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Abstract

This one year project is devided into two parts, first part is devoted to learning basic algebraic geometry and the
second part is devoted to learning Cohomology and applying it to the settings of algebraic geometry.
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Introduction

The idea of finding geometric solutions to algebraic problems date back to greeks (A typical example is a problem
of ”doubling a cube”) they invented several curves for the same (the most important among them is the conics).
Later mathematicians also understood that without the aid of algebra, the geometric approach fails to study com-
plex phenomenon (A typical example is the classification problem of linear transformations). Algebraic geometry
explores and exploits the connection between algebraic notions (techniques) and geometric intuitions. Classical
algebraic geometry grew out of the study of zeros of a system of polynomials. The subject focuses more on the
algebraic and topological aspects of the set of solutions rather than specifically finding a solution. The fundamental
object of classical algebraic geometry is "Algebraic varieties", which are a "geometric" manifestation of sets of zeros
of polynomials. Algebraic geometry occupies a key position in modern mathematical world and it interacts with a
number of fields such as complex analysis, topology and number theory. To learn more about the subject, I closely
followed the book ”Algebraic Geometry I” by Ulrich Gortz and Torsten Wedhorn (Most of the algebraic geometry
discussed in the thesis comes from this source). The thesis can be devided into two parts, the first part deals with
sheaves and schemes and in the second part we discuss some cohomology.

The first chapter deals with the two significant drawbacks of affine varieties, by introducing the notion of the
spectrum of a ring. One of the major drawbacks of affine variety is that it is "coordinate dependent", that is it
depends on how it is embedded in the ambient affine space. To get a "coordinate free" description of affine variety
we note that there is a bijection between the collection of maximal ideals of the coordinate ring and the points of
the underlying topological space. For a commutative ring A there are only a few maximal ideals, so we construct a
topological space using the set of prime ideals which is denoted by ”Spec(A)” (In some sense the topology defined
on theis set mimics the Zarisky topology defined on the affine space). The other reason to use prime ideals is that it
gives a contravariant functor from the category of rings to the category of topological spaces (The second drawback
was the construction of affine varieties were limited to the case of an algebraically closed field, but this is already
rectified by considering a general commutative ring). Given Spec(A) we can not get back the ring A, so we need to
define additional structures on Spec(A) which will help us to get back the ring A. We will try to view elements of A
as functions defined on Spec(A). To make this notion precise we need a more robust construction. We observe that
the key point for working with “functions” is "restricting and glueing of functions" (rather than evaluating them
at points of the source). Abstrating this we get the notion of a "Sheaf". A presheaf is defined as a contravariant
functor from the "category of open sets" of a topological space to some "concrete locally small category". A Sheaf is
a presheaf which satisfies the additional axiom of "glueing". Associated to sheaves, we define the notion of stalks.
Sheaves have a very local nature; this is reflected in the "sheaf condition"; the concept of stalks try to capture this
local nature. We proceed to define a sheaf structure on Spec(A) (which is a locally ringed space) and call any
sheaf isomorphic to this an "Affine Scheme". We obtain an anti-equivalence between the "category of rings" and the
"category of affine schemes". Schemes are obtained by glueing affine schemes. Later part of this chapter is devoted
to studying the connection between prevarieties and certain schemes. Via soberification, we obtain equivalence
between the "category of integral schemes of finite type over k" and the "category of prevarieties over k".
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CONTENTS 3

In the second chapter we discuss some properties and charecterization of schemes and morphisms of schemes.
One of the most important thing we discuss here is the existance of fiber product in the "category of schemes" and
"base change". Later part of the chapter is all about "dimension" of a scheme. We give an outline of a proof of the
Bezout’s theorem as a first application of the theory so far developed.

From third chapter the second part of the thesis begins where we discuss cohomology. First part of the third
chapter discusses basic notions of homology in an "abelian category" set up, a reader who is familiar with commu-
tative algebra immediately senses that most of the notions are parellel to those in the commutative algebra set up.
Here we adapt the idea of diagram chasing to a general "abelian category" set up. The second part of the chapter is
devoted for developing the notion of "derived category" and "derived functor" which arises from localisation of an
abelian category.
In fourth chapter we introduce the notion of "coherent sheaves" so that we can apply the cohomology developed
earlier. "Quasi coherent sheaves" and "coherent sheaves" are interesting on their own, they arise as a result of the
attempt to charecterize sheaf of ideals which give rise to closed subschemes. This chapter provides basic definitions
and properties of "quasi coherent modules".
Fifth chapter is the place where we apply the cohomology theories so far developed to the case of sheaves. We see
that the category of coherent sheaves has "enough injectives", but finding an injective resolutionis is inconvenient
we overcome this by relying on "flasque resolution". Later we introduce the "Čech cohomology" which is relatively
easy to compute and it coincides with sheaf cohomology when the underlying scheme is noetherian and seperated.
A note to the reader:

• Due to restriction on the size most of the proofs and results are omitted.



Chapter 1

Sheaves and Schemes

We assume that the reader is familiar with varieties and Prime spectrum of a ring. Two major drawback with the
construction of affine varieties is that

• It depend Completely on the underlying subset of An(k) (affine space over an algebraically closed field k).

• They are only useful in the case of an algebraically closed field and not in the case of a general commutative
ring.

One of the major drawbacks of affine variety is that it is co-ordinate dependent that is it depends on how it is
embedded in the ambient affine space. To get a co-ordinate free description of affine variety we note that there is a
bijection between maximal ideals of the co-ordinate ring and the points of the underlying topological space. For a
commutative ring B there are only few maximal ideals, so we construct a topological space using the set of prime
ideals which is denoted by Spec(B) (In some sense the topology defined on this set mimics the Zarisky topology
defined on the affine space).

1.1 Sheaves

Given Spec(B) we can not get back the ring B, so we need to define additional structures on Spec(B) which will
enable us to retrieve back the ring B. We proceed as in the case of Prevarieties, we will try to view elements of
B as maps defined on Spec(B). But in reality the elements of B are not maps defined on Spec(B), hence its not
appropriate to use the notion of "system of functions". We take an extensile approach keeping in mind the analogy
of "system of functions", and it turns out that the key point for working with “functions” is "restricting and gluing"
of functions. This leads to the notion of sheaf.

1.1.1 Presheaves and Sheaves

We consider only ("concrete category") the categories whose objects are "small sets" (which have additional proper-
ties).

Definition 1.1.1. Consider a topological space W. A Presheaf F on W consist of the following data

• Given any open set U of W a set F(U),

• For each pair of open set U ⊆ V a map
resV

U ∶ F(V)→ F(U)

it is known as the restriction map, and it satisfies the following conditions.
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CHAPTER 1. SHEAVES AND SCHEMES 5

1. Given any open set U ⊆ W, resU
U = idF(U).

2. Consider the open sets U ⊆ V ⊆ X of W then

resX
U = resV

U ○ resX
V

Let F be presheaf on W and U ⊆open W, elemets of F(U) are known as sections (defined on U). We can also describe
the concept of presheaf using categories and functors this description will be very useful at times.

Definition 1.1.2. Consider the topological space W, we define a category OpenW as below

• Objects of OpenW are open sets of W

• Consider open subsets U, V of W. If U ⊈ V then Hom(U, V) = φ and if U ⊆ V then Hom(U, V) consist of a single
element the inclusion map from U to V

We define a presheaf as follows.

Definition 1.1.3. A presheaf F on a topological space W is a contravariant functor from the category OpenW to the category
of sets.

Similarly a presheaf on a topological space W that takes values in a category C is a contravariant functor from the
category OpenW to the category C. That is given any open set U ⊆ W, F(U) is an object in C and the restriction maps
are morphisms in C. Let F1,F2 be presheaves that takes values in C then a morphism F1 → F2 is simply a morphism
of functors.

Definition 1.1.4. Consider the topological space W, let F1 and F2 be two presheaves on W. A morphism of presheaves
ψ ∶ F1 → F2 is a family of maps ψU ∶ F1(U) → F2(U) (for all open sets U of W) such that for any open sets U ⊆ V ⊆ W the
following diagram commutes.

F1(V)
ψVÐÐÐÐ→ F2(V)

×××Ö
resV

U

×××Ö
resV

U

F1(U)
ψUÐÐÐÐ→ F2(U)

Notation: If U ⊆ V are open sets of W and F be a presheaf on W . If f ∈ F(V) , f ∣U denotes resV
U( f ).

Definition 1.1.5. Let F be a presheaf on W it is called a Sheaf if it satisfies for every open subset U and for every open
covering (Ui)i of U the following conditions

• (Sh1) Let s, s′ ∈ F(U), if s∣Ui = s′∣Ui ∀i then s = s′.

• (Sh2)Given si ∈ F(Ui) ∀i such that si∣Ui∩Uj = sj∣Ui∩Uj∀i, j then there exist s ∈ F(U) such that s∣Ui = si ∀i (Unique-
ness follows from Sh1).

If we consider our analogy of "Space with functions", intutively these conditions says that functions are completely
determined by their values on an open cover (determined by local information) and compatible functions can be
glued. A morphism between sheaves is same as the morphism between the underlying presheaves. Via this defi-
nition of morphism we get the category of "Sheaves" on the topological space W, we denote it by (Sh(W)). In the
case of a category C we may not be able to refer to elements of the object F(U) (for some open subset U of W and a
presheaf F on W which takes value in C) so it is useful to define the concept of a sheaf using categorical notions for
this purpose we define the following maps.
Consider a topological space W, let U be an open subset of W and U ∶= (Ui)i∈I (for somr indexing set I) be an open
covering of U. For a given presheaf F on W and an open cover U of U we define the following maps



CHAPTER 1. SHEAVES AND SCHEMES 6

ρ ∶ F(U)Ð→∏
i∈I
F(Ui), s ↦ (s∣Ui)i =∶ (si)i

σ ∶∏
i∈I
F(Ui)Ð→ ∏

(i,j)∈I×I
F(Ui ∩Uj), (si)i ↦ (si∣Ui∩Uj)(ij)

σ′ ∶∏
i∈I
F(Ui)Ð→ ∏

(i,j)∈I×I
F(Ui ∩Uj), (si)i ↦ (sj∣Ui∩Uj)(ij).

These maps can also be described in terms of the restriction maps without refering to the elemets of F(U)

Definition 1.1.6. Let F be a presheaf on W it is called a Sheaf if it satisfies for every open subset U and for every open
covering (Ui)i of U the following conditions:
The diagram

F(U) ∏i∈I F(Ui) ∏(i,j)∈I×I F(Ui ∩Uj)
ρ

σ

σ′

is exact. That is the map ρ is injective and its image is the set of elements (si)i∈I ∈∏i∈I F(Ui) such that σ((si)i) = σ′((si)i).

.
Examples:

1. Consider a topological space W and U ⊆ W be an open set of W. For any presheaf F on W we can define
a presheaf F ∣U on U by setting F ∣U(V) = F(V) for any open set V of U, moreover if F is a sheaf then the
presheaf defined on U is also a sheaf. F ∣U is known as the restriction of F on U.

2. Consider the topological space W, Z. Define a presheafF on W by settingF(U) as the collection of continuous
functions from U to Z for every open set U of W. Define the restriction maps using the idea of restriction of a
function. The above defined presheaf is sheaf.

3. Consider a field k and the "space with functions" W,OW over k then OW is a "sheaf of k−algebras" on W.

4. Consider a topological space W and set

F(U) = { f ∶ U → R continuous ∶ f (U) ⊆ R bounded}

for all U ⊆open W , then F is a presheaf but its not a sheaf in general (Let W = R then define f (x) = x,
f ∈ F(−a, a) for all a ∈ R but it does not belong to F(R)).

Consider a topological space W and B be its basis, let F be a sheaf on W. From the axiom of gluing we get that if
we know F(U) ∀U ∈ B then we can determine F(V) for an arbitary open set V by gluing appropriate elements of
F(Vi) where Vi ∈ B and V = ⋃i∈I Vi

F(V) = {s = (si)i ∈ ∏i∈I F(Vi) ∶ si∣Vi∩Vj = sj∣Vi∩Vj ∀i, j ∈ I} = {s = (su)u ∈ ∏u⊆V,u∈B F(u) ∶ ∀u′ ⊆ u; u, u′ ∈ B su∣u′ =
su′}
All these equalities has to be understood as bijective correspondences. Let U be the collection of u ∈ B such that
u ⊆ V. U (is a poset) is a subcategory of OpenW and it forms an inverse system.

F(V) = lim←Ð
u∈U
F(u)

Hence it is enough to specify a sheaf on some basis of a given topological space.
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Definition 1.1.7. Consider a topological space W with a basis B. Treat B as a full subcategory of OpenW . We define a presheaf
on B as a contravariant functor from the category B to the category of sets.

A morphism of presheaves on B is again defined as a morphism of functors. Any such presheaf F on B can be
extended to a presheaf F ′ on W by setting,

F ′(V) = lim←Ð
U∈B,U⊆V

F(U)

for any open set V of W.

Proposition 1.1.8. Consider a topological space W and its basis B. Let F be a presheaf on B and F ′ be the extension of F to
W .The presheaf F ′ on W is a sheaf if and only if F satisfies the sheaf condition((Sh1) and (Sh2)) for every U ∈ B and for every
open covering of U by basis elements.

We get an equivalence between the "category of sheaves on B" and the category of sheaves on W.

1.1.2 Stalks of Sheaves

Sheaves have a very local nature; this is reflected in the sheaf condition; the concept of stalks try to capture this local
nature. Most of the times statement s about sheaves and morphism of sheaves can be verified by considering the
analogues statement at the level of stalks.

Definition 1.1.9. Consider a topological space W and a presheaf F defined on W then the stalk of F in w ∈ W

Fw = limÐ→
w∈U
F(U)

• Let w ∈ W then we can view Fw the stalk of F in w as the set of equivalence classes of pairs (U, s) where U is
an open set containing w and s ∈ F(U). (U1, s1) ∼ (U2, s2) if there exist an open set V containing w such that
V ⊆ U1 ∩U2 and s1∣V = s2∣V .

Fw = (∐
U
F(U))/ ∼

where U runs through the open sets of W containing w and if s1 ∈ F(U1) and s2 ∈ F(U2) (U1, U2 are open sets
of W) then s1 ∼ s2 iff there exist an open set V containing x such that V ⊆ U1 ∩U2 of W and resU1

V (s1) = resU2
V (s2)

• Let w, z ∈ W. If every open set containing w contains z and every open set containing z contains w thenFw = Fz

• For any U,⊆open W containing w we have a canonical map (from the definition of direct limit)

θw ∶ F(U)→ Fw s ↦ sw

which sends s ∈ F(U) to the class of (U, s) in Fw. We call sw the germ of s in w.

• Let U ⊆open W and w ∈ W then Fw = (F ∣U)w. This follows immediatly from the universality of the direct limit.

Now we will discuss how the presheaf F is related to Fw.

• If ψ ∶ F1 → F2 is a morphism on preseaves on W then we have an induced map ψw ∶ F1w → F2w. Let sw ∈ F1w

and (U, s) be a representative of sw define ψw(sw) = (ψU(s))w (equivalence class of (U, ψU(s)) in F2w). Let
(U, s) ∼ (U′, s′) in F1w then there exist V ⊆ U ∩U′ such that s∣V = s′∣V . The following diagram shows that if
s∣V = s′∣V then ψU(s)∣V = ψU′(s′)∣V .
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F1(U)
ψUÐÐÐÐ→ F2(U)

×××Ö
resU

V

×××Ö
resU

V

F1(V)
ψVÐÐÐÐ→ F2(V)

Õ×××resU′
V

Õ×××resU′
V

F1(U′)
ψU′ÐÐÐÐ→ F2(U′)

that is if (U, s) ∼ (U′, s′) then (U, ψU(s)) ∼ (U′, ψU′(s′)), hence the map ψw is well defined.

• We can have an alternate definition of the map ψw without refering to the elements of Fw. Let w ∈ U ⊆ V,
consider the following commuatative diagram (which follows from the universal property of the direct limit)

F2w

F2(V) F2(U)

F1w

F1(V) F1(U)

θ
(2V)w

resV
U

θ
(2U)w

∃!ψw

θ
(1V)w

ψV

resV
U

θ
(1U)w

ψU

The unique map given by the universality of F1w is the desired map ψw. Form the relation u ○ θ(1U)w =
θ(2U)w ○ψU for all open set U containing w, it follows immediately that this map is the same as the one defined
previously. (We will use this as the definition of the induced map from now onwards. )

• Let A, B, P, Q be objects of a category C. Let ψ ∶ A → B and φ ∶ P → Q be some morphism between these objects.
We can define another category C′ whose objects are the morphisms of the category C and given ψ, φ ∈ C′

define morphism from ψ to φ if the following commutative diagram (in C) exists.

A B

P Q

ψ

a b
φ

(morphisms of C′ are commutative diagrams). Let F1,F2 be presheafs from W to the category C, then all the
morphisms given in the previous commutative diagram are objects of C′ and it is clear that if U ⊆ V (V ≤ U)
then there is a morphism ( fVU) from ψV to ψU hence they form a direct system. From every ψU there is a
morphism to ψw. it is easy to check that

ψw = limÐ→
w∈U

ψU

Consider a category C in which filtered inductive limit exist, let F be a presheaf which takes values in C then Fw is
an object of C this give rise to a functor from the category of presheaves on W which takes value in C to C.

Proposition 1.1.10. If F is a sheaf and s, t are two sections in F(U), then s = t if and only if sw = tw for all w ∈ U .
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Proof. If s = t then sw = tw for all w ∈ W. Now assume sw = tw for all w ∈ W then for every w ∈ W there exist open set
Uw such that s∣Uw = t∣Uw , evidently Uw forms an open cover of U, then the map

ρ ∶ F(U)→ ∏
w∈U
F(Uw)

should be injective by definition of sheaf, hence s = t ( Since ρ(s) = ρ(t)).

Proposition 1.1.11. Consider a topological space W, let F and G be presheaves on W, and φ, ψ ∶ F Ð→ G be morphisms of
presheaves.

1. If F is a sheaf, then the induced maps on stalks ψw ∶ Fw → Gw are injective for all w ∈ W if and only of ψU ∶ F(U) →
G(U) is injective for all open subsets U ⊆ W.

2. If F and G are sheaves on W. The map ψw are bijective for all w ∈ W if and only if ψU is bijective for all open sets U ⊆ W

3. If F and G are sheaves on W. ψ and φ are equal if and only if ψw = φw for all w ∈ W.

A morphism ψ ∶ F → G of sheaves is called injective (resp. bijective,resp. surjective) if ψw ∶ Fw → Gx is injective
(resp. bijective,resp. surjective) for all w ∈ W.
"If ψ ∶ F → G is a morphism of sheaves, ψ is surjective if and only if for all open sets U ⊆ W and every t ∈ G(U) there
exist an open cover U = ⋃i Ui (depending on t) and sections si ∈ F(Ui) such that ψUi(si) = tUi . i.e. locally we can
find a preimage of t. But the surjectivity of ψ does not imply that ψU ∶ F(U)→ G(U) is surjective for all open sets U
of W"

1.1.3 Sheaves assosciated to presheaves

Let F be a presheaf defined on W, there are two ways a presheaf can fail to be a sheaf

• it has local sections which are compatible that does not patch together to give a global section.

• it has sections which agrees locally that does not agree globally.

If F is not a sheaf we want to "modify" F into a sheaf F without "disturbing" the pre existing presheaf structure.

Definition 1.1.12. Let F be a presheaf defined on the topological space W then for any open subset U ⊆ W define
F(U) ∶= {s ∈∏w∈U Fw ∶ for every w ∈ U ∃Uw ∋ w and t ∈ F(Uw) such that su = tu ∀u ∈ Uw}.

iFU ∶ F(U)→ F(U) s ↦ (sw)w∈U

Proposition 1.1.13. Let F be a presheaf on W then F is a sheaf (called the sheafification of F) and iFU is a morphism of
presheaves such that the induced map on stalks is a bijections for all w ∈ W. Moreover for any presheaf G on W and any
morphism ψ ∶ F → G of presheaves there exist a unique morphism ψ ∶ F → G such that the following diagram commutes.

F F

G G

ψ

iF

ψ

iG

Hence sheafification is a functor from the category of presheaves to the category of sheaves.
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Corollary 1.1.14. If F is a presheaf and G is a sheaf on W then for every morphism ψ ∶ F → G there exist a unique morphism
ψ such that the diagram commutes

F F

G

ψ

iF

ψ

Example: Consider a set E, define a presheaf F by setting F(U) = E for every open set U of W (the restriction maps
being the identity). Let a, b ∈ F(U), if a∣V = bV for some open subsete V of U then by construction a = b. So if F is
not a sheaf it is beacause of the absence of global sections corresponds to local sections which can be patch together.
Let U, V ⊆ W be open sets with non empty intersection if there exist a ∈ OW(U), b ∈ OW(V) such that a∣U∩V = b∣U∩V

then a = b and we have a corresponding global section of U ∪V. Hence if W is irreducible F is a sheaf otherwise
it is not because if F is a sheaf and U ∩V = φ then OW(U ∪V) = OW(U) ×OW(V) which is not true. Intutively its
clear that the sheafification F is such that F(U) is the collection of locally constant maps from U to E. It evident
that OW,w = E ∀w ∈ W hence from definition of sheafification we get that F(U) is the collection of locally constant
functions from U to E.
It is evident that given a presheaf F of rings, of R-modules, or of R algebras, its associated sheaf is a sheaf of rings,
of R-modules, or of R-algebras.

1.1.4 "Direct and inverse images of sheaves".

Given a continuous map f ∶ W Ð→ Z of topological spaces one might wonder about how we can trasport sheaves
on W to Z or the other way round via the map f . Lets first think about the forward direction, let F be a presheaf
defined on W. F is a functor from OpenW , there is a functor from OpenZ to OpenW induced by the map f . If
V ∈ OpenZ then V ↦ f−1(V) ∈ OpenW composing this functor with the functor F we get a new functor from OpenZ.
We denote this functor by f∗F . We can describe the presheaf f∗F as follows (V ⊆open Z)

f∗F(V) = F( f−1(V))

the restriction maps given by the restriction maps for F . f∗F is called the direct image of F under f .
If ψ ∶ F → G be morphism of presheaves then the family of maps f∗(ψ)V ∶= ψ f−1(V) for V ⊆open Z defines a morphism
of presheaves f∗(ψ) ∶ f∗F → f∗G. Therefor f∗ is a functor from the category of presheaves on W to the category of
presheaves on Z.

Proposition 1.1.15. Let f ∶ W → Z be a continuous map of topological spaces.

1. Consider a sheaf F on W, then f∗F is a sheaf on Z . That is f∗ give rise to a functor f∗ ∶ (Sh(W))→ (Sh(Z)).

2. Consider a continuous map g ∶ Z →W, then there exists a relation, g∗( f∗F) = (g ○ f )∗F which is functorial in F .

Similarly we would like to transport a presheaf defined on Z to a presheaf on W using the map f . Consider a
presheaf F on Z then for every V open in W define.

G(V) ∶= lim
Ð→ f(V)⊆U

F(U) U ⊆open Z

We denote the presheaf G by f+F , let f−1F denotes the sheafification of f+F . F ↦ f−1(F) defines a functor from
the category of presheaves on Z to the category of sheaves on W. We call f−1F the inverse image of G under f .
Consider a cotinuous map g ∶ Z Ð→ Y and a presheaf H on Y then f+(g+(H)) ≅ (g ○ f )+(H) this induces an
isomorphism



CHAPTER 1. SHEAVES AND SCHEMES 11

f−1(g−1H) ≅ (g ○ f )−1H (∗)

which is functorial inH.

Proposition 1.1.16. Consider the continuous map f ∶ W → Z, and a sheaf F on W. Then given a presheaf G on Z there is a
bijection

Hom(Sh(W))( f−1G,F)←→ Hom(preSh(Z))(G, f∗F)

ϕ → ϕ♭

ψ♯ ← ψ

which is functorial in F and G .

Given ψ ∶ G → f∗F we get an induced map ψ♯ ∶ f−1G → F , so for every w ∈ W we have

ψ♯w ∶ ( f−1G)W = (G) f(w) → Fw

"We can describe this map in terms of ψ as follows: for every open neighborhood V ⊆ Z of f (w) we have maps"

G(V)
ψVÐÐ→ F( f−1(V))Ð→ Fw

From the universality of the direct limit of G(V) (V open neighborhood of w) we get the map ψ♯w ∶ G f(w) Ð→ Fw

1.1.5 Locally ringed spaces.

Definition 1.1.17. Consider a topological space W and a sheaf of commutative rings OW on W then the pair (W,OW) is
called a ringed space. We define the morphism between two ringed spaces (W,OW) and (Z,OZ) as the pair ( f , f ♭), where
f ∶ W Ð→ Z is a continuous map between the topological spaces and f ♭ ∶ OZ → f∗OW is a morphism of sheaves on Y.

