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“ To those – who believe in the beauty of their dreams,
for the future belongs to them”
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Who said that every wish

Would be heard and answered

When wished on the morning star?

Somebody thought of that

And someone believed it

Look what it’s done so far

What’s so amazing

That keeps us star gazing

And what do we think we might see

Someday we’ll find it

The Rainbow Connection

The lovers, the dreamers and me!
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Abstract
We study infectious disease spread through the Indian transportation network in this thesis. We
use a hazard index to quantify the risk faced by 446 Indian cities for an epidemic starting from
any city. This hazard index, also called as effective distance was first introduced by Helbing and
Brockmann to explain the global spread of infectious diseases. Even though there have been a lot
of India-specific studies to examine and predict the spread of infection, to our knowledge, none
of them consider long-distance travel through multiple modes of transportation as the primary
source of infection. We estimate the traffic for three modes of transport – air, rail, and road to
construct the transportation network for India. We use the Susceptible-Infected-Recovered (SIR)
metapopulation model to simulate the dynamical system and quantify the associated risk by the
arrival time of the infection to the city. We show that the effective distance is an objectively better
hazard index than geographical distance and that it works the best for higher values of SIR infection
rate parameters and lower threshold of infected cases to define arrival time. We also illustrate
that effective distance can be modified to cover the case of multiple outbreak locations. Before
comparing with the real-life data of Covid-19 cases, we give evidence for removing critical links
using the link salience treatment to curb the spread of the disease. Finally, we show that the SIR
metapopulation model has some static and dynamical properties similar to the Fisher-KPP class
of equations through numerical simulations. Our study opens up multiple new avenues to build
a full-scale working model for India with better mobility and traffic data and study diffusion-like
processes on heterogeneous networks.

xi



xii



Contents

Abstract xi

1 Introduction 1

2 SIR Metapopulation Model and Indian Traffic Data 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 SIR Metapopulation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Main Results and Practical Aspects 21
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Robustness of Linear Relationship . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Practical Aspects and Comparison with Real-Life Data . . . . . . . . . . . . . . . 31
3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 The Effectiveness of Deff and Fisher-KPP Equation 40
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 Fisher-KPP equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3 Diffusion on a Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Conclusion and Future Directions 50

xiii



xiv



Chapter 1

Introduction

As of July 5, 2021, more than 180 million people have been infected by the Covid-19 virus globally,
while around 4 million have been deceased [1, 2]. In other words, 2% of the world population is
infected by the virus strain starting from a few handfuls of cases in Wuhan in December 2019.
The world is coming closer, but that has brought its own set of disadvantages. In the last few
decades, long-distance travel has been a boon for the business, and collective growth of countries
[3]. However, as shown by many incidents during the same time, it has also eased the spread of
deadly infectious diseases to remote corners of the world in a short amount of time [4, 5, 6, 7, 8].
The most challenging problem for policymakers and governments worldwide is predicting the
pandemic as soon as any new cases are found.

The ubiquitous Susceptible-Infected-Recovered (SIR) compartmental model helps predict the
growth of infection in a well-mixed population – a system where each part has an equal probability
of interacting with any other part [9, 10]. However, the assumption of a well-mixed population
becomes invalid once we consider the real-life situation where the population is distributed across
cities. The metapopulation concept was introduced in epidemiology to account for the movement
dynamics based on the mobility data [11, 12]. Metapopulation considers the population divided
into two or more levels of scale, where the interaction within a scale is different from the rest.
Even though this approach allows one to include another level of complexity to the model, the
pattern of spreading of any infectious disease is observed to be non-trivial when we consider the
metapopulation to be cities connected in the form of a network [13, 14]. One of the long-standing
goals in epidemiology has been to predict the pattern in which the infections spread. Since the
resources are limited, forecasting how the patterns emerge is a practical concern that can save
many valuable lives [15, 16, 17, 18].
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Brockmann and Helbing first introduced the concept of ‘effective distance (Deff)’ in [19]. They
found that Deff – a measure defined based on the probability of an agent traveling from one city to
another works exceptionally well for predicting the hazard at a global level. There is a multitude
of studies at the global as well as national level predicting the spread of Covid-19 to countries
and states [20, 21, 22, 23]. Even though there have been many India-specific studies in the past
few months for predicting the epidemic risk, to our knowledge, no study considered the Indian
transportation network to the scale we did [24, 25, 26]. The disease majorly spreads between
different countries through air traffic. However, for a country like India, there are multiple modes
of transport for short and long-distance transport, which carry significant passenger loads each day.
The difference in terms of actual speed and distribution of traffic across various modes makes the
situation in India drastically different from a global level spread. Globally, India is the second-
most populous country with more than 1.3 billion residents [27]. The diversity in socio-economic
conditions in India is rarely seen in other parts of the world. Any infectious disease is perilous
in this environment because many people live in suboptimal conditions with poor sanitation and
ventilation. Predicting the spread of disease in such conditions combined with the heterogeneity
in transport makes it an arduous, yet critical task [28, 29, 30].

Around 10 million people travel every day in India by various means. This number is higher
than the population of many countries in the world. Unfortunately, there is no systematic record
of the number of people traveling between two cities in the public domain. There are a handful of
studies about railway and air transport [31, 32, 33] but given the uncertainty of schedules, and the
constant addition of newer routes, it is hard to imagine the sustainability of such data over a long
period. Thus, we are left with no other option but to collect, predict, or build the data ourselves
using all the tools available. In order to be able to predict the risk of infection, we must have the
passenger traffic data.

There have been few studies centered around India, but to our knowledge, none of them ac-
counted for the long-distance transport for a large set of cities [34, 35, 36, 37]. The problem
with including just the big cities is that the small cities can contribute significantly to the spread
even though they might not contribute to the number of infected cases. Preventive measures like
lockdown are economically harsh and can have undesirable effects if not appropriately executed
[38, 39, 40, 41]. Proper planning based on the prediction of disease spread is still missing for poli-
cymakers. We will look at the case of predicting the spread of infectious diseases in India through
a transportation network.

The plan for this thesis is as follows: In Chapter (2), we start by discussing the basics of
the epidemiological compartmental models and the metapopulation model. After motivating the
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equation of transport on a network, we combine the SIR and the transport dynamics model under
some assumptions to write down the equations for the SIR metapopulation model. After proposing
the model, we look into the details of the data collection process for the three modes of transport
– air, rail, and road. The data for air transport was available freely, while only the train schedules
were available for the rail transport. Virtually, no information was available for the road transport.
We propose two algorithms for estimating rail and road traffic data, making the optimum use of
the available data – train schedule, geographical coordinates, and population of the cities. Thus,
by the end of Chapter (2), we will have all the necessary tools fully assembled to analyze the SIR
metapopulation compartmental model.

We will begin Chapter (3) by showing the phase transition in the metapopulation model, a
signature of the SIR well-mixed population model. We will then define the Time of Arrival in
order to quantify the hazard associated with each city. We consider risk based on two different
approaches, a fraction of the population is infected, or an absolute number of people are infected.
Before finalizing the definition of Deff , we will look into the effectiveness of Deff using various
definitions. We will then show that Deff , defined using the transition jump probability P-matrix,
shows a much better correlation with the Time of Arrival defined using the absolute threshold than
any other pairs of definitions. We will illustrate the robustness of this pair by averaging the best fit
over outbreak locations and then looking at its trend for various parameters. We will show that the
model works best when the SIR infection parameters are high and the absolute threshold is low.

After looking at more theoretically motivated aspects of the model, we will consider a few
practical extensions, such as multiple outbreak locations and the effect of removing links from the
network. We will show that a modified definition of Deff works for two outbreak locations and
can be extended to multiple outbreak locations. We will also verify the method of link salience
first introduced by Brockmann et al. to find out the critical links in the network [42]. We find that
there are no critical links in the network common to all nodes and hence, the dynamics of infection
spread highly depends on the outbreak location. Finally, we will compare our results with the
real-life data for Covid-19 and give possible reasons for the mismatch between the two. Amongst
multiple things, the main reason for the mismatch remains to be the quality of the transport and the
real-life data of Covid-19 cases.

In Chapter (4), we dive into the theoretical side of Deff . We will show that the SIR metapop-
ulation model can be transformed into an SI metapopulation model under certain limits. The SI
model is very similar in form to the Fisher-KPP family of equations, which admit wave-like so-
lutions [43]. In order to prove the correspondence between these two systems (which would give
ample evidence for the effectiveness of Deff for any network), we will compare numerical simu-
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lations to see any similarity between the two systems. In order to make the correspondence even
stronger, we will compare just the diffusive terms of the two models and show that the mean and
the standard deviation of the infected fraction indeed show very similar trends. Thus, we show
a weak and indirect connection between diffusion on a line and diffusion on a network, which
would explain the linear relationship between Time of Arrival and Deff . In Chapter (5), we will
summarize all the key findings from our thesis and give future work directions.

The main focus of this thesis is to study the problem of infection spreading in India and con-
struct a hazard index that would quantify the risk of a city for any pandemic in the future using
the known tools from physics, epidemiology, network, and data science. Given the complexity, the
scale of the problem, and a striking lack of raw data, the progress we have made certainly brings us
closer to a full-scale working model, and we hope that the data we have collected will be helpful
for future epidemiological as well as non-epidemiological models.
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Chapter 2

SIR Metapopulation Model and Indian
Traffic Data

2.1 Introduction

Susceptible-Infected-Recovered (SIR) model is a well-studied epidemiological model that suc-
cessfully explains the gross features of spreading infectious diseases in many real-life cases [9].
Multiple extensions of this model have been proposed and successfully applied to specific cases
of disease transmission. We will look at one such extension in Section (2.2) by separating the
spatial scales of intracity and inter–city dynamics. We will understand and rationalize the details
and the underlying assumptions of this extended SIR model (henceforth called as SIR metapopu-
lation model). In Section (2.3), we will look at the methods and techniques used to collect data for
our model. Finally, we summarize the notable points about the SIR metapopulation model and the
traffic data in Section (2.4).

2.2 SIR Metapopulation Model

There has been much interest in understanding the spreading processes often observed in nature.
In particular, epidemiology – a discipline dealing with questions like ‘how, why, and what next’
for the spread of diseases has developed mature tools to understand and analyze infections [44].

In the following few Subsections, we will look at the details of the SIR model before delving
into the concept of the metapopulation. Towards the end, we will explain how these two completely
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different dynamics can be integrated into a single equation (given by Eq. (2.4)), which will serve
as the backbone for most of the analysis in this thesis.

2.2.1 Compartmental Models

One of the most successful approaches in epidemiology is the family of compartmental models
[10]. The underlying assumption for these models is that the population is divided into various
compartments based on the individual’s state, and all individuals move from one compartment to
another based on various environmental and health-related factors. However, given a large number
of individuals and many uncontrollable and often unknown parameters in the system, it is hard
to precisely predict which individual would be the next one to jump from one compartment to
the other. To deal with this complexity, we replace the innumerable degrees of freedom in the
system with randomness. We assume an effective jump rate for all individuals to move from one
compartment to another and observe how well it agrees with reality. We may not know which
individual will be next to make the transition. However, we can predict the size of the fraction of
the population that will transition in a unit period of time. Thus, to compensate for the incomplete
information, we settle for a probabilistic view of the system. These models cannot predict which
individual will get infected next but can tell the evolution of the total number of people in all
compartments with time.

