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Abstract

This project attempts to address the problem of asset pricing in a financial market, where

the interest rates and volatilities exhibit regime switching. This is an extension of the

Black-Scholes model. Studies of Markov-modulated regime switching models have been well-

documented. This project extends that notion to a class of semi-Markov processes known as

age-dependent processes. We also allow for time-dependence in volatility within regimes. We

show that the problem of option pricing in such a market is equivalent to solving a certain

integral equation.
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Introduction

In 1973, Black, Scholes and Merton developed a mathematical model for the problem of op-

tion pricing, for which they were awarded the Nobel prize in Economics. Since then, numer-

ous different improvements of their theoretical model are being studied. Regime switching

models are one such extension of the Black-Scholes model. The goal of this project is to

establish the pricing theory of defaultable bonds for a very general kind of regime switching

market. Extensive research has been done to study markets with Markov-modulated regime

switching. However, it seems that the above problem with semi-Markov regimes has not

yet been studied in the literature. A semi-Markov switching has past memory unlike the

well studied homogeneous Markov switching which is memoryless. Hence the former has

much greater appeal in terms of applicability than the latter. The semi-Markov switching is

mathematically more interesting, too, mainly because of non-locality and unboundedness of

the infnitesimal generator of the related augmented process. To address this problem, a sat-

isfactory knowledge of continuous time stochastic processes, in particular diffusion processes

and Poisson point processes, is necessary. A reasonable understanding of pricing theory in

continuous time market model is also essential.

We have successfully represented a large class of semi-Markov processes as solutions of a

class of stochastic integral equations. This finding is original in nature and crucial to achieve

the main aim of the project.

In the geometric Brownian motion model of asset prices, the drift and the volatility coeffi-

cients of the prices are constants. On the other hand, the regime switching model, allows

those coefficients to be Markov pure jump processes. We consider a financial market where

the asset price dynamics follow a regime switching model where the coefficients depend on

a more general, possibly non-Markov pure jump stochastic processes. We further allow the

volatility coefficient to depend on time explicitly, to capture periodic fluctuations like Mon-
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day effects etc. Under this market assumption we study locally risk minimizing pricing of

vanilla options. It is shown that the price function can be obtained by solving a non-local

degenerate parabolic PDE. We establish existence and uniqueness of a classical solution of

at most linear growth of the PDE. We further show that the PDE is equivalent to a Volterra

integral equation of second kind. Thus one can find the price function by solving the integral

equation which is computationally more efficient. We finally show that the corresponding

optimal hedging can be computed by performing a numerical integration.
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Chapter 1

Preliminaries

Definition 1.0.1. Let (E, E) be an Euclidean measurable space. Let MP (E) be the set of all

integer-valued measures on (E, E). We associate MP (E) with a σ-algebra MP (E), which is

the smallest σ-algebra on MP (E) that makes the maps A : MP (E) → N ∪ {0}, m 7→ m(A)

measurable for all Borel sets A. Let µ be a Radon measure on E. A Poisson random measure

with mean measure µ is a measurable function ℘ : (Ω,F , P )→ (MP (E),MP (E)) satisfying

the following properties:

1. For A ∈ E and k ∈ N,

P [ω : ℘(ω)(A) = k] =

e−µ(A) (µ(A))k

k!
, µ(A) <∞

0, µ(A) =∞.
(1.1)

2. For any m ∈ N, if A1, A2, . . . , Am are mutually disjoint sets in E, then ℘(A1), ℘(A2),

. . . , ℘(Am) are independent random variables.

Definition 1.0.2. A discrete-time Markov chain is a sequence of random variables {Xn}n≥0

satisfying

P [Xn+1 = x | X0 = x0, X1 = x1, . . . Xn = xn] = P [Xn+1 = x | Xn = xn],

provided both conditional probabilities are well-defined, i.e P [X0 = x0, X1 = x1, . . . Xn =

xn] > 0.
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Definition 1.0.3. A continuous-time time-homogeneous Markov chain with rate matrix Λ

is a stochastic process {Xt}t≥0 satisfying the following conditions

1. Xt is a piecewise constant right-continuous process with left-limits, with discontinuities

at a discrete set {Tn}n≥1. (This means that Xt is a right-continuous process whose

left-hand limit exists at all points with probability 1.)

2. The sequence {XTn}n=0,1,... is a Markov chain with transition matrix P = (pij), where

pij =
λij
|λii| .

