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Abstract

This project attempts to understand microstructure modelling of tick-by-tick asset price

via a semi-Markov model. It has been observed in the literature that such models are

capable of reproducing various stylized facts of market microstructure, such as mean reversion

and volatility clustering. We perform mathematical analyses of certain functionals of the

stock price dynamics. In particular, these functionals are expressed using the conditional

expectation of stock price. As an application of the mathematical analyses of the functional,

we investigate the market making problem of the agent. Typically an agent optimally submits

limit orders at the best ask and best bid prices. It has been shown in the literature that this

problem can be solved using a Hamilton-Jacobi-Bellman equation, and a viscosity solution

to such HJB equations has been obtained. However, we have obtained a classical solution to

a related linear PDE, and this indicates that one can obtain a classical solution to the HJB

equation with further investigation.

xi



xii



Contents

Abstract xi

1 Introduction 1

1.1 Original Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Preliminaries 4

3 Semi-Markov Model for Financial Asset Microstructure 8

3.1 Price return modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Jump times modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Statistical Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Mathematical Properties of the Stock Price Model 21

4.1 The infinitesimal generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 The stock price conditional mean . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Optimal Market-making Strategy 35

5.1 Market Order Flow Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2 The market making problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.3 Generator of (Pt, It, St,Xt, Yt) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

xiii



5.4 Value function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6 Conclusion 48

xiv



Chapter 1

Introduction

“Market microstructure is the study of the process and outcomes of exchanging assets under

explicit trading rules” [9]. Microstructure literature aims to analyze the effect of different

trading mechanisms on the price formation process. It primarily focuses on studying the

structure of the electronic exchanges and trading venues, the price discovery process, trans-

action costs, and intraday trading behaviour. Due to the advent of faster and more reliable

computers, the financial market today is different in fundamental ways. High-frequency

trading (HFT) has not only made transactions faster but also revolutionized the market

structure. The way liquidity and price discovery arises, the structure of the market, and

traders’ trading behaviour are different in the HFT scenario. At such fast speeds, studying

market microstructure becomes more relevant.

In an electronic market, various types of financial contracts are traded, such as, shares,

bonds, mutual funds, etc. Market participants which include the market makers, informed

traders and the liquidity takers place orders in the exchange to trade these commodities.

An electronic market receives mainly two types of orders: market orders and limit orders.

Market orders (MO) are aggressive orders which takes liquidity from the LOB and receives

the best prices currently available. These orders are put in by the trader to either buy or

sell stocks shares, bonds, or other available assets at the best price obtainable in the current

financial market and are executed immediately. On the other hand, limit orders (LO) are

passive orders to buy or sell assets at a pre-decided price. They are registered in the Limit

Order Book along with the volume put up for trading. Limit orders usually offer prices worse

than the prevailing market price, that is, they are placed with higher price than the best buy
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price for sell limit orders, and at lower price than the best ask price for buy limit orders. The

market orders that arrive “walk the LOB” and gets matched with the posted limit orders

according to the rule of the book. Two important order matching frameworks are price-time

priority and pro-rata.

Market makers is one class of the participants of trading. They are professional traders

who profit from their expertise in facilitating exchange in a particular asset. They provide

liquidity to the market by quoting buy and sell prices via submitting limit orders on both

sides of the LOB. The market maker faces a risk due to a jump in the asset price. In particular

he faces the following risks: (i)Market risk : Due to sudden jump in the price, the inventory

is re-evaluated and his portfolio wealth alters immediately. Thus, he faces a finite amount

of risk in no time. (ii) Adverse Selection risk : When trading with informed traders who

have private or better information than the market maker, he exposes himself to the adverse

selection risk. He risks placing a sell limit order that can be fulfilled just before the price

jumps upwards, or a buy limit order getting filled just before a drop in the price.

The existing literature on high frequency trading roughly deals with two types of problems.

One stream encompasses the description of tick-by-tick asset prices in the Limit Order Book.

These models can be broadly categorised into two units, according to their guiding philoso-

phy. First, modelling via the macro-to-microscopic approach, or the latent process approach

which describes the observed price process as a noisy representation of the underlying un-

observed process. It is usually characterized by a continuous Itô semi-martingale. But, this

framework is not suitable for the high frequency data. Second is modelling via the micro-

to-macroscopic approach that directly models the observed stock price by a point process.

These are not dependent on the existence of the fundamental price and are able to produce

various microstructure stylized facts such as volatility clustering and microstructure noise.

The other stream of microstructure literature is devoted to solving the high frequency trading

problems such as stock liquidation and the market making problem. Typically, stochastic

control methods are employed to determine optimal trading strategy. Such studies are mostly

based on classical models of asset price, usually, arithmetic or geometric Brownian motion.

They model the market order flow via Poisson process and independent of the continuous

price process.

In this project, we seek to understand the modelling of tick-by-tick asset price presented in [1].

We, then, perform mathematical analyses of certain functionals of the stock price dynamics
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via studying an integral equation. As an application of the analyses of the functional, we

investigate the market making problem of the agent.

This thesis is structured as follows. Preliminaries including definitions and basic concepts

of market microstructure are mentioned in chapter 2. Description of semi-Markov model

of financial assets is provided in chapter 3. Chapter 4 includes the study of mathematical

properties of the stock price model previously described. Chapter 5 discusses the market

making problem of the agent as an application of the mathematical analyses performed in

chapter 4. Conclusions and a few remarks are made in chapter 6.

1.1 Original Contribution

In this thesis, we revisit the microstructure modelling of tick-by-tick asset price as proposed

in [1]. We add details to the proofs of Lemmas 1 and 2 of [1]. A very short proof of Lemma 1

appears in [1] and Lemma 2 is not accompanied with any proof. Lemma 1 gives the correlation

coefficient between two consecutive price jumps and Lemma 2 provides an estimator for the

same. The statistical estimates obtained in [1] are explained. These details can be found in

Chapter 3.

The mathematical properties of the model described are studied in Chapter 4. It includes

the following original work. We study the conditional expectation of stock price at terminal

time. We show that the mean stock price satisfies a first order, linear PDE with terminal

condition. Then we show that the mean stock price solves this problem in the classical

sense. Although this PDE appears in [2], only a viscosity solution is established. Chapter 5

discusses the modelling of market order flow and the market making problem of the agent

as presented in [2]. We provide original proof for Lemma 7 which appears as Lemma 4.1 of

[2]. We derive the infinitesimal generator of an augmented Markov process which comprises

of price process, switching process, age process, wealth process and inventory process. This

derivation does not appear in the literature. The content of Chapters 4 and 5 are results of

a collaboration with the supervisor and Ms. Garima Agrawal, a senior research fellow of the

department.
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Chapter 2

Preliminaries

We borrow definitions from [5], [7], [8], [9], [12], [13] and [14].

Definition 2.0.1. For an ordered set T , a filtration of σ-algebras (Ft)t∈T on an underlying

set Ω satisfying Fs ⊆ Ft ∀ s ≤ t in T .

Definition 2.0.2. A filtered probability space, (Ω,F , (Ft)t∈T ,P) consists of a probability

space (Ω,F ,P) and a filtration (Ft)t∈T contained in F .

Definition 2.0.3. Let (Ω,F ,P) be a probability space. A stochastic process is a collection

{Xt, t ∈ T} of random variables Xt defined on (Ω,F ,P), where T is a set, called the index

set of the process {Xt}t∈T .

Definition 2.0.4. Let (Ω,F , (Ft)t∈T ,P) be a filtered probability space and {Xt}t∈T be a

stochastic process such that Xt is integrable ∀ t ∈ T . Then Xt is called a Ft-martingale if

E[Xt∣Fs] = Xs, for every s ≤ t, P a.s.

Definition 2.0.5. Let (E,E) be a measurable space and (Ω,F ,P) be a probability space. A

random measure on (E,E) is a mapping µ ∶ Ω× E ↦ R+ such that ω ↦ µ(ω,A) is a random

variable for each A in E and A↦ µ(ω,A) is a measure on (E,E) for each ω ∈ Ω.

Definition 2.0.6. Let (E,E) be a measurable space and let ν be a measure on it. A random

measure ℘ on (E,E) is said to be Poisson with mean ν if

1. for every A ∈ E , the random variable ℘(A) has the Poisson distribution with mean ν(A),
and

2. for any n ≥ 2, whenever A1,⋯,An are in E and pairwise disjoint, the random variables

℘(A1),⋯,℘(An) are independent.
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Definition 2.0.7. Let (Ω,F , (Ft)t∈T ,P) be a filtered probability space and (S,S) be a metric

space. An S- valued stochastic process X = {Xt}t∈T adapted to the filtration is said to satisfy

the Markov property with respect to the given filtration if, for each A ∈ S and each s, t ∈ T
with s < t,

P(Xt ∈ A∣Fs) = P(Xt ∈ A∣Xs).

A Markov process is a stochastic process which satisfies Markov property with respect to its

natural filtration.

Definition 2.0.8. A C0- semigroup of operators {S(t)}t≥0 on a Banach space V is a map

S ∶ R+ → BL(V ), such that

1. Sof = f

2. St+s = StoSs ∀t, s ≥ 0, and

3. ∥Stf − f∥ → 0 as t ↓ 0,∀f ∈ V .

Definition 2.0.9. Let {S(t)}t≥0 be a C0- semigroup of operators. The domain of semigroup

is defined as

D ∶= {f ∈ V ∣ lim
t→0

Stf − f

f
exists}

and the infinitesimal generator of f is the operator A, defined such that

Af ∶= lim
t→0

Stf − f

f

∀f ∈ D.

Definition 2.0.10. A semi-Markov process is a process {Xt}t≥0 that satisfies the following

properties:

1. Xt is a piecewise constant rcll process with discontinuities at a discrete set {Tn}n ≥ 1.

2. The transition probabilities satisfy

P[XTn+1 = j, Tn + 1 − Tn ≤ y∣(X0, T0), (X1, T1),⋯, (XTn , Tn)]
= P[XTn+1 = j, Tn + 1 − Tn ≤ y∣XTn].
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Definition 2.0.11. The hazard function is the ratio of probability density function and the

survival function given by

h(x) = P (x)
1 − F (x)

where F (x) is the distribution function.

