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Abstract

We consider a relativistic system of fermions with time-dependent mass, in
1 + 1 space-time dimensions. We show that the state of this system im-
mediately after a sudden quench, in which the mass is taken to zero, is a
generalised Calabrese-Cardy state, as hypothesised by [1]. We then proceed
to compute the exact post-quench time-dependent propagator and use it to
obtain various correlators for a family of pre-quench states, including the
ground state and squeezed states. We use these correlators, along with the
replica trick and bosonisation methods, to compute the full entanglement en-
tropy of a spatial region. We �nd that this entropy thermalises as expected.
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Chapter 1

Introduction

Much of equilibrium thermodynamics presumes that generic systems, after
a time-dependent excitation, equilibrate given enough time. For �nite size
systems, there are numerical experiments like the Fermi-Pasta-Ullam exper-
iment [2] where it is shown that the system, instead, might show periodic
revival. This means that though the system appears to �equilibrate� after
some amount of time, it goes back to its initial state in another time-period
and the process repeats thereafter.

For in�nite size systems (or systems with periodic boundary conditions),
the system may not equilibrate at all. This happens in systems exhibiting
many-body localisation, i.e. systems without any extended states. The lack
of extended states ensures that no mixing between di�erent regions of the
system occurs and hence no equilibration. Thus the question of whether or
not a system will thermalise is a non-trivial one.

The statement of thermalisation or equilibration in a quantum system is,
as it stands, ill-de�ned. Quantum systems described by Schrödinger evolu-
tion can be expressed as pure states, whereas by de�nition, a thermal quan-
tum state is a mixed state with density matrix e−βH . Following Mandal,
Sinha and Sorokhaibam [1], we will use the term �thermalisation� to mean
that the state describing the quantum system displays thermal expectation
values asymptotically. This notion of thermalisation is called subsystem ther-
malisation [3].

We study the thermalisation of a system with a time-dependent Hamil-
tonian which settles down asymptotically. In particular, we study a system
with a time-dependent mass m(t) that settles down to 0. Though this might
seem arti�cial, a fermionic �eld theory with a time-dependent mass can be
mapped to the Ising model with a time-dependent external magnetic �eld
[4]. Thus, the calculation can be thought of as describing how a chain of
spins behaves asymptotically, when the external magnetic �eld is suddenly
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quenched to a critical value.
The main observables we will study are correlation functions and the en-

tanglement entropy. Correlators are the traditional way of probing a quan-
tum �eld theory. Entanglement entropy on the other hand, is a quantity
which has only recently begun to be studied in quantum �eld theories [5]. In
its own right, it provides a measure of the quantum entanglement between
two regions (in real or momentum space).

In MSS [1], the authors hypothesise that the post-quench state is a gen-
eralised Calabrese-Cardy (gCC) state.

|ψgCC〉 = e
−βH−

∑
n
µnWn |D〉 (1.1)

where β is the inverse temperature, H is the Hamiltonian, µn are chemical
potentials, Wn are conserved charges (for example, W∞ charges) and |D〉 is
a Dirichlet boundary state. This is a generalisation of the state considered
by Calabrese and Cardy [6]. [1] prove subsystem thermalisation in this state
in the perturbative regime of the chemical potentials µn.

In Sec 3.3, we �nd that after a quench, the ground state indeed is a gCC
state. We also �nd in Sec 2.3, that the post-quench ground state correlator
turns out to be

〈ψ̄†(0, t)ψ(r, t)〉 = K1(m(r + 2t))
t→∞−−−→ e−2mt

√
t

(1.2)

This di�ers from the prediction of MSS [1] which states that it should go
as a pure e−γt at late times. This discrepancy arises from not being in the
perturbative regime of the chemical potentials.

A natural question then, is how to go to the perturbative regime. We
note that µn and β can be functions only of the initial mass m in the sudden
limit, i.e. there are no other free parameters. So in the ground state, we
have no way of tuning chemical potentials to make them small enough to be
in the perturbative regime. Thus we look at a special class of excited states,
squeezed states which also yield gCC states post-quench. These can give
post-quench states with tunable chemical potentials, where the extra scale is
introduced via the excited state.

We will show that by introducing squeezed states with small chemical
potentials, we can reproduce MSS [1]'s results, thereby showing that actual
post-quench ground states cannot be treated perturbatively in µn. These
calculations may be found in Chapter 4.

Thus, the main new contributions in this thesis are :

• The fermionic analogue of the results presented in [7] : the post-quench
state is a gCC state; the ground state correlators behave di�erently
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from as predicted in MSS [1]; squeezed states can be used to �remove�
this discrepancy.

• The calculation of entanglement entropy in the post-quench state, which
has been done for a CC state but not for a gCC state (we will see more
about these states in Sec 3.3).

1.1 What is a Quantum Quench?

A quantum quench is a process in which a parameter in the Hamiltonian of
a system changes with time. In addition, a critical quench is one in which
the parameter passes through (or settles down to) its critical value.

In this thesis, we will study critical mass quenches, i.e. we will study �eld
theories with a time-dependent mass m(t) in which as t → −∞, m(t) → m
and m(t)→ 0 as t→∞.

The role that the quench to criticality, in particular, plays is that the
adiabatic theorem can no longer be used. The adiabatic theorem states that
a system in a given eigenstate, will continue to be in the same eigenstate
of the new Hamiltonian as long as the rate of change of the Hamiltonian is
small when compared to the smallest energy gap in the energy levels of the
system. The proof of this theorem may be found in App A.

For a critical mass quench, the energy gap vanishes, and there is no
Hamiltonian whose rate of change is small as compared to 0. Thus we cannot
use the adiabatic theorem. On the other hand, one can use the so-called
`sudden' approximation (which is equivalent to only studying the asymptotic
behaviour of the system). This states that the state immediately after the
quench is the same as the state immediately before.

In particular, when quenching a system in its ground state, the post-
quench state is the ground state of the initial Hamiltonian. Further, that
state evolves in time by action of the new Hamiltonian.

1.2 What is Entanglement Entropy?

Quantum entanglement is a well-known phenomenon. Making a measure-
ment of some local observable a�ects the measurement of some other local
observable instantaneously. A measure of this phenomenon is the entangle-
ment entropy.

Before de�ning that, one can de�ne a von Neumann entropy that gives
us a measure of how mixed a state is.

S = −Tr (ρ log ρ) (1.3)
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Consider now a pure state of a system whose Hilbert space we have di-
vided into two parts, i.e. H = HA ⊗HĀ. We can think of A as some region
(we will only consider spatial regions in this thesis) and Ā as its compliment.
The entropy S is 0 for a pure state, even though the entanglement is non-zero.
In this case we can consider the reduced density matrix ρA instead.

ρA = TrĀρ (1.4)

Using this reduced density matrix (which is an operator on HA), we can
now de�ne the entanglement entropy of this region with the rest of the system
as the von Neumann entropy of the reduced density matrix.

SA = −TrA (ρA log ρA) (1.5)

In practice, computing this quantity is not an easy task. As a result,
one often resorts to using the quantity TrAρ

n
A. In terms of Renyi entropy Sn

(de�ned below), the entanglement entropy is given by

SA = − lim
n→1

∂

∂n
TrAρ

n
A = lim

n→1
Sn (1.6)

Thus, we will calculate TrAρ
n
A in Chapter 5.
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Chapter 2

Fermionic System with a

Time-Dependent Mass

In this chapter, we aim to �nd the correlators of a theory of Dirac fermions
in the post-quench state, by explicitly solving the Dirac equation, following
the method in [8].

2.1 Solving the Dirac Equation

2.1.1 Conventions

ηµν =

[
1 0
0 −1

]
, γ0 =

[
1 0
0 −1

]
, γ1 =

[
0 −1
1 0

]
(γ0)2 =

[
1 0
0 1

]
, (γ1)2 =

[
−1 0
0 −1

]
(2.1)

2.1.2 Solutions

The equation of motion for Dirac fermions is given by[
iγ0∂t + iγ1∂x −m(t)

]
Ψ(x, t) = 0 (2.2)

Since Ψ is a spinor, there is no easy way to solve this equation. So we
use the following ansatz

Ψ(x, t) =
[
γ0∂t + γ1∂x − im(t)

]
e±ikxΦ(t) (2.3)

Substituting this ansatz into the equation of motion, we arrive at the
equation that needs to be satis�ed by Φ. This is a equation similar to a
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Schrödinger equation.[
iγ0∂t + iγ1∂x −m(t)

] [
γ0∂t + γ1∂x − im(t)

]
e±ikxΦ(t) = 0[

i∂2
t − i∂2

x + im(t)2 + γ0ṁ(t)
]
e±ikxΦ(t)

⇒
[
∂2
t + k2 +m(t)2 − iγ0ṁ(t)

]
e±ikxΦ(t) = 0

where ṁ(t) = ∂tm(t).
By choosing this particular representation of γ0, we are in its eigenbasis.

Thus, we can use the eigenvalues to label Φ(t)'s components as Φ+(t) and
Φ−(t) corresponding to the eigenvalues ±1.[

∂2
t + k2 +m(t)2 − iṁ(t)

]
Φ+(t) = 0[

∂2
t + k2 +m(t)2 + iṁ(t)

]
Φ−(t) = 0 (2.4)

where Φ(t) =

[
Φ+(t)
Φ−(t)

]
.

We note that each of these components has two solutions since each in-
dividually satis�es a second-order di�erential equation. We will call these
φ±,p and φ±,n. In this thesis, we will consider two speci�c bases of solutions :
the `in' and `out' bases. In these bases, p and n will denote the positive and
negative energy solutions respectively1.

