order to test our hypotheses, we simulate our model at different values of q, keeping all

other parameters at their default values. Figure 3.11 shows the overall performance measures

including d′, c, hit and false alarm rates as q increases. The sensitivity, d′ falls with increase

in q. This is due to a decrease in hit rates and also a rise in false alarms. This trend is just

as how we predicted – the shorter the signal, harder it will be to detect. The response bias

is constant and above 0 for low q and then it decreases (to below 0) for large q. This implies

that the propensity to respond in favor of the signal rises with q.

What about the occupancy of IS = H? As predicted, as q rises, the average occupancy

of IS = H also increases. This is because, when a signal is harder to detect, IS = H should

be chosen more often to improve detection. However, for very large values of q, this effect

saturates and there is no rise in occupancy beyond this. This might be because when signals

get too short, choosing IS = H more will not significantly improve performance.
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(a) Performance curves for different q (b) Occupancy of IS = H for different q

Figure 3.11: Average behavior for different values of q with all other parameters fixed at de-
fault values. The plots include hit, false alarm rates, d′ and c curves, and average occupancy
rates for signal, non signal and all trials

The average trends are a good window into the effects of changing signal length on the

model dynamics. To dig a bit deeper, we analyse the temporal pattern of occupancy of

IS = H within a trial and also the optimal policy functions.

Figure 3.12 shows the average occupancy at every time point within a trial at q = 0.6.

Quite visibly, the occupancy of IS = H is high even at earlier time points in contrast to

q = 0.2 where it is the highest at the final time point by a huge margin (shown in Figure

3.10). This is because signals tend to be very short at q = 0.6 and so it is required to pay

attention almost throughout the trial to effectively detect signals.

Figure 3.12: Average occupancy of IS = H at each time step in the trial, found using q = 0.6.
This is shown for signal, non-signal and all trials combined

It is interesting to interrogate the differences between the optimal policy at q = 0.6 and
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q = 0.2. Figure 3.13 shows the policy plots for the entire state space at three different time

steps in the trial. Evidently, the position of the two critical boundaries differ between the two

cases (as compared in Figure 3.13). When q = 0.6, the first boundary is moved up towards

smaller values of b(1), b(2) – this means that attention is engaged even with low evidence in

favor of the signal. The second boundary is also moved up towards smaller b(1), b(2) – this

means that the beliefs in favor of the signal need not be very high to decide in favor of it.

(a) t = 4, q = 0.2 (b) t = 4, q = 0.4

(c) t = 7, q = 0.2 (d) t = 7, q = 0.4

(e) t = 10, q = 0.2 (f) t = 10, q = 0.4

Figure 3.13: A comparison of policy function plots for selected time points for the whole state
space at q = 0.2 and q = 0.6. Note the differences in positions of the two boundaries (marked
in green and red) between the two cases. These are overlaid by scatter plots obtained from
forward runs

To illustrate these effects better, we include single example signal and non-signal trials

as shown in Figure 3.14. Figure 3.14a shows an example signal trial. The IS = H is chosen

even with a small rise in b(1), b(2) at t = 4. Another signal observation is enough for the
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belief states to cross the second boundary – there is sufficient evidence in favor of the signal

trial. This strategy makes sense because when q is larger, signals tend to be very short so a

short sequence of signal observations should be enough evidence for the signal.

Figure 3.14b shows an example non-signal trial. As before, IS = H is chosen even with

a small rise in b(1), b(2). In absence of signal observations, b(1), b(2) stay low and so the

agent stays in the H state almost through out the entire trial. This means that the agent

must stay in a monitoring state throughout in order to not miss a signal.

(a) Example signal trial (b) Example non-signal trial

Figure 3.14: Example signal and non-signal trials using q = 0.6. The plots show the un-
derlying signal, observations, posteriors and internal states at every time step through the
trial

Does only the absolute value of q (which determines the average signal length) effect the

detectability of a signal? One could imagine that the signal length relative to the trial length

determines how detectable a signal is. For example, at the same expected signal length, the

longer the trial, the more opportunity to confuse signal with noise, making it harder to

detect. Hence, for the same q, we expect performance to be lower for longer trial length.