Definition 2.0.12 (Itô’s formula). Let f ∶ R → R be a function of class C∞c and let Z =
{Zt,Ft; 0 ≤ t < ∞} be a rcll process with decomposition

Zt = Zc
t +Zd

t ; 0 ≤ t < ∞

where Zc
t and Zd

t are the continuous and discontinuous parts in the decomposition. Then,

f(Zt) = f(Z0) + ∫
t

0
f
′(Zs−)dZc

s +
1

2 ∫
t

0
f ”(Zs−)d⟨Zc, Zc⟩s

+∑
s≤t

{f(Zs) − f(Zs−) (2.1)

Definition 2.0.13. {Xt}t≥1 is (Ft)t≥0-predictable if for every t ≥ 0,Xt+1 is Ft-measurable.

Definition 2.0.14 (Kernel Density Estimator). Let x1, x2, . . . , xn be sample points of an

independent and identically distributed random variable X with an unknown density f . Let

hn be smoothing parameter called bandwidth. Then, the kernel density estimator is given

by

fn(x) = 1

nhn

n

∑
i=1

K(x − xi
hn

) (2.2)

where hn → 0 as n→∞, and K is the kernel function which satisfies the following properties:

1. sup−∞<x<∞K(x) ≤M ;

2. ∣x∣K(x) → 0 as ∣x∣ → ∞;

3. ∫
∞
−∞ x

2K(x)dx < ∞.

Definition 2.0.15. Market microstructure is the study of the process and outcomes of ex-

changing assets under explicit trading rules.
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Definition 2.0.16. Liquidity is defined as the efficiency with which assets and securities can

be converted into ready cash without changing its market price.

Definition 2.0.17. Bid-ask spread is the difference between the highest price a buyer is

willing to pay for an asset (best-bid price) and the lowest price a seller is willing to accept

(best-ask price).

Definition 2.0.18. Mid price is the mean between the best-bid and best-ask price.

Definition 2.0.19. Tick size is the minimum price change in the bid and ask prices of an

asset traded on an exchange platform.

Definition 2.0.20. A Limit order book is the collection of currently available buy and sell

orders, their available prices and their available volumes.

Definition 2.0.21. A market order an aggressive order which takes liquidity from the LOB

and receives the best prices currently available.

Definition 2.0.22. A limit order is a passive order posted at a fixed price which is executed

at the cap or better price, if offered.

It supplies liquidity to the limit order book It receives a guaranteed price, but does not

guarantee execution.

Definition 2.0.23. A market maker is a professional trader who profits from facilitating

exchange in a particular asset and exploits his skills in executing trades.

Definition 2.0.24 (Adverse Selection). In the market, there are various participants who

trade for varying reasons and have different level of information. Adverse selection is a

situation where one party possesses information and exploits the asymmetry for his benefit.

The market maker faces the adverse selection risk in the following manner. When trading

with informed traders, he is exposed to a filled sell limit order just before the price jumps

up, or a filled buy limit order just before a downward jump in price.

Definition 2.0.25. Mean-reversion is a stylized fact where the consecutive high-frequency

asset price returns are anti-correlated.

Definition 2.0.26. Volatility clustering refers to the fact that high volatility events tend to

cluster in time. Large changes tend to be followed by large changes, of either sign, and small

changes tend to be followed by small changes.
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Chapter 3

Semi-Markov Model for Financial

Asset Microstructure

The models of tick-by-tick asset prices are broadly categorised into the following two units,

according to their guiding philosophy:

• Macro-to-microscopic approach, or the latent process approach describes the observed

price process as a noisy representation of the underlying unobserved process which is

usually characterized by a continuous Itô semi-martingale. But, this framework is not

suitable for the high frequency data.

• Micro-to-macroscopic approach directly models the observed stock price via point pro-

cess. These are not dependent on the existence of the fundamental price and are able

to produce various microstructure stylized facts such as volatility clustering and mi-

crostructure noise.

In this chapter, we attempt to understand the microstructure modelling of tick-by-tick price

for liquid assets in a Limit Order Book with a constant bid-ask spread. A model-free de-

scription of the piecewise constant mid price is presented. It is characterized by a marked

point process (Tn, Jn)n where, (Tn) are the timestamps representing jump times of the asset

price and (Jn) indicate the price increments. It is modelled by a Markov renewal process.
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It has been observed in the literature that such modelling can reproduce stylized facts of

market microstructure. In particular, mean-reversion of price returns has been reproduced

by modelling (Jn) with a suitable Markov chain. The counting process (Nt) associated with

the asset prices models volatility clustering.

The results and discussion in the chapter are adapted from [1]. In particular, the results

obtained in lemma 1 and lemma 2 are quoted from [1]. However, detailed proofs are missing

in [1]. We incorporate them here in this chapter.

3.1 Price return modelling

Model of the tick-by-tick asset price for liquid assets in the limit order book with a constant

bid-ask spread is described via a marked point process (Tn, Jn)n∈N. (Tn)n is an increasing

sequence which represents the jump times and (Jn)n represents the price increments. It takes

values in E = {−m, ...,−1,1, ...,m} ⊂ Z/{0}. The continuous-time price process is a piece-wise

constant, pure jump process given by

Pt = P0 +
Nt

∑
n=1

Jn, t ≥ 0 (3.1)

where (Nt) is the counting process associated with the jump times (Tn)n.

The tick size has been normalized to 1, and the asset price P is considered as the mean price

between the best-bid and best-ask price. The continuous time dynamics (3.1) is a model-free

description of piecewise constant price process in a market microstructure.

The price return is written as

Jn = Ĵnξn, n ≥ 1 (3.2)

where Ĵn ∶= sign(Jn) and ξn ∶= ∣Jn∣. The following assumptions are in effect throughout:

1. Only the current price direction will affect the next price jump.

2. ξi are independent and also independent of the direction of the jump.

Ĵn is valued in {+1,−1}. A realization of 1 indicates an upward price jump. Similarly,

9



a downwards price jump is indicated by −1. (Ĵn)n is an irreducible Markov chain with

probability transition matrix given by

⎛
⎝

1+α+
2

1−α+
2

1−α−
2

1+α−
2

⎞
⎠

with α ∈ [−1,1). To be more precise, the conditional probability P (Ĵn+1 = 1 ∣ Ĵn = 1) =
1+α+

2 . (ξn)n is an iid sequence valued in {1, . . . ,m} with distribution law pi = P[ξn = i].
It is independent of Ĵn. Therefore, (Jn) is an irreducible Markov chain with the following

transition probability matrix

⎛
⎜⎜
⎝

p1Q̂ ⋯ pmQ̂

⋮ ⋱ ⋮
p1Q̂ ⋯ pmQ̂

⎞
⎟⎟
⎠

(3.3)

where the states are arranged as +1,−1, . . . ,+m,−m. The symmetric case is considered, where

α− = α+ ∶= α.

Lemma 1. In the symmetric case, the invariant distribution of the Markov chain (Ĵn)n
is π̂ = (1

2 ,
1
2), and the invariant distribution of (Jn)n is π = (p1π̂, . . . , pmπ̂). Moreover, we

have α = corrπ(Ĵn, ˆJn−1),∀ n ≥ 1, where corrπ denotes the correlation under the stationary

probability Pπ starting from the initial distribution π ([1]).

Proof. Given probability transition matrix Q̂

⎛
⎝

1+α+
2

1−α+
2

1−α−
2

1+α−
2

⎞
⎠
,

we take any (x, y). Then,

x(1 + α
2

) + y(1 − α
2

) = x; (3.4)

x(1 − α
2

) + y(1 + α
2

) = y. (3.5)

Above two equations imply that x = y. Also, x + y = 1. Therefore, x = y = 1
2 .

For Q given by
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⎛
⎜⎜⎜
⎝

p1Q̂ ⋯ pmQ̂

⋮ ⋱ ⋮
p1Q̂ ⋯ pmQ̂

⎞
⎟⎟⎟
⎠
,

we check that (p12 ,
p1
2 ,

p2
2 ,

p2
2 ,⋯,

pm
2 ,

pm
2 ) is a stationary distribution of Q.

LHS = p1(
1 + α

2
)(

m

∑
i=1

pi
2
) + p1(

1 − α
2

)(
m

∑
i=1

pi
2
)

= p1(
m

∑
i=1

pi
2
) × 1

= p1

2

since 2∑mi=1
pi
2 = 1. So, π̂ = (1

2 ,
1
2) satisfies π̂Q̂ = π̂ and hence is the stationary distribution of

(Ĵn)n. Similarly, π = (p1π̂, p2π̂,⋯, pmπ̂) is the stationary distribution of (Jn)n.

Now, Ĵn takes values +1 and −1 with probability 0.5 each. Therefore, Eπ[Ĵn] = 0 ∀n. Also,

∀n,Eπ[Ĵ2
n] = 1. This gives the variance as 1. Then, we write the correlation coefficient of Ĵn

and Ĵn−1 as

corrπ(Ĵn, Ĵn−1) = covπ(Ĵn, Ĵn−1)
σπ(Ĵn)σπ(Ĵn−1)

= Eπ((Ĵn −E[Ĵn])(Ĵn−1 −E[Ĵn−1]))
1 × 1

= Eπ(Ĵn, Ĵn−1).

Now, Ĵn takes value Ĵn−1 w.p. (1+α
2 ) and −(Ĵn−1) w.p. (1−α

2 ).

Therefore, ĴnĴn−1 takes values (Ĵn−1)2 with probability (1+α
2 ) and −(Ĵn−1)2 with probability

(1−α
2 ). Eπ[Ĵn, Ĵn−1] = (1+α

2 )E[(Ĵn−1)2] − (1−α
2 )E[(Ĵn−1)2] = α.

Lemma 2. In the symmetric case, the Markov chain (Ĵn)n can be written as:

Ĵn = Ĵn−1Bn, n ≥ 1
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where (Bn) is a sequence of i.i.d. random variables with Bernoulli distribution on {+1,−1},
and parameter (1+α

2 ), i.e. of mean E[Bn] = α. The price increment Markov chain can also

be written in an explicit form as:

Jn = Ĵn−1ζn

where (ζn)n is a sequence of i.i.d. random variables valued in E = {+1,−1, ...,+m,−m}, and
with distribution P[ζn = k] = pk(1 + sign(k)α)/2 ([1]).

Proof. Ĵn = Ĵn−1Bn. So, Jn = Ĵn−1Bnξn or Jn = Ĵn−1ζn.

