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Abstract

Deep learning semantic segmentation algorithms can localise abnormalities
or opacities from chest radiographs. However, collecting and annotating
training data is expensive and requires expertise which remains a bottleneck
for algorithm performance. We investigate the e�ect of image augmentations
on reducing the requirement of labelled data in the semantic segmentation of
chest X-rays for pneumonia detection. We train fully convolutional network
models on subsets of di�erent sizes from the total training data. We apply
a di�erent image augmentation while training each model and compare it to
the baseline trained on the entire dataset without augmentations. We �nd
that rotate and mixup are the best augmentations amongst rotate, mixup,
translate, gamma and horizontal �ip, wherein they reduce the labelled data
requirement by 70% while performing comparably to the baseline in terms of
AUC and mean IoU in our experiments. Further, we try a semi-supervised
learning approach called pseudo-labelling on the same segmentation model.
The approach makes use of unlabelled data and augmentations to enhance
the performance of the model. Using the labels of only 8% of the data, we
show that it is possible to achieve a similar IoU as the previous experiments.
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Chapter 1

Introduction

This chapter will introduce deep learning in medical imaging analysis and
cover a few studies and their results. I will discuss the problem of data
availability in this area and a few approaches of tackling the same. Although
my focus would be on chest radiography wherever possible, I have included
several ideas of our interest in other deep learning areas. In the end, I
introduce my problem statement and discuss the scope of my project.

1.1 Background

1.1.1 Computer-Aided Diagnosis in Radiology

Computer-aided diagnosis (CADx) for chest radiography started around the
1960s. Diagnostics and other image processing techniques used rule-based
reasoning or algorithms such as edge detection, region growing, �tting geo-
metrical models or dynamic programming (Ginneken et al., 2001). For these
processes, experts would convert the chest radiograph into a sequence of
numbers that the computer could manipulate - what is now known as fea-
ture vectors. Constructing such feature vectors would require in-depth do-
main knowledge and still have high inter-observer variability. This is where
deep learning has transformed and dominated the �eld (McBee et al., 2018;
van Ginneken, 2017). Deep neural networks not only e�ciently map the fea-
ture vectors to the labels but also create the most optimal feature extractors
on their own. van Ginneken (2017) has discussed the evolution of CADx
from rule-based and machine learning approaches to deep learning ones by
considering a few examples in the �eld.
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Figure 1.1: Classi�cation produces a single class label for each image (e.g.
pneumonia present or absent), whereas segmentation produces a mask of the
same size as the image, with each pixel in the mask corresponding to a label.
In this image

1.1.2 Classi�cation and Segmentation

Deep learning approaches in CADx use Convolutional Neural Networks
(CNNs) for two major purposes - classi�cation and segmentation. In classi-
�cation, each image is given a label or assigned to a class. In segmentation
models, each pixel is assigned to a class. Thus for each image, the model
predicts a corresponding mask (see Fig. 1.1). Both the approaches have
shown great success in radiographs like chest X-rays and CT scans (Lakhani
and Sundaram, 2017; Dunnmon et al., 2018).

Research on pathology identi�cation in chest X-rays (CXRs) has mainly
focussed on classi�cation. This is useful when we need models to predict
a class label from a broad set of pathologies. For example, the dataset
CheXpert (Irvin et al., 2019) has CXRs corresponding to fourteen di�erent
pathologies. Annotating data for classi�cation is also a more manageable
task now - CheXpert was annotated using a label extraction algorithm. Even
for manual annotation, radiologists only need to identify the pathology, as
opposed to marking the regions in the CXR in the case of segmentation.

The disadvantage of classi�cation models is their lack of interpretability.
If we classify an entire image with a single label, we do not know the regions
in the CXRs responsible for the class label. We have to unpack the neu-
ral network to understand which pixels it pays the most attention to while
making decisions. This is achieved by an additional step of plotting saliency
maps or gradient class activation maps and then interpreting how the CNN
is making decisions (Pasa et al., 2019). Moreover, we might �nd that the
algorithm focuses on irrelevant regions to make decisions, such as areas out-
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side the body. In such a case the CNN would no longer be trustworthy, even
if it is accurate.

Segmentation and object detection algorithms provide an advantage over
standard CNNs because they are trained directly on the regions of interest,
which they can then predict. Semantic segmentation architectures such as
U-Net (Ronneberger et al., 2015) construct a free-form area onto the object
of interest, whereas object detection algorithms such as YOLO (Redmon
et al., 2016) detect the presence of an object and output the coordinates of
a rectangular bounding box to mark it. Semantic segmentation models are
more useful than classi�cation models in two ways: they require less training
data since they have pixel-level labels for every image, and they can assist
radiologists in their work by localising the abnormalities (Hurt et al., 2020).
We have chosen semantic segmentation as the focus of this study.

1.1.3 Data Availability for Training Neural Networks

The cost and e�ort to label data for supervised learning algorithms is of-
ten a signi�cant constraint on training models that perform well in practice
(Prevedello et al., 2019). There have been e�orts on two fronts. First, the
amount of labelled data available is increasing manifold, as more research
groups create massive datasets such as CheXpert (Irvin et al., 2019) and
ChestX-ray8 (Wang et al., 2017) into the public domain. As the popularity
of arti�cial intelligence in healthcare increases, companies are also investing
in annotating more data. Second, research groups are creating techniques
that can learn better from small amounts of labelled data. A few examples
are image augmentations, semi-supervised learning, special architectures such
as U-Nets (Ronneberger et al., 2015), GANs (Goodfellow et al., 2014) and
others.

1.1.4 Learning a Lot from a Little

In this section, we discuss a few techniques to learn from a limited amount
of labelled data. This list is in no manner exhaustive but is a review of the
various approaches we can take to tackle low data availability.