• The datum f ♭ encapsulate the datum of a homomorphism of sheaves of rings f ♯ ∶ f−1OZ Ð→ OW

• The "composition of morphisms of ringed spaces is defined in the obvious" way. Let ( f , f ♭) ∶ (W,OW) Ð→
(Z,OZ) and (g, g♭) ∶ (Z,OZ)Ð→ (Y,OY), then g ○ f ∶ W Ð→ Z and if U ⊆ Y open then

OY(U) OZ(g−1(U)) OW( f−1(g−1(U)))gb f b

This defines a map (g ○ f , (g ○ f )♭) ∶ (W,OW)Ð→ (Y,OY). We obtain the category of ringed spaces.

• Given a ringed space (W,OW) we sayOW is the structure sheaf of this ringed space. Often we denote (W,OW)
by W .

• If we view the structure sheaf on W as the system of all "permissible" functoins. If we compose f with a
"permissible" function on an open set U of Z we should get a "permissible" function on f−1(U) of W this
would be a nice property to demand. Since viewing sections of the structure sheaves as functions is only a
heuristic, we cannot actually compose sections with the map f . So we put an expicit condition that for every
U ⊆ Z there should be a map OZ(U) → OW( f−1(U)). These maps must be compatible with restrictions, and
constitute the sheaf homomorphism f ♭ .

Given an open set U of W we think OW(U) as functions on U. If we move forward with this analogy then the
germs at a point w are precisely functions defined on some open neighbouhood around w, if two functions agree
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locally then they represent the same germ. A reasonable property to ask of such functions is that those which do
not vanish at w are invertible in some (small) neighborhood of w. Then all elements of the stalk not contained in the
ideal of functions vanishing at w are units of the stalk. This shows that the stalk is indeed a local ring, with maximal
ideal the ideal of all functions vanishing at w. Now consider" a morphism ( f , f ♭) ∶ W Ð→ Z of ringed spaces of this
nature(ringed spaces of this nature are called locally ringed spaces). The "sheaf homomorphism is our" replacement
for “composition of functions with f ”. "Certainly, if some function on Z vanishes at a point f (w), w ∈ W, then
its composition with f must vanish at w. In other words, the maximal ideal of OZ, f(w) must be mapped into the
maximal ideal" of ( f∗OW) f(w)(or the maximal ideal of ( f−1OZ)w is mapped in to the maximal ideal ofOW,w) . "Since
viewing sections of the structure sheaves as functions is only a heuristic, we put this as an explicit condition".

Definition 1.1.18. Consider a ringed space (W,OW), if for every w ∈ W the stalk OW,w is a local ring then we say that
(W,OW) is a locally ringed space. A morphism between locally ringed spaces is a morphism of ringed spaces which induces
local ring homomorphisms at the level of stalks for every w ∈ W.

• For any local ring A using mA we denote its only maximal ideal and we set κ(A) ∶ A/mA, which is called the
residue field of A "If A is a local ring we denote by mA its maximal ideal and by K(A) = A/mA its residue
field". A morphism of local rings ψ ∶ A Ð→ B is clled local if ψ(mA) ⊆ mB.

• Locally ringed sapeces from a category.

• A morphism of ringed spaces between two locally ringed spaces may not be a morphism of locally ringed
spaces, that is if (W,OW) and (Z,OZ) are locally ringed spaces and if f is a morphism of ringed spaces
between them then f need not be a morphism of locally ringed spaces. In short the "category of locally ringed
spaces" is not a full subcategory of the "category of ringed spaces".

• Consider the locally ringed space (W,OW) and the stalk OW,w for some w ∈ W. We call the maximal ideal mA

of OW,w the local ring of W in w and we set K(x) ∶= OX,x/mx.

• If U is open neighborhood of w and if f ∈ OW(U) we denote by f (w) ∈ K(w) the image of f under the
canonical homomorphism OW(U)Ð→ OW,w Ð→ K(w)

1.2 Locally ringed space and Spectrum of a ring

1.2.1 "Structure sheaf" on SpecB.

Set W = Spec(B). We wish to define a sheaf on the topological space W such that OW(W) = B. We know that the
principal open sets D( f ), f ∈ B form a basis of the toplogy on W (let B denotes this basis). We define a presheaf on
B which is a sheaf and then we extend this sheaf to the space W.
We try to view elements of B as functions defined on Spec(B), if f ∈ B define f (w) (w ∈ W and pw be the corre-
sponding prime ideal) as the image of f under the canonical homomorphism B Ð→ Bpw/pw Apw . It is reasonable
to demand that the inverse of a nonzero "permissible" function on the open set D( f ) ⊆ W is also a "permissible"
function on D( f ) (in fact this demand makes the ringed space we are going to define into a locally ringed space).
In light of this demand we define OW(D( f )) as follows

OW(D( f )) ∶= {g = g1/g2 ∶ g1, g2 ∈ B and g2(w) ≠ 0(g2 ∉ pw) ∀w ∈ D( f )}/ ∼

where
g1

g2
∼ h1

h2
if and only if (g1h2 − g2h1)u = 0 for some u ∈ B such that u(w) ≠ 0 ∀w ∈ D( f ).

Let f , g, h ∈ B

• It is evident that if D( f ) = D(g) then OW(D( f )) = OW(D(g))
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• Its obvious that B f ⊆ OW(D( f )). If g = g1/g2 ∈ OW(D( f )) then we have D( f ) ⊆ D(g2), it follows that ∃n ≥ 1
such that f n ∈ (g2) = Bg2. That is f n = hg2 for some h ∈ B that is 1/g2 = h/ f n as elements of OW(D( f ))
hence 1/g2 ∈ B f (so any element of OW(D( f )) have a representative in B f ). Hence B f = OW(D( f )) (from now
onwards we use this as the definition of OW(D( f ))).

• Define i f ∶ B Ð→ B f as the canonical homomorphism. If D( f ) ⊆ D(g) then we have 1/g = h/ f n (as elements of
B f ) as described previously. Define a homomorphism

ρ f ,g ∶ Bg Ð→ B f a/gm ↦ a.((h/ f n))m = a.(1/gm)( in B f )

then ρ f ,g ○ ig = i f and Whenever D( f ) ⊆ D(g) ⊆ D(h), we have ρ f ,g ○ ρg,h = ρ f ,h

• If D( f ) ⊆ D(g) define resD(g)
D( f) = ρ f ,g. This ddefines a presheaf on the basis B.

Theorem 1.2.1. The presheaf OW is a sheaf on B.

We can extend the sheafOW defined on B to W as follows (we use the sane notationOW to denote this new sheaf as
well), for any open set U ⊆ W

OW(U) ∶= lim←Ð
D( f)
OW(D( f ))

where D( f ) ⊆ U
Let w ∈ W , define Bx ∶= limÐ→OW(D( f )) where D( f ) are the principal open set containing w and define Cx =
limÐ→OW(U) where U is an open neighborhood of w. Since for every principal open set we have maps fromOW(D( f ))
to Cx it is evident that we have a unique map from Bx to Cx, for every open set U containing w we have a restriction
map from OW(U) to OW(D( f )) (for some principal set) from which there is a map to Bx hence we have a unique
map from CX to Bx. It is easy to check that Bx ≅ Cx.
The above discussion shows that

OW,w = limÐ→
w∈D( f)

OW(D( f )) = limÐ→
f ∉pw

B f = Bpx

Bpw is a local ring hence (W,OW) is a locally ringed space.

Remark 1.2.2. An element of B whose image under the canonical morphism B Ð→ Bpw/pwBpw is zero for all prime ideal pw

need not be the zero element of B (it is zero if B is reduced)

1.2.2 "The functor" A ↦ (Spec(A),OSpec(A))

Definition 1.2.3. Consider a locally ringed space (W,OW), if (W,OW) isomorphic to (Spec(B),OSpec(B)) for some ring B
then (W,OW) is called an affine scheme.

We define morphism between affine schemes as morphism between the respective locally ringed spaces this makes
affine schemes into a category which we denote by (A f f ).
Given Rings A, B and a ring homomorphism ψ ∶ A Ð→ B we can construct the topological spaces Spec(A), Spec(B)
and a morphism Spec(ψ) ∶ Spec(B) Ð→ Spec(B) (for notational convenience we denote Spec(B) by W, Spec(A)
by Z and Spec(ψ) by f ). For Spec to be a functor from category of Rings to category of Affine schemes we need
to construct a morphism of sheaves f ♭ ∶ OZ Ð→ f∗OW (we will show that ( f , f ♭) is a morphism of locally ringed
spaces). We demand that f ♭Z ∶ A = OZ(Z) Ð→ f∗OW(Z) = OW( f−1(Z)) = OW(W) = B should be equal to the given
ring homomorphism ψ (This particular construction will gives an anti equivalence between the category of Rings
and the category of Affine schemes)
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Let s ∈ A then f−1(D(s)) = D(ψ(s)), we define

f ♭D(s) ∶ OZ(D(s)) = As Ð→ Bψ(s) = ( f∗OW)(D(s))

as the ring hommorphism induced by ψ. This ring homomorphism is compatible with the restriction map of prin-
cipal open subsets. Let U be an open set of Z then for every principal open set D( f ) contained in U we have
morphisms fromOZ(U) to ( f∗OW)(D( f )) (by composing the restriction fromOZ(U) toOZ(D( f )) with f b

D( f)). We
can viewOZ(U) as the inverse limit of the inverse system containingOZ(D( f )) (D( f ) ⊆ U), similarly ( f∗OW)(U) is
the inverse limit of the inverse system containing ( f∗OW)(D( f )) (D( f ) ⊆ U). Hence from the universlity of inverse
limit we have a unique morphism from OZ(U) to ( f∗OW)(U) which is compatible with the restriction morphisms,
define this as f ♭U . So we get a morphism of sheaves. For w ∈ W

f ♯w ∶ OZ, f(w) = Aψ−1(pw) Ð→ Bpw = OW,w

is the homomorphism induced by ψ and in particular it is a local ring homomorphism. Hence ( f , f ♭) is a morphism
of affine schemes. for simplicity we denote this morphism by Spec(ψ), if φ ∶ B Ð→ C then Spec(φ ○ ψ) = Spec(ψ) ○
Spec(φ). Hence we get a contravariant functor

Spec ∶ (Ring)Ð→ (A f f )

Define the functor Γ as follows If ( f , f ♭) ∶ (W,OW) Ð→ (Z,OZ) is a morphism of ringed spaces, define Γ(W) ∶=
OW(W) and Γ( f , f ♭) ∶= f ♭Z. Restricting Γ to the category of Affine schemes we get a contravarinat functor

Γ ∶ (A f f )Ð→ (Ring)

Proposition 1.2.4. The functors Spec and Γ define an anti-equivalence between the category of rings and the category of affine
schemes.

1.3 Schemes

Definition 1.3.1. Consider a locally ringed space (W,OW), If there exist some open cover W = ⋃i∈I Ui such that the locally
ringed spaces (Ui,OX ∣Ui) obtained by restriction is an affine scheme for all i then we say that (W,OW) is a scheme. We define
morphism between schemes as same as the morphism between the underlying locally ringed spaces.

By (Sch) we denote the category of schemes.
Given a scheme S consider the collection of tuples (W, f ) where W is a scheme and f ∶ W Ð→ S is a morphism of
schemes, if (Z, g) is another tuple then we define a morphism between (W, f ) and (Z, g) as a scheme morphism
W Ð→ Z such that the following diagram commutes.

W Z

S

f
g

This collection of tuples with morphisms form a category called schemes over S (or of S-schemes) which we denote
by Sch/S. f is called the structural morphism of the S−scheme W. We say S is the base scheme and it is evident that
(S, idS) is the final object of the category (Sch/S).
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1.3.1 Open subschemes

Proposition 1.3.2. 1. Consider a scheme W and an open subset U of W. The locally ringed space (U,OW ∣U) is a scheme
which is called an open subscheme of W. If U is an "affine scheme", then U is called an "affine open subscheme".

2. The affine open subschemes of a scheme forms a basis of its topology.

Proposition 1.3.3. Consider two affine open subschemes U, V of a scheme W then for each w ∈ U ∩V there exist a open
subscheme Ww (depending on w) such that w ∈ Ww and it is principally open in both U, V.

1.3.2 "Morphisms into affine schemes, gluing of morphisms".

Schemes are obtained by gluing affine schemes together so if we have proper "gluing lemmas"(If we know how to
glue along open affine schemes) many facts about schemes can be verified by evaluating them at the level of open
affine schemes

Proposition 1.3.4. Consider locally ringed spaces W, Z and an open subset U of W. The map U ↦ Hom(U, Y) (the set of
morphism between the locally ringed spaces U,OW ∣U and ZOZ) is a presheaf of sets on W.

Proposition 1.3.5. (Gluing of morphisma) Consider locally ringed spaces W, Z and let Hom(U, Z) has the same meaning as
in the previous proposition for any given open set U of W. Then the presheaf U ↦ Hom(U, Z) is a sheaf on W.

Proof. Let W = ⋃i Ui be an open covering. If (ψ, ψ♭), (φ, φ♭) ∈ Hom(W, Z) such that resW
Ui

(ψ, ψ♭) = resW
Ui

(φ, φ♭) for all
i, then the continous maps ψ = φ. Let f ∈ OZ(Z) then (jWUi

)♭ ○ψ♭( f ) = (jWUi
)♭ ○φ♭( f ) that is ψ♭( f )∣Ui = φ♭( f )∣Ui for all i,

since W is a locally ringed space ψ( f ) = φ( f ) (from the sheaf property). Since ψ, φ agrees on all elements of OZ(Z),
ψ = φ

Let (ψi, ψ♭i ) ∈ Hom(Ui, Z) be such that resUi
Ui∩Uj

(ψi, ψ♭i ) = res
Uj
Ui∩Uj

(ψj, ψ♭j ). Then from pasting lemma of continous

maps there exist unique ψ ∶ W Ð→ Z . Let f ∈ OZ(Z) then the compatibility condition of ψ♭i implies that ψ♭i ( f )∣Ui∩Uj =
ψ♭j ( f )∣Ui∩Uj then there exist g ∈ OW(W) such that g∣Ui = ψ♭i ( f ), define ψb( f ) = g. ψ♭∣Ui = ψi Since the maps ψi are
compatible with restriction morphism of the locally ringed space W, ψ♭ is also compatible with restrictions hence
(ψ, ψ♭) ∈ Hom(W, Z)

From the above proposition it follows that.

Proposition 1.3.6. Consider the schemes (W,OW) and Z = Spec(B) then the natuaral map

Hom(W, Z)Ð→ Hom(B, Γ(W,OW)) ( f , f ♭)↦ f ♭Z

is a bijection.

Corollary 1.3.7. Spec(Z) is the final object in the category of Schemes.

We have Hom(W, Spec(Z[T])) ≃ Γ(W,OW) (this follows from the fact that Hom(Z[T], R) ≃ R). More generally for
an R scheme X we have HomR(W, Spec(R[T]) = B1

R) = HomR−alg(R[T], Γ(W,OW)) = Γ(W,OW) ( by definition of an
R−scheme morphism the image of R in Γ(W,OW) is already determined hence we only have the freedom to choose
where T goes) .

Remark 1.3.8. We may apply Proposition 1.3.6 also to B = Γ(W,OW). Thus for every scheme W there is a morphism
cW ∶ W Ð→ Spec(Γ(W,OW)) which corresponds to idΓ(W,OW) we call it as the canonical morphism .
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1.4 Basic properties of schemes and morphisms of schemes

1.4.1 Topological Properties

Definition 1.4.1. Consider a scheme (W,OW)

• (W,OW) is called a connected scheme if W is connected as a topological space.

• (W,OW) is said to be quasi-compact if W is quasi compact as a topological space.

• (W,OW) is said to be irreducible if W is irreducible as a topological space.

We have already seen that Affine schemes are quasi compact (for any ring B, Spec(B) is quasis compact)

Definition 1.4.2. Consider a morphism of schemes f ∶ W Ð→ Z, it is said to be "surjective, injective,bijective,open,closed, or
a homeomorphism, respectively if the underlying map" between the topological spaces has this property.

1.4.2 Noetherian Schemes

Definition 1.4.3. Consider a scheme (W,OW), if there exist an affine open cover W = ⋃i Ui such that γ(Ui,OW) are
noetherian rings then we say that W is a locally noetherian scheme. (W,OW) is said to be a noetherian scheme if its locally
noetherian and the underlying topological space W is quasi-compact.

In the case of affine scheme the notion of locally noetherian coincides with the notion of noetherian (being iso-
morphic to Spec(B) for some ring B affine schemes are quasi compact). Since localisation of a noetherian ring is
again noetherian it follows that affine open subschemes of a locally noetherian scheme are noetherian. In particular
locally noetherian schemes admits a basis consisting of noetherian affine open subschemes.
Given a locally noetherian scheme W, for every w ∈ W the local rings OW,w are noetherian. But even for affine
schemes W it is not true that if OW,w is noetherian for all w ∈ W, then W is noetherian.

Proposition 1.4.4. Consider an affine scheme W = Spec(B) for some ring B then B is a "noetherian ring" if and only if W is
a "noetherian scheme".

Remark 1.4.5. The underlying topological space of an affine noetherian scheme is a noetherian topological space (Since the
ring assosciated to the affine scheme is noetherian). If W is a noetherian scheme then it is quasi compact hence it can be covered
by finitely many open affine noetherian subschemes. It follows that the underlying topological space of W is noetherian (and in
particular has only finitely many irreducible components).

Corollary 1.4.6. Open subscheme of a (locally) noetherian scheme is again (locally) noetharian.

1.4.3 Reduced and integral schemes, function fields.

Definition 1.4.7. • Consider a scheme W, if all local rings OW,w, w ∈ W are reduced (rings without nilpotent elements)
then W is said to be reduced.

• A reduced scheme which is irreducible is called an integral scheme.

Proposition 1.4.8. Consider a scheme W.

1. The ring Γ(U,OX) is reduced for every open set U of W if and only if W is a reduced scheme.

2. The ring Γ(U,OX) is an integral domain for every non empty open set U of W if and only if W is an integralscheme.

3. If W is integral then OW,w is an integral domain for every w ∈ W.
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Let W = Spec(B) be an affine scheme then W is an integral scheme if and only if B is an integral domain. If η ∈ W is
a generic point of W then η corresponds to the zero ideal (Since nilradical is the zero ideal). Then OW,η = B0 which
is equal to the field of fractions of B (hence a field).

Proposition 1.4.9. Let W be a scheme the mapping

W {Y ⊆ W ∶ Y irreducible, closed}w↦{w}

is a bijection. That is every closed irreducible subset of W contains a unique generic point (that is W is a sober space).

Definition 1.4.10. Let η be the generic point of an integral scheme W. We set K(W) = OW,η , K(W) is a field which will be
referred as the function field of W.

Since W is irreducible existence of η is assured, η will be contained in some affine scheme hence OW,η will be a field
as desired.

Lemma 1.4.11. Let W = Spec(B) be an integral affine scheme and η be its generic point. If U ⊆ W is an open set then

Γ(U,OW) = ⋂
w∈U

OW,w

Proposition 1.4.12. Let η be the generic point of an integral scheme W whose function field is K(X).

1. Let U be a non empty affine open subscheme of W, that is U = Spec(B) for some ring B, then K(W) = Frac(B) =
Frac(OW,w) for every w ∈ W.

2. Consider the non empty open sets U ⊆ V ⊆ W. Then the maps

Γ(V,OW) Γ(U,OW) K(W) = OW,η
resV

U f↦ fη

are injective.

3. Let U be an open subset of W which is not empty then given any open covering U = ⋃i Ui we have

Γ(U,OW) =⋂
i

Γ(Ui,OW) = ⋂
w∈U

OW,w

where the intersection takes place in K(W).

1.5 Prevarieties as Schemes

In some sense schemes are generalisation of Prevearieties. Prevarieties themselves are not schemes. In this section
we try to assosciate a scheme to any given prevarierty ( we try to construct a functor from the category of prevarieties
to the category of schemes). In the case of affine variety the assosciation is clear, given any affine variety (W,OW)
we assosciate it with the scheme Spec(Γ(W,OW)).

1.5.1 Schemes (locally) of finite type over a field.

Definition 1.5.1. Given a field k let W be a scheme over Spec(k) (a k−scheme). If W admits an open cover W = ⋃i∈I Ui such
that Ui = Spec(Bi) where Bi are finitely generated k−algebras we say that W is "locally of finite type over k" in addition if W
is quasi-compact then we say that W is of "finite type over k".
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If B is a finitely generated k− algebra then B is a noetherian ring it follows that schemes (locally) of finite type over
k are (locally) noetherian.

1.5.2 "Equivalence of the category of integral schemes of finite type over k and prevarieties
over k".

A significant difference in the underlying topological spaces of a prevariety and a scheme is that the underlying
topological space of a prevariety need not contain a unique generic point correspond to every irreducible closed
subset but this is true in the case of schemes (proposition 4.3.8) and in the case of prevariety every point is closed
which is not true in the case of a scheme

Definition 1.5.2. Consider a topological space W. If every closed irreducible subset V of W contains a unique generic point
then we say that W is a sober space.

As a first step to associate schemes to prevariety we will assosciate a sober space to the underlying topological space
of a prevariety .
Let X be the underlying topological space of a prevariety then every point in X is closed. Consider the set of all
irreducible closed subsets of X we denote this set by t(X). Now we try to define a topology on t(X). Let Z be a
closed subset of X then every irreducible closed subset of Z is also irreducible an closed in X hence t(Z) can be
conidered as a subset of t(X). We say a subset of t(X) is closed if and only if it is of the form t(Z) for some closed
subset Z of X.

• Clearly φ and t(X) are closed.

• For closed subsets Z1, Z2 of X t(Z1) ∪ t(Z2) = t(Z1 ∪ Z2). If U ∈ t(Z1) ∪ t(Z2) then U ∈ t(Z1 ∪ Z2) (Since
irreducible closed subset of Z1, Z2 are also irreducible closed subsets of Z1 ∪ Z2) that is t(Z1) ∪ t(Z2) ⊆ t(Z1 ∪
Z2). If U ∈ t(Z1 ∪ Z2) then either U ⊆ Z1 or U ⊆ Z2 (otherwise U can be written as the unoin of two proper
closed subsets U = (U ∩ Z1)∪ (U ∩ Z2) ) that is t(Z1 ∪ Z2) ⊆ t(Z1)∪ t(Z2). Hence t(Z1)∪ t(Z2) = t(Z1 ∪ Z2) as
desired.

• t(⋂i Zi) = ⋂i t(Zi) for closed subsets Zi ⊆ X

So our definition of closed sets define a topology on t(X). Let f ∶ X Ð→ Y then we can define a map t( f ) ∶ t(X) Ð→
t(Y) by mapping each point of t(X) which corresponds to a irreducible closed subset of X to its closure in the image
of f (Since irreducibility of Z implies irreducibility of f (Z) the map is well defined). Let F be a closed subset of Y
then
t( f )−1(t(F)) = {U ⊆ X irreducible closed ∶ f (U) ⊆ F} = {U ⊆ X irreducible closed ∶ f (U) ⊆ F} = {U ⊆
f−1(F) irreducible closed} = t( f−1(F))
That is t( f ) is continous. If Z ⊆ X is irreucible and closed then t(Z) is irreucible and closed (Let t(Z) = t(Z1)∪ t(Z2)
for two closed subsets, Z ∈ t(Z) without loss of generality assume Z ∈ t(Z1) ⇒ Z ⊆ Z1 ⇒ t(Z) ⊆ t(Z1) so t(Z) can
not be written as the union of two proper closed subsets ). Let U ⊆ t(X) be closed and irreducible then U = t(Z) for
some closed set Z. If Z = Z1 ∪ Z2 for some closed subsets Z1, Z2 of X then t(Z) = t(Z1 ∪ Z2) = t(Z1)∪ t(Z2) without
loss of generality assume that t(Z) = t(Z1) (Since t(Z) is irreducible). Every x ∈ X is closed and irreducible so
t(Z) = t(Z1)⇒ Z = Z1. That is Zcan not be written as the union of two proper closed subsets hence it is irreducible.
Irreducible closed subsets of t(X) are in the form t(Z) where Z ⊆ X is closed and irreducible. Given any irreducible
closed subset t(Z) ⊆ t(X) there is a unique generic point Z ∈ t(Z) (Z is not contained in any proper closed subset of
t(Z) hence Z = t(Z) ). t defines a functor from the category of topological spaces all of whose points are closed to
the category of sober spaces. We say t(X) is the sober space associated to X or the soberification of X
Given X we have a natural continous map αX ∶ X Ð→ t(X) which maps each x ∈ X to the irreducible closed subset
{x} ∈ t(X). Let Z ∈ t(X) then Z = t(Z) where the closure is taken inside t(X) so the only closed points of t(X) are
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in the form {x} = t({x}) for some x ∈ X. So αX is a bijection between X and the closed points of t(X). αX defines
a bijection between the closed subsets of X and the closed subsets αX(X) (because t(Z) ∩ αX(X) = {{x} ∶ x ∈ Z}).
Hence αX is a homeomorphism from X onto the set of closed points in t(X). If t(Z1) ≠ t(Z2) then t(Z1) ∩ αX(X) ≠
t(Z2)∩ αX(X) (the map t(Z) ↦ t(Z)∩ αX(X) is a bijection) hence by proposition 5.4.5(2) the set of closed points of
t(X) is very dense in t(X)
This construction can be generalized to give a functor from the category of topological spaces to the full sub category
of sober spaces.
Let k be an algebraically closed field then we already showed that the folowing categories are equivalent

1. "the category of integral affine schemes of finite type over k"

2. "the opposed category of integral finitely generated k-algebras"

3. "the category of affine varieties"

For a k-scheme W locally of finite type we will identify W(k) = Homk(Spec(k), W) with the set of closed points of
W. Define α ∶ W(k)Ð→W as the inclusion map. We define a sheaf of rings as follows

OW(k) ∶= α−1OW

From (α−1OW)w = OW,α(w) we get that (W(k), OW(k)) is a locally ringed space.