Therefore, ζn = Bnξn. Since both Bn and ξn are i.i.d. sequences therefore, ζn is also an

i.i.d. sequence and the state space is given by {+1,−1, ...,+m,−m} as the state space of

ξn = {1,2, ...,m}. Now, P[ζn = k] = P[ξn = k] ⋅ P[sign(k)] = pk(1 + sign(k)α)/2.

Lemma 2 can be used to estimate α. The following consistent estimator α̂(n) is considered:

α̂(n) = 1

n

n

∑
k=1

Ĵk
ˆJk−1

= 1

n

n

∑
k=1

(ĴkĴk−1).

By strong law of large numbers, α̂(n) = ∑
n
k=1Bk
n Ð→ α.

And,

E[α̂(n)] = 1

n

n

∑
k=1

E(ĴkĴk−1)

= 1

n

n

∑
k=1

α

= α.

Also, V ar(α̂(n)) = 1
n2nV ar(Bk) = 1

n . Thus, from central limit theorem,

√
n(α̂(n) − α) (d)Ð→ N(0,1), as nÐ→∞.
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From Lemma 1, we can interpret the parameter α as the correlation coefficient between two

consecutive price return directions. When α = 0, the price returns are independent. α < 0

corresponds to mean-reversion of price returns whereas α > 0 indicates a trend. The estimated

parameter α̃ < 0 gives the anticorrelation of the direction of the price returns.

Authors in [1] have found the estimated parameter to be α̂ = −87.5% for Euribor future data.

This is consistent with the anticipated anti-correlation of price returns.

3.2 Jump times modelling

The counting process (Nt) is modelled via Markov renewal process. The inter-arrival times

are denoted by Sn = Tn − Tn−1, n ≥ 1. The conditional distribution is given by

Fij(s) = P[Sn+1 ≤ s∣Jn = i, Jn+1 = j]

where (i, j) ∈ E. Then, (Tn, Jn)n is a Markov renewal process with the following transition

kernel:

P[Jn+1 = j, Sn+1 ≤ t∣Jn = i] = qijFij, (i, j) ∈ E.

The transition rate function is written as

hij(t) = lim
δ↓0

1

δ
P[t ≤ Sn+1 ≤ t + δ, Jn+1 = j∣Sn+1 > t, Jn = i] (3.6)

for i, j ∈ E. It represents the instantaneous probability that there will be a jump with mark

j, given that the current mark is i and no jump took place in the elapsed time t.

hij(t) = lim
δ↓0

1

δ
P[t ≤ Sn+1 ≤ t + δ, Jn+1 = j∣Sn+1 ≥ t, Jn = i]

= lim
δ↓0

1

δ
P[t ≤ Sn+1 ≤ t + δ∣Sn+1 ≥ t, Jn = i, Jn+1 = j] × P[Jn+1 = j∣Jn = i]

= λijqij
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where λij ∶= hij(t)
qij

is the jump intensity. By assuming that the distribution of the tick times

Sn admit a density fij corresponding to the cdf Fij, hij can be written as

hij = qij(
fij(t)

1 −Hi(t)
)

where,

Hi(t) = P[Sn+1 ≤ t∣Jn = i] = ∑
j∈E

qijFij(t).

Hi(t) is the conditional distribution of the renewal time in state i.

The symmetric case is considered when Fij depends only on the sign of ij and assume that Fij

admits a density fij. Following notations are used. F+(s) = Fij(s) , if ij > 0 as the distribution

function of inter-arrival times given two consecutive jumps in the same direction. Similarly,

F−(s) = Fij(s), if ij < 0 gives the distribution function in mean-reverting case.

F± = P[Sn+1 ≤ s∣ĴnĴn+1 = ±1], n ≥ 1, s ≥ 0

(Sn) has an iid distribution given by

F = E[P(Sn ≤ s∣Ĵn, Ĵn−1]
= P(Sn ≤ s∣ĴnĴn−1 = +1)P(Bn = +1) + P(Sn ≤ s∣ĴnĴn−1 = −1)P(Bn = −1)

= F+(
1 + α

2
) + F−(

1 − α
2

)

The transition rate function function in the symmetric case is given by:

lim
∆s→0+

1

∆s
P[s ≤ Sn+1 ≤ s +∆s, Ĵn+1 = ±Ĵn∣Sn+1 > s, Ĵn]
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= lim
∆s→0+

1

∆s
P[s ≤ Sn+1 ≤ s +∆s,Bn+1 = ±1∣Sn+1 > s, Ĵn]

= lim
∆s→0+

1

∆s
P[s ≤ Sn+1 ≤ s +∆s∣Bn+1 = ±1, Sn+1 > s, Ĵn]

×P[Bn+1 = ±1∣Sn+1 > s, Ĵn]

= lim
∆s→0+

1

∆s

P[s ≤ Sn+1 ≤ s +∆s∣Bn+1 = ±1]
P[Sn+1 > s∣Bn+1 = ±1] × (1 ± α

2
)

= lim
∆s→0+

1

∆s

F±(s +∆s) − F±(s)
1 − F±(s)

× (1 ± α
2

)

= f±(s)
1 − F±(s)

× (1 ± α
2

) =∶ h±(s) (say). (3.7)

The renewal distribution functions may be modelled by the Gamma and Weibull distribution.

3.3 Statistical Procedures

The parameters of distribution function Fij of the inter-arrival times and the transition rate

function are estimated by both parametric and non parametric methods.

Following notations would be used.

For a subsample of i.i.d. data {Sk = Tk − Tk−1 ∶ ksuch thatJk−1 = i, Jk = j}, set

Iij = #{k such that Jk−1 = i, Jk = j}
Ii = #{k such that Jk−1 = i}

with cardinality nij and ni respectively.

3.3.1 Parametric Estimation

Gamma and Weibull distributions are considered for the estimation of the distribution func-

tion Fij of the renewal times with shape and scale parameters βij and θij respectively. By

considering the Maximum Likelihood method of estimation, the MLE (β̂ij, θ̂ij) can be ob-
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tained as a solution to

lnβ̂ij −
Γ
′(β̂ij)

Γ(β̂ij)
= ln( 1

nij

nij

∑
k=1

Sk) −
1

N

nij

∑
k=1

lnSk

and,

θ̂ij = 1

β̂ij
Snij

where Snij ∶= 1
nij
∑nijk=1 Sk.

However, a closed form solution for β̂ij cannot be obtained numerically. Instead, the mo-

ment matching method is employed to estimate the parameters. Considering the Gamma

distribution, we know the shape and scale parameters satisfy

β = (E[S])2

V ar[S] ,
1

θ
= (E[S])
V ar[S] . (3.8)

By putting the emperical estimators of the mean and variance, βij and θij are estimated as

follows:

βij =
nijSnij

2

∑nijk=1(Sk − Snij)2
,

1

θij
=

nijSnij

∑nijk=1(Sk − Snij)2
. (3.9)

In [1], it has been observed from the estimates that distribution of inter-arrival times is

symmetric, that is, they depend on the product ij rather than the individual values if i and

j separately. They perform parametric estimation for the Euribor on the year 2010 from 10h

to 14h, with one tick. Figure 3.1 provides the goodness-of-fit results for the estimation. It

also gives the histogram of the estimated density function in the symmetric case.
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Figure 3.1: QQ plot and histogram of F−(left) and F+(right). Euribor3m, 2010, 10h-14h.
Image adapted from: Pietro Fodra and Huyen Pham (2015), Semi Markov Model for Market
Microstructure, Applied Mathematical Finance, 22(3):261-295

For gamma distribution X ∼ Γ(β, θ), the hazard function is given by

ĥGam(t) = 1

θ

( tθ
β−1)e− tθ

Γ(β) − Γ t
θ
(β) .

It is decreasing in t if and only if β < 1, that is, the more the time passes, the less likely is

the occurrence of an event. The estimated values of the shape parameter β̃+ and β̃− for the

trend and mean-reverting case respectively are less than 1 [1]. This is consistent with the

phenomenon of volatility clustering which states that large changes tend to be followed by
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large changes, of either sign, and small changes tend to be followed by small changes. When

the price jumps, the probability another price jump in a short period is high, but if the jump

does not occur, then the price is likely to stabilize.

3.3.2 Non parametric estimation

The empirical histogram of the density is described as follows. For every collection of time

steps {0 < t1 < ⋯ < tM ≤ ∞}, δr ∶= tr+1 − tr, we bin the sample (Sk){k = 1,⋯, n}. The

empirical histogram is then given by

fhistij (tr) = 1

δr

#{k ∈ Iij ∣tr ≤ Sk < tr+1}
nij

.

This estimator depends on the size of the bins. The density can be estimated by another

method namely the smooth kernel method. A Gaussian kernel with density given by normal

law of mean 0 and variance b2 is chosen.

fnpij (t) = 1

nij
∑
k∈Iij

Kb(t − Sk)

= 1

nijδr
∑
k∈Iij

K(t − Sk
δr

) since Kb(x) ∶=
1

b
K(x

b
).

For the symmetric case,

fhist± (tr) =
1

δr

#{k ∈ I±∣tr ≤ Sk < tr+1}
n±

and,

fnp± (t) = 1

n±
∑
k∈I±

Kb(t − Sk).
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Figure 3.2: Non parametric estimation of the densities f− and f+. Image adapted from: Pietro
Fodra and Huyen Pham (2015), Semi Markov Model for Market Microstructure, Applied
Mathematical Finance, 22(3):261-295

The kernel estimation of f±(t) performed in [1] and the corresponding histogram is given in

figure 3.2. From the decreasing nature of the curve of both the densities f±(t), we interpret

that the most of the jumps in the stock price takes place in a short duration, even though

some renewal times can take values in hours.

Similarly, the transition rate function is estimated.

hij = lim
δ→0

1

δ

P[t ≤ Sk < t + δ, Jk = j∣Jk−1 = i]
P[Sk ≥ t∣Jk−1 = i]

.

Then, the empirical histogram is given by

hhistij (tr) =
1

δ

#{k ∈ Iij ∣tr ≤ Sk < tr + δ}
#{k ∈ Ii∣Sk ≥ tr}

and the associated smooth kernel estimator is given by

hnpij (t) = ∑
k∈Iij

Kb(t − Sk)
1

#{k ∈ Ii∣Sk ≥ t}
.

