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Abstract

This thesis deals with the problem of correspondence between semisimple algebraic groups
defined over some base field k£ and semisimple algebras with involutions over k. This
fundamental problem was first explored by Weil in 1960 in his paper titled "Algebras with
involutions and the classical groups [1]. The primary result is that over a field of characteristic
not equal to 2, almost every semisimple algebraic group with trivial center can be obtained
as the connected component of identity in the automorphism group of a semisimple algebra
with involution, and conversely, that automorphism group of every semisimple algebra with
involution is almost always a semisimple algebraic group with a trivial center. First, we
study the classical approach of this problem over a field of characteristic zero, given by Weil
in 1960. This approach uses results from the classical theory of algebraic groups and the
theory of central simple algebras. In the second part, we study the modern treatment of the
problem using the language of Galois cohomology. We prove the Galois descent lemma which
enables us to establish a correspondence between twisted forms of an algebra with involution
(A, 0) and the set H' (K, Aut(A,)). A similar correspondence is true for an algebraic group
G defined over a base field. The cohomology set H'(K, Aut(A, o)) associated with a central
simple algebra with involution is the same as H' (K, Aut(G)) for a classical group G, where
the involution is of the same type as the bilinear form whose isometries give (G, giving rise
to the main result that "classical groups over a base field £" are in one-one correspondence

with "central simple algebras with involutions over k."
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Introduction

This thesis provides an exposition to the topic of correspondence between linear algebraic
groups and algebras with involutions over a base field. It started with André Weil’s historic
paper in 1960, which Weil admits has foundations in the work of Siegel on discontinuous
groups. This historic paper paved the way for further developments in the theory of central
simple algebras with involutions. In [1], Weil establishes a correspondence between the set of
semisimple algebras with involutions and classical groups of adjoint type (i.e., those whose
center is trivial) over an arbitrary groundfield of characteristic 0. The correspondence is
established by observing that except for a few cases, the connected component of identity in
the group of automorphisms of an algebra with involution is always a classical group with
a trivial center, and in turn, almost every such group is obtained in this way. We develop
the theory of central simple algebras and linear algebraic groups to arrive at the following

correspondence due to Weil :

Theorem 0.0.1 (Weil). [I| Let G and A denote the following two sets :

o G : Set of all semisimple groups G with a trivial center, such that when we decompose
G into its simple components, none of the components is isomorphic to an exceptional
group or to PO™(8).

e A : Set of all semisimple algebras with involutions (A, o) which, when decomposed into
simple components, have factors isomorphic to one of the following : (a) M, ® M,
with the involution i : (X,Y) — (Y1, X") for n = 3 or (b) My, for n = 1, with
involution M — F~'M'F determined by an invertible alternating matriz F', or (¢) M,

with involution X — X' forn =7 orn = 9.

Then, for every G € G, there exists (A, o) € A such that the connected component of identity

in Aut(A, o) is isomorphic to G, and this correspondence is one-one.
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Following this, we look at the modern way of approaching this problem using the language
of Galois Cohomology. The language of cohomology has its roots in the works of Grothendieck
on the theory of principal homogeneous spaces; however, in this exposition, we use the
definition given by Eilenberg-MacLane. Using the idea of Galois descent, the same problem
of classification can now be approached from a much broader point of view, which once
again bears its roots in the works of Weil [2]. Further formalism of the subject owes its due
to figures such as Tate, Artin, and Serre, which culminated in the famous monograph by
Serre on Galois Cohomology. Galois cohomology is a powerful tool used to classify various
algebraic structures, and in Chapter 7, we will have a look at some of these problems. Now,
let us see an alternate version of the correspondence given by Weil. Let K /k be any extension
and Q/K be any Galois extension. Then it is known that the set of K-isomorphism classes
of the K-forms of an algebraic group G is in one-one correspondence with the cohomology
set H'(K, Aut(Q)) (see |3, p. 124]). In Section 7.2, we prove that the set of K-isomorphism
classes of central simple K-algebras with involutions is in one to one correspondence with the
set H'(K, Autg (A, o)), where (A, o) is a central simple algebra k-algebra with involution.
For classical groups, we have a natural isomorphism between Aut,(G) and Aut(A, o) leading
to an isomorphism between H'(K, Auty(G)) and H' (K, Aut(A, o)) where (A, o) is a central
simple k-algebra with involution. Let E(k,G) denote the twisted k-forms of a classical group
G, and F(k, A) denote the twisted k-forms of a central simple k-algebra with an involution o,

where o corresponds to the type of classical group GG. Then, we have the following diagram

E(k,G) < s F(k, A)

| I

H' (k, Auty(G)) +——— H'(k, Aut(A, o))

Original Contribution

This thesis aims to provide a neat introduction to the fundamental problem of correspondence
between semisimple algebraic groups over k and semisimple algebras with involutions over
k explored by Weil in 1960 [1]. This problem requires knowledge of the theory of central
simple algebras, the theory of classical groups, algebraic groups, and Galois cohomology,
particularly Galois descent. Our exposition of the classical treatment of the problem follows
that of [I] and the modern treatment can be found in the books [7], [I1] and [3], etc. The
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tools required in the study are, however, dispersed among a variety of books, and hence for
a reader unfamiliar with the subject, it is difficult to find a place where he is presented with
all the necessary ingredients. The original effort of the author lies in assembling all the tools
required for understanding the classical and modern treatment of the problem and make a
coherent one-stop place for the reader to appreciate and understand this beautiful problem.
An effort has been made to allude to directions the reader can pursue from here onwards,

which is given in Chapter 8.

Organisation of the thesis

We now give a brief outline of the chapters in the thesis.

e Chapter 1 is an introduction to the theory of central simple algebras. We discuss
important results which will be used throughout the thesis, at times without even
recalling the results, for example, Wedderburn Theorem, Skolem-Noether theorem,
Centralizer theorem, etc. We also get a glimpse of the usefulness of Galois cohomology
as a tool while giving a cohomological characterization of the Brauer group. The
material in this chapter closely follows [1], and the interested reader is referred to []

for further details.

e Chapter 2 is devoted to the theory of bilinear forms and the classical groups, which
appear as the isometries of different types of forms. We study the linear groups
GL,,SL,, etc. first. One of the central results discussed here is the generation of
SL, using transvections. Then, we look at alternating forms and the corresponding
symplectic groups, which are generated by the symplectic transvections. Following
this, we look at quadratic forms and orthogonal groups. The Iwasawa criterion stated
in the first section of the chapter is used to prove the simplicity of groups such as
PSL(n) and PSp(n). The material presented here can be found in [5].

e Chapter 3 discusses the theory of linear algebraic groups. We start by looking at
Zariski topology on A", the affine n-space. We then set up a dictionary between
geometrical objects like points in A™ and algebraic objects like the maximal ideals in
K|[T]. Linear algebraic groups over algebraically closed fields are defined, and we look
at the connected components of algebraic groups. We refer the reader to [6] for further

reading on the topic.



Chapters 1-3 form the necessary background for understanding Weil’s paper.

Chapter 4 is the most essential part of the thesis. It discusses the correspondence
given by Weil between semisimple algebras with involutions and the classical groups.
The presentation in this chapter follows the original paper by Weil on ‘Algebras with

involutions and the classical groups’ [1].

Chapter 5 discusses Galois Cohomology, and it forms the foundation for the later
chapters. The material presented here is borrowed from [7]. We survey results from
infinite Galois theory [8], after which we define Krull topology and profinite groups.
Profinite groups form the setup for further study as we would work with cohomology
sets associated with profinite groups. We relate the cohomology of profinite groups
to the cohomology of its finite quotient groups. Finally, we look at how cohomology

groups behave under exact sequences.

Chapter 6 deals with the concept of Galois descent. The descent problem can be
formulated as follows: Let X, X’ be two ‘objects’ defined over a field k, and K/k be a
field extension. Suppose X becomes isomorphic to X’ when extended to K, when can
we say that X is isomorphic to X’ over k7 In this chapter, we see how this problem
can be formulated nicely in the cohomological language. The Galois descent lemma,
which is the end goal of this chapter, shows that the set of twisted k-forms of an object

defined over k is in one-one correspondence with the set of certain cocycles.

Chapter 7 This chapter gives applications of the Galois descent lemma proved in
Chapter 6 to different descent problems. We start by looking at the descent problem
of algebras, and using this, we give a reproof of the correspondence given by Weil. In
the end, we give another application of Galois descent to the conjugacy problem for

matrices.

The results in Chapters 5, 6, and 7 can be found in [7].

Chapter 8 In the Conclusion, we summarize the important results discussed in the
thesis and also provide possible directions one can pursue from this point. An example
of such a problem would be the problem of obtaining the exceptional groups as automorphisms
of certain algebras (see Chapter 2 of [9] for example). This, Weil describes in his
commentaries [10] as one of his secret hopes while writing his works on classical groups
in 1958-59. One can also learn about correspondences over fields of characteristic 2

(see |11]), which we have not pursued here.



Chapter 1

Central Simple Algebras

We would like to study structure theory for non-commutative rings and algebras here, and
the idea is to reduce the study to those algebras which are easy to study. The study of simple
algebras is an approach in this direction. The topic presented in this chapter is standard
and can be found in [1], [12] and [13] for example. For this brief exposition, we will follow

[4]. First, let us give the definition of a module:

Definition 1.0.1. Let R be a non-commutative ring with identity 1. A left module M over
R is as an abelian group (M, +) together with another operation . : R x M — M such that

the following conditions are satisfied :

(i) 7r1.(ro.m) = (ry.r9).m for all r1,r € R and m € M.
(ii) 1.m = m for all m € M.
(iii) r1.(mq + mg) = ri.my + riome and (rq + r2).my = ri.my + reumy for all 7, € R and
m; € M.

A right R-module is similarly defined. From now on, we will assume all modules to be

left modules.

1.1 Simple Modules

Simple modules are the building blocks of other modules in much the same way as primes

are the building blocks of integers. The following definition in the light of the remark seems
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apparent :

Definition 1.1.1. A non-zero module M is said to be simple if it has no proper non-zero

submodule.

Notice that we don’t allow 0 to be a simple module, just as we don’t allow 1 to be a

prime (to ensure uniqueness of factorization). The following result is quite basic and useful :

Proposition 1.1.1. M s a simple R-module <= M s cyclic, i.e., M = Rm and every

non-zero element m is a generator <= M = R/I for some mazimal ideal I of R.

One of the reasons why simple modules are easy to study is because they have very few

homomorphisms between them. The following result captures that:

Proposition 1.1.2. (Schur’s lemma) Let M, N be simple R-modules. Then any R-module
homomorphism f : M — N is either the zero map or an isomorphism. In particular, the

ring Endr(M) is a division ring for a simple module M.

1.2 Semisimple Modules

The next most basic type of modules will be the direct sums of simple modules, which will
be called semisimple modules. Semisimple modules behave like vector spaces in many ways,

where the role of 1-dimensional subspaces is played by simple modules.

Definition 1.2.1. An R-module M is said to be semisimple if it is a direct sum of simple

modules.

Direct sums, submodules and quotients of semisimple modules are semisimple. A module

M is semisimple if and only if every submodule of M is a direct summand.

Now, we try to represent a map between semisimple modules by matrices, just like we do
for vector spaces. So we are interested in the endomorphism ring of a semisimple module.
To that end, it is easy to set up a group isomorphism between the groups Homg(M"™, M™)
and Endp(M)™ ", where M is an R-module. If we take m = n, we get a ring isomorphism:
Endr(M™) = M,(Endr(M)). Now,



Proposition 1.2.1. The endomorphism ring of a semisimple R-module M of finite length
(i.e., having finitely many modules in the summand) is isomorphic to a finite product of

malriz rings over division rings.

Proof. Let M = @F_,M]" where we have collected all the isomorphic simple modules M,
into one isotypic component M. Now, any endomorphism of M must take each isotypic
component to itself because if Mi % M; then Hom(M;, M;) = 0. Thus,

k k
Endp(M) = Endp(@®}_,M}") = | [ Endp(M]") = | | M,

i=1 =1

EndR ))

0

and we know from Schur’s Lemma that Endg(M;) is a division ring since M; is a simple
module. O

1.3 Wedderburn Theorem

Definition 1.3.1. A ring R is called semisimple if it is semisimple as a module over itself.

A ring R is semisimple if and only if every R-module is semisimple. Also, a semisimple
ring R is a finite direct sum of simple R-modules and thus Artinian. Some of the common
examples include division rings and endomorphism rings of finite dimensional vector space
over a division ring. Finite direct sum of semisimple rings is always semisimple. Thus, if D,’s
are division rings and V;’s are finite dimensional vector spaces over D;, then [['_, Endp,(V;)
is a semisimple ring. Let V; = D, then Endp,(Vi) = Endp,(D;*) = M,,(Endp,p,)) =

M,,(Dg). In other words, finite product of matrix rings over division rings is semisimple.

e

Wedderburn theorem states that every semisimple ring is of this form.

Theorem 1.3.1 (Wedderburn Structure Theorem). Every semisimple ring is isomorphic to
a finite direct product of matrix rings over division rings.

Proof. Since R is semisimple as a module over itself, Endgr(R) = | | My, (D;) using Proposition
1.2.1. Now, R = Endr(R)° = [[ My, (D;)° = [ [ My, (Dg). O

Definition 1.3.2. A simple ring is a ring with no non-trivial two-sided ideal.

7



Note that according to our definition of a simple ring, it need not be semisimple. For
example, a simple ring can have an infinite descending chain of left ideals; however, since
any semisimple ring is Artinian, this is not possible in a semisimple ring. If we force this
condition that any descending chain of left ideals is finite, i.e., the ring is left Artinian, then

we will see that it becomes semisimple. This is the content of the next result :

Theorem 1.3.2 (Structure Theorem for Simple Artinian Rings). The following are equivalent

for a ring R :

1. R is artintan and has a faithful simple module.
2. R is semisimple and all simple R-modules are isomorphic.
3. R is isomorphic to a matriz ring over a division ring.

4. R is a simple artinian ring.

Proof. (1) = (2) : Let M be a faithful simple module. We want to show that R is
isomorphic to a submodule of M™ for some n. Consider all R-homomorphisms f: R — M"™
for different n, and choose the one with minimal kernel. (this can be done since R is artinian)
Let f(r) = 0, and suppose r # 0, then since M is faithful , there is a m # 0 such that rm # 0.
Now, define

p:R—>M"®M

such that R — (f(r),rm). Then, kernel of ¢ is contained in kernel of f, which is a
contradiction. Hence, f(r) = 0 implies » = 0. Thus, R is a submodule of M™, and hence (2)
Is true.

(2) = (3) : This follows from the Wedderburn Theorem and the fact that all simple
R-modules are one of the M, (D;) in the product, upto isomorphism.

(3) = (4) : This is because matrix ring over a division ring, being finite dimensional, is
artinian, and also simple.

(4) = (1) : Since R is artinian, using the composition series, R has a simple module. Also,
for any R-module M, Ann(M) is a two-sided ideal of R, thus for a simple ring, Ann(M) =0
for any R-module M. O



1.4 Simple Algebras

We first define an algebra :

Definition 1.4.1. Let A be a ring (possibly non-commutative). An A-algebra B is a ring
B which is also a module over A such that the ring structure and module structure on B
are compatible in the following way: for any a,a’ € A and b, V' € B, (ab).(a't') = (aa’)(b.V").

(Here, the binary multiplication is denoted by ., and scalar multiplication is omitted.)

We assume the reader to be familiar with the tensor product of algebras and quote the

universal property for algebras for reference (see [1]) :

Proposition 1.4.1. (Universal Property of tensor product of algebras)

Let R, S be k-algebras where k is a field. Suppose we are given any k-algebra T and pair
of algebra morphisms f: R — T and g : S — T such that images of these maps commute.
Then, there exists a unique algebra morphism from R® S — T such that the following

diagram commutes :

Definition 1.4.2. An algebra is said to be simple (semisimple) if it has the corresponding
property as a ring. A k-algebra S is called central if Z(S) = {z € S|xs = saVse S} =k. It

is called a central simple algebra over k if it is both central and simple.

We would now like to see what tensoring does to the simplicity and semisimplicity of

algebras. To that effect, we note that :

Lemma 1.4.2. Let R, S be algebras over k such that Z(S) = k. Then, Z(R® S) = Z(R).

Proof. Write z € Z(R® S) as z = Y.._,7; ® s;, where [ is minimal. Then, ;s will be
independent over k. Since z € Z(R® 5), 0 = (1®s)z —2(1®s) = D1 ® (s8; — 5;5)
for any s € S and since r;’s are independent, ss; — s;s = 0, i.e., s;5 = ss; for all s € S,
which means s; € Z(S) = k. Thus, z = Y1, ®s; = >,ris;, ® 1 = r® 1. Now, for x € R,
0=(z®1)z—2(x®1) = (zr—rx)®1 , which means zr = rz for all z € R, thus r € Z(R). O

Now, if we could prove a result of the sort that if R and S are simple, then so is R®Q S,
then our previous lemma combined with this result would mean that tensor product of two

central simple algebras is a central simple algebra. Indeed,

9



Proposition 1.4.3. If R and S are k-algebras where S is central simple, then every ideal
of RQ S is of the form I ® S for some ideal I of R.

Proof. Instead of giving a full proof, we just outline the idea. Suppose J is a non-zero
ideal of R ® S, then it can be shown that J n R # 0. Let I = J n R, then we claim
that J = I ® S. Indeed, I®Q S < J. If I ® S is properly contained in J, then the map
J—>(R®S)/(I®S)=(R/I)®S is non-zero. But im(J) n R/I =0since = JnR. O

This gives us the result we wanted as a corollary:

Corollary 1.4.4. If R and S are central simple algebras, so is R® S.

As for semisimplicity, we note that it reduces to the case of simple since : if R = Ry x Rs,
then R® S = (R ®5) x (R2® S). Furthermore, if S is a simple k-algebra with centre C,
then C is a field, and S is a central simple C-algebra. Also, RQ, S = (R®Q, C)®c S. A
finite dimensional semisimple algebra S is said to be separable over £ if all the C;’s in the

center C' = (4 x (5 x .... x () are separable extensions.

Proposition 1.4.5. If S is a separable algebra, then Sk is semisimple for all K 2 k.

Proof. We can take S to be simple since tensor would distribute over direct sum. Then, the

center C of S is a separable field. Now,
K®S=(K®C)®cS=([[R)®cS=]][(Ri®cS)

where the second isomorphism comes from the fact that tensor product of two fields is
semisimple if one of the fields is separable. Also, since R; is simple and S is simple, R; ® S

is simple. O

Proposition 1.4.6. The tensor product of two finite-dimensional semisimple algebras is

semasimple if at least one of the algebras is separable.

Proof. Suppose R is a separable algebra, and S is a finite-dimensional semisimple algebra.
Then, we can assume both R and S are simple due to remarks after Corollary 1.4.4. Let C
be the center of S, then C is a field. Now,

R®S=(R®C)®cS=(][R)®cS=]](Ri®cS),

10



where the second isomorphism comes using Proposition 1.4.5. O

The tensoring of algebras and the results above give us a really interesting consequence

about the possible dimensions of a central simple algebra:

Proposition 1.4.7. Let R be a simple algebra which is finite-dimensional over its center Z,

then |R : Z] is a square.

Proof. Since R is simple, its center Z will be a field, so R is a finite dimensional simple
Z-algebra. Thus, using Theorem 1.3.2, we have R =~ M, (D), where D is a division algebra
over Z, and is also finite dimensional. Let K = Z be the algebraic closure of Z. Then,
[D : Z] = [Dk : K]. Dk is a finite dimensional simple algebra over K, so again by
Theorem 1.3.2, we get that Dy is a matrix ring over a division ring over K, but since K
is algebraically closed, the only division ring over K is K itself, thus Dx =~ M,,(K). Now,
[R:Z] = [M,(D):Z] =|M,(D):D][D: Z] = n’|Dk : K] = n*m? = (nm)>. ]

Definition 1.4.3 (Degree). If R is a finite-dimensional central simple k-algebra such that
dimy(R) = n?, then n is called the degree of R.

1.5 Skolem Noether Theorem

We know from linear algebra that any automorphism of the ring M, (k) over k& must be
inner. The Skolem-Noether theorem generalizes this to any finite-dimensional central simple

algebra.

Theorem 1.5.1. (|!], Theorem 3.14)

Let S be a finite dimensional central simple k-algebra and let R be a simple k-algebra. Suppose
f,g: R— S are two homomorphisms, then there is an inner automorphism « of S such that
aof=g.