Theorem 1.5.3. "The above construction (W,OW)↦ (W(k), OW(k)) give rise to an equivalence of the following categories"

• "the category of integral schemes of finite type over k"

• "the category of prevariety over k"

Consider a integral scheme W which is of finite type over k where k− is an algebraically closed field and W(k) be
the associated prevariety. Let η ∈ W denotes the generic point of W then η ∈ U for some open affine scheme U ⊆ W
(then U ∩W(k) is an open affine variety of W(k)).

K(W) = Frac(OW,η) = Frac(OW(U) = OW(k)(U)) = K(W(k))

.
Via the equivalence of categories described earlier the k-scheme An(k) (resp. Pn(k) ) corresponds to the prevariety
An(k) (resp. Pn(k)).

1.6 Subschemes and Immersions

1.6.1 Open Immersions

Definition 1.6.1. "A morphism j ∶ Z Ð→ W of schemes is called an open immersion, if the underlying continuous map is
a homeomorphism of Z with an open subset U of W, and the sheaf homomorphism OW Ð→ j∗OZ induces an isomorphism
OW ∣U ≃= j∗OZ (of sheaves on U )".

That is if we have an open immersion from Z to W then Z can be considered as an open subscheme of W.

1.6.2 Closed subschemes

Here we discuss the notion of a closed subscheme. As a starting point lets consider the case of an affine sheme
Spec(B). closed subsets of Spec(B) are of the form V(b) and it is homemorphic to Spec(B/b), So we can define a
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scheme structure on V(b) induced from Spec(B/b) Via this homeomorphism. We want schemes of this form to be
closed subschemes of Spec(B) (and any closed subschme to have this form) . It is to be noted that a closed subset
Y ⊆ Spec(B) can be represented using different ideals and each ideal yeilds a different scheme structure on Y. That
is there may be many closed subchemes with the same underlying closed subset.

Definition 1.6.2. Let W be a topological space and G a sheaf of rings on W. An ideal sheaf F in G is a subobject of G in the
category of sheaves of G-modules, i.e., a subsheaf of G viewed as a sheaf of abelian groups such that
Γ(U,G).Γ(U,F) ⊆ Γ(U,F) for all open subsets U of W. In other words, F(U) is an ideal of G(U) for all open sets U ⊆ W

Definition 1.6.3. If I is an ideal sheaf in a sheaf F of rings, then the quotient sheaf F/I is the sheaf associated to the presheaf
U ↦ F(U)/I(U).

Lemma 1.6.4. Let I be an ideal sheaf in F (sheaf of rings on the topological space W) then the canonical map F Ð→ F/I
is surjective. The canonical map F(U)/I(U) Ð→ (F/I)(U) is injective for all open subsets U ⊆ W (it is not surjective in
general)

Lemma 1.6.5. Let F and G be ringed spaces defined on a topological space W. Let f ∶ F Ð→ G be a morphism of ringed spaces
then U ↦ Ker( f )(U) ∶ Ker( fU) for all open set U ⊆ W is an ideal sheaf (It is denoted by Ker( f )) in F

Definition 1.6.6. Consider a scheme W.

1. "A closed subscheme of W is given by a closed subset Y ⊆ W (let i ∶ Y Ð→ W be the inclusion) and a sheaf OY on Y,
such that (Y,OY) is a scheme, and such that the sheaf i∗OY is isomorphic to OW/I for a sheaf of ideals I ⊆ OW".

2. "A morphism i ∶ Y Ð→W of schemes is called a closed immersion, if the underlying continuous map is a homeomorphism
between Y and a closed subset of W, and the sheaf homomorphism i♭ ∶ OW Ð→ i∗OY is surjective".

Let Y ⊆ W be a closed subscheme in the sense of (1) . Set i♭ ∶ (W,OW) Ð→ (W,OW/I) Ð→ (W, i∗OY) then (1) of the
above definition imply that i♭ is surjective. That is for every closed subscheme Y of W we have (i, i♭) ∶ Y Ð→W such
that (i, i♭) is a closed immersion. Note that in part (1) of the above definition we explicitly demand that (Y,OY) is a
scheme, this wont be true for an arbitary sheaf of ideals I ⊆ OW . The investigation regarding which sheaf of ideals
give rise to a closed subscheme leads to the notion of "quasi coherent" sheaves.
Let (i, i♭) ∶ Y Ð→ W be a closed immersion and let Y′ = i(Y), by definition Y′ is closed subset of W. Let I be
the ideal sheaf defined by I = ker(i♭). We denote the presheaf U ↦ OW(U)/I(U) (for U ⊆ W open) by F . Then
we have j♭ ∶ F Ð→ i∗OY induced from i♭. Since j♭U is injective for all open sets U of W the induced maps on the
stalks are injective. As j♭ is induced from i♭ then maps on stalks induced by j♭ is surjective. We have the following
commutative diagram

F i∗OY

OW/I

j♭

∃!j♭

and the maps on the stalks induced by the unique map j♭ is bijective hence j♭ ∶ OW/I Ð→ i∗OY is an isomorphism.
We can have a scheme structure on Y′ induced from Y via the map i. If k ∶ Y′ Ð→ W is the inclusion then OW/I ≃
k∗OY. That is every closed immersion to W give rise to a closed subscheme of W.

Theorem 1.6.7. Consider an affine scheme W = Spec(B). Consider closed subsets of W of the form V(b) where b is an ideal
of B, we give V(b) the structure of a scheme via the homeomorphism Spec(B/b) ≃ V(b). V(b) with this scheme structure is a
closed subscheme of W. Every closed subscheme of W looks like this, that is there is a bijective correspondence between the set
of closed subschemes of W and the set of ideals of B.
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1.6.3 Subschemes and immersions.

Definition 1.6.8. • Consider a scheme W, we say that (Z,OZ) is a subscheme of W if Z is locally closed in W and W
contains an open subscheme U such that Z is a closed subscheme of U. (i. e. U is the complement of Z/Z. since Z
is locally closed Z is open in Z and Z/Z is closed in Z ). We then have a natural morphism of schemes Z Ð→ W
(Z Ð→ U Ð→W).

• Consider a morphism of schemes i ∶ Z Ð→W. If i(Z) is locally closed, i is an homeomorphism between Z and i(Z) and
for every z ∈ Z the ring homomorphism iz ∶ OW,i(z) Ð→ OZ,z is surjective.

Let Z be a subscheme of W and U be the largest open set containing W. Then we know that Z is closed subscheme
of U. Let j ∶ Z Ð→ U be the inclusion then the sheaf morphism j♭ ∶ OW ∣U Ð→ j∗OZ is surjective by definition. Let
i ∶ U Ð→ W be the inclusion then the map at the level of stalks i♯w ∶ OW,w Ð→ (i∗OW ∣U)w is surjective for all w ∈ U.
That is the map on the stalk induced by i ○ j ∶ Z Ð→ W is surjective for all z ∈ Z. Hence the natuaral map Z ↪ W is
an immersion.
Let k ∶ Z′ Ð→ W be an immersion and Let Z ⊆ W be locally closed set which is homeomorphic to Z′ via the under-
lying continous map (and Z get a scheme structure from Z′ via this identification). Define U as the complement of
Z/Z in W. Then Z ⊆ U is closed, let j ∶ Z Ð→ U be a morphism of schemes induced by k. For any z ∈ Z we have
i♯z ∶ (OW ∣U)z Ð→ (j∗OZ)z is surjective (Since j is defined using k) if z ∉ Z then the surjectivity follows trivially hence
Z is a closed subscheme of U, and it is a subscheme of W. That is every immersion give rise to a subscheme. (note
the similarity in the definition of quasi projective variety and subscheme). "If Z is a subscheme of W, whose under-
lying subset is closed in W, then Z is a closed subscheme of W. (The corresponding statement for open subschemes
is false)".
Let W be a k−scheme of finite type. That is W = ⋃n

i=1 Ui such that Ui = Spec(Bi) and Bi are f.g k−algebras. It
follows immediately that principal open sets of Ui are k−schemes of finite type. Ui is a noetherian space (Since Bi

is noetherian) hence every open set U ⊆ Ui is quasi compact and can be covered using finitely many principal open
sets. Hence every open set of of Ui is a k-scheme of finite type. If Y ⊆ W is a closed scheme then it is a k−scheme of
finite type because the affine coordinate rings are just quotients of the corresponding rings of W (W is noetherian
hence it is quasi-compact which implies Y is quasi compact ). It follows immediately that any subscheme of W is a
k-scheme of finite type.

1.6.4 Projective and quasi-projective schemes over a field.

Sometimes it is helpful if we know how a particular scheme is embedded as a subscheme of projective space.

Definition 1.6.9. Consider a field k.

• A k-"scheme W is called projective, if there exist n ≥ 0 and a closed" immersion W ↪ Pn(k) .

• A k-scheme "W is called quasi-projective, if there exist n ≥ 0 and an" immersion W ↪ Pn(k) .

1.6.5 The underlying reduced subscheme of a scheme

Let W be a scheme then it is possible that there exist many closed subschemes of W with the underlying topological
space as W. Let nilW denotes the map U ↦ nil(OW(U)) for some open set U ⊆ W . Let U ⊆ V be open sets and
f ∈ nilW(V) then resV

U( f ) ∈ nilW(U) hence nilW is a presheaf (which takes values in the category of abelian groups).
Let f , g ∈ nil(U) and U = ⋃i Ui be an open cover, if f ∣Ui = g∣Ui then f = g. But (W, nilW) is not a sheaf in general
because the axiom of glueing is not true in general. Let N ∶= NW be the sheafification of nilW (NW is a sheaf of
abelian groups). Let f ∈ NW(U) and g ∈ OW(U), if f ∈ nilW(U) we have g f ∈ NW(U), if f ∉ nilW(U) then there exist
an open cover u = ⋃i Ui such that f ∣Ui ∈ nilW(Ui) then g∣Ui fUi = (g f )∣Ui ∈ nilW(Ui) since NW is a sheaf this would
imply that g f ∈ NW(U) hence NW ⊆ OW is a sheaf of ideals.
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As usual OW/NW denotes the sheaf associated to the presheaf U ↦ OW(U)/NW(U).Let W = ⋃i Ui be an open
cover by affine subschemes and Ai = Γ(Ui,OW). Let Bi denotes the basis of Ui consisting of principal open subsets.
we claim that NW ∣Bi = nilW ∣Bi . Let g ∈ Ai and f ∈ NW(D(g)) then either f ∈ nilW(D(g)) or there exist an open
cover D(g) = ⋃j Vj such that f ∣Vj ∈ nilW(Vj). if f ∈ nilW(D(g)) we are done (we already know that nilW(D(g)) ⊆
NW(D(g))). Principal open sets are quasi-compact so there exist a finite indexing set J such that D(g) = ⋃j∈J Vj.

There exist nj ∈ N such that resD(g)
Vj

( f nj) = 0 set N ∶= maxj∈J{nj} then we have f N ∣Vj = 0 ∀j ∈ J since NW is a sheaf

it follows that f N = 0 that is f ∈ nilW(D(g)) (since NW ⊆ OW) and NW ∣Bi = nilW ∣Bi as desired.
Let F denotes the presheaf U ↦ OW(U)/NW(U) then F(D(g)) = OW(D(g))/NW(D(g)) = (Ai)g/nil((Ai)g) =
(Ai)g/(Ai)gnil(Ai) = (Ai/nil(Ai))g = OSpec(Ai/nil(Ai))(D(g)). We have Spec(Ai) = Spec(Ai/nil(Ai)) and F ∣Bi =
OSpec(Ai/nil(Ai))∣Bi . Let f ∈ (OW/NW)(D((g)) then there exist an open cover D(g) = ⋃j(D(gj)) such that f ∣D(gj) ∈
F(D(gj)) (this happens because Bi is a basis) it is easy to see that f ∈ F(D(g)) (Since F is a sheaf on Bi) that is
F ∣Bi = (OW/NW)∣Bi . HenceOW/NW ∣Ui = OSpec(Ai/nil(Ai)) (Since the evaluation on a basis completely determines the
sheaf). This shows that OW/NW is a scheme. By definition this is a closed subscheme of (W,OW)
Let U ⊆ Ui and g ∈ Ai such that D(g) ⊆ U. (OW/NW)(D(g)) = (Ai/nil(Ai))g = (Ai)g/(Ai)gnil(Ai) = (Ai)g/nil((Ai)g)
hence it is a reduced ring, that is intersection of all prime ideals of OW/NW(D(g)) is the zero ideal. We have a
ring homomorphism resU

D(g) ∶ (OW/NW)(U) Ð→ (OW/NW)(D(g)). Pullbacks of prime idelas of (OW/NW)(D(g))
are prime in (OW/NW)(U) so nil((OXW/NW)(U)) ⊆ Ker(resU

D(g)). Let U = ⋃j D(gj) then nil((OW/NW)(U)) ⊆
⋂i Ker(resU

D(gi)). If f ∈ ⋂i Ker(resU
D(gi)) that is f ∣D(gi) = 0 for all i hence f = 0 which implies that nil((OW/NW)(U)) =

0. Similar arguments for an arbitary ring shows that (W,OW/NW) is a reduced scheme we denote this scheme by
Wred

The following proposition shows that in some sense Wred is the smallest closed scheme of (W,OW) with the under-
lying topological space same as W.

Proposition 1.6.10. Let W′ denotes a closed subscheme of (W,OW) whose underlying topological space is W then the inclu-
sion morphism Wred Ð→ X factors through a closed immersion Wred Ð→W′ .

We get a functor from the "category of schemes" to the "category of reduced schemes" by sending a scheme W to its
underlying reduced subscheme Wred.

Proposition 1.6.11. Given a morphism f ∶ W Ð→ Z between schemes its possible to define a morphism fred ∶ Wred Ð→ Zred

such that the diagram

Wred W

Zred Z

iW

fred f

iZ

commutes. The map from the category of schemes which takes any scheme W to the reduced scheme Wred and any morphism of
schemes f to fred defines a functor from the "category of schemes" to the "category of reduced schemes".

Proposition 1.6.12. Consider a locally closed subset Y of a scheme W, then there exist a unique reduced subscheme Yred of W
whose undrlying topological space is Y.
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More on Schemes

2.0.1 Fiber products in arbitrary categories.

Consider a fixed object S in the category C.

Definition 2.0.1. "For two morphisms f ∶ W Ð→ S and g ∶ Z Ð→ S in C we call a triple (Y, p, q) consisting of an object Y in
C and morphisms p ∶ Y Ð→W and q ∶ Y Ð→ Z such that f ○ p = g ○ q, a fiber product of f and g or a fiber product of W and Z
over S (with respect to f and g), if for every object T in (C) and for all pairs (u, v) of morphisms u ∶ T Ð→W and v ∶ T Ð→ Z
such that f ○ u = g ○ v there exists a unique morphism w ∶ T Ð→ Y such that p ○w = u and q ○w = v".

T

Y = W ×S Z W

Z S

∃!w

u

v

p

q f

g

From the universal property it is clear that the fibre product is uniquely determined upto unique isomorphism if
it exists. We denote the fibre product Y using W ×S Z or W × f ,g,S Z. The map p ∶ W ×S Z Ð→ W is called the "first
projection" and the map q ∶ W ×S Z Ð→ Z is called the "second projection".
From the definition it follows that there is a bijective correspondence between Hom(T, W ×S Z) and the collection
of pairs (u, v) ∈ Hom(T, W) × Hom(T, Z) such that f ○ u = g ○ v . This can be reformulated as follows. Define a
category C/S whose objects are pairs (W, f ) where W ∈ Obj(C) and f ∶ W Ð→ S is a morphism in C. (W, f ) is called
a S−object and f is called the structure morrphism of W. Some times we will simply write W instead of (W, f ). For
two S−Objects (W, f ) and (Z, g) we define HomS(W, Z) as the collection of morphism l ∶ W Ð→ Z such that g ○ l = f ,
these morphisms are called S−morphisms. Its easy to see that S−objects and S−morphisms constitute a category
which is denote by C/S. Usually we write ZS(W) instead of HomS(W, Z) and call ZS(W) the set of W-valued points
of Z (over S).
Given S−objects (W, f ) and (Z, g), ((W ×S Z, l), p, q) is the unique triple (up to unique isomorphism) such that for
any S−object (T, h) the map

HomS(T, W ×S Z)Ð→ HomS(T, W)× HomS(T, Z) w ↦ (p ○w, q ○w)

is bijective.
Fiber product in C can be viewd as product in C/S with p, q as the respective projection morphisms.
Example:

23
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• In the "category of sets (Sets)" arbitrary fiber products exist: Consider a fixed set S and maps f ∶ W Ð→ S and
g ∶ Z Ð→ S. Then we get that

W W ×S Z = {(w, z) ∈ W × Z ∶ f (w) = g(z)} Z

w (w, z) z

p q

is a "fiber product in the category" of sets.

• Consider the category of topological spaces and S be a fixed topological space. Consider continuous maps
f ∶ W Ð→ S and g ∶ Z Ð→ S then the fiber product W ×S Z is the fiber product of the underlying sets {(w, z) ∈
W × Z ∶ f (w) = g(z)} with the topology induced by the product topology on W × Z.

In the further discussions we assume that all fiber product exist in C. Let (W, f ), (Y, g), (W′, f ′), (Z′, g′) ∈ C/S and
u ∶ W Ð→W′, v ∶ Z Ð→ Z′ be S−morphisms then we get the following commutative diagram.

W ×S Z W

Z W′ ×S Z′ W′

Z′ S

p

q
u×Sv u

v

p′

q′ f ′

g′

Since u, v are S−morphisms we get f = f ′ ○ u and g = g′ ○ v. u ×S v is the unique map whose existance follows from
universality of the fiber product W′ ×S Z′. The commutativity of the diagram is a consequence of all these facts. We
say fiber product is functorial in the above sense.

2.0.2 Fiber products of schemes.

Here we will prove that fiber product always exist in the category of schemes. As a first step we prove that fiber
product of affine schemes always exist and then use this to prove the general case.

Proposition 2.0.2. Consider the rings A, B and R and the morphisms R Ð→ A and R Ð→ B. Let S, W and Z be the
affine schemes corresponding to the rings R, A and B and set Y = Spec(A⊗R B). Similarly we get morphisms of schemes
p ∶ Y Ð→W and q ∶ Y Ð→ Z corresponding to the ring homomorphism

α ∶ A Ð→ A⊗
R

B, a Ð→ a⊗1,

β ∶ B Ð→ A⊗
R

B, b Ð→ 1⊗ b.

Then the schem Y together with the morphism p and q is the fiber product of the schemes X and Z over S.

Proof. We know that for any Scheme T and for any affine scheme Spec(C) we have the following bijection HomSch(T, Spec(C)) ≃
HomRing(C, Γ(T, OT)). Extending this we get that If T is an S−scheme there is a bijection functorial in T as follows
HomSch/S(T, Y) ≃ HomR−alg(A⊗R B, Γ(T, OT)) ≃ HomR−alg(A, Γ(T, OT))×HomR−alg(B, Γ(T, OT)) ≃ HomSch/S(T, W)×
HomSch/S(T, Z) where the second bijection is induced by composition with α and β. It follows that Y is the fiber
product.
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If f ∶ W Ð→ Z is a morphism of schemes then by ft we denote the continous map between the underlying topological
space and by fs we denote the sheaf morphism involved.

Theorem 2.0.3. Fiber product exist in the category of schemes.

Consider a fixed scheme S and the S−schemes W and Z then we have to show that W ×S Z exist in the category of
schemes. The proof is done in several steps. The idea is to cover S, W and Z using affine schemes, and we already
know that fibre product of affine schemes exist, we try to glue these together to get the desired fiber product. We
denote by w ∶ W Ð→ S and z ∶ Z Ð→ S the structure morphisms.
Step 1: Assume that (W ×S Z, p, q) exist. Then prove that for any open subscheme U ⊆ W, U ×S Z = p−1(U) and the
first and second projections are given by the restriction of p and q respectively (here p−1(U) is viewed as an open
subscheme of W ×S Z).
Step 2: Assume W = ⋃i Ui is an open covering of W and set Yi ∶= Ui ×S Z exists for all i then show that W ×S Z exists.
Step 3: Assume that (W ×S Z, p, q) exist. Then prove that for any open subscheme X ⊆ S, w−1(X) ×S z−1(X) =
(w ○ p)−1(X) = (z ○ q)−1(X) and the first and second projections are given by the restriction of p and q respectively
(here (w ○ p)−1(X) = (z ○ q)−1(X) is viewed as an open subscheme of W ×S Z).
Step 4: Let S = ⋃i Xi be an open cover of S and set Wi ∶= w−1(Xi) and Zi ∶= z−1(Xi). If Wi ×Xi Zi exist for all i then
show that W ×S Z exists and Wi ×Xi Zi is an open cover of W ×S Z.
Step 5: Proposition 2.0.2 together with all the previous four steps implies the theorem.

"If S = Spec(R) is affine, we will often write W ×R Z instead of W ×S Z . If Z = Spec(B) is affine, we also write W⊗S B
or, for S = Spec(R) affine, W⊗R B instead of W ×S Z".

Corollary 2.0.4. Consider S−schemes W and Z and an open cover S = ⋃i Si of S. Let Wi and Zi be inverse image of SSi in W
and Z. Assume that for each i we have Wi = ⋃j Wij and Zi = ⋃j Zij Then

W ×S Z =⋃
i
⋃
j∈Ji

⋃
k∈Ki

Wij ×Si Zik

and Wij ×Si Zik are open in W ×S Z.

Let (W, w), (Z, z), (Z′, z′) and (W′, w′) be S−schemes. As mentioned earlier fiber product of schemes over S can be
viewed as product in the category of S-schemes. Let f ∶ W′ Ð→W, g ∶ Z′ Ð→ Z be morphism of S−schemes (that is
w ○ f = w′ and z ○ g = z′). Consider the following commutative diagram

W′ ×S Z′ W′

W ×S Z W

Z′ Z S

p′

q′

f×sg
f

p

q w

g z

We have f ○ p′ = p ○ ( f ×S g) and g ○ q′ = q ○ ( f ×S g) which justifies the notation. If Z′ = Z and g = idZ then as seen
in the above propositoin W′ ×S Z′ = (W ×S Z) ×W W′ (if T is any scheme and u ∶ T Ð→ W′ and v ∶ T Ð→ W ×S Z
such that f ○ u = p ○ v then z ○ (q ○ v) = w ○ p ○ v = w ○ ( f ○ u) then from the universality of W′ ×S Z′ there exist a map
h ∶ T Ð→W′ ×S Z′ such that q ○ v = q′ ○ h = q ○ f ×S g ○ h that is v = f ×S g ○ h and f ○ u = p′ ○ h. Since W′ ×S Z′ satisfies
the defining property of fiber product (W ×S Z)×W W′ = W′ ×S Z′).

Proposition 2.0.5. Let (W, w) , (Z, z) and (W′, w′) be S−schemes and f ∶ W′ Ð→ W be a morphism of S−schemes. Set
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g ∶= f ×S IdZ. We obtain the following commutative diagram where all squares are cartesian.

W′ ×S Z W ×S Z Z

W′ W S

g

p′

q

p z

f w

Suppose that f can be written as the composition of scheme morphisms where each morphism is a homeomorphism onto its
image and also admits one of the following assumptions:

1. Given any w′ ∈ W′ there exist an affine open set U (depending on w′) which contains f (w′) and f−1(U) is quasicompact
moreover the morphism f ♯w′ ∶ OW, f(w′) Ð→ OW′,w′ is surjective.

2. Given any point w′ ∈ W′ , the homomorphism f ♯w′ ∶ OW, f(w′) Ð→ OW′,w′ is bijective.

We set Y′ = W′ ×S Z and Y = W ×S Z . then

1. g is a homeomorphism of Y′ onto g(Y′) = p−1( f (W′)).

