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Abstract

In this thesis, we have calculated the bipartite entanglement entropy of the quantum many-

body linear kicked rotor system. We have looked at how this entropy changes with time and

with the parameter of the system. The classical version of this system is unique in that it

shows no chaotic dynamics for any value of kicking strength. We have tried to induce chaos

into this system by introducing a momentum interaction term. This changes the quantum

dynamics of the system and its spectral statistics.
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Introduction

Quantum kicked rotor has been used as a simple model to study Hamiltonian chaos. In

more recent times, there has been greater interest in the many body versions of this model

to study the phenomenon of many body localisation. Many body localisation is a distinctly

quantum phenomenon in which all the eigenvalues of the system are localised instead of

achieving thermal equilibrium. It’s a relatively new field of study that makes us revisit the

fundamentals of quantum statistical mechanics.

The many-body localised linear kicked rotor is unique in that it is a fully integrable system

that shows exact correspondence in dynamics between the quantum and classical versions.

The many-body localisation in the system is also parameter dependent. So based on different

values of these parameters, the system can show both localised as well as delocalised dynam-

ics. We wanted to look at how these changes in the dynamics, localisation or delocalisation,

affect the correlation (entanglement) between the particles in the system. To quantify this

entanglement, we have endeavoured to calculate the entanglement entropy for the system.

Since neither the classical nor the quantum versions of the system show any signs of chaos,

we looked at inducing chaos into the classical system and quantifying the chaos in various

ways. We did this by introducing a momentum interaction term in place of interaction in

the position term. Once we had chaos in the classical system, we looked at how this affected

the quantum regime for this system, if we see chaos in the quantum system or if the system

still shows localisation and delocalisation.
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Chapter 1

The Model

Keser, Ganeshan, Refael and Galitski in their paper give the generalised model of an inter-

acting linear kicked rotor that is exactly solvable. The Hamiltonian for this system is given

by,

Ĥ = Ĥ0 + V̂
∞
�

n=−∞

δ(t− n), with V̂ =
d

�

i

Ki(θ̂i) (1.1)

Ĥ0 = 2π
d

�

i=1

αip̂i +
1

2

d−1
�

i�=j

Jij(θ̂i − θ̂j). (1.2)

Here, Ĥ0 is the static Hamiltonian that is linearly dependent on the momentum operator

and contains an interaction term. It describes d interacting particles on a ring moving

at a constant speed of 2παi radians per one period of kick. Jij is the interacting two-

body potential that is translationally invariant. This results in conservation of momentum

for the system. The kicking potential is given by V̂ which contains the delta function

impulses, the periodic kicks and the kicking strength given by a generic periodic function

Ki(θ̂i). This Ki(θ̂i) is periodic in 2π and they have taken its Fourier expansion to give,

Ki(θ̂i) =
�

m kme
imθi , where km are the arbitrary Fourier coefficients. Similarly Jij has been

expanded to give Jij(θ̂i − θ̂j) =
�

m bijme
im(θi−θj). Here, bijm are the Fourier coefficients of the

interacting potential between the i-th and the j-th particles.

The main aim of their paper is to show that dynamical many body localisation in the

momentum basis exists for this system and it is shown using three quantifiers namely energy
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growth over long times, momentum degrees of freedom over long times and the existence of

integrals of motion.

They had obtained analytical expressions for these three quantities which are:

1. Average energy after N kicks, E(N) = �ΨN | Ĥ0 |ΨN�

E(N) = E(0) +
d

�

i=1

�

m

2παi�Γ̂mi�0
sin(mNπαi)

sin(mπαi)
(1.3)

|ΨN� = ÛN
F |Ψ0�, ÛF = e−iV̂ e−iĤ0 where ÛF is the Floquet evolution operator. E(0) =

�Ψ0| Ĥ0 |Ψ0� is the average energy over the initial state. Γ̂mi = −imkme
im(θ̂i+παi[N+1])

depends on the form of Ki(θ̂i) chosen. Since Γ̂mi is a bounded function of number

of kicks N , energy growth is dependent on the ratio sin(mNπαi)
sin(mπαi)

. If the denominator

blows up, the total energy average will become delocalised. In the derivation of this

result, they have shown that the translational invariance of the interaction potential

ensures conservation of momentum during interactions and that, coupled with the

linear dependence of the Hamiltonian of the system on the momentum, leads to the

total energy becoming independent of an interaction term. This no longer holds if the

interaction potential is not translationally invariant.

2. Spread in momentum degrees of freedom over long time, p̂i(N) = �ΨN | p̂i |ΨN�

pi(N) = �p̂i�0 +
�

m

�Γ̂mi�0
sin(mNπαi)

sin(mπαi)
+
�

mj

�Γ̂int
mij�0

sin(mNπ∆αij)

mπ∆αij

(1.4)

Here, ∆αij = αi−αj. The first term �p̂i�0 is the momentum of the ith particle averaged

over the initial wave-function. The second term corresponds to the kicking potential

and is the same as defined for the energy growth. The third term corresponds to the

interaction potential. Γint
mij = −imbijme

im(θ̂i−θ̂j+πN∆αij) and is again a bounded function

of N . Therefore, the growth of the momenta come from the ratio,
sin(mNπ∆αij)

mπ∆αij
. If the

denominator diverges, the momentum growth will be delocalised.

3. Existence of integrals of motion in the momentum basis

To construct the integrals of motion, they identify d operators Ĉi such that [Ĉi, ÛF ] = 0

and [Ĉi, Ĉj] = 0. These operators then satisfy the property that �Ĉi�N+1 = �Ĉi�N and
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are given by,

Ĉi = p̂i +
1

2

�

m

mkme
im(θ̂i+παi)

sin(mπαi)
+

1

2

�

mj

bijme
im(θ̂i−θ̂j)

π∆αij

(1.5)

Here, since the Ĉi are integrals of motion, the p̂i will be bounded as long as the other

two terms converge. Therefore the existence of these integrals of motion depend on θ

dependant terms in the equation and whether their denominators diverge or not.

For the system at hand, there always exist d integrals of motion corresponding to the

spatial variables, B̂i = θ̂i/αi (mod 2π), [B̂i, ÛF ] = 0. These integrals of motion however

do not contribute to the many body localisation in the system since they do not have

momentum dependence. These B̂i therefore ensure integrability of the model even if

the Ĉi do not exist.

Keser et. al. then give the three cases of αi for which localisation or delocalisation is

observed.

• Case 1: All the αi are distinct irrationals

In this case, all the denominators in the three quantities exist. The energy growth as

well as momentum growth are bounded for large N. All d of the integrals of motion Ĉi

also exist. There is complete many body localisation in this case.

• Case 2: α1 =
1
2
and α2...αd are distinct irrationals

In this case, the sin(mπαi) in the denominators of the kicking potential terms of the

three quantities go to zero for m = 2 and these denominators blow up. This happens

for any of the αi if they are rationals since there will be an m such that mαi is an

integer making these terms diverge. Thus for this case, the momentum corresponding

to particle 1 as well as the energy blow up and the Ĉ1 corresponding to α1 does not

exist even though the other Ĉi do exist. Therefore in this case there is delocalisation

in energy as well as p̂1 but localisation for all the other momenta and this is reflected

in the integrals of motion.