This is equivalent to saying that if R1 and Ry are two isomorphic simple subalgebras of S,
then for any homomorphism f : Ry — Ro, there is an inner automorphism o of S such that

alg, = f. In particular, any automorphism of S is inner.

Proof. S is finite dimensional and simple, hence by Structure Theorem, S = Endp(V)

for some division algebra D and a finite dimensional D-module V. The maps f and g

11



define two R-modules on V' via the morphisms such that their action commute with the
action of D, thus giving us two R® D-module structures which have same dimension. Also,
R® D is finite-dimensional and simple, and thus any two finite dimensional modules of same

dimesional over R &® D are isomorphic. Thus, we get h: V' — V such that :

h(f(r)v)) = g(r)h(v)
h{dv) = dh(v)

So, h € S and hf(r) = g(r)h which implies that g(r) = hf(r)h~!. Hence, taking a to be

inner conjugation by h, we get the result. O

We state another important theorem concerning centralizer of simple algebras. Let S be
a subset of of an algebra R, then centralizer of S is defined to be C(S) = {x € R|xs = szVs e
S}.

Theorem 1.5.2 (Centralizer Theorem). Let S be a finite dimensional central simple k-algebra

and R be a simple subalgebra of S. Then,

1. C(R) is simple subalgebra of R.

2. Suppose S = M, (Dy) for some n and R® D} = M,,(D3y) for some m, then C(R) =
M,.(D3) for some k.

3. Degree of C(R) over k is [S : k]/[R : k].

4. Double centralizer of R is R, i.e., C(C(R)) = R.

For proof refer to Theorem 3.15, [].

1.6 Brauer Group

We first define an equivalence relation on the set of finite-dimensional central simple algebras.
Let S and T be two finite-dimensional central simple algebras, then there exist division
algebras (unique up to isomorphism) D and D’ such that S = M, (D) and T = M,,(D’) for

some m,n. We say S ~ T if D = D’. Now, we will put a group structure on the similarity

12



classes of C.S.A.s over k, and the group will be called the Brauer group. Let S° denote the
opposite of S, whose underlying set and addition operation are same as S but multiplication
is in reverse order, precisely, for a,b € S° a b = b.a where = is the multiplication operation

on S° and .on S.

Let Br(k) be the set of equivalence classes of central simple algebras over k with respect
to the equivalence relation above. For [A],[B] € Br(k) define [A] + [B] = [A®, B] . We

now show that Br(k) forms an abelian group under this operation.

1. This is well defined : for one if A and B are central simple k-algebras, we know that so
is AQr B, alsoif A ~ A; and B ~ Bj then it can be easily checked that AQB ~ A1®B;.

2. Associativity follows from associativity of tensor product.
3. It is clear that [k] serves as the identity element of Br(K).

4. Also, if [S] € Br(k) then [S°] (the opposite of S) serves as the inverse of [S], which

follows from the lemma below.

Lemma 1.6.1. Let S be a central simple k-algebra of dimension n over k. Then, S® S° =

Proof. Let
A ={Ls € End(S)|Ls(x) = sx}

and
B = {Rs € Endy(5)|Rs(z) = xs}

One can see that as rings A = S by mapping Ls — Ls(1). Similarily, B = S° as rings.
Also, Ly o Ty = T o Ly, i.e., if we define maps from S — Endy(S) and S° — End(S)
by the isomorphism, their images commute. Thus, by the universal property of tensor
product of algebras, we get S ® S° — Endi(S), which is injective since S ® S° is a simple
algebra, and thus bijective since dimy(S®S°) = dimy(End,(S)). Finally, note that M, (k)
End(95).

Ll

Brauer group over certain fields are trivial, for example, the finite fields and algebraically

closed fields. An example of a non-trivial Brauer group is that of the reals, Br(R) = Z, since
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by Frobenius theorem (see Theorem 3.20, [!]), the only finite-dimensional central division
algebras over R are R itself and H, the quaternions, and it can be verified that HQH =~ M4(R).
Brauer group of other fields, like QQ, are very non-trivial and usually not so easy to determine.
Using number theory techniques, mathematicians have been able to classify the Brauer group

of any algebraic number field in general (see [11], [12] for reference).

Sometimes, we can study the structure of k-isomorphism classes of objects (here the
Brauer group) over the below field & by looking at a finite Galois extension K /k and studying
the k-isomorphism classes of those objects which become isomorphic over the bigger field K,
the technical term for this is splitting. We say D is split by K if D = D® K is isomorphic
to M, (K) (Here K will be called a splitting field for D). This is where Galois Cohomology

comes into play. This gives us the motivation to define the relative Brauer group as follows:

We first notice that we can see Br() as a functor which takes a field and returns an abelian
group, thanks to the following functorial property: if K/k is an extension, then we have a
group homomorphism Br(k) — Br(K) by mapping [S] — [Sk], where Sk = S ®; K. Now
we define the relative Brauer group Br(K/k) as the kernel of the map Br(k) — Br(K),
i.e., Br(K/k) is the set of k-isomorphism classes of all finite-dimensional central division
algebras over k which are split by K . Now, we will see how Br(k) splits into manageable

pieces Br(K/k), which can be studied explicitly by homological algebra.

1.7 Splitting of Br(k) into Br(K/k)

We want to look at mazimal subfields which will turn out to be splitting fields.

Definition 1.7.1. Let A be a central simple k-algebra of dimension n?, then a subfield of

degree n over k is called a maximal subfield.

Proposition 1.7.1. The following are equivalent for a finite dimensional central division
k-algebra D:

1. L is a splitting field for D.
2. C(L) = L, where C(L) denotes the centralizer of L.

3. L is a mazimal subfield of D.

14



Proof. (1) = (2): D® L ~ L, also L being a field is a simple subalgebra of D. Using
(2) of Theorem 1.5.2, with S = D = Dy, R = L, we get C(L) ~ L. This means that
C(L) = M,(L) for some r. But C(L) is a division algebra, so r has to be 1, thus C(L) = L.
(2) = (3) : Again, using (3) of Theorem 1.5.2, we get [D : k] = [L: k][C(L) : k] = [L :
k]?, thus [L : k] = n.

(3) = (1): D acts on itself on the left, and L acts on D on the right, and these actions
commute. Thus, we can define a map f: D® L — End; (D) where f(d® x)(d') = dd'z.
Since D ® L is simple, f is injective, it is surjective because dimensions are equal. Thus, f
is an isomorphism of algebras. Finally, note that Endr(D) = M,(L). O

Now, we will show that every division algebra can be split by a finite Galois extension.
We will use the following result, which we state here without the proof, which can be found

in any Galois theory textbook (for example, see Lemma IV.1.16 in [15]) :

Proposition 1.7.2. Let D central division k-algebra. If every subfield of D 1is purely

inseparable over k, then D = k.

Using this, we have:

Theorem 1.7.3. If D is a central division k-algebra of dimension n?, then there exists a
finite Galois extension K /k, which is a splitting field for D.

Proof. Let L be the largest separable subfield of D. Then, C(L) is a central L-division
algebra. If L € L' < C(L), then L'/L is purely inseparable, because if x € L’ is separable
over L, then L(x)/L is a separable subfield of D larger than L, which is a contradiction.
Thus, by the previous proposition, C'(L) = L, which means by Proposition 1.7.1 that L is
a maximal subfield of D. Thus, there exists a maximal separable subfield L of D, let K be
the normal closure of L. Then, K is Galois over k. Also, since L is a splitting field for D
by Proposition 1.7.1, any bigger field is also a splitting field. Thus K /k is a finite Galois
extension which is a splitting field. [

Let S be a central simple k-algebra, let S = M, (D). Then, it can be easily verified that
for any extension K /k, K splits S if and only if K splits D. Thus,

Corollary 1.7.4. Br(k) = | Br(K/k) where the union runs over all finite Galois extensions
K/k.
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1.8 Factor Sets

Now that we have split Br(k) into pieces Br(K /k), we will see two explicit ways to look at the
group Br(K /k), one of which is given by factor sets and the other one given by cohomology.
The factor sets turn out to be 2—cocycles in the language of Galois cohomology. But for
defining factor sets, we need first the following result, which we state without proving (for
proof, see |1, p. 115-116]):

Theorem 1.8.1. Given any extension K/k of degree n, any element of Br(K/k) has a

unique representative S of dimension n? such that S contains K as a mazimal subfield.

Now, the setting we will work in is as follows: We have a Galois extension K /k of degree
n with Galois group G = Gal(K/k). S is a central simple k-algebra of dimension n? which
contains K as a maximal subfield. (This already means [S] € Br(K/k) because maximal

subfields are splitting.)

Every o € G is restriction of an inner automorphism on S by the Skolem-Noether theorem,

which means there is some z, € S such that
Toax,—1 = o(a) (1.1)

for all @ € K. We can think of {z,|0 € G} as map from G to K*. If z, and 2/ both satisfy
(1.1), then we can easily see that they must differ by a non-zero element of K. Thus, it
follows that

Loy = Qo rLor

for some a,, € K*.

We can think of {a, .} as function from G x G — K*. The collection {a,.} is called
a factor set of S relative to K. We now investigate relation between the two factor sets,
say obtained {a,.} and {b,,} by taking {z,} and {z]} satisfying (1.1) respectively. Let

I =1 * [
r.x, = f, € K*. Then, 2. = f,x,, and

WA ’
Loly = b0—77_x0"7'

fo‘xafoT = bcr,TfUTxoT
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fO’O-(fT)IUxT = bO’,TfO’T‘TO'T
fUO'(fT)aO',T:UO'T = bO',TfO'Tmo'T

foo(f7)
for

=1

Ayr = byr (1.2)
We define now an equivalence relation on the set of factor sets using (1.2) as follows: {a, .} ~
{by+} if there exists {f,} such that (1.2) holds.

Proposition 1.8.2. {z,|oc € G} is a basis for S over K.

Proof. We just have to show linear independence since [S : K] =n = [K : k] = |G|. To
that extent, we choose a maximal subset J & G such that {z,|oc € J} is independent. Let

o ¢ J. Then, using linear dependence,

Ty = ZaTxT (1.3)

TeJ

therefore for any r € K

Tyl = Z a;xr.1r (1.4)

TeJ

and so,

o(ryz, = Z a;7(r)x, (1.5)

TeJ

Multipliying (1.3) by o(r) and equating with (1.5) gives us
U(T)CLT = CLTT(T), (16)

for each 7 € J,r € K. Now there exists some 7 € .J such that a, # 0 otherwise x, = 0. Then,
o(r) = 7(r)¥r € K, which means ¢ = 7 which is a contradiction. Thus, J = G and we are
done. ]

Now what we have seen above tells us that if we choose two bases x, and 2/ of S over K,
then the factor sets are equivalent. In other words, for isomorphic algebras, factor sets are
equivalent. We now see the converse of this and then establish a correspondence between

the equivalence class of factor sets and elements of Br(K /k).
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We want to see what condition a factor set necessarily satisfies. If {a, .} is a factor set,

then the associativity relation z,(z,z,) = (z,2,)z, gives us

LoOr plrp = Ao rLordp
0(ar,p)ToT7p = Ao,7007,pTarp
o (aﬂp)avﬁpxwp = Qo,rQor,pLoTp

a(aT,p)aa,Tp = Qo r0or,p (17)

We will see in the section that condition (1.7) is exactly the condition for being a 2-cocycle,
thus factor sets naturally become 2-cocycles. This condition is sufficient for {a,,} to be a
factor set of some simple algebra relative to K, which we list in the proposition below. We
only sketch the outline for proof (for proof, see [1, p. 119-122]):

Proposition 1.8.3. Given a Galois extension K/k and any set of functions {a, .} from
G x G — K* satisfying (2.7) for all o,7,p € G, there exists a central simple k-algebra
called the crossed product algebra, denoted by (K, G, a), such that {a,,} is a factor set of
(K,G,a). Also, (K,G,a) contains K as a mazimal subfield.

Proof. We make a vector space A = (K,G,a) over K with basis {e,|0c € G}. We define

multiplication as:

(@60)(567) = 057-(6)@0,7'60'7 (18)

We can check that then A becomes an algebra with identity al_jel. We can embed K inside
A by defining a € K as a.1 where 1 = aj je1. An element )] aqe, will be in C(K) if and only

if for each a € K we have,

a(z Up€y) = (Z Uy€s)Q
Z at,ey = Z a,0(a)e,

which means aa, = a,0(a) forall 0 € G,a € K. If a, # 0, then a = o(a) for all a € K, which
means o = id. Thus, a, = 0 for all ¢ # id., which gives us C(K) € K. Thus, K = C(K)
and hence K is a maximal subfield. A similar verification will lead us to the fact that A is

a simple algebra. O

What happens if we take two equivalent factor sets {a,,} and {b, .} by some {f,}, are the
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algebras (K, G, a) and (K, G,b) isomorphic? The answer is yes, and can be seen by giving

the isomorphism map
(K,G,b) — (K,G,a)
e, > fols

This means that equivalent factor sets give rise to isomorphic algebras. Thus, we culminate

in the final result:

Proposition 1.8.4. Let K/k be a Galois extension whose Galois group is G. Then, there
is a one-one correspondence between the elements of Br(K /k) and the equivalence classes of
factor sets {a,.} satisfying (1.7).

1.9 Galois cohomology and Br(K/k)

We give the general definition of cohomology groups due to Eilenberg-MacLane at first. Let
G be a group and A be an abelian group on which G acts. We define C°(G, A) = A, and
define C"(G,A) = {f : G —> A}. The set C"(G, A) is easily seen to be an abelian group
under addition of functions. Also, note that G has a natural action on C"(G, A). The
elements of C™(G, A) are called the n-cochains of G with coefficients in A, and C"(G, A) is
called the n-th cochain group. We now define maps 6° : C° — C' by 6°(f)(g) = g.f — f and

5n . Cn N Cn+1
for n > 1, given by
6"(f) (9153 Gnr1) = g1-f (92, Gns1)

D (9 giGiets - Gnet) F (D) (91 g0)
j=1

0, is called the n-th boundary map, each of which is a group homomorphism. Also, it
can be checked that 6,1 0 0, = 0. Thus, we get a co-chain complex {C",d,} which can be

denoted as :
0 1 2 —nl n n+1
LSS ety S en S ot
0—-C
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Now we define Z" = ker(d,) and B" = image(d,,_1). Elements of Z™ are called n-cocycles
and that of B™ are called n-coboundaries. 6§,,.1 ©d,, = 0 means that B™ < Z™, both of these
are abelian groups. Thus, we can take quotients, we define H"(G,A) = Z"/B", which is
called the n-th cohomology group of G with coefficients in A.

We shall now restrict to the case where G = Gal(K/k) and A = K*. We would like to
see what conditions 2-cocycles of this cohomology satisfy. In this case, Z2 will consist of
{a: G x G —> K*} such that §*(a) =1, i.e.,

1 =0%0,7,p) = ola(r,p))a(or, p) " a(o, Tp)a(o, 7) 7",
which is equivalent to saying
U(G/T,p)aa,ﬂ-p = Qorplo,r-
This condition is called the cocycle condition. This is exactly the same condition as (1.7),
thus the 2-cocycles of C%(Gal(K /k), K*) are exactly the factor sets relative to K.

Now B? consists of functions which are images of functions f : G — K* under §'.

3" (f)o.7) = o(f(7)) f(o) ™" f(0).

Two 2-cocycles a and b in Z? represent the same element in H? precisely when there is some
f: G — K* such that ba™' = 6'(f), i.e,

b(o,m)alo,7) " = o(f()floT) " f(o).

In other words,

o(f-)f(o)

bo,T = ——F Ugr-

Jor

This is exactly the condition for two factor sets {b, .} and {a, .} being equivalent. Thus, we
see that as sets the equivalence class of factor sets relative to K is in one-one correspondence
with H?(Gal(K/k), K*). Thus, using Proposition 1.8.4, Br(K/k) is equivalent as set to
H?*(Gal(K/k), K*). We want to say that they also preserve the group structure in this

COH’GSpOHdGHCG :

Y H*(Gal(K /k), K*) — Br(K/k)
a—[(K,G,a)],
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i.e., we need the following result, which we state without proving (for proof, see |1, p. 126-128]):

Lemma 1.9.1. If K/k is a Galois extension with Galois group G and a and b are factor

sets relative to K, then

[(K7 G, a)] [(K’ G, b)] = [(K> G, ab)]v
in Br(K/k).

Using this lemma, we can say that:

Theorem 1.9.2. For a Galois extension K/k, Br(K/k) = H*(Gal(K/k), K*) as groups.
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Chapter 2

Classical Groups

The study of classical groups constitutes the study of groups such as the linear groups,
orthogonal, symplectic, and unitary groups over any field. There are various approaches to
study these groups, for example, the theory of Chevalley groups, which is a uniform approach
that applies to classical groups. However, this requires knowledge of Lie algebras. We will
instead follow a more head-on approach studying each class of groups one at a time. The
idea is that looking at isometries of different types of sesquilinear forms on vector spaces,
which is a generalization of bilinear forms, will lead us to different classes of the groups
mentioned above: trivial forms lead us to Linear groups; Orthogonal groups are obtained
from symmetric forms; Symplectic groups are obtained from skew-symmetric forms, and
finally the Unitary groups can be obtained from hermitian forms. We will not delve into the
study of unitary groups, and for us, it suffices to look at bilinear forms. The exposition in
this chapter follows that of [5] and [16].

2.1 Preliminaries and Notations

A group action of a group G acting on a set A is a map
o GE@xA— A

such that the following axioms hold:
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(i) ea=a Yae A
(ii) g1.(g2.0) = (9192)-a

Equivalently, a group action is a group homomorphism ¢ : G — Sym(A), where Sym/(A)
is the group of all bijections of A. The action is called faitfhul if ¢ is one-one, ie., g.x = x

for all x € A implies that g = e.

Orbits and Stabilizers : Define an equivalence relation on A by saying a ~ b in A if
g9 € G such that g.a = b. The equivalence classes under this relation are called orbits,
Orbg(a) = {g.a : g € G}. Then, A = [[Orbg(a), ie.,, A is disjoint union of orbits.
Stabg(a) = {g € G|ga = a} is called the stabilizer of a in G, which is a subgroup of G.
The map g.a — g.Stabg(a) from Orbg(a) — G/Stabs(a) is a well-defined bijection of sets.
Thus, |Orbg(a)| = |G : Stabg(a)|, which is the Orbit-Stabilizer theorem.

Transitive actions: We say G acts transitively on A if Orbg(a) = A for some a € A (and
hence for all a € A, since A is disjoint union of orbits.). G is doubly transitive on A if for
each (a,b), (c,d) € A such that a # b and ¢ # d, there exists g € G such that g.a = ¢ and
g.b =d. It is good to note that G is doubly transitive on S if and only if it is transitive on
A and Stabg(a) is transitive on A — {a}.

Primitive action : B & A such that |B| > 2 is said to be a block of imprimitivity if for
each g € G, either g.B = B or gBn B = ¢J. If G has no blocks, then the action of G
is primitive on A, otherwise it is imprimitive. For example, any transitive action of prime
order (i.e., |[A| =prime) is primitive.

Proposition 2.1.1. Suppose that G acts transitively on A. Then, action of G is primitive
if and only if for each a € A, Stabg(a) is a mazimal subgroup of G.

Proof. Let G be primitive. Suppose H is a proper subgroup of G containing Stabg(a). Then,
Orbg(a) is a block of imprimitivity. Conversely, if there exists a block of imprimitivity B,

then Stabg(B) is a proper subgroup of G which contains Stabg(a) properly. ]
Proposition 2.1.2. If G is doubly transitive on A, then G is primitive.

Proof. Suppose B & A such that |B| = 2. Choose a,b € B,a # b. Choose ¢ € A\B. Then,
since GG is doubly transitive, g € GG such that ga = a and gb = ¢. Then, a € ¢gB n B and
c € gB\B. Thus, B is not a block. O
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Proposition 2.1.3. Suppose G acts primitively on A. If N is any normal subgroup of G

which is not contained in the kernel of the group action, then N is transitive on A.

Proof. We want to show that if a € A, then Orby(a) = A. Let B = Orby(a), then |B| = 2
since N is not contained in kernel. For any g € G, gOrby(a) = g.(Na) = N.(ga) = Orby(ga)
since N << G. B and ¢gB are both orbits, so they are either equal or disjoint. But B cannot
be a block, so B = A. Thus, Orby(a) = A. O

Proposition 2.1.4. Suppose G acts on A. If a subgroup H of G is transitive on A, then
G = H.Stabg(a) for any a € A.