Figure 3.15 shows this is indeed the case.

What is the effect of trial length on occupancy of the H state? We predict that for a

q, larger the trial length, the more the H state needs to be engaged in order to detect the

signal.

We observe the opposite effect with H being chosen the most at the lowest trial lengths.
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(a) Hit rates for different values of q at
different trial lengths

(b) False alarms for different values of q
at different trial lengths

(c) d′ for different values of q at different
trial lengths

(d) Average occupancy for different val-
ues of q at different trial lengths

Figure 3.15: Average behavior for different values of q and trial length with all other param-
eters fixed at default values. The plots include hit, false alarm rates, d′ curves, and average
occupancy rates for signal, non signal and all trials

This is due to a decrease in occupancy on an average for each point in time, as N increases.

This happens because as N becomes larger, there is a smaller probability of a signal coming

on at each time step.

Effects of signal probability

Another crucial parameter in the model is psignal, the probability of a signal trial. There are

multiple ways which this could be manipulated in general vigilance tasks – increasing the

(non-target) event rate could reduce the perceived signal probability; the target rate itself

can be directly reduced.

If the signal rate is low (< 0.5), then we would expect the response criterion to be biased

in favor of non-signal trials and the opposite if signal rate is high. Using signal detection

theory, we predict the following trend in the criterion with psignal: Say the signal and non-
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signal trials are drawn from normal distributions with µNS = 0, µS = 1 and σ = 1 for both.

The Bayes criterion on observation x is given by:

p(x|µS, σ)

p(x|µNS, σ)
=

(1− psignal) ∗ (R00 −R01)

psignal ∗ (R10 −R11)

e
−(x−1)2+x2

2 =
1− psignal
psignal

x = ln(
1− psignal
psignal

) + 0.5

(3.3)

This Bayes criterion depends on psignal by a function as shown in Figure 3.16a.

How should the signal rate effect performance? Since sensitivity is independent of the

response bias, we predict that there should be no effect on overall performance (d′). We

predict that the occupancy of the H state is the highest when there is equal probability for

a signal and non-signal trial to occur. If the prior is biased in favor of one trial type, then

there is less utility in improving evidence at a cost.

We ran simulations to test our predictions. For the performance curves, as psignal in-

creases, the response bias decreases, thereby increasingly favouring the reporting of a signal.

Therefore, at the extreme probabilities, the hit and false alarm rates either fall towards 0 or

1. Fig 3.16a compares the optimal Bayes criterion (for different signal priors) and the actual

criterion obtained from the model. The model criterion has a similar shape to the optimal

criterion, in line with our predictions.

Surprisingly, d′ doesn’t stay constant throughout but instead drops at the extreme psignal

– this means that when a signal trial is very likely or very rare, the detectability of the

signal is lower. The reason for this lies in the occupancy (of IS = H) curve for the different

signal probabilities, shown in Fig 3.16c. At the extreme signal probabilities, the occupancy

falls to 0. This implies that all of the inference at these psignal is done at ηL = 0.6 and so

the detectability of signal is low at extreme psignal. The occupancy is an inverted-U as we

predicted. However, the peak of the curve doesn’t lie at psignal = 0.5 but at psignal = 0.6.
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(a) Comparing criterion form simula-
tions to the Bayes optimum criterion

(b) Performance curves for different
psignal

(c) Occupancy curves for different
psignal

(d) Occupancy curve zoomed in at
psignal = 0.3 to psignal = 0.7. This
demonstrates that the double peak in
the occupancy is a real effect.