• Case 3: α1 = α2 and α2...αd are distinct irrationals

In this case, the interaction terms in the momenta and integrals of motion for particles

1 and 2 diverge due to their denominator (α1 − α2) going to 0. Total energy however

stays bounded since it does not depend on interaction. This is due to the translational
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invariance of the interaction potential which results in conservation of momentum.

Physically what this means is that for each pair of particles, each interaction results

in the exchange of momentum. This results in the total momentum and energy being

unaffected by the interactions. The momenta for particles other than 1 and 2 are also

bounded and the integrals of motion corresponding to them also exist. Thus there is

localisation of the total energy as well as momenta for particles 3 to d and delocalisation

of the momenta for particles 1 and 2. This is evidenced in the existence of Ĉi as they

do not exist for particles 1 and 2 and do exist for the rest. This case is special in

that it only exists for this model due to the translational invariance of the interaction

potential. If this property is broken, this will no longer hold.

1.1 Re-creation of the results of the paper

We attempted to re-create the results of the paper, mainly, the localisation and delocalisation

observed in energy and momenta plots for various values of αi. We did this for a simplified

version of their model given in equations (1.1) and (1.2).

For our simplified system, the unperturbed Hamiltonian is given by,

Ĥ0 = 2πα1p̂1 + 2πα2p̂2 + cos
�

θ̂1 − θ̂2

�

(1.6)

And the kicking potential is given by,

V̂ = cos
�

θ̂1

�

+ cos
�

θ̂2

�

(1.7)

The hamiltonian of the system is then,

Ĥ = 2πα1p̂1 + 2πα2p̂2 + cos
�

θ̂1 − θ̂2

�

+

�

cos
�

θ̂1

�

+ cos
�

θ̂2

�

� ∞
�

n=−∞

δ(t− n) (1.8)

Therefore we are looking at a 2-particle system with simple cosine potentials. This

simplification of the potentials causes a minor difference to the values of αi that correspond

to the three cases that Keser et. al. enumerated.
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(a) (b)

(c) (d)

(e) (f)

Figure 1.1: Momentum and energy standard deviation plots to show the evolution of these
quantities for the simplified system. Momentum and energy evolution respectively for (a),(b)
α1 = 0.67 and α2 = 1.31 (Case 1); (c),(d) α1 = 0.67 and α2 = 0.67 (Case 3); (e),(f) α1 = 0.67
and α2 = 1 (Case 2).
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• Case 1:

This case now holds if both the αi are simply distinct and non-integers. This is because

the denominator of the kicking term in the equations (1.3), (1.4) and (1.5) are now

sin(παi). So as long as αi is not an integer, these equations will be localised.

• Case 2:

This case holds if α1 is an integer while α2 is a non-integer. This is for the same reasons

given in case 1.

• Case 3:

This case holds if α1 = α2. This case is the same as for the case in the model given by

Keser et. al.

We have plotted the momentum and energy standard deviations in Fig.(1.1), which show

the evolution of these quantities. We see the localisation as well as delocalisation for the

three cases of αi, as mentioned above.
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Chapter 2

Entropy Calculation for the Quantum

Linear Kicked Rotor System

Entanglement entropy is a way to quantify entanglement present in any given system. We

calculate the entanglement entropy for the evolution wave-function as well as for the quasi-

energy wave-function of the quantum linear kicked rotor system and look at how it changes

with different localisation and delocalisation of the dynamics of the system. We have also

calculated the information entropy which quantifies the amount of information stored in any

given system.

2.1 Entanglement Entropy for a Continuous Variable

System

The system we are working with is a continuous variable system where the wave-functions

are in the position basis representation. Therefore to calculate the entanglement entropy

for such a system we need to calculate the density operator as well as its reduced density

operators in the continuous position basis.

The density operator of a system is defined as,

ρ = |Ψ� �Ψ| (2.1)
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For two particles, this wave-function can be written as,

|ψ� =
�

dθ1 dθ2Ψ(θ1, θ2) |θ1� |θ2� (2.2)

This gives the density matrix as,

ρ =

�

dθ1 dθ2 dθ
�

1 dθ
�

2Ψ(θ1, θ2)Ψ
∗(θ

�

1, θ
�

2) |θ1� �θ
�

1| |θ2� �θ
�

2| (2.3)

Here the kernel of the density operator is given by,

ρ = Ψ(θ1, θ2)Ψ
∗(θ

�

1, θ
�

2) (2.4)

To calculate the partial trace for this density operator we proceed as follows:

Taking partial trace over the outer product of the position basis states,

tr2( |θ1� �θ
�

1| |θ2� �θ
�

2| ) = |θ1� �θ
�

1| tr2( |θ2� �θ
�

2| ) (2.5)

Therefore,

tr2( |θ1� �θ
�

1| |θ2� �θ
�

2| ) = |θ1� �θ
�

1| δ(θ2 − θ
�

2) (2.6)

This gives the reduced density operator for the first particle as,

ρ1 =

�

dθ1 dθ2 dθ
�

1Ψ(θ1, θ2)Ψ
∗(θ

�

1, θ2) |θ1� �θ
�

1| (2.7)

Similarly, the reduced density matrix for the second particle can be written as,

ρ2 =

�

dθ1 dθ2 dθ
�

2Ψ(θ1, θ2)Ψ
∗(θ1, θ

�

2) |θ2� �θ
�

2| (2.8)

For the first particle, the reduced density matrix kernel is,

ρ1(θ1, θ
�

1) = �θ1| ρ1 |θ
�

1� =
�

dθ2Ψ(θ1, θ2)Ψ
∗(θ

�

1, θ2) (2.9)

For continuous variable systems, the eigenvalue equation for this reduced density matrix can

be written as,
�

dθ
�

1ρ1(θ1, θ
�

1)φi(θ
�

1) = λiφi(θ1) (2.10)
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Where λi is the ith eigenvalue and φi is the ith eigenfunction.

To solve for these eigenvalues of the reduced density matrix, we proceed by discretizing the

above equation,

δ

n
�

p=0

ρpqφp = λqφq (2.11)

Where, δ = 2π/n, with n divisions between 0 < θ1 ≤ 2π and 0 < θ
�

1 ≤ 2π, such that n → ∞.

This gives a discretised ρ1 in matrix form for which we can solve its characteristic equation

to find the eigenvalues.

Now, we proceed, using the procedure described above, to calculate the reduced density

matrices for the wave-functions of the simplified model system whose Hamiltonian is given

by equation (1.8) as well as the 3-particle version of the same system.