Proof. Let g € G and a € A, then ga = ha for some h € H. Then, h™'g € Stabg(a), which
means g € hStabg(a) € HStabg(a). Thus, G € HStabg(a). O

Now, we are fit to give Iwasawa’s simplicity criterion which we will use to prove simplicity
of PSL(V) for example. A few recollections are in order: A group G is called simple if it has
no non-trivial normal subgroup. The commutator subgroup of G denoted by G’ = |G, G] is
defined as

G' = {g 'h 'gh|g,h e G}.

Let GO = &, then G is defined inductively as G(™'. G is called solvable if G™ = {e}

for some m.

Theorem 2.1.5 (Iwasawa’s Criterion). Suppose G acts faithfully and primitively on a set
A, and that G = (gHg *|g € G) for some solvable subgroup H < Stabg(a) for some a € A.
If G' = G, then, G is simple.

Proof. Suppose {e} # N is a normal subgroup of G. Then, since kernel of action is
{e}, G being faithfhul, we have that N is not contained in the kernel of action. Thus,
using Proposition 2.1.3, N is transitive on A, which means by Proposition 2.1.4 that G =
N.Stabg(a) = Stabg(a).N for the given a. The subgroup HN < Stabg(a)N = G since
H < Stabg(a). Now, gHg™' < gHNg™' = HN. Thus, G € HN which means HN = G. Tt
can be checked inductively that (HN)™ < H"N for each n. Since H is solvable, there exists
some m such that H™ = {e}. Then, G = G™ = (HN)™ < H™N = N, which means N = G.

Thus, G has no non-trivial normal subgroup. O]
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2.2 Linear groups

In this section, we will look at groups like the General linear group, GL, ; Special linear
group, SL,; and the projective linear groups, PGL,, PSL, over an arbitrary field F, and
we will study their properties. We will be working towards the goal of proving that PSL,
is simple using Iwasawa’s criterion except for some special cases. The process will lead
us to many other interesting properties, for example, proving that SL, is generated by
transvections. These can be further used to derive more properties, for example, proving
that these spaces will be connected. We will begin with GL(V'), which can be thought of as
the all-embracing classical group as every other classical group will either be a subgroup or

related quotient of this group.

Let V be a m-dimensional vector space over F. The set of all invertible F-linear
transformations on V' form a group under composition, and this group is called the general
linear group of V denoted by GL(V). Choosing a basis for V', the mapping of a linear
transformation to corresponding matrix gives us an isomorphism of GL(V') with the group
GL(n, F) of all n x n invertible matrices over F'. The determinant map from GL(V') to the
group F* of non-zero elements of F' is an onto group homomorphism. The kernel of this map
is the group SL(V) of linear transformations of determinant 1. SL(V') is called the special
linear group. Few properties about center and dimensions of these groups are in order.
Z(GL(V)) is the set of all scalar matrices al where a € F* and thus Z(GL(V)) = F*,
similarily, Z(SL(V)) is the set of all scalar matrices al where o™ = 1. Z(SL(V)) is the
unique subgroup of order (n,q — 1), where (n,q — 1) denotes the g.c.d. of n and ¢ — 1, in
F* (note: F* is cyclic), because a” = 1 and a?"' = 1 if and only if a™? Y = 1. If F is the
finite field with ¢ elements, then |G L(n, q)| = [/ (¢" —¢'). Since, GL(n,q)/SL(n,q) = F*,
SLn,q)| = |GL(n.)l/(q — 1).

Now, we define the projective linear groups. The projective linear group of V' is defined to
be PGL(V) = GL(V)/Z(GL(V)). Similarily, the projective special linear group is defined
to be PSL(V) = SL(V)/Z(SL(V)). It is clear that the centres of these two groups are
trivial. If F' has ¢ elements, then |PGL(n,q)| = |GL(n,q)|/(¢ — 1) and |PSL(n,q)| =

|SL(n, q)|/(n,q = 1).
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2.2.1 Action of PSL(V) on P(V)

Let V be an n-dimensional vector space. Define an equivalence relation on V\{0} as :
v~w < v=\wfor some A\ € F. Then, P(V) = {[v] : v e V\{0}}. P(V) is called the
projective space of dimension (n — 1). There is a natural action of GL(V) or SL(V) on V
which is given as o.[v] = [0(v)]. The kernel of the action of GL(V') on P(V) is Z(GL(V)),
and likewise the kernel of action of SL(V') is Z(SL(V)). This action induces an action of
PSL(V) on P(V) which will be faithful. We now show that the action is doubly transitive
too, which will mean it is primitive. This will give us a lead on proving simplicity of PSL(V)

by using Iwasawa’s criterion.

Proposition 2.2.1. PSL(V) acts doubly transitively on P(V).

Proof. Let ([u1], [uz]) and ([v1], [v2]) be 2-tuples of points in P(V), such that [u] # [us]
and [vq] # [ve]. Tt suffices to give a map 7 € SL(V') such that 7 takes [u;] to [v;] fori =1, 2.
{u1,us} and {vy, vo} are linearly independent. Extend {u,us} to a basis {uy, us, - ,u,} and
similarily extend {vy,vs} to a basis {vq,ve, -+ ,v,}. Define 7 € GL(V') such that 7(u;) = v;

for i =2,3,--- ;m, and 7(uy) = avy, choose a such that det(7) = 1. ]

The other conditions in the Iwasawa criterion will be fulfilled by looking at transvections.

2.2.2 Transvections

The discussion in this subsection can be found in [16] and [5]. A hyperplane in an n-dimensional
vector space V' is a subspace of dimension (n — 1) in V. A map t # Id. € GL(V) is called
a transvection if there exists a hyperplane H such that t|y = id.|y and tv —v € H for all
v € V. Inverse of a transvection is a transvection, but product of two transvections might
not be a transvection. Given a subspace W of V' and a vector v outside W, any transvection
on W can be extended to a transvection on V' whose fixed hyperplane contains v. We want
to see the matrix of a transvection. Let ¢ be a transvection fixing a hyperplane W. Choose
a basis {vy,va, - ,v, 1} of W, and extend it to a basis {vy,ve, -+, v, 1,v,} of V. Then,
t(v;) = v; for all i = 1,2,---n — 1, and t(v,) — v, € W, Le., t(v,) = 22:11 a;v; + v,. Thus,

the matrix for t looks like :
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_1 0 aq 1
0

1 an—1
0 0 1

It is clear that if ¢ is a transvection, it not only belongs to GL(V') but, in fact, to SL(V).

Now, we define certain types of matrices, named X;;(\) and call them ‘transvection
matrices.” The matrix X;;(\) where i # j is defined to be the matrix whose entries are same
as that of the identity matrix except for a A at the (i,j)th place. These matrices clearly
lie in SL(V'), and moreover, it can be easily seen by basis change that they are, in fact,

transvections. We now show that these matrices generate the whole of SL(V).

Lemma 2.2.2. Multiplying a matriz A by X;;(\) on the left changes only the i-th row by
adding A-times the j-th row to it. Similarly, multiplying A by X;;(X) on the right changes
only the j-th column by adding A-times the i-th column to it.

Proposition 2.2.3. The transvection matrices X;;(\) generate SL(V').

Proof. We prove by induction on size of matrix. For n = 1 it is trivial. Assume it is true for
n x n matrix in SL(V'). Now, suppose A € SL(n+ 1, F). If ag; # 0, then the (1, 1)-th entry
of Xi5(A\) will be equal to 1 for a unique A given by solving aj; + Aag; = 1. If ag; = 0, then we
can make it non-zero by multiplying A on the left by X for some k such that ax; # 0 (such
a k exists, since if ag; = 0 for all k, then determinant is 0). Thus, we can assume WLOG
that a;; = 1. Multiplying on the left by X;1(—a;;) will make the first column zero except
(1, 1)-th position which is 1. Similarily, multiplying on the right by Xix(—ayx) will make the

first row zero except (1,1)-th position. Thus, using these matrices, we have reduced A to a
1 0
matrix of the form 0 B/ where Bis a (n —1) x (n — 1) matrix and B € SL(n, F'). And

now, we can use the induction hypothesis for B. O]

Now, we prove that any two transvections are conjugate in SL(V') provided dimension
of V= 3.

Proposition 2.2.4. Let t; and ty be two transvections on V. Then, they are conjugate in
GL(V) and if n = 3, then they are conjugate in SL(V).
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Proof. Let Hy and Hs be the fixed hyperplanes corresponding to ¢; and t, respectively. Let
x; € VAW, for i = 1,2, and t;(z;) — x; = w; € W;. Choose basis {w,uy, ug, - - - u, o} for Wy
and similarily, {wq, v1,vq, - v, o} for Wy. Define f e GL(V) as f(w) = wa, f(u;) = v; for
i=1,2,---n—1,and f(z;) = zo. Then, fot;o f ! =ty If n > 3, then define o, € GL(V)
as o,(wy) = wy,04(u;) = v; for i = 1,2,---n —2, 0,(u,_1) = av,_1 where a € F* is to be

chosen later, and o,(x1) = x2. Choose a such that det(o,) = 1. O
Using these results, we prove that:

Theorem 2.2.5. [5] If n > 3, then PSL(V) = PSL(V).

Proof. We first prove that SL(V)' = SL(V'). Using previous two propositions, it suffices to

show that SL(V)’ contains a transvection. (recall: G’ is a normal subgroup of G.) Fix a
basis {v1,vq, -+ ,v,} of V. Define t,t, € GL(V) as

tl(Ul) = V1 — Ug,tl(?}i) = V;, if 2 < ) <n
tg(l}l‘) = UZVZ #* Q,tg(vg) = V1 — U2
Then, it can be checked that
tthtl‘ltgl v v —vg, v v i 2<0 < n,

which is a transvection in SL(V)'. Now, we know that [G/N,G/N| = N[G,G]/N, thus
PSL(VY = Z(SL(V)SL(V)/Z(SL(V)) = Z(SL(V))SL(V)/Z(SL(V)) = PSL(V) by the

2nd isomorphism theorem for groups. O

The n =1 case is trivial, and n = 2 case is a bit different, so we do it separately.

Lemma 2.2.6. [5| Let n = 2, and {vi,vy} be a basis for V. Every transvection in V is

0
conjugate to one whose matriz relative to basis {vy, v} is of the form ( 1) , where a € F*

a

Proposition 2.2.7. If n =2 and |F| = 4, then PSL(V) = PSL(V).

Proof. Again, we just prove that there is a transvection in SL(V)". Let a € F* and a # *1.
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Then, observe that

a 0 []1 0|l|lat O L o 1 0
0 at||1 1[0 a||-1 1| |(a—a) 1|

Here, LHS is clearly in SL(V)" and RHS is a transvection. O

It can be verified that SL(2,2)" =~ As, which is the subgroup of even permutations in
S; and thus [PSL(2,2)| = 3, but |[PSL(2,2) = 6, thus PSL(2,2)’ & PSL(2,2). Similarily,
SL(2,3) = Qs, the quaternions, and thus SL(2,3) 2 SL(2,3). Now, we state the proposition
which gives the final blow to proving simplicity of PSL(n). For a proof of this proposition,

we refer the interested reader to [5]

Proposition 2.2.8. Let [v] € P(V'),then Stabsrvy[v] has an abelian normal subgroup B (which
means it is solvable) whose conjugates in SL(V') generate SL(V).

Theorem 2.2.9 (Simplicity of PSL(n)). If n > 2, then PSL(n) is a simple group except
for PSL(2,2) and PSL(2,3).

Proof. Let [v] € P(V), and choose B < Stabgpny[v], then H = BZ(SL(V))/Z(SL(V)) <
Stabpgrvy[v]. All conditions of Theorem 2.1.5 are met, thus PSL(V') is simple. O

2.3 Bilinear forms

As discussed, the classic groups other than those discussed in the previous section are
obtained by looking at isometries of different types of bilinear forms. In fact, the linear
groups can be also be fit in this context if we treat them as isometries of the trivial bilinear
form, i.e., B(x,y) = 0. Throughout this section, F is assumed to be a field of characteristic

not equal to 2.

Definition 2.3.1. Let F be a field and V a vector space over F. Assume V to be
finite-dimensional. Then, a bilinear form on V is a map B : V x V — F such that B

is linear in both the variables, i.e.,

B(avy + ve,w) = aB(vy,w) + B(vg, w)
B(v, aw;, + wq) = aB(v,w;) + B(v, ws)
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where a € F' and all other variables are in V.

Now, given a basis for V over F', we get a matrix for a given bilinear form B and
conversely given a matrix we can define a bilinear form on V' : Let {v;}!" ; be a basis for V,
and let B be a given bilinear form on V. Let B(v;,v;) = b;j, then B = (b;;) is called the
matrix of B relative to the given basis. Conversely, if B = (b;j) is a given matrix, then define
B:V xV — F as B(v;,v;) = b;; and extend it linearly in both variables. Thus, B clearly

defines a bilinear form.

We would like to associate some invariants to a bilinear form, our first guess would be
something like the determinant of the matrix given by the bilinear form or its form, but as
for linear transformations, the determinant depends on the basis. So, we would like to see
how determinant changes upon a change of basis, but first, let’s see how the action of B

relates to the matrix B.

Let v,w be two vectors such that when expanded in terms of basis, v = " | a;v; and
w = Y bjv; and let v,w denote the column vectors (ay,ag, ....... can)T, (b, bay . )T

respectively. Then,
B(v,w) = B(Z a;v;, Z bjvj) = ZaiB(vi,vj)bj =T Bw
i=1 j=1 ]

Now, let {w;}%_; be another basis for V over F', and let D be the invertible change of basis
matrix from {w;}7_; to {v;}i.,;. Then, matrix for B in this basis is given by (B(w;, w;)) and
B(w;, w;) = Zk,l dyi B(vg, vp)dij = DTBD. In other words, the matrix in different bases are
conjugates of each other, so the rank remains same. This rank is called the rank of B. As

for the determinant, it differs by a square factor. So, we define

Definition 2.3.2 (Discriminant). Let F** = {a? : a € F* = F\{0}}. Then, discriminant of

a bilinear form B is defined as

A

0, if det(B) = 0

discr(B) = L, )
det(B)F*" e F*/F*", otherwise.

Now, discr(B) is independent of basis, and is an invariant.

Definition 2.3.3 (Nondegenerate). A bilinear form B is called nondegenerate if discr(B) #
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Now, we see two linear maps associated with a bilinear form and characterise non-degeneracy
in terms of kernel of these maps. Let V* denote the dual of V. Define the maps L : V — V*,
such that v — L,, and R : V — V* such that v — R,, where L, : V — F such that
L,(w) = B(v,w) and R, : V — F such that R,(w) = B(w,v). It is easy to see that R, L

are both linear maps. Now, we define

radp(V) = Ker(L) ={veV :L,(w)=0VweV}={veV:B(v,w)=0VYwe V}
radg(V) = Ker(R)={veV :R,(w) =0VYweV}={veV:Bw,v)=0YweV}

Proposition 2.3.1. Let B be a bilinear form on a finite-dimensional vector space V. Then,
B is nondegenerate if and only if rad, (V) = radg(V) =0

Proof. Tet {v;}?, be basis for V and B = (b;;) be matrix of B w.r.t. this basis. We will prove
the contrapositive. Suppose v € rad(V), then B(v,v;) = 0Vi. Let v = 377 a;v;, then
>, a;B(vj,vi) = 3, a;b = 0 Vi, so the vector X = (ay,...a,)” is a solution to BTX = 0,
which is a non-trivial solution if v # 0. Thus, if rad, (V) # 0, then det(BT) = 0, so
det(B) = 0 — discr(B) = 0, hence B is non-degenerate. It is easily seen that the same

holds for radg(V') case. O
Corollary 2.3.2. Let W be a subspace of V and B be a non-degenerate bilinear form on V.

Then, for any f € W*, there exists u,v € V such that f = L,|w = Ry|w-

Proof. Let {w, ..., w,} be a basis for W and extend this to a basis {wy, ..., w,} for V. Extend
fto freV*as filw = f and fi(w;) = 0 whenver i > m. Then, by previous corollary, there
exists u,v € V such that f; = L, = R, hence f = fi|lw = Lu|lw = Ru|w- O

Now, we generalise rad; (V') and radg(V') for any arbitrary subset S < V: For S < V,
define

1,(S)={veV:Bww)=0Ywe S} ={veV:L|s=0}
1r(S)={veV :B(w,v)=0Vwe S} ={veV:R,s =0}
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Note that L (V) =rad,(V) and Lg(V) = radg(V)

Proposition 2.3.3. L (S) and Lg(S) are subspaces of V' satifsying the following:

e |, and Lg are inclusion-reversing, i.e., if S < T, then L;(S) 2 L (T) and Lg(S) 2
Lr(T).

o If W is the subspace spanned by S, then L;(S) = L (W), and likewise for Lg(S).

o L(Lr(S)) 28, Lr(LL(S5)) 2 5.

Proof. We will prove everything for L, and the corresponding proof for R is imitated.
B(v,w) = 0Yw € S and B(v',w) = 0V w € S imply that B(kv + v',w) = 0V w € S
(where k € F') because of linearity of B in the first coordinate. Thus, L;(S) is a subspace
of V.

Let S € T. Suppose v € L (T), then B(v,w) = 0 Y w € T and therefore B(v,w) =0Y we S
which implies that v € L. (95).

Since S W, Ly(W) 2 L.(S5). Let ve L,(5), then B(v,w) =0V we S. If w € W, then
w' i a finite linear combination of elements of S, and by linearity of B in second coordinate,
we have B(v,w') = 0, which implies v € L (). Hence, 1;(S) = Lp(W).

Finally, for any s € S, B(s,w) =0V we Lg(5), hence S < L (Lg(9)). O

Proposition 2.3.4. Let W be a subspace of V', and B be a non-degenerate bilinear form on
V', then dim(L,(W)) = dim(Lgr(W) = dim(V) — dim(W).

Proof. Define amap 0 : V' — W* which maps v — L,|w. This map is onto by Corollary 2.3.2.
Now, ker(6) = Lp(W). By rank-nullity, dimV = dim(ker(9)) + dim(W*) = dim(L,(W)) +
dim(W). Hence, the result. O

Corollary 2.3.5. Let B be a non-degenerate bilinear form on V, S < V and W be the
subspace spanned by S. Then, L (Lr(S)) = Lr(Lr(S)) = W. In particular for a subspace
WeV, Li(Lp(W)) = La(L(W)) =W.

Proof. First, S < L;(Lg(S)) and right side is a subspace of V', so W < L (Lg(S5)). Also,
dim(Lp(Lr(S))) = dim(L(Lg(W))) = dim(V) — dim(Lgr(W)) = dim(V) — (dim(V') —
dim(W)) = dim(W). Hence the result. O
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2.4 Alternating forms and Symplectic groups

2.4.1 Alternating forms

We first define symmetric and alternating forms. Let B be a bilinear form on V, then B
is called symmetric if B(u,v) = B(v,u) ¥ u,v € V and alternate if B(u,u) = 0V u € V.
A bilinear form B such that B(u,v) = —B(v,u) ¥ u,v € V is called skew-symmetric form.
Thus, B is symmetric if and only if Bt = B, where Bis any matrix for B, and skew-symmetric
if and only if B* = —B. If B is an alternate form, then B(u +v,u+v) =0 — B(u,v) +
B(v,u) = 0 for any u,v € V. So, if char(F) # 2, then B(u,v) = —B(v,u), so alternating
forms coincide with skew-symmetric forms in char(F) # 2. If char(F) = 2, B(u,v) = B(v, u)
so alternating forms coincide with symmetric forms in characteristic 2.

Now, we give a condition which ensures a bilinear form is either symmetric or alternating:

Proposition 2.4.1. If B satisfies
B(u,v)B(w,u) = B(v,u)B(u,w) ¥ u,v,w eV, (2.1)

then B is symmetric or alternating.