2.2.2 SIR Model

Let us now look at the details of one of the most successful models of the family, namely the SIR-
Model, where S(t), I(t), and R(t) denote the susceptible, infected, and recovered (or removed)
population respectively at time t. We assume that the population is well-mixed. A well-mixed
population denotes the case where every individual interacts with every other individual with equal
probability. Thus, it is easy to see that the probability of a susceptible individual getting infected
is directly proportional to the number of infected cases in the population. We can also see that the
number of individuals going from susceptible to infected and then from infected to recovered has
to be proportional to susceptible and infected people, respectively. Putting all this together, we get
the rate equation for the SIR model as follows:

∂S(t)
∂ t

=−α
S(t)I(t)

N
,
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∂ I(t)
∂ t

=+α
S(t)I(t)

N
−β I(t),

∂R(t)
∂ t

=+β I(t). (2.1)

In Eq. (2.1), α denotes the rate of infection per capita, while β is the recovery rate. We note
that S(t)+ I(t)+R(t) = N, where N denotes the total population, which remains constant with
time.
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Figure 2.1: SIR Dynamics: Time evolution of the three compartments for some initial condition
and parameter values given by α = 2.5 and β = 0.5. We note that almost all people in the popula-
tion are infected by the end of the evolution even with a small number of initial infected cases.

Figure (2.1) shows the time evolution of the fractional number of people in each compartment.
It is important to note that the curve for the infected fraction is not symmetric about the peak. We
see that there is an exponential growth of infected fraction in the initial period. Furthermore, after
crossing the inflection point, the growth rate starts decreasing before finally reaching zero at the
peak. We can understand this by looking at the second equation in Eq. (2.1). At very short times,
S(t) ≈ N, effectively making, ∂ I(t)/∂ t ≈ (α −β )I(t). Since, α > β , we see exponential growth
at very short times before the assumption breaks down.

The above approximation has another important significance. Notice that the rate of change of
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infected cases can be greater than or lesser than zero, based on the sign of (α−β ). If α > β , there
is an exponential growth of infected cases, while if α < β , there is an exponential decay. Both
these cases have a very different outcome, as there is an epidemic in one case, and in other cases,
the infection never takes off. In literature, this is often written in terms of R0 = α/β , where R0 is
called the reproduction number. Intuitively, R0 denotes the number of people each infected person
infects further on an average. We can easily see that if a person infects more than one person on
average, the infection will take off, and it will die down if each person infects less than one person
on average. From a statistical physics point of view, R0 = 1 denotes the phase transition point
for the system. The observable here is the number of recovered people after a very long time.
The existence of a threshold point for the SIR model has important and practical consequences for
mitigating the spread of the pandemic [45]. We will come back to the phase transition aspect later.

2.2.3 SIR Model with Metapopulation

One inherent drawback of the SIR model is the assumption of a ‘well-mixed’ population. Spatial
heterogeneity makes the assumption of equal probability of infection unrealistic. Considering a
country of 1.3 billion people distributed in thousands of cities and towns as a well-mixed popula-
tion is a gross over-simplification, and we can certainly add a layer of complexity to this simple
setup. Introducing metapopulation helps us achieve this goal. A metapopulation is defined as a
group of interacting species which are spatially separated. This division of scales allows one to
explore many complex systems by allowing different interactions between and within the groups.
[11]

As the first deviation from a simple SIR model, we consider the SIR model on metapopulation.
We consider each city as a node of a network, and individuals can travel between the cities. Within
a city, we consider that the population is well-mixed. This type of approach has shown to be very
useful in predicting the risks to the cities in the literature [12, 15]. We will now rationalize the
travel between two cities based on various real-life data and algorithms. Note that the next few
steps are heavily derived from the Science paper by Brockmann and Helbing [19], which was one
of the primary motivators for this problem.

We will look at the movement kinetics separately before adding in the SIR dynamics. We
consider a directed network of cities connected by links. The link strength denotes the number of
people moving along an edge in a particular direction. The rate of number of individuals moving
from city n would be proportional to the number of individuals in city n (i.e. Nn). We are interested
in finding P(m, t +∆t|n, t) – conditional probability that an individual in city n at time t is in city
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m at time t +∆t. The conditional probability can be written in terms of jump rate as P(m, t +

∆t|n, t) =W j
i ∆t, where W is the transition rate matrix specifying the jump rate from city n to city

m. Combining these ideas, we can write the movement dynamic equation for some city n as,

∂Nn(t)
∂ t

= ∑
m

[
W n

mNm(t)−W m
n Nn(t)

]
, n, m = 1, 2, ..., M, (2.2)

where M is the total number of cities in the network. The left-hand side denotes the rate of change
of population for city n, while the right-hand side denotes the terms which increase or decrease the
population for city n respectively. It is prudent to mention here that summing Eq. (2.2) over n, will
give 0 on both sides, as all people starting from some particular city have to end up somewhere.
The total population in the network is conserved as there are no source or drain terms. However,
the population of city n can change with time. If we imagine a distribution of Nns as some starting
condition, it is easy to see that eventually, the population of each city would stabilize to some
value based on the W-matrix. The conditions for ‘steady-state’ existence depend on the form of
W-matrix, but we assume here that those conditions are met. Thus for the rest of the thesis, unless
stated otherwise, we consider the population of each city to be constant with time.

In order to calculate the terms of the W-matrix, we rely on real-life data. The underlying idea
is to collect the data about the average number of people going from one city to another in unit
time and define the transition rate. We also need to rely on the census data to get the population of
the cities Nn’s. We will look at the details of data collection in Section (2.3), but we will assume
that we have all the required data for now.

We now define the traffic matrix F, such that Fm
n denotes the number of people going from city

n to city m in a unit period of time. Thus, Fn = ∑m Fm
n denotes the total number of people leaving

city n in a unit period of time. Now, the rate at which an individual from city n goes to city m, can
be written as, Fm

n /Nn. Substituting W m
n = Fm

n /Nn in Eq. (2.2),

∂Nn(t)
∂ t

= ∑
m

[ Fn
m

Nm(t)
Nm(t)−

Fm
n

Nn(t)
Nn(t)

]
,

= ∑
m
[Fn

m−Fm
n ] = [Fn−Fn], n, m = 1, 2, ..., M. (2.3)

In order to know if Nn(t) is constant with respect to time, we either have to rely on the actual
data or make some assumption about the structure of F-matrix. As we will see in Section (2.3),
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Fn
m 6= Fm

n . Thus, the movement kinetics is not an equilibrium process (as detailed balance is not
satisfied). However, the system can be in a steady state. Before we proceed to explain why we
expect/require the system to be in a steady-state, it is necessary to note that there is no birth-
death process associated with the movement kinetics equation. The total number of people in the
network remains constant. One of the main aims of the thesis is to build a model which can predict
the spread of any fast-spreading infection in India so that mitigation strategies can be deployed.
In such a scenario, we argue that the time scale in which the infection typically spreads is much
smaller than the time scales in which the city population increases due to migration or enhanced
birth rates [27]. Thus, we can assume that N(t) is constant with time. We can readily see this by
looking at the last equation in Eq. (2.3). Fn and Fn, denote the influx and outflux respectively for
city n. If outflux is equal to the influx, then the right-hand side is equal to zero and thus Nn(t) = Nn.

In order to integrate this movement kinetics into the SIR-model, we make another simplification
that the probability of getting infected (or recovered) during the transit is zero. Thus, if a person is
susceptible (or infected) when leaving city n, he/she would remain susceptible (or infected) when
he/she reaches city m. We can look at this in two ways; the typical time scale associated with
getting infected/recovered is much larger than the typical time scale of traveling between any two
cities. Hence, on an average most people don’t change their state midway through the travel, or
at least not in a way we can observe. Another way to look at this is by re-scaling the SIR-model
parameters (α and β ). If there is some probability of susceptible people getting infected on a
particular link, we can say that α has city-dependence or route-dependence. We can think of it
as if the en-route infections are incorporated in the variations of α for different cities and routes.
However, that is an added complexity and for now we will ignore it. Thus, under the assumption
of exhaustive nature of movement and SIR dynamics, we can write down the SIR-metapopulation
model equations as,

∂Sn(t)
∂ t

=−α
Sn(t)In(t)

Nn
+∑

m

[Fn
m

Nm
Sm(t)−

Fm
n

Nn
Sn(t)

]
,

∂ In(t)
∂ t

=+α
Sn(t)In(t)

Nn
−β In(t)+∑

m

[Fn
m

Nm
Im(t)−

Fm
n

Nn
In(t)

]
,

∂Rn(t)
∂ t

=+β In(t)+∑
m

[Fn
m

Nm
Rm(t)−

Fm
n

Nn
Rn(t)

]
. (2.4)

Here, n, m = 1, 2, ..., M and all the parameters are as previously defined. We note that Sn(t)+

In(t) +Rn(t) = Nn, which is constant in time. We can trivially check this by just summing all
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the three equations. We will solely focus on the set of Eqs. (2.4) for our analysis in this thesis.
To summarize, individuals change their compartment in a particular city following SIR dynamics,
and then they travel between different cities following movement dynamics. In Eq. (2.4), these two
dynamics can be separated, and each has its associated time scales. The difference between these
time scales has an important impact on how we analyze the model results.

In order to proceed ahead from Eq. (2.4), we need to have some information about the F-matrix.
In the next Section, we will look at the ways and assumptions adopted to construct the F-matrix.

2.3 Data Collection

The primary modes of transportation in India are air, rail, and road. We estimate that around 10
million people travel every day in India [Table (2.1)]. However, the major challenge encountered
in this project was the unavailability of systematic datasets in the desired format for various modes
of transport in India. We collected multiple datasets starting from 6 cities and going all the way up
to 446 cities in increasing levels of complexity and difficulty in obtaining them. We skip the details
about the unused data and focus on the final dataset for 446 cities for all three modes of transport.

There are two aspects to the data we are collecting. First is the topological aspect that concerns
the bare network properties such as degree distribution and clustering. The other aspect is the
transportation aspect derived from the properties of the agents traveling on them. Multiple prop-
erties such as centrality measures, shortest distances, and edge/node distribution can be defined in
this aspect. However, the two properties that we will be looking at are the distribution of local

mobility and traffic symmetry.

The total number of people traveling out of a city is some fraction of the city’s population. As
we will see in the following few Subsections, this fraction is almost the same across all cities if
the data is available or our assumptions in the algorithm for constructing the data constrain the
fraction to be the same. Despite this, for the final combined dataset, the fraction is not identical
across the cities. We call this fraction – local mobility or simply mobility. Local mobility is not
equal to global mobility.

Another important property is the difference between the traffic on edge in either direction. Or,
in other words, the symmetricity of the traffic. Even in this case, few of the datasets are symmetric
while others are not. As a consequence, the final dataset is not symmetric. As mentioned earlier,
this breaks the detailed balance, and the system is not in equilibrium for the movement kinetics.
We will now look into the details of the data.
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2.3.1 Census

We rely on the official census data from the Government of India collected in 2011 to get the
population of various cities [27]. First, we made a list of all the cities/towns with a population
higher than 0.1 million. After that, we compared the names occurring in either the airway dataset
or the railway dataset. Once we had a curated list of all cities having a population of more than
0.1 million, connected either by air or railway, we used that to generate the road data. Thus, in
the end, we had a list of 446 Indian cities having a population greater than 0.1 million as per the
2011 census and connected either by rail, air, or road transport. We will now look at the individual
datasets before looking at the combined dataset properties.

2.3.2 Air Transport

The passenger data used for airlines was estimated using the monthly air traffic statistics published
on a private website [46]. This data was collected for the time duration between January-2018 to
December-2018. It directly gave the number of passengers traveling between 85 Indian cities by
airplane. We get the total passengers to be around 0.75 million per day as given in table (2.1),
which is comparable to the total statistics given by the Directorate General of Civil Aviation, Govt.
of India (DGCA) website [47]. The estimated passenger number for the duration between March-
2018 to April-2019 was approximately 0.78 million. The slight difference can be attributed to the
different time periods during which the data was collected and traffic through small airports.