From the estimation results, we see that immediately after a price jump the price is unstable

and another jump is likely to occur. If it does not happen, the price stabilizes with time and
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the probability of another jump is small. Also, due to mean-reversion of the price returns, the

intensity of consecutive jumps in the opposite direction is larger than in the same direction.
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Chapter 4

Mathematical Properties of the Stock

Price Model

In this chapter, we study the properties of the model of the stock price described previously.

We are interested in studying the conditional expectation of the stock price at terminal time.

We first derive the infinitesimal generator of the augmented process (Pt, It, St). Then we

show that the mean stock price satisfies the PDE (4.8) in the classical sense. We establish

some regularities of the functional via studying an integral equation.

For simplicity, we consider a constant bid-ask spread of 2δ. We define the following pure

jump process representing the last price jump.

It = JNt (4.1)

It is a semi-Markov process such that (It, St) is a Markov process, where

St = t − Tn, Tn ≤ t < Tn+1

is the age process.
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4.1 The infinitesimal generator

Let (Ω,F ,{Ft}t≥0,P) be a filtered probability space and χ be a finite state space. For each

i, j ∈ χ and i ≠ j, we define

hij ∶ (0,∞) → [0,∞) (4.2)

to be a measurable function with

sup
s∈(0,∞)

∑
j∈i
hij(s) < ∞; (4.3)

and

lim
s→∞

Hi(s) = ∞ where, Hi(s) = ∫
s

0
∑
j≠i
hij(v)dv. (4.4)

For i ≠ j, s ≥ 0, let Hij(s) be consecutive right-open, left-closed intervals with respect to the

lexicographical ordering. The lengths of these intervals are given by hij(s).

Also,

qij(s) = pij(s)Fi(s)

We consider the following system of stochastic integral equations:

It = I0 + ∫
t

0
∫
R
∑
j≠It−

(j − It−) ⋅ 1HIt− j(St−)(z)℘(dt, dz)

Pt = P0 + ∫
t

0
∫
R
∑
j≠It−

2δIt−j ⋅ 1HIt− j(St−)(z)℘(dt, dz)
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St = S0 + t − ∫
t

0
∫
R
St− ∑

j≠It−
1HIt− j(St−)

(z)℘(dt, dz)

(4.5)

where ℘(dt, dz) is a Poisson random measure on R+ ×R with intensity dtdz.

We will derive the expression for the infinitesimal generator of the augmented age-dependent

process given by (4.5). Let ϕ ∶ E × χ ×R+ → R be a differentiable function. Then, by Itô’s

formula,

dϕ(Pt, It, St) = ∂ϕ(Pt− , It− , St−)
∂s

dSct + {ϕ(Pt, It, St) − ϕ(Pt− , It− , St−)}

= ∂ϕ

∂s
dt + {ϕ[(Pt− + ∫

R
∑
j≠It−

2δIt−j ⋅ 1HIt− j(St−)(z)℘(dt, dz),

It−) + ∫
R
∑
j≠It−

(j − It−) ⋅ 1HIt− j(St−)(z)℘(dt, dz)),

(St− − ∫
R
St− ∑

j≠It−
1HIt− j(St−)

(z)℘(dt, dz))] − ϕ(Pt− , It− , St−)}

= ∂ϕ

∂s
dt + ∫

R
{ϕ[(Pt− + ∑

j≠It−
2δIt−j ⋅ 1HIt− j(St−)(z)℘(dt, dz),

It−) + ∑
j≠It−

(j − It−) ⋅ 1HIt− j(St−)(z)℘(dt, dz)),

(St− − St− ∑
j≠It−

1HIt− j(St−)
(z)℘(dt, dz))] − ϕ(Pt− , It− , St−)}dtdz + dMt

= ∂ϕ

∂s
dt +∑

j≠i
[ϕ(Pt− + 2δIt−j, j,0) − ϕ(Pt− , It− , St−)]hij(s)dt + dMt.

Therefore,

Lϕ(p, i, s) = ∂ϕ
∂s

+∑
j≠i

[ϕ(p + 2δij, j,0) − ϕ(p, i, s)]hij(s). (4.6)
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4.2 The stock price conditional mean

We define the mean value of the stock price at horizon by

π(t, p, i, s) ∶= E[PT ∣t, Pt = p, It = i, St = s] (4.7)

where (t, p, i, s) ∈ [0, T ] × 2δZ × χ ×R+.

Later in the section we will establish that π solves the following PDE:

∂π

∂t
+ ∂π
∂s

+ fi(s)
1 − Fi(s)

∑
j≠i
pij(s)(π(t, p + δj, j,0) − π(t, p, i, s)) = 0

with π(T, p, i, s) = p. (4.8)

The authors in [2] consider χ = {+1,−1}, that is, the price jumps by only one tick, either

upwards or downwards. In the symmetric case, they show that the conditional mean price

solves the following PDE in the viscosity sense:

∂π

∂t
+ ∂π
∂s

+∑
ν∈χ

hν(s)[π(t, p + 2δνi, νi,0) − π(t, p, i, s)] = 0

π(T, p, i, s) = p (4.9)

where ν ∈ {−1,+1} and hν is given by equation (3.7). However, we provide an original proof

that π satisfies the above PDE classically. Further in the chapter, we study the functional π

and establish properties such as differentiability. In order to show that π solves the system

(4.8) classically, we take a two step approach. First, we consider an integral equation, estab-

lish its existence and uniqueness, and study some regularity features. Then, we go on to show

that the PDE (4.8) and the considered integral equation are equivalent hence establishing

the existence and uniqueness of the solution to the system (4.8).

We make the following assumptions which will be in effect throughout:
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1. Fi is differentiable. Let the derivative, say, fi be bounded;

2. fi is differentiable and f
′
i is bounded and continuous;

3. pij(s) is continuously differentiable.

Let D ∶= { (t, p, i, s) ∶ t ∈ [0, T ], p ∈ {−m,⋯,m}, i ∈ χ, s ∈ [0, t] }.

Lemma 3. Consider the following integral equation

ϕ(t, p, i, s) = p(1 − Fi(T − t + s)
1 − Fi(s)

) + ∫
T−t

0

fi(s + v)
1 − Fi(s)

×

∑
j≠i
pij(s + v)ϕ(t + v, p + 2δj, j,0)dv (4.10)

with ϕ(T, p, i, s) = p. (4.11)

∀(t, p, i, s) ∈ D. Then (i) the problem (4.10)-(4.11) has unique solution in B, and (ii) the

solution of the integral equation is in C2,2(D).

Proof. (i) We first note that a solution of (4.10)-(4.11) is a fixed point of the operator A and

vice versa, where

Aϕ(t, p, i, s) ∶= p
1 − Fi(T − t + s)

1 − Fi(s)
+ ∫

T−t

0

fi(s + v)
1 − Fi(s)

∑
j≠i
pij(s + v)

ϕ(t + v, p + 2δj, j,0)dv,

Let B be the space of continuous functions on D. Then, B is a Banach space. In order to

show existence and uniqueness in the prescribed class, it is sufficient to show that A is a

contraction in B. As A ∶ B → B is also a contraction, Banach fixed point theorem ensures

existence and uniqueness of the fixed point in B. To this end, we need to show, for ϕ1, ϕ2 ∈ B,

∣∣Aϕ1 −Aϕ2∣∣ ≤ k∣∣ϕ1 − ϕ2∣∣ where k < 1.

∥Aϕ1 −Aϕ2∥ = ∥∫
T−t

0

fi(s + v)
1 − Fi(s)

∑
j≠i
pij(s + v)ϕ1(t + v, p + 2δj, j,0)dv

−∫
T−t

0

fi(s + v)
1 − Fi(s)

∑
j≠i
pij(s + v)ϕ2(t + v, p + 2δj, j,0)dv∥

= ∥∫
T−t

0

fi(s + v)
1 − Fi(s)

∑
j≠i
pij(s + v)(ϕ1 − ϕ2)(t + v, p + 2δj, j,0)dv∥
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≤ ∥ϕ1 − ϕ2∥ ∥∫
T−t

0

fi(s + v)
1 − Fi(s)

∑
j≠i
pij(s + v)dv∥

= ∥ϕ1 − ϕ2∥ ∥ 1

1 − Fi(s) ∫
T−t

0
fi(v + s)dv∥

= ∥ϕ1 − ϕ2∥ ∥Fi(T − t + s) − Fi(s)
1 − Fi(s)

∥

= ∥ϕ1 − ϕ2∥ sup
D

∣Fi(T − t + s) − Fi(s)
1 − Fi(s)

∣

Thus, ∥Aϕ1 −Aϕ2∥ ≤ k∥ϕ1 − ϕ2∥ where,

k = sup
D

∣Fi(T − t + s) − Fi(s)
1 − Fi(s)

∣

< 1 − Fi(s)
1 − Fi(s)

= 1

using (A1).

(ii) Now, we establish the required regularity. We deal with the two terms of (4.10) separately.

Using (A1), first term is in C2,2(D).