Proof. Putting u = v in (2.1), we get
B(u,u)[B(w,u) — Bu,w)] =0V u,weV (*)

. Now, we want to say that B(u,u) =0V ue V or [B(w,u) = B(u,w) ¥ u,v € V. Suppose
not, then there exists x,y,z € V such that B(z,z) # 0 and B(y,z) # B(z,y). Put u =
y,w = z in (*), then B(y,y) = 0. Similarily, B(z,2) = 0, B(z,y) = B(y,z) = 0, B(z, z) =
B(z,z) = 0. Now, 0 # B(z,z) = B(z,z) + B(x,y) + B(y,z) + B(y,y) = B(z + y,x + y),
but putting u = = + y,w = z in (*), we get B(z + y,x + y) = 0, a contradiction. Hence, B

is either symmetric or alternating. O]

Now, we define orthogonality and reflexivity. v L w if B(v,w) = 0. The bilinear form is
said to be reflexive if v L w implies w L v. When B is reflexive, L;(S) = Lg(S5) and we
denote them by S+. If W is a subspace of V, W+ is called the orthogonal complement of W

and W n W = 0 if and only if B|y.w is non-degenerate, in which case W is said to be a
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non-degenerate subspace of V. We denote W ~ W+ by rad(W). Now, we see how reflexive,

symmetric and alternating forms are related.

Proposition 2.4.2. A bilinear form B is reflexive if and only if it is either symmetric or

alternating.

Proof. If B is symmetric or alternate, it is easily seen that it is reflexive. Conversely, suppose
B is reflexive. For any u,v,w € V, let + = vB(w,u) — B(v,u)w, then B(x,u) = 0 which
means that x | u. Since, B is refelxive, v | x, i.e., B(u,2) = 0 = B(u,v)B(w,u) =

B(v,u)B(u,w), hence by Proposition 2.4.1, B is symmetric or alternate. ]

Now, we will look at when two bilinear forms are equivalent. Two bilinear forms B, By on
the vector spaces V7, V5 are said to be equivalent if there exists an isomorphism o : V; — 1,
such that By(o(v),o(w)) = By(v,w) for all v,w € V;. It is easy to see that

Proposition 2.4.3. B; and By are equivalent iff there are bases for Vi and Vy for which
B, = B,.

Proposition 2.4.4. Suppose B is a reflexive bilinear form on'V and let W be a non-degenerate
subspace of V. Then, V. =W @ W,

Proof. Extend an orthogonal basis {v;}%_, of W to an orthogonal basis {v;}"_, of V. Let v €
V, 50 that v = 3", a;v;, then we claim that v — 31 a,0; € W, Indeed, let w = Zle bjv; €
W, then B(v — Y% a;v;, W) = B(v,w) — Y5 a;B(vi,w) = 3 ab; — 3F | a;b; = 0. This
shows that V =W + W also W "Wt =0 —= V=W +Wt=WaoeWw O

Now, we will assume throughout this section that B is an alternating form. If u,v are
such that B(u,v) # 0 then u, v is a linearly independent set because if u = kv, then B(u,v) =
B(kv,v) = kB(v,v) = k.0 = 0. Also, if B(u,v) = b # 0, then let u; = b~'u,v; = v, then
B(uy,v1) = 1. If W is the subspace spanned by wy, vy, then W is called hyperbolic plane

and {uy,v;} is called hyperbolic basis. W.r.t this basis the matrix for By «w is given by
0 1
-1 0|

Notation: To denote a direct sum V@ W where V' L W, we use the symbol V& W. The
following proposition tells us how the matrix of an alternating form would look like and can
be found in [7].
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Proposition 2.4.5. Suppose B is an alternating form on V. Then, V decomposes into some

hyperbolic planes with o degenerate part. More precisely,
V = Wl@WQ@ . W7E9rad(‘/)

V' has a basis {uy, vy, us, Vo, -+ - Up, Uy, Wy, - - - Wy where each u;, v; is a hyperbolic pair. With

respect to this basis, B has the following block-diagonal matrix

J 0

0 On72r

18 the matrixz corresponding to the hyperbolic pairs.

0
where J = [

Proof. If B =0, then V = rad(V') and we are done. If B # 0, then we choose a hyperbolic
pair and let w; denote the span. Then, W, is a non-degenerate subspace because determinant
of matrix of B on W; has determinant 1. So, using Proposition 2.4.4, we can write V =
W @ Wi, Note that rad(V) = rad(W) @ rad(W+) = rad(W+). Now, use induction on

dimension of V. [
Corollary 2.4.6. Any alternating form has an even rank. If B is non-degenerate, then V
has an even dimension.

Proof. Rank of the matrix as in Proposition 2.4.5 is 2r, hence even. Also, B non-degenerate
means rad(V') = 0, hence V has 2r dimension. O
Corollary 2.4.7. Two alternating forms By, By on spaces Vi, Vay respectively are equivalent
iff dim(Vh) = dim(Va) and rank(B) = rank(Bs).

Proof. This follows easily from Proposition 2.4.3 and the last part of Proposition 2.4.5. [

Corollary 2.4.8. Any two non-degenerate alternate bilinear forms on a vector space V' are

equivalent.
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2.4.2 Symplectic groups

We focus now only on non-degenerate alternate form B on a vector space V. By Corollary

2.4.6, V must have an even dimension, say 2n. Define the symplectic group on V as follows:
Sp(V):={re GL(V) : B(t(v), 7(w)) = B(v,w)VYv,w € V},

i.e, it is the collection of isometries of V' under the alternate form B. If we choose another
non-degenerate alternate form B; on V', then by Corollary 2.4.8, we know that B; will be
equivalent to B. If P € GL(V) is the matrix such that B; = P'BP, then it can be checked

that the two corresponding symplectic groups will be conjugate by the matrix P.

Now, we fix a symplectic basis {u1, vy, ,uy,,v,} for V. If T represents the matrix of
7€ Sp(V) in this basis, then Sp(V) = {T € GL(V) : T'BT = B}. For n = 1, this condition
is equivalent to 7" being in SL(V), thus Sp(V') = SL(V) when dim (V') = 2. If we write the

0|7
. It can be
—-I110

] belongs to SL(V'). Thus, Sp(2n, F)

matrix for B in the basis {uy, us, -+, uy,, v1,- - v,}, then it looks like

A 0
0 (At)fl
contains an isomorphic copy of GL(n, F') as a subgroup.

verified that any for A € GL(n), T =

From now on, Sp(n, F) denotes the group Sp(V') where dim (V') = n, and if |F| = ¢, then
we denote it by Sp(n, q).

Symplectic transvections

We will show that every symplectic transvection is determined by a scalar a and a vector
u which will be denoted by 7,,. Suppose that 7 is a transvection with a fixed hyperplane
H, and 7 € Sp(V). Then, dim(H*) = 1, and so let H+ = (u). u e ut = (HY)' = H. Let
v e V\H, then V. = H®{x). Define f € V* by mapping v = bx + h to b. By Corollary
2.3.2, b= f(v) = B(v,y) for some y € V. Let 7(z) —x = z € H, then 7(v) = br(z) + h =
b(x +2)+h =v+bz =v+ Bv,y)z. Now, 7 € Sp(V) so B(w,z) = B(r(h),7(x)) =
B(h,z + 2) = B(h,z) + B(h,z), and thus B(h,z) = 0 for all h € H, thus z € H*, i.e,
z = cu for some scalar c. Similarily, y € H+ = (u), and so y = du for some scalar d. Thus,

T(v) = v + B(v,du)cu = v + cdB(v,u)u = v + aB(v,u)u, where a = cd is another scalar.
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Thus, 7(v) = v+ aB(v,u)u, and this 7 is denoted by 7, ,. Conversely, it can be checked that

Tu,a 18 @ symplectic transvection.

We follow a similar development as done in Section 2.2 to prove that PSp(V) is simple
using Iwasawa’s criterion, except for PSp(2,2), PSp(2,3) and PSp(4,2).

Proposition 2.4.9. Sp(V) is generated by symplectic transvections.

Proof. Let T denote the subgroup of Sp(V') generated by transvections. Then, T is transitive
on V\{0}, and transitive on the set of hyperbolic pairs. We use induction on n, where
dim(V') = 2n. n =1 case is taken care of by the fact that SL(V) = Sp(V) for dim(V) = 2.
We choose a hyperbolic pair {u,v} in V and set W = (u,v), then V = W @& W+ and now

we can use induction hypothesis for W', O

Corollary 2.4.10. Sp(V) < SL(V).

Proof. The determinant of every symplectic transvection is 1. O

Proposition 2.4.11. If |F| > 4, then PSp(V)' = PSp(V).

Proof. Tt suffices to prove the same for Sp(V') for which we show that every symplectic
transvection 7, , is a commutator. Let b e F\{0,+1} and let ¢ = %5,d = —b’c. Then, it
can be checked that 7, .7, 4 = Tu.. There exists o € Sp(V) mapping u to bu since set of

transvections is transitive on V\{0}. Then, o7,.07" = 7,4, and we are done. ]
’ s ,d»

Similar results can be derived for finite fields with cardinality less than 4 (see |]):

Proposition 2.4.12. If |F| = 3 and dim(V') = 4, then PSp(V)' = PSp(V), and if |F| =2
and dim(V') = 6, then PSp(V')' = PSp(V).

The action of PSp(V) on P(V) turns out to be primitive and faithful, and thus all
conditions in Iwasawa’s criterion are met, and we get:

Theorem 2.4.13. (Simplicitiy of PSp(V')) PSp(V') is simple except for PSp(2,2), PSp(2,3)
and PSp(4,2).
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2.5 Quadratic forms and Orthogonal groups

We assume throughout this subsection that F' is a field with charactersitic # 2. We have
already defined symmetric forms in previous section as bilinear forms B such that B(u,v) =
B(v,u) Yu,v € V. Now, we define quadratic form associated with a bilinear form as a map @ :
V — F via Q(v) = B(v,v). This is particularly helpful because quadratic form determines
the bilinear form and vice versa. Indeed, we note that B(u,v) = 1 [Q(u + v) — Q(u) — Q(v)].
Now, we characterize symmetric forms by diagonal matrices:

Proposition 2.5.1. Suppose B is a symmetric form on V. Then, V has an orthogonal
(v L w iff B(v,w) = 0) basis {vy, v, vy} with respect to which the matriz of B is the

diagonal matrix

by 0 ... 0
0
: b, :
0 0 ... 0,.]
, where all b;’s are nonzero, r = rank(B), and {v,y1,--- ,v,} forms a basis of rad(V).

Proof. Assume B # 0 because in B = 0 case, we just take » = 0. Then, we can find a v such
that Q(v) # 0: indeed Q(v) = 0 Vv will mean that B(v,w) = 0 Vv, w contradicting B # 0.
Let W be the span of v, then W is non-degenerate, so V = W & W'. Now, use induction
on dim(V'). Also, v € rad(V) iff v L v; Vi. If v = >  a;v;, then

ab; ,1<j<r
B(v,v;) = 7 ' J
0 , ] >

Consequently, v is in rad(V) iff a; = 0 Vi < r,ie., iff ve<v.,q, - v, >.
Note that v; could be replaced by c¢;v; wihtout any loss and also b; could be arbitrarily chosen

from the image of Q). m

Using this, we give a criterion for when two symmetric forms are equivalent when F
contains the square root of every element. This gives a characterization for symmetric forms
on spaces where the field is as given, for example, over C or in general over any algebraically
closed field.
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Proposition 2.5.2. Let F' be a field such that every element has a square root. Then, two
symmetric forms By, By on spaces Vi, Vy of the same dimension are equivalent if and only if

they have the same rank.

Proof. Since every element has a square root in F, Q(v;) = b; also has a square root say ¢;.
Then, Q(c;v;) = 1. Thus, matrix for B becomes ()T ol and so using Proposition 2.4.3, we

have the result.

Now, we give characterisation of symmetric forms on ordered fields, for example R using

a result known as Sylvester’s Law of Inertia. For a proof of this, refer to Chapter 4 in [5].

Proposition 2.5.3. Let F' be an ordered field, and B be a symmetric form on V. Let

{ur, ug, - - up} and {vy,vs, vy} be two orthogonal bases w.r.t which the following are B
respectively:
[ 61 0 0| O 0]
by
0 b1 0 |0
0
—b, | 0
0 0 0 |0 |
[ 4 0 0| 0 0 |
dy
0 —dg1 0 |0
' 0
—d, | 0
| 0 0 0 [0 |

,where all b;,d; > 0. Then, p = q.

Sylvester’s Law of Inertia tells us, in essence, that given an ordered field, the number

of positives in the diagonal of the matrix for B is independent of the basis. We define an
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invariant for B called Signature of B, denoted by Sig(B) as the number of positive diagonal
entries minus the number of negative diagonal entries.
Now, using the two characterizations above, we can characterize B for ordered fields in which

every element has a square root.

Proposition 2.5.4. Suppose F is an ordered field in which every element has a square root.

Then, bilinear forms By, Bs on wvector spaces Vi,Vo of same dimension are equivalent iff

rank(By) = rank(Bsy) and Sig(By) = Sig(B2).

Proof. Using Proposition 2.5.3 and ideas used in the proof of Proposition 2.5.2, we can write

matrices for the bilinear forms as

I, 0 0
0 -, 0
0 0 0
Now, we use Proposition 2.4.3 to arrive at the result. O

Now, we aim to establish the equivalence of quadratic forms in the case when I is a finite
field.

Definition 2.5.1. Let B be a symmetric form on V with quadratic form (), then a nonzero
vector v is called isotropic if Q(v) = 0 and anisotropic if Q(v) # 0. The zero vector is always
taken to be anisotropic by convention. If there exists an isotropic vector, then B,V and @)
are called isotropic, otherwise anisotropic. If Q(v) = 0 for all v € V, then V' is called totally

isotropic. The bilinear form B and quadratic form @ are called universal if () is onto.

Proposition 2.5.5. Suppose B is a nondegenerate isotropic symmetric form, then B 1is

universal.

Proof. Let u # 0 be an isotropic vector. Then, there exists some v such that B(u,v) = b # 0.
Replacing v by v/2b we can assume B(u,v) = 1/2. Let w = cu + v for some ¢, we want to
find ¢ such that Q(v) = a, i.e, 2¢B(u,v) + B(v,v) = a. So we take ¢ = a — B(v,v). Thus, B

is universal. N

Now, suppose F is a finite field such that |F| = ¢(odd). The squaring map 6 : F* — F*2

via 6(a) = a? is a surjective group homomorphism with Ker(d) = {+1}, and so [F* : F*?] =
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2, and the two cosets are cosets of squares and of non-squares in F'*.

Let b e F* be a non-square and let K 2 F be splitting field of 2 —b. Then, K = {a + cv/b}
and |K| = ¢*. Let N : K — F be the norm. Since d — d? generates the galois group of
K over F, we have N(a + cvb) = (a + ¢v/b)?™! since norm is product of conjugates. Now,
N : K* — F* is a homomorphism with Ker(N) = {a € K* | a?"! = 1} a subgroup of order
g+ 1. Hence, cardinality of image is equal to |K*|/(¢+ 1) = ¢ — 1 which is cardinality of F*
so N : K* — F* is onto. Note that N(a + cv/b) = a? — bc? using minimal polynomial. Even

in the case when B is not isotropic, we have :

Proposition 2.5.6. Suppose F' is a finite field. If B is a non-degenerate symmetric form

on V', vector space of dimension n = 2 over F, then B is universal.

Proof. Using the previous proposition, we can assume that B is anisotropic. It will suffice

to prove this for n = 2. Using Proposition 2.5.1 and scaling, we assume that B has the

1 0
matrix [O b] with respect to an orthogonal basis {uj,us}. If 0 # v = auy + cug, then

Q(v) = a®> —bc® # 0, so b is a non-square in F. Let K = F(y/b) , then by remarks before

this proposition, N : K* — F™ is onto, hence B is universal. O]

Proposition 2.5.7. If ' is finite and B is a non-degenerate symmetric form on V of

dimension n = 2 over F', then there is a basis for V relative to which the matriz for B is
1

Proof. Using previous proposition, we can choose v; € V such that Q(v;) = 1. Continue
choosing such orthogonal elements till < v;,---v, > has dimension less than 2, i.e., we
reach v,,. Choose v, €< vy, v,_1 >+ such that Q(vp) =d #0. O

Corollary 2.5.8. Two qudratic forms By, By over Vi, Vs wvector spaces over finite field F
are equivalent iff dim(Vy) = dim(Va) and discr(By) = discr(Bs). Thus, there are only two

quadratic forms upto equivalence on finite fields.

Proof. The first part of the statement follows from Proposition 2.5.7, and there are only two
quadratic forms up to equivalence because discr(B) = d.F*? and d is either a square or a

non-square. [
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Definition 2.5.2 (Quadratic space). A vector space V with a non-degenerate symmetric
form B is called a quadratic space. A 2 -dimensional subspace H of a quadratic space is called
a hyperbolic place if there exists basis {u, v} of H such that Q(u) = Q(v) = 0, B(u,v) =1
and {u,v} is called a hyperbolic pair.

Proposition 2.5.9. Let V' be a quadratic space of dimension 2. Then, the following are

equivalent:

1. V is a hyperbolic plane.
2. discr(B) = —1.F2

3.V 1s isotropic.

01
Proof. 1 = 2: The matrix for B with respect to standard basis is [1 O]’ determinant of

which is —1. Thus, discr(B) = —1.F*2,

2 = 3: since discr(B) = —1 - F*? there is a basis {u,v} for V relative to which

~

by 0
B = [ 1 , ] , with b1by = —c%,c€ F*, Set w = cu + bjv # 0 Then Q(w) = byc? + byb? =
2

b102 - 6102 =0

3 = 1: V is not totally isotropic because it is non-degenerate. There exists a nozero

isotropic vector, say u. Then, there is a vector v such that B(u,v) = a # 0 since B
is non-degenerate. Now, if we set u; = a~'u, then B(u;,v) = 1. Now for any b € V,
Q(buy +v) = 2bB(u1,v) + Q(v) = 2b+ Q(v). Let b = —Q(v)/2, and vy = —%(”)ul + v, then

{uy,v1} is easily seen to be a hyperbolic pair.

We quote the following proposition from [5]:

Proposition 2.5.10. Suppose that V is a quadratic space and that U is a subspace with
rad U # 0. Let U’ be any complementary subspace for rad U in U, i.e. U =radU S U'. If
{uy, ..., ug} is a basis for rad U then there is a subspace W, with basis {v1, ..., v}, such that
UnW =0,U®W is nondegenerate, (u;,v;) is a hyperbolic pair for H; = {u;,v;y,1 <i < k,
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and

UeW=U6HOH,&---&H,

2.5.1 Orthogonal Groups

We wiil assume throughout this section that V' is a quadratic space of dimension n > 2 over
F where characteristic of F' # 2. The isometries of V' are called orthogonal transformations,

they form a group called the orthogonal group, denoted by O(V'). In other words,
O(V) = {r e GL(v) | B(7(u),7(v)) = B(u,v)}

Choosing a basis {vy, vy, -+ , v} for V, let T, B represent the matrices of 7, B respectively.
Then, 7 € O(V) iff T!BT = B. Thus, det(T) = +1 for any orthogonal transformation.
If det(T) = 1, then 7 is called rotation or proper orthogonal transformation, otherwise a

reversion. The subgroup of rotations is called special orthogonal group, denoted by SO(V').

Proposition 2.5.11 (Witt’s cancellation theorem). Suppose that Uy and Uy are nondegenerate
subspaces of a quadratic space V and that o : Uy — U, is an isometry. Then U and Uy are

also isometric.

