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Abstract

The phenomenon of Hawking Radiation is explored in analogue gravity us-
ing Bose-Einstein Condensates. The process of spontaneous pair production
that occurs at the event horizon is treated as a scattering problem, and the
method of establishing Hawking Radiation using density correlations is re-
viewed. Based on the results obtained, the existing formalism is modi�ed to
incorporate the changes to the asymptotic modes due to the presence of the
horizon.
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Chapter 1

Introduction

Black holes are a solution to Einstein's equation. These are extremely mas-
sive objects - with a singularity surrounded by an event horizon (the null
surface interior boundary of the space-time from which light can escape to
in�nity). Black hole physics has a striking similarity to the laws of thermo-
dynamics. Entropy, a thermodynamical quantity that never decreases with
time is associated with the area of a black hole under the Generalized Sec-
ond Law of thermodynamics [1]. Classically, black holes were thought to be
perfect absorbers, i.e. they were thought to have a temperature of absolute
zero. However, Hawking, with the techniques of quantum �eld theory in
curved space-times showed that black-holes do radiate thermally, thus asso-
ciating a non-zero temperature to black holes [2]. This is called Hawking
radiation, and the temperature is T = ~κ

2π
, where κ is the surface gravity

(the non-a�neness of the Killing generator of the horizon).

1.1 The Trans-Planckian Puzzle

Hawking Radiation is a quantum e�ect. Vacuum �uctuations near the event
horizon spontaneously create particle - antiparticle pairs. These have positive
and negative energies, with the particle (of positive energy) propagating out
to future in�nity, and the antiparticle (of negative energy) falling into the
black hole, thereby reducing its mass. This process is referred to as black
hole evaporation. Soon after the publication of Hawking's result, it was
realized that the result assumes the validity of quantum �eld theory in curved
space time upto arbitrary energies. Problem arises when a wavepacket of a
certain frequency in future in�nity is propagated back in time. It will have
exponential energy - beyond the Planck scale - wherein current theories break
down. This is called the trans-Planckian problem.
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The trans-Planckian problem has raised the question of whether Hawking
radiation is a spurious result. While there have been e�orts to rectify this
problem using quantum �eld theories in curved space-times [3], there is an
alternate approach - Analogue Gravity [4].

1.2 Analogue Gravity

Analogue Gravity is an approach to study quantum �elds in curved space-
time using systems - typically condensed matter systems - whose physics is
well understood. In 1980, Unruh demonstrated the analogy between a quan-
tized trans-sonic �uid �ow and a black hole [5]. As any moving �uid drags
sound waves along with it, when the �uid velocity becomes supersonic, the
sound waves can no longer propagate upstream, thus creating a black-hole
like con�guration.

"Under the approximation of the �uid �ow being barotropic, inviscid and
irrotational, the equations of motion of the velocity potential governing the
acoustic disturbance can be recast as the d'Alembertian equation of motion
for a minimally coupled massless scalar �eld propagating in a (3+1) dimen-
sional Lorentzian geometry" [4].

The fundamental equations of such a �uid are the continuity equation
and the Euler equation

∂tρ0 +∇.(ρ0v) = 0 (1.1)

−∂tφ0 + h(p) +
1

2
∇φ2

0 = 0

where, ρ0 is the density of the �uid, h(p) is the speci�c enthalpy of the
barotropic �uid and φ0 is the velocity potential such that v = −∇φ0. These
equations, when linearised give the wave equation, which in turn can be
recast as

∆φ =
1√
−g

∂µ(
√
−ggµν∂νφ), (1.2)

where the e�ective acoustic metric gµν is as follows

gµν =
ρ0
c

(
−(c2 − v20) −v0

T

−v0 I

)
(1.3)

Here, c is the speed of sound with respect to the �uid, v0 is the veloc-
ity of the �uid, I is the 3 X 3 identity matrix, and ρ0 is the density of the �uid.
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The advantage of analogue gravity is two-fold. One can study relativistic
phenomena in analogue systems, thus establishing some results which are
otherwise hard to establish experimentally-to the extent that the analogy
holds. Secondly, the physics of analogue systems can be used to gain in-
sights into gravity, curved-space quantum �eld theory or quantum/emergent
gravity.

1.3 The acoustic metric for BECs

In section 1.2, the acoustic metric, obtained with the hydrodynamic approxi-
mation is valid for a trans-sonic �uid �ow. This section provides the acoustic
metric, where BECs are the analogue systems. The governing equation of
BECs is the Gross-Pitaevskii (GP) equation

i~∂tΨ̂ = (
−~2

2m
~∇2 + Vext + gΨ̂†Ψ̂)Ψ̂ (1.4)

where g is the strength of interaction, m is the mass of the atoms and Ψ̂ is
the bosonic �eld operator. Performing a mean �eld expansion Ψ̂ = ψ + φ̂,
where ψ is the macroscopic condensate and φ̂ is the �uctuation and adopting
the ansatz, Ψ =

√
nc(t, x)e−iθ(t,x)/~ for the wavefunction of the condensate,

the GP equation can be rewritten as

∂tnc +∇.(ncv) = 0 (1.5)

∂tv +∇(
mv2

2
+ Vext(t, x) + gnc −

~2

2m

∇2√nc√
nc

) = 0 (1.6)

Here, nc = |ψ|2 is the density of the condensates, and θ is such that v = ∇θ
m
.

The above equations are analogous to the equations 1.1, except for the last
term in equation 1.6, which is the quantum pressure term. Neglecting this
term, leads to the analogue of the hydrodynamic approximation (gradients
in the density of the condensates are small), and as before, these equations
can be recast to obtain the acoustic metric.

1.4 Hawking Radiation in BECs

There are many analogue models that can be used to study Hawking Radi-
ation. However, BECs have proven to be the most suited.
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1. Hawking Radiation is thermal in nature and the value of the tempera-
ture associated with this phenomenon is extremely low. To detect this
in analogue systems experimentally, there is a need to reduce back-
ground thermal noise to the maximum possible extent. This can be
best done with BECs.

2. E�ective 1-D calculations have shown the existence of Hawking radia-
tion. In an experimental scenario, it is easy to deal with an e�ective
1-D system, while the instabilities/vortices can be in the transverse
direction, which does not a�ect the results.

3. The hydrodynamic approximation breaks down at short length scales.
However, BECs have a natural short length scale cut-o�: the healing
length ξ. This is the distance over which the kinetic energy and the in-
teraction energy balance. The short length scale cut-o� is the analogue
of Planck scale, below which a Lorentz breakdown occurs. The physics
of BECs below this length scale is well known, and thus enables one to
tackle the trans-Planckian issue.

4. As both partners are accessible to the observer in an analogue system,
unlike a relativistic system, density correlations between the Hawking
partners can be studied. In addition, one doesn't need to concern with
background thermal noise, thereby minimizing experimental errors.

To establish Hawking radiation avoiding the trans- Planckian problem,
many numerical and analytical calculations have been done. [6], [7]. Many of
these works address the dependency of Hawking Radiation on high frequen-
cies [8], [9], [10], [11]. This brings into question exact Lorentz invariance, thus
making a case for using modi�ed dispersion relations. A discussion on this
is provided in [12]. One such work, which uses explicit solutions of the dis-
persion relation in order to study Hawking Radiation is by A. Fabbri and C.
Mayoral [13]. In this paper, the linear dispersion for BECs is used (equivalent
to the hydrodynamic limit) to study density correlations, but without any
scope for a black hole like con�guration. This analysis, extended to include
dispersion e�ects allows for a black hole like con�guration [14]. In addition,
it has been shown that in order to obtain the best correlations, we have
to consider a variation in the speed of sound along with a variation in the
velocity of the condensate[6]. Therefore, while a discontinuity in the speed
of sound in �uids is considered in the above works, in the present work we
consider a varying velocity pro�le within the framework already present, and
suitably extend the model. In addition, a continuously varying velocity pro-
�le is considered in order to avoid a singular surface gravity, as encountered
in [13] and [14].
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Chapter 2

Hawking radiation using

super-luminal dispersion relation

A Bose gas in the dilute gas approximation is described by a �eld operator .
This obeys the equal time bosonic commutation relation 1

[Ψ̂(t, ~x), Ψ̂†(t, ~x′)] = δ3(~x− ~x′) (2.1)

The time evolution is given by the Gross-Pitaevskii (GP) equation

i~∂tΨ̂ = (
−~2

2m
~∇2 + Vext + gΨ̂†Ψ̂)Ψ̂ (2.2)

where m is the mass of the atoms and g is the strength of the contact interac-
tion, given by g = 4π~2a

m
, where a is the s-wave scattering length. Performing

a mean �eld approximation for Ψ̂, we have

Ψ̂(t, x) = Ψ0(x)(1 + φ̂(t, x)) (2.3)

where Ψ0 is the macroscopic condensate wavefunction and φ̂ is the �uc-
tuation. Using the above ansatz for Ψ̂ in equation 2.2, we have a similar
equation for the macroscopic condensate, while the �uctuation �eld obeys
the Bogoliubov de Gennes (BdG) equation, which is independent of Vext.