3. P
[
XTn+1 = j, Tn+1 − Tn ≤ y|(X0, T0), (X1, T1), . . . , (XTn = i, Tn)

]
= pij(1− eλiiy).

Definition 1.0.4. A general continuous-time Markov process is a process {Xt}t≥0 on a

probability space (Ω,F , P ) and taking values in a measurable space (S,S), satisfying

P [Xt ∈ A | Fs] = P [Xt ∈ A | Xs] (1.2)

for all A ∈ S and for each s < t.

Definition 1.0.5. A semi-Markov process is a process {Xt}t≥0 that satisfies the following

properties:

1. Xt is a piecewise constant rcll process with discontinuities at a discrete set {Tn}n≥1.

2. The transition probabilities satisfy

P
[
XTn+1 = j, Tn+1 − Tn ≤ y|(X0, T0), (X1, T1), . . . , (XTn , Tn)

]
=P

[
XTn+1 = j, Tn+1 − Tn ≤ y|XTn

]
. (1.3)

Definition 1.0.6. A C0-semigroup of operators {S(t)}t≥0 on a Banach space V is a map

S : R+ → BL(V ), such that

1. S0f = f ∀f ∈ V ,

2. St+s = St ◦ Ss ∀t, s ≥ 0, and

3. ‖Stf − f‖ → 0 as t ↓ 0, for all f ∈ V .
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Definition 1.0.7. Let {S(t)}t≥0 be a C0-semigroup of operators. The domain of the in-

finitesimal generator of the semigroup is defined as

D(A) :=

{
f ∈ V | lim

t→0

Stf − f
t

exists

}
and the infinitesimal generator of f is the operator A, defined such that

Af := lim
t→0

Stf − f
t

for all f ∈ D.
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Chapter 2

Age-dependent processes

2.1 Time-homogeneous Age-dependent processes

We consider a class of stochastic processes which is constructed as a strong solution of a

certain set of stochastic integral equations. Let (Ω,F , {Ft}t≥0, P ) be a filtered probability

space, and χ = {1, 2, . . . , k} ⊂ R be the state space. For i, j ∈ χ and i 6= j, define

λ : χ× χ× (0,∞)→ [0,∞) (2.1)

to be a measurable function with

sup
y∈(0,∞)

∑
j 6=i

λij(y) <∞. (2.2)

and

lim
y→∞

Λi(y) =∞, where Λi(y) =

∫ y

0

∑
j 6=i

λij(v) dv. (2.3)

The diagonal elements are defined as λii(y) := −
∑

j 6=i λij(y).

For i 6= j, y > 0, let Λij(y) be consecutive (w.r.t the lexicographical ordering) right-open,
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left-closed intervals of length λij(y). Define h : χ× R+ × R→ R as

h(i, y, z) =
∑
j 6=i∈χ

(j − i)1Λij(y)(z) (2.4)

and a function g : χ× R+ × R→ R as

g(i, y, z) = y
∑
j 6=i∈χ

1Λij(y)(z). (2.5)

.

We consider the following system of coupled stochastic integral equations in Xt and Yt:

Xt = X0 +

∫
(0,t]

∫
R
h(Xu−, Yu−, z)℘(du, dz) (2.6)

Yt = Y0 + t−
∫

(0,t]

∫
R
g(Xu−, Yu−, z)℘(du, dz), (2.7)

where h and g are defined by equations (2.4) and (2.5) respectively, ℘(du, dz) is a Poisson

random measure on R+×R with intensity du× dz, and {℘((0.t]× dz)}t≥0 is adapted to the

filtration {Ft}t≥0.

Theorem 2.1.1. There exists a unique strong solution to equations (2.6) and (2.7).

Proof. First, we note that (2.2) can be rewritten as:∑
j 6=i

λij(y) < c for all y ∈ [0,∞), (2.8)

for some c > 0. Thus, it follows that

⋃
y∈(0,T ]

[
{y} × [0,

∑
j 6=i

λij(y)]

]
⊂ [0, T ]× [0, c].

The interval [0, c] has finite Lebesgue measure c. Define D to be the set of all point masses

of the measure ℘(ω):

D := {s ∈ (0,∞)|℘(ω)({s} × [0, c]) = 1} for any fixed ω ∈ Ω.
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Figure 2.1: A sample of point masses of a Poisson random measure

An illustration of a sample of the points of a Poisson random measure with c = 10 and T = 1

is shown in Figure 2.1.