We also note due to the symmetry in the equations, that Φ± = Φ∗∓. By
matching the asymptotic behaviour, we can make a more speci�c statement
in the `in' and `out' bases : φ±,n = φ∗∓,p. Thus, we will now drop the p or n
subscripts with the understanding that φ± = φ±,p

2.
Similar to the usual Dirac �eld expansion, we can de�ne our U spinor,

which appears with the particle annihilation operator ak as

U(x, t) =
[
γ0∂t + γ1∂x − im(t)

]
eikxφ+(t)

[
1
0

]
(2.5)

Note that Φ+ has two parts. We chose φ+. As noted before, this is the
positive energy solution which in the `in' basis, behaves as φ+,in → e−iωt as
t→ −∞. Similarly, the V spinor that appears with the anti-particle creation
operator b†k, is

V (x, t) =
[
γ0∂t + γ1∂x − im(t)

]
e−ikxφ∗+(t)

[
0
1

]
(2.6)

1Here, positive/negative energy solution means that the solution looks like a posi-
tive/negative energy plane wave at t → −∞ (for the `in' basis) and t → ∞ (for the `out'
basis).

2We can do this because throughout this thesis, we will always be in either the `in' or
the `out' basis.
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Here we chose the negative energy part (since it is the spinor associated
to anti-particle creation) of Φ−, i.e. φ

∗
+ which in the `in' basis, behaves as

φ∗+,in → eiωt as t→ −∞.

2.1.3 Normalising Spinors

In the `in' basis, at t → −∞, we can �nd the exact expressions for these
spinors using φ+,in(t) = e−iωt and φ∗+,in(t) = eiωt.

U(x, t) =
[
γ0∂t + γ1∂x − im

]
e−iωt+ikx

[
1
0

]
=

[
−i(ω +m) −ik

ik i(ω −m)

] [
1
0

]
e−ik·x

= i

[
−(ω +m)

k

]
e−ik·x

V (x, t) =
[
γ0∂t + γ1∂x + im(t)

] [0
1

]
eik·x

= i

[
k

−(ω +m)

]
eik·x

Hence, upto normalizations �xed by inner products, the `in' spinors are

u(k,m) = i

[
−(ω +m)

k

]
, v(k,m) = i

[
k

−(ω +m)

]
ū(k,m) = u†(k,m)γ0 = i

[
−(ω +m) −k

]
v̄(k,m) = v†(k,m)γ0 = i

[
k (ω +m)

]
Now borrowing the conventions for spinors in Peskin and Schroeder [9],

we want to �x the inner products ū(k,m)u(k,m) = 2m and v̄(k,m)v(k,m) =
−2m.

ū(k,m)u(k,m) = −
[
−(ω +m) −k

] [−(ω +m)
k

]
= −2m(ω +m)

v̄(k,m)v(k,m) = −
[
k (ω +m)

] [ k
−(ω +m)

]
= 2m(ω +m)

So the normalised spinors are

u(k,m) =
1√

(ω +m)

[
−(ω +m)

k

]
, v(k,m) =

1√
(ω +m)

[
k

−(ω +m)

]
ū(k,m) =

1√
(ω +m)

[
−(ω +m) −k

]
, v̄(k,m) =

1√
(ω +m)

[
k (ω +m)

]
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These are the spinors at t → −∞ in the `in' basis. At other times,
φ+,in will not be of the plane-wave form and the spinors will look more
complicated. One aspect to be noted is that the normalisation changes for
di�erent spinors, but it is not a function of time, i.e. time-evolving u and v
will leave the normalisation 1√

ω+m
unchanged. If this were not so, the spinors

wouldn't continue being solutions of the corresponding Dirac equation at all
times.

The transformation to a chiral basis is accomplished by using the trans-

formation matrix S = 1√
2

[
1 −1
1 1

]
. The mode expansion in the `out' basis

(where φ+,out → e−i|k|t as t→∞) is

Ψ(x, t) =

∫
dk√
2|k|

[
ak,out

1√
|k|

[
−|k|
k

]
e−ik·x + b†k,out

1√
|k|

[
k
−|k|

]
eik·x

]

=

∫
dk

2

[
−ak,oute−ik·x + sgn(k)b†k,oute

ik·x

sgn(k)ak,oute
−ik·x − b†k,outeik·x

]
On transforming to the chiral basis using S, we get

Ψc(x, t) = S ·Ψ(x, t) =
1√
2

[
1 −1
1 1

]
·
∫
dk

2

[
−ak,oute−ik·x + sgn(k)b†k,oute

ik·x

sgn(k)ak,oute
−ik·x − b†k,outeik·x

]

=

∫
dk

2
√

2

[
(1 + sgn(k))(−ak,oute−ik·x + b†k,oute

ik·x)

(1− sgn(k))(−ak,oute−ik·x − b†k,outeik·x)

]
(2.7)

We can now write down our chiral fermion operators in the conformal
�eld theory (CFT).

ψ(x, t) =

∫
dk

2
√

2
(1 + sgn(k))(−ak,oute−ik·x + b†k,oute

ik·x) (2.8)

ψ̄(x, t) =

∫
dk

2
√

2
(1− sgn(k))(−ak,oute−ik·x − b†k,oute

ik·x) (2.9)

Note that they indeed are chiral, since ψ is a function of only z and has
only k > 0 modes, and ψ̄ is a function of only z̄ and has only k < 0 modes.

2.1.4 Details

For a speci�c mass pro�le we can solve the Dirac equation.

m2(t) =
1

2
(1− tanh(ρt)) (2.10)
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In practice, to solve Eq (2.4), we need to switch to eρt variables. This
yields the `in' solutions of the + equation as

φ+,in = e−it(ω+m)
(
e−2ρt + 1

)− im
2ρ

2F1

(
i (|k| −m− ω)

2ρ
,−i (|k|+m+ ω)

2ρ
; 1− iω

ρ
;−e2tρ

)
(2.11)

φ∗−,in = eit(ω−m)
(
e−2ρt + 1

)− im
2ρ

2F1

(
i (−|k| −m+ ω)

2ρ
,
i (|k| −m+ ω)

2ρ
;
iω

ρ
+ 1;−e2tρ

)
(2.12)

where ω =
√
k2 +m2.

Since the hypergeometric function 2F1 has an expansion around 0 whose
leading term is 1, it is easy to see that φ+,in → e−iωt and φ∗−,in → eiωt as
t→ −∞. (This is how we identify the two solutions as φ+,in and φ∗−,in.)

It is also useful to note that in the ρ → ∞, i.e. the sudden limit, the
solutions assume their asymptotic plane wave form at all times and the mass
pro�le m(t) jumps from m to 0 at t = 0.

-4 -2 2 4

t

0.2

0.4

0.6

0.8

1.0

m
2(t)
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2.2 Bogoliubov Transformations

We note that at the moment we are dealing with two bases of solutions for
the φ± equations. These are φ±,in, φ

∗
∓,in and φ±,out, φ

∗
∓,out. Since both of

these are complete bases, we can write each in terms of the other.

φin,+p(t, k) = α+(k)φ+,out(t, k) + β+(k)φ∗−,out(t, k)

φin,−p(t, k) = α−(k)φ−,out(t, k) + β−(k)φ∗+,out(t, k)

These α± and β± are functions of |k| known as Bogoliubov coe�cients.
We now aim to �nd out how Uin and Vin are connected to the `out' spinors
and consequently how the oscillators in these bases are connected.

Uin =

[
∂t − im(t)

∂x

]
(α+φ+,out + β+φ

∗
−,out)e

ikx

t→∞
=

[
−i|k|
ik

]
α+e

−ik·x +

[
−i|k|
−ik

]
β+e

ik·x

→ (α+Uout(k)− sign(k)β+Vout(−k))

Vin →
(
α∗+Vout(k)− sign(k)β∗+Uout(−k)

)
Now, using this in the expression for Ψ in the `in' basis and matching it

with the expansion in the `out' basis,

Ψ =

∫
dk

Nout√
|k|

(
Uout(k)ak,out + Vout(−k)b†−k,out

)
gives us the Bogoliubov transformation between the creation and annihilation
operators.

aout,k =

√
ωout
ωin

Nin

Nout

[
[
α+(k)ain,k + b†in,−k χ(k)β∗+(k)

]
(2.13)

b†out,k =

√
ωout
ωin

Nin

Nout

[
α∗+(k)b†in,k + ain,−k χ̃(k)β+(k)

]
(2.14)

Here, we want χ(k) and χ̃(k) to satisfy

χ(k)u(k, ω) = v(−k,−ω) ⇒ χ(k)

[
−|k|
k

]
=

[
−k
|k|

]
⇒ χ(k) = sign(k)

χ̃(k)v(k, ω) = u(−k,−ω) ⇒ χ̃(k)

[
k
−|k|

]
=

[
|k|
−k

]
⇒ χ̃(k) = sign(k)
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2.2.1 Details

In the quench with a tanh mass pro�le, using the properties of con�uent
hypergeometric functions 2F1 given in [10], we get the following Bogoliubov
coe�cients

α+ =
Γ
(
− i|k|

ρ

)
Γ
(

1− iω
ρ

)
Γ
(
− i(|k|+m+ω)

2ρ

)
Γ
(
−i|k|+im+2ρ−iω

2ρ

) (2.15)

β+ =
Γ
(
i|k|
ρ

)
Γ
(

1− iω
ρ

)
Γ
(

1− i(−|k|−m+ω)
2ρ

)
Γ
(
− i(−|k|+m+ω)

2ρ

) (2.16)

which matches the calculation by Duncan [8].

