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Abstract

This thesis defines a variation of a regular random graph called the Random Locally Tree-

like Layered Lattice (RLTL). Such lattices are of interest because the Bethe approximation

becomes asymptotically exact on them. Unlike the usual Bethe lattice, the RLTL is finite

and can be studied numerically. This makes studying problems in statistical physics on the

RLTL more tractable. We study the geometrical structure of this graph and the behavior

of the Ising model on it. Under the geometrical structure, we explore the properties of the

diameter and the radius of gyration of this graph, study the r dependence on the average

number of distinct sites present at distance r from a site and also look at the average length

shortest loop passing through a site. We find that the average diameter of an r-regular RLTL

is of order [logr−1(S)] to leading order in S, where S is the total number of sites in the graph.

The radius of gyration of the RLTL was also found to be linear in log(S). We then look at

the Ising model on the RLTL and look at the finite-size scaling on the lattice. The finite-size

effects of the Ising model on random graphs is not well studied in previous literature. On

the RLTL, we study the finite-size scaling for the magnetic susceptibility (χ) and deviations

in the specific heat capacity from the theoretical value (∆Cv). We find that the magnetic

susceptibility per site obeys a scaling of the form χ = S1/2 f(εS1/2) and the deviations

in the specific heat has a scaling of the form ∆Cv = g(εS1/2), where ε = (T − Tc)/Tc.

We propose a theory which explains the observed scaling and explicitly calculate the exact

scaling functions.
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Chapter 1

Introduction

Exact solutions to problems in statistical physics are not always possible. Hence, it is

important to have approximation methods of wide applicability. The Bethe approximation

is one such approximation technique [1]. Unlike the simple mean-field approximation which

replaces the interactions with all neighbours by a single “mean field”, this method takes

care of nearest-neighbour correlations between spins. It was then shown that the Bethe

approximation becomes exact on an infinite regular tree — ie, a lattice in which each site

has the same coordination number and has no loops. In particular, the authors in Ref.

[2] studied the ferromagnetic Ising model on such a lattice and showed that the partition

function obtained is exactly that of the Bethe approximation. This lattice is called the

“Bethe lattice”.

At this point, it is important to understand the distinction between the Bethe lattice and

a Cayley tree. A Cayley tree of coordination number q is a finite graph that is constructed

as follows: Start with a single central root site O. To this, we connect q sites which form a

part of the first “shell” around O. Subsequent shells are then constructed by adding q − 1

distinct sites to each site present in the previous shell 1. This procedure is repeated until n

shells are constructed. It is clear from the definition that this graph has no loops. However,

the sites at the boundary (ie, on the nth shell) have coordination number 1 and are thus

different from the rest of the sites in the graph. Fig. 1.1 shows a Cayley tree with n = 3

shells.

1From this construction, it is clear that the number of sites on the rth shell from site O is q(q − 1)r−1
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Figure 1.1: Cayley tree with n = 3 shells

The Bethe lattice on the other hand, is a tree in which all sites have the same coordination

number (say q). This graph is infinite and has no notion of a central site or a boundary.

The Cayley tree, unlike the Bethe lattice, has a large number of sites on the boundary which

leads to a very different behaviour from the Bethe lattice. For example, the Ising model on

the Cayley tree is known to display unusual properties [3]–[5]. The Ising model on the Bethe

lattice has also been solved and a detailed treatment is given in Ref. [6].

Differences between these lattices aside, both the Bethe lattice and the Cayley tree are

not easily usable to study methods in statistical physics. The Bethe lattice is not easily

accessible to numerical techniques. The Cayley tree on the other hand has a very large

number of sites on its boundary. Unlike usual d−dimensional regular lattices, the ratio of

the number of sites at the boundary to the total number of sites for this graph does not

approach zero in the thermodynamic limit. The Cayley tree is thus very sensitive to the

boundary conditions. Obtaining the properties of the bulk involves a procedure of careful

subtraction to remove the surface effects, which makes problems difficult.

It was later realized that random regular graphs provide a more convenient setting to

study the Bethe approximation [7]–[10]. Random graphs, of course, have been a subject of

extensive study in graph theory [11]–[14]. The books listed in Refs. [15] and [16] contain a

comprehensive summary on the theory of random graphs. In particular, given a k-regular

random graph of total number of sites S, it can be shown that the expected number of short

loops of length l goes as (k− 1)l [15]. In the limit of large S, the fractional number of short
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loops of length l < log(S) goes to zero. If we pick any site in this random graph, this means

that upto a distance of O[logS], the graph locally looks as though it is branching out — ie,

it is locally “tree-like”. So, in this large S limit, the graph looks like the Bethe lattice. Since

these graphs are regular, they avoid the problem of surface corrections altogether which

makes studying problems on these lattices more tractable by simulations.

The Random Locally Tree-Like Layered Lattice (RLTL) is a variation of a random reg-

ular graph. It has additional structure which allows the use of techniques like the transfer

matrix method. The RLTL was first introduced in Ref. [17] as a way to study the Bethe

approximation for a system of hard rods. In this thesis, we work with a modification of this

lattice, details of which are described in Chapter 2. We also explore the geometrical struc-

ture of this lattice in this chapter. We then use the properties of this lattice to understand

the behaviour of the Ising model on this lattice in Chapter 3. In particular, we study the

finite-size corrections to the thermodynamic limit of regular random graphs. We argue that

near the critical point, the free energy is of the form given by Landau theory and use this

to explicitly calculate the exact finite-size scaling functions. These results are then verified

numerically using Monte-Carlo simulations. While the Ising model on random graphs and

complex networks has been studied previously (see for example [8], [18]–[20]), the finite-size

effects of random graphs has not been studied well in previous literature.
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Chapter 2

Geometrical properties of the RLTL

In this chapter, we define the Random Locally Tree-Like Layered Lattice (RLTL) along

the lines of the lattice introduced in Ref. [17] with some modification. We then study the

geometrical structure of the RLTL. Some understanding of these properties is a prerequisite

for a detailed study of various models on the lattice.

Three-coordinated RLTL

We start out by describing the construction of the RLTL in the simplest setting: that of

coordination number three. This lattice consists of sites arranged in bilayers with equal

number of sites in each layer. We denote the number of bilayers by m and the number of

sites in each bilayer as N . The total number of sites in the lattice is denoted S = 2mN . Sites

within each layer are labelled from 1 to N . Edges between these sites are then constructed

using the following description:

1. Within each bilayer — i.e., between the (2j + 1)th and (2j + 2)th layer — we add a set

of 2N bonds: The site i on layer (2j + 1) is connected to site i and (i + 1) on layer

(2j+ 2). Periodic boundary conditions are imposed in the lateral direction and so, site

N in layer (2j + 1) is connected to site 0 in layer (2j + 2). Each bilayer thus forms a

single loop. We will refer to the bonds between sites within each bilayer as the zig-zag

bonds (shown as the black edges in the example provided in Fig. 2.1).
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2. Between the bilayers (i.e., between layer 2j and 2j + 1), we add N bonds which are

constructed after performing random permutations. First, we construct a random

permutation σ on the labels 1 to N , where σ[i] denotes the new label of site i. Then,

we connect site i on layer 2j to site σ[i] on layer 2j + 1. The permutation for each

j is chosen independently. Finally, we impose periodic boundary conditions in the

transverse direction: the sites in the last layer are connected to sites in the first layer

via random permutations. We will refer to the bonds between sites on adjacent bilayers

as inter-layer bonds (shown as the red edges in the example provided in Fig. 2.1).

We note that this lattice is by definition bipartite and hence does not have any loops

of odd length. For a lattice with m bilayers, a set of m independent permutations on the

sites 1 to N {σ1, ...., σm} gives us one particular realization of the RLTL. Fig. 2.1 shows an

example of a realization of the RLTL graph with m = 3 bilayers and N = 23 sites per layer

(bonds arising due to the periodic boundary conditions are not shown). Thus, to understand

the behaviour of any quantity on the RLTL, we must average over different realizations of

the lattice. We will show subsequently in this chapter however, that given a particular value

of (m,N), the behaviour of different quantities of interest shows only small variations across

different realizations.

m = 1

m = 2

m = 3

Figure 2.1: A realization of the RLTL with m = 3 bilayers and N = 2m sites per layer. Sites
within the same bilayer are connected via zig-zag lines (shown as the black edges). Sites
in adjacent bilayers are then connected via random permutations (shown as the red edges).
The lattice is periodic in the transverse and longitudinal direction (not shown).
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2.0.1 Locally tree-like property:

A key property of the RLTL which makes it useful when studying problems in statistical

physics is that in the limit of large N , the lattice locally looks like a tree. This is because

there are very few short loops in this limit. If there are no loops of size less than or equal to

2l passing through any randomly picked site, then upto a distance l from a site, the lattice

locally appears to branch out and cannot be distinguished from a uniform tree. We then say

that this graph has a “locally” tree structure (see Fig. 2.5a).

To understand this locally tree-like property and how likely short loops are on the RLTL,

we look at the probability that any random site O on this graph has a short loop of a given

size passing through it. In all our calculations, we shall only consider the terms of leading

order and ignore terms involving the subtraction of any overlapping configurations. We also

ignore lattices which have a very small N where the bilayer itself forms a short loop.

Without loss of generality, we can choose siteO to be on the bottom of a bilayer. If instead

we were to take O to be on top of a bilayer, the arguments can be made on similar lines and

the answers would not change. As noted earlier, this lattice is bipartite and therefore has

no loops of odd length. It is also clear from the construction, that for m > 1 there are no

loops of size two passing through O and for m > 2, there are no loops of size four passing

through O.

(a) Loops of size 2 and 4 passing through O for
RLTLs with a single bilayer. Each figure occurs
with a probability 1/N .