i~∂tφ̂ = (
−~2

2m
~∇2 − ~2

m

~∇Ψ0

Ψ0

~∇)φ̂+ gn(φ̂+ φ̂†) (2.4)

As Ψ0 obeys the GP equation, Ψ0 =
√
neik0x−iω0t is a solution everywhere,

if the GP equation does not change. Using the fact that v = ~k
m

and that

c =
√

gn
m
, we have,

i~(∂t + v∂x)φ̂ =
−~2

2m
~∇2φ̂+mc2(φ̂+ φ̂†) (2.5)

1The work described in this section is based on [14]
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2.1 Non-linear dispersion relation

We consider condensates with constant density n. The operator φ̂ is expanded
in terms of its particle and antiparticle components

φ̂(t, x) =
∑
j

[âjφj(t, x) + â†jϕ
∗
j(t, x)] (2.6)

where âj and â
†
j are the creation and annihilation operators. Inserting the

above expansion in equation 2.4, we have

[i(∂t + v∂x) +
ξc

2
∂2x −

c

ξ
]φj =

c

ξ
ϕj (2.7)

[−i(∂t + v∂x) +
ξc

2
∂2x −

c

ξ
]ϕ∗j =

c

ξ
φ∗j (2.8)

where ξ is the healing length of the condensate, given by ξ = 1√
8πan

. We
assume the �elds φ and ϕ to be plane waves over a �at space such that

φ(ω) = D(ω)e−i(ωt−k(ω)x) (2.9)

ϕ(ω) = E(ω)e−i(ωt−k(ω)x)

where D(ω) and E(ω) are normalization constants, to be determined. Equa-
tions 2.6 and 2.7 give,

[(ω − vk)− ξck2

2
− c

ξ
]D(ω) =

c

ξ
E(ω) (2.10)

[−(ω − vk)− ξck2

2
− c

ξ
]E(ω) =

c

ξ
D(ω)

Demanding that a non-trivial solution exists, implies the determinant is
zero. This gives the second order dispersion relation

(ω − vk)2 = c2k2 +
c2ξ2k4

4
(2.11)
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2.2 The model

In this section, a simple model to study Hawking radiation is described
[14]. A discontinuity in the speed of sound is considered, such that, c(x) =
cr(Θ(x)) + cl(Θ(−x)), where Θ is the Heavyside function. As the speed of
sound changes in each sector, the healing length ξ of BECs also changes cor-
respondingly, as it is de�ned as ξ = ~

mc
. At x = 0 there is a step-discontinuity

in the speed of sound. The velocity of the condensate, v is taken to be neg-
ative. This implies that, when |v| < cr and |v| < cl, we have a subsonic
- subsonic con�guration, whereas when |v| < cr, but |v| > cl, we have a
subsonic - supersonic con�guration. In this case, the point x = 0 acts as

the event horizon. However, the surface gravity, de�ned as κ = 1
2c
d(c2−v2)

dn
|hor

where n is the coordinate normal to the horizon, is singular because of the
step-discontinuity in the speed of sound.

Fig 2.1: Model for subsonic - supersonic con�guration

The idea of this formulation is to look at Hawking radiation as a scattering
phenomenon at the horizon. The variation in the speed of sound is brought
about by changing the scattering length. However, the external potential is
also simultaneously changed, such that equation 2.2 remains unchanged in
both sectors.

V r
ext + grn = V l

ext + gln (2.12)

This allows for a matching at the point x = 0, and as the total energy is
conserved, probability current conservation can be studied. The procedure
followed here is as follows:

• Solving the dispersion relation: This gives the modes that get scat-
tered at the horizon. The nature of the modes determine the con�guration
for the scattering. There will be incoming modes (which propagate with the
�uid �ow, and hence towards the horizon on the right and away from the
horizon on the left) and out-going modes (which propagate against the �uid
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�ow, and hence away from the horizon on the right and towards the horizon
on the left), with positive or negative energies.

• Matching Conditions: We expand the �uctuation �eld in terms of
the modes. Each mode is weighted with an amplitude. As the �eld obeys
a second order di�erential equation, the �eld and its �rst derivatives can be
matched at the boundary, x = 0, giving a matching matrix, M.

• Probability Currents: The BdG equation can be used to derive the
probability currents for the system. As this is a scattering problem, the
amplitudes must be such that this current is conserved for each scattering
con�guration considered.

• Determining Amplitudes: The matrix M is completely known, and
hence determines the amplitudes for the modes getting scattered. Although
at this point it is not clear that this equation is completely determinate,
when the nature of the modes are examined, it will be seen that it is indeed
so.

• Bogoliubov transformation: At a time, only one incoming mode is
considered, setting the amplitudes of all the other incoming modes to zero.
This allows us to write each incoming mode as a linear combination of the
out-going modes, hence providing the Bogoliubov transformation. This de-
�nes the in basis and similarly considering out-going modes, one can de�ne
the out basis. The conservation of probability currents implies that the trans-
formation is unitary, which is essential to the result.

•Mode mixing: The same transformation gives the creation and anni-
hilation operators in a basis in terms of these operators in the other basis. If
there is mode mixing, it becomes apparent, as the creation operator in one
basis will not be a linear combination of just the creation operators in the
other basis, but will have a contribution from the annihilation operator in
the other basis.

• Correlation function: Using this, �elds are written in one basis, and
the two point function in �uctuations is computed, the result of which will
determine whether or not Hawking radiation is observed. If a non-trivial
correlation is obtained, the Hawking temperature can be read o�, and thus,
a surface gravity can be associated to the black hole like con�guration.
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2.2.1 Solving the dispersion relation

The above dispersion is solved in two regimes: low momentum regime, in
which the hydrodynamic approximation, and a high momentum regime,
which gives two complex conjugate modes, if the �ow is sub-sonic and two
real modes if the �ow is supersonic.

Low momentum or hydrodynamic limit: In this limit, the quan-
tity kξ is small. Hence, the Lorentz breaking term in equation 2.9 can be
neglected, giving back the linear dispersion relation

ω − vk = ±ck (2.13)

Using equation 2.9 to solve for k perturbatively with ξ as the small parameter,

ku =
ω

v + c
(1− cξ2ω2

8(v + c)3
) (2.14)

kv =
ω

v − c
(1− cξ2ω2

8(v − c)3
) (2.15)

High momentum or small ω limit: In this regime, ω is treated to be
the small parameter. Then, perturbatively obtaining the roots we have,

kd,(g) =
−ω|v|
c2 − v2

(1− (c2 + v2)c2ξ2ω2

2(c2 − v2)3
)± 2i

√
c2 − v2
cξ

(1 +
(c2 + 2v2)c2ξ2ω2

8(c2 − v2)3
)

(2.16)

in the sub-sonic region. The mode with the positive imaginary part is
the decaying mode kd when x > 0 region, and it becomes the growing mode
kg when x < 0. The analytic continuation of the complex modes in the
supersonic region gives real modes:

k3,(4) =
−ω|v|
c2 − v2

(1− (c2 + v2)c2ξ2ω2

2(c2 − v2)3
)± 2

√
v2 − c2
cξ

(1 +
(c2 + 2v2)c2ξ2ω2

8(c2 − v2)3
)

(2.17)
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Fig. 2.2: Dispersion relation for subsonic - subsonic case. The solid
(dashed) line corresponds to the positive (negative) norm branch

Fig. 2.3: Dispersion relation for subsonic - supersonic case. The solid
(dashed) line corresponds to the positive (negative) norm branch

As seen from the graph above, there exists an ωmax, corresponding to a
kmax. This can be calculated by setting dω

dk
= 0|kmax . Beyond this ωmax, in

the supersonic region, the two real modes from the small ω limit become
complex modes, giving back the subsonic scenario.