2. For "all points y′ ∈ Y′ consider the commutative diagram induced on local rings by the left square" of the proposition

OY′,y′ OY,g(y′)

OW′,p′(y′) OW,p(g(y′))

g♯y′

f ♯p′(y′)

p♯g(y′)

then "the homomorphism g♯y′ is surjective and its kernel is generated by the image of the kernel" of f ♯p′(y′) under p♯g(y′)

2.0.3 Examples

Products of affine spaces
Let R be a ring and Bn

R = Spec(R[T1, . . . , Tn]) be the affine space over then we have Bn
R ×R Bm

R = Bn+m
R (because

from proposition 2.0.2 we have Spec(R[T1, . . . , Tn])×R Spec(R[T1, . . . , Tm]) = Spec(R[T1, . . . , Tn]⊗R R[T1, . . . , Tm]) =
Spec(R[T1, . . . , Tn+m]))

Products of prevarieties

Lemma 2.0.6. Consider k−schemes (locally) of finite type W and Z over some field k then the fiber product W ×k Z is (locally
of) finite type over k.

Proof. Let W = ⋃i Wi and Z = ⋃j Zj be an (finite) affine open cover such that Wi = Spec(Ai) and Zj = Spec(Bj) where
Ai, Bj are finitely generated k−algebras. From corollary 2.0.4 we get that W ×k Z = ⋃i,j Wi ×k Zj is an (finite) affine
open cover. We have Wi ×k Zj = Spec(Ai⊗)kBj hence W ×k Z is locally of finite type (finite type).

Lemma 2.0.7. Consider integral k−schemes W and Z if k is algebraically closed then the fiber product of W and Z, W ×k Z is
an integral k−scheme.
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2.1 Base change, Fibers of a morphism

2.1.1 Base change in categories with fiber products

Let C be a catgory where arbitary fiber product exist (like the category of schemes). u ∶ S′ Ð→ S then u induces a
functor from (C/S) to (C/S′). Let l ∶ W Ð→ S be an S−object then set u∗(W) ∶= W ×S S′ this is an S′−object whose
structure morphism is given by the second projection. Let Z be an S−object and f ∶ W Ð→ Z be morphism of
S−objects then set u∗( f ) = f ×S IdS′ ∶ u∗(W) = W ×S S′ Ð→ u∗(Z) = Z ×S S′ which is a morphism of S′−objects.
Sometimes we denote u∗(W) by W(S′) it is called the inverse image or the base change of W by u. We denote u∗( f )
by f(S′) and it is called as the inverse image or the base change of f by u.
u∗ ∶ (C/S)Ð→ (C/S′) defines a covariant functor. Let u′ ∶ S′′ Ð→ S′, we have (u ○ u′)∗ = u′∗ ○ u∗

Let h ∶ T Ð→ S′ then we can consider S−object (u ○ h ∶ T Ð→ S). Let p be the first projection and q be the second
projection of W(S′). Let k ∈ HomS′(T, W(S′)) that is h = q ○ k. Set k′ = p ○ k ∶ T Ð→ W then l ○ p ○ k = u ○ h that is
k′ ∈ HomS(T, W). Similarly given k′ ∈ HomS(T, W) we have (k′, h)S ∶ T Ð→ W(S,) (from the universlaity of fiber
product) such that (k′, h)S ∈ HomS′(T, W(S′)). We obtain mutually inverse bijections, functorial in T and W.

HomS(T, W) HomS′(T, W(S′))
k′↦(k′h)S

p○k←k

2.1.2 Fibers of morphisms

Let f ∶ W Ð→ S be a morphism of schemes. Consider (W, f ) and (S, IdS) as S−schemes then (W, IdW , f ) = W ×S S.
Let U ⊆ S be an open set then we have f−1(U) = W ×S U (where f−1 denotes the pullback of the continous map). We
wish to define the fiber f−1(s) for some s ∈ S in similar manner. Points of the topological space S can be viewed as
morphism from the residue field κ(s) to S. consider the following cartesian diagram diagram

W⊗S κ(s) W ×S S ≃ W W

spec(κ(s)) S S

idW

f f

IdS

First hypothesis of proposition 2.0.5 is valid here it follows that f−1(s) can be identified with the underlying topo-
logical space of W⊗S κ(s)

Definition 2.1.1. Let Specκ(s)Ð→ S be the canonical morphism. Then we call

WS ∶= W⊗
S

κ(s)

the fiber of f in s. The "notation f−1(s), when understood as a scheme, will always refer to the κ(s)-scheme" Ws.

Let f ∶ W Ð→ S be a morphism of schemes then given any s inS we get a κ(s)−scheme Ws. In other words the
morphism f can be viewed as "a family of schemes over fields parameterized by the points of S".
Examples:

• Consider a field k which is algebraically closed and define

W(k) ∶= {(u, t, s) ∈ A3(k) ∶ ut = s}
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Since UT − S is an irreducible polynomial of k[U, T, S] we may consider W(k) as an affine variety. The associ-
ated integral k-scheme of finite type is

W ∶= Spec(k[U, T, S]/(UT − S))

Let f ∶ W Ð→A1
k denotes that map (u, t, s)↦ s then for s ∈ A1(k), f−1(s) = Ws = Spec(As) where

As ∶= k[U, T, S]/(UT − S)⊗
k[S]

k[S]/(S − s) = k[U, T]/(UT − s).

UT − s ∈ k[U, T] is irreducible for s ≠ 0 and reducible for s = 0. f defines a family of k−schemes Ws parameter-
ized by s ∈ A1(k) such that W0 is reducible and Ws is irreducible for all s ≠ 0.

• Let k be a field and a ∈ k× and set W ∶= V(Z2 −W2(W + 1) − aY) ⊂ A3
k . Let f ∶ W Ð→ A1

k = Spec(k[Y]) be
the morphism induced by the canonical ring homomorphism k[Y] Ð→ k[W, Z, Y]/(Z2 −W2(W + 1)− aY). Let
y ∈ A1(k) = k, considered as a closed point of A1

k . We have by definition Wy = Spec(Ay , where

Ay ∶= k[W, Z]/(Z2 −W2(W + 1)− ay).

2.1.3 Inverse images and schematic intersections of subschemes

Consider an immersion i ∶ Y Ð→ Z (this allow us to consider Y as a subscheme of Z) and a morphism of schemes
f ∶ W Ð→ Z. Consider the base change i(W) ∶ Y ×Z W Ð→ W, proposition 2.0.5 implies that the induced at the level
stalks is surjective and i(W) is a homeomorphism onto f−1(Y) that is i(W) is an immersion. This allow us to view
Y ×Z W as a subscheme of W we call it the inverse image of Y under f . f−1(Y) will always denote this subscheme
Example: Consider affine schemes W = Spec(A) and Z = Spec(B) and a morphism of schemes f ∶ W Ð→ Z ( f ♭Z ∶
B Ð→ A). Consider a closed subscheme Y of Z then we know that Y looks like V(b) = Spec(B/b) for some ideal b of
B. Then we get f−1(Y) = V( f ♭Z(b)A).
Consider i ∶ Y Ð→W and j ∶ Z Ð→W be two subschemes. Intuitively we want Z ∩Y = i−1(Z) or Z ∩Y = j−1(Y) this
demand leads us to the following

Z ∩Y ∶= Z ×W Y = i−1(Z) = j−1(Y)

We call this the "schematic intersection of Z and Y in W".
"From now on, Z ∩Y, when seen as a scheme, will always mean this subscheme. From the universal property of the
fiber product we get a universal property for Z ∩Y": Any morphism T Ð→W "factors through Z ∩Y if and only if it
factors through Z" and through Y (this is an intutively desired universal property).
Example:

• Let W ∶= Spec(A), Z = V(a) and Y = b then we get that

V(a)∩V(b) = V(a∩ b)

• Let R be a ring, if f1, . . . , fr, g1, . . . , gs ∈ R[X0, . . . , Xn], V+( f1, . . . , fr) and V+(g1, . . . , gs) be closed subschemes
of Pn

R then
V+( f1, . . . , fr)∩V+(g1, . . . , gs) = V+( f1, . . . , fr, g1, . . . , gs) ⊆ Pn

R



CHAPTER 2. MORE ON SCHEMES 29

2.2 Dimension of schemes over a field

Definition 2.2.1. Consider the topological space W. By dim(W) we denote the Dimension of the space W which is defined
to be the supremum of all lengths of chains

W0 ⊃ W1 ⊃ ⋅ ⋅ ⋅ ⊃ Wl l=length of the chain

of irreducible closed (proper) subsets of W. If W posses the additional structure of a scheme, then we define its dimension to be
the dimension of the topological space W. The space W is said to be equidimensional (with dimension d), if every irreducible
components of W has the same dimension (d).

If W = φ we set dim(W) = −∞, otherwise dimension is a non-negative integer or ∞

Definition 2.2.2. Consider the ring B. We define the dimension dim(B) of B as the supremum of all lengths of chains

p0 ⊂ p1 . . . pl

prime ideals of B. The length of the above chain is l. This is called the Krull dimension of the ring B.

Let W = Spec(B) then we get an inclusion reversing bijective correspondece between prime ideals of B and the
irreducible subsets of W it follows that dim(B) = dim(W). For any field k we have dim(Spec(k)) = 0. If B is
a PID which is not a field then dim(B) = dim(Spec(B)) = 1. If we apply this to the case of the ring k[T] we
get that dim(Spec(k[T])) = 1. Let B be any ring then and p0 ⊂ p1 . . . pl be a chain of prime ideals then we have
p0 ⊂ p1 . . . pl ⊂ (pl , T) a chain of prime ideals of B[T], hence dim(B[T]) ≥ dim(B)+ 1.

Lemma 2.2.3. Consider the topological space W.

1. If Z ⊆ W then dim(Z) ≤ dim(W). If W is irreducible, dim(W) < ∞, moreover if Z is a proper subset of W which is
closed, then dim(Z) < dim(W).

2. Given a covering W = ⋃α Uα by open subsets Uα we get that

dim(W) = supαdim(Uα)

3. Consider the collection of irreducible components of W which we denote by I then

dim(W) = supZ∈Idim(Z)

4. If W is a scheme then
dim(W) = supw∈Wdim(OW,w)

Corollary 2.2.4. Consider the closed immersion j ∶ V Ð→W of schemes . Assume W is integral and dim(W) = dim(V) <∞,
then j is an isomorphism.

Lemma 2.2.5. Consider the open morphism g ∶ W Ð→ V of schemes. Given any w ∈ W and any generization v′ of v ∶= g(w)
we can find w′ ∈ W where w′ is the generization of w such that g(w′) = v′ .

Proposition 2.2.6. Consider the open morphism g ∶ W Ð→ V of schemes, then dim(W) ≥ dim(g(W)).

Proposition 2.2.7. Consider the locally noetherian scheme W. The following assertions are equivalent:

1. dim(W) = 0.

2. Every subset of W is open in W.
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3. Every local ring of W is a local Artin ring.

4. The canonical morphism
⊔

w∈W
Spec(OW,w)Ð→W

is an isomorphism.

2.2.1 Integral morphisms of affine schemes

A homomorphism f ∶ A Ð→ B of rings is said to be intgral if B is integral over f (A). Given below is a "geometric
version" of the "Going Up" theorem .

Proposition 2.2.8. Consider the affine schemes W = Spec(B) and V = Spec(A), consider an integral homomorphism ψ ∶
A Ð→ B which give rise to a morphism g ∶ W Ð→ V of scheme. Let b ⊆ B be an ideal of B and Y = V(b) ⊆ W be the
corresponding closed subspace, then g(Y) = V(ψ−1(b)). That is g is closed. Moreover

1. dim(g(Y)) = dim(Y).

2. injectivity of ψ implies surjectivity of g.

Lets recall the definition of a norm. Consider a finite field extension L of K then for any element α ∈ L

NL/K(α) = (
n
∏
i=1

αi)[L∶K(α)]

where αi are the roots listed with multiplicity of the minimal polynomial of α over K which is lying in some extension
field of L.

Theorem 2.2.9. Consider the integral injective homomorphism ψ ∶ A Ð→ B of integral domains. Set M = Frac(A) and
S = Frac(B). Set g ∶= Spec(ψ) ∶ Spec(B) Ð→ Spec(A). If A is integrally closed and S is a finite field extension of M then
NS/M(B) ⊆ A where NS/M ∶ S Ð→ M is the norm. We get f (V(b)) = V(NS/M(b)) (equality of sets) for every b ∈ B, and
dim(V(b)) = dim(V(NL/K(b))).

Lemma 2.2.10. Consider the rings A, B. The cardinality of the underlying set of fibers of the morphism Spec(B)Ð→ Spec(A)
are finite if it is induced from a finite homomorphism A Ð→ B of rings.

2.2.2 Dimensions of schemes of finite type over a field

Fix a field k. One of the important things we do here is the geometric interpretation of the result given below, which
is a refined form of the Noether Normalization theorem

Theorem 2.2.11. Consider a non-empty ring A which is a finitely generated algebra over k.

1. We can find t1, . . . , td ∈ A with the property that the k-algebra homomorphism ψ ∶ k[T1, . . . , Td] Ð→ A, induced by
mapping Ti ↦ ti , is injective and finite.

2. If a0 ⊆ a1 ⊆ ⋅ ⋅ ⋅ ⊆ ar ≠ A is a chain of ideals in A (r ≥ 0), then the ti in (1) can be chosen such that ψ−1(ai) =
(T1, . . . , Th(i)) for all i = 0, . . . , r and suitable 0 ≤ h(0) ≤ h(1) ≤ ⋅ ⋅ ⋅ ≤ h(r) ≤ d.

We can have the following geometric intepretation; Let W is an affine scheme of finite type over k then Γ(W, OW) is
a finitely generated k−algebra that is we have a morphism f ∶ W Ð→Ad

k of k−schemes.

• Let ψ be the corresponding k-algebra of f homomorphism then ψ is finite and injective. Hence by Proposition
2.2.8 and Lemma 2.2.10, f is closed, surjective, and has finite fibers.
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• If Zr ⊆ ⋅ ⋅ ⋅ ⊆ Z0 is a chain of closed subschemes of W, then we can construct f in such a way that each Zi is
mapped on to V(T1, . . . , Th(i)) in Ad

k .

• If Zr ⊂ ⋅ ⋅ ⋅ ⊂ Z0 is a chain of integral closed subschemes (i.e. Zi = V(pi) for some prime ideal pi ⊂ A), From
corollary 5.9 of [AT18] we get that h(0) < h(1) < ⋅ ⋅ ⋅ < h(r).

Corollary 2.2.12. Consider a non-empty ring A which is a finitely generated algebra over k. Then dim(A) = d for some
integer d ≥ 0 if and only if there exists a finite injective homomorphism k[T1, . . . , Td]↪ A of k-algebras.

Corollary 2.2.13. For any non negative integer n we get that dim(An
k ) = dim(Pn

k ) = n.

Proof. From the above corolloary it follows that dim(An
k ) = n and we know that Pn

k can be obtained by glueing n
copies of An

k hence by proposition 2.2.3 we have dim(Pn
k ) = n.

Definition 2.2.14. Consider a ring B, a chain of prime ideals of B is called maximal if it is maximal with respect to refinement.
Similarly, we call a chain of closed irreducible subsets of a topological space maximal, if it does not admit a refinement.

Theorem 2.2.15. Consider an integral domain B which is a finitely generated k−algebra. Let d = dim(B). Let qh(1) ⊂ ⋅ ⋅ ⋅ ⊂
qh(r) be a chain of prime ideals of B such that dim(V(qh(i)) = d − h(i).

• We can find a finite injective homomorphism ψ ∶ k[T1, . . . , Td] Ð→ B of k-algebras with ψ−1(qh(i)) = (T1, . . . , Th(i)) for
all i = 1, . . . , r.

• Given any ψ as in (a) the chain (qh(i))i of prime ideals can be refined to a q0 ⊂ ⋅ ⋅ ⋅ ⊂ qd of A such that ψ−1(qj) =
(T1, . . . , Tj) for all j = 1, . . . , d.

That is, every chain of prime ideals in B can be extended to a chain which is maximal and all maximal chains have equal length.

Proposition 2.2.16. Consider non-empty k-scheme W of finite type. all the assertions given below are equivalent:

1. dim(W) = 0

2. W is an affine scheme, and Γ(W, OW) is a finite dimensional k-vector space, moreover Γ(W, OW) =∏w∈W OW,w.

3. Every subset of W is open in W.

4. The cardinality of the underlying set of W is finite.

Corollary 2.2.17. Consider a zero dimensional integral k-scheme W of finite type. Then W ≅ Spec(k′), for some finite field
extension k′ of k .

Let L be a field extension of a field K and n be the largest integer such that there exist an injective hoommorphism
K[T1, . . . , Tn] Ð→ L of K−algebras. We call n the transendnce degree of L over K. Let S be a subset of L such that L
is algebraic over the field K(S) and S is algebraically independent over K then S is said to be a transcendence basis
of L/K. The size of the transcendence basis is equal to the transcendence degree of the extension and is denoted
trdegK L or trdeg(L/K) (for any field extension there exist a transcendence basis and any two such basis has the same
size).

Theorem 2.2.18. Let α be a generic point of the scheme W (that is W is irreducible). If W is a k-scheme of locally finite type .

1. dim(W) = trdegk(κ(α)).

2. For any closed point w ∈ W dim(OW,w) = dim(W).
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3. Consider the morphism g ∶ V Ð→ W of k-schemes of locally finite type. If there exist v ∈ V such that g(v) = α. Then
dim(V) ≥ dim(W). Since every open subset U of X contains the generic point α, we obtain dim(U) = dim(W).

4. Consider the morphism g ∶ V Ð→W of k-schemes of locally finite type. If g has finite fibers then dim(V) ≤ dim(W).

Corollary 2.2.19. Consider a closed point w ∈ W for some k-scheme locally of finite type W. Then dim(OW,w) = supYdim(Y),
where the supremum is taken over all (finitely many) irreducible components of W containing w.

2.2.3 Local dimension in a point

Definition 2.2.20. Consider a topological space W and a point w ∈ W. The dimension of W in w is

dimwW = in fUdim(U)

where the infimum is taken over all open sets U containing w.

Lemma 2.2.21. Consider a quasi-compact topological space W. If {Zα}α∈I is a collection of closed subsets such that the
intersection of each finite subcollection is nonempty, then ⋂α∈I Zα is nonempty.

Lemma 2.2.22. Let W be a non empty quasi-compact topological space which is kolmogrov then W contains a closed point.

Lemma 2.2.23. Consider the topological space W.

1. For any open neighborhood U of w ∈ W, we get dimwU = dimwW.

2. One has dim(W) = supw∈WdimwW. Let F denotes the collection of closed points of W. If W is a quasi-compact scheme,
then dim(W) = supw∈FdimwW.

3. For any integer n the Vn ∶= {w ∈ W; dimwW ≤ n} is open in W.

Proposition 2.2.24. Let W be a topological space and w ∈ W be a point, let I denote the collection of irreducible components
of W containing w. If W is a k−scheme of locally finite type then dimwW = supZ∈IdimZ. For any closed point w ∈ W is we
get dimwW = dim(OW,w) .

2.2.4 Codimension of closed subschemes

Definition 2.2.25. Consider the topological space W.

• For any closed irreducible subset Z of W we define the codimension codimW Z of Z in W as the supremum of the lengths
of chains of irreducible closed subsets Z0 ⊃ Z1 ⊃ ⋅ ⋅ ⋅ ⊃ Zl . such that Zl = Z.

• A closed subset Z of W is said to be equi-codimensial (of codimension d), if every irreducible components of Z have the
same codimension in W (equal to d).

Consider the affine scheme W = Spec(B). Let Z = V(p) be a closed irreducible subset of W then codimW Z = dim(Bp)
(it is the supremum of lengths of of chains of prime ideals of B that have p as its maximal element) it is also known
as the height of p. Suppose Z is a closed irreducible subset of an arbitary scheme W and let η be the generic point
of Z. Let U be an affine open set of W containing η then codimU(Z ∩U) = dim(OW,η). Since Z makes non empty
intersection with U every chain of closed irreducible sets that end in Z produces a chain in U which ends in Z ∩U
of the same length (because for any closed irreducible set Z if Z ∩U ≠ φ then Z = (Z ∩U) ), similarly any chain of
closed ireeducible sets of U that ends in Z ∩U give rise to a chain in W which ends in Z (by taking the closure).
Hence dim(OW,η) = codimUZ ∩U = codimW Z. For any z ∈ Z there exist an affine open set U such that z ∈ Z ∩U so
η ∈ Z ∩U hence dim(OW,η) ≤ dim(OW,z) (because η in U is Z ∩U). So we have

codimW Z = dim(OW,η) = in fz∈Zdim(OW,z)
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Definition 2.2.26. Consider a subset Z of a scheme W. Then

codimW(Z) ∶= in fz∈Zdim(OW,z)

is called the codimension of Z in W.

The previous discussion shows that this definition coincide with the definition 2.2.25 when Z is a closed irreducible
subset of W.

• For any closed subset Y of W, we find

codimWY = in fZcodimW Z

, where Z runs through the set of irreducible components of Y .

• A closed subset Y of W is of codimension 0 if and only if Y contains an irreducible component of W. If Y
contains an irreducible component this is clear. If codimW(Y) = 0 then there exist an ireeducible component Z
of Y such that codimW(Z) = 0 that is Z is not contained in any irreducible set but we know that Z is irreducible
in W hence Z must be one of the irreducible components of W.

Proposition 2.2.27. Let W be k−scheme of finite type. If W is irreducible and have dimension d then.

1. Every maximal chains of closed irreducible subsets of W have equal length.

2. If Y of W we have dim(Y)+ codimW(Y) = dim(W).

2.2.5 Dimension of projective varieties

From previously described results we obtain analogues statements in the case of projective varieties.

Lemma 2.2.28. Consider the cone C(W) ⊆ An+1
k for some integral closed subscheme W of Pn

k . Then dim(C(W)) = dim(W)+
1.

Proposition 2.2.29. Consider an integral closed subscheme W of Pn
k which non zero dimension. If g ∈ k[X0, . . . , Xn] is a

homogeneous polynomial such that V+(g) is non empty and does not contains W then W ∩V+(g) ≠ ∅, and W ∩V+(g) is
equi-codimensional of codimension 1 in W.

Applying induction to this we can get a generaliztion.

Proposition 2.2.30. Consider an integral closed subscheme W of Pn
k , let f1, . . . , fr ∈ k[X0, . . . Xn] be non-constant homoge-

neous polynomials. Then every irreducible components of W ∩V+( f1, . . . , fr) has codimension ≤ r in W. If dim(W) ≥ r then
W ∩V+( f1, . . . , fr ≠ ∅.

Corollary 2.2.31. Consider an integral closed subscheme W of Pn
k . Then W = V+(g) for some homogeneous polynomial g

which is irreducible if and only if W has codimension 1.

Corollary 2.2.32. Consider an integer n ≥ 2, let g be a non-constant homogeneous polynomial set W ∶= V+(g) ⊂ Pn
k . Then

W is connected.

2.3 Intersections of plane curves

In this section we discuss about hypersurfaces in P2
k and will give outline of an elementary proof of the Bézout’s

theorem which says (in a crude way) that given two curves described by polynomials of degree d and e in P2
k , the

number of "intersection points" of these curves "counted with multiplicity" is equal to d ∗ e.
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2.3.1 Intersection numbers of plane curves

Assume k is a field.

Definition 2.3.1. Consider a non zero non-constant homogeneous polynomial g ∈ k[X, Y, T] with n = deg(g). The closed
subscheme V+(g) of P2

k is known as a plane curve. We denote it by C and we set n as the degree of C.

Note:Consider a plane curve C ⊂ P2
k the we see that its degree may depend on the embedding (rather than only on

the isomorphism class of the k-scheme C). But if the degree of C is greater than or equal to 3, it depends only on the
isomorphism class of the k−scheme C (more precisely on the arithmetic genus of C).
Let C = V+( f ) be a plane curve then proposition 2.2.29 implies that C is equi-codimensional of codimension 1. Let
f = f e1

1 . . . f er
r be the distinct irreducible factors of f . Then V+( f e1

i ) 1 ≤ i ≤ r are the irreducible components of C.
The scheme V+( f ) is reduced if and only if ( f ) is a radical ideal that is, if and only if the power of every factor in
the decomposition of f (given above) is one.

Lemma 2.3.2. Let f , g ∈ k[X, Y, T] be non zero non-constant homogeneous polynomials. Then dim(V+( f , g)) = 0 if and only
if g.c.d of f and g is one (that is they dont have any common facotrs).

Considre two plane curves C and D described by polynomials f and g respectively then the schematic intersection

C ∩D = V+( f )∩V+(g) = V+( f , g)

Definition 2.3.3. Let C, D ⊂ P2
k be two plane curves such that Z ∶= C ∩ D is a k-scheme of dimension 0. Then we call

i(C, D) ∶= dimk(Γ(Z,OZ)) the intersection number of C and D. For z ∈ Z we call iz(C, D) ∶= dimk(OZ, z) the intersection
number of C and D at z.

We have i(C, D) = dimk(Γ(Z,OZ)). Since dim(Z) = 0 proposition 2.2.16 implies that Γ(Z,OZ) = ∏z∈ZOZ,z. Hence
i(C, D) = dimk(=∏z∈ZOZ,z) = ∑z∈Z dimk(OZ,z)) = ∑z∈C∩D iz(C, D) (proposition 2.2.16 also implies that the underly-
ing topological space of Z has only finite number of points).