(b) Loop of size 4 passing through O for RLTLs
with two bilayers. This loops occurs with prob-
ability 2/N

Figure 2.2: Short loops of size two and four which only occur on the three-coordinated RLTL
with m <= 2

Loops of length two and four arise due to the inter-layer bonds formed because of periodic

boundary conditions in the transverse direction. For the case of a single bilayer m = 1, the

possible loops of these sizes passing through O are shown in Fig. 2.2a. Since inter-layer

bonds are constructed by random permutations, the probability that any two given sites
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present on adjacent bilayers are connected by an inter-layer bond is 1/N . The probability

that there is a loop of size two and four passing through O is then 1/N and 2/N respectively.

For RLTLs with m = 2, the smallest possible loop passing through O is of size 4 which

happens as shown in Fig. 2.2. The probability that site O has such a loop is 2/N since site

A can connect to either of the two sites in the layer above O that are connected to O.

From here on we restrict ourselves to loops which do not involve bonds arising due to

periodic boundary conditions in the transverse direction. Fig. 2.3 shows the possible loops

of size six passing through site O. Each of these loops occur with a probability 2/N — since

the site on the same layer as O can connect to a site either to the left or to the right of

the site connected to O via an inter-layer bond (and each of these occur with a probability

1/N). So, the probability that site O has a loop of size six passing through it is 6/N .

Figure 2.3: Possible loops of size 6 passing through site O. The probability of each configu-
ration is 2/N . Hence, the probability that site O is part of a loop of size 6 is 6/N .

Similarly, it can be shown that the probability that O is part of a loop of size eight is

16/N as each of the loops shown in Fig. 2.4 occurs with probability 2/N .

Using the above results, the average number of loops of size 6 and 8 on the RLTL is 2m

and 4m respectively. Recall that we have not considered loops that have edges that were

constructed as a result of periodic boundary conditions in the transverse direction. Such

loops also occur with a finite probability that is proportional to 1/N (i.e., they will be of

the form k/N where k remains finite even when N tends to infinity). In the limit of large N

then, the fractional number of loops of short size tends to zero. Said differently, if we pick

any random site on the graph and study its neighbourhood, it is very unlikely that there

will be a short loop passing through it. The region around this site then looks like a tree as

shown in Fig. 2.5.

Upto what distance from a site does this locally tree-like property hold? We can make
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Figure 2.4: Possible loops of size 8 passing through site O. The probability of each configu-
ration is 2/N . Hence, the probability that site O is part of a loop of size 8 is 16/N .

a more general statement about this by obtaining a loose upper bound on the probability

that all sites in a shell of radius j around a site are not distinct — i.e., the probability that

there are loops of length at most equal to 2j passing through any site. Let us suppose that

all the sites in the (j− 1)th shell from a point are distinct. Then, the number of sites on this

shell (for the three-coordinated RLTL) is 3.2j−2. To obtain a loop in the jth shell, two sites

in the (j − 1)th shell should connect to the same point. This can happen in two cases:

1. Both sites belong to the top of the same bilayer and connect to the same site via a

zig-zag bond.

2. Both sites belong to the top of adjacent bilayers and connect to the same site via a

zig-zag bond and an interlayer bond respectively.

Taking these into account, the probability that there are loops in the jth shell to leading

order is given by:
(3.2j−2)

2

N
(2.1)

If N � 22j, this probability goes to zero. In other words, the probability of occurrence

short loops of length at most 2j goes to zero for any finite j as N tends to infinity. Thus,

upto distance O[log2N ] from a site, the lattice locally resembles a tree.

13



In Fig. 2.5b, we plot the average number of distinct sites present on the rth shell around

a site on the RLTL and the Bethe lattice. If there were no loops on the RLTL, the number

of sites in the rth shell would be 3.2r−1, as expected on the Bethe lattice. However, the

presence of loops of length 2l reduces the number of distinct site present on the lth shell.

We see that upto a distance of O[log2N ], the number of distinct sites present in the rth shell

(a) Site O does not have short loops passing
through it and hence locally the graph looks like
a branching out tree.

	0

	300

	600

	900

	1200

	1500

	1800

	2100

	0 	2 	4 	6 	8 	10 	12 	14 	16
N

um
be

r	
of

	d
is

tin
ct

	s
ite

s
Radius	of	shell

m	=	1
m	=	2
m	=	4
3.2r-1

(b) The number of distinct sites present in the
rth shell surrounding a point O for an RLTL with
N = 1000.

Figure 2.5: Locally tree-like property of the RLTL.

around a point follows the curve that we expect on the three-coordinated Bethe lattice —

consistent with the locally tree-like property. Beyond that, there are deviations because of

the presence of longer loops in the lattice.

While we have argued that the RLTL has a local tree-like structure, this property in

general asymptotically true for all regular random graph. It was shown by Bollobás [15] that

the number of short loops of size l on an r-regular random graph is an asymptotically Poisson

distributed random variable with mean (r − 1)l/2l, and that the distributions for different

l are independent of each other. The expected number of loops of size l thus remains finite

even when the total number of sites in the graph is large and so, in this limit, the fractional

number of short loops tends to zero, and the immediate neighbourhood around a site appears

to be like a tree.

We now turn our attention to quantifying length scales associated with the RLTL.
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2.1 Diameter

The distance between any two pairs of sites u and v in a graph is the number of edges present

in the shortest path connecting u and v. Let us denote this as d(u, v). Since the graph we

are studying is undirected, this distance is symmetric in pairs of sites — ie, d(u, v) = d(v, u).

The diameter of the graph is defined to be the maximum possible distance between any

two pairs of sites in the graph:

D = max
u∈V,v∈V

d(u, v)

The behavior of the diameter of graphs — in particular that of regular random graphs

— is an old and well studied problem [15], [21]–[23]. Ref. [24] and [25] provide a good

survey of known results in the context of diameters of graphs; the latter also highlights some

interesting open problems and directions. For the RLTL, we expect the average diameter to

be of order logS (considering only terms that are leading order in S).

We can obtain a simple lower bound on the diameter of the RLTL. This inequality is due

to Erdős [11], [26] and holds for all regular graphs. It is known that for the three-coordinated

Bethe lattice, the number of distinct sites present at distance r from a point is 3.2r−1. So,

the number of sites within distance r is:

N(R) = 1 +
R∑
r=1

3.2r−1 = 3.2R − 2

By definition, all sites in a (finite and connected) graph are within a distance D from each

other. Further, since the RLTL has loops, the number of distinct sites within distance R

from a point will be lower than the corresponding number on the Bethe lattice. This means

that S ≤ N(D), which gives us:

D ≥ log2

(
S + 2

3

)
(2.2)

An upper bound on the diameter of regular random graphs was obtained by Bollobás and

Vega in Ref. [26]. Consider an r-regular random graph on S sites. Let ε be a fixed positive
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constant and d be the least integer satisfying

(r − 1)d−1 ≥ (2 + ε) rS logS (2.3)

It was then shown by Bollobás and Vega that almost every r-regular random graph of size

S has a diameter at most d.

From these two bounds on d, we expect that the diameter of the RLTL graph to be of

O[log(r−1)S]. This would generally be true for all regular random graphs.

We test this out by numerically studying of the sample-average diameter of the RLTL.

Since the RLTL has loops, we stick to finding the diameter by brute force. We first find

the maximum furthest distance possible from each site in the lattice and then take the

maximum value of this over all the sites. To find the furthest distance possible from a

site v, we construct a breadth-first traversal tree starting from v which terminates when all

sites in the lattice have been covered. The depth in the tree at which this occurs gives the

maximum distance possible from v. We then repeat this for all the sites in the lattice; the

maximum value over all sites is the diameter. Finally, we calculate the diameter for different

realizations of the RLTL and report the sample average.
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Figure 2.6: Sample-averaged diameter as a function of log2(N). Each data point is sample-
averaged over 100 independent realizations of the RLTL. The lower envelope of the curves
have been fit to a straight line.
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Figure 2.7: Sample-averaged diameter as a function of log2(S). Each data point is sample-
averaged over 100 independent realizations of the RLTL. The dashed line denotes the straight
line used to fit the lower envelope of the curve. The dotted line gives the lower bound of
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Figure 2.6 shows the sample-averaged diameter of the RLTL graphs as a function of the

log2(N) for different values of m. On plotting the diameter as a function of the logarithm

of the total number of sites in the lattice (Fig. 2.7), we find that all these plots nearly

collapse into a single curve. The lower envelope of this curve was fit to a straight line

y = 1.14log2(S) + 1.56 (denoted by dashed line). The behavior of this lower envelope is

consistent with the lower bound on the diameter given in Eq. 2.2, which we have shown

using a dotted line.

We also check the upper bound on the diameter by plotting the sample-averaged diameter

as a function of x = logr−1(2.rS.log(S)) in Fig. 2.8. The dotted line shows the least integer

satisfying Eq. 2.3 for ε ∼ 0. The upper envelope of our diameter of the RLTL can be fit to

a straight line of the form y = x− 1.8, which is consistent with the result of Bollobás.

A striking feature of all these plots is the stairway-like structure. This is not simply a

consequence of the diameter being a discrete quantity. While the diameter of a lattice can

take only integer values, the sample-averaged diameter can after all take values non-integer

values. We can understand this feature by studying the sample-to-sample variation in the

17



	4

	6

	8

	10

	12

	14

	16

	18

	20

	8 	10 	12 	14 	16 	18 	20

D
av

g

logr-1	(2.rS.log	S)

m	=	2
m	=	3
m	=	4

y	=	floor[x	+	1]
y	=	x	-	1.8
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Bollobas upper bound in Eq. 2.3.

diameter for these lattices.

For different realizations of the RLTL with a given aspect ratio (m,N), we look at the

probability distribution of the diameters across samples. Fig. 2.9 shows this distribution for

an RLTL with two bilayers for different values of N . We see that across different realizations

of the RLTL with a fixed (m,N), the distribution of the diameters is sharply peaked and is

concentrated on at most 2-3 distinct values. We checked that this behavior was consistent

for different number of bilayers. Almost all graphs of size S have a diameter that lies in

{D − 1, D,D + 1}, where D is the integer closest to Davg and is of O[log2S]. It turns out

that the different realizations of the RLTL have nearly the same diameter.