∂

∂t
[p (1 − Fi(T − t + s)

1 − Fi(s)
)] = p (fi(T − t + s)

1 − Fi(s)
)

and,

∂

∂s
[p (1 − Fi(T − t + s)

1 − Fi(s)
)] = p {−fi(T − t + s)(1 − Fi(s)) + fi(s)(1 − Fi(T − t + s))

(1 − Fi(s))2
}

= −p (fi(T − t + s)
1 − Fi(s)

) + fi(s)
1 − Fi(s)

p ((1 − Fi(T − t + s))
1 − Fi(s)

)

The second term is

T ϕ ∶= ∫
T−t

0

fi(s + v)
1 − Fi(s)

∑
j≠i
pij(s + v) ϕ(t + v, p + 2δj, j,0) dv.
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1

h
(T ϕ(t + h, p, i, s) − T ϕ(t, p, i, s))

= 1

h
{∫

T−t−h

0

fi(v + s)
1 − Fi(s)

[∑
j≠i
pij(s + v) ϕ(t + v + h, p + 2δj, j,0)] dv − T ϕ(t, p, i, s)}

= 1

h
{∫

T−t

0

fi(v − h + s)
1 − Fi(s)

[∑
j≠i
pij(s + v − h) ϕ(t + v, p + 2δj, j,0)] dv

−∫
h

0

fi(v − h + s)
1 − Fi(s)

[∑
j≠i
pij(s + v − h) ϕ(t + v, p + 2δj, j,0)] dv

−∫
T−t

0

fi(v + s)
1 − Fi(s)

[∑
j≠i
pij(s + v) ϕ(t + v, p + 2δj, j,0)] dv}

= 1

h
{∫

T−t

0
[fi(v − h + s)

1 − Fi(s)
(∑
j≠i
pij(s + v − h) ϕ(t + v, p + 2δj, j,0))

− fi(v + s)
1 − Fi(s)

(∑
j≠i
pij(s + v) ϕ(t + v, p + 2δj, j,0))] dv

−∫
h

0

fi(v − h + s)
1 − Fi(s)

[∑
j≠i
pij(s + v − h) ϕ(t + v, p + 2δj, j,0)] dv}

= 1

1 − Fi(s)
∑
j≠i
∫

T−t

0
[pij(v − h + s)fi(v − h + s) − pij(v + s)fi(v + s)

h
]ϕ(t + v, p + 2δj, j,0)dv

− 1

1 − Fi(s)
∑
j≠i

1

h ∫
h

0
fi(v − h + s) pij(v − h + s) ϕ(t + v, p + 2δj, j,0) dv

As h → 0, the integral of the first term of right hand side goes to −∫
T−t

0 (pijfi)′(v + s) ϕ(t +
v, p + 2δj, j,0) and the one in the second term goes to fi(s)pij(s) ϕ(t, p + 2δj, j,0).

∂T ϕ(t, p, i, s) = − 1

1 − Fi(s)
∑
j≠i

[∫
T−t

0
(pijfi)

′(v + s) ϕ(t + v, p + 2δj, j,0) dv (4.12)

−fi(s)pij(s) ϕ(t, p + 2δj, j,0) dv]

Similarly,
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1

h
(T ϕ(t, p, i, s + h) − T ϕ(t, p, i, s))

= 1

h
{∫

T−t

0

fi(v + s + h)
1 − Fi(s + h)

∑
j≠i
pij(v + s + h) ϕ(t + v, p + 2δj, j,0) dv

−∫
T−t

0

fi(v + s)
1 − Fi(s)

∑
j≠i
pij(v + s) ϕ(t + v, p + 2δj, j,0) dv}

= ∑
j≠i

{∫
T−t

0

1

h
(fi(v + s + h) pij(v + s + h)

1 − Fi(s + h)
− fi(v + s) pij(v + s)

1 − Fi(s)
)ϕ(t + v, p + 2δj, j,0)}

Let f i(s) ∶= fi(v + s) and pij(s) ∶= pij(v + s).

The integral above goes to ∫
T−t

0 (f i(s)pij(s)1−Fi )
′

(s) ϕ(t + v, p + δj, j,0) dv as h→ 0.

∂

∂s
T ϕ(t, p, i, s) = ∑

j≠i
∫

T−t

0
(
f i(s)pij(s)

1 − Fi
)
′

(s) ϕ(t + v, p + δj, j,0) dv (4.13)

T ϕ is in C2,2 using (A1). Hence, ϕ(t, p, i, s) is in C2,2.

Proposition 4. The unique solution of (4.10)-(4.11) also solves the following initial bound-

ary value problem.

∂

∂t
ϕ + ∂

∂s
ϕ + fi(s)

1 − Fi(s)
∑
j≠i
pij(s)(ϕ(t, p + 2δj, j,0) − ϕ(t, p, i, s)) = 0 (4.14)

with ϕ(T, p, i, s) = p (4.15)

Proof. Let ϕ be the solution of (4.10)-(4.11). From Lemma 3(ii), using (4.13) and (4.13),

∂

∂t
ϕ + ∂

∂s
ϕ

= p
fi(T − t + s)

1 − Fi(s)
− ∫

T−t

0
∑
j≠i

(f ipij)
′(s)

1 − Fi(s)
ϕ(t + v, p + 2δj, j,0) dv
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− fi(s)
1 − Fi(s)

∑
j≠i
pij(s) ϕ(t, p + 2δj, j,0) − pfi(T − t + s)

1 − Fi(s)

+ fi(s)
1 − Fi(s)

p (1 − Fi(T − t + s)
1 − Fi(s)

) + ∫
T−t

0
(
f ipij
1 − Fi

)
′

(s) ϕ(t + v, p + δj, j,0) dv

= fi(s)
1 − Fi(s)

p (1 − Fi(T − t + s)
1 − Fi(s)

) − fi(s)
1 − Fi(s)

∑
j≠i
pij(s) ϕ(t, p + 2δj, j,0)

+∫
T−t

0
∑
j≠i

(
f ipij
1 − Fi

)
′

(s) −
(f ipij)

′(s)
1 − Fi(s)

) ϕ(t + v, p + 2δj, j,0) dv

= fi(s)
1 − Fi(s)

p (1 − Fi(T − t + s)
1 − Fi(s)

) − fi(s)
1 − Fi(s)

∑
j≠i
pij(s) ϕ(t, p + 2δj, j,0)

+∫
T−t

0
∑
j≠i

(
(f ipij)

′(1 − Fi)(s) + fi(s)(f ipij)(s)
(1 − Fi(s))2

−
(f ipij)

′(s)
1 − Fi(s)

) ϕ(t + v, p + 2δj, j,0) dv

= fi(s)
1 − Fi(s)

p (1 − Fi(T − t + s)
1 − Fi(s)

) − fi(s)
1 − Fi(s)

∑
j≠i
pij(s) ϕ(t, p + 2δj, j,0)

+∫
T−t

0
∑
j≠i

(f ipij)(s)
(1 − Fi(s))2

fi(s) ϕ(t + v, p + 2δj, j,0) dv

= fi(s)
1 − Fi(s)

{p(1 − Fi(T − t + s)
1 − Fi(s)

) + ∫
T−t

0
∑
j≠i

(f ipij)(s)
1 − Fi(s)

ϕ(t + v, p + 2δj, j,0) dv}

− fi(s)
1 − Fi(s)

∑
j≠i
pij(s) ϕ(t, p + 2δj, j,0)

= fi(s)
1 − Fi(s)

{p(1 − Fi(T − t + s)
1 − Fi(s)

) + ∫
T−t

0

fi(v + s)
1 − Fi(s)

∑
j≠i
pij(v + s) ϕ(t + v, p + 2δj, j,0) dv}

− fi(s)
1 − Fi(s)

∑
j≠i
pij(s) ϕ(t, p + 2δj, j,0)

= fi(s)
1 − Fi(s)

ϕ(t, p, i, s) − fi(s)
1 − Fi(s)

∑
j≠i
pij(s) ϕ(t, p + 2δj, j,0)

From Lemma 3 and Proposition 4 it follows that (4.14)-(4.15) has a classical solution.

Proposition 5. A classical solution of (4.14)-(4.15) also solves the considered integral equa-

tion (4.10)-(4.11).

Proof. Let ψ be the classical solution of (4.14)-(4.15). Then, we have
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∂

∂t
ψ + ∂

∂s
ψ + fi(s)

1 − F(i)
∑
j≠i
pij(s)(ψ(t, p + 2δj, j,0) − ψ(t, p, i, s)) = 0 (4.16)

We define

Nt ∶= ψ(t, Pt, It, St).

Then, dNt = dψ(t, Pt, It, St). We apply Itô’s lemma to get the expression for dψ(t, Pt, It, St).

ψ(t, Pt, It, St) = ψ(0, P0, I0, S0) + ∫
t

0
ψ
′(s,Ps, Is, Ss)dScs

+∑
s≤t

[ψ(t, Pt, It, St) − ψ(t, Pt− , It− , St−)]

= ψ(0, P0, I0, S0) + ∫
t

0
ψ
′(s,Ps, Is, Ss)dt

+∫
t

0
∑
j≠i

fi(s)
1 − Fi(s)

pij[ψ(t, p + 2δj, j,0) − ψ(t, p, i, s)] +Mt

where Mt is {F} − t martingale. Then,

dψ(t, Pt, It, St) = ∂ψ

∂t
(t, Pt− , It− , St−)dt +

∂ψ

∂s
(t, Pt− , It− , St−)dt

+∑
j≠i

fi(s)
1 − Fi(s)

pij[ψ(t, p + 2δj, j,0) − ψ(t, p, i, s)]dt + dMt.

Hence we get,

dNt = ∂ψ

∂t
(t, Pt− , It− , St−)dt +

∂ψ

∂s
(t, Pt− , It− , St−)dt

∑
j≠i

fi(s)
1 − Fi(s)

pij[ψ(t, p + 2δj, j,0) − ψ(t, p, i, s)]dt + dMt

= dMt.
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Thus, Nt is a {F}t martingale.

ψ(t, Pt, It, St) = Nt

= E[NT ∣Pt, It, St]
= E[PT ∣Pt, It, St].

By conditioning on transition times,

ψ(t, Pt, It, St) = Nt

= E[E[PT ∣Pt, It, St, TN(t)+1]∣Pt, It, St]
= E[PT ⋅ 1TN(t)+1>T ∣Pt = p, It = i, St = s]

+E[PT ⋅ 1TN(t)+1≤T ∣Pt = p, It = i, St = s]. (4.17)

The above expression has two terms in the RHS. We deal with them separately as follows.

E[PT ⋅ 1TN(t)+1>T ∣Pt = p, It = i, St = s]
= E[PT ] ⋅ P[TN(t)+1 > T ∣Pt = p, It = i, St = s]
= p ⋅ P[TN(t)+1 > T ∣Pt = p, It = i, St = s]. (4.18)

We calculate the probability that no transition takes place in the interval (0, t) given I0 and

S0 in the following manner. Since, {(It, St)}t≥0 is a Markov process, we have

lim
t→0

1

t
E][f(It, St)∣I0 = i, S0 = s] = lim

t→0
Ttf(i, s)

= ∂

∂s
f(i, s) +∑

j≠i
λij(s)(f(j,0) − f(i, s)).
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We put f(i, s) = 1(χ,{i})×R(i, s). Then,

lim
t→0

1

t
P[It ≠ i∣I0 = i, S0 = s] = 0 +∑

j≠i
λij(s)(1 − 0) = ∣λii(s)∣ = λi(s)

P[No transition in(0, ε)∣I0 = i, S0 = s] = 1 − λi(s)ε + o(ε)
P[No transition in (nε, (n + 1)ε)∣Inε = i, Snε = s + nε] = 1 − λi(s + nε)ε + o(ε)

P[No transition in(0, t)∣I0 = i, S0 = s] =
N

∏
i=1

1 − λi(s + nε)ε + o(ε)

where Nε ≤ t < (N + 1)ε. We take natural logarithm on both the sides,

ln{P[No transition in(0, t)∣ I0 = i, S0 = s]} =
N

∑
i=1

ln(1 − λi(s + nε)ε) + O(ε)

=
N

∑
i=1

−λi(s + nε)ε +O(ε)

= −∫
s+t

s
λi(x)dx.