The set of all transition times of X(ω) is a subset of D. Since the measure of the set [0, c]

is finite, D is a discrete set (i.e, D has no limit point) with probability 1. We can thus

enumerate the set D as

D = {0, σ1, σ2, . . . , },

and it is easy to see that σ1, σ2, . . . are stopping times under the filtration Ft of the underlying

probability space. Since D is a discrete set,

lim
n→∞

σn =∞ a.s. (2.9)

We use an iterative argument for proving the existence and uniqueness of a strong solution

to (2.6) and (2.7). For a fixed ω, we construct a solution to this pair of equations on the

time interval [0, σ1]. Then we extend this solution to the time interval (σ1, σ2], and so on.

Since

℘(ω)([0, σ1)× [0, c]) = 0,
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for t ∈ [0, σ1),

Xt(ω) = X0 +

∫ t

0

∫
[0,c]

h(Xu−, Yu−, z)℘(ω)(du, dz)

= X0

and

Yt(ω) = Y0 + t−
∫ t

0

∫
[0,c]

g(Xu−, Yu−, z)℘(ω)(du, dz)

= Y0 + t.

At t = σ1,

Xσ1(ω) = X0 +

∫
[0,c]

h(X0, Y0 + σ1, z)℘(ω)({σ1} × dz),

Yσ1(ω) = Y0 + σ1 −
∫

[0,c]

g(X0, Y0 + σ1, z)℘(ω)({σ1} × dz).

Since we have been able to write down the solution in the time interval [0, σ1] explicitly, it

is obviously unique.

Now we consider the time interval (σ1, σ2]. We define the following quantities:

X̃(0) = X(σ1),

Ỹ (0) = Y (σ1),

℘̃(ds, dz) = ℘(σ1 + ds, dz),

σ̃n = σn+1 − σ1.

Then, D̃ = {s > 0|s+ σ1 ∈ D} = {σ̃n}n≥1. Now we consider the equations (2.6) and (2.7)

on [0, σ̃1], where X0, Y0 and ℘ are replaced by X̃(0), Ỹ (0) and ℘̃ respectively. If t ∈ [0, σ̃1),

then the solution X̃t is given by

X̃t = X̃0,

Ỹt = Ỹ0 + t.
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and for t = σ̃1, we have:

X̃σ̃1 = X̃0 +

∫
[0,c]

h(X̃0, Ỹ0 + σ̃1, z) ℘̃({σ̃1} × dz),

Ỹσ̃1 = Ỹ0 + σ̃1 −
∫

[0,c]

g(X̃0, Ỹ0 + σ̃1, z) ℘̃({σ̃1} × dz).

Therefore, the solution (X, Y ) of the original equations can be reconstructed from (X̃, Ỹ )

by the following relation

Xt =

X(t), t ∈ [0, σ1]

X̃(t− σ1), t ∈ (σ1, σ2]

Yt =

Y (t), t ∈ [0, σ1]

Ỹ (t− σ1), t ∈ (σ1, σ2].

This establishes the existence and uniqueness of the strong solution in the time interval

[0, σ2].

Continuing in this fashion, we can uniquely construct the solution in successive time intervals.

By (2.9), this sequence of intervals covers the entire positive real time-axis. Hence, the

solution is globally determined.

In the above proof, it is evident that the process Xt has almost surely piecewise constant

r.c.l.l paths. The points of discontinuity of Xt are called transition times.

Definition 2.1.1. Transition times are elements of an increasing sequence {Tn}n≥1 such

that {Tn : n ≥ 1} = {t > 0 : Xt 6= Xt−}. We set T0 := −Y0. We define the holding times

τn := Tn − Tn−1 for all n ≥ 1.

From the above definitions, it is clear that

Xu −Xu− =

∫
R
h(Xu−, Yu−, z)℘({u} × dz)

11



is non-zero if and only if u = Tn for some positive integer n. This also implies that

∫
R
g(Xu−, Yu−, z)℘({u} × dz) =

Yu−, if u = Tn for some n

0, otherwise.

Hence, by induction, we obtain, for any integer n ≥ 0,

Yt = Y0 + t−
n∑
r=1

YTr− for t ∈ [Tn, Tn+1).

Thus, Yt = 0 iff t = Tn for some n ∈ N, and YTn− = Tn−Tn−1 for all n ∈ N. This observation

motivates us to define the following:

Definition 2.1.2. Let (Xt, Yt) be the unique strong solution to equations (2.6) and (2.7).