Proof. We use induction on dim U;. In the base case, let U; = (u;),Us = (us) and hence
@ (u;) # 0since Uy, Uy are both nondegenerate by assumption. We may assume that o (u;) =
ug and so @ (u1) = Q (ug) . Then

Q (Ul + UQ) = 2@ (Ul) + 2B (ul,u2)

soif @ (uy + uz) = Q (u1 — ug) = 0 then @ (uq) is equal to both of B (u1, us) and —B (uy, us) ,
contradicting @ (u1) # 0. Thus one, at least, of @ (u1 + u2) and @ (u; — ug) is nonzero. Say
that @ (uy + ug) # 0. Note then that

B(U1+UQ,U1—U2) = Q(Ul)—Q(UQ) =0
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SO Uy — uy L uy + ug, and oy, 4y, (U1 — ug) = ug — ug. Thus

1 1
Oui+ug (ul) = Oujtus (_ (ul + UQ) + = (Ul - U2))

2 2
1 1
= —5 (u1 + UQ) + 5 (u1 — UQ)

Thus oy, 14, u1)) = (uzy, and oy, 4, (<u1>L) = <u2>L, since
Tuytus € O(V)

The proof is similar, using oy, _y, instead of oy, yu,, if @ (ug —ug) # 0. Suppose next that
dim U; > 1 and assume the result for subspaces of lower dimensions. Choose u; anisotropic
in U; and let W be the orthogonal complement of u; in U;. Then W) is nondegenerate and
Uy = {ur )y @ W Set ug = ouy and Wy = oW, so Uy = {ug)y O Wy. Then

V= () @ Wi @ Ui = (up) @ W, © Uy

By the 1 -dimensional case above there is an isometry n from W, O Ui to Wy @ U;s-. Thus
Wo®Us = nW,On (Uli) , and no~! is an isometry from W, to nW;. Also Ust and 7 (Uf) are
the orthogonal complements in V; = W, @ Us of Wy and nWWy, respectively, so by induction

Uy and n (U-) are isometric, hence Uf- and Uy are isometric. O

Note that Witt’s cancellation holds only for non-degenerate subspaces. Now, we present
Witt’s extension theorem, which talks about how to extend a given isometry on subspace to

the whole of quadratic space.
Proposition 2.5.12 (Witt’s Extension Theorem). If Uy and Us are subspaces of a quadratic

space V and o : Uy — Uy is an isometry, then there exists 7€ O(V) with 7|, =0

Proof. Suppose first that U; and U, are nondegenerate. Then by Witt’s cancellation theorem,
there is an isometry n : U — Uj. Since V. = U @ Uit = U, @ Uy, it is clear that
T=0®ne€O0(V), and that 7|, = 0.

Suppose then that radU; # 0, and write U; = radU; @ U] for some subspace Uj. By
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Proposition 2.5.10, there is a subspace W such that U; @ W, is nondegenerate and U; W, =
U @®H @@ Hy, with each H; a hyperbolic plane with hyperbolic pair (u;, v;) . Similarly
we have Wy with Uy, @W, nondegenerate and Us @ Wy = U, @ H} @ --- @H;, with U} =
oU], H! = {ou;, v}y, (ou;,v}) a hyperbolic pair. Extend o to o' : Uy@® W, — Uy @ W, via
o' (v;) = v}; clearly ¢’ is an isometry. since U; @ W, is nondegenerate there exists 7€ O(V)

with 7|y o, = o’ by the first part of the proof, and hence 7|, =o O

Corollary 2.5.13. FEvery totally isotropic subspace is contained in one having mazrimal

dimension, and any two mazrimally isotropic subspaces have the same dimension.

Proof. Let U be a totally isotropic subspace of maximal dimension, say m If W is any
totally isotropic subspace then there is an isometry o from W to a subspace of U. By Witt’s
extension theorem there exists 7 € O(V) with 7|, = 0. But then 7 U is a totally isotropic
subspace of dimension m, maximal, and W < 77'U. So. W is contained in a totally isotropic
subspace of maximal dimension. Also, if W is itself maximal, then W = 77U and hence

dimension of W is also m. O

Definition 2.5.3 (Witt Index). The dimension m of a maximal totally isotropic subspace
of a quadratic space V is called the Witt index of V, denoted by m(V).

A subspace H of a quadratic space V is called hyperbolic if H is an orthogonal direct

sum of hyperbolic planes.

Proposition 2.5.14. If V s a quadratic space with Witt index m then V' has a hyperbolic
subspace H of dimension 2m and an anisotropic subspace X with V = H &S X, where X s

determined uniquely upto isometry.

Proof. Choose a totally isotropic subspace U with dimU = m. By Proposition 2.5.10 V'
has a subspace W such that U nW = 0,H = U @ W is hyperbolic, and dim H = 2m.
Then V = H® HY; set X = H*. Clearly X = H*' is anisotropic, since U L X and
dim U = m is maximal. Suppose that H' = H{ @ H),--- @ H], each H; a hyperbolic plane
with hyperbolic pair (u;, v;) . Then (uq, . .., ug) is totally isotropic, so k < m Also H&®- - -SHy,
and H{ © --- @ Hj are isometric, so by Witt’s Extension Theorem, there exists 7 € O(V)
carrying H, & -+ @ Hy, to H} & --- Hj, Thus 77! carries <Zlf H'Z-)l =H 1 &--6H,6X

1
to (Zlf H{) =Y, and hence k = m, since Y is anisotropic. It follows that X and Y are
isometric by the Witt’s Cancellation Theorem . O

46



Corollary 2.5.15. Witt index of a quadratic space V' is atmost dim(V')/2.
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Chapter 3

Algebraic Groups

This chapter gives an introduction to the theory of algebraic groups over algebraically closed
fields. The results discussed in this chapter can be found in [6]. Some proofs are omitted to

maintain brevity, which can be looked up in [6].

3.1 Affine Varieties

Let K be an algebraically closed field of arbitrary characteristic. The set K", also denoted by
A", will be called the affine n-space. An affine variety is defined as the set of common zeros in
A™ of finite set of polynomials in K[T| = K[T},T5,--- ,T,]. Let I be anideal in K[T]. Every
ideal in K[T'] is generated by finitely many polynomials due to Hilbert’s Basis Theorem. Note
that the set of common zeros of the polynomials generating the ideal is the same as the set of
common zeros of the ideal I. Let #'(I) denote the set of common zeros of these polynomials.
Conversely, every affine variety corresponds to an ideal in K[T'], because if X is an affine
variety, then let .#(X) denote the collection of polynomials vanishing on X. Then, .#(X)
is an ideal. So, we have the following correspondence between ideals of K[T] and affine
varieties in A" : [ — ¥ (I) and X — #(X). However, this correspondence is not one-one.
We immediately observe the following inclusions: X <¥(#(X)) and I < Z(¥(I)). We
observe that an even stronger inclusion v/I < (7 (I)). Hilbert’s Nullstellensatz guarantees
the converse, which will give us a correspondence between radical ideals (ideals which are

equal to its radical) and affine varieties.
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Theorem 3.1.1 (Hilbert’s Nullstellensatz). Let I be an ideal in K[T], then /I = # (¥ (I)).

Now, we have the following dictionary:

{I € K[T]: VI =1} <= {X : X is an affine variety in A™}.

Note that [ — ¥ (I) and X — #(X) are inclusion-reversing, and so the noetherian
property of K[T'] will imply DCC (Descending Chain Condition) on the collection of affine
varieties in A™.  Furthermore, the points of A™ correspond to maximal ideals in K[T].
Indeed, let X = #/(I) where I is a maximal ideal. Then, X is non-empty by Hilbert’s
Nullstellensatz, so let x € X. [ < #({z}), which means I = #({z}), and so X =

V(I ({z})) = {x}.

Now, we give a topology on A™ by prescribing the closed sets to be affine varieties, i.e.,
a subset X of A™ is closed if and only if it is of the form #'(I) for some radical ideal I in
K|[T]. This topology turns out to be very useful; however, it misses some of the properties we
are very accustomed to, for example, Hausdorffness. Singletons are closed in this topology,
which means it is 77. The DCC property on closed sets implies the ACC property on open
sets, which further gives us that A™ is a compact space. Since, a closed set ¥(I) is finite
intersection of zero sets of f(T') € I, every non-empty open set can be written as union of
principal open sets Xy which are non-zeros of individual polynomials f. These principal
open sets form a basis of the Zariski topology; however, these are not small. For example,
GL(n,K) is a principal open set in A™"! corresponding to non-zeros of the determinant

polynomial.

Now, we look at #rreducible components which will serve as building blocks of affine
varieties. Union of two intersecting curves in A™ is connected but can still be analyzed
into different components. This leads us to study a notion very similar to connectedness but
stronger than it. A topological space X is called irreducible if it cannot be written as a union
of two proper non-empty closed subsets. Subset Y of X is irreducible if it is irreducible in

the subspace topology.

Lemma 3.1.2. The following are equivalent:

1. X is irreducible.
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2. Any two non-empty subsets of X have non-empty intersection.

3. Any non-empty open subset of X is dense in X.

A subset of X is irreducible if and only if its closure in X is irreducible. Also, the
continuous image of an irreducible set is irreducible. Now, we look at how to decompose X

into its irreducible components (maximal irreducible subspaces).

Proposition 3.1.3. Let X be an affine variety in A™. Then, X has only finitely many

mazimal irreducible subspaces (which have to be closed), and these cover X.

Now, we want to know what type of affine varieties will be irreducible, i.e., is there a

correspondence between closed irreducible subsets of X and the corresponding ideals.

Proposition 3.1.4. A closed subset X in A™ is irreducible if and only if #(X) is a prime

ideal.

So we have extended the dictionary and now it looks like:

Radical ideals in K[T] <—> Affine varieties in A™
Prime radical ideals in K[T] <= Irreducible varieties in A™

Maximal radical ideals in K[T] <—> Points in A™

If we have an affine variety X in A™ and an affine variety Y in A™, to ask whether X x Y is
an affine variety in A™™ we need first to give topology on A™*™, There are two ways we can
do so, one is to give A™*™ the usual product topology, and the other is to give the Zariski
topology on A™*™ Tt turns out that the Zariski topology has far more closed sets than the
product topology, for eg., ¥ (T} —Ty) = {(a,a) : a € K} is closed in Zariski topology but not
in product topology. We usually give the Zariski topology on the product. Now, under this
topology, we can ask if X x Y closed in A™*™ and the answer is yes! Furthermore, if X
and Y are closed irreducible in A™ and A™ respectively, then X x Y is closed irreducible in
Amin,

Suppose X is closed in A™, then every polynomial f(T) € K|[T] defines a polynomial
function x — f(z). The distinct polynomial functions on X are in 1—1 correspondence with
the ring K[T']/.#(X). This ring denoted by K[X] is called the affine algebra of X, and it is
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a finitely-generated reduced algebra over K. When X is irreducible, then .#(X) is a prime
ideal, and K[X] is an integral domain. So, we can look at its fraction field K (X), which
is a finite extension of K using the Weak-Nullstellensatz. The affine algebra of X, K|[X]
is related to X in much the same way as K[T] is related to A™. Suppose we start with
a noetherian topological space X (noetherian means open sets satisfy ACC), whose basis
consists of principal open sets Xy = {x € X : f(x) # 0} for f(x) € K[X]. Then, it is easy to
see that the closed subsets of X correspond to the radical ideals of K[X] and, in particular,
the points of X will be in 1 — 1 correspondence with the maximal ideals of K[X]. So, in this
sense, X is recoverable from K[X]. This is the idea used in giving an intrinsic definition of

a variety, one which is independent of the ambient space A™.

We now turn to morphisms of varieties : let X € A™ Y < A™ be two affine varieties.

¢ X — Y is called a morphism of varieties if is of the form

¢($17 Tt 7$m) = (%(95)7%(95)» e >¢n(fﬂ)),

where 1; € K[X]. It can be noted that a morphism of varieties is always continuous for the

Zariski topology.

3.2 Linear Algebraic Groups

Let K be an algebraically closed field of arbitrary characteristic. All varieties considered will
be over K.

Definition 3.2.1 (Algebraic Groups). An algebraic group G is a variety which is also a
group such that the maps m : G x G — G, (91,92) = g1.go and i : G — G, g — g~*
are morphisms of varieties. If the underlying variety is affine, then G is called a linear

algebraic group.

It turns out that every algebraic group G is a closed subgroup of GL,(K) for some n,
which is why the term ‘linear’ is used. A homomorphism of algebraic groups ¢ : G — G is
a morphism of varieties which is also a group homomorphism. It is clear what isomorphism

and automorphism mean.
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Example 1. (G,, Gn) : G, is the affine line A® with identity e = 0, m(g1, g2) = g1 + g2 and
i(g) = —g. It is called the additive group. G, is the subset K* = A' with identity e = 1,
m(g1, g2) = g1.92 and i(g) = ¢~ !, and is called the multiplicative group. It is isomorphic as
a variety to V(zy — 1) € A%

Example 2. (GL,(K)) : GL,(K) can be seen as a variety in the affine (n®+1)-space A»*+1
as the closed subset {(z;;,t) € A™*! . det(z;;)t = 1}. Tt is clear that Gy, is isomorphic to
GL(K).

1
Notice that G, can be seen as isomorphic to the subgroup { 0 Cf) La € K} of GLy(K).

Another source of examples of algebraic groups is the fact that : every closed (in Zariski
topology) subgroup of an algebraic group is algebraic group. If the product variety G' x G’ is
equipped with the direct product group structure, then it is an algebraic group. Using these

facts, it can be seen that the following classical groups are algebraic groups:

1) The special linear group SL,(K)={M € GL,(K) : det(M) — 1 = 0}.

2) The symplectic group Spe,(K) consisting of matrices X € G Ly, (K) such that

I, I,
xt( Y x=|(" .
~I, 0 ~I, 0

3) The orthogonal group O,(K) consisting of matrices X € GL,,(K) such that X*X = I,,.

3.2.1 Connected Components

Proposition 3.2.1. Let G = | JG; be a decomposition of G into its irreducible components.

Then, there is a unique G; such that e € G;.

Proof. Suppose GG; and Gg are two irreducible components containing e. Then, the image
G1G5 of G; x G5 under the continuous map G x G — G is again an irreducible subset
containing e. Thus, G1Gy < G; for some i. Also, G; < G1Gy for j = 1,2. Thus, G; <
G1G5 € Gy, and since (G is maximal, G; = G;. Similarily, G, = G;, and thus G; = G5. [
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We denote by G° this unique irreducible component of G containing e, and call it identity

component.

Proposition 3.2.2. G° is a closed normal subgroup of finite index in G and the cosets of
G° are precisely the irreducible as well as the connected components of G. In particular, the

irreducible components are disjoint.

Proof. G° is closed because it is maximal irreducible subset of G, and closure of irreducible is
irreducible. For any g € G°, g 'G° = G° since it is an irreducible component of G containing
e, thus G° = (G°) . Now, for any g € G°, gG° = G° similarily, and thus, G°G°® = G°. Thus,
G° is a subgroup. Also, gG°¢g~! = G° similarily, which means G° is normal. All the left
cosets of G° are irreducible components of GG, and thus are finite in number. Since, the cosets

are disjoint, they are also connected components of G. [

Corollary 3.2.3. G is connected if and only if G is irreducible.

Proof. 1f GG is irreducible, then it is connected. Conversely, if G is not irreducible, then it can
be written as a union of its irreducible components, which are closed. Now, by the previous

proposition, these are disjoint, hence also open. This means G is not connected. O]

Proposition 3.2.4. Every closed subgroup of G having finite index in G contains G°.

Proof. Let g1 = e, g2, -, gm be representatives of different cosets of H. Then, G =[] Hg;,
and Hg; are closed. Now, G° = [[G°()Hg;, and since G° is irreducible, it must be that
G° = G° (| Hg; for some i, or equivalently, G° € Hg, for some i. Since, Hg; are disjoint and
G° meets H, we get G° < H. m

We say that an algebraic group G is connected if G = G°. A subset X of a topological
space is irreducible if and only if every open subset U < X is connected. Thus, open subsets
of affine spaces, for example, are connected. In particular, GL, (K) is connected since it is a
principal open set in an affine space. The connectedness of SL, (K) as an algebraic group can
be asserted as follows: SL, (K) is the variety corresponding to the ideal generated by det —1,
and det — 1 is irreducible since every x;; appears only once in the formula of determinant.
The connectedness of other classical groups, for e.g., Spa,(K) is more involved, and we will
be content with stating the fact without giving a proof. |[To read more about this, we refer
the reader to [17].]
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Chapter 4

Exposition on the work of André Weil

The content in this chapter gives an exposition to the foundational paper of André Weil on
‘Algebras with involutions and the classical groups’ [1]|. In this chapter, we work over a fixed
algebraically closed base field k of characteristic zero, i.e., the algebras considered are defined
over k. We want to give a bijection between the set of semisimple algebras with involution and
the set of classical semisimple groups, but to achieve this, we must restrict our sets suitably.
We will see explicitly how certain special groups, like PO™(n), PSp(2n), etc., are obtained
using certain special semisimple algebras with involutions as the connected component of
identity in the group of automorphisms of these algebras. Using these correspondences as
our basis, given a semisimple algebra with involution whose summands are isomorphic to
these "special" algebras, we can associate it with a semisimple group as direct summand of
the "special" semisimple groups obtained from the "special" algebras. But we are not done
here because it turns out that this "special" set of semisimple groups has some inherent
isomorphisms within itself. We have to cut these isomorphic copies out to avoid double
counting so that the correspondence is one-one. Now, we can work over this restricted set

of groups and algebras, and we will get a one-one correspondence between these two.

We now give the definition of an involution on algebra:
Definition 4.0.1 (Involution). Let A be an algebra over k. An involution on A is a map
o : A—> Asuch that o(z +y) = o(z) + 0(y), o(zy) = o(y)o(x) and 6% = Id 4.

We will denote an algebra with involution by the pair (A, 0). A non-trivial involution is
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a ring anti-automorphism of order 2. Note that ¢ need not be k-linear.

4.1 PL(n)

Let us first see how the group PL(n) can be obtained as connected component of identity in
the group of automorphisms of a semisimple algebra with involution. Let A = M,, & M,, and
let i be the involution on A given by (X,Y) — (Y X*). It is clear that the automorphisms
of (A,1), i.e., automorphisms of A commuting with ¢ form an algebraic group, say G. Let Gg
denote the automorphisms which leave the components M,, invariant. So, apriori Gy consists
of the automorphisms of the form ¢ : (X,Y) — (M'XM, N"'Y'N) using Skolem-Noether
because restricted on each M, elements of G give an automorphism of M,,, where M, N are
two invertible matrices. (Note that M, N € PGL(n) because under scalar multiplication of
M, N the map remains the same.) Now, we will use the fact that this automorphism has to
commute with (X,Y) — (Y, X7).

ol =100, which translates to
M YW'M = NYYN)' and N 'X'N=MX"(M")"!
MNY!'=Y'MN' and NM'X'= X'NM".

This holds for all X,Y € M,, so MN* and NM" are in the centre of GL,,, thus using the
fact that M, N € PGL,, we see that N = (M")~. So, Gy consists of the automorphisms
of the form ¢(M) : (X,Y) — (M~ XM, M'Y M*™"), where M is an invertible matrix. This
way we have a mapping M — ¢(M) of GL, onto G whose kernel is the centre of GL,, thus
Go = PGL(n). Since PGL(n) is connected as a linear algebraic group, Gy is one connected
component of G. We will show that Gy has index 2 in G, thus there is only one other
component, namely the coset of Gy in G consisting of the automorphism (X,Y) — (Y, X).
To see this:

Let I denote the identity map on M,,. Let S denote the set {(1,0),(0,1)}, and let f be
an algebra automorphism of M, & M,,. Then, we claim that f maps S to S, i.e., f permutes

e; to e;, where e; denotes (0,0,---,1,---,0) with I at the i-th position. Indeed, elements of
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S are characterised by elements M of M, @ M, satisfying the following three conditions:

e )M is in the centre.
e N has rank 2.

e )M is idempotent.

All these properties are preserved under any algebra automorphism, thus f(S) < S. Now,

fls + S — S is an invertible map, hence the claim.

Let f denote the automorphism (X,Y) — (Y, X). Now, let ¢ be an automorphism of
the algebra A. Suppose 1(7,0) = (1,0) and 1(0,1) = (0,I). Then, ¥ € Gog. Suppose now
that ¢(7,0) = (0,1) and ¥(0,1) = (I,0). Then, ¢.f(1,0) = (I,0) and ¥.f(0,1) = (0,1).
So, Y f € Gy and since f is its own inverse, ¥ € fGg, the coset of Gy containing f. Thus, G
has index 2 in G. Call this coset GG, then (G; is a connected component using Proposition
3.2.2, i.e., G has two connnected components Gy and G, and Gy, the connected component
of identity, can be identified as PL(n).