In Fig. 2.10, we the plot of the sample-averaged diameter as a function of log(S) for

an RLTL with m = 4 along with error bars that indicate the spread in the values of the

diameter. From this figure, it becomes clearer that the step-like structure is a consequence

of the low variation in the diameter across samples. In fact, we find the standard deviation

in the diameter oscillates between 0 and 0.5 as shown in Fig. 2.11. The regions where the

variance is close to zero corresponds to the flat regions in the plot of the diameter vs log(S).
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tions of the RLTL. We observe that this distribution is sharply peaked and the diameter is
concentrated around 2-3 values.
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As an example, for S ∈ [4880, 6000] where we observe a flat region in Fig. 2.10 at Davg = 16,

we found that the diameter was exactly 16 for 1000 independent realizations of the RLTL.
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Figure 2.11: Sample-averaged standard error in the diameter as a function of the logarithm
of the total number of sites for an RLTL with m = 4. Each data point is averaged over 200
independent realizations of the RLTL.

While the diameter takes only few distinct values across samples, we are also interested

in how the distribution of the furthest distance from a site behaves within a lattice. We find

that this (sample-averaged) probability distribution is also sharply peaked and is nearly the

same for all sites. A representative plot for an RLTL with m = 2 is shown in Fig. 2.12.

Let us refer to the sites which have the maximum possible distance from them equal

to the diameter as extremal sites. We now take a closer look and ask how these extremal

sites are distributed across the lattice. If these extremal sites are closer together compared

to the average distance between all sites in the lattice, that would give us a picture of the

“shape” of the lattice. We plot the average distance between sites which have the same

furthest distance possible in Fig. 2.13. We observe that these extremal sites are on an

average spaced further apart from each other than the rest of the sites and are not clustered

together. As an example, for S = 200, we observe that the maximum possible diameter of an

RLTL is 13, while the sample-averaged diameter was 10.8. In this case, the typical number of
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Figure 2.12: Probability distribution of the furthest distance possible from a site for an
RLTL with two bilayers. The data is averaged over 1000 realizations of the RLTL for each
N . We observe that for most sites, the farthest distance one can go is nearly the same value,
different from the median by at most one.

extremal sites (with maximum possible distance equal to 13) was 5 and the average distance

between two extremal sites is 8.2.
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RLTL with a single bilayer.
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2.2 Radius of Gyration

The diameter of a graph is a measure of an extreme quantity and does not reflect the

behaviour of majority of the sites in the graph. A more useful measure is provided by the

radius of gyration which captures the behaviour of pairwise distances between all sites in the

graph. For an arbitrary graph, we define this quantity as follows:

Rgyr =

√∑
u∈V,v∈V (d(u, v))2

S
(2.4)

We numerically estimate the radius of gyration Rgyr of a realization of the RLTL by

evaluating Eq. 2.4 by brute force. We start at a site (say a) and construct a breadth-first

traversal tree around it. The tree terminates once all sites in the lattice are covered. A site

b located at depth j in the tree thus has distance d(a, b) = j from site a. At each step while

building the tree, we add the squares of the distances between site a and the sites present

at that particular depth. This is then repeated for all sites in the lattice to obtain the sum

of the squares of the distances between all possible pairs of sites in the lattice.
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Figure 2.14: Sample-averaged radius of gyration (Rgyr) plotted as a function of the log(S)
lattices upto 4 bilayers. Each data point is sample-averaged over 100 different realizations
of the RLTL. The plots collapse for different values of m. The data is fit to a straight line;
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We calculated the sample-averaged radius of gyration using 100 independent realizations

of the RLTL. We find that this quantity is also linear in the logarithm of the total number of

sites in the lattice with the plots for different values of m all collapsing onto the same curve

as shown in Fig. 2.14.

2.3 Study of sites at distance r from a point

Suppose we pick any site on the RLTL and study the number of distinct neighbours present

at a distance r from it. Upto a distance O[logN ] where locally tree-like approximation is

valid, this would follow the curve 3.2r−1. Beyond this, we expect deviations due to the

presence of loops. This behaviour was seen in Fig. 2.5, where we looked at the average

number of distinct sites present at distance r from a site. Thus, this quantity gives us

insight into presence of short loops on the lattice, particularly the length at which they arise

and how many there are. How does the distribution of these short loops vary across sites

in the lattice? Are there sites which are part of more short loops compared to the others?

To study this further, we define a quantity g(r) as the average fractional number of distinct

sites present within the shell of radius r surrounding a site. Sites that have more number of

short loops passing through them would have a lower value of g(r) than average (where r is

lesser than the diameter).

In particular, we study the fraction of sites present in the rth shell averaged over extremal

sites and compare it to fraction of sites present in the rth shell averaged over all sites. The

resulting plot is shown in Fig. 2.15 for a lattice with a single bilayer and N = 500. To better

visualize the difference, we plot the ratio of average fraction of sites present within the rth

shell for all sites to that of the extremal sites as a function of r in Fig. 2.16. These results

indicate that there are more number of short loops passing through extremal sites than

average (and hence there are fewer distinct sites at a distance r from them than average).

This result is in hindsight not surprising — due to the presence of more number of short

loops, one has to go deeper in a breadth-first traversal tree constructed around such sites in

order to visit all sites in the lattice. In other words, the presence of more number of short

loops is what makes these sites extremal. We observe that for fixed S, this effect is more

pronounced for small m.

23



	0

	0.1

	0.2

	0.3

	0.4

	0.5

	0.6

	0.7

	0.8

	0.9

	1

	0 	2 	4 	6 	8 	10 	12 	14 	16

Av
er
ag
e	
fra
ct
io
n	
of
	s
ite
s	
w
ith
in
	R
th
	s
he
ll

R

Extremal	sites
All	sites

Figure 2.15: Fraction of sites within the rth shell averaged over extremal sites compared
to the average over all sites in the lattice. Each data point is sample-averaged over 100
realizations of the RLTL with m = 1 and N = 500.
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S = 2400. Each data point is sample-averaged over 100 realizations of the RLTL.

Probability distribution of distances between sites

A consequence of the presence of the interlayer permutation bonds in the RLTL is that the

spatial distribution of sites present in the rth shell surrounding a site in the lattice is nearly
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random. For large N , if we pick a site on the RLTL and study the sites in the rth shell, we

expect them to be roughly randomly distributed on the lattice. This motivates us to think

in terms of the combinatorial problem of choosing balls at random and coloring them.

Suppose we have S balls in total. We first pick n1 balls at random and color them red.

Next, we independently (after replacement of the n1 balls) pick n2 balls at random and color

them green. The probability that a ball does not get colored both red and green is then:

P (R̄ ∩ Ḡ) =

(
S

n1+n2

)(
S
n1

)(
S
n2

)
where R̄ and Ḡ denotes the event of a ball not being colored red or green respectively.

If n1/S and n2/S � 1, then this can be approximated as follows:

P (R̄ ∩ Ḡ) = exp
[
−n1.n2

S

]

We can now apply this result to the RLTL. Suppose we pick two random points O1 and

O2 on the RLTL, and we study the sites present within shells of radius R1 and R2 = log2S/2

around these points. Using the locally tree-like property, we know the number of sites within

the shells is n1 = 3.2R1 − 2 and n1 = 3.2R2 − 2 respectively. As discussed previously, for

large N , these sites are approximately randomly distributed on the lattice. We introduce a

factor α to account for the fact that these sites are not truly randomly distributed due to

the non-permutating (zig-zag) bonds. We expect α to be of O(1).

Let us color the n1 sites in the shell surrounding point O1 red and the n1 sites in the shell

surrounding point O1 green. The probability that a site in the lattice does not get colored

either green or red is the same as the probability that the distance between O1 and O2 is

greater than R1 +R2:

P [d(O1, O2) ≥ R1 +R2] = exp
[n1.n2

αS

]
where we expect α to be a constant of O(1). Substituting the values of n1 and n2 under the

locally tree-like approximation, we get:

P (d(O1, O2) ≥ R1 +R2) = exp

[
−9

4

2R1+R2

αS

]
(2.5)
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Numerically verifying this result: For each site in the RLTL, we find the fraction of sites

in the lattice located on the Rth shell surrounding it. We repeat this for all the sites in the

lattice to obtain the average fraction of sites located at distance R from a site. This is then

sample-averaged over different realizations of the RLTL. Using this data, we can calculate

the probability that the distance between two sites is greater or equal than R.

For simplicity, we consider an RLTL with a single bilayer and plot this probability as a

function of R for different values of N as shown in Fig. 2.17. Absorbing all the constants

into a single constant a (which is independent of N but depends on m), we can write Eq.

2.3 as:

P (d(u, v) ≥ R) = exp

[
− 2R

aN

]
(2.6)

The probability distribution we obtain numerically is shown in Fig. 2.17.
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Figure 2.17: Sample-averaged probability that the distance between two randomly picked
sites is greater at R as a function for R for the RLTL with a single bilayer m = 1. Each
data point is averaged over 100 independent realizations of the RLTL.

To find the value of a and check that it is indeed independent of N , we plot the logarithm

of the probability P (R) as shown in Fig. 2.18. We then try to fit these curves to a function

of the following form (taking the logarithm of Eq. 4).

log(P (R)) = − 2R

aN
(2.7)
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bilayer. The curves are then fitted to the form given in Eq.2.7. We find that value of a to
be ∼ 1.58.

Since this result is valid within the locally tree-like region, we fit the function to the

initial data points and ignore deviations at R ≥ log2N . We find that we are able to obtain

a value of a ∼ 1.58 consistent with these equations and our order of magnitude expectation.