We will be �nding correlators, calculating entanglement entropy and map-
ping our post-quench state to a gCC state only in the sudden (ρ→∞) limit.
The sudden limit of our Bogoliubov coe�cients with which we will be dealing
henceforth, is

α+ =
|k|+m+ ω

2|k|
(2.17)

β+ =
|k| −m− ω

2|k|
(2.18)

2.2.2 Relations Between Bogoliubov Coe�cients

Using the expressions for N and ω, we can write

√
ωout
ωin

Nin

Nout

=

√
|k|
ω

√
|k|

ω +m
=

√
|k|
ω

√
ω −m
|k|

=

√
ω −m
ω

(2.19)

which gives us the Bogoliubov transformations between oscillators.

aout,k =

√
ω −m
ω

[
α+(k)ain,k + b†in,−k sign(k)β∗+(k)

]
(2.20)

b†out,k =

√
ω −m
ω

[
α∗+(k)b†in,k + ain,−k sign(k)β+(k)

]
(2.21)

Thus, the canonical relations between the Bogoliubov coe�cients will be
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given by imposing {ak, a†k′} = δkk′ for the `out' oscillators.

{ak,out, a†k′,out} =
ω −m
ω

(
α+(k)α∗+(k′)δkk′ + sign(k)β∗+(k′)sign(k′)β+(k′)δ−k,−k′

)
=

ω −m
ω

(
|α+(k)|2 + sign(k)2|β+(k)|2

)
δkk′ (2.22)

⇒ |α+(k)|2 + |β+(k)|2 =
ω

ω −m
(2.23)

Thus we now have the canonical relations for our Bogoliubov coe�cients
which our α+ and β+ given in Eqs (2.15) and (2.16), satisfy.

Relation from the Wronskian

In this section, we will follow the discussion in Duncan [8]. Consider the
Wronskian of φ+,in and φ∗−,in (which is non-zero since they are linearly inde-
pendent solutions to the same equation ∂2

t φ = M(t)φ).

W = φ+,in

↔
∂tφ
∗
−,in (2.24)

⇒ ∂W

∂t
= φ+,in∂

2
t φ
∗
−,in − φ∗−,in∂2

t φ+,in (2.25)

= φ+,inM(t)φ∗−,in − φ∗−,inM(t)φ+,in = 0 (2.26)

Thus the Wronskian is constant in time. At time t → −∞, W = 2iω.
This needs to match the time t→∞ limit whereW = 2i|k|

(
α−α

∗
+ − β−β∗+

)
.

Thus
α−α

∗
+ − β−β∗+ = α+α

∗
− − β+β

∗
− =

ω

|k|
(2.27)

Relation between α+ and α−

Consider the operator D± = ∂t ± im(t). The equations for φ± are given by

−D±D∓φ± = −
(
∂2
t +m2(t)∓ i∂tm(t)

)
φ± = |k|2φ± (2.28)

We now act D∓ on the above equation to get

−D∓D±(D∓φ±) = |k|2(D∓φ±) (2.29)

Thus, we conclude that D∓φ± ∼ φ∓. In particular, in the t→ −∞ limit,
we get D∓φ± = (−iωin ∓ imin)φ∓. Using a Bogoliubov transformation we
can now take the t→∞ limit,

D∓(α±e
−i|k|t + β±e

i|k|t) = (−iωout ∓ imout)α±e
−i|k|t + (iωout ∓ imout)β±e

i|k|t

= (−iωin ∓ imin)(α∓e
−i|k|t + β∓e

i|k|t) (2.30)
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Matching the coe�cients of the independent solutions e±i|k|t, we get

α+

α−
=
ω +m

|k|
=
|k|

ω −m
(2.31)

β+

β−
= −ω +m

|k|
= − |k|

ω −m
(2.32)

2.3 Finding Correlators

We note that we are working in the Heisenberg picture where the operators,
not the states have time-dependence (this can also be thought of as looking
at asymptotics or using the sudden approximation). Thus, quenching the
ground state |0〉in will not change the state.

Thus, the �rst post-quench correlator we want to �nd is 〈0in|ψ†ψ|0in〉.
But the expressions for the chiral ψ, ψ̄ operators are given in terms of the
`out' operators. So we use the Bogoliubov transformations Eq (2.15) and Eq
(2.16), to get

ψ =

∫ ∞
0

dk
(
−aout(k)e−ik·x + b†out(k)eik·x

)
(2.33)

=

∫ ∞
0

dk
(
−(α+(k)ain,k + sign(k)β∗+(k)b†in,−k)e

−ik·x

+(α∗+(k)b†in,k + sign(k)β+(k)ain,−k)e
ik·x
)

(2.34)

A similar expression for ψ† gives us an expression for 〈0in|ψ†(r, t)ψ(0, t)|0in〉

=

∫ ∞
0

dkdk′
(
ω −m
ω

)
〈0in|

(
α+(k)bin,ke

−ik·x − sign(k)β+(k)bin,−k)e
ik·x)(

α∗+(k′)b†in,k′e
ik′·x′ − sign(k′)β∗+(k′)b†in,−k′)e

−ik′·x′
)
|0in〉

=

∫ ∞
0

dkdk′
(
ω −m
ω

)(
sign(k)β+(k)eik·xsign(k′)β∗+(k′)e−ik

′·x′δ−k,−k′

+α+(k)e−ik·xα∗+(k′)eik
′·x′δk,k′

)
=

∫ ∞
0

dk

(
ω −m
ω

)(
|β+(k)|2eik·(x−x′) + |α+(k)|2eik·(x′−x)

)
=

∫ ∞
−∞

dk

(
ω −m
ω

)
eikr

(
Θ(k)|α+(k)|2 + Θ(−k)|β+(k)|2

)
16



Similarly, we can �nd formulae for the other correlators

〈0in|ψ̄†(r, t)ψ̄(0, t)|0in〉 =

∫ ∞
−∞

dk

(
ω −m
ω

)
eikr

(
Θ(−k)|α+(k)|2 + Θ(k)|β+(k)|2

)
〈0in|ψ̄†(r, t)ψ(0, t)|0in〉 = 4

∫ ∞
−∞

dk

(
ω −m
ω

)
eik(r+2t)α+β+

〈0in|ψ†(r, t)ψ̄(0, t)|0in〉 = 4

∫ ∞
−∞

dk

(
ω −m
ω

)
eik(r−2t)α+β+

2.3.1 Details

For the case with a tanh mass pro�le, we can perform the Fourier transforms
above to get the following correlators in the sudden limit.

〈0in|ψ†(r, t)ψ(0, t)|0in〉 = −imK1(mr) (2.35)

〈0in|ψ̄†(r, t)ψ̄(0, t)|0in〉 = imK1(mr) (2.36)

〈0in|ψ̄†(r, t)ψ(0, t)|0in〉 = −mK0(m(r + 2t)) (2.37)

〈0in|ψ†(r, t)ψ̄(0, t)|0in〉 = −mK0(m|r − 2t|) (2.38)

It is easy to see that the �rst two have already equilibrated in the sense
that they're independent of time. The second two tend to 0 as t→∞, which
is what we would expect from holomorphic-anti holomorphic correlators as
per the calculation in MSS [1].
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Chapter 3

The Post-Quench State

Our aim in this chapter will be to prove that the post-quench state in a
fermionic �eld theory, after a critical quench from the ground state, is a
generalised Calabrese-Cardy (gCC) state.

|ψ〉 = e
−βH−

∑
n
µnWn |D〉 (3.1)

We will begin by understanding the elements in this state and then prove
that it is equal to the post-quench state in Sec 3.3.

3.1 Boundary States

We will be following a discussion in the books by Blumenhagen and Plauschinn
[11] and by Di Francesco, Mathieu and Senechal [12]. Consider a conformal
�eld theory (CFT) that's living in a geometry with a boundary at t = 0, say.
Varying the action and setting δS = 0 at the boundary gives us some possi-
ble boundary conditions. Quantum mechanically, we can enforce δS = 0 as
an operator equation satis�ed on a state. These states are called boundary
states.

Another way of characterising boundary states is by using the stress-
energy tensor. For a manifold with a boundary, we would want no energy to
�ow across the boundary. For a boundary in time, we would want the Txt
component to vanish. Let us switch to z = t − x and z̄ = t + x coordinates
using

Tzz = ∂xλ

∂z
∂xρ

∂z
Tλρ =

1

4
(Txx + Ttt − 2Txt) (3.2)

Tz̄z̄ = ∂xλ

∂z̄
∂xρ

∂z̄
Tλρ =

1

4
(Txx + Ttt + 2Txt) (3.3)

Tzz̄ = ∂xλ

∂z̄
∂xρ

∂z̄
Tλρ =

1

4
(Txx − Ttt) (3.4)
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Here we have used the symmetry of the stress tensor i.e. Txt = Ttx. Thus,
the condition of no energy passing a t boundary becomes

(
T − T̄

)
|Bd〉 =

Txt |Bd〉 = 0. Now we can use the usual mode expansion for T in terms of
the Virasoro operators

T =
∑
n

e−nzLn T̄ =
∑
n

e−nz̄L̄n (3.5)

⇒
(
T − T̄

)
|Bd〉 =

(∑
n

enxLn −
∑
n

e−nxL̄n

)
|Bd〉 = 0

⇒
(
Ln − L̄−n

)
|Bd〉 = 0 (3.6)

3.1.1 Fermions

Since we are in a massless theory after the quench, we can consider a chiral
Dirac Lagrangian.

S =

∫
d2x

1

2

(
ψ†∂̄ψ + ψ∂̄ψ† + ψ̄†∂ψ̄ + ψ̄∂ψ̄†

)
(3.7)

On varying the action and collecting terms, we get the following

δS =

∫
d2x

(
δψ†∂̄ψ + δψ∂̄ψ† + δψ̄†∂ψ̄ + δψ̄∂ψ̄†

)
+ boundary terms (3.8)

Given a boundary at t = 0, δS will also have certain boundary terms,
which we demand must vanish at t = 0 in order for δS = 0.