Image Augmentations

Image augmentations is a vital data processing technique to improve the per-
formance of machine learning models. They can make the CNN indi�erent
to naturally present variations in the data, such as position, scale, or di�er-
ent radiography equipment. Augmentations can be of varied types. Rotate,
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scale and �ip and similar augmentations are called geometrical augmenta-
tions. Photometric augmentations transform the colour space of the images.
More complex transformations include elastic deformation or mixing multiple
images. However, in�ating the dataset with numerous augmentations would
add to the training time and compute requirements without necessarily in-
creasing performance. A drawback of augmentations is that they may cause
over�tting by making the CNN invariant to some features but highly tailored
to the training data in others (Shorten and Khoshgoftaar, 2019).

The problem of augmentations on the performance of segmentation mod-
els in the medical domain is not su�ciently addressed in research. Knowledge
of speci�c augmentations which reduce the labelled data requirements will
help researchers and data scientists �ne-tune their models faster and better.
Moreover, data augmentation studies investigate the increase in model per-
formance rather than the decrease in the labelled training data requirements.
Thus there is an opportunity to �ll the gap in this space.

Semi-Supervised Learning

Though there is a paucity of labelled training data in medical images, the
e�ort in obtaining unlabelled data is far lesser. Unsupervised learning meth-
ods such as clustering algorithms could discover structure in the data that
could enhance the discriminatory ability of supervised algorithms. This is
the basis of semi-supervised learning (SSL), which makes use of both labelled
and unlabelled data.

There are many approaches for SSL. For example, we could train a super-
vised model on the available labelled data, then use it to label the unlabelled
data. Then, using this larger dataset, we train the model again. This is
known as self-training or pseudo-labelling (Lee, 2013). Another approach
could be to use a clustering algorithm to build a graph out of the inputs and
propagate the labels from labelled data to their nearest neighbours, then
further neighbours and so on till the entire graph is labelled.

Though a lot of statistically robust SSL techniques have been built (see
Zhu and Goldberg (2009) for a detailed introduction to SSL), the combination
of SSL and Deep Learning in medical images is still in its infancy. We
attempted pseudo-labelling to medical images to see if we get an improvement
in performance.
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1.2 Related Work

This section covers the recent advancements in CADx using deep learning,
image augmentations and semantic segmentation in the �eld of CXRs.

Kermany et al. (2018) showed the generalizability of deep neural networks
using the same neural network to classify retinal Optical Coherence Tomog-
raphy images and pediatric pneumonia classi�cation in CXRs. The latter
model achieved an accuracy of 92.8%, and the area under the ROC curve
was 96.8%.

Recent studies have proven that image augmentations improve the ma-
chine learning model performance. Sirazitdinov et al. (2019) showed the e�ect
of augmentations on the classi�cation of chest radiographs. They concluded
that a combination of increasing brightness, random rotation and horizon-
tal �ips led to the best performance on the ChestX-Ray14 dataset, with an
area under the curve of the receiving operator characteristics (AUC-ROC) of
0.808 (compared to 0.785 without any augmentations). However, they do not
quantify the extent of each augmentation, thus decreasing its reproducibility.
After the invention of mixup (Zhang et al., 2018), Eaton-Rosen et al. (2018)
applied it to a dataset of MRI images. They provide a graphical overview
of mixup compared to other augmentations and a baseline for a large (199
images) and a small (10 images) dataset.

Souza et al. (2019) created an automatic method for segmentation and
reconstruction of lungs, which can take into account lung opacities from
pneumonia or tuberculosis, reconstruct the lung boundaries, and �nally, seg-
ment the lungs. They used the segmented lungs for a classi�cation model,
which achieved an accuracy of 96.97%, an average Dice coe�cient of 0.94
on the Montgomery County's Tuberculosis Control dataset (Jaeger et al.,
2014). Selvan et al. (2020) tackled the same problem by treating high opac-
ity regions as missing data and using a variational auto-encoder for data
imputation. They achieved an accuracy of 88.15% and a Dice coe�cient of
0.8503 on a curated CXR dataset. Thus segmentation was mainly used to
demarcate the lungs for use in classi�cation models. However, we can also
use semantic segmentation algorithms to demarcate lung opacities. This op-
portunity became plausible after the publication of the Radiology Society of
North America's (RSNA) pneumonia dataset (Shih et al., 2019), also used
in this study.

Wu et al. (2020) took the concept of lung segmentation and opacity de-
tection one step forward. They segmented both the lungs, divided them into
three zones each and predicted the presence of pneumonia in each zone using
the patient's radiology report. Thus they created an object detection dataset
from radiology reports. Using this dataset, they trained a RetinaNet model
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and tested it on the RSNA data set. The model had a mean IoU of 0.29
per pneumonia positive image. Hurt et al. (2020) have shown that semantic
segmentation of CXRs can be used as a probability map to interpret the
radiographs. Their segmentation model on the RSNA dataset showed a dice
coe�cient of 0.603, and the classi�cation had an AUC of 0.854.

Lee (2013) introduced the concept of pseudo-labelling by showing its ef-
fectiveness on the MNIST dataset. They used t-SNE visualisation to show
how the images form well-separated clusters, which the CNN can identify.
This assumption that classes belong to dense clusters in the representation
space and the separation boundaries pass through regions of less density is a
common assumption in semi-supervised learning (Zhu and Goldberg, 2009).
Arazo et al. (2020) have shown some pitfalls of pseudo-labelling and have
identi�ed regularisation techniques to prevent over�tting the labelled data
and show state-of-the-art performance. They used the labels of only 500
images from the CIFAR-10 dataset and trained on soft labels along with
mixup augmentation. They achieve an error rate of 8.8± 0.45%, much lower
than other studies with the same starting point. However, both (Lee, 2013;
Arazo et al., 2020) use small images of 32 × 32 pixels for their studies and
what works there need not work in the high-resolution medical image anal-
ysis regime. Zou et al. (2020) have built a pseudo-labelling platform for
segmentation and shown a mean IoU of 73.23 on the VOC12 dataset.