2.4 Four coordinated RLTL

While we have discussed three-coordinated graphs, most of the results are easily extended to

graphs of higher coordination numbers. We can define an RLTL with coordination number

four on similar lines as the three-coordinated RLTL. The broad idea behind the construction

of one realization of four-coordinated RLTL is to take independent bilayers connected via

zig-zag bonds and construct zig-zag bonds between the bilayers after randomly permuting

the indices of sites. We explicitly describe this construction in this section. This lattice is

built out of layers and we denote the number of layers by m. Let the number of sites in

27



each layer be N . Then the total number of sites in the lattice is S = m ∗N . We label sites

in each layer by integers 1 to N .

1. Between layer 1 and layer 2, we form zig-zag bonds as usual. Site i in layer 1 is

connected to site i and (i+ 1) in layer 2. Periodic boundary conditions are imposed in

the lateral direction so that site N in layer 1 links to site 0 in layer 2. We do not need

to permute the labels of sites in layer 1 as these are arbitrary to begin with.

2. The labels of sites in layer 2 are now permuted. Let us call this permutation σ2. We

then form zig-zag bonds between the relabelled sites of layer 2 and sites in layer 3

(which are labelled as usual). To state it explicitly: site k in layer 2 is connected to

sites σ2(k) and σ2(k) + 1 in layer 3 (with appropriate periodic boundary conditions).

3. Now we relabel sites in layer 3 by a random permutation and form zig-zag bonds

between layer 3 and 4 on same lines described in step 2. We repeat this procedure for

all layers.

4. We impose periodic boundary conditions in the transverse direction. So the last layer

m is connected back to layer 1. To avoid too many loops of size four, we permute the

labels of sites in layer 1 as well.

The first two steps of this process are shown in Fig. 2.19. We only consider lattices with

even m so that the graph is bipartite.

(a) Zig-zag bonds between layer 1 and 2 (b) Re-label sites in layer 2 and then form the
zig-zag bonds between layer 2 and layer 3

Figure 2.19: Constructing the 4-coordinated RLTL (shown: the first two steps without the
boundary conditions).
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2.4.1 Diameter

As a verification that our previous results on the study of the diameter of the three-

coordinated RLTL hold on this lattice as well, we plot the sample-averaged diameter as

a function of x = logr−1(2.rS.log(S)) for the four-coordinated (r = 4) lattice as well. We see

in Fig. 2.20 that the plots for different m collapse onto a single curve. The diameter of the

order of the logarithm of the total number of sites and shows the step-like structure.
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Figure 2.20: Sample-averaged diameter as a function of x = logr−1(2.rS.log(S)) for the
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realizations of the RLTL. The dotted line denotes the bound given by Bollobas in Eq. 2.3

.

2.5 Shortest loop passing through a point

The presence of loops on the RLTL makes the behaviour of various quantities deviate from

what is expected on the Bethe lattice. Hence, it is important to take a closer look at the

shortest loop passing through any given point. Note that this is slightly different from our

discussion in section 2.0.1, where we just looked at the probability that a site has a loop of

size l. Here we look at what fraction of sites have the length of shortest loop passing through
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them equal to l.

Numerically studying the shortest loop passing through a point: To find the shortest

loop passing through a site A, we begin by constructing a breadth-first traversal tree around

the site. If at depth d, we reach a site which is already part of this tree, we have found a

loop. Site A however, might not be a part of this loop. We then traverse this loop to check

whether site A is indeed part of it or not. If it is, the length of the shortest loop passing

through A is 2d.

We first look at how this distribution changes as we vary the number of sites per layer

N for lattices with fixed number of layers. This is shown for the three and four coordinated

RLTL with m = 4 in Fig. 2.21 . We see that the length of the shortest loop through

a site on the three-coordinated RLTL (Fig. 2.21a) is on average longer than that on the

four-coordinated RLTL (Fig. 2.21b). This is expected as the additional inter-layer bonds

increases the probability of having loops of shorter sizes. We also see that as the number of

sites in each layer is increased, the distribution shifts towards the right — i.e., the length of

the most probable shortest loop increases.
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(a) Three-coordinated RLTL with m = 4
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(b) Four-coordinated RLTL with m = 4

Figure 2.21: Distribution of the size of the average shortest loop passing through a site on
RLTLs with fixed M . Each data point is sample-averaged over 100 independent realizations.

For lattices with fixed N , we see that the effect of increasing the number of layers is

not as substantial (see Fig. 2.22). The length of the most probable shortest loop passing

through a site does not change much but the fraction of sites having shortest loops of very

30



	0

	0.05

	0.1

	0.15

	0.2

	0.25

	0.3

	0.35

	0.4

	0.45

	0.5

	2 	4 	6 	8 	10 	12 	14 	16 	18 	20 	22

Fr
ac

tio
na

l	n
um

be
r	o

f	s
ite

s

Length	of	shortest	loop

m	=	3
m	=	4
m	=	5

(a) Three-coordinated RLTL with N = 2500
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(b) Four-coordinated RLTL with N = 5000

Figure 2.22: Distribution of the size of the average shortest loop passing through a site on the
RLTL for fixed N . Each data point is sample-averaged over 100 independent realizations.

small length does decreases.

To understand the role of the aspect ratio in the distribution of the shortest loop passing

through a site, we look at this distribution for lattices with fixed number of sites S but

different number of layers. Fig. 2.23 summarizes our results from this study. We observe

that for lattices with more number of layers, the distribution shifts to the left —implying

that there are more number of shorter loops passing through a site. The size of the average

shortest loop passing through a site reduces, as seen in Fig. 2.23b and 2.23d.

Our data suggests that for a fixed (and finite) S, lattices with smaller number of layers

have longer shortest loops passing through the sites. This is contrary to what one would

naively expect. For a lattice with small number of layers (m� N), one would assume that

the shortest loop passing through a site would be a very short loop (of order m) that “wraps”

around the lattice in the transverse direction and shifts the distribution to the left. However,

we see that such order m loops are actually unlikely. The shortest loop passing through a

site on an RLTL with small number of layers may still wrap around the lattice but ends up

being a longer than a simple loop of order m. This leads us to another line of study of the

“winding” number of loops.
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(a) Distribution of the shortest loop passing
through a point for lattices with fixed S = 104

and different aspect ratios (m,N).
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(b) Average length of the shortest loop passing
through a point as a function of m
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(c) Distribution of the shortest loop passing
through a point for lattices with fixed S = 104

and different aspect ratios (m,N).
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Figure 2.23: Understanding the effects of the aspect ratio of the RLTL: study of the dis-
tribution of the shortest loop passing through a site for the three-coordinated (top panel)
and four-coordinated RLTL (bottom panel) for a fixed number of total sites (S). Each data
point is sample-averaged over 100 independent realizations.
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2.5.1 Winding loops

The RLTL of a given total number of sites S is actually an ensemble of lattices with differ-

ent values (m,N). When studying different models in statistical physics on this lattice —

especially when characterizing finite-size effects — it is important to reduce the anisotropy

present in the lattice. Thus, while studying the shortest loop passing through a point, we

are interested in what fraction of these loops wind in the transverse direction. One way of

achieving this is to have the fraction of loops winding around the lattice in the transverse

direction to be close to 0.5.

We numerically study this on the RLTL. It is straightforward to find a winding number

of a given loop: Once we have a list of sites that form a loop (with the order specified:

say {a, b, c, ....., a}), we simply traverse the loop and have a counter that keeps tracks of the

increase (or decrease) in the layer number of the sites in the loop. The winding number of

a given loop is then the absolute value of this counter modulo the number of layers in the

lattice.
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(a) Fraction of short loops that wind around the
lattice as a function of m for fixed S.
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Figure 2.24: Understanding the effects of the aspect ratio of the RLTL: study of the fraction
of shortest loops passing through a site that wind around the three-coordinated RLTL in
the transverse (m) direction. Each data point is sample-averaged over 100 independent
realizations of the RLTL.

Figs. 2.24 and 2.25 shows the plot of the fraction of shortest loops that wind around the
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	0

	0.1

	0.2

	0.3

	0.4

	0.5

	0.6

	0.7

	0 	1000 	2000 	3000 	4000 	5000 	6000

Fr
ac

tio
n	

of
	s

ho
rte

st
	lo

op
s	

th
at

	a
re

	w
in

di
ng

N

m	=	4
m	=	6

(b) Fraction of short loops that wind around the
lattice as a function of N for fixed m.

Figure 2.25: Understanding the effects of the aspect ratio of the RLTL: study of the fraction
of shortest loops passing through a site that wind around the four-coordinated RLTL in
the transverse (m) direction. Each data point is sample-averaged over 100 independent
realizations of the RLTL.

lattice for fixed S and fixed M respectively. As expected, for a fixed total number of sites,

this fraction tends to zero for lattices with larger number of layers. For lattices with small

number of layers, most of loops are winding. In fact, for the three-coordinated RLTL with

a single bilayer, although it is in principle possible to have loops which do not wind around

the lattice, we found that almost all loops are winding for S = 104.

Returning to our original idea of reducing the anisotropy in the lattice: For lattices

with a given number of layers, we try to find a value of N at which this fraction would be

approximately half so that a short loop is equally like to wind around the transverse direction

or not wind. We see in Fig. 2.25b that for four-coordinated lattices with number of layers

m > 6 and three-coordinated lattices with number of bilayers m > 5, the fraction of winding

loops grows slowly in N . So the shortest loop in the lattice, even for m� N do not all wrap

around the lattice in the transverse direction.
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Chapter 3

The Ising Model on the RLTL

This chapter contains a detailed study of the Ising model on the RLTL. In the limit of large

number of sites, the behaviour of the Ising model on the RLTL is exactly the same as the

Bethe lattice — i.e., the free energy per site for the RLTL fN(T ) coincides with the result

on the Bethe lattice fBethe(T ). However, for a finite number of sites, there will be deviations

from what is expected in the thermodynamic limit. We quantify these deviations by study-

ing the finite-size scaling on this lattice. First, we recapitulate the explicit expressions for

the behaviour of the Ising model on the Bethe lattice. Next, we perform Monte-Carlo sim-

ulations of the Ising model on the RLTL and summarize the results of our studies. Finally,

we discuss the finite-size scaling of the specific heat capacity and magnetic susceptibility on

this lattice.