Figure 3.16: Average behavior for different values of psignal with all other parameters fixed
at default values. The plots include hit, false alarm rates, d′ and c curves, and average
occupancy rates for signal, non signal and all trials

Why is attention engaged much less at extreme probabilities? This is because the costs

of choosing IS = H enough number of times to improve performance over-weigh the rewards

obtained from a marginal rise in performance. This is well demonstrated in Figure 3.17. At

extreme signal probabilities, choosing H doesn’t confer much advantage over L and conse-

quently, it is optimal to simply not choose H and pay the costs. This is akin to saying that

when the prior is already very high in favor of signal or non-signal trials, then collecting

better quality evidence doesn’t improve performance much.

How do the temporal dynamics of occupancy look at different signal probabilities? At
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(a) d′ for the three conditions
(b) Average total reward for the three
conditions

(c) Average costs per trial for the three
conditions (d) Net Reward for the three conditions

Figure 3.17: Behavior of the model with different psignal under the three conditions: choosing
IS = H throughout, choosing IS according to the optimum policy (optimal condition),
choosing IS = L throughout. The plots show d′, average total reward, average costs and net
reward for the three conditions. While d′ and so total reward is the highest when IS = H is
always chosen, the corresponding costs are also high. Hence, the net reward is the highest
for the optimal case

higher psignal, IS = H is chosen quite often even earlier in the trial instead of being concen-

trated at the final time point. At lower psignal, the H state is occupied mostly towards the

end of the trial. These effects are shown in Figure ?? for two example signal probabilities.

This can be explained by how the boundaries which determine the policy, shift with

change in psignal. As this probability increases, the first boundary is shifted to lower b(1), b(2)

as shown in Figure 3.23 hence activating the H state for smaller rises in belief in favor of

the signal (this makes sense – if signals are more probable, there is a greater probability for

X = 0 to switch to X = 1 at every time point). Hence H tends to be activated at early time

points as much as the later ones. An opposite effect occurs at the lower signal probabilities.

If this is the case, why does the occupancy decrease for higher probabilities? This might be
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because with larger signal probabilities, the trajectories quickly cross the second boundary,

hence not keeping the H state active for long.

This effect is well demonstrated by an example run as shown in Figure 3.20. The under-

lying signal is the same for both the runs. For psignal = 0.4, the H state is activated only

later in time and doesn’t turn off despite rise in belief in favor of X = 1, 2. On the other

hand, for psignal = 0.7, the H state is quickly activated and is also turned off by the evidence

gathered from only a single signal observation in the high attention state.

(a) Average occupancy of IS = H at
psignal = 0.4

(b) Average occupancy of IS = H at
psignal = 0.7

Figure 3.18: Average occupancy of IS = H at each time step in the trial, found using
psignal = 0.4, 0.7. This is shown for signal, non-signal and all trials combined

Interaction between q and signal probability

The previous sections showed the effect of varying q and psignal separately. Here we look at

how they interact by varying both. We predict that d′ will decrease with q at all values of

psignal and will follow an inverted-U shape at each psignal. We predict that the occupancy

rate will increase with q at every signal probability while following an inverted-U shape at

each psignal.

Figure 3.21 shows the trends observed from the simulations. d′ shows the patterns that

we predicted, except that the extent of decrease in d′ with q also depends on psignal – more

extreme psignal values cause a greater decline in d′.
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(a) t = 4, psignal = 0.4 (b) t = 4, psignal = 0.7

(c) t = 7, psignal = 0.4 (d) t = 7, psignal = 0.7

(e) t = 10, psignal = 0.4 (f) t = 10, psignal = 0.7

Figure 3.19: A comparison of policy function plots for selected time points for the whole state
space at psignal = 0.4, 0.7. Note the differences in positions of the two boundaries (marked
in green and red) between the two cases. These are overlaid by scatter plots obtained from
forward runs

Surprisingly, the effect on occupancy rate is opposite to what we predicted: occupancy

shows a decreasing trend for all psignal values except psignal = 0.5! Why is this the case? As

discussed previously, for extreme signal probabilities, it is not worth paying the costs of the

high attentional state for a marginal improvement in performance (since with a biased prior,

one can already be sure about the trial). As q increases, and the signal gets harder, this

effect dominates, hence causing the occupancy to reduce.