The nature of these modes decide the con�guration that can exist. The
group velocity of a mode (de�ned as dω

dk
) determines whether it is an incoming

or an out-going one, and the norm of a mode (de�ned by the co-moving
frequency ω − vk) determines whether it has positive or negative energy.
Each positive norm mode has a negative counterpart, however, the norm
should not be attributed based on the sign of the mode. The co-moving
frequency could turn out to be positive even for a negative mode.
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Mode Norm Group velocity

krv Positive Negative, Incoming mode
kru Positive Positive, Out-going mode
klv if (|vl| > c) Positive Negative, Out-going mode
klu if (|vl| > c) Negative Negative, Out-going mode
kl3 Positive Positive, Incoming mode
kl4 Negative Positive, Incoming mode

2.2.2 Normalization

Equal time commutator for φ̂ as obtained from equation 2.1 is

[φ̂j(t, x), φ̂†j′(t, x
′)] =

δ(x− x′)
n

δjj′ (2.18)

Here, j ≡ ω. This, on integration yields,∫
dx[φjφ

∗
j′ − ϕ∗jϕj′ ] = ±δjj

′

n
(2.19)

For the real solutions of the dispersion relation (ku, kv, k3 and k4), the
normalization condition 2.18 along with 2.7 gives

|D(ω)|2 − |E(ω)|2 =
1

2πn

∣∣∣∣dkdω
∣∣∣∣ (2.20)

which, along with equation 2.8 implies

D(ω) =
(ω − vk) + cξk2/2√

4πncξk2
∣∣(ω − vk)( dk

dω
)−1
∣∣ (2.21)

E(ω) = − (ω − vk)− cξk2/2√
4πncξk2

∣∣(ω − vk)( dk
dω

)−1
∣∣

For the complex modes (kd and kg) where B is the imaginary part,

|D(ω)|2 − |E(ω)|2 = ±2B

n
(2.22)

Now that the modes and the normalization constants are known, the �elds
can be written down.
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Matching conditions:As φ and ϕ satisfy a second order di�erential
equation, there are two matching conditions for each of them. The �elds are
written as:

φr = e−ıωt[ArvD
r
ve
ıkrvx + AruD

r
ue
ıkrux + ArdD

r
de
ıkrdx + ArgD

r
ge
ıkrgx] (2.23)

φl = e−ıωt[AlvD
l
ve
ıklvx + AluD

l
ue
ıklux + AlgD

l
ge
ıklgx + AldD

l
de
ıkldx] (2.24)

The equations for the �eld ϕ are similar, with D replaced by E in the above
equations. Here, the A's are the amplitudes for the modes. ω is a constant
throughout the scattering, as it is the Killing frequency, and hence is con-
served.

The �rst matching condition is that φr = φl. This gives,

AlvD
l
v + AluD

l
u + AldD

l
d + AlgD

l
g = ArvD

r
v + AruD

r
u + ArdD

r
d + ArgD

r
g (2.25)

The matching of �rst spatial derivatives, φ′l = φ′r gives,

AlvD
l
vk

l
v+A

l
uD

l
uk

l
u+AldD

l
dk

l
d+A

l
gD

l
gk

l
g = ArvD

r
vk

r
v+A

r
uD

r
uk

r
u+ArdD

r
dk

r
d+A

r
gD

r
gk

r
g

(2.26)
We get two other equations by matching ϕ and it's �rst spatial derivative.

Writing this in matrix form, we have,
Dl
v Dl

u Dl
d Dl

g

Dl
vk

l
v Dl

uk
l
u Dl

dk
l
d Dl

gk
l
g

El
v El

u El
d El

g

El
vk

l
v El

uk
l
u El

dk
l
d El

gk
l
g



Alv
Alu
Ald
Alg

 =


Dr
v Dr

u Dr
d Dr

g

Dr
vk

r
v Dr

uk
r
u Dr

dk
r
d Dr

gk
r
g

Er
v Er

u Er
d Er

g

Er
vk

r
v Er

uk
r
u Er

dk
r
d Er

gk
r
g



Arv
Aru
Ard
Arg


Probability Currents: The BdG equation, or equivalently the coupled

equations 2.6 and 2.7 can be used to obtain the probability current. From
equation 2.6 we have,

∂tρφ +
ξc

2i
∂x(φ

∗∂xφ− φ∂xφ∗) =
c

ξi
(φ∗ϕ− φϕ∗) (2.27)

From equation 2.7 we have,

∂tρϕ −
ξc

2i
∂x(ϕ

∗∂xϕ− ϕ∂xϕ∗) = − c

ξi
(ϕ∗φ− φ∗ϕ) (2.28)

Adding the two expressions gives,

∂t(ρφ+ρϕ)+
ξc

2i
∂x(φ

∗∂xφ−φ∂xφ∗)−
ξc

2i
∂x(ϕ

∗∂xϕ−ϕ∂xϕ∗) = −2
c

ξi
(ϕ∗φ−φ∗ϕ)

(2.29)
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From the above expression it is evident that there is no source term for real
modes, whereas there exists a source term in case of complex modes.

Complex modes and the source term: We see that the source term
and the contribution from the complex modes should equal one another,
irrespective of the amplitudes. Hence, when looking at the conservation of
probability currents in the scattering con�gurations, we need to check only
for real modes. When the modes are complex we have,

ξc

2i
[(ik))2|D|2 − (−ik∗)2|D|2 − (ik)2|E|2 + (−ik∗)2|E|2] =

2c

ξi
(D∗E − E∗D)

(2.30)
If k=a+ib, then we have

ξc

2i
[(|D|2 − |E|2)((a− ib)2 − (a+ ib)2)] =

2c

ξi
(D∗E − E∗D) (2.31)

giving

− 2abξc(|D|2 − |E|2) =
2c

ξi
(D∗E − E∗D) (2.32)

As the expressions for D and E are cumbersome analytically, the equal-
ity of this equation has been checked numerically for a range of ω less than
ωmax, and are seen to not obey the equality. The results are attached in the
appendix.

Determining amplitudes: For a subsonic - subsonic con�guration,
there are two incoming modes, and two out-going modes, and hence four pos-
sible con�gurations. We try to determine the scattering of incoming modes,
in an attempt to write them in the out basis (the same procedure holds if one
wants to write the out-going modes in the in basis). The matrix equation
being used to solve for amplitudes is a system of four equations. Consider-
ing one incoming mode at a time implies there are three other real modes
and four complex modes, whose amplitudes are not determined. However,
in each sector, the amplitude of the unphysical growing mode is set to zero.
This leaves �ve amplitudes to be determined with four equations. However,
without loss of generality, the incoming amplitude can be set to unity. With
this normalization, there are four equations, with four unknown amplitudes,
thus making the system unambiguous.
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2.3 Subsonic - Subsonic Con�guration

In this con�guration there will be two real roots and two complex roots. As
each region is subsonic, the nature of the modes in both regions is the same.
However, the decaying mode in the right becomes the growing mode on the
left and vice versa. In the following con�gurations, Aru is the re�ected am-
plitude, and Alv is the transmitted amplitude.

• Mode uv,inω : The incoming mode is krv. This implies, |Arv| = 1, and
|Alu| = 0.

Fig. 2.4: Con�guration 1

The matrix equation for this con�guration becomes
Alv
0
Ald
0

 = M


1
Aru
Ard
0

 (2.33)

Probability Currents: Using equation 2.29, the probability current for

the incoming mode is ξc(|Dr
v|2−|Er

v |2)krv). The re�ected and the transmitted
currents give the conservation equation:

ξc(|Dr
v|2 − |Er

v |2)krv) = ξc|Aru|2(|Dr
u|2 − |Er

u|2)kru + ξc|Alv|2|(Dl
v|2 − |El

v|2)klv
Probability current conservation equation is checked numerically, and it

is seen that the currents are not conserved. The results are provided in Ap-
pendix A.
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• Mode uu,inω : The incoming mode is klu. This implies, |Arv| = 0, and
|Alu| = 1.

Fig. 2.5: Con�guration 2

The matrix equation for this con�guration becomes
Alv
1
Ald
0

 = M


0
Aru
Ard
0

 (2.34)

Probability Currents: Using equation 2.29, the probability current for

the incoming mode is (for the �eld φ) is ξc(|Dl
u|2 − |El

u|2)klu. The re�ected
and the transmitted currents give the conservation equation:

ξc(|Dl
u|2 − |El

u|2)klu = ξc|Aru|2(|Dr
u|2 − |Er

u|2)kru + ξc|Alv|2(|Dl
v|2 − |El

v|2)klv

Probability current conservation equation is checked numerically, and it
is seen that the currents are not conserved. The results are provided in Ap-
pendix A.
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2.4 Subsonic - Supersonic Con�guration

In this con�guration, there will be two real modes from the hydrodynamic
approximation, and two complex roots from the small ω approximation in
the subsonic region. In the supersonic region, there are four real modes.

φr = e−ıωt[ArvD
r
ve
ıkrvx + AruD

r
ue
ıkrux + ArdD

r
de
ıkrdx + ArgD

r
ge
ıkrgx] (2.35)

φl = e−ıωt[AlvD
l
ve
ıklvx + AluD

l
ue
ıklux + Al3D

l
3e
ıkl3x + Al4D

l
4e
ıkl4x] (2.36)

The equations for the �eld ϕ are similar, with D replaced by E in the above
equations.

The �rst matching condition is that φr = φl. This gives,

AlvD
l
v + AluD

l
u + Al3D

l
3 + Al4D

l
4 = ArvD

r
v + AruD

r
u + ArdD

r
d + ArgD

r
g (2.37)

The matching of �rst spatial derivatives, φ′l = φ′r gives,

AlvD
l
vk

l
v+A

l
uD

l
uk

l
u+Al3D

l
3k

l
3+A

l
4D

l
4k

l
4 = ArvD

r
vk

r
v+A

r
uD

r
uk

r
u+ArdD

r
dk

r
d+A

r
gD

r
gk

r
g

(2.38)
We get two other equations by matching ϕ and it's �rst spatial derivative.