We study the Ising model with nearest-neighbour interactions, which has the following

Hamiltonian:

E(σ) = −J
∑
〈i,j〉

σiσj −H
∑
i

σi

Here 〈i, j〉 indicates a sum over all the nearest-neighbour pairs of spins in the lattice, J is

the strength of the coupling between spins and H is the external magnetic field.
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The partition function for the system can then be written as:

ZN =
∑
σ

exp

K∑
〈i,j〉

σiσj + h
∑
i

σi

 (3.1)

where K = J/kBT and h = H/kBT .

Let us consider the case of no external magnetic field (H = 0). We will derive equations

for the behaviour of this zero-field Ising model on the three-coordinated Bethe lattice. The

arguments presented here are on similar lines to the treatment given in Baxter’s book (Ref.

[6]).

3.1 Ising model on the Bethe lattice

Figure 3.1: A three-coordinated Cayley tree consisting of N levels centred at site O.

To obtain the behaviour of the Ising model on the Bethe lattice, we look at the Ising

model on the Cayley tree and only consider the effect of sites deep within the graph — i.e.,

we effectively ignore the contribution that the sites at the boundary make to the partition

function.

Suppose we have a Cayley tree consisting of N levels centred at site O as shown in Fig.

3.1. We pick an arbitrary site a at level r in the tree. Since the graph is three-coordinated,

this site is connected to two sites b and c in the subsequent level r + 1. Sites b and c form
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Figure 3.2: Site a at level r in the Cayley tree connected to two subtrees T1 and T2 below
via sites b and c at level r + 1.

the root of two sub-trees T1 and T2 which are connected to a as shown in Fig. 3.2. Let us

define ZT (σi) to be the restricted partition function of a given branch T keeping the spin

at the root of the branch (σi) fixed. The restricted partition function at site a due to the

sites “below” it can then be expressed in terms of the restricted partition functions of the

sub-trees T1 and T2 as:

Z(σa) =
∑
σb,σc

eβJ(σaσb+σaσc)ZT1(σb)ZT2(σc) (3.2)

where β = 1
kBT

Consider the sub-tree rooted at a site b. We can express the effect of the sites in the

levels beyond b by an effective field H1 at site b. The restricted partition function at the

sub-tree rooted at b can then be written as ZT1(σb) = Kb e
βH1σb . Similarly, the restricted

partition function of the sub-tree rooted at site c can be expressed in terms of the effective

field H2 as ZT2(σc) = Kc e
βH2σc .

Each partition functions appearing in Eq. 3.2 can be expressed in the form Z(σi) =

Ki(1 + hiσi), where hi = tanhβHi. Using this form, and then integrating out the spins σb

and σc, the effective field at σa (due to the rest of the lattice in the levels beyond it) turns

out to be:

h̃ =
x0(h1 + h2)

1 + x20h1h2
(3.3)

where x0 = tanhβJ
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The left hand side of Eq. 3.2 is simply the restricted partition of the sub-tree at level

r rooted at site a. So, we can keep repeating the above process at each level in the tree

and integrate inwards to get the effective field at a site (due to the sites beyond it) in the

previous level. In other words, Eq. 3.3 can be applied recursively at each level. As noted

before, we are interested in the behaviour of the sites deep within the lattice. Presumably if

we look deep inside the lattice, this effective field would be independent of the level that the

site is in. In other words, we are interested in the fixed point of Eq. 3.3. This fixed point,

which we call h∗(= tanhβH∗), depends on the value of x0.

h∗ =
2x0h

∗

1 + x20h
∗2 (3.4)
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Figure 3.3: Solutions to the recursion equation Eq. 3.3 for different values of x0. Note that
the range of x0 is [-1,1].

Fig. 3.3 illustrates the how this fixed point change with x0. If x0 <
1
2
, the effective field

at each level keeps decreasing as we move inward away from the boundary of the Cayley tree

and eventually goes to zero.

If x0 >
1
2
, Eq. 3.3 has three fixed points, two of which are stable points. The effective

field tends to either one of these stable points h∗ = ±
√

2x0−1
x20

depending on the boundary

conditions.

Thus, there is a critical value of x0 = 1
2

at which the behavior of the effective field changes.

This corresponds to a Tc = 2J
kB ln3

. In general, for a Bethe lattice with coordination number

q, the critical point is:
J

kBTc
= Kc =

1

2
ln

[
q

q − 2

]
(3.5)
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To get the full field at a site, we need to consider the effect of all the three sub-trees

connected it. Consider any site deep within the Cayley tree with a spin σ0. The three

sub-trees connected to σ0 are independent of each other. We already know that deep within

the lattice, the effective field at a site due to the sites below it in the tree is H∗ given by Eq.

3.4. The full field at the spin σ0 can be expressed in terms of H∗ using the picture provided

in Fig. 3.4.

Figure 3.4: Effective field at a site on the Bethe lattice

The full partition function at spin σ0 can be written as:

Z0(σ0) =
∑

σ1,σ2,σ3

eβJσ0(σ1+σ2+σ3)Zeff (σ1)Zeff (σ2)Zeff (σ3)

∝
∑

σ1,σ2,σ3

(1 + x0σ2σ0)(1 + x0σ3σ0)(1 + x0σ1σ0)(1 + h∗σ1)(1 + h∗σ2)(1 + h∗σ3)

∝ (1 + h∗x0σ0)
3

Expressing the partition function at σ0 as Z0(σ0) ≡ A(1 +
≈
hσ0), we obtain an equation for

the full field
≈
h at a site as:

≈
h =

3x0h
∗ + x30h

∗3

1 + 3x20h
∗2 (3.6)

3.1.1 Magnetization per site (m)

In the absence of any external magnetic field, the magnetization per site is simply:

ms(T ) =
3x0h

∗ + x30h
∗3

1 + 3x20h
∗2
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Using the expressions for h∗, this gives us:

ms(T ) =


0 T > TC

±
(

2x0−1
x20

)1/2 3x0+x30

(
2x0−1

x20

)2

3(2x0−1)+1
T ≤ TC

(3.7)

3.1.2 Energy per site (e)

The energy per bond can be expressed in terms of the effective field due to two sub-trees as

shown in Fig. 3.5:

Figure 3.5: Calculation of the energy per bond using the effective field due to the sub-trees.

Eb(T ) = −J 〈σ1σ2〉

= −J
∑
σ1,σ2

σ1σ2P (σ1, σ2)

Z

= −J x0 + h∗2

1 + x0h∗2

Since each site is connected to three neighbours via bonds that are shared between two sites,

the energy per site is 3/2 the energy per bond. Substituting the expression for h∗, the energy

per site is then:

es(T ) =

−3J
2
x0 T > TC

−3J
2

(x30+2x0−1)
x0(3x0−1) T ≤ TC

(3.8)
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3.1.3 Specific Heat Capacity (Cv)

The specific heat capacity is defined as Cv = dE
dT

. For simplicity, we set both J and kb to 1.

This gives us the following expressions for the specific heat capacity per site:

Cv(T ) =


1.5

(Tcosh( 1
T
))2

T ≥ TC

2.25−0.75 exp(−4/T )−3 exp(−2/T )
(sinh(1/T ))4(cosh(1/T ))2x20(3−coth(1/T ))2

T < TC
(3.9)

The specific heat on the Bethe lattice shows a finite jump at the critical temperature.

3.1.4 Magnetic Susceptibility (χ)

The magnetic susceptibility is defined as:

χ = lim
H→0

dM

dH

Figure 3.6: Site σ′ at a level r in the tree

To calculate the susceptibility, we first need to find the magnetization in the presence of

a small external field. Let us introduce a small external field h0 = H/kT . The restricted

partition function for a spin σ′ at level r in the Cayley tree due to the sub-trees at level r+1

below it can be written as:

Zr(σ
′) =

∑
σ1,σ2

Zr+1(σ1)Zr+1(σ2)(1 + x0σ1σ
′)(1 + x0σ2σ

′)(1 + h0σ
′)
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Each of these partition functions can be expressed as Zi(σ) = Ai(1 + hiσ), which gives us:

Ar(1 + hrσ
′) =

∑
σ1,σ2

A2
r+1(1 + hr+1σ1)(1 + hr+1σ2)(1 + x0σ1σ

′)(1 + x0σ2σ
′)(1 + h0σ

′)

= A2
r+1{(1 + 2hr+1x0h0 + h2r+1x

2
0) + σ′(h0 + 2hr + 1x0 + h0h

2
r+1x

2
0)}

This gives a recursion equation for the effective field at level r due to the subtrees beyond

it:

hr =
h0 + 2hr+1x0 + h0h

2
r+1x

2
0

1 + 2hr+1x0h0 + h2r+1x
2
0

(3.10)

We are interested in the effective field deep within the graph, which is independent of the

level in the tree. This fixed point effective field h∗ can be obtained by solving the equation:

x20h
∗3 + (2x0h0 − h0x20)h∗2 + (1− 2x0)h

∗ − h0 = 0 (3.11)

Figure 3.7: Magnetization per site in the presence of external magnetic field.