2.1.1 Calculating entanglement entropy for the evolution wave-

function (2-particles)

For the 2-particle system with the Hamiltonian given in equation (1.8), the evolution wave-

function is given by,

ΨN(θ1, θ2) = e−i
�N

n=1[cos(θ1+2πnα1)+cos(θ2+2πnα2)+cos(θ1−θ2+2πn(α1−α2))]ψ0(θ1, θ2), (2.12)

where ψ0 is the initial wave-function and we have chosen it to be,

ψ0(θ1, θ2) =
1

2π
ei(p

1
0θ1+p20θ2) (2.13)

For this wave-function, the reduced density matrix kernel is, from (2.9),

ρ1(θ1, θ
�

1) =

� 2π

0

dθ2
1

(2π)2
eip

1
0(θ1−θ

�

1)e
−i

�N
n=1

�

cos(θ1+2πnα1)−cos
�

θ
�

1+2πnα1

�
�

×e
−i

�N
n=1

�

cos(θ1−θ2+2πn(α1−α2))−cos
�

θ
�

1−θ2+2πn(α1−α2)
�
�

(2.14)
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We can simplify the summations using the identity,

N
�

n=1

cos(θ1 + 2πnα1) =
sin(Nπα1)

sin(πα1)
cos(θ1 + (N + 1)πα1) (2.15)

Then,

ρ1(θ1, θ
�

1) =

� 2π

0

dθ2
1

(2π)2
eip

1
0(θ1−θ

�

1)e
−i

sin(Nπα1)
sin(πα1)

�

cos(θ1+(N+1)πα1)−cos
�

θ
�

1+(N+1)πα1

�
�

×e
−i

sin(Nπ(α1−α2))
sin(π(α1−α2))

�

cos(θ1−θ2+(N+1)π(α1−α2))−cos
�

θ
�

1−θ2+(N+1)π(α1−α2)
�
�

(2.16)

Using trigonometric identities, we have,

cos(θ1 − θ2 + (N + 1)π(α1 − α2))− cos
�

θ
�

1 − θ2 + (N + 1)π(α1 − α2)
�

= 2 sin

�

θ1 + θ
�

1

2
− θ2 + (N + 1)π(α1 − α2)

�

sin

�

θ
�

1 − θ1

2

� (2.17)

Plugging this into (2.16) we get,

ρ1(θ1, θ
�

1) =

� 2π

0

dθ2
1

(2π)2
eip

1
0(θ1−θ

�

1)e
−i

sin(Nπα1)
sin(πα1)

�

cos(θ1+(N+1)πα1)−cos
�

θ
�

1+(N+1)πα1

�
�

× e
−2i

sin(Nπ(α1−α2))
sin(π(α1−α2))

sin

�

θ1+θ
�

1
2

−θ2+(N+1)π(α1−α2)

�

sin

�

θ
�

1−θ1
2

� (2.18)

This can be represented in simple form as,

ρ1(θ1, θ
�

1) =

� 2π

0

dθ2
2π

C1e
iC2 sin(θ2+C3)

=

� 2π

0

dθ2
2π

C1e
iC2 sin(θ2)

= C1J0(C2)

(2.19)

Where J0(C2) is the bessel function of the first kind and C1 and C2 are constants with respect

to the integration such that,

C1 =
1

2π
eip

1
0(θ1−θ

�

1)e
−i

sin(Nπα1)
sin(πα1)

�

cos(θ1+(N+1)πα1)−cos
�

θ
�

1+(N+1)πα1

�
�

(2.20)
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C2 = 2
sin(Nπ(α1 − α2))

sin(π(α1 − α2))
sin

�

θ
�

1 − θ1

2

�

(2.21)

Equation (2.19) then gives the reduced density matrix for the first particle which we can

discretise in θ1 and θ
�

1 variables to find the eigenvalues λi of the matrix as in equation (2.11).

The bipartite entanglement entropy for this reduced state is then,

S = −
�

i

�

λi
�

s λs

log2

�

λi
�

t λt

��

(2.22)

Here the
�

s λs in the denominator is used to normalise the eigenvalues.

2.1.2 Calculating the entanglement entropy for the evolution wave-

function (3-particles)

We extend the simplified model from equation (1.8) from 2 to 3 particles. The Hamiltonian

of the system then is,

Ĥ = 2πα1p̂1 + 2πα2p̂2 + 2πα3p̂3 + cos
�

θ̂1 − θ̂2

�

+ cos
�

θ̂1 − θ̂3

�

+ cos
�

θ̂2 − θ̂3

�

+

�

cos
�

θ̂1

�

+ cos
�

θ̂2

�

+ cos
�

θ̂3

�

� ∞
�

n=−∞

δ(t− n)
(2.23)

The evolution wave-function for this Hamiltonian is given by,

ΨN(θ1, θ2, θ3) = e−i
�N

n=1[
�3

j=1 cos(θj+2πnαj)+
1
2

�3
j �=k cos(θj−θk+2πn(αj−αk))]ψ0(θ1, θ2, θ3) (2.24)

Where ψ0 is the initial wave-function and is chosen to be,

ψ0(θ1, θ2, θ3) =
1

(2π)(3/2)
ei(p

1
0θ1+p20θ2+p30θ3) (2.25)

13



Using the trigonometric identities as in (2.15) and (2.17), we can write the reduced density

matrix of the first particle for this wave-function as,

ρ1(θ1, θ
�

1) =
1

(2π)3
eip

1
0(θ1−θ

�

1)e
−i

sin(Nπα1)
sin(πα1)

�

cos(θ1+(N+1)πα1)−cos
�

θ
�

1+(N+1)πα1

�
�

×

� 2π

0

dθ2e
−2i

sin(Nπ(α1−α2))
sin(π(α1−α2))

sin

�

θ1+θ
�

1
2

−θ2+(N+1)π(α1−α2)

�

sin

�

θ
�

1−θ1
2

�

×

� 2π

0

dθ3e
−2i

sin(Nπ(α1−α3))
sin(π(α1−α3))

sin

�

θ1+θ
�

1
2

−θ3+(N+1)π(α1−α3)

�

sin

�

θ
�

1−θ1
2

�

(2.26)

This equation can be written as,

ρ1(θ1, θ
�

1) = C1J0(C2)J0(C3) (2.27)

Where J0 is the Bessel function of the first kind and C1, C2 and C3 are constants w.r.t the

integration such that,

C1 =
1

2π
eip

1
0(θ1−θ

�

1)e
−i

sin(Nπα1)
sin(πα1)

�

cos(θ1+(N+1)πα1)−cos
�

θ
�

1+(N+1)πα1

�
�

(2.28)

C2 = 2
sin(Nπ(α1 − α2))

sin(π(α1 − α2))
sin

�

θ
�

1 − θ1

2

�

(2.29)

C3 = 2
sin(Nπ(α1 − α3))

sin(π(α1 − α3))
sin

�

θ
�

1 − θ1

2

�

(2.30)

We can extend this equation for reduced density matrix for n-particles easily,

ρ1(θ1, θ
�

1) = C1J0(C2)J0(C3) . . . J0(Cn) (2.31)

where the J0 are Bessel functions of the first kind. Discretisation of this ρ1 allows us to

calculate 1↔(N − 1) bipartite entanglement for any n number of particles.