There is one more thing that we would like to check: if A, A" are two isomorphic
algebras and suppose Gy, G is the connected component of identity in each of these, then
are Gy and G{ isomorphic? The answer is yes. To see this, we note that the inner
automorphisms of G will induce inner automorphisms of Gy using the ideas of how the
set S permutes. And automorphisms of Gg are either inner automorphisms of Gg or product
of such automorphisms by the automorphism induced on Gy by (X,Y) — (Y, X). Now, let
n = 3. It can be shown that for n > 3, the latter is not an inner automorphism. Also, it
is well known that these are all the automorphisms of Gy = PL(n). Also, only the identity
automorphism on A induces the identity automorphism on G. Hence, every automorphism

of Gy can be obtained uniquely from an automorphism of A.
The following proposition summarizes the discussion in this section :

Proposition 4.1.1. PL(n) is the connected component of identity Gy in the group of
automorphisms of A = M, ® M, with the involution i : (X,Y) — (Y, X"). Moreover,

every automorphism of Go can be derived uniquely from an automorphism of A.
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4.2 PSp(n), n is even

Let A = M,. We know that X — X' is an involution on A. By Skolem-Noether theorem
applied on A and its opposite algebra, any anti-automorphism of A is of the form ip :
X — F'X'F. Now for this to be an involution, we must have FFIXFU'F = X or,
equivalently XF1Ft = F~'F'X which means that I 'F* = )\, where A € Z, the center.
Thus, F'* = AF, but now using the involution condition for matrix F gives us that \? = 1.
Thus, F* = +F.

Consider F' = —F :

Any automorphism of A is of the form X + M~'X M, such an automorphism will commute
with ir if and only if F = M'FM using the fact that M € PL(n). Let G be the group
of such automorphisms. F! = —F will imply that n is even. The matrices M satisfying
F = M'FM are of determinant 1 using the pfaffian formula for skew-symmetric matrices :
Pf(BAB") = det(B)Pf(A). These group of matrices form the symplectic group Sp(n) which
is a connected algebraic group. As in the case of PL(n), G will be quotient of this group by
its center, which is PSp(n). It is known that PSp(n) only has inner automorphisms, and as
we did above, we will see that every automorphism of G can be derived in one and only one
way from an automorphism of A commuting with the considered involution ir. So, if A, A’
are two algebras each isomorphic to M, then the connected component of identity in the
group of automorphisms of A, A’ say Gy, G, are each isomorphic to G. (Note that in this

case G itself is connected, so G the connected component of identity is G itself.)

The following proposition summarizes the discussion in this section :

Proposition 4.2.1. PSp(2n) is the connected component of identity in the group of automorphisms

0o J
of A = My, with the involution ip : X — F 1X'F, where F is the block matrix 7 0) ,

1

where J =
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4.3 PO™(n)

Consider F' = F now.

As the base field is algebraically closed, we can take the matrix F' to be the identity matrix.
Now, the matrices M satisfying F = M'FM = I, = M'M, which make up the orthogonal
group O(n) with two connected components Ot (n) and O~ (n) depending upon whether the
determinant is +1 or —1. Identity is in the component O*(n), and thus as we have seen
before, the connected component of identity G in the group of automorphisms G' commuting
with the given involution ig, is the quotient of O*(n) by its center, i.e., PO*(n). Now,
depending on whether n is even or odd, the group G will be connected or disconnected.

If n is odd and n = 3, then the center of O(n) is +1,,, of which I, lies in O*(n) and —1I,
lies in O~ (n). Thus, we can pass from one component to the other inside G by multiplying
with —1,, and thus G is connected and may be identified with O"(n). Also, O*(n) has only
inner automorphisms, and thus as before, every automorphism of G can be derived in one
and only one way from an automorphism of A commuting with the considered involution .
If n is even and > 4, then the center again contains only +1/,, but now both of these are
contained in O (n) and so G has two components. In this case, it is known that the inner
automorphisms of PO (n) for even n are of index 2 in the group of all automorphisms of
PO*(n), except when n = 8 in which case the index is 6. It can also be easily seen that the
inner automorphisms of GG induced by elements of G, the other component, is not an inner
automorphism of G. Thus, again as in the case of PL(n), every automorphism of G' can be

derived in only one way from automorphism of A.

The following proposition summarizes what we have discussed in this section :

Proposition 4.3.1. PO™(n) is the connected component of identity in the group of automorphisms
of A = M, with the involution i : X — X',

This sums up the particular cases; now, we look at the general case.

4.4 Isomorphism between semisimple groups and algebras

We know that every semisimple algebra is a direct sum of matrix algebras. Now, any

involution of a semisimple algebra either leaves a component invariant or interchanges it
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with another one. To see this fact, we again allude to what we did earlier, using that we
see that any algebra automorphism will be given by a permutation permuting the basis
elements since our automorphism is involutory, this means that the permutation has order
2, and the only order 2 permutations are either a 2-cycle or a product of disjoint 2-cycles,
hence the fact. Thus, the only type of components we can have in a semisimple algebra with
involution is a matrix component being invariant under an involution, which pertains to the
cases 4.2, 4.3 or two matrix components being interchanged with one another which pertains
to the case 4.1. Thus, every semisimple algebra with involution is the direct sum of algebras
with involution of one of the three types discussed above. Also, if Gy is the connected
component of identity in the group of automorphisms of the algebra with involution A, then
it is clear that automorphisms in Gy will transform each component of A to itself. Thus,
G must be a direct product of groups of the type considered above, and that every such
group can be obtained as G for a suitable algebra with involution. But some groups will
be obtained more than once in this process because there are some well-known inherent

isomorphisms within these classical groups of various families, which are listed below:

0 1
1. SL(2) = Sp(2) : Let J = Lol Then, J* = —J, and if M € SL(2), then

M!'JM = J, which means M € SL(2). Converse is clear.
2. PO*(3) = PSp(2)
3. PO*(4) = PSp(2) ® PSp(2)
4. PO*(5) = PSp(4)

5. PO*(6) = PL(4).

Considering these isomorphisms, we restrict our list of groups and algebras to the following:
The family of groups is restricted to all semisimple groups, with center reduced to the
neutral element, that when decomposed don’t have any exceptional group or PO (8) as
simple component, and the family of algebras is restricted to all semisimple algebras with
involution, which when decomposed into simple components have factors isomorphic to one
of the following: (a) M, @ M, with an involution exchanging the two summands for n > 3
or (b) My, for n > 1, with involution M — J'M'J determined by an inverting alternating

matrix J, or (¢) M, with involution X — X' for n =7 or n > 9.
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(Note (a) excludes PL(2) because it is already included in (b) as PSp(2). Similarily, (c)
excludes PO™ for all n < 7 because these are already included in (b) using one of the above

isomorphisms.)

It follows that each group in our list of groups is isomorphic to the connected component
of identity in the group of automorphisms of one of the algebras in our list and that
any isomorphism between these groups is induced by a unique isomorphism between their

corresponding algebras.

4.A Pfaffian and determinant

In Section 4.2, we used the fact that pf(BAB') = det(B)pf(A) to prove that matrices M
satisfying F' = M'FM are of determinant 1 . In this section, we prove that pf(BAB") =
det(B)pf(A) :

The pfaffian pf is given by the formula:

where
+1 if (i1, ...,4,) is an even permutation of (1,...,n)
erin =4 1 if (11, ...,1,) is an odd permutation of (1,...,n)
0 else
Now,

in—lin

fr— il...i .. . . .. « s . . . . . .
= Z e Z (bhnajuzbjzw) (byn_un_lajn_unbjnzn)

= Z Z [6 "bjrir Djsis b]nfl'lnflb]'nln](a.hJQ Ay 1)

2"mIPf(B'AB) = Y. ¢"""(B'AB),;, - (B'AB)
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= D, uIdet(B)(ag, - - a5, 45,) = det(B)2"m!Pf(A),

J1yeesdn

where we have used the fact that

toiin _ ievind b b B
€ det(B) - Z € b]lllb.]2712 b]nflznflb‘]nzn'

ilv'”vin

and this follows straight from the definition of determinant in terms of permutation.
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Chapter 5

(Galois Cohomoogy

This chapter discusses the concept of Galois cohomology, its functorial properties, and
how cohomology sets behave under exact sequences. The content in this chapter has been
collected from [7] and [3].

5.1 Profinite Groups

5.1.1 Infinite Galois Theory

We assume the reader to be acquainted with finite Galois theory, and in this section, we
will look at arbitrary Galois extensions 2/k. The fundamental theorem for finite Galois
extensions gives us a one-one correspondence between subgroups H < Gal(€2/k) and intermediate
fields k < L < . This fails to be true in the case when Q/k is an infinite Galois extension.
For instance, consider the infinite Galois extension Q(,/p,p prime)/Q with Galois group G.
Let H be the subgroup of G generated by elements o, \/p — —/p and /p’ — /p" if p' # p.
It can be checked that H is a proper subgroup of G with fixed field QQ, whereas the fixed
field of GG is also Q. In order to establish a correspondence as that in the finite case, we put
a topology on Gal(Q2/k), and it turns out that closed subgroups of Gal(§2/k) are in one-one
correspondence with intermediate fields. Note that to do this, we need a topology such that

when Q/k is reduced to the finite case, we get a discrete topology on Gal(€)/k).
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Let F ={L: k< Lc QIL: k] <oo,L/kisGalois} and N = {U € G : U =
Gal(QY/L) for some L € F}. We will define the topology using elements of A to be open
neighbourhoods of 1, i.e., identity map.

Definition 5.1.1. (Krull topology) A subset X of G is open if X = @ or if X = J, oy V;
for some 0, € G and N; e N.

It can be verified that this indeed forms a topology on GG. We note some properties of this
topology: {oN : 0 € G,N € N} forms a basis for this topology. Since N € N, |G : N| < o,
and so G\oN can be written as disjoint union of finite cosets of N, o N is closed as well as

open.

Note that (yey NV = {1}, and [y 0N = {o}. Using these properties, it can be proved
that:

Proposition 5.1.1. G is totally disconnected and Hausdorff as a topological space.

Now, we show that G can actually be constructed from finite Galois groups G/N =
Gal(L/k) where N = Gal(Q/L). Form the direct product G = [yen G/N and give each
G/N the discrete topology and P the product topology. G is compact Hausdorff as a
topological space since each G/N is so. Then, we have an obvious homomorphism of groups
O : G —> G given by 0 — {oN}. © is a homeomorphism onto its image, and the image is

a closed subset of G. This gives us:

Proposition 5.1.2. G is compact as a topological space.

The above results are not coincidences, in fact, these topological properties hold for
profinite groups in general, and we will soon see that the Galois group is a profinite group.
From finite Galois theory, we know that if H is a subgroup of G, then it is of the form

Gal(2/L) for some finite subextension L < €. Then, the fixed field of H, Qf = L, and so
H = Gal(2/QH). In the infinite case, an analogous statement holds:

Proposition 5.1.3. If H is a subgroup of G, then Gal(Q/Q) = H
This already tells us why we need to look at closed subgroups to get one-one correspondence.

We state the fundamental theorem below:
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Theorem 5.1.4. (Fundamental Theorem of Galois Theory) Let Q/k be a Galois extension,
and G be its galois group with Krull topology on it. Then,

1. L — Gal(Q/L) and H — QF gives a one-one correspondence between intermediate
fields k < L < Q) and closed subgroups H of G.

2. Under the above correspondence, H is open if and only if |G : H| < oo if and only if
[L: k] < oo. Thus, we get a one-one correspondence between open subgroups H of G

and intermediate extensions L such that L : k] < co.

3. Also, H is normal in G if and only if L is Galois over k. Thus, we get a one-one

correspondence between open normal subgroups H of G and intermediate extensions L
such that L/k is finite Galois.

For later reference, we observe the following proposition and its corollary about morphism

of Galois extensions. The proofs can be found in [7].

Proposition 5.1.5. Let Q;/K; and Qy/Ky be two Galois extensions, and suppose we have

the following commutative diagram:

0 —% 0,

b

Kl—L>K2

where ¢;, i = 1,2 are extensions of the ring morphism v. Then, for every 7" € Gal(Qs/Ks),
there exists a unique 7 € Gal(Qy, K1) such that 7o ¢1 = ¢oo7. In particular, when " = id.,
there exists p € Gal(21/ K1) such that ¢1 = ¢9 0 p.

Corollary 5.1.6. Under the above setting with 1 = Qo and ¢1 = ¢o, we have a map
¢ : Gal(Q/Ky) — Gal(Q/K,) which is a continuous group morphism. Moreover, if ¢ is
another extension of v and ¢ = ¢ o p for some p € Gal(Q/K,), then ¢ = Int(p) o $, where
Int(p) denotes the inner conjugation by p.

5.1.2 Projective limits and profinite groups

Definition 5.1.2. (Directed Set) Let I be a nonempty set with a binary relation < such
that
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(i) i<iforalliel.
(i) ¢ < j and j < k implies i < k.
(iii) for any 4,7 € I, there exists k € I such that i < k and j < k.
Let I be a directed set. Now, let (G;);er be a family of sets (groups, rings, modules, etc.)
together with maps (respective morphisms) ¢;; : G; — G; for any ¢ < j such that
(i) ¢u = Idy, Viel.

(ii) ®ij © Qi = @i, for all i < 7 < k.

Then, (G, ¢ij)ijer is called a projective system.

Definition 5.1.3. (Projective Limit) Let (G, ¢;;) be a projective system of sets (groups,

rings, etc.). The projective/inverse limit of the system is defined to be

G = Liile' = {(gi)iel € nGi : ¢ij(9j) = ¢;Vi <J}'

iel el

Let p; : G — G, denote the projection to i-th component. The inverse limit satisfies

the following universal property:

If H is any set (group, ring, etc.) and we have maps g; : H — G, for each i, such that
gj = ¢ij 0 g; for ¢ < j, then there is a unique map (resp. morphism) ¢g : H — G such that

gj = p; o g for all j. In other words, we have the following commutative diagram :

Let (G, ¢i;) be a projective system of groups. Give discrete topology to each G;, and then

give product topology on []..; G;, and endow liLnieI G, with the subspace topology. This

el
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topology on the inverse limit is called the profinite topology. Recall that a topological group

is a group with a topology on it such that the multiplication and inverse maps are continuous.

Definition 5.1.4. (Profinite group) A topological group G is a profinite group if it is
isomorphic as a topological group to the inverse limit of a system of finite groups endowed

with the discrete topology.

The Galois group Gal(€2/k) corresponding to an extension 2/k is an example of a profinite
group as it is the inverse limit of the finite groups Gal(L/k) . This says that the full Galois
group Gal(Q2/k) can be completely understood by looking at the finite groups Gal(L/k),
which is also hinted at by the fact that any element in {2 can be seen as an element in
some finite Galois subextension L . The set of all finite Galois subextensions of Q/k form
a directed set under the relation '’ and the corresponding Galois groups Gal(L/k) form
a projective system of groups, where if L' € L, then we have the map ¢, : Gal(L/k) —
Gal(L'/k),0 — o|r. The following isomorphism is, in disguise, the same isomorphism ©

after Proposition 5.1.1 :

Theorem 5.1.7. Let Q/k be a Galois extension. Then, the following is an isomorphism of

topological groups :

© : Gal(Q/k) — lim Gal(L/k)
LeF

o (o]L)L

Now, we list some properties of profinite groups for further reference.

Theorem 5.1.8. Let G be a topological group. Then, G is profinite if and only if it is totally

disconnected, Hausdorff, and compact.

Proof. Suppose G is profinite and let G = LiLIlie ; G; where each G; is a finite group endowed
with discrete topology. Then, since each G; is Hausdorff, so is the product space and hence
any subspace, in particular, G is Hausdorff. Let X be a subset of G' containing two points
¢, d, then U = []U; where U; = {¢;} for finitely many ¢ and U; = G; for others. Then,
X =UnX)u(G-Un X)is an intersection of two non-empty disjoint open subsets of

67



X, hence X is disconnected. | [G; is compact by Tychonoff’s theorem. G is a closed subset

of [ G since it is intersection of the closed subsets p;' o ¢! (g;). Thus, G is compact.

Conversely, if G is compact, Hausdorff, and totally disconnected, then let A be the
collection of open normal subgroups of G. It can be shown that each N € N has finite
index in G and G = LiLnNeN G/N, where R.H.S. is given the subspace topology induced from
product topology, where each G/N has discrete topology. O]

This proof reminds us of the Galois group case, and indeed there is a connection between
profinite groups and Galois group, proved by Waterhouse in 1974 (see [18]):

Theorem 5.1.9. (Waterhouse) Every profinite group is isomorphic to the Galois group of

some Galois extension.

Now, using the things we know about the Krull topology on the Galois group, the

following results look familiar:

Proposition 5.1.10. Let G be a profinite group. A subgroup H of G is open if and only if
it is closed and has a finite index. Closed subgroups H of G are profinite groups, and if H

is normal, then so is the quotient group G/H.

5.2 Cohomology of profinite groups

5.2.1 Continuous action
Let G be a profinite group. The cohomology groups defined will be that of G and G-sets.
To define G-sets, we first need to understand continuous actions.

Definition 5.2.1 (Continuous action). Let G be a profinite group. A left action of G on a
discrete topoloigcal space A is called continuous if the map » : G x A — A, (0,a) — o.a is

continuous.

Now, we list some equivalent conditions for an action to be continuous, which are going

to be useful in the coming sections.

68



Proposition 5.2.1. Let G be a profinite group which acts on a discrete topological space A.

Then, the following are equivalent :

(i) The action of G on A is continuous.

(ii) For each a € A, the map o — 0.a is continuous.
(7ii) For each a € A, the set Stabg(a) = {0 € G : 0.a = a} is an open subgroup of G.
(iv) A =Unen AN, where N denotes the set of open normal subgroups of G.

Definition 5.2.2. (G-sets and modules) Suppose G is a profinite group acting continuously
on a set A with discrete topology on it. Then, A is called a G-set. A group A which is also
a G-set is called a G-group if G acts by group morphisms, i.e.

o-(aaz) = (0 -a1) (0 -ag) for o € G,ay,as € A.

A G-group which is commutative is called a G-module.

Suppose A, B are G-sets (groups, modules). We say that f : A — B is a morphism of
G-sets (groups, modules) if f(o.a) = 0.f(a) for all 0 € G,a € A.

As an example, let /k be a Galois extension with Galois group Go = Gal(Q/k) (from
now on, we will denote the Galois group by Gg). Then, Gg acts on € by evaluation, and

thus € is a Gg-module.

5.2.2 Cohomology sets

Throughout the section, we will assume that G is a profinite group which acts continuously
on a set A, making A into a G-set. Let A/ denote the set of open normal subgroups of G. We
first define the O-th cohomology set as follows: H°(G, A) := A% = {a € A: 0.a = aVo € G}.
If A is a G-group, then it is a subgroup of A. To define higher cohomology sets (groups), we
will need condition of continuity of maps o : G — A. The image a(oy, 09, -+ ,0,) will be
denoted as ay, gy,... 0, We list below some equivalent properties of such maps. This will tell

us that every continuous a : G — A is locally defined by a family of maps o”.

Proposition 5.2.2. For any map o : G" — A, the following are equivalent:
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(i) « is continuous.

(7i) « is locally continuous, i.e., for any g = (01,09, -+ ,0,) € G", there exists an open set

containing g on which o 1s constant.

(i) There is some N € N and a map o : (G/N)" — AN such that

N —

01,02, ,0n

«

= Qoy,09,+ 00"

Now, let A be a G-module (written additively here). As done in Section 2.9, we define
CYG,A) = Aand C(G, A) = {f : G» <5 A} for n > 1. All nomenclature is borrowed
from Section 2.9, except that the maps here are continuous (which we can talk about since
both G and A have topologies on them). Now, we define maps 6" : C"(G, A) — C""1(G, A)
as follows:

a)(oc) =0c.a—a

and for n > 1,

n
0" () ar00 rnss = O1-Opasean + (=1 Aoy oy 570100 0msr + (1) Qs
j=1

Similar as before, it can be checked that 6,,,1 0 d,, = 0. Thus, we get a co-chain complex
{C", 0,,} which can be denoted as :

0 1 2 -1 n+1
0-c0Serh et S e Lot

We now define Z" = ker(d,,) and B” = image(d,,—1). Elements of Z™ are called n-cocycles
and that of B™ are called n-coboundaries. 9,,1 ©d, = 0 means that B" < Z", both of
these are abelian groups (since A is a G-module). Thus, we can take quotients, we define
H™(G,A) = Z™/B"™, which is called the n-th cohomology group of G with coefficients in A.

Two n-cocycles are said to be cohomologous if they differ by a n-coboundary. Trivial
n-cocyle is the element of Z"(G, A) which maps every o — 1. This trivial cocycle makes
H"(G, A) into a pointed set.
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5.3 Functorial properties of Cohomology sets

5.3.1 Compatible pairs

Now, we discuss some functorial properties of cohomology sets. Let G, G’ be two profinite
groups, and let ¢ : G —> G be a morphism of profinite groups. Let A, A" be G,G" sets
repsectively, and f : A — A’ be a morphism of sets (groups if A, A" are groups/modules).
We say that (¢, f) is a compatible pair if f(¢(0')a) = o' f(a) for all ' € G';a € A. Tt can be
easily observed that if a is fixed by G, then f(a) is fixed by G, so f induces a restriction

map
fo : HY(G, A) — H(G', A").
The following result shows that we can do this for higher cohomology sets as well.