The process Xt is then called an “age-dependent process” and Yt is called the “holding time

process” corresponding to Xt.

Theorem 2.1.2. Let (Xt, Yt) be the unique strong solution to equations (2.6) and (2.7). The

process Zt := (Xt, Yt) is a Markov process.

Proof. From equations (2.6) and (2.7), we get, for t < T ,

XT = X0 +

∫ T

0

∫
R
h(Xu−, Yu−, z)℘(du, dz)

= Xt +

∫ T

t

∫
R
h(Xu−, Yu−, z)℘(du, dz)

and

YT = Y0 + T −
∫ T

0

∫
R
g(Xu−, Yu−, z)℘(du, dz)

= Yt + (T − t)−
∫ T

t

∫
R
g(Xu−, Yu−, z)℘(du, dz).

From the second property of ℘, as in Definition 1.0.1 and from the above expressions, it is

thus clear that Zt is a Markov process.

It is also easy to see that Zt is strongly Markov.

Theorem 2.1.3. Let Xt be an age-dependent process. Then, Xt is a semi-Markov process.
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Proof. We have already seen in the proof of Theorem 2.1.1, that Xt is a piecewise constant

right-continuous process, and the left-hand limits exist. In other words, Xt is a càdlàg

process.

Next, we show that

P [XTn+1 = j, Tn+1 − Tn ≤ y | (XT0 , T0), (XT1 , T1), . . . , (XTn , Tn)].

=P [XTn+1 = j, Tn+1 − Tn ≤ y | XTn ]. (2.10)

We note that the LHS of (2.10) can be written as

P (XTn+1 = j | (XT0 , T0), (XT1 , T1), . . . , (XTn , Tn), {Tn+1 − Tn ≤ y})×
P [Tn+1 − Tn ≤ y | (XT0 , T0), (XT1 , T1), . . . , (XTn , Tn)] (2.11)

From equation (2.6),

XTn+1 = XTn +

∫
R
h(XTn , Tn+1 − Tn, z)℘({Tn + (Tn+1 − Tn)} × dz),

since YTn+1− = Tn+1 − Tn and∫
(Tn,Tn+1)

∫
R
h(Xu−, Yu−, z)℘(du, dz) = 0.

Again, since ℘ is a Poisson random measure, for any Borel set B ⊂ (0,∞)×R, ℘((Tn, 0)+B)

is independent of FTn . Therefore,

P (XTn+1 = j | (XT0 , T0), (XT1 , T1), . . . , (XTn , Tn), {Tn+1 − Tn ≤ y})

=P

(∫
R
h(XTn , Tn+1 − Tn, z)℘({Tn + (Tn+1 − Tn)} × dz) = j −XTn

∣∣∣
(XT0 , T0), (XT1 , T1), . . . , (XTn , Tn), {Tn+1 − Tn ≤ y}

)
=P

(∫
R
h(XTn , Tn+1 − Tn, z)℘({Tn + (Tn+1 − Tn)} × dz) = j −XTn

∣∣∣XTn , Tn, {Tn+1 − Tn ≤ y}
)

=P
(
XTn+1 = j | XTn , {Tn+1 − Tn ≤ y}

)
, (2.12)
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since the distribution of ℘(B) depends only on the Lebesgue measure of B and thus is

invariant under the translation of B.

For every ω ∈ Ω, equation (2.7) implies that

∫
(Tn,Tn+t]

∫
R
g(XTn , u− Tn, z)℘(du, dz) =

0, for t < Tn+1 − Tn
Tn+1 − Tn, for t = Tn+1 − Tn.

Hence, Tn+1 − Tn is the first non-zero value of the following map

t 7→
∫

(0,t]

∫
R
g(XTn , u, z)℘(Tn + du, dz).

Again, since ℘(Tn + du, dz) is independent of FTn and Tn, we obtain, from the above,

P [Tn+1 − Tn ≤ y | (XT0 , T0), (XT1 , T1), . . . , (XTn , Tn)]

=P [Tn+1 − Tn ≤ y | XTn ]. (2.13)

Thus, using (2.11), (2.12) and (2.13), the LHS of (2.10) is equal to

P (XTn+1 = j | XTn , {Tn+1 − Tn ≤ y})× P [Tn+1 − Tn ≤ y | XTn ]

=P (XTn+1 , Tn+1 − Tn ≤ y | XTn)

=RHS of equation (2.10).