The magnetization per site can then be expressed in terms of h∗ using the picture shown

in Fig. 3.7 :

〈σ1〉 =

∑
σ1,σ2

σ1A
2(1 + h∗σ1)(1 + h∗σ2)(1 + x0σ1σ2)∑

σ1,σ2
A2(1 + h∗σ1)(1 + h∗σ2)(1 + x0σ1σ2)

=⇒ M =
h∗(1 + x0)

1 + h∗2x0
(3.12)

The derivative of the magnetic susceptibility with respect to this effective field is

dM

dh∗
=
−(x0 + 1)(x0h

∗2 − 1)

(x0h∗2 + 1)2
(3.13)

Since the susceptibility is the first order derivative of the magnetization with respect to the

external field, we only require our equations to be first order in h0. We can linearize the
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cubic equation 3.11 by writing h∗ = y+Bh0, where y is simply the value of h∗ in the absence

of external magnetic field h0. Terms involving higher orders of h0 are ignored.

h0(3Bx
2
0y

2 − 2Bx0 +B − x20y2 + 2x0y
2 − 1) + y(x20y

2 − 2x0 + 1) = 0

We then simply solve for B:

B =
dh∗

dh0
=

1 + x20y
2 − 2x0y

2

3x20y
2 − 2x0 + 1

(3.14)

We can now calculate the magnetic susceptibility:

χ =
1

kT

dM

dh0
=

1

kT

dM

dh∗
dh∗

dh0
(3.15)

For T ≥ Tc, we know that y = 0. The high temperature magnetic susceptibility χ+ is then:

χ+ =
1

kT

1 + x0
(1− 2x0)

(3.16)

For T ≤ Tc, y
2 = 2x0−1

x20
and hence the low temperature magnetic susceptibility χ− is:

χ− =
1

kT

(1 + x0)(1− x0)3

(2x0 − 1)(3x0 − 1)2
(3.17)

From Eq. 3.16 and Eq. 3.17, it is clear that the magnetic susceptibility diverges at the

critical point x0 = 1
2
.

All the expressions that we have derived here are valid on the Bethe lattice. The RLTL,

as discussed earlier, locally looks like a tree upto distance O[logS] from a site. In the limit

that the number of sites goes to infinity, the RLTL would behave the same way as the Bethe

lattice. For RLTLs with a finite number of sites, we expect to see deviations from this

behaviour, which opens up the question of how measured quantities vary with the size of

the lattice. Before we look at how the Ising model on the RLTL behaves and dive into the

question of finite-size effects, we briefly recap the standard finite-size scaling theory.
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3.1.5 Standard finite-size scaling arguments

Singularities at the critical point only occur for systems of infinite size. For systems of

finite sizes, quantities near the critical point behave differently from what is expected in

the thermodynamic limit. The theory of finite-size scaling, developed by Fisher and Barber

[27], [28] systematically addresses how the finite size of the system modifies the behaviour

of thermodynamic quantities near the critical point. A detailed historical overview of this

question is given in the review article Ref. [29] by Barber. The central idea to the theory is

that near the critical point, the behaviour of the system is controlled by the scaling variable

ξ/L, where ξ is the correlation length. In this section, we summarize the scaling form we

expect to observe for the magnetic susceptibility and the specific heat capacity. For the

magnetic susceptibility, we expect to observe a scaling of the form:

χ(ε, L) = χ(ε,∞) g(ξ/L) = χ(ε,∞) f(εLb)

where ε = T−Tc
Tc

.

For small ε, we can write the scaling relation as:

χ(ε, L) = ε−af(εLb) (3.18)

In the limit that ε→ 0 and L→∞, we know that the magnetic susceptibility diverges.

This means the function f(εLb) tends to a finite value in this limit, implying that ε ∼ L−b.

Substituting this in the scaling equation gives us:

χ(ε, L) = La/bf(εLb) (3.19)

The scaling function f can be found by plotting χ(ε, L).L−a/b vs ε.Lb

In case of the Bethe lattice, the specific heat capacity does not show a divergence. We

can pull out the universal finite size effects, and subtract the non-universal “analytic back-

ground”. While studying the scaling for the specific heat capacity, we work with a quantity

∆Cv which removes this analytical background and is expected to show universality:

∆Cv(L, T ) = Cv(L, T )− Cv(∞, T ) (3.20)
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Figure 3.8: Difference between the observed and theoretical values of the specific heat per
site (∆Cv) as a function of ε for the three-coordinated RLTL with a single bilayer.

Fig. 3.8 shows a plot of ∆Cv as a function of temperature for the various lattice sizes

analyzed. The arguments for the scaling of ∆Cv can be made along similar lines to the

arguments made for χ. In the limit of ε→ 0 and L→∞, the specific heat has a discontinuity

but does not diverge. This implies that a = 0. Hence, we expect ∆Cv to obey a scaling of

the form:

∆Cv(ε, L) = f̃(εLb) (3.21)

The scaling function f̃ can be found by plotting ∆Cv vs ε.Lb

3.2 Monte Carlo studies of the Ising model on the

RLTL

To numerically measure the various quantities in the Ising model on RLTL, we have to

obtain samples of spin configurations using Monte Carlo simulations. The most common

method to do this is using the Metropolis-Hastings algorithm [14] which involves single-spin
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flip dynamics. The basic idea is to start out with an arbitrary initial configuration and then

at each step flip one randomly selected spin with certain probability. If flipping the spin

leads to a configuration with lower energy, it is accepted with probability 1. If not, it is

accepted with probability eEi−Ef/T , where Ei and Ef are the energies of the configuration

before and after the flipping the said spin.

The single-spin flip dynamics has the issue of critical slowing down near Tc for lattices

of large sizes. An algorithm that overcomes this issue is the Wolff algorithm introduced by

Ulli Wolff [30]. We make use of this algorithm for our study and discuss its implementation

in the next section.

3.2.1 Wolff Algorithm

The Wolff algorithm involves flipping clusters of spins and not single spins. Ref. [31] contains

a good description of the working of this algorithm. We briefly discuss it here: the idea is to

build a cluster from a randomly sampled spin. To start out, we pick a spin at random and

add it to the cluster. In the subsequent steps, we look at sites which have links connecting

to the spins at boundary of the cluster. If a site i on the boundary of the cluster is connected

to a site j which is not already part of the cluster and the magnetization of these sites are

the same (ie, Si = Sj), site j is added to the cluster with probability p = 1 − exp(−2βJ).

Once the growth of the cluster is complete (ie, no new sites get added to the cluster), all

spins in the cluster are flipped.

This algorithm is a rejection-free and is currently the fastest known method to simulate

the Ising model. Note that in the limit of high temperature (in the paramagnetic phase),

the Wolff algorithm effectively behaves the same way as the single-spin flip algorithm. In

the low temperature region (the ordered phase), the size of the cluster is nearly the size of

the lattice itself.

3.2.2 Details of implementation

This subsection summarizes the details of our implementation of the Wolff algorithm to

study the Ising model on the three-coordinated RLTL. In all our implementations, we set
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J and kB to one. We say that one Monte-Carlo step is complete if there is a Wolff cluster

of size 15 for T ≤ 2.0 and size 30 for T > 2.0. In general, we use a grid size of 0.02 for

the temperature. For lattices of larger size, we use a finer temperature spacing (0.01 or

0.005 as appropriate) around the critical temperature. Interestingly, in our studies, we find

that the behaviour of the Ising model was dependent only on the total number of sites in

the lattice and not sensitive to the aspect ratio. Hence, for simplicity, we take RLTL

lattices with a single bilayer (m = 2) and number of sites in each layer of the form N = 2n,

where n = 6, 7,..., 16. The total number of sites in the lattice is then 2.2n. Thus, the

largest lattice size we have used for our simulation is of order 106 sites. For each lattice

size, we take 20 independent realizations of the RLTL and run the Wolff algorithm. At each

temperature, we first equilibrate the system for 500 Monte-Carlo steps and then collect data

for 5 × 104 Monte-Carlo steps. For larger sizes (S ≥ 215), there is a self-averaging of the

different quantities and we can thus reduce the required number of Monte-Carlo samples to

2.5×104. We report our results after averaging over these 20 independent RLTL realizations

(which corresponds to at least 5 × 105 Monte-Carlo samples in total) with error bars equal

to the standard error.

3.2.3 Numerically calculating the magnetic susceptibility for finite

systems

If we plot the probability distribution of the magnetization for finite systems at T > Tc, we

see that this distribution has a single peak around m = 0. For T < Tc, this distribution

is peaked at two values of m — one positive and one negative. In fact, as we increase the

system size, these distributions become more sharply peaked (see Fig. 3.9). As a result of

this double peak at T < Tc, the average value of the magnetization per site averaged over a

large number of samples ends up being zero even in the ordered phase.

In the thermodynamic limit however, the magnetization of the system stays in one peak

even for T < Tc. A detailed description of this symmetry-breaking of m in the thermo-

dynamic limit is given in Ref. [32]. To understand why this happens, we have to look at

the time series for the magnetization generated by the Monte-Carlo simulations of the Ising

model. As the size of the system increases, the time taken for the magnetization of the

system to flip signs (ie, move from one peak to the other) increases. Hence, in the thermo-

dynamic limit, the system essentially stays peaked around a single value of m. Recall that
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Figure 3.9: Probability density distribution of the magnetization per site for RLTLs of size
S = 213 and 216 respectively. For T ≤ Tc, the distribution of the magnetization has two
peaks. For T > Tc, the distribution of the magnetization is a single peak centred around
m = 0. As the size of the system increases, the peaks get sharper.

all our theoretical expressions are only valid in this thermodynamic limit.

To avoid the issue of the magnetization having a double-peak in finite systems, we work

with the absolute value of the magnetization instead. This corresponds to “folding” the

distributions of the magnetization along the y = 0 axis. For T < Tc, we then end up with a

single-peaked distribution. Note that in the region above Tc, the distribution of 〈|m|〉 ends up

being a half normal which is not symmetric around m = 0. To relate the variance of 〈|m|〉 for

lattices of smaller sizes at T > Tc to the theoretical expressions (the thermodynamic limit),

we have to introduce a multiplicative factor of ≈ 0.36. This factor becomes insignificant for
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lattices of larger size where the distribution of m is very sharply peaked and 〈|m|〉 tends to

zero.