2.1.3 The four cases of αi for evolution of entanglement entropy

There are 4 cases for different values of αi that affect the evolution of entanglement entropy

corresponding to the localisation and delocalisation of momenta and energy for the n-particle

system as described in the previous section.
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• Case 1: αi are non-integers and αi �= αj

For this case, both momenta of the n particles, as well as energy are localised. This

is the case where we have complete localisation in the system. We have observed that

the evolution of entanglement entropy for this case is periodic in time which agrees

with the periodic momentum dynamics of the system.

• Case 2: αi are non-integers and α1 = α2 while α2...αn are distinct

In this case, the momenta for particles 1 and 2 are delocalised while the energy as

well as the momenta for the other particles are localised. We have observed that the

entanglement entropy in this case shows a logarithmic increase. This evolution of

entanglement entropy looks like what you would expect when we observe chaos, or

delocalisation in the system.

• Case 3: α1 and α2 are integers while α3...αn are non-integers, and αi �= αj

In this case, the momenta for particles 1 and 2 as well as the energy are delocalised.

The entanglement entropy again shows logarithmic increase as in the previous case.

This evolution of entanglement entropy also looks like what you would expect when

we observe chaos, or delocalisation in the system.

• Case 4: α1 is an integer, α2...αn are non-integers and αi �= αj

In this case, the momentum for particle 1 and the energy are delocalised while the

momenta for the other particles are localised. We have observed that the entanglement

entropy in this case is periodic in time. This is a surprising case since we expected the

entropy to increase logarithmically due to the delocalisation in the system, as we did

in the previous two cases.

We looked at the math behind the four cases of evolution of entanglement entropy that we

get, for different cases of αi. We start with the evolution wave-function and, for simplicity

and clarity, we proceed with the 3-particle case:

ΨN(�θ) = e−i
�N

n=1[cos(θ1−θ2+2πn(α1−α2))+cos(θ2−θ3+2πn(α2−α3))+cos(θ1−θ3+2πn(α1−α3))]

×e−i
�N

n=1[cos(θ1+2πnα1)+cos(θ2+2πnα2)+cos(θ3+2πnα3)] × ψ0(�θ)
(2.32)

In this wave-function, we put in example values of αi in accordance with the 4 cases above.

Then the 4 cases for this wave-function equation are:
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• Case 1: α1 = 0.6, α2 = 0.5, α3 = 0.4

ΨN(�θ) = e−i
�N

n=1[cos(θ1−θ2+2πn(0.1))+cos(θ2−θ3+2πn(0.1))+cos(θ1−θ3+2πn(0.2))]

×e−i
�N

n=1[cos(θ1+2πn(0.6))+cos(θ2+2πn(0.5))+cos(θ3+2πn(0.4))] × ψ0(�θ)
(2.33)

• Case 2: α1 = 0.5, α2 = 0.5, α3 = 0.4

ΨN(�θ) = e−i
�N

n=1[cos(θ1−θ2)+cos(θ2−θ3+2πn(0.1))+cos(θ1−θ3+2πn(0.1))]

×e−i
�N

n=1[cos(θ1+2πn(0.5))+cos(θ2+2πn(0.5))+cos(θ3+2πn(0.4))] × ψ0(�θ)
(2.34)

• Case 3: α1 = 1, α2 = 2, α3 = 0.4

ΨN(�θ) = e−i
�N

n=1[cos(θ1−θ2)+cos(θ2−θ3+2πn(1.6))+cos(θ1−θ3+2πn(0.6))]

×e−i
�N

n=1[cos(θ1)+cos(θ2)+cos(θ3+2πn(0.4))] × ψ0(�θ)
(2.35)

• Case 4: α1 = 1, α2 = 0.5, α3 = 0.4

ΨN(�θ) = e−i
�N

n=1[cos(θ1−θ2+2πn(0.5))+cos(θ2−θ3+2πn(0.1))+cos(θ1−θ3+2πn(0.6))]

×e−i
�N

n=1[cos(θ1)+cos(θ2+2πn(0.5))+cos(θ3+2πn(0.4))] × ψ0(�θ)
(2.36)

We have plotted the entanglement entropy for these 4 cases in Fig.(2.1).

From these cases, we see that for cases 2 and 3, where we observe logarithmic increase of

entanglement entropy evolution, at least one of the interaction terms is independent of αi.

Whereas for cases 1 and 4, where the entanglement entropy evolution is periodic, there are

no interaction terms independent of αi. We explore further by looking at the Bessel function

terms in the density matrix equation (2.27).

For cases 1 and 4 where α1 and α2 are as given above, the Bessel function J0(C2) is found

to be,

J0(C2) =

� 2π

0

dθ2
2π

exp

�

i

�

2 sin(Nπ(α1 − α2))

sin(π(α1 − α2))
sin

�

θ
�

1 − θ1

2

�

sin(θ2)

��

(2.37)

J0(C3) is similar to this but with α3 instead of α2.

16



(a) (b)

(c) (d)

Figure 2.1: Entanglement entropy evolution plots corresponding to the 3-particle wave-
functions in the 4 example cases: (a)Case 1, (b)Case 2, (c)Case 3, (d)Case 4,
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Whereas for αi in cases 2 and 3, the Bessel function J0(C2) is found to be,

J0(C2) =

� 2π

0

dθ2
2π

exp

�

2iN sin

�

θ
�

1 − θ1

2

�

sin(θ2)

�

(2.38)

Therefore, mathematically, the logarithmic growth of the entanglement entropy evolution is

caused for cases 2 and 3 due to the N in the exponent. As this Bessel function in turn enters

the logarithm in the entropy equation (2.22), we get the dynamics that we observe. For the

cases 1 and 4, the N is replaced by a sinusoidal term because of which the entire exponent is

filled with sinusoidal terms. This leads to the periodicity that we observe when this Bessel

function is entered into the entropy equation.

Physically we can can say that, for case 1, the entanglement entropy is periodic since the

entire system is localised and shows periodic dynamics. For cases 2 and 3, the entanglement

entropy dynamics follows what we expect for delocalised systems, which is a logarithmic

increase. Case 4, which shows periodic entanglement entropy dynamics despite delocalisation

in one of the particles in the system, has been explained mathematically above but we have

not been able to explain it physically.