Writing this in matrix form, we have,
Dl
v Dl

u Dl
3 Dl

4

Dl
vk

l
v Dl

uk
l
u Dl

3k
l
3 Dl

4k
l
4

El
v El

u El
3 El

4

El
vk

l
v El

uk
l
u El

3k
l
3 El

4k
l
4



Alv
Alu
Al3
Al4

 =


Dr
v Dr

u Dr
d Dr

g

Dr
vk

r
v Dr

uk
r
u Dr

dk
r
d Dr

gk
r
g

Er
v Er

u Er
d Er

g

Er
vk

r
v Er

uk
r
u Er

dk
r
d Er

gk
r
g



Arv
Aru
Ard
Arg


Determining amplitudes:As there are six real modes, instead of four,

we will have six con�gurations, three incoming and three out-going modes.
As in the previous section, we consider only the scattering of the incoming
modes, and hence three con�gurations. In each con�guration, Aru is the
re�ected amplitude, with Alv and A

l
u being the transmitted amplitudes.

18



• Mode uv,inω : The incoming mode is krv. This implies, |Arv,1| = 1,
|Al3,1| = 0 and |Al4,1| = 0. Here, Arv,1 implies the amplitude of the mode
krv in con�guration 1, and so on.

Fig. 2.6: Con�guration 1

The matrix equation for this con�guration becomes
Alv,1
Alu,1

0
0

 = M


1
Aru,1
Ard,1

0

 (2.39)

Probability Currents: Using equation 2.27, the incoming current (I), the

re�ected current (R), and the transmitted current (T) are calculated using
equation 2.29. The probability current conservation equation is I = R + T .

I = ξc(|Dr
v|2krv) R = ξc|Aru,1|2(|Dr

u|2 − |Er
u|2)kru

T = ξc|Alv,1|2(|Dl
v|2 − |El

v|2)klv − ξc|Alu,1|2(|Dl
u|2 − |El

u|2)klu

Probability current conservation is checked numerically, and it is seen that
the currents are not conserved. The results are provided in Appendix B.
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• Mode u3,inω : The incoming mode is kl3. This implies, |Al3,2| = 1,
|Arv,2| = 0 and |Al4,2| = 0.

Fig. 2.7: Con�guration 2

The matrix equation for this con�guration becomes
Alv,2
Alu,2

1
0

 = M


0
Aru,2
Ard,2

0

 (2.40)

Probability Currents: Using equation 2.27, the incoming current (I), the

re�ected current (R) and the transmitted current (T) are calculated using
equation 2.29. The probability current conservation relation is I = R + T

I = ξc(|Dl
3,2|2 − |El

3|2)kl3 R = ξc|Aru,2|2(|Dr
u|2 − |Er

u|2)kru

T = ξc|Alv,2|2(|Dl
v|2 − |El

v|2)klv − ξc|Alu,2|2(|Dl
u|2 − |El

u|2)klu

Probability current conservation is checked numerically, and it is seen that
currents are not conserved. The results are provided in Appendix B.
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• Mode u4
∗,in
ω : The incoming mode is kl4. This implies, |Al4,3| = 1, and

|Arv,3| = |Al3,3| = 0.

Fig. 2.8: Con�guration 3

The matrix equation for this con�guration becomes
Alv,3
Alu,3

0
1

 = M


0
Aru,3
Ard,3

0

 (2.41)

Probability Currents: Using equation 2.27, the incoming current (I), the

re�ected current (R) and the transmitted current (T) are calculated using
equation 2.29. The probability current for this con�guration is I = R + T

I = ξc(|Dl
4|2 − |El

4|2)kl4 R = ξc|Aru,3|2(|Dr
u|2 − |Er

u|2)kru

T = ξc|Alv,3|2(|Dl
v|2 − |El

v|2)klv − ξc|Alu,3|2(|Dl
u|2 − |El

u|2)klu

Probability current conservation equation is checked numerically, and it is
seen that the currents are not conserved. The results are provided in the ap-
pendix. The fact that a negative norm mode is involved in this con�guration
is crucial for mode mixing to occur. While writing the annihilation operators
in terms of the out basis it is this mode that comes with a creation operator,
thereby indicating a spontaneous pair production at the horizon.
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2.5 Results and Discussion

In [14], the unitarity of the amplitudes in each con�guration, allowed to
proceed to calculate the Bogoliubov transformation, and from there the two
point correlation function. It has been shown that, in the subsonic - subsonic
case, the correlation is just the repulsive interaction between the particles.
As there is no black hole like con�guration, no Hawking like radiation was
expected to be observed.

In the same paper [14], for the case of a subsonic - supersonic con�gura-
tion, Hawking like radiation was observed, and the temperature read o� to
be the coe�cient of the 1

ω
term, as in a thermal Bose distribution.

Due to the step-discontinuous nature of the transition in the speed of
sound from the x > 0 region to the x < 0 region, the surface gravity is in�-
nite, although there is a �nite temperature.

However, the same calculations, as shown in the appendix did not con-
serve probability currents, and when analytical calculations were performed,
unitarity, as considered by [14] was not reproduced. Further,

In solving for the modes, the small ω approximation is made. While
calculating the two point correlation function, there exists an integral over
ω.

φ̂ =

∫ ωmax

0

dω[av,inω uv,inω,φ + au,inω uu,inω,φ + av,in†ω uv,in∗ω,ϕ + au,in†ω uu,in∗ω,ϕ ] (2.42)

Here, u is ANe−iωt+ikx, where A is the amplitude of the mode, and N is the
corresponding normalization constant. This expansion is then written ex-
plicitly in terms of the in or the out basis, using the transformation obtained
to further study density correlations. This integration is inconsistent with
the small ω approximation.

In plotting the graphs of Fig. 2.2 and Fig. 2.3, the perturbative expres-
sions for the modes are used. From the graph it is seen that ωmax corresponds
to a value of 11.08. However, numerical calculations done using the exact
solutions to the dispersion relation, put the value of ωmax closer to 8.8. This
obvious discrepancy brings into question the perturbative scheme.
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The complex modes are not considered in balancing probability currents.
However, the Poynting vector for these modes is non-zero, which indicates
that they need to be considered for this balance. Even with this inclusion,
however, probability currents are not conserved, which led us to reconsider
the assumptions on which this model is based.

In [13] and [14] a discontinuity in the speed of sound is considered to
obtain the scattering matrix. However, this changes the Compton wavelength
(λc = ~

mc
) in the analogue system, which is a constant in the physical world.

This is equivalent to looking at the same scattering process from two very
di�erent length scales, and equating the results. Hence, in the following
section, which presents the modi�cation to this model, a discontinuity in the
velocity of the condensates is considered.
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Chapter 3

Hawking radiation using linear

dispersion relation

The basic theory of BECs, as described in Chapter 2 lead to the BdG equation
for the �uctuations 1. Writing φ̂ as in equation 2.5 and using the BdG gives,

i~(∂t + v∂x)φj +
~2

2m
∂2xφj −mc2φj = mc2ϕj (3.1)

− i~(∂t + v∂x)ϕ
∗
j +

~2

2m
∂2xϕ

∗
j −mc2ϕ∗j = mc2φ∗j (3.2)

In the hydrodynamic limit, only those length scales which are greater than
the healing length ξ are studied. Hence, ignoring the order ξ2 term ~2

2m
in

equation 3.1,

ϕj =
i~
mc2

(∂t + v∂x)φj − φj (3.3)

Using this in equation 3.2 and again, ignoring terms of order ξ2 gives a triv-
ial result. Hence, the phase-density representation for the �uctuation �eld,
which can reproduce the d'Alembertian equation of motion in the hydrody-
namic limit is used.

φ̂ =
n̂1

2n
+ i

θ̂1

~
(3.4)

where, n1 is the �uctuation in the density and θ1 is the �uctuation in the
phase. Further, expanding these as

n̂1(t, x) =
∑
j

[âjn
1
j(t, x) + â†n1∗

j (t, x)] (3.5)

θ̂1(t, x) =
∑
j

[âjθ
1
j (t, x) + â†θ1∗j (t, x)]

1This section is based on [13]
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and using this expansion in the BdG equation gives

(∂t + v∂x)n
1 +

n

m
∂2xθ

1 = 0 (3.6)

(∂t + v∂x)θ
1 +

mc2

n
n1 − ~2

4mn
∂2xθ

1 = 0 (3.7)

The last term in equation 3.4 translates to mc2ξ2

4n
. In the hydrodynamic limit,

this term can be neglected, giving n1 in terms of θ1.

n1 = − n

mc2
(∂t + v∂x)θ

1 (3.8)

This, when used in equation 3.3 gives a second order di�erential equation (θ1

satis�es the Klein Gordon equation) which can be recast as

− ∂t[
∂tθ

1

c2
+
v

c2
∂xθ

1] + ∂x[(1−
v2

c2
)∂xθ

1 − v

c2
∂tθ

1] = 0 (3.9)

3.1 Linear dispersion relation

The linear dispersion relation for BECs is

ω − vk = ±ck (3.10)

Solving for k in terms of ω we have two real modes

ku =
ω

v + c
(3.11)

kv =
ω

v − c
(3.12)

