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ABSTRACT

Viscosity-enhancing polymers such as Polyacrylamide (PAM) are gaining traction as
candidates for Enhanced Oil Recovery (EOR). This popularity encourages the com-
putational study of PAM to understand its behavior under various solution conditions.
On account of the involvement of large length and time scales in the description of
its properties, coarse-graining the atomistic models has become a major subject of
interest.

This thesis is focused on developing mesoscale models of PAM in an aqueous envi-
ronment, from an atomistic base. We have followed three approaches towards achiev-
ing a coarse-grainedmodel: MARTINI, Iterative Boltzmann Inversion (IBI), and a hybrid
scheme of integrating IBI and MARTINI. The objective was to evaluate the reliability
of these approaches in representing the structure and thermodynamics of the target
system.

We have reproduced the global structural properties (radius of gyration, RG, and
end-to-end distance, Ree) to a reasonable extent with the CG system developed within
the MARTINI framework, although the local structure could not be precisely captured.
The results with IBI and IBI+MARTINI of bonded distributions, and radial distribution
functions (RDFs) show an absolute replication of the local structure of a single chain
of PAM in water. The viscosity results show that the all-IBI method fails to mimic the
dynamical property, whereas IBI+MARTINI was successful in mimicking the trend ex-
hibited by the atomistic system. We also show that the derived potentials fail to repro-
duce the structure beyond 4 wt% of concentration of solution, entailing the need for
re-parameterization of potentials for higher concentrations.
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1. INTRODUCTION

In the world of growing energy needs, oil continues to hold a leading position in the
energy sector. The world would almost sputter to a standstill without oil. Owing to the
increasing demands of technology and power, the future of crude oil production has
become a growing concern. This energy crisis is attributed to a dearth of oil resources
and difficulties associated with locating fecund oil fields. Traditional techniques of oil
recovery allow only about 20-40% of the oil to be extracted from underground reser-
voirs, leaving a majority of it untapped. Enhanced oil recovery (EOR) techniques pro-
vide possibilities to access the stranded amount, adding another 20% to the recovered
quantity [5]. Enhanced oil recovery can be divided into three categories:

• Thermal Recovery : Heat is imparted to the reservoir in the form of steam to
reduce the viscosity of oil.

• Chemical Injection : Chemicals such as polymers or surfactants mixed with water
are introduced into the reservoirs for efficient water flooding.

• Gas Injection : Injection of gases such as nitrogen, carbon dioxide, natural gas,
so that they dissolve in the oil and reduce its viscosity, thus enhancing its flow.

Polymer flooding is one of the most employed methods in the area of chemical En-
hanced Oil Recovery (cEOR). It involves injecting long-chain, hydrophilic polymers in
order to render the water more viscous and improve volumetric sweep efficiency of the
water-flood. One such polymer widely used in cEOR is Polyacrylamide (PAM). Poly-
acrylamide is a water-soluble acrylic resin, produced by free radical polymerization of
acrylamide. Aqueous solutions of this long-chain, flexible polymer exhibit enhanced
viscous behavior when compared with plain water [6]. On account of its viscoelastic
properties, PAM has grabbed the attention of both experimentalists and computational
scientists alike. There exists a bountiful store of literature on the experimental studies
of PAM, but only a limited amount of computational investigation of the polymer has
been conducted [6][7][8].
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1.1 Computational Modeling

Experimental studies are subject to several limitations, such as impracticality of
achieving extreme environmental conditions , a great many trial-and-errors leading
up to wastage of resources, limited control over experimental variables. Experiments
fail to provide answers to how exactly a process occurs. Computational modeling and
simulation studies enable researchers to determine properties that are experimentally
inaccessible, and also to predict outcomes via a sweep of parameter space. Com-
puter simulations help build a bridge between theory and experiment, allowing a better
insight into the problem at hand.

There exists a hierarchy in the simulation techniques, and active research seeks
to combine models of different scales popularly known as multiscale modeling. Fig.
1.1 makes a comparison among the many computational approaches of investigating
chemical/biological systems of interest. The finest details of a system can be studied
by the first-principles approach of quantum mechanics. This method promises chem-
ical accuracy but is limited to very small systems. Next on the ladder comes classical
molecular dynamics (MD) which can be construed as a coarser definition of quantum
mechanics. Similarly, coarse-grained MD can replace classical atomistic MD by inte-
grating over certain degrees of freedom in the latter. There are two ways of traversing
from one level to another:

• bottom-up : Details at a finer scale are used for parameterization at a coarser
scale

• top-down : Properties at a larger scale are the ingredients for designing a more
detailed model.

Atomistic studies on polymers suffer from the drawback of long relaxation times for
high-molecular-weight chains. Coarse-graining comes to the rescue in such cases.
Coarse-grained simulations involve eliminating unnecessary degrees of freedom to
probe length and time ranges of systems beyond the reach and span of atomistic
models. MARTINI is one such coarse-graining approach that has been designed to
represent the partitioning free energy between the differently polar phases of a large
library of chemicals [9]. Yet another coarse-graining scheme is Iterative Boltzmann In-
version(IBI) which targets the structural properties of the system[1]. With coarser sys-
tems, spanning greater length and time scales becomes feasible, which provides the
benefit of reduced computational time and effort. Coarse-graining has its own pitfalls
though. Since many degrees of freedom are lost in the process of coarse-graining, not
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Fig. 1.1: Hierarchy of simulation approaches[3]

many properties of interest can be targeted at the same time. While aiming to achieve
computational efficiency and enhanced sampling, the intricate details of the system are
compromised upon.

1.2 Outline

The main agenda of this thesis is the construction of a methodology that would unify
both the structure and thermodynamics of the system of interest. Besides, it is a study
of the structural and rheological properties of aqueous polyacrylamide.

Chapter 2 discusses the theory behind the methodology adopted, beginning with the
basics of Molecular Dynamics (MD), the basic tool that has been employed throughout
the work. It also talks about the approach to building a mesoscale model from an
all-atom foundation. In chapter 3, the details of the simulations carried out have been
delineated. Chapter 4 presents the results of the investigation along with an elucidation
of the results. Chapter 5 lists the conclusions.