2.1.4 Calculating the entanglement entropy for the quasi-energy

wave-function (2-particles)

For the 2-particle system with the Hamiltonian given in equation (1.8), the quasi-energy

wave-function is given by,

Ψω(θ1, θ2) =
1

2π
exp

�

i �M.�θ − i

2

sin(θ1 + πα1)

sin(πα1)
− i

2

sin(θ2 + πα2)

sin(πα2)
− i

2

sin(θ1 − θ2)

π(α1 − α2)

�

(2.39)

Where ω are the quasi-energy eigenvalues corresponding to these wave-functions and are

given as,

ω = 2π�α. �M mod(2π) (2.40)

Here, M1 and M2 are any arbitrary integers.
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In terms of ω, the quasi-energy wave-function can be written as,

Ψω(θ1, θ2) =
1

2π
exp

�

iωθ1
2πα1

+
iωθ2
2πα2

− i

2

sin(θ1 + πα1)

sin(πα1)
− i

2

sin(θ2 + πα2)

sin(πα2)
− i

2

sin(θ1 − θ2)

π(α1 − α2)

�

(2.41)

The reduced density matrix kernel for the first particle is given by (2.9) and, for this wave-

function, it becomes,

ρ1(θ1, θ
�

1) =

� 2π

0

dθ2
1

(2π)2
exp

�

iω

2πα1

(θ1 − θ
�

1)−
i

2 sin(πα1)

�

sin(θ1 + πα1)− sin
�

θ
�

1 + πα1

�

��

× exp

�

− i

2π(α1 − α2)

�

sin(θ1 − θ2)− sin
�

θ
�

1 − θ2

�

��

(2.42)

From trigonometric identities, we get,

sin(θ1 − θ2)− sin
�

θ
�

1 − θ2

�

= 2 cos

�

θ1 + θ
�

1

2
− θ2

�

sin

�

θ1 − θ
�

1

2

�

(2.43)

The reduced density matrix then becomes,

ρ1(θ1, θ
�

1) =

� 2π

0

dθ2
1

(2π)2
exp

�

iω

2πα1

(θ1 − θ
�

1)−
i

2 sin(πα1)

�

sin(θ1 + πα1)− sin
�

θ
�

1 + πα1

�

��

× exp

�

i

π(α1 − α2)
cos

�

θ1 + θ
�

1

2
− θ2

�

sin

�

θ
�

1 − θ1

2

��

(2.44)

This can be written in simplified form as,

ρ1(θ1, θ
�

1) =

� 2π

0

dθ2
2π

C1e
iC2 sin(θ2) = C1J0(C2) (2.45)

Where J0 is the bessel function of the first kind and C1 and C2 are constants w.r.t the

integration and are such that,

C1 =
1

2π
exp

�

iω

2πα1

(θ1 − θ
�

1)−
i

2 sin(πα1)

�

sin(θ1 + πα1)− sin
�

θ
�

1 + πα1

�

��

(2.46)

C2 =
1

π(α1 − α2)
sin

�

θ
�

1 − θ1

2

�

(2.47)

This reduced density matrix can be discretised to get its eigenvalues and from that we can
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(a) (b)

(c) (d)

Figure 2.2: Entanglement entropy plots corresponding to the quasi-energy wave-functions for
the 4 cases of αi. As can be observed, all four of the plots show a constant entropy for 2500
eigenvalues of the system, the particular value of the constant being different for the 4 plots
due to difference in values of αi.(b)Entropy is clearly a constant value line. (a,c,d)Entropy
is still constant since the variations on the plot are of the order of 10−13 and 10−14 which is
outside the precision we are considering.
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calculate the entanglement entropy according to the equation (2.22)

We have plotted the entanglement entropy corresping to the quasi-energy eigenvalues in

Fig.(2.2). From the plots we observe that the entanglement entropy remains constant for all

the quasi-energy eigenstates corresponding to the different eigenvalues of the system. The

value of these constants is seen to be dependent on the values of the parameters αi. The

constant values for entanglement entropy seem to suggest a thermalisation happening in the

system for the quasi-energy eigenstates.

2.2 Information Entropy for the Quantum Linear Kicked

Rotor System

Information entropy of a system is calculated as,

S = −|Ψ|2 log
�

�Ψ
2
�

� (2.48)

For the system at hand, we calculate the information entropy for both the evolution and

quasi-energy wave-functions.

The evolution wave-function of the system is given by,

ΨN(θ1, θ2) = e−i
�N

n=1[cos(θ1+2πnα1)+cos(θ2+2πnα2)+cos(θ1−θ2+2πn(α1−α1))]ψ0(θ1, θ2) (2.49)

Where,

ψ0(θ1, θ2) =
1

2π
ei(p

1
0θ1+p20θ2) (2.50)

For this wave-function,

|Ψ|2 =
1

(2π)2
(2.51)

Which gives the information entropy for the wave-function as,

S =
1

2π2
log (2π) (2.52)
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Moving on to the quasi-energy wave-function for this system, it is given by,

Ψω(θ1, θ2) =
1

2π
exp

�

iωθ1
2πα1

+
iωθ2
2πα2

− i

2

sin(θ1 + πα1)

sin(πα1)
− i

2

sin(θ2 + πα2)

sin(πα2)
− i

2

sin(θ1 − θ2)

π(α1 − α2)

�

(2.53)

For this wave-function as well,

|Ψ|2 =
1

(2π)2
(2.54)

Which gives the information entropy for the wave-function as,

S =
1

2π2
log (2π) (2.55)

Therefore we see that unlike entanglement entropy, information entropy for the linear kicked

rotor system is always constant and equal for both the evolution as well as quasi-energy

wave-function and are independent of parameters of the system. This happening because

the dynamics of the system is completely phase dependent. As such, this information entropy

doesn’t really tell us much about the system.
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Chapter 3

Classical Dynamics for the Linear

Kicked Rotor System

The classical linear kicked rotor system is an exactly solvable system which makes it an

exceptional case among kicked rotors. It is also interesting in that the dynamics observed

for both the classical and quantum versions of this system show exact correspondence. We

have shown this correspondence explicitly in the dynamics. We have also shown the absence

of chaos in the system.

The Hamiltonian for the classical interacting linear kicked rotor for the 2-particle case is,

H = 2πα1p1 + 2πα2p2 + cos(θ1 − θ2) + [cos(θ1) + cos(θ2)]
∞
�

n=−∞

δ(t− n) (3.1)

Where, 0 ≤ θi < 2π and −∞ < pi < ∞

The system can be thought of as two interacting particles on a ring, moving with constant

speed 2πα1 and 2πα2 respectively. The particles complete αi orbits between each successive

kick.

The equations of motion for this system can be written as the discrete map,

θn+1
1 = θn1 + 2πα1, pn+1

1 = pn1 + sin
�

θn+1
1

�

+ sin
�

θn+1
1 − θn+1

2

�

(3.2)
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θn+1
2 = θn2 + 2πα2, pn+1

2 = pn2 + sin
�

θn+1
2

�

− sin
�

θn+1
1 − θn+1

2

�

(3.3)

Using trigonometric identity,

sin
�

θn+1
1

�

=
cos(θn1 + πα1)− cos

�

θn+1
1 + πα1

�

2 sin(πα1)
(3.4)

Using this, the momentum evolution equations become,

pn+1
1 +

cos
�

θn+1
1 + πα1

�

2 sin(πα1)
+

cos
�

θn+1
1 − θn+1

2 + π(α1 − α2)
�

2 sin(π(α1 − α2))

= pn1 +
cos(θn1 + πα1)

2 sin(πα1)
+

cos(θn1 − θn2 + π(α1 − α2))

2 sin(π(α1 − α2))

(3.5)

and,

pn+1
2 +

cos
�

θn+1
2 + πα2

�

2 sin(πα2)
− cos

�

θn+1
1 − θn+1

2 + π(α1 − α2)
�

2 sin(π(α1 − α2))

= pn2 +
cos(θn2 + πα2)

2 sin(πα2)
− cos(θn1 − θn2 + π(α1 − α2))

2 sin(π(α1 − α2))

(3.6)

From this, we can see that each side of the equation for both the momenta are constants of

motion, say, K1 and K2. Therefore we can write invariant curves for the two momenta as,

pn1 = K1 −
cos(θn1 + πα1)

2 sin(πα1)
− cos(θn1 − θn2 + π(α1 − α2))

2 sin(π(α1 − α2))
(3.7)

and

pn2 = K2 −
cos(θn2 + πα2)

2 sin(πα2)
+

cos(θn1 − θn2 + π(α1 − α2))

2 sin(π(α1 − α2))
(3.8)

These two invariant curves exist so long as α1, α2 and (α1 − α2) are not integers.