Hence, Xt is a semi-Markov process.

We define a function F : [0,∞) → [0, 1] as F (y|i) := 1 − e−Λi(y). From (2.3), Λi(y) is an

absolutely continuous function of y. Thus, F (y|i) is differentiable almost everywhere. Let

f(y|i) := d
dy
F (y|i). We also define pij(y), such that

pij(y) :=


λij(y)

−λii(y)
1(0,∞)(−λii(y)), j 6= i

1{0}(−λii(y)), j = i.

(2.14)

This ensures that [pij(y)] is a probability matrix for all y.

Proposition 2.1.4. 1. The function F is the conditional c.d.f of the holding time of the

14



age-dependent process Xt.

2. pij(y) = P [XTn+1 = j|XTn = i, YTn+1− = y].

Proof. The conditional c.d.f of the holding time after the nth transition, given the nth

state, is

P [τn+1 ≤ y|XTn = i]

= 1− P [{No transition in (Tn, Tn + y]}|XTn = i]

= 1− P [℘{(u, z) ∈ R+ × R+|z ∈
⋃
j 6=i

Λij(u)} = 0 | XTn = i], where u = s+ Tn and s ∈ (0, y)

= 1− e−Λi(y)

= F (y|i).

Also, we note that, for j 6= i, P [XTn+1 = j|XTn = i, YTn+1− = y] is the probability of the

event that a Poisson point mass lies somewhere in {τn + y} × Λij(y), given no transition of

Xt occurs within time y. This probability is

|Λij(y)|
|
⋃
j 6=i Λij(y)|

1(0,∞)(|
⋃
j 6=i

Λij(y)|)

=
λij(y)

−λii(y)
1(0,∞)(−λii(y))

=pij(y).

We note that under the assumptions (2.2) and (2.3), F (y|i) < 1 for all y > 0 and limy→∞ F (y|i) =

1. Thus, the holding times are unbounded but finite almost surely.

Proposition 2.1.5. We have, for y > 0,

pij(y)
f(y|i)

1− F (y|i)
=

λij(y), for i 6= j,

0, for i = j.

Proof.
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F (y|i) := 1− e−Λi(y).

Hence, differentiating w.r.t y, we have

f(y|i) = −λii(y)e−Λi(y)

f(y|i)
1− F (y|i)

= −λii(y). (2.15)

Hence, for i 6= j,

pij(y)
f(y|i)

1− F (y|i)
=− λii(y)× λij(y)

−λii(y)
1(0,∞)(−λii(y))

=λij(y),

since if λii(y) = 0, then for each j( 6= i), λij(y) = 0. Again, if λii(y) = 0, then pii(y) = 0 and

if if λii(y) = 0, then f(y|i)
1−F (y|i) = 0 from (2.15). Thus

pii(y)
f(y|i)

1− F (y|i)
=0

for all y > 0.

We can also easily verify, from (2.14), that
∑

j∈χ pij(y) = 1.

Theorem 2.1.6. Let Xt be an age-dependent process as described in equations (2.6) and

(2.7). Then, its kernel is given by (for y > 0, i 6= j)

Qij(y) := P [XTn+1 = j, YTn+1− ≤ y|XTn = i] =

∫ y

0

e−Λi(s)λij(s) ds.
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Proof. We note that

Qij(y) : = P [XTn+1 = j, YTn+1− ≤ y|XTn = i]

= E[P (XTn+1 = j, YTn+1− ≤ y|XTn = i, YTn+1−)|XTn = i]

=

∫ ∞
0

1[0,y](s)P [XTn+1 = j|XTn = i, YTn+1− = s]f(s|i) ds

=

∫ y

0

pij(s)f(s|i) ds

=

∫ y

0

(1− F (s|i))λij(s) ds

=

∫ y

0

e−Λi(s)λij(s) ds.

It seems that in the literature, for the first time, this class of processes appears as “Age-

dependent processes” in [10]. In [19], the class of semi-Markov processes is studied after di-

viding it into two categories, namely type I and type II. We recognise that the age-dependent

process being discussed in this chapter belongs to type II. Here, we present the hierarchy of

some important classes of pure jump processes in continuous time.