2.3.2 Bézout’s theorem

Lemma 2.3.4. Consider a field extension K of k and set CK ∶= C⊗k K and DK = D⊗k K. Then CK = V+( fK) ⊂ P2
K , where fK

is the polynomial f considered as a homogeneous polynomial with coefficients in K. Similarly, DK = V+(gK) ⊂ P2
K . We have

i(C, D) = i(cK, DK)

This shows that if needed we can replace k with another field extension of k which suits our need when talking
about the intersection number of two plane curves. From now onwards we take k to be algebraically closed. Let
Z ∶= C ∩ D (where C = V+( f ), D = V+(g) and deg( f ) = n, deg(g) = m) be the intersection of two plane curves such
that dim(Z) = 0 hence the underlying topological space of Z contains only finitely many points. So we can construct
an hypersurface L ⊂ P2

k such that L ∩ Z = ∅. Its possible to choose coordinates X, Y and T of P2
k such that V+(T) = L

that is V+(T)∩ Z = ∅. Define S ∶= k[X, Y, T] and let a = ( f , g) ⊂ S. Then S = ⊕d Sd is a graded k−algebra where Sd is
the subring of S constitute of homogeneous polynomials of degree d. Since a is an ideal generated by homogeneous
polynomial B ∶= S/a is also a graded k−algebra, that is B⊕d Bd where Bd is the image of Sd under the canonical
homomorphism. We know that dimk(Sd) is finite hence Bd is a finite dimensional k−vector space.

Lemma 2.3.5. For d ≥ n +m we have dimk(Bd) = nm.

Theorem 2.3.6. Theorem of Bézout: Consider two plane curves C = V+( f ) and D = V+(g) in P2
k whose schematic intersec-

tion has dimension zero. Then
i(C, D) = (deg( f ))(deg(g))
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Outline of proof: Let
φ ∶ k[X, Y, T]Ð→ k[X, Y], h ↦ h = h(X, Y, 1)

be the dehomegenization with respect to T. As Z = D+(T) we have Z = Spec(A) with A = k[X, Y]/( f , g). To prove
Bézout theorem we have to show that dimk(A) = nm. The map φ induces a surjective k−algebra homomorphism
B = S/( f , g) Ð→ A from this we obtain a k−linear map υd ∶ Bd Ð→ A. To show dimk(A) = nm it is enough to show
that υd is an isomorphism for some d ≥ n +m.

2.4 Local properties of schemes

2.4.1 Formal derivatives

Definition 2.4.1. Consider a ring R and let f = ∑d
i=0 aiTi be a polynomial in R[T], we define the formal derivative

∂ f
∂T

∶=
d
∑
i=1

iaiT
i−1

If f ∈ R[T̂] = R[T1, . . . , Tn] we define the "partial derivative"
∂ f
∂Ti

by viewing the ring R[T̂] as the ring R[T1, . . . , T̂i, . . . , Tn][Ti]
and applying definition 2.4.1.
∂ f
∂Ti

∶ R[T̂]Ð→ R[T̂] is an R−linear map and it obeys the "Leibniz rule" that is

∂ f g
∂Ti

= f
∂g
∂Ti

+ g
∂ f
∂Ti

, ∀ f , g ∈ R[T̂]

Lemma 2.4.2. Consider a ring R, and let f ∈ R[T0, . . . , Tn] be homogeneous of degree d. Then the partial derivatives satisfy
the Euler relation

n
∑
j=0

∂ f
∂Tj

.Tj = d. f

2.4.2 Zariski’s definition of the tangent space

Definition 2.4.3. Consider a scheme W, and let w ∈ W. We see that mw/m2
w (mw is the maximal ideal in the local ring OW,w)

is a vector space over OW,w/mw = κ(w), Set
TwW = (mw/m2

w)∗

where (*) refers to the dual vector space. TwW is said to be the (Zariski, or absolute) tangent space of W in w.

Remark 2.4.4. Consider a point w of the k−scheme W.

• Let {w1, . . . , wn} be the image of elements of mw in (mw/m2
w) such that they form a basis of the vector space (mw/m2

w)
(over κ(w)). From Nakayama’s lemma we know that {w1, . . . , wn} generates mw (as an OW,w module). Similarly
any set of elements {w1, . . . , wn} which generates mw will generate mw/m2

w. Hence if mw is finitely generated then
dimκ(w)(mw/m2

w) is the cardinallity of a minimal generating set of mw. A finitely generated vector space and its dual
has the same dimension hence dimκ(w)TwW is the cardinallity of a minimal generating set of mw. In particular if W is
locally noetherian then dimκ(w)TwW is finite.

• If U ⊆ W is an open set containing w, then TwW = TwU (because OW∣U ,w = OW,w).

• Consider a morphism f ∶ W Ð→ V of schemes. Let w ∈ W then we have an induced morphism f ♯w ∶ OV, f(w) Ð→
OW,w since this is a local ring homomorphism it takes m f(w) inside mw. Let ψ ∶ m f(w)/m2

f(w) Ð→ mw/m2
w be the

induced morphism. Consider m f(w)/m2
f(w)⊗κ( f(w)) κ(w) we can view this as a κ(w) module (vector space) (Let
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v⊗ k1 ∈ m f(w)/m2
f(w)⊗κ( f(w)) κ(w) and k2 ∈ κ(w) then define k2(v⊗ k1) ∶= v⊗ k1k2). ψ induces a κ(w)-linear map

m f(w)/m2
f(w)⊗κ( f(w)) κ(w) Ð→ mw/m2

w (such that v⊗ k ↦ kψ(v)). Let φ ∶ mw/m2
w Ð→ κ(w) be a κ(w) linear map

then by composing with the linear map described before we get a κ(w) linear map m f(w)/m2
f(w)⊗κ( f(w)) κ(w)Ð→ κ(w)

such that v⊗ k ↦ φ(kψ(v)) = kφ ○ ψ(v). Let κ(w)/κ( f (w)) is finite (that is κ(w) is a finite dimensional κ( f (w))
vector space) and kw

1 , . . . , kw
n (with k1 = 1) be a basis of κ(w) over κ( f (w)). Then φ ○ ψ(v) = ∑n

i=1 kikw
i using this we

define a map m f(w)/m2
f(w)⊗κ( f(w)) κ(w) Ð→ κ( f (w)) × κ(w) such that v⊗ k ↦ kφ ○ ψ(v) ↦ (∑n

i=1 ki, k∑n
i=1 kw

1 ).
That is given a κ(w)−linear map mw/m2

w Ð→ κ(w) we produced a κ( f (w))−linear map m f(w)/m2
f(w) Ð→ κ( f (w))

and an element of κ(w). We get a κ(w)−linear map

d fw ∶ TwW Ð→ Tf(w)V × κ(w)Ð→ Tf(w)V ⊗
κ( f(w))

κ(w)

.

If m f(w)/m2
f(w) is finite dimensional then Im(φ ○ ψ) will be finite dimensional, then by considering this finite dimen-

sional subspace of κ(w) and proceeding as in the above discussion we get a κ(w)−linear map

d fw ∶ TwW Ð→ Tf(w)V ⊗
κ( f(w))

κ(w)

.

2.4.3 Tangent spaces of affine schemes over a field

The notion of absolute tangent space is well behaved when W is a scheme over a filed k and w ∈ W have residue
field equal to k. Consider the morphism k Ð→ κ(w) induced from W Ð→ Spec(k) that is κ(w) = k if and only if w is
a k−valued point (Since all morphism are k−schemes). We start with situation of an affine space.

Tangent spaces of k-valued points of An
k : Let x ∈ An

k be a k valued point that is x ∈ An
k (k) = Homk(Spec(k), An

k ) ≅
Homk(k[T1, . . . , Tn], k) ≅ kn. All morphism from k[T1 . . . , Tn] to k are evaluation homomorphisms whose kernel
looks like (T1 − x1, . . . , Tn − xn) for some point x = (xi, . . . xn) ∈ An

k then the unique point of Spec(k) is mapped to the
maximal ideal (T1 − x1, . . . , Tn − xn) (which is the prime ideal corresponds to x) of k[T]. From the elements Ti − xi

we obtain a basis for the k−vector space mx/m2
x Let (mi)n

i=1 be this basis then any k− linear map mx/m2
x Ð→ k is

completely charecterized by where mi goes hence kn ≅ TxX. The resulting isomorphism can be explicitly described
as follows

(v1, . . . , vn)↦ (mx/m2
x Ð→ k, g ↦∑ vi

∂g
∂Ti

(x))

Let f ∶ An
k Ð→ Ar

k be the map given by ( f1, . . . , fr) such that fi ∈ k[T1, . . . , Tn] for all 1 ≤ 1 ≤ r. Let x = (x1, . . . , xn) ∈
An(k), then the induced map d fx ∶ TxAn

k Ð→ Tf(x)Ar
k is given, using the identifications of the tangent spaces with

kn and kr , resp., as above, by the matrix

( ∂ fi

∂Tj
(x))

1≤i≤r

1≤j≤n

Given polynomials f1, . . . , fr ∈ R[T1, . . . , Tn] for some ring R, we denote by

J f1,..., fr ∶= ( ∂ fi

∂Tj
(x))

i,j
∈ Mr×n(R[T1, . . . , Tn])

the jacobian matrix of the fi.

Definition 2.4.5. Consider a morphism f ∶ W Ð→W′ of schemes and an integer d ≥ 0.

• f is said to be smooth of relative dimension d at w ∈ W, if we can find an affine set U of W containing w and affine open
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set V = Spec(R) of W′ containing f (w) such that f (U) ⊂ V , and an open immersion

j ∶ U ↪ Spec(R[T1, . . . , Tn]/( f1, . . . , fn−d))

of R−schemes of an appropriate n and fi, such that the jacobian matrix J f1,..., fn−d
(x) has rank n − d.

• f is called a smooth morphism if f is smooth (of relative dimension d) at every w ∈ W. If f is smooth we say W is smooth
over W′

Recall for this definition that we denote for g ∈ R[T1, . . . , Tn] (e.g.,g = ∂ fi

∂Tj
and for x ∈ An

R (or x in a subscheme U of

An
R by g(x) ∈ κ(x) the image of g in OAn

R ,x/mx.

Definition 2.4.6. A noetherian local ring B is said to be a regular local ring if the cardinality of the set of minimal number of
generators of its maximal ideal is equal to dim(B) (Krull dimension)

Let B be a noetherian local ring with maximal ideal m, let k = B/m be the residue field of B. B is regular if and only
if dimk(m/m2) = dim(B)

Definition 2.4.7. Consider a noetherian ring B, if the localization of B at every prime ideal is a regular local ring then we say
that B is a regular ring.

Definition 2.4.8. Consider a locally noetherian scheme W. W is said to be a regular scheme if for every w ∈ W the local ring
OW,w is regular.

Remark 2.4.9. • Consider the noetherian ring B, it is regular if and only if Spec(B) is regular.

• A point w ∈ W is regular if and only if dim(TwW) (as κ(w) vector space) is equal to dim(OW,w)

2.5 Normal schemes

Definition 2.5.1. A domain R is called normal if it is integrally closed in its field of fractions.

Definition 2.5.2. Consider a scheme W, we say that W is a normal scheme if for every w ∈ W the local ringOW,w is a normal
domain.

Lemma 2.5.3. • Consider a locally noetherian scheme W then for every connected open subset U of W Γ(U,OW) is a
normal domain.

• Consider a scheme W which is quasi compact, we say that W is normal if for every closed point w ∈ W the local ring
OW,w is normal.

• Consider a scheme W if there exist an open cover W = ⋃i Ui with Γ(Ui,OX) are normal for all i then W is normal.

Corollary 2.5.4. In a locally noetherian scheme every regular point is a normal point. In particular every regular locally
noetherian scheme is also a normal locally noetherian scheme.

Proposition 2.5.5. Consider a locally noetherian scheme W and a normal point w ∈ W with dim(OW,w) ≤ 1 then w is a
regular point.

Consider a locally noetherian scheme W, if dim(OW,w) = 1 implies that OW,w is regular for any w ∈ W then we say
that W is "regular in codimension 1".

Proposition 2.5.6. Assume that the affine scheme W = Spec(B) is regular. Consider a closed integral scheme Z = V( f ) =
Spec(A/( f )) of W for some f ∈ B then Z is normal if and only if it is "regular in codimension 1".
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Let W be a locally noetherian scheme. We call the set

Wnorm ∶= {w ∈ W ∶ OW,w normal }

the normal locus of W.

2.5.1 Geometric concept of normality, Hartogs’ theorem

Recall the Hartog’s theorem: Let U ⊆ Cn, n > 1 be an open set and x ∈ U. If f ∶ U/{x} is a holomorphic function
then we can extend f to all of U. The following is an analogues statement in our settings.

Theorem 2.5.7. Consider an open subset U of the locally noetherian normal scheme W with codimW(W U) ≥ 2 then the
restriction map Γ(W,OW)Ð→ Γ(U,OW) is an isomorphism.



Chapter 3

Cohomological Algebra

3.1 Abelian categories

Definition 3.1.1. A category C is called additive if it satisfies the following condition:

1. Given any pair (X, Y) of Ob(C), HomC(X, Y) has a structure of additive (i.e. abelian) group, and the composition law
is bilinear,

2. there exists an object 0 such that HomC(0, 0) = 0 (0 in the RHS is the additive identity of the homomorphism group
while 0 in the LHS is an object of C),

3. Given any pair (X, Y) of Ob(C) the functor

W Ð→ HomC(X, W)× HomC(Y, W)

is representable,

4. Given any pair (X, Y) of Ob(C) the functor

W Ð→ HomC(W, X)× HomC(W, Y)

is representable,

Proposition 3.1.2. Under the conditions (i), (ii), of Definition 3.1.1, Z is a representative of the functor W ↦ HomC(X, W)⊕HomC(Y, W)
if and only if there are morphisms i1 ∶ X Ð→ Z, i2 ∶ Y Ð→ Z, p1 ∶ Z Ð→ X, p2 ∶ Z Ð→ Y, such that p2 ○ i1 = 0, p1 ○ i2 =
0, p1 ○ i1 = idX , p2 ○ i2 = idY and i1 ○ p1 + i2 ○ p2 = idZ.

Similarly we can show that Z′ is a representative of the functor W ↦ HomC(W, X)⊕HomC(W, Y) if and only if
there are morphisms i1 ∶ X Ð→ Z′, i2 ∶ Y Ð→ Z′, p1 ∶ Z′ Ð→ X, p2 ∶ Z′ Ð→ Y, such that p2 ○ i1 = 0, p1 ○ i2 = 0, p1 ○ i1 =
idX , p2 ○ i2 = idY and i1 ○ p1 + i2 ○ p2 = idZ′ .

Corollary 3.1.3. The representative of the functor W ↦ HomC(W, X)⊕HomC(W, Y) and the representative of the functor
W ↦ HomC(X, W)⊕HomC(Y, W) are isomorphic. We denote this unique object by X⊕Y.

39
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Remark 3.1.4.
X X

W X⊕Y W

Y Y

f

i1 f

h
h

p1

p2
g

i2 g

(Warning: The diagram is not commutative). All the maps are as defined in proposition 3.1.2. Then we have h ○ i1 = f ,
h ○ i2 = g and f ○ p1 + g ○ p2 = h

Definition 3.1.5. Let C and C′ be two additive categories a functor F ∶ C Ð→ C′ is called additive if for any pair of objects
(X, Y) of C, F defines a group homomorphism HomC(X, Y)Ð→ HomC′(F(X), F(Y))

The functor W ↦ HomC(Z, W) is an additive functor. If f ∶ W Ð→ W′ then we have HomC(Z, f ) ∶ HomC(Z, W) Ð→
HomC(Z, W′); for any g ∈ HomC(Z, W) we have HomC(Z, f )(g) = f ○ g. Since composition is bilinear this map is a
group homomorphism.

Lemma 3.1.6. LetA,B be additive categories. Let F ∶ AÐ→ C be an additive functor. Then F transforms direct sums to direct
sums and zero to zero.

Definition 3.1.7. Let f ∈ HomC(X, Y)

• If the functor
Z ↦ ker(HomC(Z, f )) = {u ∈ HomC(Z, X) ∶ f ○ u = 0}

is representeble, its representative is called the kernel of f and it is denoted ker( f ).

• If the fucntor
Z ↦ ker(HomC( f , Z)) = {v ∈ HomC(Y, Z) ∶ v ○ f = 0}

is representeble, its representative is called the cokernel of f and it is denoted by coker( f ).

Let f ∈ HomC(X, Y) and assume ker( f ) exists. Let

ψ ∶ HomC(−, ker( f ))Ð→ ker(HomC(−, f ))

be a natuaral transformation and φ be its inverse. Set α ∶= ψker( f)(idker( f)) then f ○ α = 0 (by construction). If
g ∈ HomC(W, ker( f )) then ψW(g) = ψW(idker( f) ○ g) = ψker( f)(idker( f)) ○ g = α ○ g . If h ∈ ker(HomC(−, f )) then
h = α ○ φ(h) for a unique map φ(h) ∶ W Ð→ ker( f ) (if h = α ○ g hence α ○ (g − φ(h)). As ψ is bijective, composition
with α is also bijective and composition is also compatible with the group structure of Hom hence g − φ(h) = 0
which implies g = φ(h)). Conversely if (Z, α) is such that f ○ α = 0 and for any h ∈ ker(HomC(−, f )) there exist
unique e ∶ W Ð→ ker( f ) such that h = α ○ e then Z ≅ ker( f ). ker( f ) can be charecterized by this properties.

W X Y

ker( f )

h

∃!e

f

α

The natuaral transformation ψ is completely determined by the morphism α, sometimes we refer this morphism
using the notation ker( f ), most of the time ker( f ) denotes the representative object. When it is necessary we use
ker( f ) to denote both the morphism and the representative object.
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Assume that coker( f ) exist. Let Λ ∶ HomC(coker( f ),−) Ð→ ker(Hom( f ,−)) be a natuaraltrasformation and Ω be
its inverse. Set β ∶= Λcoker( f)(idcoker( f)) then β ○ f = 0(by construction). Let g ∈ HomC(Coker( f ), W) then ΛW(g) =
ΛW(g ○ idcoker( f)) = g ○ Λcoker( f)(idcoker( f)) = g ○ β. Let h ∈ ker(Hom( f ,−)) then there exist unique map Ω(h) ∈
HomC(coker( f ), W) such that h = Ω(h) ○ β. Coversely if (Z, β) is such that β ○ f = 0 and for any h ∈ ker(Hom( f ,−))
there exist a unique morphism e ∈ HomC(coker( f ), W) such that h = e ○ β then Z ≅ coker( f ). coker( f ) is charecterized
by this property.

X Y W

coker( f )

f

β

h

e

The natuaral transformation Λ is completely determined by the morphism β, sometimes we refer this morphism
using the notation coker( f ), most of the time coker( f ) denotes the representative object. When it is necessary we
use coker( f ) to denote both the morphism and the representative object

Remark 3.1.8. Let α ∶ ker( f )Ð→ X and β ∶ Y Ð→ coker( f ) be as defined above.

• Let g, h ∶ W Ð→ ker( f ) be such that α ○ g = α ○ h. Then α ○ (g− h) = 0(W,X). But 0(W,X) ∈ ker(HomC(−, f )) hence there
exist unique map from W Ð→ ker( f ) whose composition with α gives 0(W,X); we have α ○ (g − h) = α ○ 0(W,ker( f)) =
0(W,X) hence g − h = 0(W,ker( f)) and α is monomorphism

• Similarly we obtain that β is an epimorphism.

• Let X, X′, Y, Y′ ∈ C such that X ≅ X′ and Y ≅ Y′. Let f ∶ X Ð→ Y and g ∶ X′ Ð→ Y′ be morphisms compatible with the
isomorphisms, that is the following diagram commutes

X Y

X′ Y′

f

g

where the vertical arrows are isomorphisms. Then we have the following commutative diagram

ker( f ) X Y coker( f )

ker(g) X′ Y′ coker(g)

α f β f

αg βg

Where the isomorphism between X and X′, Y and Y′ are the same as before. Isomorphism between ker( f ) and ker(g),
coker( f ) and coker(g) are obtained from their universal properties. If such a diagram exist we say that ker( f ) ≅ ker(g)
and coker( f ) ≅ coker(g).

Definition 3.1.9. Let α ∶ ker( f )Ð→ X and β ∶ Y Ð→ coker( f ) be as defined above.

• coker(α) (if it exists) is called the coimage of f and it is denoted by Coim(f).

• ker(β) (if it exists) is called the image of f and it is denoted by Im(f)
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Consider the following commutative diagram

coker(α) ker(β)

ker( f ) X Y coker( f )

coker(α) ker(β)

θ

γ

α

n

η

η

f β

ρ

m
γ

We have f ○ α = 0 hence there exist a unique morphism m ∶ coker(α) Ð→ Y such that f = m ○ η. We have 0 =
β ○ f = β ○ (m ○ η). Since η is an epimorphism it follows that β ○ m = 0, hence there exist a unique morphism
ρ ∶ coker( f )Ð→ ker( f ) such that m = γ ○ ρ (Since both the triangles in the lower rectangle are commutative the lower
rectangle is commutative).
Similarly β ○ f = 0 hence there exist a unique morphism n ∶ X Ð→ ker(β) such that f = γ ○ n. We have 0 = f ○ α =
(γ ○ n) ○ α. Since γ is a monomorphism it follows that n ○ α = 0 hence there exist a unique morphism θ ∶ coker( f )Ð→
ker( f ) such that θ ○ η = n (Since both the triangles in the upper rectangle are commutative the upper rectangle is
commutative).
Since η is an epimorphism we get that ρ = θ. That is there exist a natural morphism Coim( f )Ð→ Im( f )

Definition 3.1.10. An additive category C is called an abelian category if its satisfies the two following conditions.

• For any morphism f ∶ X Ð→ Y, ker( f ) and coker( f ) exist.

• The canonical morphism Coim( f )Ð→ Im( f ) is an isomorphism.

In some sense the second condition in the above definition is eqivalent to the first isomorphism theorem (in the
category of groups, rings,modules etc).
From now onwards we take C to be abelian. Let f be a morphism in an abelian category then f can be factored
uniquely as x Ð→ Coim( f ) Ð→ Im( f ) Ð→ y where the first arrow is an epimorphism the second arrow is an
isomorphism and the third arrow is a monomorphism. Let f ∶ X Ð→ Y and g ∶ Y Ð→ Z such that g ○ f = 0. Then we
have the following commutative diagram.

coker( f )

X Y Z

ker(β) = Im( f ) ker(g)

m

f
β

g

γ

π
l

We know that g ○ f = 0 hence there exist a unique morphism m such that m ○ β = g. So g ○γ = (m ○ β)○γ = m ○ (β ○γ) =
0. Hence there exist a unique morphism π ∶ Im( f )Ð→ ker(g) such that l ○π = γ.

Definition 3.1.11. A sequence of morphisms:

X Y Z
f g

is called an exact sequence if (or exact at Y):
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• g ○ f = 0

• the natural morphism Im( f )Ð→ ker(g) is an isomorphism.

More generally a sequence of morphisms is called exact if any successive pair of arrows is exact.

Proposition 3.1.12. The sequence

0 X Y
f

is exact if and only if f is a monomorphism. Similarly the sequence

X Y 0
f

is exact if and only if f is an epimorphism.

Proposition 3.1.13. Let f ∶ X Ð→ Y be a morphism in C then the following sequences are exact.

• 0Ð→ ker( f )Ð→ X Ð→ Im( f )Ð→ 0

• 0Ð→ Im( f )Ð→ Y Ð→ coker( f )Ð→ 0

Definition 3.1.14. Let C and C′ be two abelian categories. An additive functor F from C to C′ is called left (resp. right) exact
if for any exact sequence in C:

0Ð→ X Ð→ X′ Ð→ X′′

(resp.:X Ð→ X′ Ð→ X′′ Ð→ 0) the sequence:

0Ð→ F(X)Ð→ F(X′)Ð→ F(X′′)

(resp.:F(X) Ð→ F(X′) Ð→ F(X′′) Ð→ 0) is exact. If F is both left and right exact, F is called exact. A contravariant functor
F from C to C′ is called left exact (resp. right exact, resp. exact), if so is F regarded as a functor from Co to C′.

Proposition 3.1.15. Let Z ∈ C then HomC(−, Z) and HomC(Z,−) are left exact functors.

Definition 3.1.16. Let Z ∈ C. One says that Z is injective (resp. projective) if the functor HomC(−, Z) (resp. HomC(Z,−))
is exact.

Proposition 3.1.17. Let Z ∈ C. Z is injective if and only if for every monomorphism f ∶ X Ð→ Y in C, HomC( f , Z) is
surjective.

Proposition 3.1.18. Let C be an abelian category and Let

0 M1 M2 M3 0
f g

be such that g ○ f = 0.