2.3.3 Railway Transport

The raw data for railways was in the format of∼ 8000 forward and backward routes with more than
3000 stations [48, 49]. As mentioned earlier, we included only those Indian cities with more than
0.1 million population as per the 2011 census. Thus, a few smaller sub-stations in the vicinity of
major metropolitan cities were also treated as separate cities. Since we could not get direct traffic
data, we had to rely on two assumptions to get the traffic data from train routes and populations,

1. The train is always full.
2. The number of people traveling between any two cities (not necessarily consecutive) by a

single train is somehow proportional to their respective populations.

We have the information about the route, population, weekly frequency, and the type of train
on each of the routes [49]. We use the knowledge about the train type to fix the capacity of each
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train. We will now delve into the details of the algorithm.

Let us consider a particular route (Γ) with k stations labeled by indices 1, 2, ..., k. The popula-
tion of the cities is N1, N2, ..., Nk respectively. Assumption 1 tells us that the train starts with full
capacity from city 1, which we denote by C. According to assumption number 2, these ‘C’ people
will alight at remaining stations proportional to the population. Going back to our first assumption,
the number of people getting on the train at any city j ( j ≥ 2) would be the same as the number of
people getting down at that station.

Now, the number of people getting on the train at city 2, will again get down at cities j ( j≥ 3),
proportional to their population. The number of people getting down at city 3 would be dependent
on number of people who got on the train in city 1 and 2. And so on and so forth. Thus, we will
continue this process until city k−1, and finally ‘C’ number of people will get down at city k. We
now write the number of people getting on the train at station i, i.e. Fi in a more mathematical way
as follows,

F1 =C,

F2 = F1
N2

∑
k
j=2 N j

,

F3 = F1
N3

∑
k
j=2 N j

+F2
N3

∑
k
j=3 N j

,

F4 = F1
N4

∑
k
j=2 N j

+F2
N4

∑
k
j=3 N j

+F3
N4

∑
k
j=4 N j

,

...

Fa =
a−1

∑
i=1

[
Fi

Na

∑
k
j=i+1 N j

]
. (2.5)

We note that these equations have a recursive form. Luckily, we can simplify each of them to get
a simple form for Fa, which denotes the total number of people leaving city a. We get,

Fa = F1
Na

∑
k
j=a N j

=C
Na

∑
k
j=a N j

, for, 2≤ a≤ k−1,

Fa = F1 =C, for, a = 1. (2.6)
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We can quickly verify this for F3 as follows:

F3 = F1
N3

∑
k
j=2 N j

+F2
N3

∑
k
j=3 N j

,

F3 = F1
N3

∑
k
j=2 N j

+F1
N2

∑
k
j=2 N j

N3

∑
k
j=3 N j

,

F3 = F1
N3

∑
k
j=2 N j

[
1+

N2

∑
k
j=3 N j

]
,

F3 = F1
N3

∑
k
j=2 N j

[
∑

k
j=2 N j

∑
k
j=3 N j

]
,

F3 = F1
N3

∑
k
j=3 N j

. (2.7)

Finally, the number of people going from city a to city b for a particular route (Γ) would be,

Fb
a (Γ) =

[
C

Na

∑
k
j=a N j

][
Nb

∑
k
j=a+1 N j

]
, for, 2≤ a < b≤ k,

Fb
a (Γ) =

[
C

Nb

∑
k
j=a+1 N j

]
, for, 1 = a < b≤ k. (2.8)

Thus, we have obtained the expression for the number of people traveling from city a to city b

for a given route (Γ). There is only one free parameter in the above expression F1 =C, which we
fix by knowing the type of train and its capacity. We can run the same algorithm for all the routes
in our raw dataset to get the full F-matrix for the railway as the mode of transport. It is pertinent
to note that the second assumption is not precisely followed for all pairs of cities. The exception in
the mobility of the starting city comes from fixing the train capacity, hence the outflux not being
proportional to the population. The expression includes city populations of remaining cities in the
route and hence, is different depending on which way the train is going. Thus, the asymmetry is
introduced in the traffic matrix, and there is a spread of local mobility values even when we just
one route.

We get the total passenger flux to be around 8.8 million after running the above algorithm on
our dataset of 435 cities. As per the Indian Railways facts and figures, [50], the non-suburban
passengers’ traffic was 3.55 billion in 2016-17, which gives daily non-suburban traffic of around
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9.7 million passengers per day. This difference can be explained by the fact that we have not
included all the smaller stations in our dataset, and many times, the trains run with more than their
designated capacities. We illustrate this algorithm more visually and straightforwardly, using an
imaginary toy route and population in Figure (2.2).

Let us consider a train route going through 4 cities A, B, C, and D, having equal population
N. We will assume that the capacity of the train is 120. Figure (2.2) shows the final results
after running the algorithm for the forward and backward routes. As we can readily see, the F-
matrix is not symmetric even if we consider the simplest case of just one route through cities of
equal population. It is also worth noting that the number of people traveling in/out of a city is
not proportional to the city population. The assymetricity of F-matrix and unequal local mobility
become more prominent when we consider all cities and all the routes.

Figure 2.2: Model Train Algorithm: We consider two routes here: A-B-C-D and D-C-B-A. For
simplicity, let us assume that the population of all four cities is equal and the train’s capacity is
120. We run the algorithm using Eq. (2.8) and each entry in the table Ti j specifies the number of
people traveling from i to j. The color in the table corresponds to the route in the upper part of the
figure.
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2.3.4 Road Transport

In this Subsection, we will look at the algorithm used to generate road traffic. To our knowledge,
there is no systematic source of road traffic data between major cities in India. The National
Highway Authority of India (NHAI) collects toll booth data for all major national highways [51].
However, as per their records, they do not account for all the road traffic in India. Moreover,
frequently, the state highway records are not well maintained. All of this inspired us to build our
algorithm to generate road traffic. We note that we have a list of 446 unique cities connected by
railway or airway. We consider only these cities to include in our dataset for roadway traffic. First,
we will look at the underlying assumptions that we have used to generate the road data.

As a most straightforward case, we assume that the final F-matrix is symmetric. Note that
this condition was not satisfied for the railway data. We can move away from this assumption;
however, the algorithm to make sure that the population of each city remains constant becomes
more complex.

The next assumption we make is that most people use the road to travel for short-distance and
long-distance travel is usually undertaken through railways or by airplane. Unfortunately, we do
not have any data to support this. Furthermore, we make the final assumption that the number of
people traveling by road is proportional to the city’s population. We will later see how these specific
assumptions help us fix the free parameters in our algorithms under the given set of constraints.

The algorithm consists of two steps. First, we create the adjacency matrix and fix the connec-
tions between the cities. Once we have the adjacency matrix, we run another algorithm (similar to
the train algorithm) to generate the F-matrix. First, we get the latitudes and longitudes of all the
cities in our dataset using the geopy library in python. Once we have the coordinates, we draw an
imaginary circle with some specific radius around each city. We then create the adjacency matrix
by checking which cities fall into each imaginary circle by measuring distance on a sphere.

Once we have the adjacency matrix, we sort it according to the population. We start with the
city with the lowest population. We get the number of people traveling from this city by fixing a
value for desired mobility and then distributing the traffic proportionally to the connected cities’
population. We then make symmetric entry in the F-matrix. Next, we move on to the city with the
second-lowest population. We get the number of people traveling by multiplying the population
with the desired mobility. We subtract those people who are already accounted for through the
symmetric entry in the first step and distribute the rest proportionally. We repeat this process until
we reach the end. If the number of people accounted for symmetric entry is higher than the desired
mobility, we increase the mobility for that particular city by some amount.
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Figure 2.3: The relative size of 200 Kms circle for scale on map of India. On left-hand side, we
draw the circles around Mumbai, Pune, Delhi, Chennai, Guwahati, and Port-Blair. The right-hand
side figure shows the circle for Pune. We can identify few of the important cities in Maharashtra
which are connected to Pune by road from our algorithm.

In order to understand this algorithm more clearly, we give a toy example to illustrate our case
in Figure (2.4). We consider a network of 5 cities, such that few links are missing. The population
of the five cities is in proportion as follows: A : B : C : D : E :: 10 : 25 : 50 : 75 : 100. Let us
suppose that the population of city A is 0.1 million, and desired mobility is 0.0175. The algorithm
proceeds as follows:

• First, we get the adjacency matrix whose indices are sorted according to the population. We
start with the least populous city, i.e., A, and distribute the desired number of people into all
possible connections (blue colored) in the first row.
• We make symmetric entries in the first column (blue), subtract that number from desired

traffic for city B and distribute the rest into possible connections (red) in row 2. We make a
similar symmetric entry in red in column 2.
• For city C, we proceed as before, subtract, distribute, and make symmetric entries.
• We continue the algorithm until the table is filled.

Coming back to our original original network 446 cities, the parameters that we used in our
algorithm are as follows:

• desired mobility γ = 0.015.
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Figure 2.4: Road Algorithm: The F-matrix for the toy model is symmetric and the final traffic,
matches exactly with desired traffic for most cities. We also note that for the smaller cities, the
mobility condition will almost always be satisfied.

• radius of circle = 200 Kms.
• The increase in traffic in case the symmetric entries already sum up more than the desired

traffic was (0.5× desired traffic).

We now mention a few of the main results of the F-matrix for road transport.

1. We increased the mobility of only 6 (out of 446) cities to account for overflow of traffic due
to symmetric entries.

2. The cities have 20 connections on an average.
3. 92% (or≈ 410) cities have a local mobility of 0.015. The average (global) mobility is 0.0115

and the standard deviation of the same is 0.0021.

We get the daily road traffic to be around 2.5 million. The only source to compare this with is
the NHAI toll booth data. Using some assumptions about the Passenger Car Unit and the number
of toll booths a typical vehicle passes through while using national highways, we estimate that the
National Highways carry somewhere around 2 to 3 million passengers every day [51]. Compared
to that, our estimate for local transport seems reasonable.
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2.3.5 Combined dataset

We thus have three datasets corresponding to the three modes of transport. We note that each of
the datasets gives average traffic per day between a pair of cities. We add all three datasets together
to get a combined dataset. The final dataset is neither symmetric nor is the local mobility the same
across cities.

The time scales associated with the three modes of transport are very different. Airway and
road typically take around 2 to 6 hours, while railways may take up to 24 or more hours to travel
from one city to another in our dataset. As we will see later, our approach for predicting the risk
depends on the number of people traveling, but it does not touch upon the timescale difference
if there are multiple modes of transport. For now, we assume that the time scales for the spread
of disease are much higher than the time scales associated with the average traveling time in the
network. This assumption might not always be valid, as there might be some highly infectious
disease that spreads everywhere in a very brief amount of time. Our approach will not work in
such cases, but the time to respond with a mitigation strategy would be far too less. Under these
conditions, we consider it reasonable to add the three datasets without modifying the dynamical
equations.

In the future, we can look at the effects of virtual competition between the physical speed
of travel (dictated by the mode of transport) and the artificial speed of infection (dictated by the
number of people). However, in this thesis, we consider that the number of people dominates
spreading while completely suppressing the effect of physical speed of various modes of transport.