θ1 can be expanded in terms of these modes as

θ1 =

∫ ∞
0

dω[âuωu
u
ω(t, x) + âvωu

v
ω(t, x) + h.c] (3.13)

Here,

uuω = Bue
−iωt+ikux (3.14)

uvω = Bve
−iωt+ikvx (3.15)

Bu and Bv are normalization constants to be determined.
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3.1.1 Normalization

The equal time commutator from equation 2.1, under the phase-density rep-
resentation becomes,

[n̂1(t, x), θ̂1(t, x′)] = δ(x− x′) (3.16)

Integration of this, gives∫
dx[n1

jθ
′1∗
j − n1∗

j θ
1
j
′] = δjj′ (3.17)

Using the de�nition of n1 in terms of θ1, and using the above normalization,
we have

(θ1j , θ
′1
j ) = i

∫
dx

n

mc2
[θ1∗j (∂t + v∂x)θ

′1
j − θ′1j (∂t + v∂x)θ

1∗
j ] = δjj′ (3.18)

Equivalently,

(uω, uω′) = i

∫
dx

n

mc2
[u∗ω(∂t+v∂x)uω′−uω′(∂t+v∂x)u

∗
ω] = δ(ω−ω′) (3.19)

Using equations 3.11 and 3.12, we have the normalization constants

|Bu|2 = |Bv|2 =
mc

4πnω
(3.20)

Subsonic - Supersonic con�gurations: As in the previous section, the
nature of the modes decide the basis.

Mode Norm Phase velocity

krv Positive Negative, Incoming mode
kru Positive Positive, Out-going mode
klv if (|v| > c) Positive Negative, Out-going mode
klu if (|v| > c) Negative Negative, Out-going mode

As is evident from the table above, there are no incoming modes on the
supersonic side. This is because, due to the non-superluminal nature of the
dispersion relation, the modes in the supersonic region are dragged with the
�uid. This makes it impossible to consider a black hole like scenario, as the
matrix equation becomes indeterminate.
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Consider the incoming mode krv for scattering.

Then the matrix equation becomes(
Alv
Alu

)
= M

(
1
Aru

)
(3.21)

This leaves three amplitudes unknown, with two equations, hence making
the system indeterminate. Similarly, when an outgoing mode is considered,
a trivial result is obtained. However, a subsonic - subsonic scenario can be
studied.

3.2 Scattering matrix: c - discontinuity

The model described in the previous section, with two semi-in�nite regions
is considered. Here, c(x) = crΘ(x) + clΘ(−x). Then,

θ1l = e−iωt
√

mcl
4πωn

[Alve
iklvx + Alue

iklux] (3.22)

θ1r = e−iωt
√

mcr
4πωn

[Arve
ikrvx + Arue

ikrux] (3.23)

Matching conditions are as follows:

θ1l − θr = 0 (3.24)

(1− v2

c2l
)∂xθ

1
l −

v

c2l
∂tθ

1
l = (1− v2

c2r
)∂xθ

1
r −

v

c2r
∂tθ

1
r (3.25)
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Equation 3.23 gives,
√
cl[A

l
v + Alu] =

√
cr[A

r
v + Aru] (3.26)

Equation 3.24 gives,

((1− v2

c2l
)(iklv) + iωv

c2l
)AlvB

l
ve
−iωt+iklvx + ((1− v2

c2l
)(iklu) + iωv

c2l
)AluB

l
ue
−iωt+iklux

= ((1− v2

c2r
)(ikrv) + iωv

c2r
)ArvB

r
ve
−iωt+ikrvx + ((1− v2

c2r
)(ikru) + iωv

c2r
)AruB

r
ue
−iωt+ikrux

Using the expressions for the normalization constants and the modes klv,
klu, k

r
v and k

r
u, and simplifying, we have

−Alv√
cl

+
Alu√
cl

=
−Arv√
cr

+
Aru√
cr

(3.27)

Writing as a matrix equation, WlA
l = WrA

r, inverting Wl and multiplying
with Wr gives the scattering matrix, M.(

Alv
Alu

)
=

1

2
√
clcr

(
cr + cl cr − cl
cr − cl cr + cl

)(
Arv
Aru

)
(3.28)

Subsonic - subsonic con�guration: The nature of the modes is as follows.

Mode Norm Phase velocity

krv Positive Negative, Incoming mode
kru Positive Positive, Out-going mode
klv if (|v| < cl) Positive Negative, Out-going mode
klu if (|v| < cl) Positive Positive, Incoming mode

Mode uvin: (
Alv
0

)
=

1

2
√
clcr

(
cr + cl cr − cl
cr − cl cr + cl

)(
1
Aru

)
(3.29)

This implies,

Aru = −cr − cl
cr + cl

≡ R (3.30)

Alv =
2
√
crcl

cr + cl
≡ T (3.31)

Here, R is theamplitude of the re�ected mode and T is the amplitude of
the transmitted mode. As is evident, R2 + T 2 = 1. Similarly,
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Mode uuin: (
Alv
1

)
=

1

2
√
clcr

(
cr + cl cr − cl
cr − cl cr + cl

)(
0
Aru

)
(3.32)

This implies,

Aru =
cr − cl
cr + cl

≡ −R (3.33)

Alv =
2
√
crcl

cr + cl
≡ T (3.34)

In this con�guration, the relation R2 + T 2 = 1 holds. These con�gura-
tions provide the transformation matrix from the in basis to the out basis,

which is

(
T R
−R T

)

Probability currents The probability current for this system is derived
using the BdG equation and the phase-density representation.

j =
−~
2mi

(φ∗∂xφ− φ∂xφ∗) (3.35)

using the de�nitions of φ and the expression for the normalization constants,

j =
−mcv|A2|

4πnω
(
(ω − vk)2

4m2c4
+

(ω − vk)

mc2~
+

1

~2
) (3.36)

If the expressions for k and the amplitudes are used to balance the cur-
rents, it can be easily seen that this fails to be conserved for any given
con�guration. In [13], the correlation function has been calculated for this
con�guration, giving a result which encodes the repulsive interactions be-
tween atoms in the system, as is expected.

In the above con�guration, the scattering matrix M was non-trivial, only
because the speeds of sound in di�erent regions were di�erent. However,
this non-trivial scattering may be an artefact of looking at the modes from
di�erent length scales. To avoid this, we need to write equation 3.9 with a
dimensionless parameter. Another check is to consider a discontinuity in the
velocity of the condensate and see how the scattering matrix changes.
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3.3 Scattering matrix: v - discontinuity

The model described in the previous section, with two semi-in�nite regions
is considered, with the distinction that a discontinuity in the velocity of
the condensates replacing the discontinuity in the speed of sound: v(x) =
vrΘ(x) + vlΘ(−x). In case of c - discontinuity, the GP equation remains un-
changed in both sectors, and when Ψ̂ is matched at the boundary, due to the
constant velocity the matching condition turns out to be just the matching of
the �uctuation �elds. In case of discontinuity in the velocity of the conden-
sate, though the GP equation remains unchanged, the matching of Ψ̂ at the
boundary will have an eik0x factor. The fact that the macroscopic condensate
does not experience any curvature implies that, if Hawking radiation can be
looked at as a scattering problem, the matching at the boundary has to apply
only for the �uctuation �elds, and still preserve probability currents.

θ1l = e−iωt
√

mc

4πωn
[Alve

iklvx + Alue
iklux] (3.37)

θ1r = e−iωt
√

mc

4πωn
[Arve

ikrvx + Arue
ikrux] (3.38)

Matching the �elds and their derivatives at x = 0,

θ1l = θ1r (3.39)

As the normalization constants for both the �elds are the same, we have

[Alv + Alu] = [Arv + Aru] (3.40)

[(1− v2l
c2

)∂xθ
1
l −

vl
c2
∂tθ

1
l ] = [(1− v2r

c2
)∂xθ

1
r −

vr
c2
∂tθ

1
r ] (3.41)

Simpli�cation using the expressions for the modes gives,

[−A
l
v

c
+
Alu
c

] = [−A
r
v

c
+
Aru
c

] (3.42)

Hence, we have (
1 1
−1
c

1
c

)(
Alv
Alu

)
=

(
1 1
−1
c

1
c

)(
Arv
Aru

)
(3.43)

As the matrices multiplying the vectors on either side are the same, the
scattering matrix becomes identity, i.e.(

Alv
Alu

)
=

(
1 0
0 1

)(
Arv
Aru

)
(3.44)
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As shown by the calculation above, the scattering problem does not get de-
�ned when a discontinuity in the velocity of the condensate is considered. The
unstated assumption underlying the calculations till now is that the modes
scattered are the asymptotic modes, which retain their plane wave nature.
In all the calculations above, a singular surface gravity is obtained due to the
step-discontinuous nature of the change in speeds. The non-conservation of
probability currents, combined with the triviality of the scattering matrix in
the case above and a singular surface gravity motivates the questioning some
of the basic assumptions in these models.