3.2.4 Results of Monte Carlo studies on the RLTL
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Figure 3.10: Energy per site as a function of temperature for the three-coordinated RLTL
with a single bilayer for different values of N. The dashed line is the theoretically expected
curve (given by Eq. 3.8). The vertical line denotes the critical temperature Tc. The maximum
error bar is of order 10−4 for N ≥ 8 and order 10−3 for N < 8.

Fig. 3.10 shows a plot of the average energy per site as a function of temperature for

lattices of different sizes for an RLTL with a single bilayer. The theoretically expected

function (given by Eq. 3.8) is shown using a dashed curve. As seen, for larger lattice sites,

the Monte-Carlo simulations are in good agreement with the theory. For the lattices of

smaller size (N ≤ 211), we observe significant deviations above the critical temperature.

However, for temperatures far away from the critical temperature (T ≥ 2.5), the data agrees

well with the theory even for the smaller sizes (not shown in the figure). For lattices of sizes

S = 28, 29 the maximum error bar is of order 10−3. For larger sizes, the maximum error bars

are of order 10−4 — primarily in the high temperature region where the size of the Wolff
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clusters are small. Around the critical point, the errors are of order 10−5 for these lattices.

Absolute magnetization per site
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Figure 3.11: Absolute magnetization per site as a function of temperature for the three-
coordinated RLTL with a single bilayer for different values of N. The dashed line is the
theoretically expected curve for the Bethe lattice (given by Eq. 3.7). The vertical line is at
the critical temperature Tc.

As discussed previously in subsection 3.2.3, it is best to work with the absolute value of

magnetization. Fig. 3.11 shows a plot of the absolute value of the magnetization per site

as a function of temperature. The dashed line corresponds to the absolute value of Eq. 3.7,

which is what we expect from theory. For lattices with S ≤ 210, the maximum error in |m|
occurs around critical point and is of order 10−3 . Lattices with S > 210 had a maximum

error of order 10−4 around the critical point.
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Specific heat capacity

The specific heat capacity can be calculated from the Monte-Carlo data using the following

relation:

Cv = N
〈e2〉 − 〈e〉2

T 2
(3.22)
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Figure 3.12: Specific heat capacity per site as a function of temperature for the three-
coordinated RLTL with a single bilayer for different values of N. The dashed line is the
theoretically expected curve (given by Eq. 3.9). The vertical line is at the critical tempera-
ture Tc.

Fig. 3.12 shows the results from our simulations. For lattices of finite size, we do not

observe a discontinuity in Cv. As we increase the size of the lattice, the plot of Cv tends

towards the theoretically expected curve and the jump becomes apparent. For lattices of

size S < 212, the error bars are of order 10−3. For lattices of size S ≥ 212, the error at the

peak value of Cv is ∼ 0.01 and of order 10−3 everywhere else.
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Magnetic Susceptibility

To measure the magnetic susceptibility from our data, we find convenient to work with a

quantity that depends on the variance of |M | and not variance of M. This is not same as

the magnetic susceptibility. In the thermodynamic limit however, in the low temperature

ordered phase this quantity agrees with the magnetic susceptibility. In the high temperature

phase, it differs by a multiplicative constant (discussed previously in Sec. 3.2.3). For finite N,

there is a smearing near Tc, and the finite size effect is not same as the usual susceptibility,

but qualitatively similar. The “absolute” magnetic susceptibility is define as:

χabs = N
〈m2〉 − 〈|m|〉2

T
(3.23)

The plot of this measured magnetic susceptibility is shown in Fig. 3.13. Since we are

working with lattices of finite size, χabs does not diverge at Tc. The value of the peak

however, increases sharply as the lattice size increases. Across all lattice sizes, the maximum

error in χabs occurs at the peak and the percentage error at this data point is of order 0.1%.
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Figure 3.13: Magnetic susceptibility per site as a function of temperature for the three-
coordinated RLTL with a single bilayer for different values of N. The dashed line is the
theoretically expected curve (given by Eq. 3.16 and 3.17). The vertical line denotes the
critical temperature Tc.

52



3.3 Finite-size scaling on the RLTL

In the limit of the number of sites going to infinity, we expect the Ising model on the RLTL

to be exactly what is expected on the Bethe lattice. However, as we have seen, for finite

sizes, there is a deviation from the behaviour expected in this limit. Do these deviations

scale systematically with the size of the lattice as predicted by the standard finite-size scal-

ing hypothesis? In other words, the problem now is to see if we can find an appropriate ‘L’

that appears in the scaling variable in Eqs. 3.19 and 3.21 for the RLTL. In general, a finite

system of volume V in d dimensions can be characterized by a length scale L ∝ V 1/d. For

a lattice with total number of sites S, we can consider the volume to be proportional to S.

Within the locally tree-like approximation, we note that the RLTL is “infinite” dimensional

and when d becomes large, S1/d is ∼ log(S). We also saw that different measures of the size

of the graph — such as the average diameter and the radius of gyration — were linear in

log(S). So our initial naive guess is that ‘L’ is log(S). However, on trying to use this in the

scaling variable for our Monte-Carlo data, we were unable to obtain a satisfactory collapse.

To study this more systematically, we manually scale the axes in the plots of ∆Cv and χ

so that the positions and heights of the peak match for all lattice sizes. We can then study

how this scale factor depends on S to understand what scaling variable to use. Consider the

plot of ∆Cv given in Fig. 3.8: we observe that for lattices of size N ≥ 211, the heights of

the peak are the same. This is consistent with Eq. 3.21 which suggests that the y-axis does

not require scaling. We then simply scale the x-axis so that the position of this peak is the

same for all sizes and plot the scale factor as a function of n (recall that the total number

of sites in the lattice is of the form 2.2n). Fig. 3.14a shows the x-axis scale factors for ∆Cv.

Similarly, we obtain the scale factors for the x and y axes of the magnetic susceptibility. Fig.

3.14b shows the scale factors used for the y-axis of the susceptibility plots as a function of

n. We observe that the scale factors are proportional to S1/2.

If we plot ∆Cv as a function of the reduced temperature ε and scale the x-axis by S1/2,

(ie, using L = S and b = 0.5 in Eq. 3.21), we find that we are able to obtain a good collapse

for different lattice sizes as shown in Fig. 3.15.

On plotting the magnetic susceptibility χ as a function of ε and scaling the x-axis by

S1/2, we find that the positions of all the peaks coincide. On scaling the y-axis by a factor
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Figure 3.15: Scaling collapse for ∆Cv vs ε.

S−1/2, we were able to obtain a collapse for the heights of the peak as well, as shown in Fig.

3.16. This scaling corresponds to using L = S, b = 0.5 and a = −1 in Eq. 3.19. However,

we note that the region below ε.S1/2 = −5 appears to have significant corrections to scaling.

We will study this in more detail subsequently.
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Figure 3.16: Scaling collapse for χ vs ε.

3.4 Theory for finite-size scaling of the Ising model on

the RLTL

We verified that the same scaling variables work for RLTLs of coordination number four

as well by performing Monte-Carlo studies of the Ising model on the four-coordinated lat-

tice defined in Chapter 1 (a representative plot shown for χabs in Fig. 3.17). To explain

the observed scaling behaviour, we postulate that near the critical point, the probability

distribution of the magnetization follows the form predicted by Landau Theory [33], [34].

Let M =
∑

i σi be the total magnetization of the system. As per Landau theory, the

probability distribution of M in the region near Tc is given by:

P (M) = N exp

(
−aεM

2

S
− bM4

S3

)
(3.24)

where a and b are constants that are independent of the number of sites and the temperature.

They would however, depend on the details of the lattice (in our case, the coordination

number). N is the normalization constant.

As a consistency check, we fit the probability distribution of the magnetization per site
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Figure 3.17: Scaling collapse for the magnetic susceptibility for the four-coordinated RLTL
with a single layer.

near the critical point from our Monte-Carlo data of the Ising model on the RLTL to the

form in Eq. 3.24 to ensure that we do indeed obtain a value of a and b that is independent

of T and S. Representative plots are shown in Fig. 3.18.

Why do we expect this form to be valid on the RLTL?

Why would the Landau form of the probability distribution of the magnetization give us

the expected scaling behaviour for the Ising model on the RLTL? We suggest that under

renormalization, the Hamiltonian of the nearest neighbour Ising model on the RLTL flows

to the Hamiltonian of the mean-field Ising model.

Consider the three-coordinated RLTL. Since the lattice is locally tree-like, we can define

a block of spins of size four as shown by the labelled sites in the left picture in Fig. 3.19.

Consider a maximal cover of such blocks on the RLTL. We then renormalize these block by

assigning a spin variable to each block. Fig. 3.19 shows the first step of this renormalization,

the result being a coupling between blocks and an effective increase in the coordination num-
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Figure 3.18: Fitting the probability distribution of m to the Landau form in Eq. 3.24 for
the three-coordinated RLTL. We obtain a value of a = 0.29 and b = 0.02.

ber. So under a single step of renormalization, the original short-ranged (nearest-neighbour)

Ising model Hamiltonian renormalizes to a Hamiltonian with a higher coordination number.

Figure 3.19: First step of renormalization of a block of spins of size four on the three-
coordinated RLTL.

After each step of renormalization, the coordination number becomes much higher (in

the case of the three-coordinated RLTL, the coordination number increases by a factor of

two after every step). Eventually, we expect to reach a fixed point Hamiltonian (H∗) in

which all the spins are coupled to each other given by Eq. 3.25. So, we expect this fixed

point (mean-field) Hamiltonian to govern the behaviour of our system.

The Hamiltonian for the long-ranged mean-field Ising model is:

H∗ = −J
S

(
∑
i

σi)
2 (3.25)
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In this case, each spin couples with all other spins in the graph with equal strength.