2.4 Summary

As we come to the end of the Chapter, we summarize the essential points for us to proceed. We
started by describing the SIR metapopulation model by touching upon the various aspects of the
SIR model and the movement dynamics equation. Equation (2.4) highlights the separation of dy-
namics of the two processes and will form the basis for all our future computations. This equation
lead us to discuss the methods for collecting traffic data. We discussed the algorithms, methods,
assumptions, and sources for collecting the traffic data for three modes of transport – air, rail, and
road. We summarize the key results of the three datasets in Table (2.1). With all the necessary
pieces collected, we are ready to look at the results and analyze them.
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Property Airway Railway Roadway Combined

Number of Nodes 85 435 446 446

Number of Edges 1182 41594 9128 46448

Average Degree 13 95 20 104

Symmetricity of Data Yes No Yes No

Locality of Mobility Same Different Same Different

Number of passengers 7.5×105 8.8×106 2.5×106 1.2×107

Fraction of total 0.06 0.73 0.21 1.0

Table 2.1: Properties of different datasets. Airway contributes very less to the final dataset and
may become important if we consider the speed of transportation. As roadway is locally dominant
mode, most of the meaningful long-distance connections would arise from railways.
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Chapter 3

Main Results and Practical Aspects

3.1 Introduction

Now that we have collected all the necessary tools and motivated the dynamical equations for the
system’s evolution, we are ready to look at the results. First, we will define some observables for
our model in Section (3.2) and show that Deff correlates linearly with Time of Arrival when the
latter is defined using an absolute threshold. We will also look at the robustness of this relationship
when we vary the parameters of the system. After that, we will look into a few mitigation aspects
in Section (3.3), mainly motivated by practical requirements. We summarize the major results in
Section (3.4)

3.2 Robustness of Linear Relationship

3.2.1 Phase Transition

It is a well-known result that the SIR model for a well-mixed population shows a phase transition
[10] at R0 = α/β = 1. We saw an intuitive explanation for this in Section (2.2.2). The mitigation
strategies rely on pushing the reproduction number (R0) to fall below 1. However, once we transi-
tion from a well-mixed population to a metapopulation, it is not obvious that the phase transition
will still be observed. The local infection may show a phase transition, but there is no reason to
believe that even the global infection will show a phase transition.

In order to check this, we first define the observable. We start with a small fraction of infected
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in one of the cities. As we can see from Eq. (2.4), the final state of any individual can either be
susceptible or recovered. No individual can stay infected for a very long amount of time. Thus, if
we let the simulation run for a sufficiently long time, the whole population can be divided into two
exhaustive groups – susceptible and recovered. We denote the number of people in the recovered
fraction at the end of simulation as R∞, meaning recovered people after infinite time. R∞ will tell
us the epidemic’s severity, as all those who are recovered were infected at some point in time.

Thus, if the epidemic took off, we will see that R∞ will have a substantial value, while if the
epidemic did not take off, R∞ will be a tiny fraction of the total population. We keep the value of
β fixed and vary α so that R0 covers a range of magnitude. We plot our result in Fig. (3.1).
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Figure 3.1: Phase transition for SIR metapopulation model. The x-axis is the reproduction number
R0 =

α

β
, while the y-axis denotes the total number of the recovered people at the end of pandemic.

Note that plot is in log-log scale. We can see a sharp transition for R∞ around R0 = 1. The four
curves correspond to four outbreak locations decided on the basis of population and geographical
location. The initial infected fraction is 0.0001 of the respective city’s population. β = 0.5 here.

We see that there is a phase transition for the SIR metapopulation model independent of the
outbreak location. As long as R0≤ 1, the total recovered individuals are not very different from the
initial condition. However, as soon as R0 > 1, the total recovered fraction goes up exponentially,
and for substantial values of R0, the dependence on the initial condition washes away completely.
Since we are interested in predicting the risk associated with the epidemic, we have to consider
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that the epidemic spreads. Hence, we work in the R0 > 1 regime for the rest of the thesis unless
stated otherwise.

3.2.2 Time of Arrival

As far as we know, the analytical solution to Eq. (2.4) does not exist. Hence, we solve the set of
equations numerically using Runge-Kutta 4 (or RK4 for short) method. Starting from some initial
conditions, we let the system’s state evolve following the dynamical equations given by Eq. (2.4).
Thus, we have the fractional number of people’s trajectories in each compartment for all cities
for all times. Since the main aim of this thesis is to predict the risk, we are mainly interested in
a timescale where we can predict and adopt strategies to curb the spread. Thus, we are mainly
interested when the number of cases is meager but enough to predict the risk.

As we had mentioned earlier, the SIR metapopulation model has two distinct dynamics – In-
tracity SIR spread and inter–city traffic spread. When the time scale of the intracity SIR spread is
much lower than the time scale of inter–city traffic, we can assume that once an infection reaches
a city, it quickly grows into a local outbreak. Thus, we are only interested in a timescale when the
number of cases crosses a certain low threshold. The validity of this assumption increases as we
increase the infection rate α , as the intracity cases increase much faster than infection spreading to
neighboring cities.

Thus, to quantify the risk associated with a city, we need to fix a threshold for infected cases
and see how long it takes for the city to reach that threshold. We call this the ‘Time of Arrival.’
Formally, we define the Time of Arrival for city n as the first instance since t = 0, when the number
of infected cases in a city crosses a certain threshold θn, for any outbreak location city m. City m

could be the same as city n.

Now, we can define the threshold in multiple ways. Here, we look at two primary ways of
defining threshold, which tell us about very different scenarios.

1. Fractional Threshold: The threshold θn for city n is dependent on city population Nn, such
that θn/Nn = constant. Thus, we are looking at a case when a fixed fraction of each city gets
infected. This scenario is not intuitive as it treats 100 cases in a city with a population of 1
million, the same as 1000 cases in a city with a population of 10 million. The latter would
create more fear in the minds of the public than the first case. However, if we assume that
all the resources scale with city population, then the fractional threshold is a good way of
predicting the risk. The disadvantage is that the risk for smaller cities can be exaggerated.
Since the traffic data is averaged over, the fluctuations are overlooked. The fluctuations might
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have a drastic effect on the small cities.
2. Absolute Threshold: This leads us to think of another way to define the threshold θ in-

dependent of the city’s population. We consider a fixed number of infected cases as the
threshold for a city to be called infected. We see that this threshold is inherently skewed
towards cities with high populations. The trajectory of fractional infected cases in a city
follows almost the same trajectory across all cities. Thus, if we put an absolute threshold,
the infected fraction crosses that threshold much earlier for bigger cities. However, this is
also a more publicly accepted approach. The risk is usually perceived in terms of absolute
numbers.

3.2.3 Deff

In the last Section, we defined Time of Arrival to facilitate assigning risk to each city. Once we
know the initial condition, we can numerically solve the differential equation and get the trajectory
of infected cases in all cities. By choosing either of the thresholds, we can get the Time of Arrival

for each city. Arranging the Time of Arrival in ascending order will give us the risk of each city in
decreasing order. Technically, this is the list we started to seek. However, we cannot produce this
list unless we know the initial condition precisely, which might not always be possible. We need a
way to predict the risk without actually knowing the initial condition.

The concept of ‘effective distance’ was first introduced in [19]. It is a well-known fact that
the spread of infectious diseases does not follow any particular pattern with respect to the spatial
topology [18]. The risk of a city is not necessarily high (or low) just because it is geographically
closer (or far away) from the outbreak location. Various network topology parameters like degree,
centrality measures, and other neighborhood indices were tried to predict the risk, but with no
success [15]. Helbing and Brockmann came up with a non-trivial yet intuitive concept to define a
measure of distance on the network in [19] which could successfully predict the risk of contagion
spread to an accuracy that was never achieved before. We will now look into the details of this
idea.

Deff is a probabilistically motivated way to define distances on a network. Since individuals
travel and carry the infection from one city to another, the risk is higher if more people travel.
However, we are interested in only the relative number of people traveling, as the final goal is to
get a relative measure of hazard associated with each city. As mentioned earlier in the movement
dynamics equation, the individuals jump from one city to another at some rate. We consider two
probabilities associated with this process.
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1. Jump Probability γn: As mentioned in sec. (2.3), not everyone in the city travels on a daily
basis. Hence, we can define the jump probability as γn = Fn/Nn, as the probability that an
individual from city n travels outside the city in unit amount of time.

2. Travel Probability Pm
n : Given that an individual is traveling outside the city, we can define

an associated probability for traveling along a particular edge Pm
n = Fm

n /Fn.

Note that γnPm
n = (Fn Fm

n )/(Nn Fn) = Fm
n /Nn, which gives us the probability that an individual

from city n will travel to city m in unit time. We can define effective distance for adjacent cities in
the following two ways,

d1
eff = 1− log(Pm

n ),

d2
eff = 1− log(γnPm

n ). (3.1)

Now, 0≤ γnPm
n ,Pm

n ≤ 1. When we take the negative log of both these quantities,
0 ≤ − log(γnPm

n ), − log(Pm
n ) < ∞. Thus, 1 ≤ d1

eff,d
2
eff < ∞. Here we have dropped the indices m

and n in d1
eff,d

2
eff for brevity.

If two cities are not adjacent, d1,2
eff would be ∞. However, we know that as long as the two

cities are connected, the infection will spread to them in a finite time. In order to overcome this
shortcoming, we define the effective distance in a more general way. We define a set {Γ} which
consists of all possible paths from city n to m. We define λ (Γ) for any two cities n and m (not
necessarily adjacent) as the sum of dm

n ’s for all the pairs of cities along a path. Thus, for a given
pair of cities, there would be multiple distances of varying lengths. We define the effective distance
D1,2

eff as the minimum out of all possible distances,

D1,2
eff = min

{Γ}
λ (Γ). (3.2)

We propose that the effective distance proposed in Eq. (3.2) is a good indicator to predict the
risk associated with each city for a given outbreak location. We can define D-matrix, as the distance
matrix, which gives the effective distance between any two cities. We manually put the diagonal
entries equal to zero. Note that the D-matrix is not symmetric.

We now have three measures of distance for the network, namely, Geographical distance
(Dgeo), D1

eff, and D2
eff. We also have two definitions of Time of Arrival for the infection defined
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in Sec. (3.2.2). In order to see which one fits the best, we linearly regress the distance with the
time and see which one shows the best fit. We quantify the fit by calculating the regression coeffi-
cient R2, also known as the coefficient of determination. 0≤ R2≤ 1. If R2 = 0, the two datasets are
completely uncorrelated, while if R2 = 1, the two datasets are exactly correlated. Thus, a higher
R2 value would indicate a better fit.
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Figure 3.2: Comparison of scatter plots: The upper row denotes fractional threshold (0.0005),
while the lower row denotes absolute threshold (10). The first column is with respect to geograph-
ical distance, while the second and third column are with respect to D1

eff, and D2
eff respectively.

α = 1.5,β = 1.0. The outbreak location is Mumbai here. The red line denotes the best fit line for
the scatter plot, while the legend denotes the value of R2 for each linear regression.

As we can see in Figure (3.2), D1
eff correlates the best with the Time of Arrival when the latter is

defined using an absolute threshold. However, we see the difference in the fit for only one outbreak
location. To be more certain, we need to see the best fit for more outbreak locations.

In order to settle this, we rely on averaging the value of R2 for various outbreak locations. We
fix the values of α,β ,θ , and the outbreak location. We then use different definitions of Deff to see
which one correlates the best with different definitions of Time of Arrival . We then average the
value of R2 over all outbreak locations. We look at the trend with respect to R0 in Figure (3.3).

In figure. (3.3), we see that D1
eff is an objectively better index for Time of Arrival defined using

absolute threshold, as the average R2 (always above 0.9) is better than any other pair of definition
over a range of R0. We also note that all indices work better at higher values of R0. Henceforth,
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Figure 3.3: Averaged R2 as a function of R0 = α/β . The four cases correspond to two definitions
of Time of Arrival and Deff each. θn corresponds to fractional threshold, while θ corresponds to
absolute threshold. The parameter values are θn = 0.0005, θ = 10, and β = 1.0.

we drop the superscript ‘1’ and just use Deff to denote the effective distance. We plot few more
scatter plots in Figure (3.4) for various outbreak locations of different sizes and locations to show
the effectiveness of Deff as the hazard index.