ψ†δψ + ψδψ† + ψ̄†δψ̄ + ψ̄δψ̄†
∣∣
t=0

= 0 (3.9)

We impose this as an operator equation on the boundary state |B〉. The
conditions on the operators on the boundary state can then be achieved via
two possible identi�cations [13].(

ψ − iψ̄†
)
|B〉 = 0,

(
ψ† − iψ̄

)
|B〉 = 0 or (3.10)(

ψ − iψ̄
)
|B〉 = 0,

(
ψ† − iψ̄†

)
|B〉 = 0 (3.11)

In z, z̄ coordinates, using the Dirac fermion creation and annihilation
operators, we can write down the mode expansions as follows. This is nothing
but the expansion we found in terms of the `out' basis in the previous chapter
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in Eq (2.8) and Eq (2.9).

ψ =
∑
k>0

−ake−ikz +
∑
k<0

b†−ke
−ikz (3.12)

ψ† =
∑
k>0

bke
−ikz +

∑
k<0

−a†−ke
−ikz (3.13)

ψ̄ =
∑
k>0

−b†−ke
ikz̄ +

∑
k<0

−akeikz̄ (3.14)

ψ̄† =
∑
k>0

−a†−ke
ikz̄ +

∑
k<0

−bkeikz̄ (3.15)

Now we impose the boundary conditions in terms of these modes :

1. ψ = iψ̄† gives us
∑
k>0

−akeikx+
∑
k<0

b†−ke
ikx =

∑
k>0

−ia†−keikx+
∑
k<0

−ibkeikx.

Since this needs to be valid on |B〉 for all x, we require −ak ∼ −ia†−k
i.e.

(
ak − ia†−k

)
|B〉 = 0 for k > 0 and −bk ∼ −ib†−k for k < 0 to be

valid on |B〉.
Similarly, the condition ψ† = iψ̄ gives us −ak ∼ ia†−k for k < 0 and

bk ∼ −ib†−k for k > 0. Writing this more concisely, we have for all

values of k, ak ∼ i sign(k)a†−k and bk ∼ −i sign(k)b†−k. Thus
1

|B1〉 = exp

(∑
k

i sign(k)(a†ka
†
−k − b

†
kb
†
−k)

)
|0〉 (3.16)

2. Following the same procedure for the condition ψ = iψ̄ gives us −ak ∼
−ib†−k for k > 0 and −ak ∼ −ib†−k for k < 0 to be identi�ed on |B〉.

Similarly, the condition ψ† = iψ̄† gives us −bk ∼ ia†−k for k < 0 and

bk ∼ −ia†−k for k > 0. Writing this more concisely, we have for all

values of k, ak ∼ ib†−k. Thus

|B2〉 = exp

(∑
k

ia†kb
†
−k

)
|0〉 (3.17)

1A boundary state is a state on which the above operator equations hold. To solve the
operator equations, we note that ak acts like ∂

∂a†
k

. This is because for any operator X,

[∂X , X] = 1. Thus, [ak, a
†
k′ ] = δkk′ ⇒ ak = ∂a†

k
. Now the operator equation becomes a

simple di�erential equation dB
da† = aB whose solution is an exponential B = eaa

†
.
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From the action S, we can �nd the components of the energy-momentum
tensor T = Tzz and T̄ = Tz̄z̄.

T =: ψ†∂ψ + ψ∂ψ† : T̄ =: ψ̄†∂̄ψ̄ + ψ̄∂̄ψ̄† : (3.18)

Using the mode expansion for ψ, we can expand T as follows.

T =
∑
k,k′>0

(bk′e
−ik′z − a†k′e

ik′z)ik(ake
−ikz + b†ke

ikz)

+ (−ak′e−ik
′z + b†k′e

ik′z)ik(−bke−ikz − a†ke
ikz)

=
∑
n

−∑
k>0
k>−n

ik
(
a†n+kak + b†n+kbk

)
+
∑
k>0
k>n

ik
(
bk−nb

†
k + ak−na

†
k

)

+
∑
k>0
k<n

ik
(
−a†n−kb

†
k − b

†
n−ka

†
k

)
−
∑
k>0
k<−n

ik (−b−k−nak − a−k−nbk)

 einz

=
∑
n

Lne
inz

To �nd the expression for L̄n, we expand T̄ in modes.

T̄ =
∑
n

−∑
k<0
k>−n

ik
(
a†−n−kb

†
k + b†−n−kb

†
k

)
+
∑
k<0
k>n

ik (bn−kak + an−kbk)

+
∑
k<0
k<n

ik
(
a†k−nak + b†k−nbk

)
−
∑
k<0
k<−n

ik
(
bn+kb

†
k + an+ka

†
k

) einz̄

=
∑
n

L̄ne
inz̄

The condition for a boundary state is that
(
L−n − L̄n

)
|B〉 = 0 (see Eq

(3.6)). We want to show that this de�nition agrees with our previous one.
For this purpose we look at L−n and use −k instead of k as the summation
index. This gives

L−n =
∑
k<0
k<−n

ik
(
a†−n−ka−k + b†−n−kb−k

)
−
∑
k<0
k<n

ik
(
b−k+nb

†
−k + an−ka

†
−k

)
−
∑
k<0
k>n

ik
(
−a†k−nb

†
−k − b

†
k−na

†
−k

)
+
∑
k<0
k>−n

ik (−bn+ka−k − an+kb−k)
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We notice that every oscillator index is positive. Thus, to check that the
boundary state condition is satis�ed for |B1〉, we do the same identi�cations
as earlier (for positive oscillator indices), ak ∼ ia†−k, bk ∼ −ib

†
−k, a

†
k ∼ ia−k

and b†k ∼ −ib−k. This gives us L−n = L̄n as desired.

For |B2〉, we make the identi�cations ak ∼ ib†−k, bk ∼ −ia
†
−k, a

†
k ∼ ib−k

and b†k ∼ −ia−k. Again, this gives us L−n = L̄n as expected.
Thus |B1,2〉 are boundary states. Note here that since all the indices on

the oscillators were positive, we could have added/removed factors of sign(k)
in the identi�cations and thus, in the expressions for the boundary states.
This corresponds to adding a sign(k) in the ψ identi�cations, which also
doesn't make a di�erence since δS is quadratic in ψ's.

Bosonised Boundary State

A theory of two Majorana (real) fermions (or one Dirac fermion) in 2d is
dual to a bosonic theory via the following expressions [13]

ψ = e−i
π
2
p̄ : e−i

√
2φ(z) :

ψ† = ei
π
2
p̄ : ei

√
2φ(z) :

ψ̄ = e−i
π
2
p : ei

√
2φ̄(z̄) :

ψ̄† = ei
π
2
p : e−i

√
2φ̄(z̄) :

where φ and φ̄ are chiral bosons.
These two theories are dual in the sense that, the formulae above ensure

that the central charge c of the theory, the correlators and other aspects of
the theory are fully explained in terms of the �elds φ and φ̄.

In bosonic theories, boundary states are of two types : Neumann bound-
ary states where ∂ϕ = 0 at the boundary and Dirichlet states where ϕ = 0
at the boundary, where ϕ is the full boson �eld with both chiral components.
Consider a Neumann boundary state |N〉. In terms of the chiral boson �elds,
the condition on the Neumann state becomes φ |N〉 = φ̄ |N〉. To translate
the bosonic Neumann condition into the fermionic one, we do the following.

ψ |N〉 = e−i
π
2
p̄ : e−i

√
2φ̄ : |N〉 (3.19)

= e−i
π
2
p̄ : e

−i(x̄−ip̄+i
∑
n 6=0

αne−inz)

: |N〉 (3.20)

= e−
π
2

[p̄,x̄]ψ̄†e−i
π
2

(p̄+p) |N〉 (3.21)

= ei
π
2 ψ̄† |N〉 = iψ̄† |N〉 (3.22)

where we have used Baker-Campbell-Hausdor� formula to commute ep̄ through
ex̄ using [p̄, x̄] = −i and using the fact that (p+ p̄) |N〉 = 0.
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Similarly, we can show that (ψ†− iψ̄) |N〉, (ψ− iψ̄) |D〉 and (ψ†− iψ̄†) |D〉
vanish, where |D〉 is the Dirichlet state de�ned by (φ+ φ̄) |D〉 = 0.

Thus, the �rst boundary state |B1〉, will be denoted as |N〉 and the second
state |B2〉, will be denoted as |D〉 (this matches the form given in [14]). Thus,
|B2〉 = |D〉 is the state that appears in the gCC state, which will be discussed
in the next section. Sometimes with a slight abuse of notation, we will also
denote the sign(k) variants as |N〉 and |D〉.

3.2 Generalised Calabrese-Cardy State

For a sudden critical quench, it is only natural to assume that the post-quench
state will be given by a time boundary state (the structure of which has been
discussed in the previous section), since we have a boundary condition at
t = 0 and we need it to be a conformal state as we are quenching to a CFT.

We note that being of the form ∼ ea
†b† , the boundary state is not nor-

malisable. Thus we need to add some cut-o�s. This is why Calabrese and
Cardy [6] proposed the following hypothesis for the post-quench state. The
authors proved thermalisation in this state, which we will call the CC state.

|ψCC〉 = e−κH |Bd〉 (3.23)

Later, MSS [1] extended this to a class of states with an in�nite set of
cut-o�s and corresponding conserved charges, and proved thermalisation in
this set of states. The generalised Calabrese-Cardy (gCC) state is thus given
by

|ψgCC〉 = e
−κ2H−

∑
n
κnWn |Bd〉 (3.24)

In general theWn's could be any operators that commute with the Hamil-
tonian. In the case of free fermions and bosons, one candidate set of charges
presents itself : the W∞ charges. These are of the form [15]

T (z) =
1

2
(ψ∗∂ψ(z)− ∂ψ∗ψ(z))

=
∑
k

|k|
(
a†kak + b†kbk

)
W4(z) =

4

5
q2
(
∂3ψ∗ψ(z)− 9 ∂2ψ∗∂ψ(z) + 9 ∂ψ∗∂2ψ(z)− ψ∗∂3ψ(z)

)
=

∑
k

|k|3
(
a†kak + b†kbk

)
Thus, the gCC state can be written in k modes as

|gCC〉 = e

∑
k
κ(k)(a†kak+b†kbk) |D〉 (3.25)
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where κ(k) =
∑
n

κn|k|n.