2. THEORY

This chapter reviews the theory behind the methodology adopted in the work. It
begins with a theoretical background on Molecular Dynamics, the simulation technique
ubiquitously employed throughout this study. Further on, the procedure of coarse-
graining starting from an atomistic base has been discussed. Two types of coarse-
graining approaches have been implemented in this work. One of them being the
MARTINI [9] approach and the other is Iterative Boltzmann Inversion [1].

2.1 Molecular Dynamics

Particle simulations can be split into two: stochastic and deterministic. Monte-Carlo(MC)
works on stochastic algorithms, whereas Molecular Dynamics(MD) follows a determin-
istic approach. Molecular Dynamics is a technique formulated on the principles of
classical and statistical mechanics [10][11][12]. Information is generated at the micro-
scopic level that includes positions and velocities of atoms. The fundamental principle
is to apply Newton’s equations motion on N interacting particles. Microscopic motion
of particles are translated to macroscopic properties by the aid of statistical mechanics.
The trajectory of the coordinates is generated by integration of the classical equations
of motion. The process of solving these equations is repeated until the system proper-
ties do not change with time, in other words, the system reaches its equilibrium. The
basic flow of the MD algorithm is shown in Fig. 2.1

2.1.1 Force Field

The communication between the atoms constituting a classical system is governed
by the system’s Hamiltonian, more popularly known as a force field. A functional form
of the degrees of freedom that defines the inter-atomic potential of the system is known
as a force-field. The potential function can be divided into two parts:

• Bonded potential: Includes bond vibrations, angle-bending vibrations, proper and
improper dihedrals.

• Non-bonded potential: Van der waal’s forces are computed by Lennard-Jones or
Buckinghampotential forms and electrostatic interactions are defined byCoulomb
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Fig. 2.1: Molecular Dynamics algorithm

potential. The computation of non-bonded interactions is dependent on the neigh-
bor list.

The function is expressed as the sum of the constituent energy terms.

E = Ebond + Eangle + Etor + Eimp + Evdw + Eel (2.1)

The force field package used in this study was GROMOS-53A6 [13]. The following is
an overview of the potential forms that make up the system’s energy. The summation
over all N bonds results in the total bond energy.

Ebond(r) =
Nb∑
n=1

1
4
Krn(r2n − r20)2 (2.2)

where Kr is the force constant and r0 the bond length at equilibrium. The angle potential
is defined by the following relation:

Eangle(θ) =

Nθ∑
n=1

1
2
Kθn(cosθn − cosθ0)2 (2.3)
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where Kθ is the force constant and θ0 is the angle at equilibrium. The torsion potential
energy is obtained by:

Etor =

Nϕ∑
n=1

Kϕn(1+ cos(δn)cos(mnϕn)) (2.4)

where δn is the phase shift going from 0 to π, mn is the angle’s multiplicity ϕn. The po-
tential energy associated with restricting atoms to a particular arrangement, like placing
them all in a plane, or a tetrahedral arrangement etc., is the improper dihedral energy
which follows the form, summing over all Nξ dihedral interaction points:

Eimp =

Nξ∑
n=1

1
2
Kξn(ξn − ξ0n)

2 (2.5)

where Kξ is the improper dihedral force constant and ξ0 the equilibrium improper di-
hedral angle. The non-bonded interactions are computed by the Lennard-Jones 12/6
interaction function.

Evdw =
∑
i<j

(
C12
r12ij

− C6ij
r12ij

)
(2.6)

The parameters C12ij and C6ij are decided by the atom types and the nature of inter-
action, by the following combination rules:

C12ij =
√
C12iiC12jj C6ij =

√
C6iiC6jj (2.7)

where C12ii,C6ii,C12jj,C6jj are self-interaction terms, C12ij,C6ij are cross-interaction
terms, and rij the distance between atoms i and j. Electrostatic interactions are defined
by the Coulomb potential function acting over all the non-bonded pairs of atoms.

Eel =
∑
i<j

qiqj
4πϵrij

(2.8)

where qi,qj are the partial charges on atoms i and j respectively, ϵ is the dielectric
permittivity of the medium, rij is the distance between atoms i and j.

2.1.2 The MD Algorithm

The atoms constituting the system are alloted coordinates and velocities at the start of
the run. A neighbor list is generated to compute the non-bonded forces. The forces are
only counted for the pairs for which the distance between is less that the provided cut-
off radius. Having defined the potential energy, the calculation of force on every particle
is performed, which takes the longest computational time in the entire process. The
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force on any atom is obtained by differentiating the potential with respect to position.

Fi = −δV
δri

(2.9)

The positions of the atoms are updated by numerically solving Newton’s equations of
motion.

ai =
d2ri
dt2

=
Fi
mi

(2.10)

The Verlet algorithm is commonly used to generate the trajectory of individual atoms
[14]. A Taylor series expansion on the updated position is performed, both forward and
backward in time:

r(t+ dt) = r(t) + v(t)dt+
1
2
a(t)dt2 +

1
6
b(t)dt3 +⃝(dt4) (2.11)

r(t− dt) = r(t)− v(t)dt+
1
2
a(t)dt2 − 1

6
b(t)dt3 +⃝(dt4) (2.12)

Adding the two equations:

r(t+ dt) = 2r(t)− r(t− dt) + a(t)dt2 +⃝(dt4) (2.13)

The acceleration, a(t), is force divided by the mass of the concerned particle.

a(t) = − 1
m
dU(r(t)) (2.14)

The leap-frog algorithm [15] a variant of the Verlet algorithm. The positions r at time t
and velocities v at time t− 1

2 are used to update both positions and velocities.

r(t+ dt) = r(t) + v(t+
dt
2
) (2.15)

v(t+
dt
2
) = v(t− dt

2
) + a(t)dt (2.16)

The velocities at time t are:

v(t) =
1
2
[v(t− 1

2
dt) + v(t+

1
2
dt)] (2.17)
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Fig. 2.2: Schematic: The leap-frog principle [4]

2.2 Coarse Graining

Atomistic simulations suffer from limitations in length and time scales, owing to which
processes that take much longer than nanoseconds cannot be studied, for e.g. chain
relaxation of polymers, protein folding, or lipid self-assembly. Coarse-graining is a pos-
sible remedy to this problem. It provides the benefit of much fewer degrees of freedom
and results in less-detailed, smoother potentials. Groups of atoms are clustered into
beads based on the chemical nature of the cluster. This philosophy allows the retention
of the specific chemistry of the system while allowing faster computation. As a result of
the removal of the finer details of the system, it becomes feasible to use a larger time-
step which increases the computational efficiency by orders of magnitude. Several
coarse-graining approaches have been devised, each depending on the properties of
interest: MARTINI [9], Iterative Boltzmann Inversion [1], force matching [16], relative
entropy minimization[17], to name a few. This study deals with MARTINI and IBI. Apart
from these two well-known methodologies, we have implemented a novel scheme of
integrating the MARTINI and IBI approaches. The following sections provide details of
the three approaches of coarse-graining employed in the study.