3.2.4 Robustness of Deff

In the last Section, we looked at various ways to quantify the hazard index and settled on Deff

defined using the P-matrix. However, we only verified the linear relationship between Time of

Arrival and Deff for selected outbreak locations. Usually, it is hard to predict the outbreak location
for the next epidemic, and hence, we would like the hazard index to work for all possible outbreak
locations and all parameter values, not just the ones we used in the previous Section.

In order to check the robustness of Deff, we vary the parameters and see if the linear rela-
tionship still holds good. The parameters whose values are not known beforehand are α and β .
Additionally, the outbreak location and threshold θ can also be regarded as unknown parameters.

We define the robustness by averaging R2 (Coefficient of determination) over all possible out-
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Figure 3.4: Scatter plots between Time of Arrival and Deff for 6 outbreak locations. The Outbreak
locations from left-hand side top corner in clockwise order are Ahmadnagar, Bhopal, Chennai,
Pathankot, Mangalore, and Jaipur. α = 1.5,β = 1.0,θ = 10. We can see that there is an excellant
match between the hazard index (Deff) and the hazard (Time of Arrival).

break locations. For a fixed set of values of α,β , and θ , we consider the best fit coefficient for a
given outbreak location. We repeat this exercise for all cities as outbreak locations. Thus, we have
446 values of R2 for a given fixed set of parameters. We then calculate the mean and standard de-
viation of this set. We do this for multiple sets of parameter values and see the mean and standard
deviation trends concerning any parameter.

α and β →

We vary α and β by keeping the threshold θ = 10. We plot the result in Figure (3.5). We
note that for smaller values of α and β , the linear relationship is not as strong as for the higher
values. The dependence of R2 on α and β seems to be non-existent for higher values of α and
β . One possible explanation for this phenomenon could be that the timescales of intracity spread
for smaller values of infection rates are comparable to the inter–city spread. In such a case, the
infection can take multiple routes for spreading, which are not solely determined by the P-matrix.
Thus, when we increase α and β , the time scales get disjoint, and the spread is mostly dictated by
the P-matrix, which makes the linear relationship stronger.

We have not plotted the fluctuations in the linear relationship (standard deviation of R2 over
the outbreak locations) in Figure (3.5), but we have verified them to be decreasing with higher SIR
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Figure 3.5: Averaged R2 over all outbreak locations as a function of α and β . θ = 10 here. Note
that R0 = α/β .

model infection parameters. Thus, the linear relationship is not only weaker for smaller α and β ,
but it is also weakly dependent on what the outbreak location is. However, there is no particular
trend for the strength of the relationship for any natural properties of the system.

Threshold θ →

Another critical parameter is the threshold that we use to define the Time of Arrival. θ does
not appear anywhere in the dynamics and is an artificial as well as a subjective cutoff. However, in
order to label any city as infected, we need to define some threshold. We follow the same procedure
for averaging R2 over all possible outbreak locations for various values of θ .

Figure (3.6) shows some very interesting results. First, we note that when R0 is significantly
high, the threshold does not matter. One possible explanation for this observation is that the thresh-
old unexpectedly introduces another timescale in the model. Thus, in the parameter regime that we
have chosen, the additional time scale interferes with the existing time scales (determined by SIR
rates and P-matrix). Thus, for smaller values of R0 and high threshold values, the time it takes for
the infection to spread within a city is of the order of time it takes to spread to its neighbors. Thus,
Deff does not dictate the spread effectively. However, for higher R0, these time scales are different,

29



101 102 103

Threshold ( )

0.75

0.80

0.85

0.90

0.95
Av

er
ag

ed
 R

2
R0= 1.2
R0= 1.3
R0= 1.5
R0= 2.0
R0= 2.5
R0= 3.0

Figure 3.6: Trend of averaged R2 over all outbreak locations with respect to θ . We keep β = 0.5.
Note that the x-axis is in log scale.

and Deff continues to predict arrival time effectively.

3.2.5 Effective Velocity

So far, we have seen that Deff correlates linearly with the Time of Arrival . This allows us to define
effective velocity Veff as,

Veff =
Deff

Time of Arrival
. (3.3)

Once we know Veff , we can easily predict the Time of Arrival – a quantity of practical concern.
However, note that Veff depends on many parameters, like α, β , θ , P-matrix, and the outbreak
location, all of which might not be known beforehand. Instead, we can look at the average velocity
for the network and see if we can predict Time of Arrival with incomplete information.

Following a similar approach, we can calculate the Veff for each outbreak by keeping the rest of
the parameters fixed. We then take the average of all these velocities and look at its trend for other
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parameters. We plot these results in Figure (3.7).
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Figure 3.7: Average Velocity with respect to α and β . Threshold θ = 10 here. The vertical bars
denote the fluctuation in Veff for a given set of parameters.

The fact that the fluctuations in Veff are negligible compared to the actual Veff has significant im-
plications. It implies that once we know the SIR model rate parameters, Veff is known independent
of the outbreak location to a good confidence level. Thus, we can predict the Time of Arrival to
some extent at the very beginning of the pandemic. We also note that the average velocity increase
linearly with α . Thus, even for an unknown SIR infection rate, we can estimate the bounds of Veff

beforehand. Similarly, Veff decreases linearly with β (not plotted here). As we will see later, Veff

allows us to compare the SIR metapopulation model to other known spreading processes.

3.3 Practical Aspects and Comparison with Real-Life Data

3.3.1 Multiple Outbreak Location

We have considered that the infection starts from one city and then spreads to all other cities.
However, as we have seen in the past few pandemics, most of them originated outside India.
Thus, there were multiple possible entry points for the infection to enter the country. Since Deff
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is outbreak location-specific, it is not clear how to extend this approach to a case when there is
more than one outbreak location [52]. Another likely scenario is that the infection arrives in a city
from overseas. However, it is not detected until it has spread to few more cities, and the memory of
origin is lost. Even in this scenario, it becomes vital to be able to predict the spread. In this Section,
we will consider the results of the simplest case of two outbreak locations. We will consider the
most straightforward way of extending the definition of Deff and check if it works by running the
simulation.

Two outbreak locations can be considered as two competing spreading processes. We saw
in Section (3.2.5) that Veff depends on the outbreak location. We also hypothesize that for lower
threshold values, the spreading process is dependent on the first arrival of either process rather than
the additive effect of the two processes. The first arrival means that whichever infection reaches
first dominates the spread in that particular city. The two spreading patterns do not pair up to infect
a city. We can see that the effective spreading pattern would depend on Veff of the individual cities.

Since, we hypothesized that the two spreading processes act like independent and disjoint pro-
cesses, we define a modified Deff as, Dmod

eff = min
(
DOL 1

eff ,DOL 2
eff

)
, where OL stands for outbreak

location. For each city that is not an outbreak location, we calculate Deff from either of the out-
break locations and assign whichever is the lowest. We then linearly regress Dmod

eff against Time of

Arrival and see if there are any interesting features that emerge out of it.

We rely on Davg
eff to select the cities as outbreak locations. We define Dout

eff (respectively, Din
eff)

as the average of Deff from (respectively, to) all other cities from a chosen city. These Davg
eff ’s

tell us how far the network is from the given city and how far is the given city from the network
respectively. We can use Davg

eff as a proxy for Veff to decide which cities to consider together as
outbreak locations.

Figure (3.8) reveals many exciting features. Firstly, we see an excellent symmetry in the overall
color of the plot. The plots along the left diagonal (almost identical Dout

eff ) are well mixed and show
equal domination by both outbreak locations. We also notice that there are two dominant spread
patterns in some of the scatter plots. Even though the spread patterns are disjoint initially, the
slope seems the same. A physically intuitive explanation for the difference in intercept is that the
spread pattern is not exactly additive. We see that the city with lower Dout

eff value hugely dominates
the spreading pattern along the non-left diagonal elements, and the linear fit is not as good as the
left-diagonal elements.

In conclusion, Dmod
eff works well when both the outbreak locations have a similar value of Dout

eff .
When the cities are unequally close to the network, the closer city dominates the spread. Dmod

eff
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Figure 3.8: Two outbreak locations. Red color denotes outbreak location 2 (OL2) was closer to
a given city, while purple color denotes OL1 was closer. Black line denotes the best linear fit
with Dmod

eff and Time of Arrival. The parameter values are α = 1.5, β = 1.0, θ = 10. Delhi and
Bangalore are cities with lowest Dout

eff , Kolhapur and Cuttack are with medium Dout
eff , while Palakkad

and Junagadh have very high values of Dout
eff .

does not work as well, but that is fine since Deff can parameterize the spread pattern. We also note
that we can extend this approach to cases with more than two outbreak locations. The curious case
of non-zero intercept can be analyzed further; however, that is beyond the scope of this thesis.

3.3.2 Link removal

After analyzing the models’ properties, we can tweak some aspects of the model to get desired
results. Even though predicting hazard is a meaningful exercise in itself, suggesting counter-
strategies to curb the spread is far more critical. This Section will look at one such strategy that
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may help us delay the spread of infection.

Since our model consists of many parameters, we can change them in any desired fashion to
get favorable results. However, we are more interested in practically relevant options. First off, we
consider that α, β , and θ are fixed. Even though there are clinical ways to reduce infection rate α

and increase recovery rate β , we assume here that those ways have already been implemented, and
the SIR rates can not be changed further. The next parameter we consider is γn which tells us the
fraction of people in city n who travel to other cities daily. We can uniformly scale down γn for all
cities. The overall mobility in the network is reduced, and the time scale of the infection spread is
increased. Nevertheless, it is evident that this approach is very cost ineffective, and we would like
to change minimum parameters to achieve maximum change in the Time of Arrival.

Another way to decrease Veff is to keep the traffic in the network constant but redistribute it
across the edges present. We saw that (results not plotted here) even though the Time of Arrival for
the at most risk cities increases, there are new cities with increased risk than before, thus keeping
the average Time of Arrival almost equal. Hence, we need to find a suitable trade-off to change
the traffic matrix by not changing too many parameters but still achieving maximum impact. One
extreme way reduces traffic on all edges, while the other extreme way redistributes the traffic on
all edges. It is easy to see that to reduce the average Time of Arrival we have to decrease the overall
traffic. The only question that remains to be answered is – ‘on what basis?’.

To summarize, we are looking for ways to change the F-matrix in a meaningful manner to
reduce the speed of infection (or Veff ). We can not close down all links in the network as such
conditions are incredibly harsh on most people. Additionally, since the spread happens over an
extended time, the restrictions are unnecessary most of the time. In other words, we need to find
out the essential links in the network, specific to the outbreak location or otherwise.

Before we go into the details of criteria to choose the important links, we need to be aware
of two things – F-matrix is not symmetric, and the population of each city is conserved at all
times. Thus, when we select a particular edge to remove, we stop the traffic only along a particular
direction. Hence, the influx is not equal to outflux now, and the population of the city will change
with time. Since we mostly consider the threshold of θ as low, removing even select edges will
affect the dynamics drastically. In order to go around this problem, we remove the edges along
both directions. Now, since the F-matrix is not symmetric, the population still changes. However,
the time scale for significant population change is much larger now, given that F-matrix is not
completely asymmetric (the difference between the influx and the outflux for most cities is orders
of magnitude lesser than the total incoming traffic).
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We use two criteria to select the most critical edges in the network – maximum F-matrix entries
and maximum link-Salience matrix entries. We digress here to understand the Link Salience matrix
S.

Link Salience Matrix (S)

It is hypothesized that the reason Deff works so well is that it correctly identifies the shortest-
path trees in the network. Since epidemic spreading is a ‘fastest way wins’ process, the shortest
path algorithm works well to predict the risk. Even though there are multiple ways for an infection
to go from one point to another, it is typically observed that only a few paths dominate [17, 19, 53].
Thus, we have a natural way to quantify the critical links based on Deff .