3.3 gCC as the Post-Quench State

In the earlier chapter, we saw some properties of Bogoliubov coe�cients that
a�ected a transformation between the `in' and `out' bases. By inverting Eq
(2.13) and using the properties in Sec 2.2.2, we get

ain,k =

√
ω −m
ω

(
α∗+ak,out + sign(k)β∗+b

†
−k,out

)
(3.26)

bin,k =

√
ω −m
ω

(
α∗+bk,out + sign(k)β∗+a

†
−k,out

)
(3.27)

Quenching the ground state |0〉in, will not change the state, but now
excitations will be in terms of the `out' oscillators. Thus, to characterise the
`in' vacuum |0〉in in the `out' basis, we need to solve the equation ain,k |0〉in =
bin,k |0〉in = 0. Using Eq (3.26) and Eq (3.27), we can now write the post-
quench ground state as

|0〉in = exp

(∑
k

γ(k)a†out(k)b†out(−k)

)
|0〉out (3.28)

where γ(k) = −sign(k)
β∗+
α∗+

.

The only step remaining is to show that the post-quench state is a gCC
state. We do this by a simple use of the Baker-Campbell-Hausdor� (BCH)
formula. We will use the following form of the BCH formula

eXeY e−X = eexp(s)Y eX (3.29)

where [X, Y ] = sY .
Consider the mode expansion of the gCC state.

|ψgCC〉 = exp

(
∞∑
−∞

κ(k)
(
a†(k)a(k) + b†(k)b(k)

))
exp

(
∞∑
−∞

ia†(k)b†(−k)

)
|0〉

= exp

(
∞∑
−∞

B(k)

)
exp

(
∞∑
−∞

A(k)

)
exp

(
−
∞∑
−∞

B(k)

)
|0〉 (3.30)

where we have de�nedB(k) =
(
a†(k)a(k) + b†(k)b(k)

)
andA(k) = ia†(k)b†(−k).

Also note thatB(k) |0〉 = 0, so we can insert an additional factor of exp

(
−
∞∑
−∞

B(k)

)
acting on |0〉.
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We �nd that [B(l), A(k)] = 2κ(k)A(k)δkl. Thus, we can use the BCH
formula with s = 2κ(k). We can rearrange |ψgCC〉 as

|ψgCC〉 =
∏
k

eB(k)
∏
l

eA(l)
∏
m

e−B(m) |0〉

=
∏
k

eB(k)eA(k)e−B(k) |0〉 =
∏
k

exp
(
e2κ(k)A(k)

)
|0〉

= exp

(
∞∑
−∞

ie2κ(k)a†(k)b†(−k)

)
|0〉

where we have used the BCH formula in the second last equality.
For this to be a post-quench state we require that

γ(k) = sign(k)
β∗+
α∗+

= ie2κ(k) (3.31)

⇒ κ(k) =
1

2
log

(
−i sign(k)

β∗+
α∗+

)
(3.32)

Thus, as we saw in the previous section, the post-quench state will be a
gCC state, as long as κ(k) given by the formula above in terms of quench
parameters, is analytic in k. [7] presents a more general discussion as to why
we expect every post-quench ground state to be a gCC state.

3.3.1 Details

For our quench with tanh time-dependence, does γ give a gCC state? Indeed
it does. The Taylor expansion of κ, calculated from γ in the sudden limit, is
as follows

κ(k) =
sign(k)iπ

4
− |k|

2m
+
|k|3

12m3
+O

(
1

m

)4

(3.33)

Since this expression is analytic, we can conclude that our post-quench
state is a gCC state with chemical potentials µ0 = sign(k)iπ

4
, µ2 = β = 1

2m
,

µ4 = 1
12m3 , etc. Outside the sudden limit, we would have κ(k) analytic in k

but with coe�cients dependent on both m and ρ.
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Chapter 4

Quenching Squeezed States

In this chapter, we will deal with squeezed state correlators. The reason
for this has been motivated in Chapter 1. We will be doing the fermionic
analogue of the calculations in [7], where emphasis has been laid on the
bosonic calculation.

4.1 Squeezed states

A squeezed state is one that satis�es the equation
(
ain,k − f(k)b†in,−k

)
|f〉 =

0, where f(k) is an appropriately normalisable squeezing function. One can
make a Bogoliubov transformation to a basis ãk, b̃k such that ãk |f〉 = b̃k |f〉 =
0⇒ |f〉 =

∣∣0̃〉, i.e.[
ãk
b̃†−k

]
=

1√
1 + |fk|2

[
1 −f(k)

f ∗(k) 1

] [
a
in,k

b†in,−k

]

The prefactor makes sure that {ãk, ã†k′} = δk,k′ and {b̃k, b̃†k′} = δk,k′ . Again
since we are in the Heisenberg picture, our state doesn't change with time.
So to characterise the post-quench squeezed state, we can represent

∣∣0̃〉 in
the out basis via a composite Bogoliubov transformation1.

1√
1 + |fk|2

[
α sign(k)β∗

−sign(k)β α∗

] [
1 f(k)

−f ∗(k) 1

]
=

[
A(k) B∗(k)
−B(k) A∗(k)

]
(4.1)

Here, we have introduced A(k) = 1√
1+|fk|2

(α(k)− sign(k)β∗(k)f ∗(k)) and

1Here we use α =
√

ω−m
ω α+ and β =

√
ω−m
ω β+ which give α2 + β2 = 1.

26



B(k) = 1√
1+|fk|2

(α∗(k)f ∗(k) + sign(k)β(k)). These give

aout(k) = Akãk +B∗k b̃
†
−k (4.2)

b†out(−k) = −Bkãk + A∗kb̃
†
−k (4.3)

Inverting this expression, we can write down the e�ective γ(k) for this
composite Bogoliubov transformation.

γ(k) =
B∗

A∗
=
α(k)f(k) + sign(k)β∗(k)

α∗(k)− sign(k)β(k)f(k)
(4.4)

Note that f = 0 gives us our usual formula for the ground state quench
Eq (3.28). Using the formula connecting the chemical potentials to γ Eq
(3.32), an appropriately chosen f can give the CC state

κ(k) = −κ|k| (4.5)

or the gCC state with one chemical potential

κ(k) = −κ|k| − µ|k|3 (4.6)

It is important to note that from now on we will refer to the CC, gCC
(with one chemical potential) and post-quench ground states separately, since
as we saw before : the post-quench ground state is not the CC state or the
gCC state with one chemical potential, contrary to earlier belief [6]. Only a
gCC state with in�nite chemical potentials (which are not necessarily small)
mimics the post-quench ground state.

4.2 Squeezed Correlators

We want to �nd the fermion correlator in a squeezed state |f〉. To �nd
correlators such as 〈f |ψ†(r, t)ψ(0, t)|f〉, we shift to the `∼' basis. We will
need to �nd ground state correlators in this basis, since |f〉 = |0̃〉.

Now, we write down the chiral fermion �elds in the `∼' basis.

ψ(x, t) =

∫ ∞
0

dk
[
−aout,ke−ik·x + b†out,ke

ik·x
]

(4.7)

=

∫ ∞
0

dk
[
−A(k)ãke

−ik·x −B(−k)ã−ke
ik·x + A∗(−k)b̃†ke

ik·x −B∗(k)b̃†−ke
−ik·x

]
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Similarly, we can write down the other chiral �eld as

ψ̄(x, t) =

∫ 0

−∞
dk
[
−A(k)ãke

−ik·x +B(−k)ã−ke
ik·x − A∗(−k)b̃†ke

ik·x −B∗(k)b̃†−ke
−ik·x

]
=

∫ ∞
0

dk
[
−A(−k)ã−ke

−i|k|t−ikx +B(k)ãke
+i|k|t+ikx − A∗(k)b̃†−ke

+i|k|t+ikx

−B∗(−k)b̃†ke
−i|k|t−ikx

]
(4.8)

Now we are in a position to calculate the 〈f |ψ†(r, t)ψ(0, t)|f〉 correlator.

〈ψ†(0, t)ψ(r, t)〉 =

∫ ∞
0

dkdk′
〈
0̃
∣∣ [A(−k)b̃ke

−i|k|t −B(k)b̃−ke
i|k|t
]

[
A∗(−k′)b̃†k′e

i|k′|t−ik′r −B∗(k′)b̃†−k′e
−i|k′|t+ik′r

] ∣∣0̃〉
=

∫ ∞
0

dkdk′
[
A(−k)e−i|k|tA∗(−k′)ei|k′|t−ik′rδk,k′

+B(k)ei|k|tB∗(k′)e−i|k
′|t+ik′rδ−k,−k′

]
=

∫ ∞
0

dk
[
|A(−k)|2e−ikr + |B(k)|2eikr

]
=

∫ ∞
−∞

dkeikr
[
Θ(−k)|A(k)|2 + Θ(k)|B(k)|2

]
(4.9)

The calculation of the other correlators follows along similar lines, to give

〈ψ̄†(0, t)ψ̄(r, t)〉 =

∫ ∞
−∞

dkeikr
[
Θ(k)|A(k)|2 + Θ(−k)|B(k)|2

]
〈ψ̄†(0, t)ψ(r, t)〉 =

∫ ∞
−∞

dkeik(r−2t) [Θ(k)A(k)B∗(k)−Θ(−k)A∗(k)B(k)]

〈ψ†(0, t)ψ̄(r, t)〉 =

∫ ∞
−∞

dkeik(r+2t) [Θ(k)A∗(k)B(k)−Θ(−k)B∗(k)A(k)]

4.3 Details

Consider a squeezed state with an f that satis�es the equation

1

2
log

(
i
(β(k)sign(k) + α(k)f)

α(k)− β(k)fsign(k)

)
= −κ |k| (4.10)

⇒ f(k) =

(
e2κk − i

) (√
k2 +m2 +m

)
+ k

(
−e2κk − i

)
(e2κk + i)

(√
k2 +m2 +m

)
+ k (e2κk − i)

(4.11)
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This squeezed state is a CC state in terms of the `out' oscillators, i.e. it
produces a CC state post-quench. Also, it has a valid squeezing function since
f vanishes as |k| → ∞ and is �nite everywhere, i.e. the state is normalisable.
Thus, using the expression for f in Eq (4.11) and the expressions for A and
B, we can perform the Fourier transforms necessary to �nd the correlators.