2.2.1 MARTINI force field

MARTINI [9] is a coarse-grained force field designed specifically for MD simulations
on biomolecules. The assignment of parameters has been made so as to represent
phases of different polarity. At present, MARTINI force-fields for proteins [18], lipids
[19], DNA [20], polymers [21], nanoparticles [22] are available.

The construction of the MARTINI model is based on mapping four heavy atom neigh-
bors in the molecule to one coarse-grained bead. A three-to-one mapping scheme has
also been introduced to allow higher resolution in cases of ring molecules. These are
the S-type beads. Different particle types have been defined depending on the chemi-
cal property of the bead, with the aim of mimicking the chemical identity of the all-atom
base. Four types of beads have been parameterized: polar(P), non-polar(N), apo-
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lar(C), and charged(Q) [23]. Further categorization provides the following sub-types:
d = hydrogen donor, a = hydrogen acceptor, da = both, 0 = none,and a polarity index
that runs from 1 to 5 in increasing magnitude.

The non-bonded interactions are defined by the Lennard-Jones(LJ) 12-6 potential
energy function.

ULJ(r) = 4ϵij
[(σij

r

)12
−
(σij
r

)6]
(2.18)

where σij is the shortest extent of approach between i and j and ϵij is the well depth of
the potential [9]. Every pair of particles has been assigned a σij and ϵij depending on
the nature of the interacting particle types ij. The assignment of the LJ parameters to
the particles has been done on the basis of experimental evidence, particularly the free
energy of hydration, the free energy of vaporization, and the partioning free energies
between phases [23]. The Coulomb function defines the electrostatics of the system
[9].

Uel(r) =
qiqj

4πϵ0ϵrr
(2.19)

where the relative dielectric constant, ϵr = 15 to provide explicit screening, qi,qj are the
charges on the particles. The electrostatic potential is relevant solely for the systems
containing Q type (charged) beads, as the rest of the beads carry no partial charges
on them. Bonded parameters are derived from atomistic bonded distributions, as will
be described in the next chapter. A weak harmonic potential function Vbond(r)is made
to describe bonded interactions of the coarse-grained system with the derived values
of the force constant Kbond and equilibrium bond length rbond.

Vbond(r) =
1
2
Kbond(r− rbond)2 (2.20)

Similarly, angle vibrations are described a weak harmonic potential.

Vangle(θ) =
1
2
Kangle[cos(θ)− cos(θ0)]2 (2.21)

where Kangle is the derived force constant and θ0 is the angle at equilibrium. If needed,
proper dihedrals are also incorporated into the model, especially in cases where a
secondary structure representation is targeted, like in cases of proteins. The MARTINI
philosophy has already met many applications, yet there are shortcomings to it. One of
the drawbacks of MARTINI is that it does not mimic the atomistic structure accurately.
Iterative Boltzmann Inversion(IBI) wins on this ground. The next section describes the
IBI method of coarse-graining in detail.



2. Theory 10

2.2.2 Iterative Boltzmann Inversion (IBI)[1][2]

IBI is a coarse-graining strategy that follows a systematic bottom-up approach to
mimic the structure of the underlying atomistic foundation [1]. The mechanism is built
upon an assumption that bonded and non-bonded interactions are independent of each
other, and hence the total potential energy of the system, U is the sum of bonded Ub

and non-bonded Unb potential energies.

U =
∑

Ub +
∑

Unb (2.22)

Bonded potentials (bonds, angles, dihedrals) are obtained by a Boltzmann inversion
of the bonded distributions of the reference system. This method has been designed
to work on a canonical ensemble. P(q) is the Boltzmann distribution corresponding to
the degree of freedom in question[2].

P(q) = Z−1exp[−βU(q)] (2.23)

where Z =
∫
exp[−βU(q)]dq is the canonical partition function, β = 1/kBT [2]. P(q) is

obtained from the trajectory of a well-sampled all-atom foundation. It is further assumed
that the bonded interactions are not correlated, which allows the factorization of the
probability of states.

P(r, θ, ϕ) = Pr(r)Pθ(θ)Pϕ(ϕ) (2.24)

Histograms of the distributions should be rescaled to obtain a volume-normalized dis-
tribution function.

Pr(r) =
Hr(r)
4πr2

, Pθ(θ) =
Hθ(θ)

sinθ
, Pϕ(ϕ) = Hϕ(ϕ) (2.25)

A Boltzmann inversion on the distribution functions gives us the respective potentials,
shown in (2.27).

U(r, θ, ϕ) = Ur(r) + Uθ(θ) + Uϕ(ϕ) (2.26)

Uq(q) = −kBTlnPq(q) (2.27)

This inverted potential is, in actuality, the free energy, which is approximated as the
potential energy. In most cases, the inverted potential suffices to be the bonded po-
tential energy function for the coarse-grained runs in attribution to the stiffness of the
bonded interactions. However, this does not hold true for the non-bonded interactions.

Non-bonded potential functions are derived from an iterative refinement of the energy
function obtained from a Boltzmann-inverted radial distribution function, g(r), from the
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atomistic reference. The directly inverted potential serves as a reasonable first guess
for the iterative procedure. Such a refinement is performed for every non-bonded in-
teraction of the system. The CG potential is optimized by the following relation:

Un+1 = Un + kBTln
(

gCGi (r)
gtarget(r)

)
(2.28)

The potentials are said to be converged at the step where gi(r) matches gtarget(r). The
extent of convergence is defined by the following error function:

fmerit =
∫
w(r)(gCGi (r)− gtarget(r))2dr (2.29)

where w(r) = exp(−r), a weighting function to avoid strong deviations at small dis-
tances [24]. The same iterative refining has to be operated on bonded interactions
too if the direct Boltzmann inverted potential does not serve as the suitable potential
energy function. For IBI on bonded interactions, the g(r) in equations (2.28) and (2.29)
gets replaced by P(r).