Proposition 5.3.1. Let G,G', A, A" be as above. For n > 1, there is an induced map
f+: C(G,A) — C"(G'A"),

such that f.(a)(0y, 09, ,07,) = f(Qeon)(0h),~ (o)) This also restricts to the map of

rn

pointed sets f. : H"(G, A) — H"(G', A’) in the sense that class of a is mapped to class of
fi(a).

The map constructed above respects composition in the sense that:

Proposition 5.3.2. Suppose G,G',G” are profinite groups with maps G” 26 S and
AA LA are G, G, G” -sets respectively with the following compatible maps A Lal s
Then, (¢po @', f o f) is compatible pair, and (f' o f)s = fL o fs.

Example 3. This will be our primary example. From now on, whenever we have just one
profinite group, i.e., G' = G, we will take ¢ = Id. In this case, any morphism f of G-sets is
a compatible map, and f, maps [a] — [f o a].

Example 4. Let G be a profinite group acting on a G-set A. Let N, N’ € N, the set of
open normal subgroups of G such that N > N’. Using Proposition 5.2.2, G/N,G/N’ act
continuously on AN AN respectively. We have a well-defined map G/N' — G/N and
similarily, we have f : AN — AN and these two maps are compatible. Thus, we have the
map infy e : H*(G/N, AN) —s H"(G/N', AN") using Proposition 5.3.1. This map will be

useful when we would like to see cohomology set as a direct limit.
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Example 5. Similar to Example 4, suppose N € N. Then, we have well-defined maps
G — G/N and f: AN — A, which is just the inclusion. Then, Proposition 5.3.1 gives us
the map fy : H"(G/N, AN) — H"(G, A).

Now, we see that the map f, satisfies the following functorial property:

Proposition 5.3.3. Suppose we have the following two commutative diagrams of profinite

groups G; and their respective sets A; and their compatible maps:

G <2 Gy
I¢3 I@z
Gy <2 Gy

and
Ay L’ Ay

| » |~
Ay T4,

Then, for any n = 0, we have the following commutative diagram:

H' (G, A1) 2% HY(G, As)

lf?)* lfé*

H™ (G, A) —2% H™ (G, Ad)

5.3.2 Direct limit and cohomology sets

In the following chapters, we will look at Galois cohomology functor; we will then like to
see the set H"(Gq, G(Q2)) as the direct limit of the sets H"(Gr, G(L)) where G is a Galois
cohomology functor. We prove that here in the more general case of a profinite group G and
G-groups. Proposition 5.2.2 hints us at how an n-cocyle can be defined locally by the family
of maps o; we will explore this further and prove that H"(G,A) = lim H"(G/N, AV),

where lim denotes the direct limit.
-

Definition 5.3.1. Let [ be a directed set. Let (G;);e; be a family of sets (groups, rings,
modules, etc.) together with maps (respective morphisms) ¢;; : G; — G; for any i < j
such that
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(i) ¢ = Idy, Viel

(ii) ¢ij o pjp = du for all i < j < k.

Then, (G, ¢ij)ijer is called a directed/injective system.

Definition 5.3.2. Let (G, ¢ij)ijer be a directed system of sets (groups, rings, modules).
The direct limit of the system is defined as

G =limG; = {H G/ ~: fori<jx, e X; ~z; € X; < 3k > 1,7 such that ¢;(x;) = qﬁjk(:cj)}

el iel
The following lemma, with the help of (iv) of Proposition 5.2.1, will allow us to see at
once how we can visualise a G-set A locally as AV, precisely, A =~ h—H>1Ne./\/’ AN For a proof

of this lemma, see [7].

Lemma 5.3.4. Let (G, ¢ij)ijer be as above, where each G; is a subset of G and G; < G;

whenever i < j. Then, lim _ G; = U,e; Gi-

Now, let GG be a profinite group and A be a G-set. In Example 4 of Section 5.3.1, we saw
that for N > N’, we have the map infy . : H"(G/N, AN) — H"(G/N', AN"). Tt can be
verified that for each n, (H"(G/N, AN),infx n')nnven form a directed sysetm, and its limit
is exactly H"(G, A).

Theorem 5.3.5. Let G, A be as above. Then,

H"(G, A) = lim H"(G/N, AY)
NeN

5.3.3 Exact sequences and Connecting maps

If G is a profinite group and A is a G-module, then the groups H"(G, A) behave nicely
with exact sequences. Precisely, suppose A, B,C are all G-modules (i.e, they are abelian
as groups) and suppose we have a short exact sequence, where the maps are morphisms of

G-modules
1l—A-L B S 0.
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Then, we get a corresponding exact sequence in cohomology groups:

1 — H(G, A) L5 HO(G, B) 2 HY(G,0) 2% HYG, A) I
> H'(G, A) L5 HY(G, B) 25 HY(G,0) 25 H™ (G, A) L5 ...

Here, f, and g, are the maps defined by Proposition 5.3.1, and the map A, is called the n-th
connecting map. We show below how the maps Ay, A; are defined, and this procedure is

generalised to define A,;:

Ay H(G,0) — HYG, A) : Let ce H(G,C) = CY. Since g is surjective, there exists
some b € B such that g(b) = ¢. Now, by assumption o.c = ¢ for any o € G, thus g(0.b) = g(b)

or equivalently, g(b~'0.b) = 1, which means b '0.b = f(«,) using exactness at B, for some
ay € A. Then, a: G — A,0 — a, is a 1-cocyle and [a] € H' (G, A) does not depend upon
the choice of b. So, we get a map Ay : HY(G,C) — H'(G, A),c— [a].

Ay HY(G,C) — H*(G, A) : Let v € Z(G, C) be a 1-cocyle. Let 3, denote a pre-image
of 7, under g, then

g(ﬁUU-BTﬁ;}) = 700-777;7-1 =1,

thus 8,0.078,} = f(a,.) for some a,, € A using exactness at B. Then, a : G* —
A, (0,7) = g, is a 2-cocycle and [a] € H*(G, A) does not depend on the choice of 3,’s.
Thus, we get a well-defined map A, : HY(G,C) — H*(G, A),[v] — |a].

The maps A, also satisfy the following functorial property:

Proposition 5.3.6. Let A, B,C be G-modules and A’, B',C" be G'-modules. Suppose we

have the following commutative diagram with exact rows:

1 v A1 B9, ¢ s 1
bR
1 N ANy - R Ne s 1

Let ¢ : G' —> G be a morphism of profinite groups compatible with «; for i =1,2,3. Let A

and A" denote the n-th connecting maps for the respective sequences. Then, for each n = 0,
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we have the following commutative diagram:

H™(G,C) -2 H"Y{G,A)

loﬁ* lal*

HY(@,C") —22 HL(G, A

Finally, we end this section by stating a very useful result giving a correspondence between
ker(H (G, A) — H'(G, B)) and orbit of H*(G, B) in H(G,C). But first we need to define
an action of B¢ = H%G, B) on CY = H(G,C). Let b e B ce C% Let b € B be a
preimage of ¢ under g, then define b.c = g(bt’). One can check that this is independent of
the choice of b and that indeed b.c € C¢ for ¢ € C¢. Let C%/B% denote the orbit set of

action of B¢ on CC€.

Proposition 5.3.7. There is a one-one correspondence between the sets C¢/BY and
ker(HY(G, A) — HY(G, B)), given by c € C% — Agy(c).

It can be easily proved using the fact that ker(H'(G,A) — H'(G, B)) is exactly the
image of H°(G, C) under the map A,.
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Chapter 6

Galois descent

In mathematics, we like to classify things, and one of the questions frequently encountered is
one involving isomorphism of two mathematical structures defined over a field k. Usually, it
is easier to study the objects over bigger fields containing k, for example, algebraic closures,
separable closures, etc. (for example, think of polynomials over R and C). In most cases,
it so happens that the extensions of objects over separable closure become isomorphic; it is
natural to ask then if they are also isomorphic to the groundfield k. The answer, in general,
is no, but we can study classes of objects below which become isomorphic to a particular
object over the bigger field. We will see in this chapter how Galois descent provides us a good
insight into such questions by providing a nice formulation of the problem. We will recall
some definitions and results from category theory first to set up the stage. This chapter is

borrowed heavily from |[7].

6.1 Categories and functors
Definition 6.1.1 (Category). A category C consists of

e a collection of objects, Obj(C).

e for any two objects A, B € Obj(C), aset Hom¢(A,B) = {f : A— B : f is a morphism}
with the following properties:
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(i) Let A, B,C be any there objects of C. Then we have a function:
HOmc(A,B) X HOmC(BaC) - HOmc(A7C), (fag) = go f

In other words, we can compose compatible morphisms.

(ii) The set Home(A, A) is non-empty for any A € Obj(C) having an element Id4
such that it is identity with respect to composition, i.e, for any f € Home(B, A),
we have Idqo f = f, and for any g € Home(A, B),go Ids = g.

(ili) The law of composition is associative.

Example 6. Sets denotes the category where objects are sets and morphisms are usual
maps, Sets* denotes the category of pointed sets where morphisms are maps preserving the

base points.

Example 7. e Grps: Obj(C) = Groups, Morphisms = group homomorphism.
e AbGrps : Obj(C) = Abelian groups, Morphisms = group homomorphism.
o T : Obj(C) = field extensions K /k, Morphisms = field homomorphism.

e Algy : Obj(C) = Algebras over k (commutative, associative and with identity), Morphisms

= Algebra homomorphisms.

e Suppose G is a profinite group, then Setsg : Obj(C) = G-sets, Morphisms = morphisms
of G-sets. Similarily, Grpsg and Modg are defined.

We have obvious notions of isomorphisms of objects in a category using the definition.

Definition 6.1.2 (Functors). Let C;,Co be two categories. A covariant (contravariant)
functor F : C; — Cy is a map such that for each A € Obj(Cy), there exists a unique
F(A) € Obj(Cy) and for every morphism f : A — B, there exists a unique morphism
F(f): F(A) — F(B) (respectively F(f) : F(B) — F(A)) such that :

o F(Ids) = Idpa) for all A e Obj(Cy).

e F(fog)=F(f)oF(g) whenever f and g can be composed.
Example 8. GL, : Algx — Grps such that for any R € Algy, GL,(R) denotes the

general linear group of matrices over R. If ¢ : R — R’ is a k-algebra morphism, then
GL,(¢) : GLy(R) — GL,(R') maps (a;;) — (¢(ai;)).
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Example 9. We define an extremely useful functor from an arbitrary category C to Sets.
Let A € Obj(C), then define hp : C — Sets as follows :

B +— Home(A, B)
(f: B— C)w— (ha : Hom¢(A, B) — Home(A,C), ¢ —> f o ¢)

Definition 6.1.3 (Natural transformation). Let F1, Fy : C; —> C3 be two covariant functors.
A natural transformation of functors ® : F; — F is a rule such that for every A € Obj(C,),
we have © 4 : F1(A) — F3(A), and such that for every morphism f : A — B, in Cy, the

following diagram commutes :

From this, it is clear what an isomorphism of functors means.

Definition 6.1.4 (Representable functor). Let F be a covariant functor from a category C
to the category of sets, Sets. F is called representable if there exists an A € Obj(C) such
that F = ha, where hy is the functor in Example 9.

Now, for a concrete definition, we would want A in the above definition to be unique up

to isomorphism. This fact is guaranteed by Yoneda’s Lemma, which says:

Lemma 6.1.1 (Yoneda’s Lemma). There is a one-one correspondence between the set of
morphisms f : A — B and the set of natural transformations ® : hg —> ha. In particular,

if ha = hg, then A = B and vice-versa.

We now give us a very useful example of a representable functor, which will give us many

examples of algebraic group schemes, as we will see later.

Example 10. Let k£ be a field, and I be an ideal in k[X;, X5,---, X,,]. Define V(I) :
Algy, — Sets as V(I)(X) = {(z1,29, -+ ,x, € X" : f(x1,29, - ,2,) =0VYf €I)}. Then,
V(I) is a representable functor, and V(I) = hs where A is the finitely-generated k-algebra
k[ X1, Xa, -+, X0]/1.
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6.2 Bringing in the players

The Galois descent lemma, which is what we are aiming towards in this chapter, states that
if we have a functor F : €, — Sets satisfying the Galois descent condition, and we have
a Galois functor G acting on F, then the set of equivalence classes of twisted forms is in
bijection with the set of a certain type of cohomology classes. To understand the Galois
descent lemma, we first need to understand the terms in italics, which will be the goal of

this section.

6.2.1 Continuous action of Gg

Let k be a field, K/k a field extension, and Q/K a Galois extension with Galois group Gq.
Let F : & — Sets be a covariant functor. If K — K’ is a field morphism, then we have a
corresponding morphism of sets F(K) — F(K”), the image of z € F(K) under this would
be denoted by zks throughout this section. We would like to define an action of Gg on F(2)
: for 0 € Gg and = € F(Q), define o.x = F(o)(z). It can be checked that the properties
of an action are satisfied. Moreover, if F is a group-valued functor, then this action is by
group automorphisms, i.e., o.(xy) = (0.2)(0.y). The following lemma on how this action is

compatible under restriction will be useful later:

Lemma 6.2.1. Let . be the action defined above. Suppose Q/K and /K are two Galois

extensions such that Q < €V, then

O',.ZL‘Q/ = (OJ|Q.(I}>Q/ Vo' e QQ/, T € F(Q)

Now, to study the cohomology of sets/groups under this action, we want the action to
be continuous. It turns out that this is precisely when F is a representable functor under

some mild conditions.

Proposition 6.2.2. Let F : Alg, — Sets be a representable functor, i.e., F = ha. Then,
for every Galois extension Q/K, the map F(K) — F(Q) induces a bijection F(K) =

F(Q)9%. Moreover, if A is finite-dimensional, then action of Go on F(Q) is continuous.

As a consequence of this and (iv) of Proposition 5.2.1, we have the following: F(Q) =

U cqir(F(L)), where the union runs over all finite Galois subextensions L of 2 and iy, :
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F(L) — F(Q) denotes the map induced by inclusion L — ). The type of functor satisfying

conditions of Proposition 6.2.2. is special and we would like to give some name to it:

Definitions 6.2.1 (Group-schemes). Let G : Algx — Grps be a covariant functor, then
G is called group-scheme over k. If G is representable by an algebra A, then it is called
affine group-scheme, and if A is finite-dimensional then it is called algebraic group-scheme.
Finally, an algebraic group-scheme G is called an algebraic group if A is reduced (i.e., has

no non-zero nilpotent elements.)

Notice the apparent connection between this definition of an algebraic group and that

given in Chapter 4.

Example 11. The prototypical example for an algebraic group is GL,. In fact, it has been

proved that every algebraic group-scheme is a ’'closed’ subgroup of GL,, for some n.

6.2.2 Galois functor

Working with algebraic group-schemes is a bit too restrictive because not all group-schemes
are representable, and furthermore, in some descent problems, we need the group-schemes
to be only defined over €y which is a subcategory of Algy. So, in our setup, we force the
conditions derived in the case of algebraic group-schemes in Proposition 6.2.2 to define a

special type of functor called the Galois functor:

Definition 6.2.2 (Galois Functor). Let G : €, — Grps be a group-scheme over k. Then,

G is called a Galois functor if :

1. for every Galois extension /K, the map G(K) — G(£) is injective and induces a
group isomorphism: G(K) = G(Q2)%.

2. G(Q) = U;cqi(G(L)) where the union runs over all finite Galois subextensions L of
Q and iy, : F(L) — F(Q) denotes the map induced by inclusion L — .

Examples include any functor satisfying conditions of Proposition 6.2.2., i.e., any algebraic
group-scheme. Using 1. and 2. of Definition 6.2.2. and Proposition 5.2.1, it can be easily seen

that for every Galois extension 2/ K of extensions of k, G(f2) is a Go-group. Let i : K — K’
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be a morphism of fields. For Galois extensions /K and Q'/K’, we get two different profinite
groups Gg, Gor and their corresponding groups G(2), G(€?). If we have a map ¢ : Q —
extending 4, then we get using Corollary 5.1.6, ¢ : Goo —> Go. We also have the map of
Ga, G a-groups G(¢) : G(2) —> G(€'). The maps ¢ and G(¢) are compatible, and thus
using Proposition 5.3.1., we get a map ¢, : H"(Gqo, G(R2)) — H™(Go, G(')) which is

independent of which extension we choose for i.

Definition 6.2.3 (Galois descent condition/ GDC). Let F : €, — Sets, we say that
F : ¢, — Sets satisfies the Galois descent condition if for field extension K /k and every
Galois extension /K, the map F(K) — F(Q) is injective and induces the bijection F(K) =
F(Q)%. As an example, any representable functor F : €, — Sets satisfies the Galois

descent condition. The functor M,, also satisfies the condition.

6.2.3 Action of Galois functor

Let k£ be any field, G : €, — Grps be a Galois functor, and F : €, — Sets be a functor
satisfying the Galois descent condition. We say G acts on F if for every field extension K /k,
G(K) acts on F(K) by * such that the action is functorial in K. Precisely, if i : K — K’

is a morphism of field extensions, then

G(K) x F(K) —— F(K)
l G(i)xF(i) l F(i)
G(K') x F(K") —— F(K')

is commutative. In our notation, (g * a)g = grr * axr.

Now that we have an action of G on F, we can talk about Stabg(a)(2) given any

extension Q/k. Given a € F(k), it is defined in the usual way as
Stabg(a)(2) ={g e G(Q) : g * aq = aq}.

If i : Q — Q' is a morphism of fields, then G(i) : G(Q2) — G() restricts to a map
Stabg(a)(2) — Stabg(a)(€'), which makes Stabg(a) : €x — Grps into a functor (it
is a subfunctor of G). In fact, it can be proved that for every a € F(k), Stabg(a) is a

Galois functor in our setting. This means that for Galois extension /K corresponding to
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extensions of k, we can talk about the Go-group Stabg(a)(2).

6.3 Galois descent lemma

Now, we are almost ready to provide the descent lemma, but we need to understand the
concept of twisted forms first. The setting is the same as above, i.e., k is any field, F :
¢x — Sets is a functor satisfying the Galois descent condition, and G : €, — Grps is
a Galois functor acting on F . Given a field extension K /k, define an equivalence relation
on F(K) as follows: let a,a’ € F(K), a ~x o if and only if there exits g € G(K) such that
g *a = da'. In other words, the equivalence classes are just G(K)-orbits of F(K).

Definition 6.3.1 (Twisted form). Let a € F(k), K/k be an extension and /K be a Galois

extension. Then, o' € F(K) is called a twisted K-form of a if aq ~q ag,.

Let K /k be an extension, and /K be a Galois extension. Now, the set of K-equivalence

classes of twisted forms of a € F'(k) is defined as
F.(Q/K) = {[d']: d' € F(K) such that ag ~q ag}.

Let K — K’ be a morphism, and Q/K,Q'/K’ be two Galois extensions. It can be checked
that if @' is a twisted K-form of a, then a', is a twisted K'-form of a. Thus, we have the
following map induced by F(K) — F(K'):

Fo(Q/K) — Fo(/K'), [a'] = [aje].

Using this, we can make a functor F, : €, — Sets by setting F,(K) = F,(K;/K) (Recall

that K , the separable closure, is a Galois extension of K).

At this point, we see that the Galois descent problem stated in the opening paragraph
of this chapter can be given a nice formulation : Let Q/k be a Galois extension, a,a’ € F(k)
be such that aq ~q af. Then, does a ~; @’? In other words, is F,(Q2/k) = {[a]}?

Note that using results of Section 6.2.2, we have the following functor called the n-th
Galois cohomology functor H"(_, G) : €, —> Sets defined as H"(K, G) = H"(Gk,, G(Kj,)).
Similarily, H"(_, Stabg(a)) is a functor from €y to Sets.
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Theorem 6.3.1 (Galois descent lemma). [7] Let the setting be as above. Given a € F(k),
an extension K/k and a Galois extension Q/K, we have a one-one correspondence between

the following sets which s functorial in ):
F.(Q/K) <« ker[H'(Gq, Stabg(a)(Q)) — H'(Gqa, G(Q))].
Thus, we have isomorphism of the following functors :

F, = ker[H'(_, Stabg(a)) — H'(_,G)].