This means that short (therefore, hard-to-detect) signals that are very rare or very fre-

quent are not detected well. This is perhaps because they engage the least amount of
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(a) Example signal trial, psignal = 0.4 (b) Example signal trial, psignal = 0.7

Figure 3.20: Example signal and non-signal trials using psignal = 0.4, 0.7. The plots show
the underlying signal, observations, posteriors and internal states at every time step through
the trial

(a) d′ curves for different q and psignal
(b) Occupancy curves for different q and
psignal

Figure 3.21: Average behavioral trends with varying q and psignal. The plots of d′ and
occupancy curves show an interaction between q and psignal

attention.

Effects of costs

Another important parameter is the cost of choosing IS = H. In our default parameter

settings, this cost is asymmetric, such that choosing H from the L state has higher cost than

choosing it from the H state. In other words, the switching cost to IS = H is higher than the

maintenance cost. We can change these costs in multiple combinations in order to investigate

their effects. We choose to change the switching costs while keeping the maintenance costs

fixed. What might be the expected effects? Firstly, the occupancy of IS = H should
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decrease if the costs of choosing it are higher. Secondly, if H is chosen a fewer number of

times due to increasing costs, then the detectability of the signal would drop leading to worse

performance.

We simulate the model at different switching costs and obtain the average occupancy and

performance, in order to test our hypotheses. Surprisingly, the occupancy of IS = H doesn’t

decrease monotonically with increasing costs. In fact, there is a range where it increases with

rising costs, as shown in Figure 3.22.

(a) Average occupancy of IS = H for
different switching costs

(b) Performance curves for different
switching costs

Figure 3.22: Average behavior for different switching costs with all other parameters fixed
at default values. The plots include hit, false alarm rates, d′ curves, and average occupancy
rates for signal, non signal and all trials

To understand why this happens, we compare the optimal policy functions for two ex-

ample switching costs = 0.04, 0.08. As visible from the plots in Figure 3.23, for the higher

cost, the first boundary at IS = H is shifted to very low b(1), b(2) – it becomes optimal to

maintain the IS = H state if belief in favor of states 1 and 2 are low. Hence, the overall

occupancy increases in this case. If switching costs are increased further, the frequency of

choosing IS = H is low enough to outweigh this lowered threshold for maintenance, hence

ultimately causing the occupancy to reduce.

How do the performance curves look for increasing switching costs? d′ shows a decreasing

trend with with increasing costs, as we had predicted. This drop is mainly due to reduced
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(a) t = 4, switching costs = 0.04 (b) t = 4, switching costs = 0.08

(c) t = 7, switching costs = 0.04 (d) t = 7, switching costs = 0.08

(e) t = 10, switching costs = 0.04 (f) t = 10, switching costs = 0.08

Figure 3.23: A comparison of policy function plots for selected time points for the whole state
space at switching costs = 0.04, 0.08. Note the differences in positions of the two boundaries
between the two cases. These are overlaid by scatter plots obtained from forward runs

hit rates as seen in Figure 3.22.

Interactions with switching costs

How does changing switching costs interact with changes in q and also in psignal? We predict

that in addition to the effects we expect with each of the parameters, there wouldn’t be any

additional interactions.

Figure 3.24 shows the effects of changing switching costs and psignal on d′ and the occu-

pancy rates. The performance curves clearly show a decreasing trend with switching costs.
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However, there is no apparent trend with psignal except for the decline at very high signal

probabilities. On the other hand, there exists a decreasing trend in the occupancy with

increasing switching costs at all signal probabilities except at psignal = 0.5 where the trend

was is not monotonic. For a specific switching cost, the occupancy has an inverted-U trend

with psignal. At high costs, the decay in occupancy at extreme signal probabilities is higher

than at lower costs.