•

M1 M2 M3 0
f g
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is exact if and only if

0 HomC(M3, N) HomC(M2, N) HomC(M1, N)
HomC(gN) HomC( f N)

is an exact sequence of abelian groups for all objects N of C.

•

0 M1 M2 M3
f g

is exact if and only if

0 HomC(N, M1) HomC(N, M2) HomC(N, M3)
HomC(N f) HomC(Ng)

is an exact sequence of abelian groups for all objects N of C.

Lemma 3.1.19. Fiber product (pull back) exist in an abelian category.

Proof. Let C be an abelian category and X, Y, Z ∈ C. If a ∶ X Ð→ Z and b ∶ Y Ð→ Z are morphisms then we have a
morphism (a,−b) ∶ X⊕Y Ð→ Z such that (a,−b) ○ i1 = a and (a,−b) ○ i2 = −b where i1 ∶ X Ð→ X⊕Y, i2 ∶ Y Ð→ X⊕Y
are the canonical morphism (defined in proposition 3.1.2 or refer remark 3.1.4). Consider the following diagram
(warning:it’s not a commutative diagram)

T

ker(a,−b) X

X⊕Y

Y Z

k1

k2

l

α

p

q ai1

(a−b)

p1

p2
b

i2

where p = p1 ○ α and q = p2 ○ α. We have 0 = (a,−b) ○ α = (a ○ p1 + −b ○ p2) ○ α = a ○ p − b ○ q ⇒ a ○ p = b ○ q. Now
asumme that a ○ k1 = b ○ k2 ⇒ (a,−b) ○ i1 ○ k1 = −(a,−b) ○ i2 ○ k2 ⇒ (a,−b)(i1 ○ k1 + i2 ○ k2) = 0. Hence there exist a
unique morphism l ∶ T Ð→ ker(a,−b) such that α ○ l = i1 ○ k1 + i2 ○ k2. We have p ○ l = p1 ○α ○ l = p1 ○ (i1 ○ k1 + i2 ○ k2) = k1

similarly q ○ l = p2 ○ α ○ l = p2 ○ (i1 ○ k1 + i2 ○ k2) = k2. That is (ker(a,−b), p, q) = X ×Z Y.

Remark 3.1.20. Arguments dual to those in lemma 3.1.19 will show that push out exist in an abelian category.

3.2 Diagram chasing

Definition 3.2.1. Let A be an abelian category. Let i ∶ A Ð→ B and q ∶ B Ð→ C be morphisms of A such that 0 Ð→ A Ð→
B Ð→ C Ð→ 0 is an exact (such exact sequence are called short exact) sequence. We say the short exact sequence is split if there
exist morphisms j ∶ C Ð→ B and p ∶ B Ð→ A such that (B, i, j, p, q) is the direct sum of A and C.
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Lemma 3.2.2. Let C be an abelian category. Let 0Ð→ A Ð→ B Ð→ C Ð→ 0 be a short exact sequence.

1. Given a morphism s ∶ C Ð→ B left inverse to B Ð→ C, there exists a unique π ∶ B Ð→ A such that (s, π) splits the short
exact sequence as in Definition 3.2.1.

2. Given a morphism π ∶ B Ð→ A right inverse (π ○ f = IdA) to A Ð→ B, there exists a unique s ∶ C Ð→ B such that
(s, π) splits the short exact sequence as in Definition 3.2.1.

Lemma 3.2.3. (short five lemma:)
consider the following commutative diagram

0 . . . 0

0 . . . 0

m

f

e

g h
m′ e′

with short exact rows, f and h monic imply g monic, and f and h epi imply g epi.

Lemma 3.2.4. (five lemma) Consider the following commutative diagram

A1 A2 A3 A4 A5

B1 B2 B3 B4 B5

g1

f1

g2

f2 f3

g3

f4

g4

f5

h1 h2 h3 h4

with exact rows then

• If f1 is epi, and f2 and f4 are monic, then f3 is monic.

• If f2 and f4 are epi while f5 is monic then f3 is epic.

• If f1 is epi, f2 and f4 are isomorphisms, and f5 is monic, then f3 is an isomorphism.

Consider the commutative diagram give in lemma 3.2.3 add the kernels and cokernels of f , g, and h to form a
diagram

0 ker( f ) ker(g) ker(h)

0 a b c 0

0 a′ b′ c′ 0

coker( f ) coker(g) coker(h) 0

m0

i

e0

j k
m

f

e

g h

m′

i′

e′

j′ k′

m1 e1

Each coloumn is exact (consider the first coloumn then Im(i) = ker(coker(ker( f ))) ≅ ker( f ) hence it is exact at a, we
know Im( f ) ≅ ker(coker( f )) = ker(j) hence it is exact at b) and both middle rows are given to be exact. We have
g ○m ○ i = m′ ○ f ○ i = 0 hence there exist unique map m0 ∶ ker( f ) Ð→ ker(g) such that m ○ i = j ○m0 using similar
arguments define e0, m1 and e1.
Consider the first raw, it is exact at ker( f ) (we know j ○m0 is monic hence m0 must be monic). We have k ○ e0 ○m0 =
e ○m ○ i = 0, since k is a monomorphism we get that e0 ○m0 = 0 . Let x ∈m ker(g) such that e0 ○ x ≡ 0. Hence e ○ j ○ x ≡ 0.
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Since the second raw is exact there exist y ∈m a such that m ○ y ≡ j ○ x. m′ ○ f ○ y = g ○m ○ y ≡ g ○ j ○ x = 0 since m′ is
monic this would imply that f ○ y ≡ 0. We know that the coloumns are exact hence there exist z ∈m ker( f ) such that
y ≡ i ○ z that is j ○ x ≡ m ○ i ○ z = j ○m0 ○ z since j is a monomorphism this would imply that x ≡ m0 ○ z. Hence the
sequence is exact at ker(g). From duality it follows that the fourth sequence is also exact.

Remark 3.2.5. We can refine the result in the above discussion as follows. Consider the following commutative diagram

a b c

a′ b′ c′

m

f

e

g h

m′ e′

• If the first raw is exact and m′ is monic then ker( f ) Ð→ ker(g) Ð→ ker(h) is exact (since we used only this much
information to prove the analogues statement in the above discussion the same proof works here).

• If the second raw is exact and e is an epi then coker( f )Ð→ coker(g)Ð→ coker(h) is exact.

Lemma 3.2.6. (Ker-coker sequence = Snake lemma). Given a morphism < f , g, h > of short exact sequences, as in the above
diagram, there is an arrow δ ∶ Ker(h)Ð→ Coker( f ) such that the following sequence is exact

0 ker( f ) ker(g) ker(h) coker( f ) coker(g) coker(h) 0
m0 e0 δ m1 e1

Remark 3.2.7. Consider the following commutative diagram with exact raws

a b c 0

0 a′ b′ c′

m

f

e

g h

m′ e′

then the sequence ker( f )Ð→ ker(g)Ð→ ker(h)Ð→ coker( f )Ð→ coker(g)Ð→ coker(h) is exact.

3.3 Category of Complexes

Let C be an additive category.

Definition 3.3.1. A complex X in C consists of the data {Xn, dn
X}n∈Z such that for every n ∈ Z:

Xn ∈ C dn
X ∈ HomC(Xn, Xn+1) and dn+1 ○ dn = 0

A morphism f from a complex X to a complex Y is a sequence { f n}n∈Z of morphisms f n ∶ Xn Ð→ Yn, such that for any n ∈ Z:

dn
Y ○ f n = f n+1 ○ dn+1

X

We denote by C(C) the category of complexes in C (composition of morphism is defined in the obvious way). This
is an additive category, if C is abelian C(C) is abelian.
The family dX = {dn

xX}n is called the differential of the complex X. A complex X is said to be bounded (resp.
bounded below, resp. bounded above) if Xn = 0 for ∣n∣ ≫ 0 (resp. n ≪ 0, resp. n ≫ 0). The full subcategory of C(C)
consisting of bounded complexes (resp. complexes bounded below, resp. complexes bounded above), is denoted
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Cb(C) (resp. C+(C), resp. C−(C)). We identify C with the full subcategory of C(C) consisting of complexes X such
that Xn = 0 for n ≠ 0.

Definition 3.3.2. Let k be an integer, and let X ∈ C(C). One defines a new complex X[k] by setting:

X[k]n ∶= Xn+k dn
X[k] ∶= (−1)ndn+k

X

For a morphism f ∶ X Ð→ Y in C(C), one defines f [k] ∶ X[k]Ð→ Y[k] by setting:

f [k]n ∶= f n+k

The functor [k] from C(C) to C(C) is called the shift functor of degree k.

Definition 3.3.3. A morphism f ∶ X Ð→ Y in C(C) is called homotopic to zero if there exist morphisms sn ∶ Xn Ð→ Yn−1 in
C such that for any n:

f n = dn−1
Y ○ sn + sn+1 ○ dn

X

. . . Xn−1 Xn Xn+1 . . .

. . . Yn−1 Yn Yn+1 . . .

f n−1

dn−1
X

sn f n

dn
X

sn+1
f n+1

dn−1
Y

dn
Y

One says f is homotopic to g if f − g is homotopic to zero. Let X, Y and Z be in C(C) and f ∶ X Ð→ Y, g ∶ Y Ð→ Z
be morphisms of complexes. Assume f is homotopic to zero that is there exist a map sn ∶ Xn Ð→ Yn−1 such that
f n = dn−1

Y ○ sn + sn+1 ○ dn
X . Then gn ○ f n = gn ○ dn−1

Y ○ sn + gn ○ sn+1 ○ dn
X . But we know that gn ○ dn−1

Y = dn−1
Z ○ gn−1 define

hn ∶= gn−1 ○ sn ∶ Xn Ð→ Zn−1. That is (g ○ f )n = dn−1
Z ○ hn + hn+1 ○ dn

X , hence g ○ f is homotopic to zero.
Now assume g is homotopic to zero that is there exist sn ∶ Yn Ð→ Zn−1 such that gn = dn−1

Z ○ sn + sn+1 ○ dn
Y. Then

gn ○ f n = dn−1
Z ○ sn ○ f n + sn+1 ○ dn

Y ○ f n. We know that dn
Y ○ f n = f n+1 ○ dn

X . Define hn ∶= sn ○ f n then (g ○ f )n =
dn−1

Z ○ hn + hn+1 ○ dn
X . Hence g ○ f is homotopic to zero.

We denote by Ht(X, Y) the subgroup of HomC(C)(X, Y) consisting of morphisms homotopic to zero.

Definition 3.3.4. Define a category K(C) by setting ob(K(C)) ∶= ob(C(C)) and HomK(C)(X, Y) ∶= HomC(C)(X, Y)/Ht(X, Y)
(From the above discussion it follows that the composition is well defined).

From now onwards throughout this section we assume that C is abelian.

Definition 3.3.5. Let X ∈ C set Zk(X) ∶= ker(dk
X), Bk(X) ∶= Im(dk−1

X ) and Hk(X) = coker(Bk(X) Ð→ Zk(X)). One
calls Hk(X) the kth cohomology of the complex X (sometimes we write Zk(X)/Bk(X) instead of coker(Bk(X)Ð→ Zk(X))).

Hk(X) = coker(π)

Zk(X) = ker(dk(X)) coker(dk−1
X ) coker(dk

X)

Xk−1 Xk Xk+1 Xk+2

Bk(X) = ker(β) Bk+1(X) = ker(ω) Zk+1 = ker(dk+1
X ) Hk+1(X)

lθ

α k

dk−1
X

n

m

dk
X

β

dk+1
X

ω

π

γ
ρ

We obtain the following exact sequences:
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• Bk(X)Ð→ Zk(X)Ð→ Hk(X)Ð→ 0 .

• 0Ð→ Bk(X)Ð→ Xk Ð→ coker(dk−1
X )Ð→ 0.

• Xk−1 Ð→ Zk(X)Ð→ Hk(X)Ð→ 0.

• 0Ð→ Zk Ð→ Xk Ð→ Bk+1 Ð→ 0.

• 0Ð→ Hk(X)Ð→ coker(dk−1
X )Ð→ Xk+1.

• 0Ð→ Hk(X)Ð→ coker(dk−1
X )Ð→ Zk+1(X)Ð→ Hk+1(X)Ð→ 0.

Lemma 3.3.6. Hn(−) is an additive functor from C(C) to C and Hn+k(X) ≅ Hn(X[k]).

Definition 3.3.7. A morphism of complexes f ∶ X Ð→ Y is called a quasi isomorphism if the induced map Hn( f ) ∶ Hn(X)Ð→
Hn(Y) is an isomorphism for all n ∈ Z.

Definition 3.3.8. Let X, Y ∈ C(C) a morphism f ∶ X Ð→ Y is called a homotopy equivalance if there exist g ∶ Y Ð→ X so
that f ○ g is homotopic to IdY and g ○ f is homotopic to IdX . If such an homotopy equivalance exist we say that X and Y are
homotopically equivalant. In other words a homotopy equivalance is an isomorphism in K(C).

Lemma 3.3.9. • Let f , g ∶ X Ð→ Y be morphism of complexes, if they are homotopic then the induced morphisms Hn( f )
and Hn(g) are equal for all n ∈ Z

• If f is a homotopy equivalance then f is a qusi isomorphism.

Corollary 3.3.10. Hn(−) is an additive functor from K(C) to C.

Remark 3.3.11. Let X, Y, Z ∈ C(C) and f ∶ X Ð→ Y, g ∶ Y Ð→ Z be morphisms of complexes

• f ∶ X Ð→ Y is monic if and only if f n ∶ Xn Ð→ Yn is monic for all n.

• f ∶ X Ð→ Y is epi if and only of f n ∶ Xn Ð→ Yn is epi for all n.

• The sequence X Ð→ Y Ð→ Z is exact if and onlly if the sequence Xn Ð→ Yn Ð→ Zn is exact for all n.

Proposition 3.3.12. Let 0 Ð→ X Ð→ Y Ð→ Z Ð→ 0 be an exact sequence in C(C) then there exist a canonical long exact
sequence in C

. . . Ð→ Hn(X)Ð→ Hn(Y)Ð→ Hn(Z)Ð→ Hn+1(X)Ð→ . . .

Proof. We already know that ker(coker(dn−1
X )Ð→ Zn+1(X)) = Hn(X) and coker(coker(dn−1

X )Ð→ Zn+1(X)) = Hn+1(X).
Consider the following commutative diagram

coker(dn−1
X ) coker(dn−1

Y ) coker(dn−1
Z ) 0

0 Zn+1(X) Zn+1(Y) Zn+1(Z)

With exact raws (Since Xn Ð→ Yn Ð→ Zn is exact the corresponding ker and coker sesquences are exact). Applying
snake lemma (remark 9.2.8) to the above diagram we obtain an exact sequence

Hn(X)Ð→ Hn(Y)Ð→ Hn(Z)Ð→ Hn+1(X)Ð→ Hn+1(Y)Ð→ Hn+1(Z)

. The proposition follows immediately.
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Definition 3.3.13. Let X ∈ C(C) then we define the truncated complexes τ≥n(X) and τ≤n(X) by:

τ≤n(X) ∶ . . . Ð→ Xn−2 Ð→ Xn−1 Ð→ ker(dn
X)Ð→ 0Ð→ . . .

τ≥n(X) ∶ . . . Ð→ 0Ð→ coker(dn−1
X )Ð→ Xn+1 Ð→ Xn+2 Ð→ . . .

Its easy to see that

Hi(τ≤n(X)) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 if i > n

Hi(X) if i ≤ n

and

Hi(τ≥n(X)) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Hi(X) if i ≥ n

0 if i < n

Notation:

• We set τ<n(X) ∶= τ≤n−1(X) and τ>n(X) ∶= τ≥n+1(X).

Proposition 3.3.14. Let X ∈ C(C)

• The natural morphism Hk(tr≤n)(X) Ð→ Hk(X) (induced from tr≤n(X) Ð→ X) is an isomorphism for k ≤ n and
Hk(tr≤n)(X) = 0 for k > n.

Proposition 3.3.15. τ≤n and τ≥n defines functors from C(C) to C(C) which transforms morphisms homotopic to zero into
morphisms homotopic to zero (hence defines a functor from K(C) to K(C)).

3.4 Mapping Cones

Let C be an additive category

Definition 3.4.1. Let f ∶ X Ð→ Y be a morphism in C(C), the mapping cone of f , denoted by M( f ), is the object of C(C)
defined as follows:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

M( f )n ∶= Xn+1⊕Yn

dn
M( f) ∶=

⎛
⎜
⎝

dn
X[1] 0

f n+1 dn
Y

⎞
⎟
⎠

(recall that dn
X[1] = −dn+1

X )

Remark 3.4.2. We have morphisms dn
X[1] ∶ Xn+1 Ð→ Xn+2 and 0 ∶ Yn Ð→ Xn+2 this induces a unique morphism l ∶

Xn+1⊕Yn Ð→ Xn+2. Similarly we have morphisms f n+1 ∶ Xn+1 Ð→ Yn+1 and dn
Y ∶ Yn Ð→ Yn+1 this induces a unique

morphism m ∶ Xn+1⊕Yn Ð→ Yn+1. We denote by dn
M( f) ∶ Xn+1⊕Yn Ð→ Xn+2⊕Yn+1 the unique morphism induced by l

and m.

We define morphisms α( f ) ∶ Y Ð→ M( f ) and β( f ) ∶ M( f )Ð→ X[1] by:

α( f )n ∶=
⎛
⎝

0
IdYn

⎞
⎠

β( f )n (IdXn+1 , 0)

Lemma 3.4.3. For any f ∶ X Ð→ Y in C(C), there exists φ ∶ X[1] Ð→ M(α( f )n) where α is an isomorphism in K(C) such
that the following diagram commutes in K(C).
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Y M( f ) X[1] Y[1]

Y M( f ) M(α( f )) Y[1]

α( f)

IdY

β( f)

IdM( f)

− f [1]

φ IdY[1]

α( f) α(α( f)) β(α( f))

Note that such a result would not hold in C(C). Note further that φ is not unique even in K(C).

Definition 3.4.4. One defines a triangle in K(C) as being a sequence of morphisms X Ð→ Y Ð→ Z Ð→ X[1] and a morphism
of triangles as being a commutative diagram in K(C):

X Y Z X[1]

X′ Y′ Z′ X[1]′
φ φ[1]

Definition 3.4.5. A triangle X Ð→ Y Ð→ Z Ð→ X[1] in K(C) is called a distinguished triangle, if it is isomorphic to a
triangle

X′ Y′ M( f ) X′[1]
f α( f) β( f)

for some f in C(C).

Proposition 3.4.6. The collection of distiguished triangles in K(C) satisfies the following properties

• (TR 0) A triangle isomorphic to a distinguished triangle is distinguished.

• (TR 1) For any X ∈ K(C)

X X 0 X[1]IdX

is a distinguished triangle.

• (TR 2) Any f ∶ X Ð→ Y in K(C) can be embedded in a distinguished triangle

X Y Z X[1]
f

• (TR 3)

X Y Z X[1]
f g h

is a distinguished triangle if and only if

Y Z X[1] Y[1]
g h − f [1]
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• (TR 4) Given two distinguished triangles

X Y Z X[1]
f

and
X′ Y′ Z′ X′[1]

f ′

a commutative diagram

X Y

X′ Y′

f

u v
f ′

can be embedded in a morphism of triangles (not necessarily unique).

• (TR 5) (octahedral axiom). Suppose given distinguished triangles:

X Y Z′ X[1]
f

Y Z X′ Y[1]
g

X Z Y′ X[1]
g○ f

Then there exist a distinguished triangle

Z′ Y′ X′ Z′[1]

such that the following diagram is commutative

X Y Z′ X[1]

X Z Y′ X[1]

Y Z X′ Y[1]

Z′ Y′ X′ Z′[1]

f

IdX g IdX[1]

g○ f

f IdZ f [1]
g

IdX′

3.5 Triangulated categories

Let C be an additive category, together with an automorphism (functor) T ∶ C Ð→ C. We write sometimes [1] for T
and [k] for Tk, (i.e. X[1] for T(X), or f [1] for T( f )). A triangle in C is a sequence of morphisms X Ð→ Y Ð→ Z Ð→
T(X)
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Definition 3.5.1. An additive category C consists of the following data

• An automorphism T ∶ C Ð→ C.

• A family of triangles, called distinguished triangles.

Which satisfies the axioms (TR 0)-(TR 5) of proposition 3.4.6 when setting X[1] = T(X) is called a triangulated category.

Definition 3.5.2. Let (C, T) and (C′, T′) be two triangulated categories. We say that an additive functor F from C to C′ is a
functor of triangulated categories if F ○ T = T′ ○ F′ and F sends distinguished triangles of C into distinguished triangles of C′.

Definition 3.5.3. Let C be a triangulated category and A be an abelian category. An additive functor F ∶ C Ð→ A is called a
cohomological functor if for any distinguished triangle X Ð→ Y Ð→ Z Ð→ T(X), the sequence F(X) Ð→ F(Y) Ð→ F(Z) is
exact.

For a cohomological functor F we write Fk for F ○ Tk. Let X Ð→ Y Ð→ Z Ð→ T(X) be a distinguished triangle then
by (TR 3) Y Ð→ Z Ð→ T(X)Ð→ T(Y) is a distinguished triangle from this property we obtain a long exact sequence

. . . Ð→ Fk−1(Z)Ð→ Fk(X)Ð→ Fk(Y)Ð→ Fk(Z)Ð→ Fk+1(Z)Ð→ . . .

Proposition 3.5.4. Let C be a triangulated category

• If

X Y Z T(X)
f g

is a distinguished triangle then g ○ f = 0.

• For any object W ∈ C, HomC(W,−) and HomC(−, W) are cohomological functors.

Note: Let C be an additive category and f ∶ X Ð→ Y be a morphism in C(C) then α( f ) ○ f ∶ X Ð→ Y Ð→ M( f ) is zero
in K(C) but it need not be zero in C(C).

Corollary 3.5.5. Let
X Y Z T(X)

X′ Y′ Z′ T(X′)

φ ψ θ T(φ)

be a morphism of distinguished triangle (in C). If φ and ψ are isomorphism then so is θ.

Proposition 3.5.6. Let C be an abelian category then the functor Hn(−) ∶ k(C)Ð→ C is a cohomological functor.

Lemma 3.5.7. Let f ∶ X Ð→ Y be a morphism in K(C) then f is a quasi isomorphism if and only if Hn(M( f )) = 0 for all
n ∈ Z.

Definition 3.5.8. Let C be a triangulated category. A triangle

X Y Z T(X)α β γ

in C is called antidistinguished if the triangle

X Y Z T(X)α β −γ
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is a distinguishede triangle.

3.6 Localisation of Categories

Definition 3.6.1. Let C be a category and S be a family of morphisms in C. S is a called a multiplicative system if it satisfies
(S1) to (S4) below:

• (S1) For any X ∈ C, IdX ∈ S

• (S2) For any pair ( f , g) of S such that the composition g ○ f exists, g ○ f ∈ S.

• (S3) Any diagram
Z

X Y

g

f

with g ∈ S may be completed to a commutative diagram

W Z

X Y

h g

f

with h ∈ S. Ditto with all the arrows reversed.

• (S4) If f , g ∈ HomC(X, Y) the following conditions are equivalent

– there exists t ∶ Y Ð→ Y′, t ∈ S such that t ○ f = t ○ g,

– there exists s ∶ X′ Ð→ X, s ∈ S, such that f ○ s = g ○ s.

Definition 3.6.2. Let C be a category and S a multiplicative system.We can define a category CS called the localization of C at
S as follows:

Ob(CS) ∶= Ob(C)

For any X, Y ∈ C define

HomCS(X, Y) ∶= {(X′, s, f ) ∶ X′ ∈ C s ∶ X′ Ð→ X, f ∶ X′ Ð→ Y s ∈ S}/ ∼

where (X′, s, f ) ∼ (X′′, t, g) if and only if there exist a commutative diagram

X

X′ X′′′ X′′

Y

s

f

u
t

g

with u ∈ S.
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The composition of (X′, s, f ) ∈ HomCS(X, Y) and (Y′, t, g) ∈ HomCS(Y, Z) is defined as follows. We use (S3) to find a
commutative diagram:

X′′

X′ Y′

X Y Z

t′
h

s
f

t

g

with t′ ∈ S. We set (Y′, t, g) ○ (X′, s, f ) = (X′′, s ○ t′, g ○ h)

The relation ∼ given in the definition is an equivalence relation.Its easy to see that composition is well defined,
assosciative and IdX∈CS = (X, IdX , IdX), that is CS is indeed a category. We define a functor Q ∶ C Ð→ CS by setting
Q(X) ∶= X ∀X ∈ C and Q( f ) ∶= (X, IdX , f ) ∀ f ∈ HomC(X, Y).

Proposition 3.6.3. Let C be a category and S be a multiplicative system.

• For any s ∈ S Q(s) is an isomorphism in CS

• Let C′ bee another category, F ∶ C Ð→ C′ be a functor such that F(s) is an isomorphism for all s ∈ S. Then F factors
uniquely through Q.