Then,

P[No transition in(0, t)∣I0 = i, S0 = s] = exp(−∫
s+t

s
λi(x)dx)

= exp(− ∫
s+t

0 λi(x)dx)
exp(− ∫

s

0 λi(x)dx)

= 1 − Fi(s + t)
1 − Fi(s)

. (4.19)

Using (4.19), we can write (4.18) as
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E[PT ⋅ 1TN(t)+1>T ∣Pt = p, It = i, St = s] = p(
1 − Fi(T − t + s)

1 − Fi(s)
) (4.20)

Now, we simplify the second term of the RHS of (4.18). Let Z = TN(t)+1 − TN(t) − St.

E[PT ⋅ 1{TN(t)+1≤T}∣Pt = p, It = i, St = s]

= E[E[PT ⋅ 1Z≤T−t∣∣Pt = p, It = i, St = s,Z]∣Pt = p, It = i, St = s]

= E[1Z≤T−tE[PT ∣Pt = p, It = i, St = s,Z]∣Pt = p, It = i, St = s]

(4.21)

Now, ∀ T
′ ≥ t

P(TN(t)+1 > T
′ ∣It = i, St = s) = 1 − Fi(T ′ − t + s)

1 − Fi(s)

or,P(TN(t)+1 ≤ T
′ ∣It = i, St = s) = Fi(T ′ − t + s) − Fi(s)

1 − Fi(s)
.

Then,

lim
δ→0

1

δ
P(TN(t)+1 ∈ (T ′

, T
′ + δ)∣It = i, St = s) = fi(T ′ − t + s)

1 − Fi(s)
, T

′ ∈ (t,∞). (4.22)

We let v = T ′ − t.

E[PT ∣TN(t)+1 = t + v, It = i, St = s]
= ∑

j≠i
E[PT ⋅ 1It+v=j ∣TN(t)+1 = t + v, It = i, St = s]

= ∑
j≠i

E[PT ∣It+v = j, St+v = 0, It = i, St = s] ⋅ P[It+v = j∣St+v = 0, It = i, St = s]

= ∑
j≠i
pij(s)E[PT ∣It+v = j, St+v = 0, Pt+v = p + 2δj]
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= ∑
j≠i
pij(s)φ(t + v, p + 2δj, j,0). (4.23)

Hence, from (4.22) and (4.23) we get the simplified expression for the second term of the

RHS as

∫
T−t

0
E[PT ∣TN(t)+1 = t + v, It = i, St = s]

fi(v + s)
1 − Fi(s)

= ∫
T−t

0
∑
j≠i
pij(s)φ(t + v, p + 2δj, j,0). (4.24)

We put (4.20) and (4.24) in (4.14) to get

ψ(t, p, i, s) = p(1 − Fi(T − t + s)
1 − Fi(s)

)

+∫
T−t

0
∑
j≠i
pij(s)φ(t + v, p + 2δj, j,0).

Hence, we conclude that ψ is a solution to (4.10)-(4.11).

Theorem 6. The boundary value problem (4.8) has a unique solution.

Proof. From lemma 3 and proposition 4, we see that a solution to (4.8) exists. To prove

uniqueness, we assume that ψ1 and ψ2 are two classical solutions. Then, according to lemma

3, both ψ1 and ψ2 solve (4.10)-(4.11). But, from lemma 3, only one such function exists.

Hence, ψ1 = ψ2.

Thus, we have established that PDE (4.8) has a classical solution. We also discussed the

properties of the solution π. This study has been carried out in a collaboration with Ms.

Garima Agrawal. A similar study would be relevant in the investigation of control and

optimization, and the corresponding Hamilton-Jacobi-Bellman equation.
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Chapter 5

Optimal Market-making Strategy

An electronic market receives mainly two types of orders: market orders and limit orders.

Market orders (MO) are aggressive orders which takes liquidity from the LOB and receives

the best prices currently available. These orders are put in by the trader to either buy or

sell stocks shares, bonds, or other available assets at the best price obtainable in the current

financial market and are executed immediately. On the other hand, limit orders (LO) are

passive orders to buy or sell assets at a pre-decided price. They are registered in the Limit

Order Book along with the volume put up for trading. Limit orders usually offer prices worse

than the prevailing market price, that is, they are placed with higher price than the best buy

price for sell limit orders, and at lower price than the best ask price for buy limit orders. The

market orders that arrive “walk the LOB” and gets matched with the posted limit orders

according to the rule of the book. Following are two important order matching frameworks:

• Price time priority: In this order book, orders are matched according to their price

and time. The orders placed earliest and closer to the mid-price are preferred. The

matching algorithm selects the oldest limit orders placed at the best price and executes

them in order until the entire market order is executed. If the order is not completely

executed at the best price, the algorithm matches it with limit orders placed at second

best price and so on.

• Pro-rata: In this order book, price priority is given but not time priority. Market orders

are matched with the limit orders posted at the best price and in proportion to the

quantities posted.
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Market makers is one class of the participants of trading. They are professional traders who

profit from their expertise in facilitating exchange in a particular asset. They provide liquidity

to the market by quoting buy and sell prices via submitting limit orders on both sides of the

LOB. The market maker faces a risk due to a jump in the asset price. In particular he faces

the following risks:

• Market risk: Due to sudden jump in the price, the inventory is re-evaluated and his

portfolio wealth alters immediately. Thus, he faces a finite amount of risk in no time.

• Adverse Selection risk: When trading with informed traders who have private or better

information than the market maker, he exposes himself to the adverse selection risk. He

risks placing a sell limit order that can be fulfilled just before the price jumps upwards,

or a buy limit order getting filled just before a drop in the price.

In this chapter, we understand the modelling of market order flow via a marked point process.

We then discuss the market making problem of the agent of submitting optimal limit orders

at the best bid and best ask prices. The wealth and inventory process of the agent and the

associated value function is described. We derive the infinitesimal generator of the process

(Pt, It, St,Xt, Yt). The results and discussion in the chapter are adapted from [2].

5.1 Market Order Flow Model

The small market order flow is modelled by a marked point process (θk, Zk). The increasing

sequence (θk) represents the time stamps of the arrival of the small market orders and

(Zk) ∈ {−1,+1} represent the side of the exchange. It follows the convention that the trade is

exchanged at best bid price when Zk = −1, that is, a market sell order has arrived. Similarly,

when Zk = +1, the trade is exchanged at best ask price, that is, a buy limit order has arrived.

The size of the market orders is not considered.

Let (Mt) be a Cox process with conditional intensity λ(St), where λ is a bounded continuous

function on R+. It is the counting process associated to (θk). λ is estimated using MLE

algorithm for point processes. It is observed that multiple trades arrive in the LOB when

the price is unstable. On the other hand, there is a weaker trading activity present upon

stabilization of the price.
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The correlation between the market order trade and stock prices in the LOB is establsihed

as follows. Define

Zk ∶= ΓkIθk− , (5.1)

where (Γk) is an i.i.d. sequence with Bernoulli distribution on {−1,+1} with parameter (1+ρ
2 ),

where ρ ∈ (−1,1). ρ can be interpreted as the correlation coefficient between Zk and Iθk− .

Following observations are made:

1. when ρ > 0, market orders arrive more frequently in the strong side of the LOB, that is,

at best ask when price jumped upwards and at best bid when price jumped downwards.

2. when ρ = 0, the trade sides do not depend on the stock price and arrive independently.

3. when ρ < 0, market orders arrive more often in the weak side of the LOB, that is, at

best ask when the price jumped downwards whearas at the best bid in the opposite

case.

The authors in [2] estimated the value of ρ to be around −50%. This implies that three out

of four trades arrive in the weak side of the LOB. This means that buy market orders arrive

at best bid price when the price jumped upwards. Alternatively, sell market orders arrive at

best ask prices after a downward price jump.

We recall the correlation coefficient α of the price increments. [1] estimates its value to be

negative. Estimation of ρ < 0 in [2] is consistent with execution dynamics. On the contrary,

let us assume that α and ρ are of opposite signs. Let α < 0 and ρ > 0. Also, let the last

price jump be downwards. Since α < 0, the current market is a bull market. As ρ > 0, the

limit orders posted by the agent at the best bid price will be executed. Thus, the agent

ends up buying stocks in a bull market which creates a low risk profitable position for him.

The quantity αρ gives the probability of building a profitable position via a limit order. The

bigger the value, the smaller is the probability. This phenomenon is called weak adverse

selection.
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5.1.1 Adverse Selection

The market orders are categorized into two types based on their size with respect to the

liquidity available in the market: big market orders and small market orders. Arrival of big

market orders that are influential in nature causes the mid-price to jump. They move the

ask and bid prices. Arrival of small market orders, on the other hand, do not affect the price.

Let us assume that an upward jump at time t corresponds to a big market order arrival which

aims at clearing the market of all available liquidity at the best ask price. Also, assume that

our agent is a small agent, that is, he posts limit orders of a small size compared to the

available liquidity and hence does not affect the market. Then, the case where he has posted

a small limit order on the ask side is considered. In the presence of a big market order,

the limit order gets executed as the goal of the former is to clear the market of all liquidity

rather than consume a fixed amount of it. The arrival of big MO changes the price at time t

whereas the agent sells his assets at a price prevalent at t−. In particular, since the tick size

is constantly one, the current price (after an upward jump) is given by Pt = Pt− + 2δ. The

limit orders are posted at best ask given by Pt− + δ, Since the LO gets immediately executed

without giving the agent a chance to update his quote, he loses δ due to the disadvantageous

transaction.

He faces a similar adverse selection risk in the case of submitting limit orders on the bid side.