(a) d′ curves for different switching costs
and q

(b) Occupancy curves for different
switching costs and q

Figure 3.24: Interaction between switching costs and q

Figure 3.25 shows the effects of changing switching costs and q on d′ and the occupancy

rates. The d′ curves show a decreasing trend with q. d′ decreases with switching costs only

high q. This is because when costs are high and signals are short, the costs required to

improve performance outweigh the rewards from the slight improvement in performance.

This is shown in Fig 3.26 where at higher q, the net reward from the optimal policy is no

better than choosing the lower attention state. The greater the switching costs, greater is

the decline in performance with q. The occupancy curves show different trend with different

costs. For lower costs, the occupancy increases with q since it is still advantageous to choose

H to detect harder signals. However, if the costs are prohibitively high, they lead to a decline

in occupancy with q.
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(a) d′ curves for different switching costs
and psignal

(b) Occupancy curves for different
switching costs and psignal

Figure 3.25: Average behavioral trends with varying switching costs and psignal. The plots
of d′ and occupancy curves show an interaction between switching costs and psignal

(a) q = 0.2 (b) q = 0.6

Figure 3.26: Behavior of the model with different switching costs under the three conditions:
choosing IS = H throughout, choosing IS according to the optimum policy (optimal condi-
tion), choosing IS = L throughout. The plots show d′, average total reward, average costs
and net reward for the three conditions
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Chapter 4

Discussion and Conclusion

In this work, we considered optimal behavior in a signal detection task with temporal un-

certainty, assuming that the task structure (i.e., signal probability, reward contingencies,

observation reliabilities, and trial structure) is known. We conducted a resource-rational

analysis, taking into account putative attentional costs associated with improving the qual-

ity of evidence. Optimal behavior is the one which maximises overall reward while also

minimising attentional costs. We conducted this optimisation at a within-trial timescale

using dynamic programming.

4.1 Optimal policy

Doing this, we find an optimal policy – the optimal set of actions to take at every possible

state of the world. In our case, this included how attentive to be at each particular time

step – hence controlling the quality of information (observations) received. We find that the

policy is time-varying. That is, for the ‘same’ (time-independent) state of the world, the

optimal attention level indeed depends on the time of occupying that state within a trial.

In general, we found that the region in the state space where it is optimal to pay attention
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grows with time. This means that as the time of the final decision gets nearer, more attention

should be paid. Furthermore, we found that there existed two critical boundaries in the belief

space (for a particular attentional state) which determined the choice of attention at each

time step: a ‘lower’ boundary that sets a minimum amount of evidence needed in favor of

the signal being on (or that it has passed) for it to be worth paying attention; and a second,

‘higher’ boundary that sets the maximum amount of evidence that is enough to stop paying

attention – the latter sets the threshold beyond which one can be sure that the signal is or

was on.

In practice, given the initial condition that every trial begins with no signal, combined

with a particular parametrization of the model, not all regions of the belief/state space

are reachable. Furthermore, some regions are occupied more often than others. To under-

stand how attention is allocated in an actual trial, we averaged measures of attention across

multiple trials. In addition, to gain insights into model behavior, we found averages of var-

ious performance measures, costs and rewards across multiple trials. Chapter 3 contains a

detailed exposition of the effects of various parameters on these measures.

We next summarise the most important results and also discuss the insights they provide,

their implications and significance.

4.2 Trends in attention

We looked at the average occupancy of the ‘high’ attention state in a trial as a measure of

the amount of attention that needs to be paid. This was calculated by averaging (across

multiple trials) the percentage of a trial that is spent in the H state. The trends that we

found were complex with many non-monotonic and nonlinear patterns with different factors

like signal length, attention costs and signal probability.

A naive prediction was that more attention needs to be paid to detect short signals. How-
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ever, we found that the amount of attention that is paid as signal length reduces depended on

the overall ‘toughness’ of the trial. For a relatively easy trial, it made sense to pay the costs

of attention to improve performance (and hence final task rewards). However, for a trial

that was tougher (due to being longer or having noisier observations), the costs required to

improve performance at shorter signals far outweighed the resultant rewards hence making

it not worth to pay attention.