Remark 3.6.4. • Let (X′, s, f ) ∈ HommCS(X, Y) then (X′, s, f ) = (X′, IdX′ , f ) ○ (X′, s, IdX). Let α be a functor from
CS to some other category. The action of α on morphisms is completely determined by its action on morphisms of the form
(X′, s, IdX′), (X′, IdX′ , f ). Let β be another functor from CS with the same target as α, if α ○Q = β ○Q then α = β.

• From the above remark and proposition 3.6.3 we get that (CS)o ≅ (Co)S.

Proposition 3.6.5. Let C be a category and C′ be a full subcategory. Let S be a multiplicative system in C and S′ be the family
of morphisms of C′ which belongs to S. Assume S′ is a multiplictive system in C′ and one of the following condition holds.

1. For every morphism f ∶ X Ð→ Y in S with Y ∈ Ob(C′) there exist g ∶ W Ð→ X with W ∈ Ob(C′) and f ○ g ∈ S.

2. The same as (1) with arrows reversed.

Then C′S′ is a full subcategory of CS

Definition 3.6.6. Let C be a triangulated category, and let N be a subfamily of Ob(C). One says N is a null system if it
statisfies (N1)-(N3) below

• (N1) 0 ∈ N .

• (N2) X ∈ N if and only if X[1] ∈ N .

• (N3) if X Ð→ Y Ð→ Z Ð→ X[1] is a distinguished triangle. If X, Y ∈ N then Z ∈ N .

Set S(N ) ∶= { f ∶ X Ð→ Y ∶ f is embedded into a distinguished triangle X Ð→ Y Ð→ Z Ð→ X[1] with Z ∈ N}

Proposition 3.6.7. Let C be a triangulated category. Assume N is a null system then S(N ) is a multiplicative system in C.

Notation: Let C be a triangulated category and N be a null system. We write C/N instead of CS(N ).

Proposition 3.6.8. Let C be a triangulated category and N a null system. Let Q ∶ C Ð→ C/N be the canonical functor.

• C/N becomes a triangulated category by taking for distinguished triangles those isomorphic to the image of a distin-
guished triangle in C.
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• We have Q(X) ≅ 0 for all X ∈ N .

• Any functor F ∶ C Ð→ C′ of triangulated categories with F(X) ≅ 0 for all X ∈ N factors uniquely through Q.

Proposition 3.6.9. Let C be a triangulated category and N be a null system in C, C′ be a full triangulated subcategory of C
such that any distinguished triangle X Ð→ Y Ð→ Z Ð→ X[1] in C with X, Y ∈ C′, is a distinguished triangle in C′. Set
N ′ ∶= N ∩Ob(C′)

• N ′ is a null system in C′.

• Assume moreover that any morphism Y Ð→ Z in C with Y ∈ C′, Z ∈ N factorizes through an object ofN ′ Then C′/N ′

is a full subcategory of C/N .

3.7 Derived categories

In this section we localise the category K(C) (we assume C is an abelian category through out this section) with
respect to a multiplicative system which will be defined soon. Define

N ∶= {X ∈ K(C) ∶ Hn(X) = 0 ∀n ∈ Z}

0 ∈ N and X ∈ N ⇔ X[1] ∈ N . Let f ∶ X Ð→ Y be a morphism in K(C) if X, Y ∈ N then Hn( f ) (Since HX , Hn(Y) = 0)
is an isomorphism for all n ∈ Z hence by lemma 3.5.7 we get Hn(M( f )) = 0. Hence N is a null system
f ∈ S(N ) ⇔ M( f ) ∈ N ⇔ Hn(M( f )) = 0 ∀n ∈ Z ⇔ f is a quasi isomorphim. The last implication follows from
lemma 3.5.7. That is S(N ) is the collection of quasi isomorphisms of K(C).

Definition 3.7.1. We set D(C) ∶= K(C)/N and call D(C) the derived category of C.

Let s ∈ S(N ) then Hn(s) is ans isomorphism. From proposition 3.6.3 it follows that the functor Hn(−) from K(C) to
C factors through D(C). By abusing the notaion we use Hn to denote the functor from D(C) to C so obtained.
Using Kb(C) (resp. K+(C) ,resp. K−(C)) instead of K(C) in the construction of D(C) we construct derived category
Db(C) (resp. D+(C), resp. D−(C)).

Proposition 3.7.2. • Db(C) (resp. D+(C), resp. D−(C)) is equivalent to the full subcategory of D(C) consisting of
objects X such that Hn(X) = 0 for ∣n∣ ≫ 0 (resp. n ≪ 0, resp. n ≫ 0).

• By the composition of the functor C Ð→ K(C) Ð→ D(C), C is equivalent to the full subcategory of D(C) consisting of
objects X such that Hn(X) = 0 for n ≠ 0.

Let X ∈ K(C) then Q(X) ≅ 0 (Q ∶ K(C) Ð→ D(C)) if and only if there exist Y ∈ K(C) such that X⊕Y ∈ N . Then
0 = Hn(X⊕Y) = Hn(X)⊕Hn(Y) (Since Hn(−) is a additive functor) this would imply that Hn(X) = 0 for all n,
hence X ∈ N in other words Q(X) ≅ 0 if and only if X is quasi isomorphic to 0 in K(C).
Let f ∶ X Ð→ Y be a morphism in C(C). f is zero in D(C) if and only if there exist a quasi isomorphism g ∶ X′ Ð→ X
such that f ○ g = 0 in K(C) (or f ○ g is homotopic to 0)

X

X M X

Y

IdX

0

g

g
g

IdX

f
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according to (S4) existence of such a g is equivalent to the existance of h ∶ Y Ð→ Y′ such that h ○ f = 0 in K(C) (or
h ○ f is homotopic to 0) . That is f is zero in D(C) if and only if there exist a quasi isomorphism h ∶ Y Ð→ Y′ such
that h ○ f = 0 in K(C) (or h ○ f is homotopic to 0).

Proposition 3.7.3. Let C be an abelian category and

0 X Y Z 0
f g

be an exact sequence in C(C). Let M( f ) be the mapping cone of f and φn ∶ M( f )n = Xn+1⊕Yn Ð→ Zn be the morphism
(0, gn). Then {φn}n ∶ M( f )Ð→ Z is a morphism of complexes, φ ○ α( f ) = g and φ is a quasi isomorphism.

That is an exact sequence 0 Ð→ X Ð→ Y Ð→ Z Ð→ 0 in C(C) give rise to a distinguished triangle X Ð→ Y Ð→ Z Ð→
X[1] in D(C) where Z Ð→ X[1] = β( f ) ○ φ−1.

Remark 3.7.4. 1. Isomorphisms satisfy "2 out of 3" property that is If any two of the morphisms f ∶ X Ð→ Y, g ∶ Y Ð→
Z, g ○ f ∶ X Ð→ Z is an isomorphism then the third one is also an isomorphism. If f , g are isomorphism then g ○ f is an
isomorphism. Now assume f , g ○ f is an isomorphism, let h be the inverse of f and l be the inverse of g ○ f . We claim that
f ○ l is the inverse of g. g ○ ( f ○ l) = IdZ, we have h = l ○ g ○ f ○ h = l ○ g then ( f ○ l ○ g) = f ○ h = IdY hence isomorphism
satisfy "2 out of 3" property.

2. Let X, Y be complexes and f ∶ X Ð→ Y be a quasi isomorphism. From proposition 3.3.15 we know that τ≥n() and
τleqn(−) defines functor from K(C) to K(C). consider the following diagram

. . . 0 Coker(dn−1
X ) Xn+1 . . .

. . . Xn−1 Xn Xn+1 . . .

. . . Yn−1 Yn Yn+1 . . .

. . . 0 Coker(dn−1
Y ) Yn+1 . . .

αX

αY

If k > n then τ≥n( f )k = f k and if k < n then τ≥n( f )k = 0 hence if k ≠ 0, Hk(τ≥n( f )) is an isomorphism. We
have αY ○ f n ○ dn−1

X = αY ○ dn−1
Y ○ f n−1 = 0 hence there exist l ∶ Coker(dn−1

X ) Ð→ Coker(dn−1
Y ) such that l ○ αX =

αY ○ f n. we know that l = τ≥n( f )n, hence Hn(τ≥n( f )) ○ Hn(X Ð→ τ≥n(X)) = Hn(Y Ð→ τ≥n(Y)) ○ Hn( f ). From
proposition 3.3.14 we know that Hn(X Ð→ τ≥n(X)) and Hn(Y Ð→ τ≥n(Y)) are isomorphisms. Hence (1) implies
that Hn(τ≥n( f )) is an isomorphism. So τ≥n(−) takes quasi isommorphisms to quasi isomorphisms hence by proposition
3.6.3 τ≥n(−) induces a functor D(C) Ð→ K(C) composing this functor with the K(C) Ð→ D(C) we get a functor
D(C)Ð→ D(C) which we denote by τ≥n(−) (by abusing the notation). Strictly speaking τ≥n ∶ D(C)Ð→ D+(C).

3. Similarly τ≤n give rise to a functor D(C)Ð→ D−(C) which we again denote by τ≤n.

Lemma 3.7.5. Let
W X

Y Z

a

b g

f
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be a commutative diagram

• If the diagram is cartesian then X⊔W Y Ð→ Z is a monomorphism.

• If the diagram is cocartesian then W Ð→ X ×Z Y is an epimorphism.

Corollary 3.7.6. Let
W X

Y Z

a

b f
g

be a commutative diagram

• If there exist a monomorphism X⊔W Y Ð→ Z then there exist an epimorphism W Ð→ X ×Z Y.

• If there exist an epimorphism W Ð→ X ×Z Y then there exist a monomorphism X⊔W Y Ð→ Z.

Lemma 3.7.7. Let
W X

Y Z

a

b f
g

be a commutative diagram

• If the diagram is cocartesian then the morphism l ∶ Ker(a)Ð→ Ker(g) induced by b is an epimorphism.

• If the diagram is cartesian then the morphism l ∶ Coker(a)Ð→ Coker(g) induced by f is a monomorphism.

Corollary 3.7.8. Let
W X

Y Z

a

b f
g

be a commutative diagram.

• Let n ∶ X⊔W Y Ð→ Z be a monomorphism then c ∶ Ker(a) Ð→ Ker(g) induced by b is an epimorphism and d ∶
Coker(a)Ð→ Coker(g) induced by f is a monomorphism.

• Let m ∶ W Ð→ X ×Z Y be a epimorphism then c ∶ Ker(a) Ð→ Ker(g) induced by b is an epimorphism and d ∶
Coker(a)Ð→ Coker(g) induced by f is a monomorphism.

Proposition 3.7.9. Let F be a full additive subcategory of C such that for any X ∈ C there exist X′ ∈ F and an exact sequence
0Ð→ X Ð→ X′ then:

• For any X ∈ K+C there exist X′ ∈ K+(F) and a quasi isomorphism f ∶ X Ð→ X′.

• Let N be as in definition and let N ′ = N ∩K+(F) then the canonical functor K+(F)/N ′ Ð→ D+(C) is an equivalance
of categories.

Lemma 3.7.10. Let X ∈ C(C), if Hn(X) = 0 then the complex X is exact at Xn.
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Proof. We have Im(dn−1
X ) Ð→ Xn = Ker(dn

X) Ð→ Xn ○ Im(dn−1
X ) Ð→ Ker(dn

X). Im(dn−1
X ) Ð→ Xn is a monomorphism

hence Im(dn−1
X ) Ð→ Ker(dn

X) is also a monomorphism. Hn(X) = 0 implies that Im(dn−1
X ) Ð→ Ker(dn

X) is an epimor-
phism hence Ker(dn

X) ≅ Im(dn−1
X ). That is the complex is exact at Xn.

Corollary 3.7.11. Let F be a full additive subcategory of C such that for any X ∈ C there exist X′ ∈ F and an exact sequence
0 Ð→ X Ð→ X′ (hypothesis of proposition 3.7.9) and there exist an integer d ≥ 0 such that for any exact sequence X0 Ð→
X1 Ð→ . . . Ð→ Xd Ð→ 0 in C with X j ∈ F whenever j < d then Xd ∈ F .
Then for any X ∈ Kb(C) there exist X′Kb(F) and a quasi isomorphism X Ð→ X′.

Proof. Proposition 3.7.9 imples that there exist X′ ∈ K+(C) and a quasi isomorphism X Ð→ X′. Let n be such that
H j(X) = 0 for all j > n. Then we get that H j(X′) = 0 for all j > n. Therefore τ≤n+d(X′)Ð→ X′ is a quasi isomorphism.
We know that if k < n + d then τ≤n+d(X′)k ∈ C and for k > n + d, τ≤n+d(X′)k = 0. Since Hk(τ≤n+d(X′)) = 0 for all
k > n from lemma 3.7.10 we obtain an exact sequence τ≤n+d(X′)n Ð→ τ≤n+d(X′)n+1 Ð→ . . . Ð→ τ≤n+d(X′)n+d Ð→ 0,
from the hypothesis it follows that τ≤n+d(X′)n+d ∈ F . Hence τ≤n+d(X′) ∈ Kb(F). Its easy to see that the quasi
isomorphism X Ð→ X′ induces a quasi isomorphism X Ð→ τ≤n+d(X′).

Definition 3.7.12. One says that C has enough injectives if for any X ∈ C there exist an injective object X′ ∈ C and a
monomorphism X Ð→ X′

Proposition 3.7.13. Assume C has enough injectives, and let F be the full subcategory of injective objects. Then the natuaral
functor K+(F)Ð→ D+(C) is an equivalance of categories.

Definition 3.7.14. C′ is a thick subcategory of C if for any exact sequence Y Ð→ Y′ Ð→ X Ð→ Z Ð→ Z′ in C with Y, Y′, Z, Z′

in C′, X belongs to C′

Let C′ be a full subcategory of C, by D+
C′(C) we denote the full subcategory of D+(C) consisting of complexes whose

cohomology objects belongs to C′, then there is a natural functor

δ ∶ D+(C′)Ð→ D+
C′(C)

Proposition 3.7.15. Let C be an abelian category, C′ a thick full abelian subcategory. Assume that for any monomorphism
f ∶ X′ Ð→ X with X′ ∈ C′, there exists a morphism g ∶ X Ð→ Y, with Y ∈ C′ such that g ○ f is a monomorphism. Then the
functor δ (described above) is an equivalence of categories.

3.8 Derived Functor

In this section C and C′ denotes abelian categories and F ∶ C Ð→ C′ denotes an additive functor. Q denotes the
natuaral functor K+(C)Ð→ D+(C) or the natuaral functor K+(C′)Ð→ D+(C′)

Definition 3.8.1. Let T ∶ D+(C) Ð→ D+(C′) be a functor of triangulated categories, and let s ∶ Q ○K+(F) Ð→ T ○ Q be
a morphism of functors (where K+(F) ∶ K+(C) Ð→ K+(C′) is the functor natuarally associated to F). Assume that for any
functor of triangulated categories G ∶ D+(C) Ð→ D+(C′), the morphism Hom(T, G) Ð→ Hom(Q ○K+(F), G ○Q) induced
by s is an isomorphism. Then (T, S), which is unique up to isomorphism, is called the right derived functor of F, and denoted
RF. The functor Hn ○ RF, also denoted RnF, is called the n-th derived functor of F.

From nowonwards until proposition 3.8.4 we assume that F is left exact.

Definition 3.8.2. A full additive subcategory F of C is called injective with respect to F (or F-injective, for short), if:

1. for any X ∈ C there exist X′ ∈ F and an exact sequence 0Ð→ X Ð→ X′.
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2. Let 0Ð→ X′ Ð→ X Ð→ X′′ Ð→ 0 be an exact sequence in C. If X′, X ∈ F then X′′ ∈ F .

3. Let 0 Ð→ X′ Ð→ X Ð→ X′′ Ð→ 0 be an exact sequence in C. If X′, X, X′′ ∈ F then 0 Ð→ F(X′) Ð→ F(X) Ð→
F(X′′)Ð→ 0 is exact.

Let F be an F injective full subcategory of C then F takes objects of K+(F) quasi isomorphic to zero to objects of
K+(C′) quasi isomorphi to zero. Hence from proposition 3.6.8 it follows that the functor

K+(F)Ð→ K+(C′)Ð→ D+(C′)

factors through K+(F)/N ′ where N ′ = N ∩F (where N is as mentioned in definition 3.7.1). From proposition 3.7.9
we obtain that K+(F)/N ′ is equivalent to D+(C).

Proposition 3.8.3. Assume that there exists an F-injective subcategoryF of C. Then the functor from K+(F)/N ′ Ð→ D+(C′)
constructed above is the right derived functor of F.

It follows from the universal property of RF that the above construction is independent of the choice of F

Proposition 3.8.4. Let C,C′C′′ be three abelian categories and let F ∶ C Ð→ C′, F′ ∶ C′ Ð→ C′′ be two left exact functors.
Assume there exists a full additive sub- subcategory F of C (resp. F ’ of C′) which is F-injective (resp. F′-injective), and such
that F(Ob(F)) ⊂ Ob(F ′). Then F is (F′ ○ F)-injective, and we have:

R(F′ ○ F) = RF ○ RF′



Chapter 4

Quasi-coherent modules

4.1 OX-modules

Let W be a topological space and G and G′ be presheaves on W then we can define a new presheaf G × G′ on W by
setting

G ×G′(V) = G(V)×G′(V) ∀ open sets V ⊆ W

and by defining the restriction morphisms in the obvious way. Its straightforward to see that if G,G′ are sheaves
then G ×G′ is a sheaf.
From now onwards we assume that (W,OW) is a ringed space.

Definition 4.1.1. Consider a ringed space (W,OW). A sheaf G on W with the following (addition and scalar multiplication )
sheaf morphisms is called an OW−module.

• G ×G,Ð→ G, (t, t′)↦ t + t′ for t, t′ ∈ G(V), V ⊆ W open.

• OW ×G Ð→ G, (a, t)↦ at for a ∈ OW(V), t ∈ G(V), V ⊆ W open.

such that these maps gives G(V) the structure of an OW(V)-module for every open set V of W.
Given OW−modules G1 and G2 we define a morphism of OW modules as a sheaf morphism x ∶ G1 Ð→ G2 such that xV ∶
G1(V)Ð→ G2(V) is an OW(V)−module homomorphism for every open set V of W, That is

xV(t + t′) = xV(t)+wV(t′),

wV(at) = axV(t)

for all t, t′ ∈ G1(V) and for all a ∈ OW(V).

The collection of OW-modules forms a category which is denoted by OW − Mod. Using 0 we denote the trivial or
zero OW−module which is defined by setting 0(V) = 0 for all open set V of W
Examples:

• "Let W be a topological space and let Z be the constant sheaf of rings on W with value Z. Then a Z-module
is simply a sheaf of abelian groups on W".

• Consider a topological space W consisting of a single point and a ring B. Set OW(W) = B then OW module is
just an B−module M.

Let G be an OW module and let w ∈ W. Let V ⊆ W be an open set containing w then the OW(V) module structure
on G(V) induces an OW,w module structure on Gw. If x ∶ G Ð→ G′ is a morphism of OW modules then the morphism
xw ∶ Gw Ð→ G′w induced on stalks is morphism of OW,w modules.

60
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Consider a locally ringed space (W,OW). Set

G(w) ∶= Gw/mwGw = Gw ⊗
OW,w

κ(w)

(here mw denotes the maximal ideal of OW,w and κ(w) ∶= OW,w/mw). This is a κ(w) vector space called the fiber of G
in w. Let t ∈ G(V) then by t(w) we denote the image of tw ∈ Gw in G(w)

Definition 4.1.2. Consider a OW−module G. If F is another OW−module such that for every open set V of W F(V) ⊆ G(V)
and the inclusion iV ∶ F(V) Ð→ G(V) give rise to a OW−module morphism i ∶ F Ð→ G we say that F is an OW−submodule
of G. The OW-submodules of OW are called ideals of OW .

Definition 4.1.3. Let F be an OW-submodule of the OW module G. Define the quotient of G by F as the sheaf assosciated to
the presheaf (sheafification)

V ↦ G(V)/F(V) V ⊆open W

it denoted by G/F . The OW module structure of G induces an OW-module structure on G/F .

The canonical homomorphism G(V)Ð→ G(V)/F(V) induces an OW-module homomorphism G Ð→ G/F .
Let w ∈ W then we have

(G/F)w = limÐ→
w∈V

(G/F)(V) = limÐ→
w∈V
G(U)/F(V) = Gw/Fw

where V runs through the open neighborhoods of w.
Let x ∶ G Ð→ G′ be a morphism of OW-modules then we define kernel,image and cokernel of x as follows.

Definition 4.1.4. • The presheaf V ↦ Ker(xV ∶ G(V) Ð→ G′(V)) is a sheaf hence an OW-submodule of G. It is called
the kernel of x and is denoted by Ker(x). We get that Ker(x)w = Ker(xw) for all w ∈ W hence w is injective if and only
if Ker(x) = 0

• The sheaf assosciated to the presheaf V ↦ Im(xV ∶ G(V)Ð→ G′(V)) is anOW-submodule of G′. It is called the image of
x and is denoted by Im(x). We get that Im(x)w = Im(xw) for all w ∈ W hence w is surjective if and only if Im(x) = G′

• The sheaf assosciated to the presheaf V ↦ Coker(xV ∶ G(V) Ð→ G′(V)) is an OW-submodule of G′. It is called the
cokernel of x and is denoted by Coker(x). We get that Coker(x)w = Coker(xw) for all w ∈ W

All these definitions are compatible with the definitions of kernel, image and cokernel made in chapter 3. Its
straightforward to see that Coker(x) ≅ G′/Im(x)

Proposition 4.1.5. Every OW-module morphism x ∶ G Ð→ G′ induces an isomorphism

G/Ker(x) ≅ Im(x)

Definition 4.1.6. A sequence of morphisms of OW-modules

G G′ G′′x x′

is said to be exact if it satisfies the consitions given below.

• "Im(x) ≅ Ker(x′)"

• For every w ∈ W the sequence at the level of stalks of OW,w−modules Gw Ð→ G′w Ð→ G′′w is exact
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A sequence . . . Ð→ Gi−1 Ð→ Gi Ð→ Gi+1 Ð→ Gi+2 Ð→ . . . is exact, if Gi−1 Ð→ Gi Ð→ Gi+1 is exact for all i.
Let x, x′ ∶ G Ð→ G′ be morphisms of OW-modules. By setting (x + x′)V ∶= xV + x′V for all open sets V of W we define
x + x′ in the obvious way. Let a ∈ Γ(W,OW) then we can define ax ∶ G Ð→ G′ by setting (ax)V ∶= a∣V xV . That is
HomOW (G,G′) has a structure of Γ(W,OW) module.

Proposition 4.1.7. • A sequence 0 Ð→ G′ Ð→ G Ð→ G′′ of OW-"modules is exact if and only if for all open subsets"
V ⊆ W and for all OV-modules F the sequence

0Ð→ HomOV(F ,G′∣V)Ð→ HomOV(F ,G∣V)Ð→ HomOV(F ,G′′∣V)

of Γ(V,OW)-modules is exact.

• A sequence G′ Ð→ G Ð→ G′′ Ð→ 0 of OW-modules is exact if and only if for all open subsets V ⊆ W and for all
OV-modules F the sequence

0Ð→ HomOV(G
′∣V ,F)Ð→ HomOV(G∣V ,F)Ð→ HomOV(G

′′∣V ,F)

of Γ(V,OW)-modules is exact.

4.1.1 Basic constructions of OX-modules

In this subsection (X,OX) will always denote a ringed space
Direct Sum and Direct Product:
Consider a family of OW−modules (Gi)i∈I then the sheafification of the presheaf

V ↦⊕
i∈I
Gi(V)

is anOW-module (defining the addition and scalar multiplication component wise), it is called the direct sum of the
family (Gi)i∈I and is denoted by ⊕i∈I Gi.
Since Direct sum and inductive limit commute with each other we obtain the followingOW,w-module isomorphism

(⊕
i∈I
Gi)w ≅⊕

i∈I
Gi,w

The presheaf
V ↦∏

∈I
Gi(V)

is a sheaf and an OW-module, it is said to be the direct product of the family (Gi)i∈I and we use ∏i∈I Gi to denote it.
We get the following OW,w-module homomorphism

(∏
i∈I
Gi)w Ð→∏

i∈I
Gi,w.

If Gi = G for some OW-module G , we use G(I) (resp. G I ) instead of ⊕i∈I Gi (resp. ∏i∈I Gi ).