3. METHODOLOGY

Here we present a layout of the methodology adopted in the study. The flow of
the work is as follows: (a) atomistic simulations of polyacrylamide melt, (b) atomistic
simulations of aqueous polyacrylamide which acts as the reference upon which the
coarse-grained model is constructed, (c) coarse-graining by MARTINI, (d) IBI, and (e)
integration of IBI and MARTINI. All the MD simulations have been performed using the
GROMACS 5.0.5 [25] suite of programs.

3.1 Atomistic PAM melt

The polymer chain was constructed in an atactic manner using the polymer builder
associated with the software CULGI. Copies of the polymer were packed into a sim-
ulation box to create a homogeneous melt system. The purpose of performing melt
simulations of the polymer is to obtain the chain length that would adequately represent
the characteristics of PAM used in experiments. A united-atom force field, GROMOS-
53A6 [13], was used to design the atomistic model with charges borrowed from the
paper by Wang,et al [26]. The integrator used was leap-frog [15] with 2 fs as the time
step. The steepest descent algorithm was used to energy-minimize the system [27].
The simulations were set up at temperature, 300 K, and pressure, 1 bar, with cou-
pling constants of 0.2 ps and 1.5 ps respectively, using the Berendsen weak-coupling
scheme [28]. Reaction-field method [29] defined the electrostatics with a cut-off of 1.2
nm and dielectric constant of 3.5. Lennard-Jones interactions were truncated at 1.2
nm, applying dispersion corrections for potential and pressure. With a cut-off radius of
1.2 nm, the neighbor list was updated at every 10th step. The Linear Constraint Solver
(LINCS) algorithm [30] applied bond constraints.

Single chains were relaxed in vacuum before packing them into a simulation box.
NPT equilibration of PAM chains with 5-80 monomers were carried out individually at
T = 300K. The density of the melt in each case was noted. The minimum chain length
that represented the experimental density of PAM was picked for further tests. To
confirm the validity of the force-field and the chosen chain length, the glass transition
temperature, Tg, of the polymeric melt was obtained (refer Sec. A of the Appendices for
a detailed description). This process required four cycles of simulated annealing until
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the system’s potential energy at 300 K reached a minimum. The system was heated
from 300 K to 800 K, cooled down to 250 K with leaps of 50 K, and the potential energy
was extracted in each cycle. On reaching the minimum potential energy, extended runs
of 10 ns were carried out at every temperature range and the corresponding average
density was gathered at each temperature. The resulting density-temperature profile
gives us the Tg.

3.2 Atomistic PAM in water

The force-field for the polymer used was the same as that of the melt, while SPC-
E [31] was used for water. A single relaxed chain of the polymer in a cubic box of
edge 5.63 nm, with 5698 SPC-E [31] water molecules comprised the system. Steep-
est descent [27] was performed to energy-minimize the structure, followed by an NVT
equilibratioon for 1 ns to relax the solvent around the polymer. An NPT equilibration
for 5 ns and further an NPT production run for 300 ns were carried out. The simu-
lation details were same as that of the melt except for the inclusion of Particle Mesh
Ewald (PME) electrostatics [32] in the aqueous case with a real space cut-off of 1.2 nm
and PME order of 4. The temperature was maintained at 300 K with the Nose-Hoover
[33][34] thermostat and pressure at 1 bar with the Parrinello-Rahman [35] barostat with
coupling constants of 0.4 ps and 1.5 ps respectively.

3.3 MARTINI coarse-graining

3.3.1 Mapping scheme

The atomistic polymer chain was mapped to a chain consisting of two types of beads,
A and B. The mapping scheme has been derived from Wang, et al [26]. Bead A rep-
resents the pendant amide and bead B represents the backbone carbon chain, both
following a mapping of 3 heavy atoms to 1 bead. The mapping scheme is shown in
Fig.3.1. The center of mass of the cluster of atoms comprising a bead is its coordinate.
MARTINI water is incorporated into the coarse-grained system, wherein each water
bead represents a clump of 4 molecules of atomistic water of bead type P4.

3.3.2 CG potentials

The bonded potentials of the CG system were built to match the target atomistic po-
tentials. These include bond AB, angle ABA, and angle BAB. The reference bonded
distributions were obtained from mapping the atomistic trajectory to a coarse-grained
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Fig. 3.1: Mapping scheme with MARTINI bead definitions (refer Sec.2.2.1 for the def-
inition of bead types)

one with the aforementioned mapping definition. A Boltzmann inversion, as shown
in eqn. (3.1) was performed over the target distributions to obtain the potentials over
which harmonic fits were made, which then serve as input potentials for the CG simu-
lations.

U(x) = −kBTlnP(x) (3.1)

where U(x) is the inverted potential, T is the temperature, and P(x) the probability of
atomistic bonded distribution. Harmonic fitting is performed with the following equation:

U(r) =
1
2
k(x− x0)2 (3.2)

where x is either a bond or angle coordinate. Fig. 3.2 shows individual bonded potential
energies obtained from the atomistic run and the harmonic fit performed resulting in the
input parameters for the CG runs as shown in Tab. 3.1.

Equilibrium value Force constant
Bond AB 0.275nm 15003.8kJmol−1nm−2

Angle ABA 125◦ 42.45kJmol−1rad−2
Angle BAB 47◦ 550kJmol−1rad−2

Tab. 3.1: Bonded parameters for MARTINI coarse-grained simulations

3.3.3 CG simulation details

The three derived, bonded potentials were incorporated into the CG force-field. The LJ
parameters of the existing MARTINI bead-types, namely, σ and ϵ, imparted form to the
non-bonded interactions. NPT simulations of the polymer of the same chain length as
the atomistic chain were run in MARTINI water. Electrostatic interactions were com-
puted by the Reaction-field zero algorithm [29] assisted by a Coulomb modifier. LJ
potential was gradually turned off to reach zero from 0.9 nm to 1.2 nm and electrostatic
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Fig. 3.2: Derivation of bonded parameters from CG runs

interactions from 0.0 nm to 1.2 nm. At every 10th step, the neighbors were updated.
The integrator used was leap-frog [15] with a time-step of 20 fs. For the initial NPT
equilibration of 5 ns, the thermostat used was V-rescale [36] with temperature at 300
K and the barostat was Berendsen [28] with pressure at 1 bar with coupling constants
of 1 ps and 4 ps respectively. NPT production run was done for 300 ns. Nose-Hoover
[33][34] thermostat and Parrinello-Rahman [35] barostat with coupling constants of 4
ps and 12 ps maintained constant temperature and pressure.