We also found a similar effect when the prior signal probability was too high or too low. If

the certainty about the trial identity was already very high, paying the costs of attention for

a marginal improvement in detection was not ‘worth it’. The slight decline in performance

at the these extreme probabilities (described in the previous section) can be explained by

this rational inattention.

4.3 Attention allocation within a trial

We were also able to show how attention must be distributed within a trial across various

task factors. We reported the following results from averaging the occupancy of the high

attentional state (at each time step within a trial) across multiple trials.

Importantly, the optimal policy involved a non-uniform distribution of attention through

the trial. The tendency was for attention to be concentrated as late in the trial as possible. If

it was possible to get to a future state where more information could be obtained by paying

the costs, then there was no advantage in paying for attention earlier. The effects of signal

length on attention allocation is a perfect example of this – when signals were known to be

long, more attention was paid later in the trial simply because signals were expected to stay

on for longer. Even when attention had to be paid earlier in the trial (for example, to not

miss a short signal), the distribution was not uniform across a trial. Usually, there is an

early and a late peak in attention so that signals that might not be caught earlier can simply
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be caught later in the trial without having to pay much attention in the middle.

4.4 Trends in performance

We described optimal inference (not yet including resource constraints) in our chosen decision

problem. We replicated the results of [James P. Egan and Schulman, 1961]: as the trial

length increases, the discriminability, d′ declines. Furthermore, we found that longer signal

lengths lead to better performance as measured by d′, although the decrement with trial

length still occurs. This drop in performance is predicted even when no costs of attention

are included. This points to a fundamental limit on which signals can be detected. As

[James P. Egan and Schulman, 1961] speculate, the longer the trial, the more noise can be

confused with the actual signal, hence leading to performance decrement – the signal is

harder to detect.

We then considered the case including attentional costs. While similar patterns as above

were seen with changing signal and trial length, the absolute performance itself did not

reach the same levels. This is simply because the agent must trade-off rewards from correct

detections with costs from collecting better quality evidence.

We found interesting interactions between increasing costs and changing signal lengths.

There was no performance decline with increasing costs at large signal lengths but a decline

with costs occurred only when signals are short. We demonstrated that this effect occurred

because of how trade-offs between rewards and costs play out at different parameter ranges:

when costs are high and signals are short, the costs required to improve performance outweigh

the rewards from the slight improvement in performance. However, increasing costs at large

signal lengths caused a shift in hit and false alarm rates and therefore, in the response

criterion.

Our result is similar to the following effects which have been shown in previous stud-
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ies: changing memory load and background noise (which changes signal discriminability)

causes the overall performance (d′) to decline significantly only when both of these are

high. A temporal decline in detection performance (‘vigilance decrement’) also occurs only

in this parameter range [Parasuraman, 1979]. Increasing memory load when signal quality

is already high only causes a temporal shift in response bias with no vigilance decrement

[Parasuraman, 1979]. Changing the quantities of signal quality and memory load in a variety

of other ways also yield similar results [Parasuraman et al., 1987]. This comparison is justi-

fied because in our model, signal length determines it’s strength (and so, it’s discriminability)

while attention costs can be likened to increased resource demands from manipulations like

increasing memory load.

We showed that increasing signal probability shifts the response criterion to lower values

(more liberal criterion). d′ stays largely constant except at very high or low signal probabili-

ties. Previous studies have also shown that increasing signal probability shifts response crite-

rion to lower values while the performance (d′) remains unaffected [Davies and Parasuraman, 1977].

Finally, we showed an interaction effect between signal length and signal probability. We

found that decreasing both of them caused the response criterion to be shifted to higher

values while also decreasing d′. We believe this change is similar to the manipulation of

event rate in previous studies. Event rate is a complex parameter that presumably causes

an increase in background noise (and so decreases signal quality) and a decrease in perceived

signal (target) probability. It has been observed that increasing event rate shifts criterion to

higher values while also decreasing the d′ [Davies and Parasuraman, 1977].