Pure jump processes

∪
Time-homogeneous case

∪
Semi-Markov processes

∪
Age-dependent case

∪
Age-independent case

∪
Markov processes
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2.2 Time-inhomogeneous Age-dependent processes

It is interesting to note that the construction of age-dependent processes in Section 2.1 can

easily be generalised to construct a time-inhomogeneous non-Markov pure jump process. To

this end we consider a Poisson random measure N has the form

N(dt, dz) := ℘(dη(t), dz),

where η is an increasing differentiable function with η(0) = 0.

This random measure has intensity η′(t) dt dz, where η′, under the assumption, is a contin-

uous function from [0,∞) to (0,∞). Thus,

E[N(A)] =

∫
A

η(t)dt dz

for any set A ∈ F . We consider a new pair of coupled stochastic integral equations in

(X̃t, Ỹt):

X̃t = X̃0 +

∫ t

0

∫
R
h(X̃u− , Ỹu− , z)N(du, dz) (2.16)

Ỹt = Ỹ0 + t−
∫ t

0

∫
R
g(X̃u− , Ỹu− , z)N(du, dz), (2.17)

where g and h are defined by equations (2.5) and (2.4), respectively.

Theorem 2.2.1. There exists a unique solution (X̃t, Ỹt) to equations (2.16) and (2.17).

Proof. The proof can be constructed in a similar way as that of Theorem 2.1.1.

Theorem 2.2.2. The process Z̃t := (X̃t, Ỹt) is a Markov process.

Proof.
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X̃T = X̃0 +

∫ T

0

∫
R
h(X̃u− , Ỹu− , z)N(du, dz)

= X̃t +

∫ T

t

∫
R
h(X̃u− , Ỹu− , z)N(du, dz)

and

ỸT = Ỹ0 + T −
∫ T

0

∫
R
g(X̃u− , Ỹu− , z)N(du, dz)

= Ỹt + (T − t)−
∫ T

t

∫
R
g(X̃u− , Ỹu− , z)N(du, dz).

Theorem 2.2.3. Z̃t := (X̃t, Ỹt) is a càdlàg process.

Proof. This follows from the fact that η′ is bounded on compact sets and λij(y) being

bounded from equation (2.2).

Theorem 2.2.4. The sequence {X̃Tn}n is a Markov chain.

Proof.

P [X̃Tn+1 = j|X̃T0 , X̃T1 , . . . , X̃Tn = i]

=E[P (X̃Tn+1 = j|FTn , Tn+1, X̃Tn)|X̃T0 , X̃T1 , . . . , X̃Tn = i]

=E(P [N({Tn+1} × Λij(τn+1)) 6= 0|N({Tn+1} × Λik(τn+1)) 6= 0 for some k]|X̃T0 , X̃T1 , . . . , X̃Tn = i)

=E

[
λij(Tn+1 − Tn)∑
k 6=j λik(Tn+1 − Tn)

∣∣∣∣X̃T0 , X̃T1 , . . . , X̃Tn = i, ỸTn = 0

]

=E

[
λij(ỸTn+1−)∑
k 6=j λik(ỸTn+1−)

∣∣∣∣X̃Tn = i

]
,

since the conditional distribution of ỸTn+1− given FTn is the same as that given X̃Tn . Thus

the conditional probability on the LHS depends entirely on X̃Tn = i.

However, the process X̃t is not a semi-Markov process. This is because the transition prob-
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ability can be written as

P

[ ⋃
0<s′≤y

{
N

( ⋃
0<s<s′

{Tn + s} ×
⋃
k 6=i

Λik(s)

)
= 0

}⋂
{N ({Tn + s′} × Λij(s

′)) = 1}

∣∣∣∣∣FTn , X̃Tn = i

]

=P

[ ⋃
0<s′≤y

{
N

( ⋃
0<s<s′

{Tn + s} ×
⋃
k 6=i

Λik(s)

)
= 0

}⋂
{N ({Tn + s′} × Λij(s

′)) = 1}

∣∣∣∣∣X̃Tn = i, Tn

]
.

However, the Poisson random measure N is not translation-invariant with respect to time,

unless η′ is a constant. Hence, no further simplification is possible in general.