3.4 Coarse-graining by IBI

3.4.1 Coarse-graining procedure

The mapping scheme followed for the polymer chain was the same as described in
Sec. 3.3.1. Each water SPC-E water molecule is mapped to one superatom of water
where the superatom’s center is the center of mass of the three atoms constituting a
water molecule. The coarse-graining kit VOTCA [37] has been employed in this work
to perform the iterative procedure of coarse-graining. The potentials for the bonded in-
teractions were the Boltzmann-inverse of the distributions obtained from the reference
trajectory after the mapping [38]. In the mapped polymer there exist 4 bonded types:
bond AB, angle ABA, angle BAB, and a dihedral angle BABA. The dihedral angle has
been included to represent the structure more precisely in comparison with the con-
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structed MARTINI force-field. The non-bonded interactions cover 6 types: A-A, B-B,
A-B, A-SOL, B-SOL, SOL-SOL, where SOL is the water bead where one molecule of
water was mapped to one bead. The Boltzmann-inverse of the target RDFs obtained
from the reference trajectory after mapping serve as the guess potentials to begin the
iterative procedure. The non-bonded potentials exclude 1-2, 1-3, and 1-4 interactions,
owing to the inclusion of bond, angle and dihedral potential inputs.

Since the non-bonded interactions are highly correlated, they were optimized by up-
dating them in a sequential manner. The imposed fmerit (refer eqn. (2.29)) value to
quantify the convergence of potentials was 0.5. Before being fed as input potentials,
the Boltzmann-inverted numerical potentials were smoothened by cubic splines. Each
step of the iterative procedure was run for 10 ns to allow sufficient sampling. The IBI
method focuses on reproducing the structure of the system, and hence, loses on the re-
quired thermodynamics. Since the potentials were optimized based on structure alone
in the absence of a barostat, the pressure of the CG system deviated from the pressure
of the atomistic reference. To combat this issue a linear pressure correction [39] was
applied to the long-range section of each of the optimized CG non-bonded potentials.
The correction term is [38]:

dU(r) = A
(
1− r

rc

)
(3.3)

where A = −(dP)0.1kBT, rc is the cutoff for non-bonded potentials, dP is the differ-
ence in pressure from the atomistic value. In our procedure, pressure correction was
applied to all the interactions at the same time after every complete cycle of potential
update. This process was made to continue until both structure and pressure reached
satisfactory convergence.

3.4.2 CG simulation details

The CG-MD simulations were run at constant NVT (300K) with GROMACS-5.1 [25].
The system consists of a cubic box with PBC invoked. The leap-frog was made to
describe the Langevin dynamics, with a time step of 4 fs. The Langevin thermostat
maintains the temperature at 300 K with a friction constant, γ = 0.5τ−1, where τ =
0.2 ps is the time constant. The cutoff for both the neighbor listing and van der Waals
interactions was 1.2 nm with the neighbors being renewed every 10 time-steps. All
potentials were fed in the tabulated form to perform extensive CG-MD simulations.
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3.5 Combining IBI and MARTINI

3.5.1 Coarse-graining procedure

The mapping scheme for the polymer was the same as in Sec. 3.3.1. A single
chain of the mapped polymer (PAM30) was solvated in 1424 MARTINI water beads,
maintaining the same concentration as that of the reference system.To incorporate the
effect of MARTINI water, the interactions: W-W, A-W and B-W were accounted for by
the non-bonded potentials derived from the all-MARTINI system (refer Sec. 3.3). A
’W’ bead is one MARTINI water bead. These potentials are obtained by converting the
analytical potentials corresponding to each of the three non-bonded pairs to a numer-
ical (tabulated) form. Since the bonded potentials obtained from a direct Boltzmann
inversion failed to result in similar bonded distributions as the atomistic, the iterative
refining of potentials was applied on both bonded, and non-bonded, non-water inter-
actions: A-A, B-B, and A-B. Unlike the general optimization procedure of potentials in
order of relative strengths: Ubond → Uangle → Unonbonded → Udihedral, this work follows the
order of updating only one interaction potential at a step in a cycle that goes over all of
the four bonded and three non-bonded interactions.

3.5.2 CG simulation details

CG MD simulations were run with a time step of 4 fs in the NVT ensemble. Each
iteration was 10 ns long. The integrator describing Langevin dynamics was leap-frog.
The Langevin thermostat maintains the temperature at 300 K with a friction constant,
γ = 0.5τ−1, where τ = 0.2 ps is the time constant. The cutoff for the neighbor list up-
date was 1.2 nm. Following the methodology adopted for MARTINI (refer Sec. 3.3.3),
non-bonded potentials were made to smoothly reach zero at the cutoff value, 1.2 nm,
by applying the force-switch algorithm [40] between 0.9 nm and 1.2 nm. The imple-
mentation of the force-switch algorithm does the pressure-correction in the system and
thereby, no additional pressure-correction needed to be done on every potential being
updated in the IBI procedure.

3.6 Viscosity calculations

In our simulations, the rheological behavior of systems has been studied by calculating
the bulk viscosity of aqueous polymer solutions with the Transverse Current Autocor-
relation Function method (TCAF). (refer Sec. E of the Appendices for the background).
We conducted 3 trials for eachmodel: (a) all-atom (b)MARTINI (c) IBI (d) IBI+MARTINI.
The polymer concentration in water varied from 0 wt% (0 chains) to 28.05 wt% (15
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chains). The initial NPT equilibration lasted for 2 ns, followed by 5 ns of NPT produc-
tion run at 300 K and 1 bar pressure. The trajectory was recorded every 10 fs for each
system. An exponential fit is made over the decaying TCAF with the decay constant
transformed into the shear viscosity of the system. [41].