Here, the current price (after a downward jump) is given by Pt = Pt− − 2δ whereas the agent

has submitted a limit order at the best bid price given by Pt− − δ. If this LO gets executed,

he again loses δ amount.

5.2 The market making problem

Let us assume that the agent is small and has to continuously place limit orders of constant

small size L ∈ N/{0} on both sides at the best price available. The market making strategy of

the agent is then described by a pair of predictable processes (`+, `−) valued in {0,1}. When

`±t = 0, no limit order is submitted by the agent on either side. In the opposite case, when

`+t = 1, a limit order of size L is posted at time t on the strong side of the limit order book.

Similarly, for `−t = 1 the limit order is submitted in the weak side of the LOB.
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Let the set of market making controls ` = (`+, `−) be denoted by A. An arriving small

market order is matched and executed with the small limit order posted by the agent in the

corresponding side of the LOB. The LO is executed according to a random variable K whose

distribution is given by ϑ±(dk,L) on {0,⋯, L}. ϑ+(dk,L) is the distribution of the executed

quantity of limit orders of size L in the strong side of the LOB. Similarly, ϑ−(dk,L) is the

distribution of the executed quantity of limit orders of size L in the weak side of the LOB.

5.2.1 The Wealth and Inventory process

The wealth and the inventory of the agent are denoted by the processes (Xt) and (Yt)
respectively. Also, let us assume a fixed cost of ε ≥ 0 for each transaction.

Lemma 7. For a market making strategy l ∈ A, the dynamics of the portfolio value processes

(Xt) and (Yt) are given by

dXt = ∫
R
∑
ν
∑
j≠It−

k`νt−(νPt−It− + δ − ε)(∑
k

(k ∧L)1HνIt− jk(St−)(z))℘(dt, dz), (5.2)

dYt = − ∫
R
∑
ν
∑
j≠It−

ν`νt−It−(∑
k

(k ∧L)1HνIt− jk(St−)(z))℘(dt, dz), (5.3)

where HνIt−jk(St−) is left close right open consecutive intervals placed on the positive and

negative side of the real axis for ν = +1 and ν = −1 respectively, and

∣Hνijk(s)∣ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∫k′ λνij(s)ϑν(dk
′
, L) k ∈ {0,1,⋯, L}

hνij(s) k = L + 1.

℘(dt, dz) is a Poisson random measure on Borel σ- algebra of R+ ×R with intensity dtdz.

Proof. We prove this lemma by constructing a truth table. K1 and K2 are the realizations

of the random variable K. (5.2) is written as

dXt = ∫
R
∑
ν
∑
j≠It−

k`νt−(νPt−It− + δ − ε)(∑
k

(k ∧L)1HνIt− jk(St−)(z))℘(dt, dz)
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= ∫
R
∑
j≠It−

k`+t−(Pt−It− + δ − ε)(∑
k

(k ∧L)1HIt− jk(St−)(z))℘(dt, dz)

+∫
R
∑
j≠It−

k`−t−(−Pt−It− + δ − ε)(∑
k

(k ∧L)1H−It− jk(St−)
(z))℘(dt, dz)

= Term 1 +Term 2;

and

dYt = − ∫
R
∑
ν
∑
j≠It−

ν`νt−It−(∑
k

(k ∧L)1HνIt− jk(St−)(z))℘(du, dz)

= −∫
R
∑
j≠It−

`+t−It−(∑
k

(k ∧L)1HIt− jk(St−)(z))℘(du, dz)

−∫
R
∑
j≠It−

−`−t−It−(∑
k

(k ∧L)1H−It− jk(St−)
(z))℘(du, dz)

= Term 3 +Term 4.

We consider the case where It− = +1 , that is, the price has jumped upwards at time t. When

the agent has posted limit orders on both the sides, that is, `±t− = +1, then following two

scenarios are plausible.

• The limit order gets partially executed by an incoming market order of size K with

trade intensity λνij(St−), where K is a random variable with distribution given by

ϑν(dk,L)

• The entire limit order gets executed by a big market order with rate hνij(s). In this

case, K = L.

In either case, the wealth of the agent jumps by ±k × Pt− . If a limit order on the strong side

is executed due to a small market order of size K = k(≠ L), the agent gains kPt− along with

the half-spread, and loses the transaction cost ε, whereas if the limit order executed is on the

weak side, she loses kPt− . Correspondingly, her inventory decreases or increases by k units.

On the other hand, if the incoming matching market order is big, that is K = L, the agent

gains LPt− (loses LPt−) for an execution in the strong (weak, respectively) side of the LOB.

The inventory jumps by L in this case.

Similar arguments hold for the other cases mentioned in Table 5.1 and Table 5.2.
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It− `+
t−

`−
t−

1{k1=L} 1{k2=L} Term 1 Term 2 Term 1+Term 2 dXt
1 0 0 1 1 0 0 0 0
1 0 0 0 1 0 0 0 0
1 0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0
1 1 0 1 1 L(Pt− + δ − ε) 0 L(Pt− + δ − ε) L(Pt− + δ − ε)
1 1 0 0 1 k1(Pt− + δ − ε) 0 k1(Pt− + δ − ε) k1(Pt− + δ − ε)
1 1 0 1 0 L(Pt− + δ − ε) 0 L(Pt− + δ − ε) L(Pt− + δ − ε)
1 1 0 0 0 k1(Pt− + δ − ε) 0 k1(Pt− + δ − ε) k1(Pt− + δ − ε)
1 0 1 1 1 0 L(−Pt− + δ − ε) L(−Pt− + δ − ε) L(−Pt− + δ − ε)
1 0 1 0 1 0 L(−Pt− + δ − ε) L(−Pt− + δ − ε) L(−Pt− + δ − ε)
1 0 1 1 0 0 k2(−Pt− + δ − ε) k2(−Pt− + δ − ε) k2(−Pt− + δ − ε)
1 0 1 0 0 0 k2(−Pt− + δ − ε) k2(−Pt− + δ − ε) k2(−Pt− + δ − ε)
1 1 1 1 1 L(Pt− + δ − ε) L(−Pt− + δ − ε) L(Pt− +δ−ε)+L(−Pt− +

δ − ε)
L(Pt− +δ−ε)+L(−Pt− +
δ − ε)

1 1 1 0 1 k1(Pt− + δ − ε) L(−Pt− + δ − ε) k1(Pt−+δ−ε)+L(−Pt−+
δ − ε)

k1(Pt−+δ−ε)+L(−Pt−+
δ − ε)

1 1 1 1 0 L(Pt− + δ − ε) k2(−Pt− + δ − ε) L(Pt−+δ−ε)+k2(−Pt−+
δ − ε)

L(Pt−+δ−ε)+k2(−Pt−+
δ − ε)

1 1 1 0 0 k1(Pt− + δ − ε) k2(−Pt− + δ − ε) k1(Pt− + δ − ε) +
k2(−Pt− + δ − ε)

k1(Pt− + δ − ε) +
k2(−Pt− + δ − ε)

-1 0 0 1 1 0 0 0 0
-1 0 0 0 1 0 0 0 0
-1 0 0 1 0 0 0 0 0
-1 0 0 0 0 0 0 0 0
-1 1 0 1 1 L(−Pt− + δ − ε) 0 L(−Pt− + δ − ε) L(−Pt− + δ − ε)
-1 1 0 0 1 k1(−Pt− + δ − ε) 0 k1(−Pt− + δ − ε) k1(−Pt− + δ − ε)
-1 1 0 1 0 L(−Pt− + δ − ε) 0 L(−Pt− + δ − ε) L(−Pt− + δ − ε)
-1 1 0 0 0 k1(−Pt− + δ − ε) 0 k1(−Pt− + δ − ε) k1(−Pt− + δ − ε)
-1 0 1 1 1 0 L(Pt− + δ − ε) L(Pt− + δ − ε) L(Pt− + δ − ε)
-1 0 1 0 1 0 L(Pt− + δ − ε) L(Pt− + δ − ε) L(Pt− + δ − ε)
-1 0 1 1 0 0 k2(Pt− + δ − ε) k2(Pt− + δ − ε) k2(Pt− + δ − ε)
-1 0 1 0 0 0 k2(Pt− + δ − ε) k2(Pt− + δ − ε) k2(Pt− + δ − ε)
-1 1 1 1 1 L(−Pt− + δ − ε) L(Pt− + δ − ε) L(−Pt− +δ−ε)+L(Pt− +

δ − ε)
L(−Pt− +δ−ε)+L(Pt− +
δ − ε)

-1 1 1 0 1 k1(−Pt− + δ − ε) L(Pt− + δ − ε) k1(−Pt−+δ−ε)+L(Pt−+
δ − ε)

k1(−Pt−+δ−ε)+L(Pt−+
δ − ε)

-1 1 1 1 0 L(−Pt− + δ − ε) k2(Pt− + δ − ε) L(−Pt−+δ−ε)+k2(Pt−+
δ − ε)

L(−Pt−+δ−ε)+k2(Pt−+
δ − ε)

-1 1 1 0 0 k1(−Pt− + δ − ε) k2(Pt− + δ − ε) k1(−Pt− + δ − ε) +
k2(Pt− + δ − ε)

k1(−Pt− + δ − ε) +
k2(Pt− + δ − ε)

Table 5.1: Xt
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It− `+t− `−t− 1{k1=L} 1{k2=L} Term 3 Term 4 Term 3+Term 4 dYt
1 0 0 1 1 0 0 0 0
1 0 0 0 1 0 0 0 0
1 0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0

1 1 0 1 1 −L 0 −L −L
1 1 0 0 1 −k1 0 −k1 −k1

1 1 0 1 0 −L 0 −L −L
1 1 0 0 0 −k1 0 −k1 −k1

1 0 1 1 1 0 L L L
1 0 1 0 1 0 L L L
1 0 1 1 0 0 k2 k2 k2

1 0 1 0 0 0 k2 k2 k2

1 1 1 1 1 −L L 0 0
1 1 1 0 1 −k1 L L − k1 L − k1

1 1 1 1 0 −L k2 k2 −L k2 −L
1 1 1 0 0 −k1 k2 k2 − k1 k2 − k1

-1 0 0 1 1 0 0 0 0
-1 0 0 0 1 0 0 0 0
-1 0 0 1 0 0 0 0 0
-1 0 0 0 0 0 0 0 0

-1 1 0 1 1 L 0 L L
-1 1 0 0 1 k1 0 k1 k1

-1 1 0 1 0 L 0 L L
-1 1 0 0 0 k1 0 k1 k1

-1 0 1 1 1 0 −L −L −L
-1 0 1 0 1 0 −L −L −L
-1 0 1 1 0 0 −k2 −k2 −k2

-1 0 1 0 0 0 −k2 −k2 −k2

-1 1 1 1 1 L −L 0 0
-1 1 1 0 1 k1 −L k1 −L k1 −L
-1 1 1 1 0 L −k2 L − k2 L − k2

-1 1 1 0 0 k1 −k2 k1 − k2 k1 − k2

Table 5.2: Yt
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5.3 Generator of (Pt, It, St,Xt, Yt)

We derive the generator of the augmented process (Pt, It, St,Xt, Yt) as follows.