2.3 The Infinitesimal Generator

We will derive an expression for the infinitesimal generator of an augmented age-dependent

process. Let (Xt, Yt) be an augmented age-dependent process. Let φ : χ × [0,∞) be a

differentiable function. Then, by Itō’s formula,

dφ(Xt, Yt) =
∂φ

∂y
(Xt, Yt) dY

c
t + φ(Xt, Yt)− φ(Xt−, Yt−)

=
∂φ

∂y
(Xt, Yt) dt

+

∫
R

[φ(Xt− + h(Xt−, Yt−, z), Yt− − g(Xt−, Yt−, z))− φ(Xt−, Yt−)] (℘̂(dt, dz) + dt dz),

(2.18)

where ℘̂(dt, dz) = ℘(dt, dz)− dt dz is the compensated Poisson random measure, with mean

zero, independent of X0. The process obtained by integrating w.r.t ℘̂ is a martingale, Mt.

Hence, we can write

dφ(Xt, Yt) =
∂φ

∂y
(Xt, Yt) dt+

∑
j 6=Xt−

[φ(j, 0)− φ(Xt−, Yt−)]λXt−j(Yt−) dt+ dMt. (2.19)

Thus, the infinitesimal generator, L, of the augmented age-dependent process is given by

the following expression:

Lφ(i, y) =
∂φ

∂y
(i, y) +

∑
j 6=i

[φ(j, 0)− φ(i, y)]λij(y). (2.20)
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2.4 An example

Here we present some example of age-dependent processes with finitely many states. We let

the (age-dependent) transition rate matrix be given by

Λ(y) = Λ(1) + yΛ(2), (2.21)

where Λ(1) and Λ(2) are two rate matrices of order k. If, in a particular case, Λ(2) = 0, the

trivial matrix, then Λ(y) = Λ(1) for all y and the resulting process becomes Markov. Whereas,

the resulting process becomes an age-independent semi-Markov process when Λ(1) = cΛ(2)

for some c ∈ R+. But of course, in general, Λ(y) prescribes an age-dependent process.

The transition probabilities for this process are given by (i 6= j)

pij(y) =
λ

(1)
ij + yλ

(2)
ij

−λ(1)
ii − yλ

(2)
ii

, (2.22)

which depend explicitly on y. Hence, the stochastic process with such a distribution of

transition times is neither a continuous-time Markov process nor an age-independent semi-

Markov process.

For inference purposes, one may consider a parametric family Λ(y) given by

Λ(y) = Λ(1) + Λ(2)y + Λ(3)y2 + · · ·+ Λ(n+1)yn, y > 0,

where each Λ(i) is a rate matrix of order k and taken as a parameter. In other words,

one may estimate the transition rate function with polynomials of fixed degree. In such a

consideration, the number of undetermined independent parameters would be (n+1)(k2−k).

We emphasise that this family includes all Markov processes with k states and all age-

independent semi-Markov processes with k states whose hazard rates are polynomials of

degree not more than n. Of course one may consider

Λ(y) =
n+1∑
i=1

Λ(i)θi(y),

where {θi}n+1
i=1 is any complete orthonormal basis of L2([0,∞)).
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2.5 Motivation for studying semi-Markov modulated

markets

In a financial market, there are numerous assets whose dynamics can be modelled by stochas-

tic differential equations (SDEs). The drift and volatility parameters appear to be non con-

stant when verified by empirical data. We aim, in this project, to consider a market model

in which these parameters are driven by a class of pure jump processes. In the literature

available on this subject, such models are referred to as regime-switching models. Although

Markov switching has been better studied in the literature, we, here, aim to consider a larger

class of regime switching, viz. “age-dependent processes”. In this section, we further clarify

the importance of such considerations.

The difference between markets with Markov-switching and those with semi-Markov-switching

is more than superficial. To illustrate the greater applicability of the semi-Markov or age-

dependent models, consider a market having only two possible regimes modulated by a

semi-Markov process with two states 1 and 2, say. Let Fi and mi denote the c.d.f. and

mean of holding time at regime i respectively for each i. Further assume that there is a

δ > 0 such that F1(δ) = F2(δ) = 0. Now consider a event A in which a transition takes

place at T − δ, where T is the expiry. Then of course there would be no more transition

before expiry with probability 1. Thus all the no-arbitrage prices of European call option at

time T − δ are equal to the price suggested by the Black-Scholes-Merton model with fixed

parameters of that regime. On the other hand if the regimes of this real market should

be modelled by a Markov process whose holding times have means m1 and m2 respectively,

then the q-matrix would be

(
− 1
m1

1
m1

1
m2

− 1
m2

)
. It is evident that under this Markov switching

model the conditional probability of further transition before the expiry, given the event A,

is nonzero. Hence, the locally risk minimizing price of European call option at time T − δ
should be different from Black-Scholes-Merton price with fixed parameters of that regime.