4.5 Limitations and future work

While we talked about optimal behavior within a trial, we did not touch upon optimality

across trials. We would like to extend our analysis beyond a trial because there have been
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interesting across-trial effects shown in these tasks that we did not provide a rational account

of. A notable example is the famous vigilance decrement. However, we can provide descrip-

tive explanations for these. For example, if we allow a parameter like attentional costs or

perceived signal probability to change across trials, this could explain vigilance decrement.

An important future step would be to construct an across-trial normative model to find

rational behavior across trials.

While we described interesting attention patterns in our model, we did not provide a

qualitative or quantitative comparison with real attention data (either behavioral observa-

tions or neural data). However, we believe that investigating optimal attention allocation at

the within-trial level is an important first step to make progress in this area. A natural next

step would be to turn to the effects of phasic Acetylcholine which has been shown to mediate

signal detection in sustained attention tasks [Howe et al., 2013, Gritton et al., 2016]. These

studies have shown in rats performing a signal detection task that phasic ACh signals cause

signal detection on signal trials. They are necessarily preceded by thalamic-glutamatergic

signals which are evoked by signals [Sarter et al., 2016]. This is similar to an effect in our

model: switching to the higher attentional state happens only when there is a minimum

amount of evidence in favor of the signal. In the future, we would like to investigate further

the possible role of phasic ACh in shifting attentional states at fast timescales.

4.6 Significance

Leading accounts of vigilance behavior attribute the observed performance decline trends

to limits on information processing abilities of animals/ subjects [Thomson et al., 2015].

However, they qualitatively and intuitively explain the effects of resource demands and so

do not explain why these performance declines occur only for some manipulations of task

difficulty and are in some cases due to response criterion shifts (and not changes in sensitivity)

[Parasuraman et al., 1987].
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In this work, we are able to provide a rational account of some of these effects in terms of

a cost-benefit analysis. We also show response or sensitivity decrements (or both) occur for

different manipulations of task parameters without having to invoke fundamentally different

mechanisms for the two. In our model, all effects fall out of assuming attention is costly. We

not only demonstrate that these complex trends and interactions can occur using a relatively

simple model, but also show that this behavior is resource-optimal.

We are also able to theoretically show how optimal allocation of attentional resources

should look like within a trial and how it must vary across different task parameters. We

believe this is an exciting first step in trying to understand attention allocation in the brain

and particularly, the role of neuromodulators, especially ACh in shifting attentional states

in the brain.

4.7 Conclusion

In summary, we investigated optimal behavior in signal detection tasks with temporal un-

certainty, assuming resource limitations on attention. We estimated an optimal policy for

allocating attention within each trial of the task. Interestingly, we found that a rational agent

must pay attention only when there is enough (but not overwhelming) evidence in favor of

a signal. Additionally, attention allocation was not uniform within a trial: for the same

amount of evidence, it was optimal to pay more attention later in the trial. The distribution

of attention varied with different factors: when a signal was longer or less probable, it was

optimal to pay most attention very late in the trial. The overall level of attention per trial

was also a result of complex interactions between factors like signal length and detectability,

signal probability and attention costs. When a trial was too tough or when there was too

much bias towards a certain hypothesis, reward-cost trade-offs dictated that there was no

advantage in paying for more information through attention.
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We also found interesting performance patterns with our model. Performance (as mea-

sured by the sensitivity index, d′) declined with decreasing signal length while it decreased

with attention costs only at short signal lengths. The sensitivity remained almost unchanged

with signal probability while the response criterion was shifted. Decreasing signal length,

however, led to sensitivity decline at extreme signal probabilities. Equivalent results have

been shown experimentally in vigilance tasks which are known to involve a similar temporal

uncertainty.
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