Given the intial conditions of the system as θ01, θ
0
2, p

0
1 and p02, we can write the equations

immediately after nth kick as,

θn1 = θ01 + 2πnα1, θn2 = θ02 + 2πnα2 (3.9)

pn1 = p01+
sin[θ01 + πα1(n+ 1)] sin(nπα1)

sin(πα1)
+
sin[θ01 − θ02 + π(α1 − α2)(n+ 1)] sin[nπ(α1 − α2)]

sin[π(α1 − α2)]
(3.10)
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(a) (b)

(c) (d)

Figure 3.1: Momentum evolution for the 4 cases of αi. (a) α1 =
√
3, α2 =

√
5, (b) α1 =

√
3,

α2 =
√
3, (c) α1 =

√
3, α2 = 1, (d) α1 = 2, α2 = 1

pn2 = p02+
sin[θ02 + πα2(n+ 1)] sin(nπα2)

sin(πα2)
− sin[θ01 − θ02 + π(α1 − α2)(n+ 1)] sin[nπ(α1 − α2)]

sin[π(α1 − α2)]
(3.11)

We have plotted these evolution equations for pi (Fig.(3.1)) as well as an evolution equation

for the Hamiltonian Hn (Fig.(3.2)) from equation (3.1). We see that the both the momenta of

particles 1 and 2 as well as the Hamiltonian have localised and delocalised regimes governed

by values of parameters αi that correspond exactly to the localised and delocalised regimes

of the quantum system for these same αi.

We have further plotted the Poincare sections for particles 1 and 2 (Fig.(3.3) and Fig.(3.4))

which show clearly that there is no chaos for this system and that it is completely integrable.
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(a) (b)

(c) (d)

Figure 3.2: Energy(Hamiltonian) evolution for the 4 cases of αi. (a) α1 =
√
3, α2 =

√
5, (b)

α1 =
√
3, α2 =

√
3, (c) α1 =

√
3, α2 = 1, (d) α1 = 2, α2 = 1

One thing of note for this system is that the Hamiltonian of this system is a form of potential

energy for this system. So the plots here are for this ’potential energy’ and not for the kinetic

energy or in fact the total energy of the system. For this reason, this quantity can also be

negative.
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(a) (b)

(c) (d)

Figure 3.3: Poincare sections for the 4 cases of αi. (a) α1 =
√
3, α2 =

√
5, (b) α1 =

√
3,

α2 =
√
3, (c) α1 =

√
3, α2 = 1, (d) α1 = 2, α2 = 1
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(a) (b)

(c)

Figure 3.4: (a)Poincare section when α1 = 0.6, α2 = 0.5.(b) and (c) are Poincare sections
for particles 1 and 2 respectively when α1 =

√
3 and α2 = 1. It is the same plot as Fig.

3.3 (c) but with the Poincare section for each particle enlarged. The above figure (c) shows
that while the Poincare section is constant for particle 1 when α is an integer, there is still
a minuscule variation in that constant of the order of 10−10
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Chapter 4

Inducing Chaos in the Linear Kicked

Rotor System

Given that the system we were considering so far showed no transition to chaos, quantum

or classical, irrespective of kicking strength, we have tried inducing chaos into the classical

system and looked at how this changes the quantum case.

4.1 Classical mechanics

The Hamiltonian for the classical 2-particle system is,

H = 2πα1p1 +2πα2p2 + kt cos(θ1 − θ2) + kp cos(p1 − p2) +K[cos(θ1) + cos(θ2)]
∞
�

n=−∞

δ(t− n)

(4.1)

Where 0 ≤ θi < 2π and −∞ < pi < ∞. The position and momentum evolution equations

then are,

θn+1
1 = θn1 +2πα1−kp sin(p

n
1 − pn2 ), pn+1

1 = pn1 +K sin
�

θn+1
1

�

+kt sin
�

θn+1
1 − θn+1

2

�

(4.2)

θn+1
2 = θn2 +2πα2+kp sin(p

n
1 − pn2 ), pn+1

2 = pn2 +K sin
�

θn+1
2

�

−kt sin
�

θn+1
1 − θn+1

2

�

(4.3)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.1: Momentum evolution for the 4 cases of αi with increasing kicking strength K.
(a - c) α1 =

√
3, α2 =

√
5, K = 0.1, 1, 10 for (a), (b), (c) respectively. (d - f) α1 =

√
3,

α2 =
√
3, K = 0.1, 1, 10 for (d), (e), (f) respectively. (g - i) α1 = 1, α2 =

√
3, K = 0.1, 1, 10

for (g), (h), (i) respectively. (j-l) α1 = 1, α2 = 3, K = 0.1, 1, 10 for (j), (k), (l) respectively.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.2: Poincare section for the 4 cases of αi with increasing kicking strength K. (a - c)
α1 =

√
3, α2 =

√
5, K = 0.1, 1, 10 for (a), (b), (c) respectively. (d - f) α1 =

√
3, α2 =

√
3,

K = 0.1, 1, 10 for (d), (e), (f) respectively. (g - i) α1 = 1, α2 =
√
3, K = 0.1, 1, 10 for (g),

(h), (i) respectively. (j-l) α1 = 1, α2 = 3, K = 0.1, 1, 10 for (j), (k), (l) respectively.
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We have plotted the momentum evolution (Fig.(4.1)) for the system as well as the Poincare

section (Fig.(4.2)) for these evolution equations and we observe a transition from periodic

to non periodic (chaotic) evolution for increasing values of kicking strength K, with kp = 1

and kt = 0. To explore this further, we calculate the power spectrum as well as the lyapunov

exponents of the system.

4.1.1 Power Spectrum

Power spectrum for any system is one of the ways we can check for regular or chaotic

dynamics in the system. We do this by looking at the form of the spectrum.

If the system shows regular dynamics, the power spectrum will show distinct peaks which

correspond to fundamental frequencies or some combinations of these frequencies. The spec-

trum may also have a predictability to the height and width of the peaks. The height of

the peaks for regular dynamics increases as the time T increases. The width of the peaks

decreases as the time T increases.