Peikari et al. (2018) brought the cluster-then-label approach to breast
pathology classi�cation. It is an interesting approach where they map the
images to a feature space and use the OPTICS algorithm to identify clusters
among them. Then a support vector machine is trained to learn classi�cation.
They have not used deep learning approaches for building the feature detec-
tor, nor have they used a deep learning classi�er. There is a ripe opportunity
here to do so.

An essential aspect of deep learning in CADx is the usability of the
models - we do not desire clever models that might be clinically irrelevant
(Lundervold and Lundervold, 2019). For example, both in Pan and Cadrin-
Chênevert's model and Cheng's model of the RSNA dataset (Pan et al.,
2019), they systematically decreased the predicted bounding boxes by 12-
17%, which increased the performance for the particular test set, but there
is no medically relevant reason to do the same in practical settings. Another
practical constraint with Pan's models was extensive ensembling, which re-
quires the availability of high-end GPUs.
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1.3 Approach

In this thesis, we explore how augmentations and SSL methods can help re-
duce the requirements of labelled data. We implement �ve di�erent augmen-
tations on the training of CNN models on Chest X-rays. We propose three
criteria for identifying augmentations that reduce labelled data requirement.
First, the model should perform comparably to the baseline on a subset of
the data. Second, the models with augmentation trained on partial data
should perform better than models without any augmentations trained on
the same data. Third, the model should satisfy the criteria above for multi-
ple test sets. We validated our results with an in-sample and out-of-sample
test set. In the second set of experiments, we use a similar model as Arazo
et al. (2020) to the same dataset and observe if training on unlabelled data
improves over a baseline trained on a small amount of labelled data.

The thesis is organised as follows: Chapter 2 discusses the fundamentals
of CNNs as they apply to my study. Chapter 3 is about the data and the
methodology, with a note on implementation. Finally, Chapter 4 lays down
the results of the experiments and the discussion.
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Chapter 2

Basics of Convolutional Neural

Networks

This chapter covers the theory behind the convolutional neural networks
(CNNs) that we used throughout our study. We do not intend it as a primer
on CNNs but rather a description of the underlying theory behind the project.
The objective is to showcase the various choices available at every step and
discuss why we selected one particular method.

Several concepts described in this chapter are from Deep Learning (Good-
fellow et al., 2016), an advanced text in the �eld. Andrew Ng's �Deep Learn-
ing Specialisation� course1 also covers essential concepts discussed in this
chapter.

2.1 Supervised Learning

Supervised Learning is a subsection of a larger category of algorithms known
as machine learning. The de�nition of machine learning is given in de�nition
1. Based on that, we de�ne supervised learning as per de�nition 2.

De�nition 1 (Machine Learning). A computer program is said to learn from
experience E with respect to some class of tasks T and performance measure
P, if its performance at tasks in T, as measured by P, improves with experi-
ence E.(Mitchell, 1997)

De�nition 2 (Supervised Learning). A quantity x and its corresponding
label y are related by an unknown function y = f(x). The task T is to �nd
a function f̂ that approximates f and predicts the labels ŷ well according to

1https://www.coursera.org/specializations/deep-learning
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performance measure P. The experience E for the algorithm is going through
multiple (x, y) pairs to �nd f̂ .

As we can see, de�nition 2 is ambiguous. We still need to elucidate how
we can estimate the function f̂ and how going through multiple (x, y) pairs
plays a role in that. We still have to clarify what `going through an (x, y)
pair' means. The answer lies in convolutional neural networks. A CNN itself
is the function f̂θ, with several parameters θ (CNNs with parameters in the
order of 106 to 109 are commonplace nowadays). These parameters have to be
tuned according to the dataset to get accurate predictions. The predictions
ŷ = f̂θ(x), are used to calculate a cost function C(y, ŷ) ≥ 0 which is designed
to be large if the performance measure P is low and 0 if all predictions by
f̂ are correct. Therefore, the problem of �nding the correct parameters is
reduced to minimising the cost function.

2.2 The Building Blocks of CNNs

Convolutional Neural Networks have several working parts that come to-
gether to become capable of state-of-the-art performance on their tasks. In
this section, we begin with the highest level - that of model architecture and
zoom in to the layers that build up the architecture. Then we discuss how
to calculate the cost function, how to minimise the cost and how to judge
model performance. Finally, we end the chapter with a discussion of the
signi�cance of the three sets involved in an end to end machine learning task
- the training, validation and test sets.

2.2.1 Model Architectures

A CNN is a composition of functions f1(f2(f3(. . . (fd(x)))). The order of the
fi's determines how well the model will perform, and so does the depth of
the CNN d. After a lot of research and trial-and-error, the deep learning
community has developed a range of such orderings that perform well in
practice. These orderings are called model architecture.

The basic structure of a CNN is relatively standard nowadays. It consists
of an encoder that builds representations from the input image. In this
study, the input x ∈ Rn×n refers to a square CXR image of width n pixels.
The subsequent transformations and label depend on the downstream task,
classi�cation or segmentation.
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Classi�cation

In classi�cation, the representations are sent through a classi�er, which is
usually a fully connected network. It classi�es the input into one of k classes.
Thus the label y ∈ {1, 2, . . . , k}.