If M is the total magnetization of the system, the partition function of this system can

be written in terms of M as:

ZS(β) =
∑
M

(
S

S+M
2

)
eβJM

2/S (3.26)

Around Tc, the expected value of M is very small and so Eq. 3.26 can be approximated to

be of the following form, which is the same as that predicted by Landau theory:

ZS(β) =

∫ ∞
−∞

exp

(
−aεM

2

S
− bM4

S3

)
dM (3.27)

In summary, we expect the Ising model on the RLTL to follow the behaviour predicted

by Landau theory near the critical point. The suggested justification for why this is true

is that the Ising model on the RLTL under renormalization “flows” to the mean-field Ising

model.

We can now use this form of the probability distribution of M to derive the exact ex-

pression for the scaling functions near Tc. Let us absorb all the constants and define new

re-scaled variables
∼
M and

∼
ε. Once we obtain the scaling function in terms of these re-scaled

variables, we can scale the x and y axes appropriately to recover the constants a and b.

bM4

S3
=

∼
M4

4
and

aεM2

S
=

∼
M2∼ε

2

The probability distribution can be written in terms of these new variables as:

P (
∼
M) ∝ exp

−∼ε ∼M2

2
−

∼
M4

4

 (3.28)

We define the re-scaled partition function Z(
∼
ε):

Z(
∼
ε) =

∫ ∞
−∞

exp

−∼ε ∼M2

2
−

∼
M4

4

 dM (3.29)
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From this, it is straightforward to obtain the form of the scaling function near Tc for χ and

∆Cv.

Calculating the theoretical scaling functions

Near Tc, the magnetic susceptibility can be approximated to be

χ ≈ 〈M
2〉 − 〈|M |〉2

STc

First, we show that the probability distribution for the magnetization given by Eq. 3.24 gives

us the correct scaling form that we expect for the susceptibility. Each of the expectation

values appearing in the equation for the susceptibility can be explicitly calculated using this

probability distribution:

〈M2〉 =

∫∞
−∞M

2 exp
(
−aεM2

S
− bM4

S3

)
dM∫∞

−∞ exp
(
−aεM2

S
− bM4

S3

)
dM

=
S3/2

2b1/2

∫∞
−∞

∼
M2 exp

(
−

∼
ε

∼
M2

2
−

∼
M4

4

)
d
∼
M

∫∞
−∞ exp

(
−

∼
ε

∼
M2

2
−

∼
M4

4

)
d
∼
M

〈|M |〉2 =

∫ 0

−∞ 2M exp
(
−aεM2

S
− bM4

S3

)
dM∫∞

−∞ exp
(
−aεM2

S
− bM4

S3

)
dM

2

=
S3/2

2b1/2


∫∞
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2
∼
M exp

(
−

∼
ε
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2
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M4

4

)
d
∼
M

∫∞
−∞ exp

(
−

∼
ε

∼
M2

2
−

∼
M4

4

)
d
∼
M


2

And so using these expressions, the susceptibility can be written in the form

χ =
〈M2〉 − 〈|M |〉2

STc
= S1/2 h(

∼
ε)

Recalling that
∼
ε = a

b1/2
εS1/2, we obtain the expected scaling form:

χ S−1/2 = f(εS1/2)

It turns out that for
∼
ε > 0 we can write down an actual functional form for the scaling

function. In this region, the re-scaled partition function given in Eq. 3.29 can be expressed
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in terms of the Bessel function of fractional order [35]:

Z(
∼
ε) =

√
∼
ε exp(

∼
ε
2

8
) K 1

4

(∼
ε
2

8

)
√

2
,

∼
ε > 0 (3.30)

In fact, for
∼
ε > 0, the entire scaling function near Tc can be expressed in terms of the Bessel

function of fractional order and the error function [35]. Calculating the expectation values

of
∼
M2 and

∼
|M | using the partition function, we get:

〈
∼
M2〉 = 2

d lnZ(
∼
ε)

d
∼
ε

=
1

2

∼
ε

K 3
4

(∼
ε
2

8

)
K 1

4

(∼
ε
2

8

) − 1

 ; |〈
∼
M〉| =

√
2π exp(

∼
ε
2

8
) erfc

(∼
ε
2

)
√
∼
ε K 1

4

(∼
ε
2

8

)
We define a universal quantity

∼
χ as:

∼
χ = 〈

∼
M2〉 − 〈

∼
|M |〉2 (3.31)

=⇒ ∼
χ =

1

2

∼
ε

K 3
4

(∼
ε
2

8

)
K 1

4

(∼
ε
2

8

) − 1

− 2π e
∼
ε
2

4

(
erfc

(∼
ε
2

))2
∼
ε
(
K 1

4

(∼
ε
2

8

))2 (3.32)

For
∼
ε < 0 we were unable to find a functional form for the partition function and

∼
χ,

and hence resort to calculating the functions numerically. Note that the universal scaling

function
∼
χ defined above does not depend on the coordination number of the lattice — ie,

it is independent of a and b. The actual scaling function for the magnetic susceptibility

f(εS1/2) is related to
∼
χ by re-scaling the axes in the plot of

∼
χ as a function of

∼
ε. The x-axis

should be re-scaled by a factor b1/2

a
and the y-axis by a factor 1

2Tcb1/2
.

We now check whether this theoretical scaling function agrees with our Monte-Carlo data.

Fig. 3.20 shows the plot of the theoretical scaling function after rescaling the axes to obtain

the best possible match to the data. This re-scaling was done separately for ε > 0 and ε < 0.

Relating the scale factors of the axes to a and b, we find that: for ε < 0, the values of a and

b are (0.289, 0.019) while for ε > 0, the values are (0.275, 0.018).
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Figure 3.20: Theoretical scaling function for the magnetic susceptibility.

3.5 Corrections to scaling

While this theory seems to give us the asymptotic scaling function, there are significant

corrections to this theoretical scaling form for εS1/2 < −5 (this corresponds to ε ∼ −0.02).

We claim that these corrections can be explained by introducing a first order temperature

dependence in the coefficient of M4 in the free energy.

F (M) =
aεM2

S
+ (b+ dε)

M4

S3

where d is another constant.

In terms of the re-scaled variables
∼
M = M/S3/4 and

∼
ε = ε/S1/2, this is:

F (
∼
M) = a

∼
ε
∼
M

2

+

(
b+

d
∼
ε

S1/2

)
∼
M4

From this, we expect the deviations from the asymptotic scaling function to be of the form

S−1/2. This can be tested using our data. We plot the difference between value of the

observed scaling function and the theoretically expected scaling function at εS1/2 = −10 as

a function of lattice size to check whether the corrections scale as S−1/2. From Fig. 3.21 we

see that this correction term agrees with the observed deviations.
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Figure 3.21: Difference between the observed scaling function and the theoretical (asymp-
totic) scaling function at εS1/2 = −10 as a function of N (recall that the number of sites per
layer is 2N). The dashed line is the function S−1/2.
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Chapter 4

Summary

We have defined a variation of a random regular graph called the Random Locally Tree-

Like Layered Lattice (RLTL). For large number of sites S, we argued that the shortest loop

passing through a random site on this graph is of order O[logr−1S], where r is the coor-

dination number of the graph. This implies that upto O[logr−1S], the lattice locally looks

like a branching tree. The Bethe approximation thus becomes exact on this lattice when

the total number of sites goes to infinity. Since this lattice is regular, it avoids the issue of

subtracting any surface corrections. Numerical studies are also feasible on this graph since

it is finite and does not need these corrections. Thus, some models in statistical physics

become more tractable to study on the RLTL. In particular, while the finite-size corrections

to the Ising model on random graphs in thermodynamic limit has not been well-studied in

previous literature, we are able to explicitly calculate the finite-size scaling functions for this

model on the RLTL.

In Chapter 2, we probed the geometrical structure of the RLTL. We found that the

sample-averaged diameter of the RLTL is linear in the logarithm of the total number of

sites S to leading order in S. The plot of the sample-averaged diameter as a function of

log(S) showed a distinct staircase-like structure. We explained this structure by studying

the sample-to-sample variation in the diameter. It was found that the distribution of the

diameters across samples for RLTLs of the same size was sharply peaked and took at most

three distinct values. The standard error in the diameter fluctuates between 0 and 0.5, and
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the flat regions in the plot of the diameter vs log(S) corresponds to lattice sizes for which all

realizations of the RLTL have the same diameter. We then defined a more smoothly behaved

quantity called the radius of gyration. We found that this was quantity was also linear in

log(S). Using the property that the sites in a shell constructed around any site in the lattice

are approximately randomly distributed, we showed that the probability distribution of the

distances between sites on the lattice follows the relation:

P (d(u, v) ≥ R) = exp

[
− 2R

aS

]
where a is a constant of O(1).

In Chapter 3, we looked at the behaviour of the Ising model on the RLTL. We studied

finite-size corrections of the magnetic susceptibility per site (χ) and the deviation of the

specific heat capacity from the thermodynamic value (∆Cv = Cv(L, T ) − Cv(∞, T )). We

obtained a scaling collapse for both these quantities with a scaling of the form:

χ S−1/2 = f(εS1/2)

∆Cv = g(εS1/2)
(4.1)

where ε = T−Tc
Tc

.

Obtaining this scaling is particularly interesting because the specific heat capacity per site

in the thermodynamic limit does not diverge at the critical point. The appearance of S1/2

in the scaling variable is also contrary to our original naive expectation of log(S).

We have proposed a theory to explain the observed finite-size scaling behaviour. We

claim that near the critical point, the probability distribution of the magnetization is of the

form:

P (M) ∝ exp

(
−aεM

2

S
− bM4

S3

)
where a and b are constants independent of the temperature and number of sites. Using

this, we were able to explicitly obtain the form of the scaling functions that appear in

Eq. 4.1 above. This theoretical form is consistent with the scaling collapse observed in our

Monte-Carlo data. The corrections to this asymptotic finite-size scaling function are however

noticeable for ε < 0. We have explained these corrections to scaling and shown that the

deviations from the asymptotic scaling function are of the form S−1/2.
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