4. RESULTS AND DISCUSSION

4.1 Validation of atomistic force field

The force-field chosen to carry out MD simulations for both polyacrylamide melt and
aqueous polyacrylamide was a united-atom force-field, GROMOS-53A6 [13]. As de-
scribed in Sec. 3.1, the density of the melt as a function of the chain length was
noted. Fig. 4.1 shows that the density begins to saturate after N = 30 with the value,
1.226±0.003 g/cc lying in the range of experimental densities reported for PAM: 1.189
g/cc[42], 1.21 g/cc [43], 1.302 g/cc[44]. We singled out N=30 as the shortest poly-
mer that reproduced the experimental density. Additionally, longer chains will require
more intense computational effort. With PAM30 as the system, further validation of

Fig. 4.1: Density of polymeric melt vs Number of monomers, N, to obtain the chain
length that mimics PAM from experiments

the force-field and the chain length was made by calculating the Tg of PAM30 melt
as in Sec. 3.1. Once the minimum potential energy was reached, the densities were
plotted against the corresponding temperatures. The point at which the slope of the
density profile changes abruptly is where the polymeric melt transitions from a glassy
state (more dense) to loose, rubbery state (less dense). As can be seen in Fig. 4.2,
the point of intersection of the two states of the polymer occurs at temperature (Tg) =
415.49 K. The Tg obtained from simulations is quite close (error ≈ 5.14%) to the most
cited experimental Tg, 438 K [45].
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Fig. 4.2: Glass transition temperature obtained from simulated annealing on a poly-
meric melt of PAM30

4.2 MARTINI

We study the structural aspects of our MARTINI-based coarse-grained system of
a single chain of PAM30 in water. The bonded distributions resulting from feeding
harmonic fit parameters derived in Sec. 3.3 have been shown in Fig. 4.3. The CG

Fig. 4.3: Comparison of the bonded distributions between all-atom and CG systems

bonded distributions overlap with the underlying atomistic distributions. Although the
distributions do not peak at the same value for both, the histograms span the same
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range of values.

The structural properties of interest are the radius of gyration, Rg, and the end-to-
end distance, Ree, of the polymer chain. These properties have been described in
Sec. B and Sec. C of Appendices. Figs. 4.4 and 4.5 compare the structural properties
between the all-atom and coarse-grained systems. Table 4.1 places average values

Fig. 4.4: Time series of radius of gyra-
tion (Rg) of a single chain of
PAM30 in water

Fig. 4.5: Time series of end-to-end
(Ree) of a single chain of
PAM30 in water

of Rg and Ree of the constructed MARTINI system against those of the all-atom model.

Rg (nm) Ree (nm)
Atomistic 0.721±0.028 1.180±0.421

Coarse-grained 0.715±0.045 1.029±0.399

Tab. 4.1: Comparison of structural properties (Rg and Ree) between atomistic and CG
simulations

In order to test how applicable our CG force-field was for chain lengths other than
PAM30, we computed the radius of gyration for PAM chains in aqueous systems with
N=20-100 monomers. Fig.4.6 shows the scaling behavior of Rg vs N for atomistic and
CG systems. The scaling relation is shown in eqn. (4.1), and (4.2).

RgαNλ (4.1)

logRg = λlogN+ C (4.2)
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Fig. 4.6: Radius of gyration as a function of chain length for atomistic and CG systems

Log-log plots in Fig.4.7 and 4.8 show similar scaling trends for the atomistic and CG
representations.

Fig. 4.7: Relation of log Rg with
log N for atomistic sys-
tem

Fig. 4.8: Relation of log Rg with
log N for coarse-grained
system

The plots of Figs. 4.6, 4.7, 4.8 show that the exponent values, λ, from both atomistic,
0.3168, and coarse-grained simulations, 0.3557, are very close. This suggests that the
CG system matches the atomistic reference quite well.
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4.3 Iterative Boltzmann Inversion

The results presented in this section correspond to the procedure detailed in Sec.
3.4. Convergence was achieved in 74 steps of iteration. Fig. 4.9 shows the comparison
of the bonded distributions and Fig. 4.10 of the non-bonded distributions between all-
atom and CG models.

Fig. 4.9: Comparison of bonded distributions between atomistic and CG models
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Fig. 4.10: Reproduction of the atomistic non-bonded interactions by the CG system.

The local structural arrangement of the polymer system is best described by the
bonded probability distributions and radial distribution functions (RDFs) (refer Sec.D for
the description) between the centers of the pseudo-atoms (CG beads). The RDFs have
been computed after excluding the three nearest neighbors. The above results clearly
indicate that the intra-molecular and intermolecular interactions have been successfully
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captured by our CG model. The pressure correction implemented according to eqn.
(3.3) lowered the pressure from 2422.62 bar to 1.59 bar, a value close to the pressure
of the all-atom system, i.e., 1.21 bar. A consistent pressure value makes sure that the
thermodynamics of the system is not disturbed.

Static structural properties such as the Rg and Ree describe the global structure of
polymers. The following plots compare the structural properties of the all-atom and CG
models.

Fig. 4.11: Histograms of radius of gy-
ration (Rg) of CG against the
all-atom system

Fig. 4.12: Histograms of end-to-end
distance (Ree) of CG against
the all-atom system

Rg (nm) Ree (nm)
Atomistic 0.724±0.028 1.061±0.390

Coarse-grained 0.731±0.041 1.093±0.377

Tab. 4.2: Comparison of structural properties (Rg and Ree) between atomistic and CG
simulations

The above histograms obtained from the CG model do not exactly match the atom-
istic in shape because of insufficient sampling. Nevertheless, the average values of
the structural properties of the CG lie close to the all-atom system. Also, the peaks in
the distributions of the systems lie around the same value. This suggests that our CG
model is an adequate representation of the structure of the atomistic model.

4.4 Combining IBI and MARTINI

This section reports the results of the coarse-graining methodology followed in Sec.
3.5. A good level of convergence was achieved in 60 steps of the iterative procedure
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that sequentially iterated over the bonded and non-bonded interactions. A comparison
of the bonded distributions is shown in Fig. 4.13 and of non-bonded in Fig. 4.14.