Lecun et al. (1998) built the �rst CNN classi�er, called LeNet-5, which
took images of 32× 32 pixels containing handwritten digits 0-9 (the MNIST
dataset) and classi�ed them correctly. This model had 60,000 trainable pa-
rameters. Since then, the number of parameters has grown manifold, and
the increase in computational power has supported it. The best performing
classi�cation architectures today, for example, ResNet-50(He et al., 2015a)
has about 23 million parameters.

Segmentation

In segmentation, the representations are transformed into new information
through a decoder network. The output label y ∈ Rn×n, and yi,j ∈
{1, 2, . . . , k} ∀ i, j ∈ {1, . . . , n}, i.e. the output mask is the same dimen-
sions as the input, with each pixel belonging to one of the k classes.

Some of the well known deep learning architectures for segmentation
include Fully Convolutional Networks (FCNs) (Long et al., 2015) and the
U-Net(Ronneberger et al., 2015). U-net became the standard in semantic
segmentation after the group won the ISBI cell tracking challenge 2015 in
the segmentation of neuronal structures in electron microscopic stacks cate-
gory. They trained the U-net on tiny dataset of 30 images and made use of
extensive data augmentation.

2.2.2 Layers

Layers are the primary building blocks of all neural networks. They take
input and apply a function to it. The function is often as simple as a linear
transformation or an addition, but the stacking up of these layers on top of
each other lets the CNN understand complex data. We discuss the layers
used in our study below.

Dense Layer

A dense or fully-connected layer is the simplest and oldest form of layers in
arti�cial neural networks. If the input is a vector x ∈ Rn and the desired
output is a vector y ∈ Rm, this layer implements the function

y = σ(Wx+ b) (2.1)
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Where σ is an activation function (discussed below) and W ∈ Rm×n, b ∈
Rm are the parameters of the dense layer. Therefore a dense layer with an n-
dimensional input and an m-dimensional output has (m+1)×n parameters.
The number of trainable parameters grows very fast with increasing input
size, thus increasing computational costs. It is also not necessary for every
input element to be connected to every output element. Thus in modern
neural network architectures, dense layers are only found in the �nal layers
for classifying the features extracted by the convolution layers.

The Convolution Layer and Transposed Convolution Layer

As is evident from the name, the convolution operation is the essential oper-
ation in a CNN. It utilizes the spatial information in a picture, building on
the intuition that a square of side 5 pixels cropped from an image can give
more information than 25 randomly selected pixels. A convolution involves
a matrix called a kernel or a �lter, usually a square with an odd side length.

The kernel behaves as a feature detector. The initial convolutions de-
tect edges, loops and such low-level features. The convolution operations in
the deeper layers build upon these low-level features to detect higher-order
features such as parts of objects and, further in, objects themselves. The
convolution of an image I with a kernel K of size (m,n), denoted by (I ∗K)
is given by equation 2.2. A visual representation of convolution is shown in
Fig. 2.1.

(I ∗K)(i, j) =
∑
m

∑
n

I(i+m, j + n)K (2.2)

Another crucial layer in a segmentation architecture is the transposed convo-
lution, also known as the deconvolution layer. It forms a part of the decoder
network and is used to go from a small-sized input to a larger sized output.
A transposed convolution can be thought of as the gradient of a convolution.
If convolution on image I by kernel K produces the output I ′, transposed
convolution on I ′ by kernel K will produce I (Dumoulin and Visin, 2016).

The Residual Connection

This is a special connection that was introduced in ResNets. It adds a pre-
vious layer directly to the current layer. This makes it easy for the neural
network to learn the identity function,ensuring that the model performance
does not deteriorate, even if it does not improve. Mathematically, if a layer x
goes through some convolution operations f , the residual connection returns
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Figure 2.1: A visual description of convolution: An image of size 3× 4
convolved with a kernel of size 2× 2 results in an output of size 2× 3. Image
retrieved from Goodfellow et al. (2016)

y = f(x) + x. If f(x) and x do not have the same dimensions, the residual
branch can also have convolutions or pooling operations to ensure it.

Figure 2.2: The residual connection.

Max pooling, Batch Normalisation, and Activation Functions

Max pooling is a method to reduce the dimensions of the layer. This helps
to prevent over�tting and cuts computational costs. The algorithm for the
max pooling layer is given below. As we can see, it reduces the number of
elements in the matrix by a factor of m2. Usually, the stride and window
size is 2, and thus there are no overlapping windows.

19



Max Pooling

Input: Matrix An×n, stride m, window size w
Initialise matrix Cn/m×n/m
For i in 0 to n, step size m:

For j in 0 to n, step size m:
Choose submatrix B from i to i+ w row and j to j + w column
Assign ci/m,j/m = max(B)

Output C.

Batch Normalisation reparametrizes the layer in order to add multiplica-
tive and additive noise. It is pretty useful for models with several layers
and prevents over�tting. Activation functions add a non-linearity between
two layers of the CNN. Without activation function, consecutive convolution
layers can be combined since a composition of two linear transformations is
a linear transformation. In such a case adding more layers would be mean-
ingless.

In the initial days of deep learning, the most common activation functions
were sigmoidal, such as arctan(x) and σ(x) = (1 − e−x)−1. Nowadays, the
piecewise linear functions such as Recti�ed Linear Unit (ReLU) or leaky
ReLU (Fig. 2.3) are preferred. These are much faster in usage since their
derivative is easy to calculate.

Another non-linear layer used in CNNs is the Softmax layer. In CNNs,
the output layer is a vector of k dimensions corresponding to the k labels.
Each dimension will have numbers belonging to (− inf, inf). In the case of
a single-label problem, we need to convert these numbers into probabilities
that sum to 1. This is achieved using the softmax function (equation 2.3.