To avoid a singular surface gravity, we consider a continuously varying
velocity pro�le, such that the asymptotic value is a constant. However, near
the horizon, the continuously varying velocity guarantees a smooth transition
into the supersonic region. The next modi�cation to the model is to challenge
the assumption that the asymptotic modes are unchanged by the horizon. To
this e�ect, we introduce a position and velocity dependent (mode dependent)
phase in the modes. The phases are such that the modes are unchanged in
the asymptotic regions, however, they are no longer plane waves near the
horizon. This change is consistent with the discussions in [12] and [15] about
the Lorentz non-invariant dispersion relations. However, the nature of the
Lorentz breaking is not pre-determined by BEC theory, but allows for the
constraints due to the presence of the horizon.

In the hydrodynamic limit, it is not possible to consider a black hole like
con�guration, when a system like the one described in the previous section
is considered. This is because, even though there is an outgoing mode on the
super-sonic side, as it has no superluminal component, it gets dragged by
the �uid, thereby giving an indeterminate system. In considering di�erent
phases for di�erent modes we hope to achieve a black hole like con�guration
using a modi�ed linear dispersion.
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Chapter 4

A possible solution

As discussed in the previous section, a phase is introduced, such that the
asymptotic wavenumbers change as they approach the horizon. The pro�le
of velocity is tan-hyperbolic or a close approximation of it, such that the
asymptotic modes are recovered at in�nity. The introduction of a phase
changes uω.

uω = Be−iωt+ikx+iη(v,ω) (4.1)

where η is the velocity/mode dependent phase and k are the asymptotic
modes, which depend on the asymptotic velocities v0l and v0r. The introduc-
tion of the phase modi�es the dispersion relation. η is assumed to be real
such that it tends to a constant at in�nity. The constraints on these phases
will be examined based on the con�guration being studied.

Normalization:From equation 3.16 we have,

(uω, uω′) = i

∫
dx

n

mc2
[u∗ω(∂t + v∂x)uω′ − uω′(∂t + v∂x)u

∗
ω] = δ(ω− ω′) (4.2)

Using the modi�ed form for uω,

(uω, uω′) =
n

mc2

∫
dx[BωBω′e

−i(ω−ω′)t+i(kω′−kω)x+i(η(ω′)−η(ω))(ω+ω′−v0(kω′kω+η′ω′+η
′
ω))]

(4.3)
Integrating this expression for di�erent modes, with the corresponding

phases will give the normalization constant. At a �xed frequency,

θ1l = Bl
ve
−iωt+iklvx+iηlvAlv +Bl

ue
−iωt+iklux+iηlu (4.4)

θ1r = Br
ve
−iωt+ikrvx+iηrvArv +Br

ue
−iωt+ikrux+iηru (4.5)
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Matching condittions:The ansatz for φ̂ is, as in the previous section,
the phase density representation. As this obeys a second order equation, the
matching conditions are similar to equations 3.23 and 3.24. The presence
of the position dependent modes gives an extra factor in the condition 3.24.
The �rst matching condition is that θ1l = θ1r . This gives

AlvB
l
ve
iηlv + AluB

l
ue
iηlu = ArvB

r
ve
iηrv + AruB

r
ue
iηru

Matching the �rst spatial-derivatives gives

AlvB
l
v[(1−

v20l
c2

)(η′lv )− ω
c
]eiη

l
v + AluB

l
u[(1−

v20l
c2

)(η′lu)]eiη
l
u =

ArvB
r
v [(1−

v20r
c2

)(η′rv )− ω
c
]eiη

r
v + AruB

r
u[(1−

v20r
c2

)(η′ru )]eiη
r
u

Here, η′ is the derivative with respect to the position x. Writing the above
two conditions in matrix form, we have

Wl

(
Alv
Alu

)
= Wr

(
Arv
Aru

)
(4.6)

Inverting Wl and multiplying with Wr gives the matching matrix M(
Alv
Alu

)
=

(
A B
C D

)(
Arv
Aru

)
(4.7)

where,

A =
Br
v(2ωc+ (c2 − v20l)η′lu − (c2 − v20r)η′rv )

Bl
v(2ωc+ (c2 − v20l)(η′lu − η′lv ))

ei(η
r
v−ηlv)

B =
Br
u((c

2 − v20l)η′lu − (c2 − v20r)η′ru )

Bl
v(2ωc+ (c2 − v20l)(η′lu − η′lv ))

ei(η
r
u−ηlv)

C =
Br
v((c

2 − v20r)η′rv − (c2 − v20l)η′lv )

Bl
u(2ωc+ (c2 − v20l)(η′lu − η′lv ))

ei(η
r
v−ηlu)

D =
Br
u(2ωc+ (c2 − v20r)η′ru − (c2 − v20l)η′lv )

Bl
u(2ωc+ (c2 − v20l)(η′lu − η′lv ))

ei(η
r
u−l

u)
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Probability currents: The currents are derived using the time evolution
equation. The currents for this model will have an additional contribution
from the phases, as compared to equation 3.36. The introduction of phase
implies that the amplitudes of the modes, in general depend on the position
x. However, as a special case, we consider constant amplitudes, to see if
a black hole like scenario exists. Once a particular pro�le for velocity is
considered, η is �xed automatically, under the condition that it must tend
to constant asymptotically. Given this, the amplitudes should turn out such
that there is probability current conservation.

j = |B|2(v + ξck + η′)|A|2[ (ω − vk + vη′)2

4m2c4
+

(ω − vk + vη′)

mc2~
+

1

~2
] (4.8)

4.0.1 Constraints on the phases

Now that a scattering matrix has been obtained, there needs to be a check
on whether the phases can vary in a way to form a black-hole like con�g-
uration, without any inconsistencies. Such a con�guration requires at least
one negative norm mode, and two incoming and two out-going modes. Once
a velocity pro�le is �xed, phases can be solved for, using equations 3.1 and
3.2. The constraints on the phases of di�erent modes to obtain a black hole
con�guration is listed here.

Subsonic - subsonic con�guration

Mode Norm Group velocity

krv Positive, η′rv < − ωc
v0r(v0r−c) Negative

kru Positive, η′ru <
∣∣∣− ωc

v0r(v0r+c)

∣∣∣ Positive

klv Negative, η′lv < − ωc
v0l(v0l−c)

Negative, dη
l
v

dω
< 0 or

∣∣∣dηlvdω ∣∣∣ < 1
v0l−c

klu Positive, η′lu <
∣∣∣− ωc

v0l(v0l+c)

∣∣∣ Positive, dη
l
u

dω
>
∣∣∣ 1
v0l+c

∣∣∣
Subsonic - supersonic con�guration

Mode Norm Group velocity

krv Positive, η′rv < − ωc
v0r(v0r−c) Negative

kru Positive, η′ru <
∣∣∣− ωc

v0r(v0r+c)

∣∣∣ Positive

klv Negative, η′lv >
∣∣∣− ωc

v0l(v0l−c)

∣∣∣ Negative, dη
l
v

dω
< 0 or

∣∣∣dηlvdω ∣∣∣ < 1
v0l−c

klu Positive,
∣∣η′lu∣∣ > ωc

v0l(v0l+c)
Positive, dη

l
u

dω
>
∣∣∣ 1
v0l+c

∣∣∣
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4.1 Constructing the basis

Con�guration 1: krv is the incoming mode. This implies, |Arv| = 1 and
|Alu| = 0. The matrix equation becomes

(
Alv1
0

)
= M

(
1
Aru1

)

Alv1 =
Br
v

Bl
v

[
2ωc+ (c2 − v20l)η′lu − (c2 − v20r)η′rv

2ωc+ (c2 − v20l)(η′lu − η′lv )

+
(c2 − v20l)η′lu − (c2 − v20r)η′ru
2ωc+ (c2 − v20l)(η′lu − η′lv )

(c2 − v20r)η′rv − (c2 − v20l)η′lv
2ωc+ (c2 − v20r)η′ru − (c2 − v20l)η′lv

]ei(η
r
v−ηlv)

Aru1 =
Br
v

Br
u

(c2 − v20r)η′rv − (c2 − v20l)η′lv
2ωc+ (c2 − v20r)η′ru − (c2 − v20l)η′lv

ei(η
r
v−ηru)

The structure of the amplitudes points to the fact that the ratio of the
re�ected current (or the transmitted current) to the incoming current should
be independent of the normalization constants.