Sketch of proof. Observe that from Orbit-Stabilizer Theorem, we have the following exact
sequence, where Stabg(a)(€2), G(2), G(Q2) * ag are all Go-groups:

1 — Stabg(a)(Q) — G(Q) — G(Q) * ag — 1.

From Section 5.3.3, we thus get a corresponding exact sequence in corresponding cohomology
groups, and Using Proposition 5.3.7, we know that ker| H'(Gq, Stabg(a)(Q2)) — H'(Gq, G(Q2))]
is in bijection with the set (G(f2) * aq)92/G(Q)%. Since, G is a Galois functor, using 1. of
Definition 6.2.2, we have G(Q)9 =~ G(K). Also, elements of G(Q) * aq are the elements of
F(Q) which are equivalent to aq, and thus the set (G(Q) *aq)9® is the set of image of twisted
K-forms of a under the map F(K) — F(). Using the definition of action given before
Proposition 5.3.7, for g € G(K), aq € (G(Q) +aq)%°, we have g.a, = (g+a)q where + denotes
the action of G(€2) on F(Q). Using all this, we can see that (G(£) » aq)92/G(£2)9¢ is nothing
but the image of G(K) » a under the map F(K) — F(Q2). Hence, F(K) — F(Q) induces
a bijection of F,(Q2/K) onto (G() * aq)9?/G(Q)%. The correspondence now follows from

the one given in Proposition 5.3.7. Functoriality can be seen using diagram-chasing. [
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Chapter 7

Applications of (GGalois descent

Galois descent is an important tool that can be used to solve several problems. We look into
the application of Galois descent to a few problems in this chapter. This chapter includes

elements from the books [7] and [11].

7.1 Galois descent of Algebras

Let k be a field and V be a finite dimensional vector space over k. Let K/k be a field
extension. By Vi we will mean the scalar extension to K, i.e., Vg = V ®, K. We define
a functor F : €, —> Sets by letting F(K) denote the set of all associative algebras with
identity A over k with underlying vector space Vi. If i : K — K’ is a morphism of
extensions of k, let F(i) : F(K) — F(L) denote the map R — Ry. It can be seen using
definition of algebra morphism that F : €, — Sets in fact satisfies the Galois descent

condition.

It can be seen that G := GL(V) : €, —> Sets is a functor defined by GL(V)(K) =
GL(Vk) (infact it is isomorphic to the functor GL,, where n = dim(V')). We know that GL,,
is an algebraic group-scheme since it is equal to V' (1) where [ is the ideal in k[ X7, X5, -+ | X2, T']
generated by the polynomial (det(X;;)T—1). Any algebraic group-scheme is a Galois functor
by Proposition 6.2.2, thus G is a Galois functor. Now, we define action of G on F in the
following manner: for f € G(K), A € F(K), define f.A as the K-algebra with underlying
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vector space Vi and multiplication given as follows:

VK X VK — VK
(z,y) = f(f ' (@).af (),

where . 4 denotes the multiplication in A. Now, we are in the setup of using the Galois descent
lemma. For A € F(k), we want to see what Stabg(A)(K) is for any extension K /k. Note
that by definition of action f(x).raf(y) = f(x.ay) where .; 4 denotes the multiplication in
f-A. This means that f: A — f.A is an isomorphism of K-algebras. Thus, it follows that
A, B € F(K) are equivalent, i.e., lie in the same orbit under the action of G if and only if they
are isomorphic as K-algebras. Hence, for each A € F(k), Stabg(A)(K) = Autyy(A)(K) (It

is clear that Aut,,(A) is a functor, infact it is clearly a subfunctor of GL,, for suitable n).

Thus, the Galois descent lemma leads us to the following:

Theorem 7.1.1. Let k be a field, K/k an extension and Q/K a Galois extension. For
any k-algebra A, the set H'(Gq, Auty,(A)()) is in one-one correspondence with the set of

isomorphism classes of K-algebras which become isomorphic to A over ).

Proof. Let the notations be as in the paragraphs above the theorem. We know that

Stabg(A)(Q2) = Autyy(A)(Q) and that F4(Q/K) = {[A'] : Aq = AL}.Thus, we will be
done if we prove that H'(Go, GL(V)(Q)) = 1 for any Galois extension /k. This fact is
known as the Hilbert’s 90 Theorem. We state the theorem below, and the proof can be
looked up in |7, p. 113-115], for example. ]

Lemma 7.1.2 (Hilbert 90). Let k be a field, A be a semisimple k-alegbra, then
H' (G, GL(A)(Q)) = 1 for any Galois extension /k. In particular, for any finite-dimensional
k- vector space V, H (Go, GL(V)(Q)) = 1.

If we take A = M, (k) in the above theorem, the set of isomorphism classes of K-algebras
which become isomorphic to A over €2 is nothing but the isomorphism classes of central
simple K -algebras of degree n split by €. Also, note that Auty,(M,(k)) = PGL,(K) from
Skolem-Noether theorem. The functor PGLn is defined as PGLn(K) = PGL,(K) for any
extension K. It thus follows that as functors, Aut,(M,(k)) = PGLn. Thus, we have the

following corollary of Theorem 7.1.1:
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Corollary 7.1.3 (Central simple algebras). Let k be a field, K/k an extension and Q/K a
Galois extension. Ths set H'(Go, PGLn(Q)) is in one-one correspondence with the set of

isomorphism classes of central simple K-algebras of degree n which become isomorphic to
M, (k) over .

Note that since K /K is a Galois extension for any extension K /k, we have by definition

on page 73,

H'(K, Aut,,(A)) < K-isomorphic classes of algebras B which become isomorphic to A

7.1.1 Algebras with involutions

We start by defining some useful things associated with algebra with involution. Throughout
this section, k denotes a field of characteristic # 2, A denotes a central simple k-algebra with
identity 1. Recall the definition from Chapter 4.

Definition 7.1.1 (Involution). An involution on A is amap o : A — A such that o(x+y) =
o(z) + o(y),o(zy) = o(y)o(z) and 02 = Idy.

We will denote an algebra with involution by the pair (A,0). A non-trivial involution
is a ring anti-automorphism of order 2. Note that ¢ need not be k-linear. The most basic
example of an involution is A — A’ where A € M, (k). If we take X € k, then o(\) commutes
with every element of A, since zo(\) = o(Ay) = o(y.\) = o(\).x for some y € A. This
means that o(\) € k since centre of A is k. Thus, ol; is an automorphism of k of order 1 or
2. If it has order 1, i.e., o], = Idy (in other words, o is k-linear), then o is called involution
of first kind. If not, then o is called involution of second kind. Let k' = {\ € k : o(\) = A}.
If o is of 1st kind, then k' = k. If not, then k/k is a quadaratic field extension, and ol is

the unique non-trivial automorphism of k/k’.

From now on, we will focus only on involutions of the first kind. We now observe how

two involutions of A are related.

Lemma 7.1.4. Let o be an involution on A. Then, the most general involution on A is of
the form x — a ‘o (z)a for some a € A* such that o(a) = ta. If a,a,€ A* are two elements

satisfying the same condition, they must differ by a a non-zero element of k.
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Proof. Notice that if ¢’ is another involution on A, then ¢’ o 0! is an automorphism of A,
hence it is of the form Int(a) for some a € A* by the Skolem-Noether theorem. The rest is

easy verification. ]

As an important example, note that every involution on M, (k) is of the form o (X) =
M= X*M for some M € GL, (k). We now define two important subsets of A, Sym(A, o) and
Skew(A, o). Sym(A,o) is defined as the set of all symmetric elements of A, i.e., elements
a € A such that o(a) = a, while Skew(A, o) is defined as the set of all skew-symmetric
elements of A, i.e., elements a € A such that o(a) = —a. Since o is of 1st kind, Sym(A, o)
and Skew(A,o") are k-vector spaces. We now want to see how these subsets are related for

two different involutions o and ¢’ on A:

Lemma 7.1.5. Let 0,0’ be two involutions on A related by o' = Int(a)oo (see Lemma 7.1.4).
If o(a) = a, then Sym(A,o') = aSym(A, o) and similarily Skew(A,o") = aSkew(A, o).
If o(a) = —a, then Sym(A,o') = aSkew(A, o) and similarily, Skew(A, d’) = aSym(A, o).

Now, we define what an isomorphism of algebra with involution means.

Definition 7.1.2 (Isomorphism). Let (4, o), (A’, 0’) be two algebras with involutions. Then,
(A,0) and (A’ 0’) are isomorphic if there exists an algebra isomorphism ¢ : A — A’ which
respects the involutions in the sense that o' = ¢ o 0 0 ¢~1. In particular, an automorphism

of (A, o) is an algebra automorphism that commutes with o.

Let © be a splitting field for (A,0). Then, we have an isomorphism of K-algebras
¢ Ag — M,(Q). Let oq denote the involution o ® Idg on Aqg. Then, of, = ¢ 0 0g 0 ¢~*
is an involution on M, (Q2), hence it is of the form o), for some M € GL,(k). Also by
construction it is clear that (Ag,0q) = (M,(2),0n). From Lemma 7.1.4, we know that
M!=+M.

Definition 7.1.3. Let (A, o) be an algebra with involution of degree n. Then, A is called
orthogonal (or of type 1) if for any splitting field Q/k, (Aq,0q0) = (M,(Q),0n) where
M' = M, i.e, M is a symmetric matrix. And, A is called symplectic (or of type -1) if for any
splitting field Q/k, (Aq,0q) = (M,(Q2), o) where M* = —M, ie., M is a skew-symmetric

matrix.

It can be noted that A is symplectic only if n is even : M' = —M implies det(M) =
det(M") = (—1)"det(M), which is possible only if n is even.
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Proposition 7.1.6. Let (A,0) be an algebra with involution. Then, A is of type € if and
only if dim(Sym(A, o)) =n(n +¢€)/2, where e =1 or —1.

Proof. Tt can be easily proved using Lemma 7.1.5 and the fact that Sym(A, 0)q = Sym(Aq, 0q).
O

7.2 Revisiting ‘Algebras with involutions and classical

groups’

Using the language and results developed in the previous sections, we would like to give
an alternative proof of the one-one correspondence between algebras with involutions and
classical groups given by André Weil, which was discussed in Chapter 4. Throughout, A
denotes a central simple k-algebra of degree n with involution o on it.(Ag,, oy, ) = (M, (ks), o).
Let K/k be an extension. Define a functor F : €, — Sets such that for K € &,
F(K) = (Ak,0k). It can be checked that F satisfies the Galois descent condition. Now, we
define action of the functor GL(A) : €, — Sets, K — GL(Ak) on F as follows : for each
feGL(Ak), (Ak,0k) € F(K), define f. A = Ax and f.ox = foogo f7h

Now, we have a functor satisfying the Galois descent condition and a Galois functor
acting on it. We would like to use the Galois descent lemma, for which we identify what
Stabgra)(A)(K) is for any extension K/k and any k-algebra A. Verify that f.ox = ok if
and only if f € Aut(Ag, o). Thus, Stabgra)(A)(K) = Aut(Ak,0k). In other words, if
we define a functor Aut(A4,0) : €, — Sets such that Aut(A,0)(K) = {0 € Autyy(Ak) :
p oo = oo¢}, then Stabgra)(A) = Aut(A, o) as functors. Now, for every extension K/k,
the Galois extension K /K splits the K-algebra Ak, ie., (Ak.,0k.) = (M,(K),on) for
some M' € GL,(K;). Thus, Aut(A,o) = Aut(Ay,,o0r,) = Aut(M,(ks),on). Depending
on whether o is of type 1 or —1, thus Aut(A,0) = PGO(A,0) or Aut(A, o) = PSp(A,0)
respectively. (Here, PGO(A, o) denotes the functor which, for K/K returns the group
PO(Ak) where Ag has the bilinear form given by matrix M. Similarily, PSp(A,0) is
defined.)

Since, every central simple K- algebra is split by K, and since every K-algebra A’

such that Ax, = M, (K,) is central simple, the set of twisted forms becomes the set of
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isomorphism classes of K-algebras with involutions (A’,¢’) which become isomorphic to
(M, (Ks),on) over K. Since any finite dimensional central simple algebra is semisimple,
we get H'(Q2, GL(A)(Q2)) = 1 for any Galois extension /K using Lemma 7.1.2. Thus, the

Galois descent lemma gives us the following one-one correspondence:

K-isomorphism classes of CSAs with involutions of degree
HY(K,Aut(A,0)) «—
n over K which are isomorphic to (M, (K;),on) over K

Case 1. If (A, 0) is such that o is an orthogonal involution (or of type 1), then M is
a symmetric matrix. Also, any two non-degenerate symmetric bilinear forms over K, are

conjugate to each other by Proposition 3.5.2. Thus, we have the following correspondence:

) K-isomorphism classes of CSAs of degree
H (K,PGO(A,0)) «—
n over K with orthogonal involution

Case 2.If (A4, 0) is such that o is a symplectic involution (or of type —1), then M is an
alternating matrix. In this case, degree of A over k is 2n. Also, any two non-degenerate
alternating bilinear forms over K are conjugate to each other by Corollary 3.4.8. Thus, we

have the following correspondence:

) K-isomorphism classes of CSAs of degree
H (K,PSp(A,0)) «—
2n over K with orthogonal involution

Now we use the following theorem from Serre’s book |3, p. 124]:

Theorem 7.2.1. Let G be an algebraic group, Q/K be a Galois extension. Let E(Q/K,G)
denote the K -equivalence class of twisted K -forms of G. Then, E(Q/K,G) < H'(Gal(QY/K), Autx (G)).

For classical groups, we have a natural isomorphism of H' (K, Autx(G)) and H' (K, Aut(A, o))
where (A, o) is a central simple algebra k-algebra with involution, using the Skolem-Noether
theorem. Let F(k, A) denote the twisted k-forms of a central simple k-algebra with an
involution o, where o corresponds to the type of classical group G (in the sense that if
G = Sp,, then take o to be a symplectic involution and so on) Using this, we get the

following diagram showing correspondence between the classical groups and algebras with
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involutions:

E(k,G) < > F(k,A)

I I

H' (k, Auty(G)) +——— H'(k, Aut(A, o))

7.3 The conjugacy problem

The conjugacy problem for matrices may be stated as follows :Let G(k) denote G L, (k) or
SL, (k) for any field k. Let k be a field, £2/k be a finite Galois extension. Let M, M, be two
matrices in M, (k) such that they are conjugate by an element of G(£2). Then, are M and
My conjugate by an element of G(k)?

To answer this problem, we look at the functor G : €, — Sets defined as G(K) =
GL,(K) or SL,(K) as the case may be, where K/k is any extension. It can be verified that
this is a Galois functor. Also, define the functor F : €, — Sets as F(K) = M,,(K) for any
extension K /k. Tt is easily seen that F satisfies the Galois descent condition. Now, we define
an action of G on F as follows : for P € GL,(K),X € M,(K), P+ X = P"'XP. Given a
Galois extension /K and M, € M, (k), the set

Fu,(Q/K) = {[M] : M € M, (K) such that there exists Q € G L, () satisfying Q"' MQ = M},

where [.| means the G(K')-conjugacy class of matrices. In other words, F; (€2/K) denotes

the G(K)-conjugacy class of matrices which are G(Q2)-conjugate to M,.

Also for My € M,(k), Stabg(M))(2) = {C € GL,(?) : CMy = MyC}, which is the
centralizer of My and is denoted by Zg(Mj)(£2). We have seen earlier that Hilbert 90 gives
us H'(Ga, GL,(Q2)) = 1 for any Galois extension Q/k. The same is true if we replace GL,
by SL, and this follows from Hilbert 90 as we show below:

Lemma 7.3.1. Let k be a field, then for every extension K/k and every Galois extension
Q/K, H (Gq, SL,(Q)) = 1.

Proof. We have the following exact sequence of Gg-groups :
1 —> SL,(Q) - GL,(Q) 25 0% — 1.
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Thus, from Section 5.3.3., we have the following exact sequence of cohomology sets :

det
—

1 —> SL,(K) =5 GLo(K) 24 K 2% HY(Gq, SLu(Q)) -2 H'(Go, GL,(R)).

Since det is a surjective map, for A € K* there exists M € G L, (K) such that det(M) = A,
Ag(N) =Ag(det(M)) = Ag o det(M). But since this sequence is exact at K*, we have
A odet = 0. Thus, A is the trivial map. Also, by Hilbert 90, H'(Gq, GL,(Q)) = 1, thus
H'(Gq, SL,(R2)) = 1 using exactness at H'(Gg, SL,(2)). O

The Galois descent lemma now tells us that we have the following one-one correspondence:

) G (k)-conjugacy classes of matrices
H(Ga, Z6(Mo)(Q?)) «—

which are G(2) conjugate to M
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Chapter 8

Conclusion

In this thesis, we understand Weil’s correspondence between central simple algebras with
involutions and the classical groups. We first look at Weil’s proof, and towards the end, we
give an alternate proof the same using Galois descent. Some natural extensions of what we
studied in this thesis are given below as further directions, which an interested reader might

follow, for example :

8.1 Future directions

8.1.1 Exceptional groups

The classification of finite simple groups is seen as one of the biggest achievements of
20""-century mathematics. The groups of Lie type form a huge chunk of groups in this
classification. The classical groups or groups of type A,, B,,C,, D, were obtained using
semisimple algebras with involutions by Weil. The other groups in the Chevalley groups
correspond to the ones associated with the exceptional Lie algebras Eg, Fr, Eg, Fy and Gbs.
Weil expresses in one of his commentaries [10] his secret hope to include at least some of the
exceptional groups in writing his works in 1958-59. One possible direction, having learned
how the classical groups are obtained using algebras with involutions, would be to understand
how the exceptional groups can be obtained from different types of algebras. For example,

in [9], we see that the automorphism group of octonion algebras give us groups of type Gb.
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Similarly, the automorphism group of exceptional simple Jordan algebras lead us to groups

of type Fy [L1]. Some possible books to read this from would include [9] and [11].

8.1.2 The theory of group-schemes

We notice that while defining an algebraic group in Definition 6.2.1, we require the corresponding
algebra to be reduced, i.e., we don’t allow nilpotent elements. This terminology, Milne
writes, conflicts with the terminology of modern algebraic geometry. Grothendieck, who
is considered the father of modern algebraic geometry, used to say that occurrences of
nilpotents are very natural, and so it’s natural to allow nilpotents. The modern approach as
in [19] allows nilpotents and gives an intrinsic definition of an algebraic k-group, rather than
identifying an algebraic group with its points in some "universal domain’ (as done by Weil).
Note that in Chapter 3, we have defined algebraic groups only for algebraically closed fields
following Humphrey’s approach. The theory of group-schemes allows us to define algebraic
groups over arbitrary fields. This is a natural direction to pursue from this point. The

exposition by Milne [19] can serve as a possible source of reading.

8.1.3 Unitary Involutions

It is to be noted that in Chapter 7, we have only dealt with involutions of the first kind.
These involutions, when restricted to the underlying field, yield identity and hence lead
us to classical groups of the adjoint type. A natural extension would be to study the
subject of involutions of the second kind, also called unitary involutions, and understand
the automorphism group of such algebras. The automorphism groups of these algebras give

us the unitary groups arising from Hermitian forms. For a start, one can refer to [11].

8.1.4 Further applications of Galois descent

We describe two applications of Galois descent in the thesis. This beautiful technique can
be used for myriads of classification problems as well as other problems. For example, we
can study the correspondences between twisted forms of quadratic forms and cohomology

sets of classical groups using Galois descent.
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Maximal tori Let & be a field. A k-torus T is an algebraic group defined over k such that
T(ks) = G (k) for some n. Let G be a k-algebraic group, then 7" is a mazimal torus in G
if T is an algebraic subgroup of G such that there is no torus in G properly containing 7.
In the case when £ is an arithmetic field, Galois descent can be used to study the extent to
which a connected k-algebraic group G can be determined by the k-isomorphism classes of
maximal tori which G contains. In this case, it has been proved that the Weyl group of a
split, connected semisimple k-algebraic group is determined by the k-isomorphism classes of
maximal tori inside GG, and G is determined by its Weyl group almost always, thus giving us
the correspondence mentioned before. To know more details about this, we refer the reader
to [20], [21] and [22].

One can also look at other problems, for example, the Galois embedding problem, which is
a generalization of the Inverse Galois problem, and study cohomological obstructions of the

same. We refer the interested reader to |7].
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