〈ψ†(0, t)ψ(r, t)〉 =

∫ ∞
−∞

dkeikr
1

|f(k)|2 + 1

(
Θ(k)

(
α2 + β2 |f(k)|2 − 2αβRe(f)sign(k)

)
+Θ(−k)

(
α2 |f(k)|2 + β2 + 2αβRe(f)sgn(k)

))
=

1

2

∫ ∞
−∞

dkeikr(tanh(2κk) + 1)

=
iπcsch

(
πr
4κ

)
4κ

(4.12)

〈ψ̄†(0, t)ψ̄(r, t)〉 = −1

2

∫ ∞
−∞

dkeikr(tanh(2κk) + 1)

= −
iπcsch

(
πr
4κ

)
4κ

(4.13)

In keeping with MSS [1]'s results, these correlators have no time depen-
dence. The entire time-dependence comes from the `mixed' correlators below.

〈ψ̄†(0, t)ψ(r, t)〉 =

∫ ∞
−∞

dkeik(r−2t) 1

|f(k)|2 + 1

(
α(k)β(k)(1− |f(k)|2)

+Θ(k)(α(k)2f(k)− β(k)2f ∗(k))−Θ(−k)(α(k)2f ∗(k)− β(k)2f(k))
)

= −1

2
i

∫ ∞
−∞

dkeik(r−2t)sech(2κk)

= −
iπsech

(
π(r−2t)

4κ

)
4κ

(4.14)
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〈ψ†(0, t)ψ̄(r, t)〉 =
1

2
i

∫ ∞
−∞

dkeik(r+2t)sech(2κk)

=
iπsech

(
π(r+2t)

4κ

)
4κ

(4.15)

Similarly, a post-quench gCC state with one chemical potential can be
achieved using the squeezing function

f(k) =
k
(
−e2k(κ+k2µ) − i

)
+
(√

k2 +m2 +m
) (
e2k(κ+k2µ) − i

)
k (e2k(κ+k2µ) − i) +

(√
k2 +m2 +m

)
(e2k(κ+k2µ) + i)

(4.16)

This f too, corresponds to a normalisable state and yields the correlators

〈ψ†(0, t)ψ(r, t)〉 =
1

2

∫ ∞
−∞

dkeikr(tanh(2k(κ+ µk2)) + 1) (4.17)

〈ψ̄†(0, t)ψ̄(r, t)〉 = −1

2

∫ ∞
−∞

dkeikr(tanh(2k(κ+ µk2)) + 1) (4.18)

〈ψ̄†(0, t)ψ(r, t)〉 = −1

2
i

∫ ∞
−∞

dkeik(r−2t)sech(2k(κ+ µk2)) (4.19)

〈ψ†(0, t)ψ̄(r, t)〉 =
1

2
i

∫ ∞
−∞

dkeik(r+2t)sech(2k(κ+ µk2)) (4.20)

4.4 Residue Calculus for the gCC State Corre-

lators

Let us consider tanh and sech. They have poles at i(2n+1)π
2

, i.e. tanh(2k(κ+
µk2)) and sech (2k(κ+ µk2)) have poles at the roots of the equation

2k(κ+ µk2) =
i(2n+ 1)π

2
(4.21)

The roots are

k1 =
−4 32/3κµ+ 3

√
3
(
µ3/2

√
192κ3 − 81µ(2πn+ π)2 + 9iπµ2(2n+ 1)

)2/3

6µ 3

√
µ3/2

√
192κ3 − 81µ(2πn+ π)2 + 9iπµ2(2n+ 1)

µ→0−−→ iπ(2n+ 1)

4κ
+
iµ(2πn+ π)3

64κ4
+O

(
µ2
)
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k2 =
8 3
√
−3κµ+ i

(√
3 + i

) (
µ3/2

√
192κ3 − 81µ(2πn+ π)2 + 9iπµ2(2n+ 1)

)2/3

4 32/3µ 3

√
µ3/2

√
192κ3 − 81µ(2πn+ π)2 + 9iπµ2(2n+ 1)

µ→0−−→ i
√
κ

√
µ
− i(2πn+ π)

8κ
+O (

√
µ)

k3 =
−8(−3)2/3κµ− 3

√
3
(
1 + i

√
3
) (
µ3/2

√
192κ3 − 81µ(2πn+ π)2 + 9iπµ2(2n+ 1)

)2/3

12µ 3

√
µ3/2

√
192κ3 − 81µ(2πn+ π)2 + 9iπµ2(2n+ 1)

µ→0−−→ − i
√
κ

√
µ
− i(2πn+ π)

8κ
+O (

√
µ)

Note that out of these, contributions from the poles k2 and k3 will give
the non-perturbative e�ects (since they do not give a sensible µ→ 0 limit).
Thus, to stay in the perturbative regime of µ, we will only consider the
contributions of k1. The residue of tanh at k1 is

1

4κ
+

3µ(2πn+ π)2

64κ4
+O

(
µ2
)

and that of sech is

(−1)n

4κ
+

(−1)n3µ(2πn+ π)2

64κ4
+O

(
µ2
)

Thus, we note that upto linear order in µ, we can write down the corre-
lators as

〈ψ†(0, t)ψ(r, t)〉 = −〈ψ̄†(0, t)ψ̄(r, t)〉

= πi
∑
n≥0

(
1

4κ
+

3µ(2πn+ π)2

64κ4

)
e−(

π(2n+1)
4κ

+
µ(2πn+π)3

64κ4
)r

〈ψ†(0, t)ψ̄(r, t)〉 = π
∑
n≥0

(−1)n+1

(
3µ(2πn+ π)2

64κ4
+

1

4κ

)
e−(

π(2n+1)
4κ

+
µ(2πn+π)3

64κ4
)(r+2t)

〈ψ̄†(0, t)ψ(r, t)〉 = π
∑
n≥0

(−1)n
(

3µ(2πn+ π)2

64κ4
+

1

4κ

)
e−(

π(2n+1)
4κ

+
µ(2πn+π)3

64κ4
)|r−2t|
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Chapter 5

Entanglement Entropy

In this chapter, we will follow the discussions in Calabrese and Cardy [16] [5]
and Casini, Huerta and Fosco [17]. As we saw in Sec 1.2, the �rst step toward
calculating the entanglement entropy of a region A is to calculate TrAρ

n
A. In

scalar �eld theory, we use the path integral formulation to characterise the
density matrix ρ. The component connecting two �eld con�gurations φx and
φ′x′ is

ρ(φx|φ′x′) = 〈φx|e−βH |φ′x′〉 (5.1)

This can be thought of as an imaginary time evolution by β. In this time
coordinate τ , we can write down a standard path integral which gives the
amplitude of one �eld con�guration time-evolving to another.

ρ(φx|φ′x′) = Z(β)−1

∫
Dφ(y, τ)

∏
x′

δ(φ(y, 0)− φ′x′)∏
x

δ(φ(y, β)− φx)e−S[φ(y,τ)] (5.2)

Here, we have simply added two boundary conditions at times 0 and β
to the usual path integral. Does this give us Trρ = 1? Tracing, we get∫

Dφxρ(φx|φx) = Z(β)−1

∫
Dφx

∫
Dφ(y, τ)

∏
x

δ(φ(y, 0)− φx)∏
x

δ(φ(y, β)− φx)e−S[φ(y,τ)]

⇒ Trρ = Z(β)−1

∫
Dφ(y, τ)

∏
x

δ(φ(y, 0)− δ(φ(y, β))e−S[φ(y,τ)]

= 1

Here, Z(β) is chosen such that Trρ = 1. It is evident that we can think of
this path integral as being in a cylindrical geometry with the edges τ = 0 and
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τ = β sewn together. What we are really interested in is partial traces, since
this is what can give us the entanglement entropy. When we take a partial
trace to �nd the reduced density matrix for a spatial region A = (a1, a2), we
trace over Ā, i.e. we will let

∫
Dφx only run over x ∈ Ā1.

ρA(φ′x′ |φ′′x′′) = Z(β)−1

∫
DφxDφ(y, τ)

∏
x∈Ā

(δ(φ(y, 0)− φx)δ(φ(y, β)− φx))∏
x′∈A

δ(φ(y, 0)− φ′x′)
∏
x′′∈A

δ(φ(y, β)− φ′′x′′)e−S[φ(y,τ)]

We can think of this path integral as being in a cylindrical geometry with
a cut along spatial region A. On either side of the cut i.e. τ = 0+ and
τ = β−, we have speci�ed boundary conditions (φ′x′ and φ

′′
x′′ respectively in

the above example) according to which component of ρA we are looking at.
We call this manifoldM1. Thus, in short-hand, we can now write

ρA(φ′(x′)|φ′′(x′′)) = Z(β)−1

∫
M1,BC

Dφ(y, τ)e−S[φ(y,τ)] (5.3)

where BC denotes the boundary conditions imposed by φ′x′ at τ = 0+ and
φ′′x′′ at τ = β−.