The concept of Link Salience was first introduced in [42]. In order to find the link salience of
a particular edge, we use the following algorithm.

1. Considering a chosen city as a source node, we identify the shortest paths to all other nodes.
Thus, we construct the shortest path tree for one city.

2. We repeat the above exercise for all possible source nodes and count the number of times
a particular edge occurs in the N (corresponding to N nodes) shortest-path trees, uniquely.
Thus, the maximum number of times an edge could occur in the shortest path trees is N. We
label the normalized count as Link Salience. In [42], it was observed that the distribution
of S-matrix (Link Salience matrix) was bi-modal, peaked around two values – 0 and 1 for
a wide variety of networks, implying that there are a few edges that help the spread, while
most of the other edges do not take part in the spreading process at all.

We calculated the S-matrix defined using the above method, but we got very different results
than expected. The distribution of S-matrix entries was not bi-modal. Rather it was mostly uni-
form. The existence of uniform distribution pointed out that there was no particular set of edges
which was important for the spreading process for all outbreak locations.

We now compare the results for two criteria. We identify the links based on maximum entries of
F-matrix or maximum entries of S-matrix. As a baseline, we also plot the change in time of arrival
when links are removed randomly. Since, we are changing the F-matrix, we are also changing the
P-matrix, and hence Deff and Veff too. Thus, the only quantity that we can now compare is the Time

of Arrival .

Figure (3.9) shows the results when the links are removed. The top figure shows the case
where ∼ 2% links were removed out of the total links, while the bottom panel illustrates the result
when ∼ 8% of the total links were removed. The red color denotes the case when no links were
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Figure 3.9: Probability density function for the time of arrival with Bangalore as the outbreak
location. The top figure denotes the case with 1000 links removed, while the bottom figure denotes
removing 3886 links. Various colour denotes the protocol used for removing the link. The dotted
lines denote the average Time of Arrival after removing the links.

removed. Black color denotes when the links are randomly chosen and removed, yellow when they
are selected based on F-matrix, and blue when they are selected based on S-matrix. The solid line
denotes the Gaussian approximation for the PDF, while the dotted lines denote the average Time of

Arrival for each case. The faded curves are the actual PDFs. α = 1.5, β = 1.0, θ = 100.

For the top figure, the traffic is reduced to 96%, 37%, 52% of the original traffic when the links
are chosen randomly, on the basis of F-matrix and S-matrix respectively. While the same percent-
ages for the bottom figure are 91%, 22%, 35% of the original overall traffic. These percentages
are contradictory to our initial prediction about the non-existence of critical links. We see that even
with just∼ 8% of the links removed in a specific way, the traffic is reduced to∼ 30% of its original
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value. One possible explanation for this phenomenon is that even though there are no important
links in terms of S-matrix, the same is not the case with F-matrix. Almost all links help contribute
to the spread. However, the majority of the traffic is still carried by a minimal subset of all links.
We can refine the results by considering more outbreak locations, but we skip that exercise for now.

We also note that deciding the links based on S-matrix is a much better strategy than choosing
based on F-matrix. If we look at the bottom plot in Figure (3.9), we notice that the shift in PDF is
non-linear. It seems that the overall width of the curve has also increased. Thus, removing links
based on S-matrix changes the mean Time of Arrival and reduces the number of cities with very
high risk (very small Time of Arrival ). The maximum Time of Arrival is almost increased by 60%
(15 → 25 days), while the average Time of Arrival is increased by 100% (7 → 15 days). Thus,
even though this approach is not entirely desirable, it still gives us a good enough criterion to curb
the spread of the infection in the network.

3.3.3 Real-life data

As we come to the end of this Chapter, there is one final thing that we need to verify – the match
with real-life data. India is one of the worst-hit countries globally in terms of Covid-19 cases [2].
This Section will compare the two waves of Covid-19 cases in India and see how well they agree
with our dataset.

The first wave in India was pretty small (compared to the second wave) and spread out over
a long period. India was classified as a ‘cluster of cases’ category, rather than in ‘community
transmission’ – benchmark of epidemics by WHO [1]. The ongoing second wave is even more
devastating and is spreading at a much faster speed. Nonetheless we compare the results for both
in tables (3.1) and (3.2) respectively.

As we can see in the tables, there is a difference between the observed and predicted cases.
Even though many cities appear in both lists, the order is not mismatched. There are many possible
reasons for this, and we mention a few of them below.

Firstly, the majority of our dataset is estimated. Even though we have given justification for our
algorithms, we have no way of verifying if the data is correct or not. Additionally, the census data
is ten years old too, and hence, there might have been some critical changes in the demography
that rendered our algorithm suboptimal. The reliability of the real-life dataset is also not very high.
We had an incomplete dataset in terms of districts rather than cities. The heterogeneity between
the SIR infection and recovery rates for various cities might also be another reason for Deff not to
work so accurately. Finally, there was a lockdown during most of the period when the infection
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City Deff City Real TOA
Thane 2.88 Delhi 15
Pune 3.18 Chennai 19
Delhi 3.7 Ahmedabad 20
Surat 4.06 Thane 30
Ahmedabad 4.08 Pune 51
Pimpri Chinchwad 4.27 Hyderabad 58
Nashik 4.29 Bangalore 66
Vasai 4.42 Guwahati 73
Vasco Da Gama 4.47 Kolkata 83
Bangalore 4.49 Nashik 91
Hyderabad 4.62 Visakhapatnam 91
Kolkata 4.91 Kurnool 91

Table 3.1: Initially we look at the Time of Arrival of all cities and consider the city with the lowest
Time of Arrival as the outbreak location. Then we look compare the results of Deff from that city
with the real Time of Arrival . We also note that the real-life data is in the form of daily new
infections and we do some transformations to get the number of people infected at a given time. In
this table, the starting date is 26th April, 2020. The threshold for real-life Time of Arrival is 5000
infected cases. Mumbai is considered as the outbreak location here.

City Deff City Real TOA
Mumbai 2.17 Mumbai 25
Mysore 3.06 Nagpur 25
Pimpri Chinchwad 3.23 Thane 28
Tumkur 3.67 Nashik 43
Delhi 3.85 Delhi 57
Chennai 3.86 Durg 58
Solapur 3.86 Raipur 61
Thane 4.08 Jalgaon 63
Salem 4.15 Chennai 63
Hyderabad 4.2 Hyderabad 64

Table 3.2: The procedure remains the same as Table (3.1). The starting date for this simulation is
considered as 1st February, 2021. Since Pune and Bangalore were both affected around the same
time, we consider both the cities as outbreak locations and use Dmod

eff instead of Deff . The threshold
for real-life Time of Arrival is 7500 here.

spread and the mobility patterns were affected non-uniformly throughout the country.
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3.4 Summary

We started our analysis by showcasing some crucial results for the SIR metapopulation model. Af-
ter that, we defined the observables Deff and Time of Arrival and verified the key linear relationship
between the two. We then showcased the robustness of this relationship by varying the parame-
ters of the model. After the theoretical considerations, we looked into more practical aspects of the
model and suggested ways in which the spread could be slowed down. We finally compared it with
real-life data. You can find more information about the project at [56, 57]. In the next Chapter,
we will investigate the linear relationship between Deff and Time of Arrival from a more academic
perspective.
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Chapter 4

The Effectiveness of Deff and Fisher-KPP
Equation

4.1 Introduction

In the last two Chapters, we have motivated and given evidence for the effectiveness of Deff to pre-
dict the hazard associated with any infection spreading in India using the transportation network.
We used the SIR metapopulation model to run the simulation and verify the results. Finally, we
also looked at few practical extensions of this model by considering multiple outbreak locations
and the effect of tweaking the traffic matrix. Even though Deff works very well in most situations,
we do not have a perfect understanding of why it works.

Since we know that the Time of Arrival increases linearly with Deff , the kinetics of the spread
is ballistic or wave-like. An infected person in one city has a probability of jumping to one of its
many neighbors. Thus, if we look microscopically, the dynamics is stochastic, and hence, diffusive
behavior leading to wave-like patterns makes more sense. We pursue this direction in this Chapter.

The plan for this Chapter is as follows: First, we will give an intuitive explanation for why
Deff works so well in Section (4.2). After that, we will show the similarity between the SI-model
and the Fisher Model equations before comparing the results for both. As a natural next step, we
will consider diffusion on a network with P-matrix as the stochastic jump probability matrix for
random walkers and see the connection with diffusion on a line in Section (4.3). Finally, we will
summarize the key results from this Chapter in Section (4.4)
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4.2 Fisher-KPP equation

The primary reason for Deff to work so well is that the city gets infected with a tiny but earliest
inflow of infected cases. The later infections do not matter. Deff , on the other hand, selects the
most probable path between the two nodes [17, 19]. Since the physical speed of travel is the same
for any traveler between any two nodes, the most probable path is also the fastest path between any
two nodes.

Let us think of a toy model which consists of a big central hub (labeled as ‘C’) and n (> 2)
smaller periphery vertices (labeled as vi) connected only to the central hub. Now, there are n edges
in this network. For now, let us assume that each of these edges carry equal traffic both ways.
Thus, the population of all n+1 nodes is conserved. However, the P-matrix for the network is not
symmetric. Pvi

C = 1
n , PC

vi
= 1, and rest all entries are zero. Correspondingly the effective distances

are d(C→ vi) = 1+ logn, d(vi→C) = 1, and d(vi→ v j) = 2+ logn for i 6= j. Thus, larger the
n, farther are the smaller cities from the hub and also from each other. On the other hand, distance
from periphery nodes to hub remains the same independent of n. We illustrate this with an example
in Figure (4.1) for n = 4.

Figure 4.1: Toy Model for 5 nodes. Note that all periphery nodes Vi are equivalent to one another.
C denotes the central hub. Here d(Vi→ Vj) = 3.39. The probabilities and the effective distances
are as shown in the diagram.

Now, suppose the infection starts at the central hub. Assuming that the local mobility = 1 for
all nodes, the infected person’s probability of traveling to one of the periphery nodes is 1/n. Thus,
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the probability of an infected person reaching a node Vi decreases as more nodes are added. We
can extend this reasoning to multiple initial infections and a higher threshold for calling a node
infected. On the other hand, if the infection starts from a periphery node, it will always spread to
the hub in a one-time step, and then it will take some more time to reach another periphery node.
Deff precisely predicts all these results. Even though the computations become hard, the idea of
Deff can be expanded to more complex network topologies with diverse traffic properties.

We will now try to gather more evidence for the effectiveness of Deff . We start by summarizing
the discussion in the Science paper [19]. The main hypothesis behind the notion of Deff was that
only the most probable path matters. Once the first infection arrives at some city, it quickly grows
within the city, rendering the later arrivals irrelevant. Hence, the assumption of the timescale of
local proliferation (dictated by α,β ) should be much lower than the timescale of global spread
(dictated by γ) was important.

However, our dataset differs from the dataset in [19] in many ways. Firstly, there is a significant
spread in the mobility for various cities, and F-matrix is not symmetric. These assumptions lead
to a steady state for movement kinetics instead of an equilibrium state where detailed balance is
followed. At this stage, we are unsure if both these properties have any significance on the results.