σ(x)i =
exi∑k
j=1 e

xj
(2.3)

2.2.3 Loss Functions and Metrics

As mentioned at the beginning of section 2.1, we need to calculate the cost
function C(y, ŷ). The cost function is calculated for a batch of images by
adding the per-image cost function, known as loss. Depending on the re-
quirement of the model, we use di�erent loss functions. Some general prop-
erties are desirable in every loss function, such as being convex. This leads
to better optima and faster training times.

In the case where there are only two labels, the most well-known loss
function is binary cross-entropy (BCE). BCE is calculated using equation
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Figure 2.3: The modern activation functions. The Recti�ed Linear Unit
(ReLU) (left) returns only the positive activations. Leaky ReLU (right) is a
modi�cation of it and returns some value even for x < 0. The formulae are
given in the �gure.

2.4, where y is the truth value (0 or 1), and ŷ is the probability predicted by
the CNN.

H(y, ŷ) = −y log(ŷ)− (1− y) log(ŷ) (2.4)

BCE can be used as a loss function for every pixel in a segmentation
problem with only two classes. Though there are other loss functions for
segmentation, such as Dice loss or IoU loss, we found this loss function to be
the best for our tasks.

Ground Truth
Positive Negative

Model Predictions
Positive True Positive (TP) False Positive (FP)
Negative False Negative(FN) True Negative (TN)

Table 2.1: The confusion matrix.

The cost function is one indication of how well our model is performing.
We can use several other indicators, which allows our results to be more
interpretable and comparable to others. The most common metrics for clas-
si�cation are accuracy, precision, recall and F1 score. All of these can be
calculated from the confusion matrix, shown in table 2.1. The de�nitions of
these are given in equations 2.5 - 2.8.

Accuracy: =
TP + TN

TP + TN + FP + FN
(2.5)

Precision: =
TP

TP + FP
(2.6)

21



Recall: =
TP

TN + FN
(2.7)

F1 Score: =
2TP

2TP + FP + FN
(2.8)

A problem with the above four metrics is that they are sensitive to the
threshold chosen for classi�cation. Another important metric is AUC-ROC,
which does not rely on a chosen threshold. The ROC curve plots how the true
positive rate changes with respect to the false positive rate as the threshold
changes. For a random classi�er, the curve would be the line y = x, and the
area under the curve would be 0.5. The maximum possible area under the
curve is 1. Thus AUC always lies between 0.5 and 1.

These metrics are helpful in the classi�cation regime. For segmentation,
a good measure is the mean intersection over union (IoU)(Fig. 2.4). It gives
us an estimate of how good the overlap between predicted and ground truth
masks. We chose mean IoU as our evaluation metric. It is calculated using
equation 2.9.

IoU(A,B) =
A ∩B
A ∪B

=
True Positive

True Positive + False Positive + False Negative
(2.9)

Figure 2.4: A visual representation of intersection over union. As the
overlap increases, the intersection becomes larger, and the union becomes
smaller, till at perfect overlap they are equal, and IoU is 1. At no overlap,
the intersection is 0 and so is the IoU. Hence IoU varies from 0 to 1.
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2.2.4 The Learning Process

Now that we have all the components in place, we can describe how the CNN
learns, i.e. calculates the optimal parameters θ. First, all the parameters are
initialised randomly from a speci�ed distribution (such as He initialisation
(He et al., 2015b)). Using these parameters, fθ(x) is calculated for a speci�ed
number of images, called a `batch'. This is known as forward propagation,
as the calculation progresses from the �rst layer to the last.

Once we have the predictions for a batch, we can calculate the cost func-
tion for it. The gradient of this cost function is used to reduce the parameters
by a small amount. This updation takes place from the last layer progressing
sequentially to the �rst and is called backpropagation. Each pass through
the entire dataset is called an epoch. The model trains for multiple epochs
until the cost function converges and the cost stops decreasing. At this stage,
the training is halted.

There are several methods of the parameter update step. As the �eld
has evolved, more computationally e�cient and faster methods have been
developed. These methods are known as optimisers, and some of the most
commonly used ones are Stochastic Gradient Descent, RMSProp and Adam.
Adam (Kingma and Ba, 2017) is named after `adaptive moment estimation'
and is currently the most recommended method. It calculates the �rst and
second moment of the gradient and changes the parameters accordingly.

2.2.5 Training, Validation and Test Sets

Any dataset for a machine learning project must be split into three sets. The
training set contains about 70% of the total data and is used for the training
of the CNN as described in the previous sections. Once the model is trained,
we must ascertain its performance on data that it has never seen before.
This is done by making a test set from a di�erent source. If an external
source is unavailable, we can partition about 20% of the data into the test
set. Without a test set, we can not claim that the model has generalised the
information that it has learnt, which is the hallmark of arti�cial intelligence.

In addition to the parameters, the model performance also relies heavily
upon the choice of hyperparameters. These can be chosen by seeing which
set of hyperparameters has the best performance. However, if we choose
hyperparameters based on the test set performance, we are tuning our model
to that particular test set, and thus we can not claim anymore that the model
has generalised. To overcome this issue, we use the remaining 10% of the
data as a validation set. The primary purpose of this set is to identify
the best hyperparameter set. In addition, the validation set performance
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is used to stop model training. It is observed in statistical learning that
the cost function of the training set and validation set �rst decreases. That
signi�es that the model is learning generalisable features. After a point, the
validation set loss starts to increase again, while the training error keeps
decreasing. This is because the model starts to over�t the training data.
Thus using the validation set performance or cost function, we can choose
the model with the best features learnt and least over�tting.
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Chapter 3

Methods

We illustrate the methods involved in our project in this chapter.

3.1 Data

3.1.1 RSNA Pneumonia Dataset

In order to develop techniques that worked with a small dataset, we needed
a large dataset from which we could take di�erent sized subsets. This would
test the limits of the techniques.