If the system shows chaotic dynamics, the power spectrum ceases to have predictability. The

spectrum becomes ”grassy” and we become unable to distinguish between specific frequency

peaks. Certain peaks may even split up into multiple sub-peaks. In fact, we may see many

peaks that are not properly separated from each other. Some of the peaks in the spectrum

also cease to persist as the time T is increased to a large enough value.

The power spectrum for a system can be found as the Fourier transform of the auto-

correlation function. We, however, have found the power spectrum directly from the mo-

mentum function with respect to time.

If we have a function of time, like the evolution equations for our system, x(t), the energy

contained in that function or wave can be written as an integration over time t of the absolute

value of the function squared. That is,

E =

� ∞

−∞

dt|x(t)|2 (4.4)
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Given this equation, it has been shown that,

� ∞

−∞

dt|x(t)|2 =

� ∞

−∞

df |X(f)|2 (4.5)

This |X(f)|2 is then equal to the energy density of the wave over the frequency. This energy

density is also knows as power spectral density, or simply, power spectrum.

Therefore, to calculate the power spectrum for our system directly, we calculate it as the

absolute value squared of the Fourier transform of the momentum evolution functions of our

system.

For particle 1,

pn+1
1 = g1(θ

n
1 , θ

n
2 , p

n
1 , p

n
2 ) (4.6)

If the Fourier transform of this function g1(θ
n
1 , θ

n
2 , p

n
1 , p

n
2 ) is given as P1(f) where f is the

frequency or 1/n, then the power spectrum is calculated as,

Power spectrum = |P1(f)|
2 (4.7)

Similarly for particle 2, the power spectrum is given as,

Power spectrum = |P2(f)|
2 (4.8)

Where P2(f) is the Fourier transform of

pn+1
2 = g2(θ

n
1 , θ

n
2 , p

n
1 , p

n
2 ) (4.9)

We have plotted the power spectrum for the system for different values of αi as well as K

(kicking strength) with fixed values, kp = 1 and kt = 0. For each of the 4 cases of αi, we

have plotted 3 figures each for both particle 1 and particle 2 corresponding to different values

of K, Fig.(4.3)-(4.6). From these plots we can see that the spectrum has distinct peaks for

K = 0.1 but as we increase the value of K, the spectrum becomes more and more ”grassy”,

thereby showing a transition into chaos for the system.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.3: power spectrum for particle 1 and 2 for α1 =
√
3 and α2 =

√
5. (a),(b) K = 0.1;

(c),(d) K = 1; (e),(f) K = 10.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.4: power spectrum for particle 1 and 2 for α1 =
√
3 and α2 =

√
3. (a),(b) K = 0.1;

(c),(d) K = 1; (e),(f) K = 10.
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(a)
(b)

(c) (d)

(e) (f)

Figure 4.5: power spectrum for particle 1 and 2 for α1 =
√
3 and α2 = 1. (a),(b) K = 0.1;

(c),(d) K = 1; (e),(f) K = 10.

36



(a) (b)

(c) (d)

(e) (f)

Figure 4.6: power spectrum for particle 1 and 2 for α1 = 2 and α2 = 1. (a),(b) K = 0.1;
(c),(d) K = 1; (e),(f) K = 10.
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4.1.2 Lyapunov Exponent

The separation between two trajectories, that start out infinitesimally close, can increase

or decrease exponentially. The Lyapunov exponents of the system are then quantities that

represent this rate of seperation.

Consider two trajectories at initial time t0, x(t0) and y(t0), that are infinitesimally close to

each other, i.e., |x(t0)− y(t0)| → 0. Then we can say,

d(t0) = |x(t0)− y(t0)| (4.10)

Consider, these trajectories evolved to time t, x(t) and y(t). Then if,

d(t) = |x(t)− y(t)| (4.11)

The lyapunov exponent is given by,

λ = lim
t→∞

lim
d(t0)→0

�

1

t
ln

d(t)

d(t0)

�

(4.12)

For our system, we took d(t0) to be equal to the distance between two infinitesimally close

momentum evolution states for both particle 1 and particle 2. We then evolved the set of

two trajectories to get d(t) for both particles 1 and 2. And from these we calculated the

lyapunov exponent λ for both particles 1 and 2. This lyapunov exponent was calculated for

different times from 300 to 10,000 kicks and plotted. Fig.(4.7)-(4.10) show these lyapunov

exponent plots for the 4 cases of αi and 3 different kicking strengths, K = 0.1, 1, 10. We

see how the lyapunov exponent for each case of αi becomes more positive with increasing

kicking strength. This clearly shows the transition to chaos for increasing kicking strength.

4.2 Quantum System

We take a look at the quantum linear kicked rotor with a momentum interaction term. The

Hamiltonian for this system is,

Ĥ = Ĥ0 + V̂
∞
�

n=−∞

δ(t− n) (4.13)
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(a) (b)

(c) (d)

(e) (f)

Figure 4.7: Lyapunov exponent for α1 =
√
5 and α2 =

√
3. (a),(b) K = 0.1; (c),(d) K = 1;

(e),(f) K = 10.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.8: Lyapunov exponent for α1 =
√
3 and α2 =

√
3. (a),(b) K = 0.1; (c),(d) K = 1;

(e),(f) K = 10.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.9: Lyapunov exponent for α1 = 1 and α2 =
√
3. (a),(b) K = 0.1; (c),(d) K = 1;

(e),(f) K = 10.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.10: Lyapunov exponent for α1 = 1 and α2 = 3. (a),(b) K = 0.1; (c),(d) K = 1;
(e),(f) K = 10.
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Where Ĥ0 is the unperturbed Hamiltonian and is,

Ĥ0 = 2πα1p̂1 + 2πα2p̂2 + kp cos(p̂1 − p̂2) (4.14)

V̂ is the kicking potential given by,

V̂ = K

�

cos
�

θ̂1

�

+ cos
�

θ̂2

�

�

(4.15)

and K is the kicking strength.

We look at the evolution of the state of the system. Suppose the state of the system

immediately after the nth kick is |Ψn�. Between nth and (n + 1)th kick, time evolution is

due to the unperturbed Hamiltonian Ĥ0. This is accomplished with a unitary time evolution

operator ÛĤ0
= e−iĤ0 . The state of the system after applying this time evolution operator

is,
�

�

�
Ψ

�

n

�

= ÛĤ0
|Ψn� (4.16)

Then, the (n + 1)th kick takes place and the state of the system changes again, this time

due to the kicking potential V̂ . This evolution of state is accomplished by the unitary

time evolution operator ÛV̂ = e−iV̂ acting on the ket
�

�Ψ
�

n

�

to give the state of the system

immediately after the (n+ 1)th kick.

|Ψn+1� = ÛV̂

�

�

�
Ψ

�

n

�

(4.17)

Equations (4.16) and (4.17) can be combined to give,

|Ψn+1� = ÛV̂ ÛĤ0
|Ψn� (4.18)

ÛF = ÛV̂ ÛĤ0
is the Floquet evolution operator of the system.