Con�guration 2: klu is the incoming mode. This implies, |Arv| = 0 and
|Alu| = 1. The matrix equation becomes

(
Alv2
1

)
= M

(
0
Aru2

)

Aru2 =
Bl
u

Br
u

2ωc+ (c2 − v20l)(η′lu − η′lv )

2ωc+ (c2 − v20r)η′ru − (c2 − v20l)η′lv
ei(η

l
u−ηru)

Alv2 =
Bl
u

Bl
v

(c2 − v20l)η′lu − (c2 − v20r)η′ru
2ωc+ (c2 − v20r)η′ru − (c2 − v20l)η′lv

ei(η
l
u−ηlv)

Probability current conservation is checked using equation 4.8 appropri-
ately. On adopting a form for v(x), or equivalently η(x, k), the constraints
and the current conservation can be explicitly checked.
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The transformation matrix from one basis to the other will be in terms of
the amplitudes calculated. Probability current conservation will ensure that
this transformation is unitary. Using these relations, the it should be checked
that the conditions for the phase for each mode to obtain a black-hole like
con�guration is not inconsistent with the solution obtained for the phases
by �xing the velocity pro�le. If, in the scenario described above there is no
condition under which a black hole like scenario can exist, then the more gen-
eral case of amplitudes with position dependence have to be considered. As
the change in velocity translates into the change in the acoustic metric (eqn.
1.3), the change in the volume element as the modes approach the horizon
should be o� set by the amplitudes to maintain a constant probability cur-
rent. Then, if mode mixing occurs, it is an indication of Hawking radiation,
and the temperature can be obtained by using density correlations. As the
transition from the subsonic to the supersonic region is continuous in the
model described in this section, a singular surface gravity will be avoided.
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Chapter 5

Discussions and future directions

Analogue gravity mainly studies the kinematics of gravitational systems, one
of which is the phenomenon of Hawking radiation. The models used to study
this, as described in chapters 2 and 3 stop short of mimicking Hawking radi-
ation in analogue systems. The most important deviation from a relativistic
scenario in these models is the singular surface gravity for a black hole with
�nite temperature. However, this spurious result can be done away with,
using the model described in chapter 4.

Although analogue models are yet to establish Hawking-like radiation,
the possibility of avoiding the trans-Planckian issue in these models is lucra-
tive. Jacobson, in his paper [12] has addressed the issue via the process of
mode conversion. This is a process which does not assume a trans-Planckian
reservoir just outside the event horizon, but provides a mechanism for the
existence of out-going modes. In this paper, the question of Lorentz non-
invariance is also addressed. The argument is that to have locality and
Lorentz invariance one must conclude that there are in�nitely many degrees
of freedom in any given volume, irrespective of how small that volume may
be. To avoid this, one way out is to have a Lorentz breaking term in the
dispersion relation. The process of mode conversion is achieved with this
assumption. In the model described in chapter 4, although the dispersion
relation is Lorentz invariant asymptotically, the modi�cation to the modes
due to the horizon may give rise to a Lorentz breaking term. In this case,
the results of [12] can be translated to this model.
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If successful, this model can establish Hawking radiation, but only at the
kinematic level. The e�ect of back-reaction has not been incorporated into
this model, the dynamics of which could very well alter the physics of the
phenomenon. A particularly interesting work on the e�ect of back-reaction
on Bogoliubov co-e�cients is by 't Hooft, [16] where it is shown that in rel-
ativistic black holes, when an incoming state is changed, the out-going state
changes by a phase factor.

Further, even if Hawking radiation were established in analogue models,
the dynamics of these systems are di�erent from the dynamics of relativistic
systems. Analogues of black holes are created at a speci�c time, and hence
cannot reproduce eternal black hole con�gurations. The event horizons are
highly susceptible to the creation process - so much so that an inappropriate
process might eliminate the phenomenon of Hawking radiation. In studying
Hawking radiation in analogue systems with modi�ed dispersion relations,
there are three main assumptions [4]:

(i) The preferred frame selected by the Lorentz non-invariance should be
that of the freely falling observer, and not that of the observer at in�nity.

(ii) The excitations must start o� in a ground state with respect to the
freely falling observer.

(iii) The excitations must evolve in an adiabatic way, meaning that the
Planckian dynamics must be faster than the sub-Planckian dynamics.

It is possible that one or more of the above assumptions do not extend
to physical black holes. In addition, the calculations are based on semi-
classical theories, whose validity is questionable. Despite these assumptions,
analogue models o�er a tractable way of studying systems that are otherwise
not easily accessible. This, and the fact that relativistic techniques might
lead to insights into condensed matter physics makes this an area of great
interest.
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Appendix A

Subsonic - subsonic con�gurations

The results of the subsonic-subsonic case, which has two con�gurations are
presented. The results were obtained using Mathematica - 9. The con�gura-
tion has a discontinuity in the speed of sound. The values used are: ~ = 1,
v = −1, cr = −5v/3, cl = −2v, m = 20, ξr = 1

crm
, ξl = 1

clm
. The values of ω

used are of the same order as ωmax. Con�guration 1 has krv as the incoming
mode and Con�guration 2 has klu as the incoming mode. Aru,n refers to the
amplitude of the mode kru in con�guration n. G and F are respectively the
normalization constants of the growing modes for �elds φ and ϕ.

ω = 0.2

Modes vg D(ω) E(ω)
krv = −0.075 -0.375 3.64√

n
−3.64√

n

kru = 0.33 1.49 3.43√
n

−3.39√
n

krd = −0.11 + i53.34 - −92.51+i27√
n

−0.01+i96.93√
n

klv = −0.067 -0.33 3.95√
n

−3.94√
n

klu = 0.12 0.99 5.92√
n

−5.91√
n

kld = −0.067− i69.28 - 125.82‘−i72.64√
n

−0.00657+i145.758√
n

Ar
u,1 = (−0.21+i0.0006)F−(0.21+i0.031)G

F+(0.98+i0.15)G

Al
v,1 = ((1.2−i0.077)F 4+(0.87−i1.66)F 3G−(1.6+i2.68)F 2G2−(1.88−i0.007)FG3−(0.64−i1.03)G4)

((1.2−i0.077)F 4+(0.87−1.66)F 3G−(1.6+i2.68)F 2G2−(1.88−i0.007)FG3−(0.64−i1.03)G4)

Ar
u,2 = (1.65−i0.002)F+(1.63+i0.24)G

F+(0.98+i0.148)G

Al
v,2 = (−0.065−i0.0008)F−(0.064+i0.01)G

F+(0.98+i0.15)G

41



ω = 3

Modes vg D(ω) E(ω)
krv = −1.12 -0.375 0.96√

n
−0.93√

n

kru = 4.47 1.47 0.99√
n

−0.87√
n

krd = −1.67 + i53.46 - −−23.21+i6.87√
n

−−0.0015+i26.32√
n

klv = −0.99 -0.33 1.05√
n

−1.02√
n

klu = 2.99 0.99 1.06√
n

−0.98√
n

kld = −0.99− 69.32 - 31.57−i18.28√
n

0.00001−i38.34√
n

Ar
u,1 = (−0.21+i0.0007)F−(0.21+i0.031)G

F+(0.98+i0.15)G

Al
v,1 = ((1.2−i0.08)F 4+(0.87−i1.66)F 3G−(1.6+i2.68)F 2G2−(1.88−i0.007)FG3−(0.64−i1.03)G4)

(F 4+(0.72−i1.2)F 3G−(1.27+i2.12)F 2G2−(1.43−i0.06)FG3−(0.48−i0.88)G4)

Ar
u,2 = (1.65−i0.002)F+(1.63+i0.24)G

F+(0.98+i0.15)G

Al
v,2 = (−0.065−i0.0008)F−(0.06+i0.01)G

F+(0.98+i0.15)G

ω = 5

Modes vg D(ω) E(ω)
krv = −1.87 -0.37 0.74√

n
−0.7√
n

kru = 7.38 1.43 0.79√
n

−0.64√
n

krd = −2.75 + i53.67 - −17.56+5.33I√
n

0.0009−21.07I√
n

klv = −1.66 -0.33 0.81√
n

−0.78√
n

klu = 4.98 0.99 0.84√
n

−0.74√
n

kld = −1.65− i69.4 - 23.99−i13.95√
n

0.0018−i30.16√
n

Ar
u,1 = (0.099−i0.004)F+(0.07−i0.05)G

F+(0.8−i0.46)G

Al
v,1 = ((0.8+i0.05)F 4+(0.21−i1.92)F 3G−(2.62+i0.58)F 2G2−(0.54−i1.87)FG3+(0.73+i0.42)G4)

(F 4+(0.15−i2.5)F 3G−(3.46+i0.72)F 2G2−(0.79−i2.44)FG3+(0.88+i0.57)G4)

Ar
u,2 = (0.95−i0.006)F+(0.76−i0.45)G

F+(0.81−i0.46)G

Al
v,2 = (−0.13−i0.002)F−(0.1−i0.06)G

F+(0.8−i0.46)G
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ω = 8

Modes vg D(ω) E(ω)
krv = −2.99 -0.37 0.6√

n
−0.54√

n

kru = 11.56 1.35 0.66√
n

−0.46√
n

krd = −4.28 + i54.17 - −14.47+3.72I√
n

0.22−18.21I√
n

klv = −2.66 -0.33 0.65√
n

−0.61√
n

klu = 7.92 0.97 0.68√
n

−0.56√
n

kld = −2.63− i69.58 - 18.5−i10.86√
n

−0.0017+i24.5√
n

Ar
u,1 = ((0.14−i0.008)F+(0.1−i0.06)G)

(F+(0.79−0.41)G)