Fig. 4.13: Comparison of bonded distributions between atomistic and CG models

The above plots indicate that the local structure of the CG model perfectly matches
the all-atom system at short and long distances. The nearest three neighbors have
been excluded while computing the RDFs. Hence, both the intra- and inter-molecular
arrangements have been replicated by our coarser model. To study the global structure
of the CG polymer, we looked at the Rg and Ree of the systems in question. The results
are shown in Figs. 4.15 and 4.16.
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Fig. 4.14: Reproduction of the atomistic RDFs by the CG model.

Fig. 4.15: Histograms of radius of gy-
ration (Rg) of CG against all-
atom system

Fig. 4.16: Histograms of end-to-end
distance (Ree) of CG against
all-atom system

Rg (nm) Ree (nm)
Atomistic 0.724±0.028 1.061±0.390

Coarse-grained 0.719±0.036 1.156±0.417

Tab. 4.3: Comparison of structural properties (Rg and Ree) between atomistic and CG
simulations

The CG bonded distributions of this hybrid model are closer to the atomistic than
those obtained by themodel derived from IBI alone (refer Sec. 4.3). This is because the
hybrid model optimizes potentials over bonded and non-bonded interactions whereas
the other model only iterates over the non-bonded interactions. The CG distributions of
Rg and Ree show good overlap with the atomistic distributions. There is only a tiny shift
in the Rg of the CG model to the left. This is because the distance between the center
of mass of a peripheral bead and the chain’s center is always less than the distance
between the center of mass of a peripheral atom and chain’s center. This difference
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leads to only a slightly smaller Rg of the CG polymer than the atomistic chain. The slight
shift to the right in Ree of the CG polymer can also be explained along the same lines.
The distance between the end atoms of the atomistic chain will always be smaller than
the distance between the end super-atoms of the CG polymer.

From an investigation of the structural properties of our coarse-grained models, we
infer that the MARTINI model does not fulfill the intricate details of the bonded distri-
butions, i.e., intra-molecular arrangements are not exactly mimicked. However, the
MARTINI model represents the global structure fairly well. On the other hand, both the
model obtained from IBI and that obtained from IBI+MARTINI parameterization show
an excellent match with the structure of the atomistic system. The IBI+MARTINI model
offers an additional advantage of fewer optmisable non-bonded interactions compared
to the pure IBI model. The greater the number of non-bonded potentials to optimize,
the longer it takes to reach convergence because these potentials are cross-correlated.
Moreover, the IBI+MARTINI model allows faster simulations owing to the inclusion of
MARTINI water which offers a 4 times higher level of coarse-graining over the pure IBI
system.

Having arrived at CG models that satisfy the structural properties of a single PAM
chain in water, we decided to test the derived potentials on systems with higher con-
centrations of PAM.

4.5 Multi-chains

This section discusses the usefulness of the potentials derived from a single chain
of PAM in water when applied to higher concentrations (more than one chain) of the
aqueous polymeric system. We use the potentials from the IBI model and IBI+MARTINI
for the test. Figs. 4.17 and 4.18 show the extent of overlap between the CG and all-
atom probability distributions of Rg and Ree respectively.
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Fig. 4.17: Comparison of Rg between atomistic and CG models

Fig. 4.18: Comparison of Ree between atomistic and CG models

From the above results, we infer that single chain potentials work only qualitatively
for the concentration of 3.93 weight%. As we move towards higher concentrations,
we see that the CG distributions progressively worsen. These results suggest that a
re-optimization of potentials would be needed to design coarse-grained systems in the
higher concentration regimes.
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4.6 Viscosity enhancement

The results reported in this section correspond to the viscosity calculations made
following the procedure in Sec. 3.6. Viscosity values have been reported for 4 models:
atomistic, MARTINI, IBI, IBI+MARTINI, spanning concentrations from 0 to 28 weight%
of the PAM solution. Following eqn.(E.10), individual plots of viscosity, µ, as a func-
tion of wave vector, k, were generated. Fig.4.19 shows the TCAF viscosity plot for
atomistic PAM in SPC-E water. The extrapolated value at k = 0 of each TCAF curve
gives us the bulk viscosity of the corresponding system. As expected, with increasing
concentrations of the polymeric solution the viscosity of the system was enhanced.

Fig. 4.19: Viscosity wrt wave vector with increasing concentrations for the all-atom sys-
tem of PAM in SPC-E water

The trend in viscosity enhancement as a function of increasing concentrations of
the polymeric solution has been shown in Fig.4.20 for all the four model force-fields.
Although the IBI model was able to represent the increasing trend of viscosity with
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Fig. 4.20: Viscosity as a function of concentration for all the three CG models against
the all-atom system. The curve corresponding to the IBI model (blue) follows
the y axis on the right, while the rest three curves follow the left y axis.

concentration, the magnitude of the viscosity values are poorly represented. The vis-
cosity obtained for water from this model was 0.151±0.004 cP, a very low value when
compared to the viscosity of SPC-E water, 0.695±0.003 cP. This huge difference can
be attributed to the disappearance of many degrees of freedom entailed by the coarse-
graining process. The MARTINI water model has been parameterized to reproduce the
thermodynamics of the atomistic system, and as a consequence its viscosity is in close
agreement with the viscosity of SPC-E water. The experimental viscosity reported for
water is 0.89 cP [46]. The CG MARTINI water model is closer to the experimental vis-
cosity than the all-atom SPC-E water. Due to the upper shift in viscosity of water, the
vertical offset in the trend against the atomistic curve is maintained throughout. Hence,
it is justified that the IBI+MARTINI model wins over the pure IBI system in representing
the dynamical behavior.