5.1 Replica Trick

The replica trick involves introducing a geometry which is a generalisation
ofM1 to describe ρnA as a path integral. An easy description of ρnA is

ρnA(φ′x′ |φ′′x′′) =

∫
Dφ1(x1) · · ·Dφn−1(xn−1)ρA(φ′x′|φ1(x1)) · · · ρA(φn−1(xn−1)|φ′′x′′)

(5.4)
Further, tracing over ρnA adds a further integral over φx and the condition

that φ′x′ = φ′′x′′ = φx. On performing these integrals
∫
Dφi(xi) and

∫
Dφx, we

are left with n path integrals over φi(yi), each corresponding to an insertion
of ρA. From Eq (5.3), we see that this corresponds to having the following
boundary conditions on the �elds φi(yi)

φi+1(y, 0+) = φi(y, β−) (5.5)

with the understanding that n+ 1 ∼ 1 and y ∈ A.
1This is analogous to the matrix partial trace where the sum over diagonal elements is

restricted to diagonal elements lying in some part of the vector space.
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Can this also be thought of as a simple path integral over a complicated
manifold, let's say Mn? Indeed it can. A representation of this manifold
(which automatically imposes the above mentioned boundary conditions for
n = 3) is

Here, each cylinder represents one of the spaces over which φi(yi) is being
integrated. They are called replicas, each corresponding to a single insertion
of ρA in the trace.

Each blue path enforces the identi�cations in Eq (5.5). Lastly, each rect-
angle represents the cut of which we spoke earlier. The value of the �elds at
the cuts are again given by the boundary conditions in Eq (5.5).

The explicit calculation for n = 2 is as follows

ρ2
A(φ′′x′′ |φ′x′) =

∫
Dφ1(x1)Dφ1(y1)Dφ2(y2)

∏
Ā

(δ(φ1(y1, 0)− φ1(y1, β))

δ(φ2(y2, 0)− φ2(y2, β)))
∏
A

(δ(φ1(y1, 0)− φ′′x′′)δ(φ1(y1, β)− φ1(x1))

δ(φ2(y2, 0)− φ1(x1))δ(φ2(y2, β)− φ′x′)) e−S[φ1(y1)]−S[φ2(y2)]

=

∫
Dφ1(y1)Dφ2(y2)

∏
Ā

(δ(φ1(y1, 0)− φ1(y1, β))

δ(φ2(y2, 0)− φ2(y2, β)))
∏
A

(δ(φ1(y1, 0)− φ′′x′′)

δ(φ1(y1, β)− φ2(y2, 0))δ(φ2(y2, β)− φ′x′)) e−S[φ1(y1)]−S[φ2(y2)]
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Diagrammatically, we now have two cylinders and one blue path joining
one of the edges of each cut with the other. The second blue path comes
from taking the trace.

Trρ2
A =

∫
Dφxρ

2
A(φx|φx)∫

Dφ1(y1)Dφ2(y2)
∏
Ā

(δ(φ1(y1, 0)− φ1(y1, β))δ(φ2(y2, 0)− φ2(y2, β)))∏
A

(δ(φ1(y1, 0)− φ2(y2, β))δ(φ1(y1, β)− φ2(y2, 0))) e−S[φ1(y1)]−S[φ2(y2)]

This now a�ects the full geometry with n = 2 replicas, 2 identi�cations
and 2 cuts.

For fermions, we need to take the trace a little more carefully. Consider
fermionic states |ψ〉 which form the eigenbasis of operator ψ̂|ψ〉 = |ψ〉ψ.
We normalise the eigenbasis such that an inner product between di�erent
eigenvectors gives the Grassman delta function ψ − ψ′ = 〈ψ|ψ′〉.

For this to happen, we need to de�ne 〈ψ|ψ̂ = −ψ〈ψ| [18]. This can be
veri�ed by taking the inner product with |ψ′〉

〈ψ|ψ̂|ψ′〉 = −ψ〈ψ|ψ′〉 = 〈ψ|ψ′〉ψ′ (5.6)

= −ψ(ψ − ψ′) = (ψ − ψ′)ψ′ (5.7)

Thus, though written as 〈ψ|, the bra eigenstate has a negative eigenvalue.
Thus, the trace of ρ for a fermionic theory is∫

Dψxρ(ψx| − ψx) (5.8)

There are other signs to be taken care of as well. Consider the identi�ca-
tions in the n = 2 case.

ρ2
A(ψx|ψ′x′) →

∏
Ā

(δ(ψ1(y1, 0) + ψ1(y1, β))δ(ψ2(y2, 0) + ψ2(y2, β)))∏
A

(δ(ψ1(y1, 0)− ψx)δ(ψ1(y1, β)− ψ2(y2, 0))δ(ψ2(y2, β)− ψ′x′))

→
∏
Ā

(δ(ψ1(y1, 0)− ψ1(y1, β))δ(−ψ2(y2, 0) + ψ2(y2, β)))∏
A

(δ(ψ1(y1, 0)− ψx)δ(−ψ1(y1, β) + ψ2(y2, 0))δ(ψ2(y2, β)− ψ′x′))
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⇒ TrAρ
2
A =

∫
Dψxρ(ψx| − ψx)

→
∏
Ā

(δ(ψ1(y1, 0)− ψ1(y1, β))δ(ψ2(y2, 0)− ψ2(y2, β)))∏
A

(δ(ψ1(y1, 0) + ψ2(y2, β))δ(ψ1(y1, β)− ψ2(y2, 0))) (5.9)

Similarly, for n replicas, it can be shown that the �nal boundary condition
between ψ1(y1) and ψn(yn) picks up a factor of (−1)n+1, while the others are
as given in Eq (5.5).

5.1.1 Diagonalisation

We will continue with our presentation of the discussion in [17]. TrAρ
n
A is

now given by a path integral over a bunch of �elds ψi(yi), on a complicated
manifoldMn. We can instead think of each of these �elds as living on planes
with cuts at A, such that on going from the top to bottom of the cut, the
vector Ψ transforms under the matrix

T =


0 1 · · · 0

0
. . . 1 0

0 0
. . . 1

(−1)n+1 0 · · · 0



ψ1

ψ2
...
ψn

 (5.10)

We call the vector space in which this is a linear transformation the
replica space. We can now go to the eigenbasis of T in replica space where
we will call our �elds ψk corresponding to the eigenvalues ei

k
n

2π, where k =
−n−1

2
, · · · , n−1

2
.

In this space, we can now write our Lagrangian on the plane as

L0(k) = ψ̄kγ
µ∂µψk +mψ̄kψk (5.11)

where the �elds ψk are now decoupled. Each picks up a phase ei
k
n

2π on going
from the top to the bottom and an opposite phase while going from the
bottom to the top of the cut.

This presents a problem, as it suggests that the �elds ψk are multi-valued
on our region A. This can be taken care of by introducing gauge �elds Akµ
[17], which satisfy ∫

C

dxµAkµ =
−2πk

n
(5.12)∫

−C
dxµAkµ =

2πk

n
(5.13)
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where C is a closed path going from the top to bottom of the cut, while −C
runs from bottom to top.

These conditions (being valid for any such paths), ensure that

εµν∂νA
k
µ = 2π

k

n
(δ(x− a1)− δ(x− a2)) (5.14)

where our region A = (a1, a2).

This condition on Aµ makes sure that, when the �elds go around the cut,
they pick up the appropriate phase and that this phase cannot be removed
via any gauge �xing conditions. Thus, these �elds are single-valued and they
satisfy the right boundary conditions.

L(k) = ψ̄kγ
µ (∂µ + iAµ)ψk +mψ̄kψk (5.15)

= L0(k) + iAkµj
µ
k (5.16)

where jµ is the Dirac current ψ̄kγ
µψk.

Thus, the partition function on the manifold Mn can �nally be written
as follows, where all �elds ψk are single-valued and decoupled.

Z =
∏
k

Zk =
∏
k

〈ei
∫
d2xAkµj

µ
k 〉 (5.17)

5.2 Formula via Bosonisation

Via the bosonisation formulae mentioned in Sec 3.1.1, we �nd that the Dirac
current can be written in terms of bosonic operators as [19]

jµk =
1√
π
εµν∂νϕ (5.18)
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Thus, the partition function can now be written as

Zk = 〈ei
∫
d2x Akµ

1√
π
εµν∂νϕk〉 (5.19)

= 〈ei
∫
d2x ∂νAkµ

1√
π
εµνϕk〉 (5.20)

= 〈ei
∫
d2x 2π k

n
(δ(x−a1)−δ(x−a2)) 1√

π
ϕk〉 (5.21)

= 〈ei
√

4π k
n

(ϕk(a1)−ϕk(a2)) (5.22)

As long as our state is Gaussian (which gCC states are), we can use
Wick's theorem to bring down the ϕ �elds. Re-summing this expression2,
gives us

Z[Mn] =
∏
k

e
4πk2

n2
〈ϕk(a1)ϕk(a2)〉−〈ϕ2

k(a1)〉 (5.23)

As we showed in the beginning of this chapter Z[Mn] = TrAρ
n
A. Thus,

by using the formula for entanglement entropy in terms of TrAρ
n
A given in

Chapter 1, we �nally arrive at the formula

SA =
2π

3

(
〈ϕ(a1)ϕ(a2)〉 − 〈ϕ2(a1)〉

)
(5.24)

5.3 The Post-Quench Entanglement Entropy

According to the calculation in the previous section, the entanglement en-
tropy of a region extending from x to y is given by the full 〈ϕ(x)ϕ(y)〉−〈ϕ(0)2〉
correlator. This is simply 〈φ(x)φ(y)〉+〈φ̄(x)φ̄(y)〉+〈φ(x)φ̄(y)〉+〈φ̄(x)φ(y)〉−
(coincident terms), where φ and φ̄ are the chiral bosons. The �rst two terms
are independent of time and will give the equilibrium value, while the last
two give the decay.