As a first approximation, we can assume that the recovery rate β is very low. This implies that
all cities get infected by the time Rn ≈ 0 for all n. Thus we can assume the model to be comprised
of just two compartments Sn + In ≈ Nn. This assumption effectively reduces the model to just 2n

equations instead of original 3n equations, and conservation of city population ensures that we can
specify the evolution in terms of just n equations of In. This model is often called as SI model in
the literature. One major difference between SI and SIR model is the non-existence of a threshold
for the former to become a pandemic. We can write the n equations for In, as follows,

∂ In

∂ t
= αIn

(
1− In

Nn

)
− γnIn +∑

m

Fn
m

Nm
Im, n, m = 1, 2, ..., M. (4.1)

Making the transformation In/Nn→ in and rearranging some terms we can write the above equation
as,

∂ in
∂ t

= αin(1− in)+
1

Nn
∑
m

[
γmPn

mNmim− γnPm
n Nnin

]
, n, m = 1, 2, ..., M. (4.2)

Equation (4.2) looks very similar to the Fisher-KPP equation given by,
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∂u
∂ t

= ru(1−u)+D
∂ 2u
∂x2 , (4.3)

where u(x, t) denotes the concentration of a quantity at position x, at time t. D is the diffusion
constant, and r is the growth parameter. The family of these equations is also called reaction-
diffusion equations. It is known that the Fisher-KPP type of equations have a wave-like solution,
even though the exact analytical solution for them have not been found yet [43].

We can discretize Eq. (4.3) in space as,

∂un

∂ t
= run(1−un)+D∑

m

[
Pn

mum−Pm
n un

]
, n, m = 1, 2, ..., M, (4.4)

where P is a tri-diagonal matrix, the same as the symmetric random walk ‘transition jump proba-
bility’ matrix. We note that Eq. (4.2) and Eq. (4.4) are very similar in form to each other.

We will now try to show similarities between the two equations by adopting a numerical ap-
proach. Since we know that Time of Arrival scales linearly with Deff for the SIR metapopulation
model, we first check if the linear relationship still holds for the SI metapopulation model. Si-
multaneously, we will also verify the wave-like solution for the discrete Fisher-KPP equation by
similarly defining the Time of Arrival and using the lattice spacing as a proxy for Deff . We plot the
scatter plots for both these models in Fig. (4.2).

We need to keep in mind several subtle points while comparing the SI model and Fisher-KPP
equation in Figure (4.2). Even though the forms of equations are similar, there is heterogeneity in
the SI model. Additionally, the SI model has more associated variables with the process.

First, we consider the Fisher-KPP equation. There are two parameters in this equation – r

and D. However, we can divide throughout by D and rescale time in Eq. (4.4), so that the equation
remains the same. That is equivalent to putting D = 1. If we ignore the diffusion terms in Eq. (4.4),
run(1−un) acts like a local source term, which makes the concentration equal to one for any non-
zero initial concentration. Since the diffusive term only diffuses but does not create anything new,
it is natural that the concentration of all nodes would be unity after a very long time. Thus, any
non-trivial initial condition for the Fisher-KPP equation on a finite line is immaterial for long-time
dynamics. Thus, we can start with a concentration of 1 and look at its spread. Even though we
have set D = 1, it is necessary that r/D∼ 1 or higher for the wave solution to hold. If the diffusive
term dominates, Time of Arrival is not linearly correlated to ‘distance from origin’. Thus, this
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Figure 4.2: We plot the Time of Arrival against Deff (for SI-model) and distance from origin (for
Fisher-KPP equation). The first row shows Fisher-KPP equation scatter plot. The next two rows
illustrate the plots for SI equation for absolute and fractional thresholds. The outbreak location for
SI model is Tirupati. (Refer to text for more details)

relationship holds when r is of the order of or greater than D.

It is essential to mention here that the discussion about the evolution of concentration in the
Fisher-KPP equation follows strictly for the infected cases in the SI model. In other words, the ini-
tial condition for the SI model is that the whole city is infected, which is certainly not equivalent to
our discussion for the SIR model, but given that the steady-state conditions for both these models
are different, it is reasonable to assign the above initial condition. We take a small city as the out-
break location for this exact reason. Fisher-KPP equation was in terms of fractional concentration,
and hence, the corresponding way to compare with SI-model should be a fractional threshold. The
results, however, do not seem to match as seen in the third row of Figure (4.2), where we have
considered the fractional threshold. One alternative but a non-rigorous reason for this might be
that there is no associated population with the vertices in the Fisher-KPP equation.
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We can redefine Deff ; however, we will skip that exercise for now and concentrate on the
absolute threshold. If we compare the top two rows in Figure (4.2), we see that Deff correlates
very nicely with Time of Arrival . Thus, the velocity is well-defined for both these cases. In order
to solidify the similarities between the two models, we look at the trend of Veff for the respective
source parameters, – α and r. Please note that this is not a very strict comparison, as we have
arbitrarily set D = 1 in the Fisher-KPP equation, but we cannot do so for the SI model. So, to be
more accurate, we are looking at the trend of Veff for r/D.

Figure 4.3: Comparison of velocity trend for SI-model and Fisher-KPP equation with respect to
the infection/source rate (α or r). Tirupati is chosen as the outbreak location for the SI-model,
while the fisher equation consists of 300 lattice points.

We see that Veff for both systems increase linearly with α and r respectively. So, we have
a partial agreement between r and α . Another reason might be that the slope for the SI model
depends on the outbreak location. In that case, we can still see a match, but it is not universal
relation then. The slope and the intercept are not equal or close by, thus eliminating the possibility
of a direct connection between Fisher and SI equations. In the next Section, we will look into
more microscopic properties of the spread pattern and check if there is any match with the existing
models.
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4.3 Diffusion on a Network

The SI equation presents a set of barriers towards connecting it with the Fisher equation. Firstly,
the underlying natural topology of the network does not appear anywhere in the equations, unlike
the Fisher equation, where the distance is defined using the distance between consecutive points.
Secondly, Deff is being used at two places – to define the jump rates between various nodes and
define the space itself. This is unlike the Fisher equation (or any other diffusive process), where
space is defined using natural topology, and the jump rates are usually defined independently.
Thirdly, in the Fisher equation, the P-matrix only connects the nearest neighbors, and no direct
long-distance connections are present.

On the other hand, for the SI model, Deff first flattens out a network into a 1D line for a specific
outbreak location. However, there are still long-distance connections between various cities, which
may drastically alter the system’s evolution. Finally, the significant P-matrix entries for any city
are spread out over more than five cities, making it unreasonable to assume that a random walker
on this network will only jump to the nearest neighbor in one-time step.

Owing to all the above reasons, we do not expect a direct microscopic match between the SI-
model and Fisher-KPP equations properties. In order to further simplify the problem, we consider
γn = 1 ∀ n, so that the only difference between the two systems is the P-matrix. We ignore Time of

Arrival and Deff and look at the properties of the infected fraction at each node in Figure (4.4).
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Figure 4.4: Evolution of infected fraction for 446 (100) cities for the SI-model (Fisher-KPP equa-
tion). r = α = 15, and D = 1. The x-axis is rescaled so that we can compare the shapes properly.
The figure on the left denotes Fisher-KPP equation, while the one on the right denotes SI-model.
The outbreak city’s time evolution is not plotted in this figure. Tirupati is the outbreak location for
SI model.
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Figure (4.4) shows the time evolution of infected fraction for both models. We consider the
regime where r and α are high. We can see that the plots look similar in some sense. In order
to further quantify this, we look at the evolution of mean and standard deviation of the infected
fraction for all cities. Qualitatively, we can predict that µ(0) = 0 and after long time µ(t) = 1.
Similarly, σ = 0 at the endpoints, and hence we expect a peak somewhere near the middle of the
evolution. We plot both these quantities for both models in Figure (4.5).
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Figure 4.5: Mean and Standard deviation of the infected fraction across the cities as a function of
time for both the models. All the parameters remain same as Figure (4.4).

Even though the infected fraction looks similar, the first two cumulants of the two models
behave differently with time. We see that the mean increases linearly with time for the Fisher
Equation. However, the same growth is non-linear for the SI model. Similarly, the standard devi-
ation seems to follow a quadratic trajectory for the Fisher equation. However, for the SI model, it
looks more like a Gaussian evolution.

As a final line of attack (for this thesis), we consider no source term in both equations such that
the infection diffuses to all nodes, but the total concentration summed over all the nodes remains
constant with time. Fisher-KPP equation reduces to ordinary diffusion equation on a line in the
absence of the source term. The diffusion equation is a well-studied phenomenon whose properties
are known with certainty [54]. Here, however, we compare diffusion on a line with diffusion on a
network [55]. As before, we first look at the evolution of the infection on all nodes as a function
of time.

Figure (4.6) shows the time evolution of the infection on various nodes as a function of time.
We can see that the curves resemble some extent. Of course, the curve for diffusion on a line is
very well structured, while the network diffusion curves have some heterogeneity. Even though the
steady-state distribution seems different for the two models, it is primarily because of the different
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Figure 4.6: Diffusive behavior of the two models for the same parameters as Figure (4.4). Note
that the diffusion on line is for 100 sites, while the network consists of 446 cities.

number of nodes in the two models. And finally, we compare the mean and standard deviation as
before.
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Figure 4.7: The first two cumulants of the infected fraction for the two models as a function of
time. All the parameters remain same as Figure (4.6). The left panel denotes the mean, while the
right panel denotes the standard deviation.

The mean (µ) and the standard deviation (σ ) look much similar qualitatively for the two diffu-
sion processes. When r 6= 0, the end values matched, but the evolution took very different routes
for both the models. However, for the diffusion processes, i.e. r = α = 0, the evolution looks very
similar for both the models. The extremities depend on the static network properties, which are
different for both models.

These results tell us that the diffusion on a line is similar to diffusion on a network, where the
underlying distance is defined by the P-matrix. Though we have found some evidence to show the
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similarity between the two models, it is primarily numerical and specific to our network. We still
do not understand the concept of Deff very well, and the future work will mainly focus on this, as
we will discuss in the next Section of the summary.

4.4 Summary

The main focus of this Chapter was to dig deeper into the concept of Deff and the reasons behind
its effectiveness from a more theoretical perspective. We started this Chapter by giving some non-
rigorous but intuitive motivation for Deff . Inspired by the fact that Deff works better for higher
SIR-model rate parameters, we took the extreme limit when there are no recoveries and displayed
that the modified (also called as SI model) is similar in the structural form of the equation to the
Fisher-KPP equation – a model which is known to have wave-like solutions. However, we saw that
the macroscopic quantities such as Veff do not agree very well with the two models – Fisher and SI.

Since there was no robust macroscopic match between the two models, we compared the two
models at a more microscopic level by looking at their respective time evolutions of the infected
fractions. Though there was some qualitative agreement, it was not enough to make definite state-
ments. This approach forced us to go towards the final approach of comparing the pure diffusive
processes on the two networks (line and the transport network). The match was the best in this
case, as evident from the evolution of mean and standard deviation for the two processes.

We still do not have a complete understanding of the effectiveness of Deff . We will look at a
few possible ways of extending this study in the last Chapter to conclude this thesis.

49



Chapter 5

Conclusion and Future Directions

In an increasingly connected world, the risk of infectious diseases spreading has been prophesied,
and the matching reality has been well-documented in the past few years. Even though much better
computational models exist to predict the risk of infection spreading globally, a minuscule number
of such models exist tailored for India. In this thesis, we studied the problem of understanding
the spread of infectious diseases in India using some well-established epidemiology and network
science tools.

After giving a motivation for studying the problem in Chapter (1), we looked into collecting
and generating the traffic data methods using the available sources in Chapter (2). Our algorithms
were based on a simple assumption that the number of people traveling from a city is proportional
to the city population. Using this simple assumption, we built the dataset and simulated the SIR
metapopulation model. One fundamental distinction of our dataset from the existing datasets was
that it consisted of three modes of transport and considered geographically local and global traffic.