We chose a publicly available dataset of chest X-Rays annotated for
pneumonia-related lung opacities. This dataset, hereafter referred to as the
RSNA dataset, was jointly annotated by the Radiology Society of North
America (RSNA) and Society of Thoracic Radiology (STR) (Shih et al.,
2019). A team of eighteen radiologists labelled CXRs taken from the Na-
tional Institutes of Health (NIH) CXR8 dataset (Wang et al., 2017). The
CXRs they chose either had pneumonia-like labels, such as �pneumonia�, �in-
�ltration� and �consolidation�, or a �no �ndings� label, or labels other than
the ones above. They annotated these again and labelled them as �Lung
Opacity�, �Normal�, or �No Lung Opacity / Not Normal�, respectively. For
each CXR with the �Lung Opacity� label, they demarcated the regions with
opacities using bounding boxes.

The dataset was used for a competition called the RSNA Pneumonia De-
tection Challenge on the data science competition website Kaggle (https://
www.kaggle.com/c/rsna-pneumonia-detection-challenge). About 1400
teams participated in the competition and used various types of convolu-
tional neural networks for segmentation and object detection to identify the
lung opacities.
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Figure 3.1: A few positive examples from the RSNA Pneumonia Dataset,
shown with their bounding boxes.

Each image in the dataset is in the DICOM image format and has di-
mensions 1024 × 1024. The labels are of two kinds - classi�cation labels
(as discussed above) and locations. The latter contains the coordinates of
the bounding boxes demarcating the opacities. It is a list of 4-dimensional
vectors, listing the coordinate of the top-left point, height and width, respec-
tively, i.e. the form (xmin, ymin, height, width). Examples of images with
the bounding boxes are given in Fig. 3.1.

Out of the 26,684 images in the training dataset, we selected all the images
with bounding boxes (n=6012) and randomly picked other images (n=8488)
and split them into three sets with an equal prevalence of pneumonia (41.4%).
Thus we obtained the training, test and validation set with 10,000, 3,000 and
1,500 images, respectively.

3.1.2 Other Datasets

We also curated CXRs from out-of-sample sources for testing our models. We
obtained these images from Padchest (Bustos et al., 2020) and four private
hospitals and population screening programmes in India and Indonesia. This
set also contains 3,000 images, out of which 1125 are pneumonia positive. The
annotations are in the form of rectangular or polygonal bounding boxes.

3.2 Model Architecture and Details

We used a U-net-like CNN with depthwise separable convolutions style con-
nections using the Keras library for this study (Chollet, 2019). We resize
the CXR to (512,512,3) and use it as the input of the CNN. The network
has an encoder and a decoder part, as shown in Fig. 3.2. The CNN uses
residual connections, depthwise separable convolution and 2D convolution,
max pooling, transpose convolution and 2D upsampling.
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(a)

(b)

Figure 3.2: The architecture of the fully convolutional neural network that
we used. (a) The encoder part and (b) The decoder part.
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For training the CNN, we used binary cross-entropy (BCE) H((y, ŷ)
(equation 2.4) as the loss function,

We used the Adam optimiser with an initial learning rate of 10−3 and
a learning rate scheduler called �ReduceLRonPlateau�. This scheduler de-
creased the learning rate by a factor of 10 if there was no improvement on
validation loss since �ve epochs. We trained each model until it had shown
no improvement in validation loss for at least �ve epochs. After training, we
saved the weights of the model with the lowest validation loss.

Once the model was trained, we used it to predict the test set masks.
These were compared to the ground truth masks to calculate the mean IoU,
the Dice coe�cient and the loss. If any pixel in the predicted or truth mask
had an intensity > 0.5, the mask as a whole was classi�ed as pneumonia
positive. Based on this classi�cation, we calculated other metrics such as
precision, recall, F1 score and binary accuracy.

3.2.1 Augmentations

We have chosen �ve image augmentations for this study. These are random
rotation between −10◦ to 10◦, changing the gamma between 0.75 to 1.25,
translating the image randomly between 0-5% of its length in x and y direc-
tion, horizontal �ips, and mixup (Zhang et al., 2018). In mixup, two images
and their masks (represented by x1 and x2) are combined using the formula:

x = x1λ+ x2(1− λ)
Where λ ∼ β(0.2, 0.2). These augmentations have negligible computa-

tional cost. Mixup results in better-performing segmentation models accord-
ing to recent studies (Eaton-Rosen et al., 2018).

We train the baseline (i.e. no augmentations) on 100% of the training
set. For each of the six conditions - �ve augmentations and one with no
augmentation (hereafter referred to as �NoAug�), models were trained using
30%, 50%, 70% and 90% of the training set.

Figure 3.3: Original CXR with opacities labelled(left) and augmentations
with updated bounding boxes.
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Figure 3.4: (Top) original CXRs for mixup; (bottom left) result of mixup
augmentation and (bottom right) corresponding mask.

3.3 Pseudo-labelling

For pseudo-labelling, we adopted the same work�ow as Arazo et al. (2020)
but adapted it to segmentation. The main problem with pseudo-labelling is
that it can reinforce wrong labels and go into a feedback loop. To prevent
this, Arazo et al. (2020) decrease the con�dence in the masks by using soft
labels i.e. using the softmax predictions directly instead of thresholding
them (see Fig. 3.5). Another con�dence tempering technique is the mixup
augmentation that they use for training. They report that the model learns
better with these two additions. Therefore we have trained two models - one
with mixup and one without the mixup augmentation.

Since pseudo-labelling is an architecture agnostic technique, we used the
same architecture as mentioned in section 3.2. We partitioned the RSNA
dataset in a di�erent manner:

� The test set remained the same as the test set for the augmentations
experiment (3000 images, 41.4% prevalence).