Since we can think of the gCC state as a Gaussian state, we can use
Wick's theorem to arrive at the expression (see App B)

〈eiαφ(x)eiβφ(y)〉 = e−αβ〈φ(x)φ(y)〉−α2〈φ(x)2〉−β2〈φ(y)2〉 (5.25)

Using the bosonisation formulae given in Sec 3.1.1

ψ = e−i
π
2
p̄ : e−i

√
2φ(z) :

ψ† = ei
π
2
p̄ : ei

√
2φ(z) :

ψ̄ = e−i
π
2
p : ei

√
2φ̄(z̄) :

ψ̄† = ei
π
2
p : e−i

√
2φ̄(z̄) :

2The exact nature of this re-summation is given in App B.
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the 〈φ(r)φ(0)〉 − 〈φ2(0)〉 correlator is given by

log〈ψ†(r)ψ(0)〉 = − log〈eiφ(r)e−iφ(0)〉 = − log e−〈φ(r)φ(0)〉+〈φ2(0)〉

= 〈φ(r)φ(0)〉 − 〈φ2(0)〉 (5.26)

A similar formula for the 〈φ̄(r)φ̄(0)〉−〈φ̄2(0)〉 correlator gives the equilib-
rium value. What we are really interested in is the decay to this equilibrium
value. This will be given by − log〈ψ̄†(r)ψ(0)〉 and − log〈ψ†(r)ψ̄(0)〉, since
these are the only time-dependent correlators. Thus, �nally we get the for-
mula for the total 〈ϕ(r)ϕ(0)〉 correlator at separated points,

〈ϕ(r)ϕ(0)〉 = log

(
〈ψ†(r)ψ(0)〉〈ψ̄†(r)ψ̄(0)〉
〈ψ†(r)ψ̄(0)〉〈ψ̄†(r)ψ(0)〉

)
= 〈φ(r)φ(0)〉+ 〈φ̄(r)φ̄(0)〉+ 〈φ(r)φ̄(0)〉+ 〈φ̄(r)φ(0)〉

We also need the coincident parts. These are given entirely by

− log
(
〈ψ̄†(0)ψ(0)〉〈ψ†(0)ψ̄(0)〉

)
= 〈φ2(0)〉+ 〈φ̄2(0)〉+ 2〈φ(0)φ̄(0)〉 (5.27)

Thus, the full entanglement entropy formula is given by

log

(
〈ψ̄†(0)ψ(0)〉〈ψ†(0)ψ̄(0)〉〈ψ†(r)ψ(0)〉〈ψ̄†(r)ψ̄(0)〉

〈ψ†(r)ψ̄(0)〉〈ψ̄†(r)ψ(0)〉

)
(5.28)

5.3.1 For a CC State

In the squeezed state that mimics a CC state post-quench, we got the fol-
lowing correlators (Eq (4.12), (4.13), (4.14) and (4.15)):

〈ψ†(r)ψ(0)〉 = −〈ψ̄†(r)ψ̄(0)〉 ∼ cosech
(πr

4κ

)
(5.29)

〈ψ̄†(r)ψ(0)〉 ∼ sech

(
π(r + 2t)

4κ

)
(5.30)

〈ψ†(r)ψ̄(0)〉 ∼ sech

(
π(r − 2t)

4κ

)
(5.31)

Taking the κ→ 0, i.e. the large temperature limit, for 2t < r, we get the
entanglement entropy as

log

(
e−

2πt
4κ e−

2πt
4κ e−

πr
4κ e−

πr
4κ

e−
π(r+2t)

4κ e−
π(r−2t)

4κ

)
(5.32)

= log
(
e−

πt
κ

)
= −πt

κ
(5.33)
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For 2t > r, we get

log

(
e−

2πt
4κ e−

2πt
4κ e−

πr
4κ e−

πr
4κ

e−
π(r+2t)

4κ e−
π(2t−r)

4κ

)
(5.34)

= log
(
e−

πr
2κ

)
= −πr

2κ
(5.35)

which is exactly what we expect from a CC state in the large temperature
limit [6]. We can get the sub-leading corrections by expanding log(sech) and
log(cosech) in the κ→ 0 limit.

In fact, we can do better than high temperature or long-time limits. Using
the formula in Eq (5.28), we can write down an expression for the full time-
dependent entanglement entropy.

SA =
2π

3
log

(
π2
(
csch2

(
πr
4κ

)
+ sech2

(
πt
2κ

))
16κ2

)
(5.36)

We can plot this and the well-known high temperature limit as below :

1 2 3 4 5

5

10

15

Finite κ

κ=0

where the horizontal line gives the asymptotic value−2π
3

log
(

π2

16κ2
cosech2

(
πr
4κ

))
and the vertical line is at t = r

2
.
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Chapter 6

Discussion

6.1 Results

We quote here the results of the calculations.

1. On quenching a system in the ground state or in a squeezed state, we
arrive at a gCC state (which is the ansatz used by MSS [1] in their
proof of subsystem thermalisation).

2. The post-quench correlators for a ground state quench with tanh time
dependence, do not behave as predicted by MSS [1] or Cardy and Sotiri-
adis [20] because of the large chemical potentials µn.

3. Prepared post-quench CC and gCC states thermalise as expected by
the aforementioned works, because the chemical potentials have been
tuned to the perturbative regime.

4. Entanglement entropy for fermions after a quench can be calculated
since the twist operators are known and their correlators are easily
calculated [17].

5. Entanglement entropy in a prepared CC state matches earlier results.

6.2 Future Directions

The entanglement entropy calculation for the CC state, is a check of the
method we have established in the course of this thesis. We can further this
method by calculating and understanding the time-dependent entanglement
entropy, following a ground state quench.
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We can also use this method to calculate the entanglement entropy of
a prepared post-quench gCC state with a single chemical potential, via the
residue calculus method discussed in Sec 4.4. Here we will need to understand
the various limits to be taken to get a sensible answer, since it is impossible
to compute the in�nite sum of residues.

This thesis is a continuation of [7] (where emphasis is laid on the bosonic
calculation) to the fermionic case. Another possible generalisation of this
thesis or of [7], would be to understand quenches in higher dimensions. The
post-quench state will remain a gCC state (since the discussions in Chapter
3 can be easily generalised), but calculating correlators will not be as sim-
ple. Also, calculating the entanglement entropy via our method will not be
possible, since the bosonisation formula is special to 2d.

Lastly, it would be interesting to understand the holographic dual of
this thesis and of [7]. In MSS [1], it is observed that the relaxation rate
of various correlators matches the quasi-normal modes (QNM's) of a higher
spin black hole. It would be interesting to see whether or not all the branches
(perturbative and non-perturbative) of the relaxation rate in our calculation
match all the branches of these QNM's as well.
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Appendix A

Proof of Adiabatic Theorem

Consider the usual solution of a time-independent Schrödinger equation.

Ψ(x, t) =
∑
n

cnψn(x)e−iEnt/~ (A.1)

where cn = 〈Ψ|ψn〉.
In a system with a time-dependent Hamiltonian, we can simply generalise

this solution.
Ψ(x, t) =

∑
n

cn(t)ψn(x)e−
i
~
∫ t
0 En(t′)dt′ (A.2)

To �nd the equation governing cn(t), we plug this back into Schrödinger
equation and take its inner product with ψm, to get

ċm(t) = −cm 〈ψm| ψ̇n〉 −
∑
n6=m

cn
〈ψm| ˆ̇H |ψn〉
En − Em

e−
i
~
∫ t
0 (En(t′)−Em(t′))dt′ (A.3)

The adiabatic theorem states that if ˆ̇H << En − Em, then the second
term can be ignored and the equation becomes

ċm(t) = −cm 〈ψm| ψ̇n〉 (A.4)

⇒ cm(t) = cm(0)e−
∫ t
0 〈ψm(t′)|ψ̇n(t′)〉dt′ (A.5)

Thus, in this limit, time evolution of the time-dependent system just
adds an additional phase to the state, i.e. eigenstates of the old Hamiltonian
remain in the same eigenstate (of the new Hamiltonian) upto a phase.
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Appendix B

Vertex Operator Correlators

In conformal �eld theory, the operators eiαφ are known as vertex operators.
They have conformal weight α2

8π
[12]. In the body of this thesis, we have used

a formula for vertex operator correlators Eq. (5.25) that expresses them in
terms of 〈φφ〉 correlators. For this, we need Wick's theorem

〈ϕ1ϕ2 · · ·ϕn〉 =
∑

all contractions (B.1)

This statement of Wick's theorem is valid in all Gaussian states of free
�eld theories. One easy thing to note is that when n is odd, the expectation
values vanish.

Applying Wick's theorem to our exponential operator correlator, will give
us the formula in Eq. (5.25).

〈ψ|eiαφ(0)eiβφ(x)|ψ〉 = 〈ψ|
(

1 + iαφ(0)− α2

2
φ(0)2 · · ·

)
(

1 + iβφ(x)− β2

2
φ(x)2 · · ·

)
|ψ〉 (B.2)

Expanding this out, we get

= 〈ψ|
(

1− β2

2
φ(x)2 − αβφ(0)φ(x)− α2

2
φ(0)2 + · · ·

)
|ψ〉 (B.3)

= exp

(
−β

2

2
〈φ(x)2〉 − αβ〈φ(0)φ(x)〉 − α2

2
〈φ(0)2〉

)
(B.4)
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