We introduced the concepts of Time of Arrival and Deff in Chapter (3) and showed that they
correlate linearly with each other. We then showed few main results concerning the robustness
and effectiveness of our model. We also looked into more practical aspects of this model, which
gave us some insights into the possible measures that could be taken to curb the spread of the
disease. Finally, we also compared our simulation with the actual life data. Different infection
rates in cities, incomplete information about the strain of virus propagating in different cities, the
unreliable data of the infected cases, and the changes in the mobility pattern due to lockdown are
a few out of multiple possible reasons for the mismatch between simulation and real-life data.

In Chapter (4), we looked into the reasons behind why Deff works well in some settings while
not so well in others. We looked into the limits of the SIR model, where we could consider it as an
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SI model, which is very similar to the Fisher-KPP equation. We showed few interesting similarities
between these two models for two cases – in the presence of the source terms and or the absence
thereof. The main result was that Deff selects the path which an ordinary diffusion on a line would
undertake, with the line coordinates playing a part of Deff .

There are multiple ways the current study can be extended. In this thesis, we considered a
static traffic matrix. However, we know that there are traffic fluctuations for all periods ranging
from a day to specific months. It would be interesting to run this model for dynamic traffic data (if
available) to incorporate the fluctuations into the model. We can also increase the compartments of
the model if the correct parameters and corresponding data are found. It would also be an exciting
exercise to integrate fluctuations at a city level regarding infection and recovery rates. Finally, given
that the traffic data exists, one can in-principle use it to study multiple transport-related problems
on networks not restricted to epidemic spreading. The concept of Deff also opens multiple avenues
into studying diffusion on a network. We can explore the mechanism of why Deff works so well by
simulating the dynamics on synthetic networks.

We thus come to the end of this thesis. To summarize the whole thesis in a line, we can say that
– ‘we collected the static traffic data for Indian transportation network for three modes of travel and
predicted the risk associated with Indian cities based on the concept of effective distance, before
providing some evidence for this effectiveness using tools from statistical physics, epidemiology,
network, and data Science.’ Even though this thesis considers the simplest of models available, we
hope that future studies build upon this and create better models.
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and Smith, D. L., Comparing metapopulation dynamics of infectious diseases under different
models of human movement, Proc. of the Nat. Acad. of Sci., 118, 18. (2021).

[15] Pastor-Satorras, R., and Vespignani, A., Epidemic Spreading in Scale-Free Networks, Phys.
Rev. Lett. 86, 3200. (2001).

[16] Gautreau, A., Barrat, A., Barthelemy, M., Global disease spread: statistics and estimation of
arrival times. Journal of theoretical biology 251, 509522. (2008).

[17] Iannelli, F., Koher, A., Brockmann, D., Hvel, P., Sokolov, I.M., Effective distances for epi-
demics spreading on complex networks. Physical Review E 95, 012313. (2017).

[18] Taylor, D., Klimm, F., Harrington, H.A., Kramr, M., Mischaikow, K., Porter, M.A., Mucha,
P.J., Topological data analysis of contagion maps for examining spreading processes on net-
works. Nature communications 6, 111. (2015).

[19] Brockmann, D., Helbing, D., The Hidden Geometry of Complex, Network-Driven Contagion
Phenomena. Science 342, 13371342. (2013).

[20] Althouse, B.M., Wenger, E.A., Miller, J.C., Scarpino, S.V., Allard, A., Hbert-Dufresne,
L., Hu, H., Stochasticity and heterogeneity in the transmission dynamics of SARS-CoV-2.
arXiv:2005.13689. (2020).

[21] Arenas, A., Cota, W., Gmez-Gardees, J., Gmez, S., Granell, C., Matamalas, J.T., Soriano-
Paos, D., Steinegger, B., Modeling the Spatiotemporal Epidemic Spreading of COVID-19 and
the Impact of Mobility and Social Distancing Interventions. Physical Review X 10, 041055.
(2020).

[22] Feng, L., Zhao, Q., Zhou, C., Epidemic in networked population with recurrent mobility
pattern. Chaos, Solitons & Fractals 139, 110016. (2020).

[23] Garcia-Gasulla, D., Napagao, S.A., Li, I., Maruyama, H., Kanezashi, H., Perez-Arnal, R.,
Miyoshi, K., Ishii, E., Suzuki, K., Shiba, S., Global Data Science Project for COVID-19
Summary Report. arXiv:2006.05573. (2020).

[24] Bedi, P., Gole, P., Gupta, N., Jindal, V., Projections for COVID-19 spread in India and its
worst affected five states using the Modified SEIRD and LSTM models. arXiv:2009.06457.
(2020).

[25] Jha, V., Forecasting the transmission of Covid-19 in India using a data driven SEIRD model.
arXiv:2006.04464. (2020).

[26] Khajanchi, S., Sarkar, K., Forecasting the daily and cumulative number of cases for the
COVID-19 pandemic in India. Chaos: An Interdisciplinary Journal of Nonlinear Science 30,
071101. (2020).

53



[27] https://censusindia.gov.in/2011-common/censusdata2011.html

[28] Khajanchi, S., Sarkar, K., Mondal, J., Perc, M., Dynamics of the COVID-19 pandemic in
India. arXiv:2005.06286. (2020).

[29] Mishra, R., Gupta, H.P., Dutta, T., Analysis, Modeling, and Representation of COVID-19
Spread: A Case Study on India. arXiv:2008.13116. (2020).

[30] Sarkar, K., Khajanchi, S., Nieto, J.J., Modeling and forecasting the COVID-19 pandemic in
India. Chaos, Solitons & Fractals 139, 110049. (2020).

[31] Sen, P., Dasgupta, S., Chatterjee, A., Sreeram, P.A., Mukherjee, G., Manna, S.S., Small-world
properties of the Indian railway network. Physical Review E 67, 036106. (2003).

[32] Gopalakrishnan, R., Rangaraj, N., Capacity management on long-distance passenger trains
of Indian Railways. Interfaces 40, 291302. (2010).

[33] Rajput, N.K., Badola, P., Arora, H., Grover, B.A., Complex Network Analysis of Indian Rail-
way Zones. arXiv:2004.04146. (2020).

[34] Gopal, R., Chandrasekar, V. K. , and Lakshmanan, M. Dynamical modelling and analysis of
COVID-19 in India. Current Science, 120, 8. (2021).

[35] Pujari, B.S., Shekatkar, S., Multi-city modeling of epidemics using spatial networks: Appli-
cation to 2019-nCov (COVID-19) coronavirus in India. medRxiv. https://doi.org/10.
1101/2020.03.13.20035386 (2020).

[36] Gupta, S., Shah, S., Chaturvedi, S., Thakkar, P., Solanki, P., Dibyachintan, S., Roy, S.,
Sushma, M.B., Godbole, A., Jaseem, N., et al. An India-specific compartmental model for
Covid-19: projections and intervention strategies by incorporating geographical, Infrastruc-
tural and response heterogeneity. arXiv:2007.14392. (2020).

[37] Das, A., Dhar, A., Goyal, S., Kundu, A., Pandey, S., COVID-19: Analytic results for a
modified SEIR model and comparison of different intervention strategies. Chaos, Solitons &
Fractals 110595. (2021).

[38] Ray, D., Salvatore, M., Bhattacharyya, R., Wang, L., Du, J., Mohammed, S., Purkayastha,
S., Halder, A., Rix, A., Barker, D., Predictions, role of interventions and effects of a historic
national lockdown in Indias response to the COVID-19 pandemic: data science call to arms.
Harvard data science review 2020. (2020).

[39] Sharma, A., Arya, S., Kumari, S., Chatterjee, A., Effect of lockdown interventions to control
the COVID-19 epidemic in India. arXiv:2009.03168. (2020).

[40] Tiwari, V., Bisht, N., Deyal, N., Mathematical modelling based study and prediction of
COVID-19 epidemic dissemination under the impact of lockdown in India. Frontiers in
Physics 8, 443. (2020).

54

https://censusindia.gov.in/2011-common/censusdata2011.html
https://doi.org/10.1101/2020.03.13.20035386
https://doi.org/10.1101/2020.03.13.20035386


[41] Venkateswaran, J., Damani, O., Effectiveness of testing, tracing, social distancing and hy-
giene in tackling covid-19 in india: A system dynamics model. arXiv:2004.08859. (2020).

[42] Grady, D., Thiemann, C., Brockmann, D., Robust classification of salient links in complex
networks. Nature commun. 3, 864. (2012).

[43] Ablowitz, M.J., Zeppetella, A., Explicit solutions of Fishers equation for a special wave
speed. Bulletin of Mathematical Biology 41, 835840. (1979).

[44] Trapman, P., On analytical approaches to epidemics on networks. Theoretical Population
Biology, 71, 2, 160 - 173. (2007).

[45] Driessche, P. Reproduction numbers of infectious disease models. Infect. Dis. Model.
2(3):288-303. (2017).

[46] http://www.knowindia.net/aviation.html.

[47] https://www.civilaviation.gov.in/sites/default/files/MoCA_Annual_

Report_2018_19.pdf, Page No. 49

[48] https://indianrailways.info/all_trains/, https://www.makemytrip.com/

railways/list-of-indian-railway-stations.html

[49] https://enquiry.indianrail.gov.in/mntes/

[50] https://indianrailways.gov.in/railwayboard/uploads/directorate/stat_

econ/IRSP_2016-17/Facts_Figure/Fact_Figures%20English%202016-17.pdf, Page
no. 6.

[51] https://tis.nhai.gov.in/

[52] Hasegawa, T., Nemoto, K., Outbreaks in susceptible-infected-removed epidemics with multi-
ple seeds. Physical Review E 93, 032324. (2016).

[53] Toli, D., Kleineberg, K.-K., Antulov-Fantulin, N., Simulating SIR processes on networks
using weighted shortest paths. Scientific reports 8, 110. (2018).

[54] Kampen, N. G. V., Stochastic Processes in Physics and Chemistry, (Third Edition), Elsevier.
(2007).

[55] Masuda, N., Porter, M., and Lambiotte, R. Random walks and diffusion on networks, Physics
Reports, 716717,1-58. (2017).

[56] For more information, visit: https://www.iiserpune.ac.in/~hazardmap/

[57] Sadekar O, Budamagunta M, Sreejith G.J., Jain S, and Santhanam M.S., An infec-
tious diseases hazard map for India based on mobility and transportation networks.
arXiv:2105.15123. (2021).

55

http://www.knowindia.net/aviation.html
https://www.civilaviation.gov.in/sites/default/files/MoCA_Annual_Report_2018_19.pdf
https://www.civilaviation.gov.in/sites/default/files/MoCA_Annual_Report_2018_19.pdf
https://indianrailways.info/all_trains/
https://www.makemytrip.com/railways/list-of-indian-railway-stations.html
https://www.makemytrip.com/railways/list-of-indian-railway-stations.html
https://enquiry.indianrail.gov.in/mntes/
https://indianrailways.gov.in/railwayboard/uploads/directorate/stat_econ/IRSP_2016-17/Facts_Figure/Fact_Figures%20English%202016-17.pdf
https://indianrailways.gov.in/railwayboard/uploads/directorate/stat_econ/IRSP_2016-17/Facts_Figure/Fact_Figures%20English%202016-17.pdf
https://tis.nhai.gov.in/
https://www.iiserpune.ac.in/~hazardmap/

	Abstract
	Introduction
	SIR Metapopulation Model and Indian Traffic Data
	Introduction
	SIR Metapopulation Model
	Data Collection
	Summary

	Main Results and Practical Aspects
	Introduction
	Robustness of Linear Relationship
	Practical Aspects and Comparison with Real-Life Data
	Summary

	The Effectiveness of Deff and Fisher-KPP Equation
	Introduction
	Fisher-KPP equation
	Diffusion on a Network
	Summary

	Conclusion and Future Directions