� We created a new validation set with 1000 images, out of which 200
had bounding boxes.

� We used the remaining 22684 images as the training set.

� Out of these, we chose 2000 images to be the labelled set, with 50% of
images having bounding boxes.
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Figure 3.5: Soft labels for pseudo-labelling: (a) The chest X-Ray with
pneumonia label. (b) The ground truth mask provided in the dataset. (c)
The prediction of the model, with the scale below it. (d) The prediction with
a threshold - all values > 0.3 have been set to 1, and the rest to 0. Notice
that the model is more con�dent about lung opacity in the same region as
the ground truth. Therefore if the model is trained on (c), it would learn
better than if it were trained on (d), where it would consider the entire lung
as positive.

The work�ow for pseudo-labelling was as follows.

Pseudo-labelling algorithm

Warm up Phase

Use only the labelled images to train a supervised learning model.
Train for 15 epochs.

SSL Phase

Use the entire training set.
Load image for training.
If image belongs to the labelled part:

Load mask from database
Else:

Use model to predict a mask
Train model on loaded images and masks.
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3.4 Implementation

We used the Keras library (version 2.4.3) to execute all the code in Python
3.7 using a Google Colab server with GPUs. This section discusses some of
the constraints on training CNNs and how we overcame them.

3.4.1 Batch Generator

Each image input into the CNN has dimensions (512,512,3). If we save each
of them uint8 format, which takes stores each number in 1 byte, each image
will occupy 0.75 MB space. Each mask has a dimension (512,512), and the
smallest format they can be stored in is boolean which stores 0's and 1's,
and would thus occupy 0.25 MB space. 10,000 such images and masks will
thus require about 10 GB of storage and an equal amount of RAM. Thus it
is crucial to have a method to feed the CNN only as many images and masks
as it needs. We de�ned a batch generator class in python using the Keras
utility keras.utils.Sequence and with the help of Shervine Amidi's blog1.
The box below brie�y describes how it works.

All augmentations except mixup were applied using the imgaug library,
version 0.4.0 (Jung et al., 2020). For mixup, we de�ned a custom function
which takes two images and returns the mixup. The batch generator needed
to run only for half as many steps when using mixup, and we updated it to
re�ect the same.

3.4.2 Custom Utils Library

In order to keep the code clean, we wrote the most common functions into a
separate python �le and imported all the functions from it while training the
models. The following is a brief description of the functions in that library:

� Mean IoU: De�nes the mean intersection over union (section 2.2.3)

� Extract �les: Extracts the images from a zip �le. This was required as
data had to be imported into Google Colab every time.

1https://stanford.edu/ shervine/blog/keras-how-to-generate-data-on-the-�y
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Batch generator algorithm

Input: images: A list of image paths, pneumonia_locations a dic-
tionary containing pneumonia locations, batch_size, image_size,
augmentation: the augmentation function.
Function get_item: Loads the batch and sends to the model

For a subsection of images of size batch_size,
use load_image function for each image

Return images and masks
Function load_image:

Take image name and load it.
Create an empty mask with all entries 0
If image is in pneumonia_locations:
Update mask with entries inside bounding boxes = 1

Resize image and mask to image_size

Apply augmentation to both image and mask
Return image and mask

Function on_epoch_end:
When epoch ends, shu�e the images

Function length:
Divide the total number of images by batch_size to know
how many steps there will be in the epoch.

� Batch Generator: Generates a batch of images for model training, dis-
cussed above.

� Name Generator: Generates �lenames to save model weights and train-
ing history in.

� Keras Unet: Generates the U-net architecture used in this study.
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Chapter 4

Results and Discussion

4.1 The model is able to learn within thirty

epochs

An important part of the machine learning is to train for enough duration
such that the model neither under�ts nor over�ts the training data. In our
experiments, we trained the models for thirty epochs and saved the model
with the smallest validation loss. Figure 4.1 shows an example of the dif-
ferent model metrics as a function of epochs. As we can see, validation loss
�rst reduces quite fast and then starts to slowly increase around epoch 16.
Therefore we came to the conclusion that thirty epochs are adequate to train
all the models. In our experiments, validation loss never decreased after the
twenty-�fth epoch.

4.2 Comparison of performances after augmen-

tation

For comparison of the models' segmentation performance, we plotted each
model's mean IoU in Fig. 4.3. We also compared the di�erent models'
classi�cation performances by using AUC, in Fig. 4.4.

It is essential to note the behaviour of the NoAug models. In both Fig.
4.3 and Fig. 4.4, we see that the performance of NoAug models is lower than
baseline for 30% and 50% data. However, the NoAug models with 70% and
90% data perform as good as, or even better, than the baseline. Thus it is
irrelevant to study augmentations on 70% or more fraction of the data for
this study. The p-values for the one-tailed DeLong Test between AUC of
NoAug and baseline are ∼ 10−3 and ∼ 10−4 respectively for the internal test
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Figure 4.1: Model performance as a function of epochs: As we can see,
the validation loss reaches its lowest point of 0.0954 at epoch 11, and then
only increases. This graph is from the NoAug model with 90% data.

set.

We checked for criteria mentioned in section 1.3. To check the �rst crite-
rion, we did two DeLong hypothesis tests to see if the augmentation models'
performance is comparable to the baseline. The �rst has the null hypoth-
esis that the AUC of augmentation models is equal to that of the baseline
trained on 100% data. In this case, a p-value larger than 0.05 would mean
that we fail to reject the null hypothesis, and thus we can say the two AUC
are comparable. In the second test, the null hypothesis is that the AUC of
the augmentation models is lesser than the baseline. Here a p-value of less
than 0.05 would mean that we can reject the null hypothesis, and the AUC
of augmentation models is signi�cantly larger than that of the baseline. We
�nd that except for gamma with 30% data and �ip with 50% data, all models
trained on 30% and 50% data pass either of the two tests on the internal test
set. However, for the external test set, only rotate and �ip with 30% data,
and translate, rotate, gamma and mixup with 50% data pass the hypothesis
tests (see table 4.2 for the p-values).