For ν ∈ {−1,+1}, i, j ∈ χ, s ∈ R+, k ∈ {0,1,⋯, L + 1}, let Hνijk(s) be left close right open

consecutive intervals on the real line placed on positive and negative side for ν = +1 and

ν = −1 respectively. The length of these intervals is given by

∣Hνijk(s)∣ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∫k′ λνij(s)ϑν(dk
′
, L) k ∈ {0,1,⋯, L}

hνij(s) k = L + 1.

Let

Hij(s) = /
ν
HνijL+1(s).

We consider the process (Pt, It, St,Xt, Yt) described the following stochastic integrals:

Pt = P0 + ∫
t

0
∫
R
∑
j≠It−

2δIt−j ⋅ 1HνIt− j(St−)(z)℘(dt, dz)

It = I0 + ∫
t

0
∫
R
∑
j≠It−

(j − It−) ⋅ 1HνIt− j(St−)(z)℘(dt, dz)

St = S0 + t − ∫
t

0
∫
R
St− ∑

j≠It−
1HνIt− j(St−)

(z)℘(dt, dz)

43



Xt = X0 + ∫
t

0
∫
R
∑
ν
∑
j≠It−

k`νt−(νPt−It− + δ − ε)(∑
k

(k ∧L)1HνIt− jk(St−)(z))℘(dt, dz)

Yt = Y0 − ∫
t

0
∫
R
∑
ν
∑
j≠It−

ν`νt−It−(∑
k

(k ∧L)1HνIt− jk(St−)(z))℘(dt, dz)

where ℘(dt, dz) is a Poisson random measure on Borel σ- algebra of R+ ×R with intensity

dtdz.

Applying Itô’s formula, for a rcll process on φ, we get

dφ(Pt, It, St,Xt, Yt) = ∂φ

∂s
(Pt− , It− , St− ,Xt− , Yt−)dSct + 0

+∑
s≤t

{φ(Pt, It, St,Xt, Yt) − φ(Pt− , It− , St− ,Xt− , Yt−)}

= ∂φ

∂s
(Pt− , It− , St− ,Xt− , Yt−)dt

+{φ(Pt, It, St,Xt, Yt) − φ(Pt− , It− , St− ,Xt− , Yt−)}

φ(Pt, It, St,Xt, Yt) − φ(Pt− , It− , St− ,Xt− , Yt−)
= φ(Pt− + dPt, It− + dIt, St− + dSt,Xt− + dXt, Yt− + dYt) − φ(Pt− , It− , St− ,Xt− , Yt−)

= {φ(Pt− + ∫
R
∑
j≠It−

2δIt−j ⋅ 1HνIt− j(St−)(z)℘(dt, dz),

It− + ∫
R
∑
j≠It−

(j − It−) ⋅ 1HνIt− j(St−)(z)℘(dt, dz)

St− − ∫
R
St− ∑

j≠It−
1HνIt− j(St−)

(z)℘(dt, dz),

Xt− + ∫
R
∑
ν
∑
j≠It−

k`νt−(νPt−It− + δ − ε)(∑
k

(k ∧L)1HνIt− jk(St−)(z))℘(dt, dz)
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Yt− − ∫
R
∑
ν
∑
j≠It−

ν`νt−It−(∑
k

(k ∧L)1HνIt− jk(St−)(z))℘(dt, dz))}

−φ(Pt− , It− , St− ,Xt− , Yt−)

= {φ(Pt− + ∫
R
∑
j≠It−

2δIt−j ⋅ 1HνIt−j(St−)(z), It− + ∫R ∑j≠It−
(j − It−) ⋅ 1HνIt−j(St−)(z)

St− − ∫
R
s ∑
j≠It−

1HνIt−j(St−)(z),

Xt− + ∫
R
∑
ν
∑
j≠It−

k`νt−(νPt−It− + δ − ε)(
L

∑
k=1

k1HνIt− jk(St−)
(z))

Yt− − ∫
R
∑
ν
∑
j≠It−

ν`νt−It−(
L

∑
k=1

k1HνIt− jk(St−)
(z)))

−φ(Pt− , It− , St− ,Xt− , Yt−)}℘(dt, dz)

= ∫
R
{φ(Pt− + ∑

j≠It−
2δIt−j ⋅ 1HνIt−j(St−)(z), It− + ∑

j≠It−
(j − It−) ⋅ 1HνIt−j(St−)(z)

St− − St− ∑
j≠It−

1HνIt−j(St−)(z),

Xt− +∑
ν
∑
j≠It−

k`νt−(νPt−It− + δ − ε)(
L

∑
k=1

k1HνIt− jk(St−)
(z))

Yt− −∑
ν
∑
j≠It−

ν`νt−It−(
L

∑
k=1

k1HνIt− jk(St−)
(z))) − φ(Pt− , It− , St− ,Xt− , Yt−)}dtdz

+dMt

= ∑
ν
∑

j≠IIt−
∫
HνIt− jL+1(St−)

{φ(Pt− + 2δjIt− , j,0,

Xt− +L`νt−(νPt−It− + δ − ε), Yt− −Lν`νt−It−) − φ(Pt− , It− , St− ,Xt− , Yt−)}dsdz

+∑
ν
∑

j≠IIt−
∑
k
∫
HνIt− jk(St−)

{φ(Pt− , It− , St− ,Xt− + kν`νt−(νPt−It− + δ − ε),

Yt− − kν`νt−It−) − φ(Pt− , It− , St− ,Xt− , Yt−)}dsdz

= ∑
ν
∑
j≠i
hνij(s)[φ(t, p + 2δij, j,0, x +L`(νip + δ − ε), y −L`νi) − φ(t, p, i, s, x, y)]

+∑
ν
∑
j≠i
λνij(s)∫

k
[φ(t, p, i, s, x + k`(νip + δ − ε), y − k`νi) − φ(t, p, i, s, x, y)].

45



Therefore the generator of the process (Pt, It, St,Xt, Yt) is given by

Lφ(p, i, s, x, y) = ∂φ

∂s
(p, i, s, x, y)

+∑
ν
∑
j≠i
hνij(s)[φ(t, p + 2δij, j,0, x +L`(νip + δ − ε), y −L`νi)

−φ(t, p, i, s, x, y)]

+∑
ν
∑
j≠i
λνij(s)∫

k
[φ(t, p, i, s, x + k`(νip + δ − ε), y − k`νi)

−φ(t, p, i, s, x, y)]ϑν(dk,L).

5.4 Value function

The optimal market making strategy for the agent maximizes her expected wealth at the

terminal time T , evaluated at mid-price and penalizes for inventory stock. We define the

value function associated to the market making problem as follows:

v(t, p, i, s, x, y) ∶= max
`inA

E[XT + YTPT − ηY 2
T ∣Pt = p, It = i, St = s,Xt = x,Yt = y] (5.4)

where (t, p, i, s, x, y) ∈ [0, T ] × 2δZ × χ ×R+ ×R ×Z and η ≥ 0 is risk aversion parameter. The

strategy controls the agent’s final inventory by the quadratic penalization term ηY 2
T . At the

end of trading day, a large inventory position will let the agent to execute it all by placing a

large order. This will impact the market, contrary to the small agent assumption. Thus, she

does not want to hold a large inventory at terminal time and the penalization term controls

her inventory risk.

Using the dynamic programming principle heuristic, we write the following Hamilton-Jacobi-

Bellman equation corresponding to the control problem given in (5.4).
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∂v

∂t
+ ∂v
∂s

+∑
ν
∑
j≠i

max
`∈{0,1}

{hνij(s)(v(t, p + 2δij, j,0, x +L`(νip + δ − ε), y − νiL`) − v(t, p, i, s, x, y))

+∫
k
λνij(s)(v(t, p, i, s, x + k`(νip + δ − ε), y − νik`) − v(t, p, i, s, x, y))ϑν(dk,L)} = 0

v(T, p, i, s, x, y) = x + yp − ηy2

We remark that if we restrict the state space χ to be a two-state space (χ = {−1,+1}), then

we can obtain results published in [2].

In the literature, viscosity solution of the above HJB equation has been obtained [2]. However,

we have obtained the classical solution of a related linear PDE. This study has been carried

out in a collaboration with Ms. Garima Agrawal. This study indicates that one may obtain

classical solution of (5.5) with further investigation.
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Chapter 6

Conclusion

In this project, we studied the microstructure modelling of the financial asset price. We

investigated the semi-Markov model described in [1] and the market making problem studied

in [2]. We performed mathematical analyses on certain functionals of the stock price. In

particular, these are expressed using the conditional expectation of stock price. Authors in

[2] show the existence of viscosity solution of (4.8) on a restricted state space. However, we

produced an original proof that conditional mean price given by (4.7) solves the PDE (4.8).

We showed this in two steps. First, we considered an integral equation, and established the

existence and uniqueness of its solution. We then studied some regularity features and went

on to show that the PDE (4.8) and the considered integral equation are equivalent. Thus, we

established existence and uniqueness of the solution to the system (4.8). We also described the

wealth and inventory process of the agent and discussed the market making problem. Using

dynamic programming principle heuristic, we wrote the Hamilton-Jacobi-Bellman equation

corresponding to the control problem given in (5.4).

Proving existence of classical solution of the HJB equation (5.5) requires further investigation.

A viscosity solution to (5.5) has been obtained in [2] on a restricted state sapce. However,

we have obtained a classical solution to a related linear PDE which indicates that a classical

solution to (5.5) can also be established.
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