Al
v,1 = ((0.76+i0.06)F 4+(0.27−i1.93)F 3G−(2.57+i0.87)F 2G2−(0.91−i1.78)FG3+(0.55+i0.61)G4)

(F 4+(0.22−i2.66)F 3G−(3.61+i1.14)F 2G2−(1.34−i2.44)FG3+(0.69+i0.84)G4)

Ar
u,2 = (1.04−i0.02)F+(0.82−i0.45)G

F+(0.79−i0.41)G

Al
v,2 = (−0.032−i0.005)F−(0.03−i0.009)G

F+(0.79−i0.41)G

ω = 12

Modes vg D(ω) E(ω)
krv = −0.075 -0.375 3.64√

n
−3.64√

n

kru = 0.33 1.49 3.43√
n

−3.39√
n

krd = −0.11 + i53.34 - −92.51+i27√
n

−0.01+i96.93√
n

klv = −0.067 -0.33 3.95√
n

−3.94√
n

klu = 0.12 0.99 5
.
92
√
n −5.91√

n

kld = −0.067− i69.28 - 125.82‘−i72.64√
n

−0.00657+i145.758√
n

Ar
u,1 = ((−0.21+0.0007)F−(0.21+i0.031)G)

(F+(0.98+i0.15)G)

Al
v,1 = (1.2−i0.07)F 4+(0.87−i1.66)F 3G−(1.6+i2.68)F 2G2−(1.88−i0.007)FG3−(0.64−i1.03)G4

F 4+(0.72−i1.2)F 3G−(1.27+i2.12)F 2G2−(1.43−i0.06)FG3−(0.48−i0.88)G4

Ar
u,2 = (1.65−i0.002)F+(1.63+i0.24)G

F+(0.98+i0.15)G

Al
v,2 = (−0.065−0.0008)F−(0.064+i0.01)G

F+(0.98+i0.15)G
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Source terms for complex modes: As shown in chapter 2, there is
a source term for complex modes. As the modes do not change with con-
�guration, and the relation 2.31 is independent of amplitudes, this analysis
holds for both the con�gurations above, as well as the subsonic case for the
con�gurations in the next chapter. The two sides of the equation 2.31 are
evaluated for di�erent values of ω and presented here.

Right sector

ω krd −2abξc(|D|2 − |E|2) 2c
ξi

(D∗E − E∗D)

0.2 -0.11 + i53.34 62.59√
n

1.99∗106√
n

3 -1.67 + i53.46 62.59√
n

1.99∗106√
n

5 -2.75 + i53.67 −1574.52√
n

82220√
n

8 -4.28 + i54.17 2473.35√
n

58737.1√
n

12 -6.1 + i55 62.59√
n

1.99∗106√
n

Left sector

ω kld −2aξc(|D|2 − |E|2) 2c
ξi

(D∗E − E∗D)

0.2 -0.067 - i69.28 −64.31√
n

−5.86∗106√
n

3 -0.99 - i69.32 −64.31√
n

−5.86∗106√
n

5 -1.65 - i69.4 −1589.4√
n

−231524√
n

8 -2.63 - i69.58 −2546.56√
n

−145046√
n

12 -3.87 - i69.94 −69.28√
n

−64.3162√
n

The amplitudes were obtained in terms of F and G, which are respectively
the normalization constants of the growing modes for the �elds ϕ and φ. As
these are not obtained by the theory, the current conservation is not looked
at for the subsonic-subsonic scenario.
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Appendix B

Subsonic - supersonic

con�gurations

The results of the subsonic-supersonic case are presented. The results were
obtained using Mathematica - 9. The con�guration has a discontinuity in
the speed of sound. The values are obtained by solving the dispersion rela-
tion exactly. The values used are: ~ = 1, v = −1, cr = −5v/3, cl = −v/4,
m = 20, ξr = 1

crm
, ξl = 1

clm
. ω = 12 is not considered, as ωmax is 8.8, and

any value of ω greater than that will reproduce the subsonic -subsonic case.

Con�guration 1: krv is the incoming mode, with unit amplitude, kru is
the re�ected mode with amplitude Aru, A

l
v and k

l
u are the transmitted modes

with amplitudes Alv and A
l
u respectively.

Con�guration 2: kl3 is the incoming mode, with unit amplitude, kru is
the re�ected mode with amplitude Aru, A

l
v and k

l
u are the transmitted modes

with amplitudes Alv and A
l
u respectively.

Con�guration 3: kl4 is the incoming mode, with unit amplitude, kru is
the re�ected mode with amplitude Aru, A

l
v and k

l
u are the transmitted modes

with amplitudes Alv and A
l
u respectively.

The results showed that the amplitudes of the complex modes are small
compared to the amplitudes of the real modes. In the following tables, Σ|A|2
signi�es the sum of the re�ected and transmitted amplitudes, taken with the
appropriate signs (|Alu|2 will be negative), I indicates the incoming current,
R, the re�ected current and T the transmitted current (the expressions are
as given in section 2.4). If probability currents are to be conserved, then
R + T = I.
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ω = 0.2

Modes Norm vg D(ω) E(ω)
krv = −0.075 Positive −0.375√

n
3.64√
n

−3.64√
n

kru = 0.33 Positive 1.49 3.43√
n

−3.39√
n

klv = −0.15 Negative -0.79 −1.69√
n

−1.65√
n

klu = −0.27 Negative -1.33 −1.38√
n

1.46√
n

kl3 = 38.94 Positive 1.054 0.4√
n

−0.006√
n

kl4 = −38.51 Negative 1.07 −0.006√
n

0.4√
n

Aru Alv Alu Σ|A|2 I R T
C1 -0.34+i0.004 -0.04 -1.7-i0.008 -2.8 0.0002/n 0.0004/n -0.0007/n
C2 3.99+i2.8 -0.13 - i0.09 -9.36-i6.95 -111.7 0.32/n 0.09/n 0.38/n
C3 3.9-i2.85 -0.13+i0.09 -9.62+i6.85 -116.1 -0.33/n 0.09/n 0.39/n

ω = 3

Modes Norm vg D(ω) E(ω)
krv = −1.12 Positive -0.375 0.96√

n
−0.93√

n

kru = 4.47 Positive 1.47 0.99√
n

−0.87√
n

klv = −2.38 Negative -0.78 0.45√
n

−0.28√
n

klu = −4.11 Negative -1.44 −0.24√
n

0.53√
n

kl3 = 41.69 Positive 0.92 0.38√
n

−0.005√
n

kl4 = −35.19 Negative 1.31 −0.008√
n

0.45√
n

Aru Alv Alu Σ|A|2 I R T
C1 -0.25+i0.025 1.21 + i0.02 -0.67-i0.037 1.06 0.003/n 0.003/n -0.011/n
C2 1.28+i0.82 1+i0.84 -1.34 - i1.12 0.79 0.3/n 0.12/n 0.12/n
C3 -0.9-i0.72 1.2-i0.74 -1.87 - i1.05 -1.21 -0.36/n 0.07/n 0.18/n
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ω = 5

Modes Norm vg D(ω) E(ω)
krv = −1.87 Positive -0.37 0.74√

n
−0.7√
n

kru = 7.38 Positive 1.43 0.79√
n

−0.64√
n

klv = −3.94 Negative -0.76 0.39√
n

−0.18√
n

klu = −7.23 Negative -1.7 −0.14√
n

0.53√
n

kl3 = 43.46 Positive 0.85 0.37√
n

−0.005√
n

kl4 = −32.29 Negative 1.62 −0.001√
n

0.5√
n

Aru Alv Alu Σ|A|2 I R T
C1 -0.26 + i0.04 1.13 + i0.04 -0.61 - i0.06 0.98 -0.005/n 0.005/n 0.005/n
C2 1.08 + i0.63 0.67 + i0.61 -0.86 - i0.87 0.9 0.29/n 0.13/n 0.13/n
C3 0.58 - i0.5 0.86 - i0.48 -1.53 + i0.69 -1.2 -0.41/n 0.04/n -0.25/n

ω = 8

Modes Norm vg D(ω) E(ω)
krv = −2.99 Positive -0.37 0.6√

n
−0.54√

n

kru = 11.56 Positive 1.35 0.66√
n

−0.46√
n

klv = −6.18 Negative -0.72 −1.69√
n

−1.65√
n

klu = −14.07 Negative -3.55 −0.07√
n

0.75√
n

kl3 = 45.89 Positive 0.77 0.35√
n

−0.004√
n

kl4 = −25.641 Negative 3.5 −0.026√
n

0.75√
n

Aru Alv Alu Σ|A|2 I R T
C1 -0.28 + i0.08 1.05 + i0.07 -0.36 - i0.07 -1.07 - i0.008 -0.008/n 0.01/n 0.014/n
C2 0.92 + i0.49 0.36 + i0.45 -0.33 - i0.46 1.12 0.28/n 0.14/n 0.12/n
C3 0.31 - i0.26 0.59 - i0.24 -1.19 + i0.24 -0.92 -0.71/n 0.02/n 0.58/n
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