ÛF = e−iV̂ e−iĤ0 (4.19)

Given the initial state of the system |Ψ0�, we get the state of the system after Nth kick as,

|ΨN� = ÛN
F |Ψ0�

= (e−iV̂ e−iĤ0)N |Ψ0�
= e−iV̂ e−iĤ0e−iV̂ e−iĤ0 ... e−iV̂ e−iĤ0 |Ψ0�

(4.20)
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To calculate the eigenfunctions for our system, we start off in the momentum representation.

To calculate the next eigenfunction |Ψ1�,

Ψ1(p) = IFFT (e−iV̂ (FFT (e−iĤ0(Ψ0(p))))) (4.21)

Where FFT and IFFT are fast fourier transform and inverse fast fourier transform respec-

tively. Staring off with Ψ0(p) in the momentum representation, which we choose as the

momentum eigenfunction, we apply the first unitary time evolution operator e−iĤ0 which is

diagonal in the momentum variable, hence making calculation in the momentum represen-

tation easy. However, e−iV̂ is diagonal in the position variable so to apply this unitary time

evolution operator and make calculation easy, we apply FFT to go to the position represen-

tation. We then apply e−iV̂ and finally, to get the new wavefunction Ψ1(p) in the momentum

representation, we apply IFFT. We can then take Ψ1(p) as our new ”initial” wave-function

and repeat the process till we get ΨN(p), the wave-function immediately after the Nth kick.

Once we have ΨN(p) we can then calculate the momentum standard deviation. To do this,

we calculate the expectation values of p and p2 by taking the weighted average over a large

number of values. The standard deviation we get will then give us an idea of the momentum

dynamics of the system.

We have plotted these momentum standard deviations as a function of time in Fig.(4.11) for

the four cases of αi as before.

4.2.1 Spacing Ratio Distribution

We have calculated the spacing ratio distribution for the system below.

To calculate the spacing ratio distribution for the system, we need to calculate the eigenvalues

of the system. Eigenvalues of the system are found by diagonalising the floquet evolution

matrix. Therefore the first step is to find the floquet matrix. It is easiest to calculate this

matrix in the momentum representation. To do this, we start by calculating the matrix

elements of the floquet operator in the momentum basis.

�p�

| ÛF |p� = �p�

| e−iV̂ e−iĤ0 |p� (4.22)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.11: Momentum evolution for the different cases of αi with increasing kicking
strength K. (a - c) α1 = 1/

√
5, α2 = 1/

√
3; (d - f) α1 = 1/

√
88, α2 = 1/

√
88; (g - i)

α1 = 1/
√
88, α2 = 1; (j-l) α1 = 2, α2 = 1. K = 0.1, 1, 10 for the first, second and third

column of the figure respectively
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e−iĤ0 is diagonal in momentum, while e−iV̂ is diagonal in position, so we get,

�p�

| ÛF |p� = �p�

| e−iV̂ |p� e−iĤ0 (4.23)

We expand the first term on the right hand side of this equation by inserting the completeness

relation for θ.

�p�

| e−iV̂ |p� =
�

dθ �p�

|θ� �θ| e−iV̂ |p�

=

�

dθ
e−i�p

�
�θ

(
√
2π)2

e−iV̂ (�θ) �θ|p�

=

�

dθ

(2π)2
ei(�p−�p

�
)�θe−iK(cos �θ1+cos �θ2)

=

�

dθ1
(2π)

ei(p1−p
�

1)θ1e−iK cos θ1 ×

�

dθ2
(2π)

ei(p2−p
�

2)θ2e−iK cos θ2

= (−i)p1−p
�

1Jp1−p
�

1
(K)(−i)p2−p

�

2Jp2−p
�

2
(K)

(4.24)

Here, Jp1−p
�

1
(K) and Jp2−p

�

2
(K) are Bessel functions.

Therefore, the matrix elements of the floquet operator are,

�p�

| ÛF |p� = e−ikp cos(p1−p2)e−i(2πα1p1+2πα2p2)(−i)(p1+p2)−(p
�

1+p
�

2)Jp1−p
�

1
(K)Jp2−p

�

2
(K) (4.25)

Now, if p1, p2, p
�

1, p
�

2 → ∞, putting the various values of p1, p2, p
�

1, p
�

2 into the above equation

will give the floquet operator matrix. Then diagonalising this matrix gives its eigenvalues

ei. The eigevalues are then sorted in ascending order such that, e1 < e2 < .... The spacing

between eigenvalues is found as,

si = ei+1 − ei (4.26)

The spacing ratios are then found as,

ri =
si+1

si
(4.27)

Once the spacing ratios are found, their probability distribution is found and plotted. From

the figures Fig.(4.12), the spacing ratios show how the system tends to localisation for

increasing values of kicking strength. We see this in the relatively good fit of the numerically

calculated distribution with the Poisson distribution as the K values increase. The cases
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.12: Spacing ratio distribution for the different cases of αi with increasing kicking
strength K. (a - c) α1 =

√
5, α2 =

√
3; (d - f) α1 =

√
3, α2 =

√
3; (g-i) α1 =

√
3, α2 = 1;

(j-l) α1 = 1, α2 = 2. K = 0.1, 1, 10 for the first, second and third column of the figure
respectively
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that show de-localisation show less of a fit to the Poisson distribution. Currently we do not

understand the origins of the deviation from the poissonian distribution.
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Chapter 5

Conclusion

The many-body localised linear kicked rotor system is interesting in that it shows localisation

and delocalisation depending on the values of its parameters. This difference in dynamics

has had an interesting effect on the entanglement entropy of the system. For entanglement

entropy, calculated for the evolution wavefunction, we have observed that depending on the

”level” of delocalisation, we see different kinds of entanglement entropy dynamics. If just one

particle in the n-particle system is delocalised in momentum then the entanglement entropy

is periodic as opposed to what we expected to see, i.e., logarithmic increase as seen in the

other cases of delocalisation in the system when the momentum of more than one particle

was delocalised. This dynamics of entropy is in fact similar to what we observed for the case

of complete localisation in the dynamics of the system.

We have also calculated the entanglement entropy for the quasi-energy wave-function which

remained a constant value depending on parameters, for different eigenvalues of the system.

This seems to suggest thermalisation taking place in the system for these wave-functions.

The information entropy on the other hand is always a constant, both for evolution as well

as quasi-energy wave-function, independent of the parameters of the system.

We have explicitly shown the similarity in the dynamics of the classical system with the

quantum system as well as the absence of chaos through Poincare sections for each particle

in the system. We then induced chaos in the system by introducing a momentum interaction

term in place of the theta interaction term and observed how this changes the dynamics of

the system. The transition to chaos with increasing kicking strength was explicitly observed

49



through Poincare sections, power spectra as well as lyaponov exponents for different values

of parameters.

Finally, we looked at the quantum system with the momentum interaction term and saw that

localisation and delocalisation are still observed in the system but for different conditions of

the parameters as before in the theta interaction case.
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