5. CONCLUSIONS AND FUTURE OUTLOOK

Molecular dynamics simulations have been conducted throughout this study for both
the atomistic and the coarse-grained models. The objective of this work was to arrive at
the most appropriate method of development of a coarse-grained force-field for aque-
ous polyacrylamide. With GROMOS-53A6 as the force-field and PAM of 30 monomers
as the appropriate chain length, the density and the glass transition temperature of PAM
melt were successfully reproduced. Three methods have been evaluated to design a
coarse-grained system from a united-atom description of an infinitely dilute system of
PAM in water. The MARTINI model sufficiently represented the global structure of
the polymer chain but not the intricacies of the local structure. In order to accurately
represent the structure, a CG system was modeled by the Iterative Boltzmann Inver-
sion (IBI) scheme. The IBI method captured both the local and global structure of the
polymer chain. Since the IBI model is constructed based on structure alone, the ther-
modynamics of the system is often distorted. To take care of this limitation, a novel
mechanism of integrating the philosophies of IBI and MARTINI was devised. This hy-
brid model could successfully reproduce the local and global structure of the polymer.
Owing to the incorporation of MARTINI water, this model was 4 times faster than the
pure IBI model with the added benefit of fewer fit parameters. While the pure IBI and
IBI+MARTINI models correctly predicted the trend in viscosity enhancement, only the
latter were in close match with the absolute values of viscosity obtained from atom-
istic simulations. We have also shown that in terms of replication of structure, both
the IBI and IBI+MARTINI models are not applicable beyond ≈4 wt% of concentration.
Combining the results of static and dynamic properties, we conclude that the MARTINI
model provides a loose representation of structure but the viscosity trend is adequately
maintained; both the IBI and IBI+MARTINI models quantitatively capture the structure
at infinite dilution, and qualitatively so for polymer concentrations up to 4 wt%. Only
IBI+MARTINI replicates the values and trend in viscosities as a function of polymer
concentration. This implies that to work with higher concentrations of the polymer, a
re-optimization of potentials will be needed

The future work involves devising schemes to generate potentials applicable to larger
ranges of concentration. A greater challenge lies in extending our study to polyelec-
trolytes such as Hydrolyzed-PAM (HPAM), since these are more extensively employed
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in oil fields than neutral polymers like PAM. Another plan is to develop a better atomistic
forcefield for aqueous PAM, which will lead to the generation of more refined coarse-
grained models as well.
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A Glass Transition Temperature

Glass transition temperature (Tg) is the principle indicator in the evaluation of thermal
properties of amorphous polymers. At temperatures below Tg, amorphous polymers
are in the glassy/rigid state wherein the molecules in the polymer can only vibrate about
their position. The chains begin to wiggle around due to the onset of their segmental
motion at the Tg. This state (rubbery state) renders some softness and flexibility to the
system. As depicted in the following schematic, the density profile against temperature
changes considerably at the Tg. It is this concept that we have taken inspiration from
to approve of the atomistic force field of the polymer.

Fig. A.1: A schematic description of the glass transition temperature (Tg)

B Radius of gyration

The radius of gyration quantifies the size of the polymer chain. It provides a measure
of how compact or extended the polymer chain is. This quantity holds great significance
as it can be obtained experimentally too.

Fig. B.1: A schematic representation of radius of gyration, Rg, of a polymer chain [47]
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Rg is given by:

R2
g =

1
N+ 1

N∑
i=0

⟨(ri − rG)2⟩ (B.1)

where R2
g is the mean square of the distance between the beads and the center of

mass of the chain, rG, and N is the number of linkages.

C End-to-end distance

Another way to measure the chain dimension is by calculating the end-to-end dis-
tance (Ree) of the chain. It is the distance between two terminal beads, given by:

R2
ee = ⟨R2⟩ = ⟨(rN − r0)2⟩ (C.2)

where r0 is the position of the first and rN of the last bead of the chain.

Fig. C.1: A schematic representation of the end-to-end distance, Ree, of a polymer
chain [47]

D Radial Distribution Function (RDF)

The radial distribution function is a function that describes the radial arrangement of
atoms around each other. It provides an estimate of the order/disorder in the system.
As shown in Fig.D.2 the entire volume is spliced into shells of thickness δr. The prob-
ability of locating an atom in shell δr at a distance r of the reference atom is the RDF,
g(r). The mathematic definition:

g(r) =
n(r)

ρ4πr2δr
(D.3)

where n(r) is the average number of atoms in a shell of thickness δr at r, ρ is the bulk
density.
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Fig. D.2: Discretization of space for the evaluation of the RDF [48]

E Transverse Current Autocorrelation Function
(TCAF)

At small length scales, random thermal motion of particles result in momentum gra-
dients. Transport coefficients are obtained by an analysis of these gradients [41]. The
microscopic transverse momentum field, u⊥ is given by:

[41]u⊥(k, t) =
N∑
j=1

k̂⊥ · pj(t)sin[k.rj(t)] (E.4)

[41]u⊥(k, t) =
N∑
j=1

k̂⊥ · pj(t)cos[k.rj(t)] (E.5)

where pj is the momentum of molecule j, and the rj is the center of mass of molecule j.
The vector k̂⊥ is the unit vector normal to k [41]. The k values are: The

[41]k =
2π
L
(n1,n2,n3) (E.6)

where n1, n2, n3 represent crystallographic indices. The TCAF is thus obtained [41]:

C⊥(kx, t) = ⟨u⊥(kx, t)u⊥(kx,0)⟩ (E.7)

With very small values of k, and large values of t, C⊥(k, t) decays as:

C⊥(kx, t) ∼ e−(
µk2x
ρ

)t (E.8)

C⊥(k, t) is fitted to an exponential decay to extract the shear viscosity [41]. However,
since at short times the behavior of C⊥(k, t) is not exponential, a relaxation-time ap-
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proximation is made on the momentum transport [49] [50]. With this approximation,
C⊥(k, t) decays with the following function [49] [51]:

C⊥(k, t) =
1
2

[
1− 1

ω

]
exp

[
−(1+ ω)t

2τ

]
+
1
2

[
1+

1
ω

]
+ exp

[
−(1− ω)t

2τ

]
(E.9)

where ω =
√
1− 4τ(µ/ρ)k2.

The values for µ and τ are extracted from fitting the simulation curves to eqn.(E.9). For
very small values of k, eqn.(E.9) reduces to eqn.(E.8). and for large k values C⊥(k, t)
exhibits damped oscillations because ω becomes an imaginary quantity. µ is an even
function of k, and to order k2, the relation becomes [41]:

µ(k) = µ∞ + ak2 (E.10)

where µ∞ is the infinite limit of µ obtained by extrapolating the relation to k → 0 limit.
The value, µ∞, is the bulk viscosity of the system.
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