Proposition 4.1.8. OW−modules with their morphisms form an additive category this is indeed an abelian category

"Sums and intersections of submodules"
Consider anOW−module G and a family (Gi)i∈I ofOW−submodules of G then we define∑i Gi to be the image of the
canonical homomorphism

⊕
i
Gi Ð→ G



CHAPTER 4. QUASI-COHERENT MODULES 63

which is a OW−submodule of G. The intersection ⋂i Gi of the family (Gi) is the OW-submodule of G defined as the
kernel of the canonical homomorphism

G Ð→∏
i∈I
G/Gi

Tensor product
Let G and F be two OW-modules. The sheaf assosciated to the presheaf

V ↦ G(V)⊗
OW

F(V)

is an OW-module. It is said to be the tensor product of G and F and we use G⊗OW F to denote it.
Support
Consider an OX-module G then

Suppe(G) ∶= {w ∈ W ∶ Gw ≠ 0}

Algebra
Consider a ringed space (W,OW) then an OW-algebra is an OW-module B together with an OW -bilinear multipli-
cation

B ×B Ð→ B, (b, b′)↦ bb′ ∀b, b′ ∈ B(V), V ⊆ W

this map has to be defined in such a way that for all open sets V of W it givesB(V) the structure of anOW(V)−algebra.

4.1.2 Direct and inverse image of OX-modules

We would like to define "Direct and inverse image" of OW-modules similar to the direct and inverse image of a
sheaf
Consider a morphism of ringed spaces f ∶ (W,OW)Ð→ (Z,OZ).
Direct image:
Let G and G′ be sheaves on W then we have

f∗(G ×G′) = f∗(G)× f∗(G′)

Suppose G is an OW−module then from the functoriality of f∗ we get morphisms

f∗(G)× f∗(G)Ð→ f∗(G), f∗(OW)× f∗(G)Ð→ f∗(G)

and these morphisms give f∗(G) a structure of an f∗(OW)-module. We can give f∗(G) the structure of anOZ−module
via the map f ♭. f∗(G) with this structure of anOZ−module is called the direct image of G under f . That is f∗ defines
a functor from the category of OW-modules to the category of OZ-modules.
Inverse image:
Consider the sheaves F and F ′ defined on Z, then

f−1(F ×F ′) = f−1(F)× f−1(F ′)

Let F is an OZ-module then similar to the case of direct image we can endow f−1(F) the structure of an f−1(OZ)-
module (addition and scalar multiplication is defined via the functoriality of f−1). Via f ♯ ∶ OZ Ð→ OW , OW is an
f−1OZ algebra. Therefore

f ∗F ∶= OW ⊗
f−1OZ

f−1F

"is endowed with the structure of an OW-module which we call the inverse image of F under f ".
f ∗ defines a functor from the catgeory of OZ-modules to the catgeory of OW-modules.
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Proposition 4.1.9. For every OW-module G and every OZ-module F there is an isomorphism of Γ(Z,OZ)-modules

HomOW ( f ∗F ,G)Ð→ HomOZ(F , f∗G)

that is functorial in G and F .

4.2 "Quasi-coherent modules on a scheme"

4.2.1 The OSpec(B)-module Ñ attached to an B-module N

Consider a ring B and the assosciated affine scheme W = Spec(B), let N be an B-module. We define a presheaf Ñ on
{D( f ) ∶ f ∈ B} by setting

Γ(D( f ), Ñ) ∶= N f

Theorem 4.2.1. Letf Ñ be defined as above then Ñ is a sheaf on {D( f ) ∶ f ∈ B}.

We can extend this sheaf to W, again we denote this sheaf by Ñ. For every f ∈ B, N f is a B f -module this induces an
OW-module structure on Ñ. If we view B as a module over itself we obtain that B̃ = OW .
Let M be another B−module and v ∶ N Ð→ M be an B-module homomorphism then v induces homomorphisms
v f ∶ N f Ð→ M f of B f modules for every f ∈ B. It is starightforward to see that v f s give rise to an OW-module
homomorphism ṽ ∶ Ñ Ð→ M̃. That is N ↦ Ñ is a functor from the category of B modules to the category of
OW-modules.
a morphism x ∶ G Ð→ F of OW modules give rise to an B-module homomorphism xW ∶ Γ(W,G) Ð→ Γ(W,F). Then
Γ that takes G to Γ(W,G) is a functor from the category of OW modules to the category of B−modules.

Proposition 4.2.2. Consider an affine scheme W = Spec(B) then given any B−modules N and M

HomB(N, M) HomOW (Ñ, M̃)
v↦ṽ

Γ

"are mutually inverse. that is, the functor N ↦ Ñ is fully faithful".

Proposition 4.2.3. Consider a ring B and the assosciated affine scheme W = Spec(B).

1. A sequence of B-modules N Ð→ M Ð→ P is exact if and only if the corresponding sequence Ñ Ð→ M̃ Ð→ P̃ is an exact
sequence of OW-modules.

2. Consider the B−module homomorphism v ∶ N Ð→ M. Then

Ker(ṽ) = ˜Ker(v), Im(ṽ) = ˜Im(v), Coker(ṽ) = ˜Coker(v)

"In particular, u is injective (resp. surjective, resp. bijective) if and only if ũ is".

3. Consider a family of B-modules (Ni)i∈I . Then
⊕
i∈I

Ñi = ˜(⊕
i∈I

Ni)

4. "Let N be the filtered inductive limit of an inductive system of B-modules" Nλ. "Then Ñ is the inductive limit of the
inductive system Ñλ of OW-modules".



CHAPTER 4. QUASI-COHERENT MODULES 65

4.2.2 Quasi-coherent modules

Definition 4.2.4. Consider a ringed space W,OW and an OW−module G. Suppose given any w ∈ W we can find an open set
V of W containing w such that there exist an exact sequence of OW∣U−modules as given below

O J
W∣V

Ð→ OI
W∣V Ð→ G∣V Ð→ 0

(I and J are indexing sets that depends up on w) Then G is said to be quasi-coherent.

Consider a ringed space W. We call an OW -algebra quasi-coherent if the corresponding OW-module is quasi-
coherent. Set

W f ∶= {w ∈ W ∶ fw is invertible in OW,w}

Its easy to see that W f is open in W. "The image of f under the restriction homomorphism" Γ(W,OW)Ð→ Γ(W f ,OW)
is invertible. That is given any OW-module G the restriction homomorphism Γ(W,G) Ð→ Γ(W f ,G) give rise to a
homomorphism of Γ(W,OW)-modules

Γ(W,G) f Ð→ Γ(W f ,G) (∗)

If W = Spec(B) then W f is simply the principal open set D( f ).

Theorem 4.2.5. Consider a scheme W and an OW−module G. Then the assertions given below are equivalent.

1. The existance of a B−module N such that G∣V = Ñ is guaranteed for any given affine subset V = Spec(B) of W.

2. W admits an affine open covering (Vi = Spec(Bi))i∈I such that there exist Bi−module Ni and G∣Vi ≅ Ñi for all i.

3. G is quasi-coherent.

4. Given open subset of W of the form V = Spec(B) and f ∈ B the homomorphism (∗)

Γ(W,G) f Ð→ Γ(D( f ),G)

is an isomorphism.

Corollary 4.2.6. Consider a scheme W = Spec(B) then we have an equivalence of the "category of B−modules" with the
"category of OW−modules" via the functor N ↦ Ñ.

Corollary 4.2.7. Consider a scheme W.

1. Consider a morphism of quasi-coherent OW−modules v ∶ G Ð→ F . Then Ker(v), Coker(v), "and Im(v) are quasi-
coherent OW -modules".

2. The direct sum "of quasi-coherent OW-modules is again quasi-coherent".

3. Consider a quasi-coherent OW−module G and a family (G′i )i∈I of quasi-coherent submodules of G. Then ∑i G′i and for
finite I ⋂i Gi are quasi-coherent.

4. The tensor "product G⊗OW F is quasi-coherent, and for every open affine subset V ⊆ W we have"

Γ(V,G⊗
OW

F) = Γ(V,G) ⊗
Γ(V,OW)

Γ(V,F).

The corollary show that given a scheme W the "category of quasi-coherent OX-modules" is abelian.
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4.2.3 Extending sections of quasi-coherent modules

Let (W,OW) be a locally ringed space and let T be an invertible OW-module. For every w ∈ W there exist an open
neighborhood V of w and an isomorphism x ∶ T ∣V ≅ OW ∣V . Let t ∈ Γ(W,T ), t is called invertible in w if xw(tw) is a
unit in OW,w (that is if and only if t(w) ≠ 0 ∈ T (w)). We set

Wt(T ) ∶= {w ∈ W ∶ t is invertible in w}

For T = OW we have Ws(OW) = Ws

Definition 4.2.8. Consider a scheme W. Suppose for any affine open sets X, Y of W the intersection X ∩Y is quasi-compact
then we say that W is quasi seperated.

In particular, if a scheme is locally noetherian then it is quasi seperated.

Theorem 4.2.9. Consider a "quasi compact " and "quasi seperated" scheme W and a quasi-coherent OW−module G. Let
t ∈ Γ(W,T ) be a global section of an invertible OW−module T .

• consider a global section s ∈ Γ(W,G) such that s∣Wt = 0. Then existance of an integer m > 0 with s⊗ t⊗m = 0 ∈
Γ(W,G⊗T ⊗m) is assured.

• Given any s′ ∈ Γ(W,G) the existance of an integer m > 0 and and s ∈ Γ(W,G⊗T ⊗m) with s∣Wt = s′⊗ t⊗m is assured.

4.2.4 "Direct and inverse image of quasi-coherent modules"

Proposition 4.2.10. "Let f ∶ W = Spec(B) Ð→ Z = Spec(A) be a morphism of affine schemes and let ψ ∶ A Ð→ B be the
corresponding ring homomorphism".

• "Let N be a B-module and let ψ∗(N) be the restriction of scalars to A, i.e., ψ∗(N) = N considered as an A-module via
ψ. Then there is a functorial isomorphism of OZ-modules"

f∗(Ñ) ≅ ˜ψ∗(N)

• "Let N be an A-module. Then there is a functorial isomorphism of OW-modules"

f∗(Ñ) ≅ ˜B⊗
A

N.

4.3 Properties of quasi-coherent modules

4.3.1 Modules of finite type and of finite presentation

Definition 4.3.1. Let (W,OW) be a ringed space. AnOW-module G "is called of finite type (resp. of finite presentation) if for
all w ∈ W there exists an open neighborhood V of w and an exact sequence of OW∣V -modules of the form"

Om
W∣V Ð→ G∣V Ð→ 0

(resp. of the form On
W∣V Ð→ O

m
W∣V Ð→ G∣V Ð→ 0) "where n, m ≥ 0 are integers (dependent on w)".

Proposition 4.3.2. Let W = Spec(B) be an affine scheme. An B-module N is of finite type (resp. of finite presentation) if and
only if Ñ is an OW-module of finite type (resp. of finite presentation).

Proposition 4.3.3. Let (W,OW) "be a ringed space and let G be an OW-module of finite presentation".
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1. "For all w ∈ W and for each OW-module F , the canonical homomorphism of OW,w-modules"

HomOW (G,F)w Ð→ HomOW,w(Gw,Fw)

is bijective.

2. "Let G and F be two OW-modules of finite presentation. Let w ∈ W be a point and let θ ∶ Gw ≅ Fw be an isomorphism
of OW,w-modules. Then there exists an open neighborhood V of w and an isomorphism v ∶ G∣V Ð→ F ∣V of OV-modules
such that vw = θ".

Proposition 4.3.4. "Let (W,OW) be a ringed space and G be an OW-module of finite type. Then G is of finite presentation if
and only if for each open set V ⊆ W and for each exact sequence of OV-modules"

0Ð→ G′ Ð→ F Ð→ G∣V Ð→ 0

"where F is of finite type, G′ is an OV-module of finite type".

4.3.2 Support of a module of finite type

Proposition 4.3.5. "Let (W,OW) be a ringed space and let G be an OW-module of finite type. Let w ∈ W be a point and let
ti ∈ Γ(V,G) for i = 1, . . . , m be" sections over some open neighborhood of w such that the germs (ti)w generate the stalk Gw .
"Then there exists an open neighborhood U ⊆ V , such that the ti∣U generate G∣U" .

Corollary 4.3.6. Let (W,OW) be a ringed space. "For every OW-module G of finite type and any integer r ≥ 0 the subset"

Wr ∶= {w ∈ W ∶ Gw can be generated by r elements as OW,w −module}

is open in W.

If (W,OW) is a locally ringed space the from Nakayama lemma it follows that

Wr = {w ∈ W ∶ dimκ(w)F(w) ≤ r}

Corollary 4.3.7. Let (W,OW) be "a ringed space and let G be an OW-module of finite type. Then Supp(G) is closed in W".

Proposition 4.3.8. Let W be a scheme, let J be an ideal of OW , and set

Y ∶= Supp(OW/J ) OY = i−1
Y (OW/J )

Then Y is a closed subset of W, and (Y,OY) is a closed subscheme of W if and only if J is a quasi-coherent OW-module.

Corollary 4.3.9. "Let W be a scheme. Attaching to a quasi-coherent ideal J the closed subscheme (Y ∶= Supp(OW/J ),
i−1
Y (OW/J )) defines a bijection between the set of quasi-coherent ideals of OW and the set of closed subschemes of W. An

inverse bijection is given by attaching to a closed subscheme (Y,OY) the kernel of OW Ð→ (iY)∗OY" .

Proposition 4.3.10. "Let W be a scheme and let G be a quasi-coherent OW-module of finite type". Then Ann(G) is a quasi-
coherent "ideal of OW , for every open affine subset V ⊆ W we have Γ(V, Ann(G)) = AnnΓ(V,G), and the underlying
topological space" of V(Ann(G)) is Supp(G).

4.3.3 Flat and finite locally free modules

Given a morphism of ringed spaces f ∶ W Ð→ Z and an OW−module G, for each w ∈ W, we can give a OZ, f (w)-
module structure to the OW,w-module Gw via the homomorphism f ♯w ∶ OZ, f(w) Ð→ OW,w.
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Definition 4.3.11. 1. The OW-module G is called flat over Z in w or f -flat in w if Gw is a flatOZ, f(w)-module. It is called
flat over Z or f -flat if G is flat over Z in all points w ∈ W.

2. If W = Z and f = idW , we simply say that G is flat in w if it is idW-flat in w, i.e. if Gw is a flatOW,w-module. Similarly,
G is called flat, if Gw is a flat OW,w-module for all w ∈ W.

3. We say that f is flat, or that W is flat over Z , if OW is flat over Z.

Proposition 4.3.12. "Let (W,OW) be a locally ringed space and let G be an OW-module. Then the following assertions are
equivalent".

1. G "is locally free of finite type".

2. "G is of finite presentation and Gw is a free OW,w-module for all w ∈ W".

3. "G is flat and of finite presentation".

Corollary 4.3.13. "Let W = Spec(B) be an affine scheme and let N be a B-module. Then the following assertions are
equivalent".

1. Ñ "is a locally free OW-module of finite type".

2. "N is a finitely generated projective" B-module.

3. N "is a flat B-module of finite" presentation.

Lemma 4.3.14. Let W be a scheme, let Y ⊆ W be a finite set of points and let V = Spec(B) be an open affine neighborhood of Y.
Let E be a finite locally free OW-module of constant rank r. Then there exists an s ∈ B such that Y ⊂ D(s) and E∣D(s) ≅ Or

D(s)

4.3.4 Coherent modules

Definition 4.3.15. "Let (W,OW) be a ringed space. An OW-module G is called coherent if G is of finite type and if for every
open subset V ⊆ W, every integer m ≥ 0, and for every homomorphism x ∶ Om

W ∣V Ð→ G∣V the kernel of x is of finite type".

Proposition 4.3.16. "Let W be a locally noetherian scheme and let G be an OW-module. Then the following assertions are
equivalent":

1. G is coherent.

2. G is of finite presentation.

3. G "is of finite type and quasi-coherent".

Corollary 4.3.17. "Let W be a locally noetherian scheme. Let 0 Ð→ G′ Ð→ G Ð→ G′′ Ð→ 0 be an exact sequence of
quasi-coherent OW-modules. Then G is coherent if and only if G′ and G′′ are coherent".



Chapter 5

Cohomology of Sheaves

Notation:

• Ab denotes the category of abelian groups

• Mod(A) denotes the category of modules over a ring A.

• Ab(X) denotes the category of sheaves of abelian groups on a topological space X.

• Mod(X) denotes the category of sheaves of OX-modules on a ringed space (X,OX).

• Qco(X) denotes the category of quasi-coherent sheaves of OX-modules on a scheme X.

• Chs(X) the category of coherent sheaves ofOX-modules on a noetherian scheme X.

5.1 Cohomology of Sheaves

In this section we define the cohomology of sheaves by taking the derived functor of the functor (X,OX) ↦
Γ(X,OX). As a first step we verify that all the categories we use has enough injectives

Proposition 5.1.1. If A is a ring, then every A-module is isomorphic to a submodule of an injective A-module.

Proposition 5.1.2. Let (X,OX) be a ringed space. Then the category Mod(X) of sheaves of OX-modules has enough injec-
tives.

Corollary 5.1.3. If X is any topological space, then the category Ab(X) of sheaves of abelian groups on X has enough
injectives.

Definition 5.1.4. Let X be a topological space. Let Γ(X,−) be the global section functor from Ab(X) to Ab. We define the
cohomology functors Hi(X,−) to be the right derived functors of Γ(X,−). For any sheaf F , the groups Hi(X,F) are the
cohomology groups of F .

whenever we speak about the cohomology functor we only consider the underlying abelian sheaf structure of the
given sheaf (in this chapter we only deal with sheaves which takes values in a cetgory whose objects has an abelian
group structure)

Definition 5.1.5. A sheaf F on a topological space X is flasque if for every inclusion of open sets V ⊆ U, the restriction map
F(U)Ð→ F(V) is surjective.

Lemma 5.1.6. If (X,OX) is a ringed space, any injective OX-module is fiasque.

69



CHAPTER 5. COHOMOLOGY OF SHEAVES 70

Proposition 5.1.7. If F is a flasque sheaf on a topological space X, then Hi(X,F) = 0 for all i > 0.

The category of sheaves has enough injectives and finding cohomology groups Hi(X,F) requires finding injective
resolutions of sheaves. This is inconvenient but fortunately every sheaf has a flasque resolution and the cohomology
can be computed using the flasque resolution.

Proposition 5.1.8. Let (X,OX) be a ringed space. Then the derived functors of the functor Γ(X,−) from Mod(X) to Ab
coincide with the cohomology functors Hi(X,−).

Lemma 5.1.9. On a noetherian topological space, a direct limit of flasque sheaves is flasque.

Proposition 5.1.10. Let X be a noetherian topological space, and let (Fα)α be a direct system of abelian sheaves. Then there
are natural isomorphisms, for each i ≥ 0

limÐ→Hi(X,Fα)Ð→ Hi(X, limÐ→Fα)

Lemma 5.1.11. Let Y be a closed subset of X, let F be a sheaf of abelian groups on Y, and let j ∶ Y Ð→ X be the inclusion.
Then Hi(Y,F) = Hi(X, j∗F), where j∗F is the extension of F by zero outside Y

Theorem 5.1.12. A Vanishing Theorem of Grothendieck: Let X be a noetherian topological space of dimension n. Then for
all i > n and all sheaves of abelian groups F on X, we have Hi(X,F) = 0.

outline of proof: The proof is based on induction on n = dim(X)
Step 1: Show that it is enough to prove the theorem for the case X is irreducible.
Step 2:Prove the theorem for X irreducible and dim(X) = 0
Step 3:Assume X is irreducible and execute the induction.

5.2 Cohomology of a Noetherian Affine Scheme

Lemma 5.2.1. Let A be a noetherian ring, let a be an ideal of A, and let I be an injective A-module. Then the submodule
J = Γa(I) is also an injective A-module.

Lemma 5.2.2. Let I be an injective module over a noetherian ring A. Then for any f ∈ A, the natural map of I to its
localization I f is surjective.

Proposition 5.2.3. Let I be an injective module over a noetherian ring A. Then the sheaf Ĩ on X = Spec(A) is fiasque.

Theorem 5.2.4. Let X = Spec(A) be the spectrum of a noetherian ring A. Then for all quasi-coherent sheaves F on X, and
for all i > 0, we have Hi(X,F) = 0.

Corollary 5.2.5. Let X be a noetherian scheme, and letF be a quasi-coherent sheaf on X. ThenF can be embedded in a flasque,
quasi-coherent sheaf G.

Theorem 5.2.6. Let X be a noetherian scheme. Then the following conditions are equivalent:

1. X is affine.

2. Hi(X,F) = 0 for all F quasi-coherent and all i > 0.

3. H1(X,J ) = 0 for all coherent sheaves of ideals J .
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5.3 Čech Cohomology

Let F be a sheaf of abelian groups on X and let X = ⋃i∈I Ui be an open cover of X we denote this open cover by
U . Fix once and for all, a well ordering of the indexing set I. For any finite J ⊆ I we set UJ ∶ ⋂j∈J Uj. that is if
J = {i0, . . . , ip} we define UJ={i0,...,ip} = Ui0 ∩ ⋅ ⋅ ⋅ ∩Uip .
Define a complex C(U ,F) by setting

Cp(U ,F) ∶= ∏
i0<⋅⋅⋅<ip

F(Ui0,...,ip)

an element α ∈ Cp(U ,F) is determined by giving αi0,...,ip ∈ F(Ui0,...,ip) for each p + 1 tuple i0 < . . . ip of elements of I.
Hence we can define the cobundary map dp ∶ Cp(U ,F)Ð→ Cp+1(U ,F) by defining (dp(α))i0,...,ip+1 for all p+ 2 tuples
i0 < ⋅ ⋅ ⋅ < ip+1 of I. Define

(dp(α))i0,...,ip =
p+1

∑
j=0

(−1)jαi0,...,îj ,...,ip+1
∣Ui0,...,ip

where îj means we are omitting ij

Definition 5.3.1. Let X be a topological space and let U be an open covering of X. For any sheaf of abelian groups F on X,
we define the pth Čech cohomology group of F , with respect to the covering U , to be

ˆHp(U ,F) = hp(C(U ,F))

Note: here hp(C(U ,F)) is the pth cohomology object of the chain C(U ,F) in the sense of chapter 8.

Lemma 5.3.2. Let X be a topological space and let U be an open covering of X. For any sheaf of abelian groups F on X

Ĥ0(U ,F) ≅ Γ(X,F)

Let V ⊆ X be an open set and f ∶ V Ð→ X denotes the inclusion map. Given (X,U ,F) (where the symbols have their
usual meaning) we construct a new complex C(U ,F) by setting

Cp(U ,F) ∶= ∏
i0<⋅⋅⋅<ip

f∗(F∣Ui0,...,ip
)

and we define the coboundary map in the obvious way.

Theorem 5.3.3. For any sheaf of abelian groups on X, the complex C(U ,F) is a resolution of F , i.e., there is a natural map
ε ∶ F Ð→ C0 such that the sequence of sheaves

0Ð→ F Ð→ C0 Ð→ C1 Ð→ . . .

is exact.

Proposition 5.3.4. Let X be a topological space, let U be an open covering, and let F be a fiasque sheaf of abelian groups on
X. Then for all p > 0 we have ĤP(U ,F) = 0.

Proposition 5.3.5. Let X be a topological space, and U an open covering. Then for each p ≥ 0 there is a natural map, functorial
in F ,

Ĥp(U ,F)Ð→ Hp(X,F)

Theorem 5.3.6. Let X be a noetherian separated scheme, let U be an open affine cover of X, and let F be a quasi-coherent sheaf
on X. Then for all p ≥ 0, the natural maps of proposition 10.2.11 give isomorphisms

Ĥp(U ,F)Ð→ Hp(X,F)
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5.4 Ext Group and Sheaves

Let (X,OX) be a ringed space. If F and F ′ are OX−modules we denote by Hom(F ,F ′) the group of OX-module
homomorphisms and by HomSH(F ,F ′) the morphisms of sheaves.

Definition 5.4.1. Let (X,OX) be a ringed space, and let F be an OX-module. We define the functors Exti(F ,−) as the right
derived functors of Hom(F ,−), and Exti(F ,−) as the right derived functors of HomSH(F ,−).

Lemma 5.4.2. If J is an injective object of Mod(X), then for any open subset U ⊆ X, J ∣U is an injective object of Mod(U).

Proposition 5.4.3. For any open subset U ⊆ X and OX-modules F ,G we have

Exti
X(F ,G)∣U ≅ Exti(F ∣U ,G∣U)

Proposition 5.4.4. For any GMod(X), we have:

• Ext0(OX ,G) = G.

• Exti(OX ,G) = 0 ∀i > 0.

• Exti(OX ,G) = Hi(OX ,G), ∀i ≥ 0.

Proposition 5.4.5. If 0 Ð→ F ′ Ð→ F Ð→ F ′′ Ð→ 0 is a short exact sequence in Mod(X), then for any G we have a long
exact sequence

0Ð→ Hom(F ′′,G)Ð→ Hom(F ,G)Ð→ Hom(F ′,G)

Ð→ Ext1(F ′′,G)Ð→ Ext1(F ,G)Ð→ . . .

and similarly for the Ext sheaves.

Proposition 5.4.6. Let X be a noetherian scheme, let F be a coherent sheaf on X, let G be any OX-module, and let x ∈ X be a
point. Then we have

Ext(F ,G)x ≅ Exti
OX

(Fx,Gx)

for any i ≥ 0, where the right-hand side is Ext over the local ring OX,x·
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