We checked the second criterion by performing a one-tailed DeLong Test
on the AUC of the augmentation against NoAug models trained on the same
data on both test sets. We �nd that for the external test set, all augmen-
tations with 30% and 50% data perform signi�cantly better than NoAug (p
< 10−2). For the internal test set, all augmentations trained on 30% data
performed better than NoAug with 30% data. However, on 50% data, only
the gamma and mixup performed better than NoAug.

We propose that good augmentations should satisfy both the criteria
above for both the test sets. We found that rotate and �ip with 30% data
and gamma and mixup with 50% data accomplished this.
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Test Set Internal Test set External Test Set
Augmentation 30% 50% 30% 50%
Baseline on 100% 0.8569 0.8569 0.9298 0.9298
None 0.8251 0.854 0.859 0.9058
Translate 0.8615 0.8515 0.9106 0.9232
Rotate 0.8626 0.8587 0.9373 0.9251
Gamma 0.8464 0.868 0.8954 0.9428
Mixup 0.8574 0.8638 0.9042 0.9329
Flip 0.8584 0.8483 0.9249 0.9135

Table 4.1: The AUC ROC of the di�erent augmentations calculated on 30%
and 50% data for both internal and external test sets.

Figure 4.2: Two examples of CXR with the ground truth mask (left) and
predicted mask by the baseline model (right)

On the other hand, the mean IoU plot informs us of the best data aug-
mentations at pixel-level. As we can see in the internal test set (Fig. 4.3(a)),
rotate and mixup perform pretty well at 30%, whereas mixup and �ip per-
form better at 50%. For the external test set(Fig. 4.3(b)), we see that rotate
and mixup at 30% and �ip and gamma at 50% performing better than NoAug
and almost as good as the baseline.

Therefore, we �nd that rotate and mixup are the best augmentations for
semantic segmentation on our dataset. These augmentations are capable of
reducing the labelled data requirements by even 70%.
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Test Set Internal Test set External Test Set
Augmentation 30% 50% 30% 50%
None 7.66×10−12

/ 1
0.4826 /
0.7587

2.20 ×10−16
/ 1

6.04 ×10−8
/ 1

Translate 0.2288 /
0.1144

0.176 /
0.912

2.34 ×10−5
/ 1

0.084 /
0.958

Rotate 0.1576 /
0.0788

0.6309 /
0.3154

0.0599 /
0.0300

0.2606 /
0.8697

Gamma 0.0147 /
0.9927

1.86 /
9.29×10−4

1.11 ×10−13
/ 1

5.15 ×10−4
/ 2.58
×10−4

Mixup 0.908 /
0.454

0.0546 /
0.0273

2.70 ×10−8
/ 1

0.4118 /
0.2059

Flip 0.7151 /
0.3575

0.02505 /
0.9875

0.2316 /
0.8842

6.984 ×10−4
/ 0.9997

Table 4.2: p-values of the DeLong Test compared to the baseline for the
external test set. The �rst value corresponds to two-tailed DeLong test and
the second corresponds to the one-tailed DeLong test. Bold indicates that
the value satis�ed our criteria, as explained in Results and Discussion
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(a)

(b) (c)

Figure 4.3: Mean IoU on the (a) internal test set and (b) external test set
for the various models trained. (c) The legend
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(a)

(b)

Figure 4.4: AUC ROC of the (a) internal and (b) external test set for the
various models.
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Model Name
Plain model

Warm-up Phase
Plain Model
After SSL

Mixup Model
Warm-up Phase

Mixup Model
With SSL

Mean IoU 0.4197 0.4861 0.3793 0.5453
AUC 0.8316 0.8443 0.7570 0.7333

Table 4.3: AUC and mean IoU for semi-supervised learning approaches

4.3 Pseudo-labelling helps in segmentation but

not in classi�cation

For the pseudo-labelling approach as well, we measured the mean IoU and
the AUC of the models on the internal test set, as given in table 4.3. As we
can see, the mean IoU is the most for pseudo-labelling with Mixup, which is
the same result that Arazo et al. (2020) report. However, the AUC for those
models is not as high as the models without augmentations.

4.4 Discussion and Conclusion

Users of deep learning algorithms often overlook image augmentations as an
extra step for a minor boost in performance. Our study has shown that
augmentations are capable of reducing the amount of labelled training data
required. To the best of our knowledge, this is the �rst study addressing
augmentations in this manner.

There is an assumption that augmentations are most valuable when the
training and test data are from the same distribution Shorten and Khoshgof-
taar (2019). Using two test sets from vastly di�erent populations (internal
test set from the RSNA data set, sourced from the USA and the out of
sample test set sourced from India) and achieving good results on both, we
have shown that this assumption need not hold. While this study looked at
individual augmentations, there is still scope for improving the model per-
formance and reducing the labelled data requirement further by combining
multiple augmentations.

Pseudo-labelling approaches are the starting point of semi-supervised
learning, yet studies about them in the medical domain have been lim-
ited. Segmentation instead of classi�cation adds another layer of complex-
ity. Moreover, our segmentation models have a slightly di�erent goal than
other segmentation models - usually, all instances in the training data have
a positive class, for example, in datasets such as COCO. In our dataset, the
negative class is also present, and more often than not in a higher proportion
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than the positive class. Thus our segmentation model is also playing the role
of a classi�er. Under these considerations, our work brings a new perspective
to the �eld and opens up the avenue to further research.
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