Such a model may, in some cases, be a better approximation to the real markets than the

Markov-switching model. This provides the motivation for studying the pricing problem in

a semi-Markov modulated market.
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Chapter 3

A non-local parabolic PDE

We consider a partial differential equation that arises in the derivative pricing problem in

a market with semi-Markovian regime switching. This is a generalization of the Black-

Scholes PDE. Market parameters are seldom constant in reality. Instead, the markets go

through various phases or “regimes”, in which each market parameter is more or less con-

stant. We often hear of “bull” markets, “flat” markets and “bear” markets. Also known

are low/high interest rate regimes and tight liquidity situations, etc. These can be better

modelled by regime-switching models, such as those analysed in [3], [4], [5], [6], [7], [12], [13],

[15] and [17]. Various models of regime-switching have been studied. Work has been done

on the pricing problem in a Markov-modulated market, for example, in [2]. However, the

memoryless property of Markov processes imposes certain restrictions on the model. A semi-

Markov regime-switching model allows for greater flexibility and accommodates the impact

of business cycles which exhibit duration dependence. In this chapter, we consider the PDE

arising from an age-dependent regime-switching model, and show that this PDE is, in fact,

equivalent to an equation known as a Volterra equation of the second kind. And thus, we

establish the existence of a unique classical solution in an appropriate class of functions. The

connection between the PDE and the pricing problem is deferred to the next chapter.

Let X := {1, 2, . . . , k} be a finite set. We define the following functions

r : χ→ (0,∞), µ : (0,∞)× χ→ (0,∞), σ : (0,∞)× χ→ (0,∞). (3.1)

with r(i) ≥ 0, σ(t, i) > 0 for all i ∈ χ, t ∈ [0,∞). We consider a differentiable function
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λ : X × X × [0,∞)→ [0,∞) satisfying equation (2.3), and λii(y) := −
∑

j 6=i λij(y).

The system of differential equations, under consideration is given by

∂

∂t
ϕ(t, s, i, y) +

∂

∂y
ϕ(t, s, i, y) + r(i)s

∂

∂s
ϕ(t, s, i, y) +

1

2
σ2(t, i)s2 ∂

2

∂s2
ϕ(t, s, i, y)

+
∑
j 6=i

λij(y)
(
ϕ(t, s, j, 0)− ϕ(t, s, i, y)

)
= r(i) ϕ(t, s, i, y), (3.2)

defined on

D := {(t, s, i, y) ∈ (0, T )× (0,∞)×X × (0, T ) | y ∈ (0, t)}, (3.3)

and with conditions

ϕ(T, s, i, y) =K(s); s ∈ (0,∞); 0 ≤ y ≤ T ; i = 1, 2, . . . , k (3.4)

where K is a non-negative function of at most linear growth. This assumption on K(s)

is justified since we shall be considering in the next chapters defaultable bonds, which can

be written as contingent claims satisfying this condition. Some of the special cases of this

equation appear in [6], [17], [15], [5], [9] and [3] for pricing a European contingent claim

under certain regime switching market assumptions. Owing to the simplicity of the special

case, generally authors refer to some standard results in the theory of parabolic PDE for

existence and uniqueness issues. But in its general form which arises in this chapter, no such

ready reference is available. So, we produce a self contained proof using Banach fixed point

theorem. We accomplish this in two steps. First we consider a Volterra integral equation

of second kind and establish existence and uniqueness result of that. Then we show in a

couple of propositions, that the PDE and the IE problems are “equivalent”. Thus we obtain

the existence and uniqueness of the PDE in Theorem 3.2.2. Some further properties, viz.

the positivity and growth property are also obtained. It is also shown here that the partial

derivative of the solution constitutes the optimal hedging strategy of the corresponding claim.

We further show that the partial derivative of ϕ, can be written as an integration involving

ϕ which enables one to develop a robust numerical scheme to compute the Greeks. This

study paves the way for addressing many other interesting problems involving this new set

of PDEs.
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3.1 Existence

Consider the following initial value problem which is known as B-S-M PDE for each i

∂ρi(t, s)

∂t
+ r(i)s

∂ρi(t, s)

∂s
+

1

2
σ2(t, i)s2∂

2ρi(t, s)

∂s2
= r(i)ρi(t, s) (3.5)

for (t, s) ∈ (0, T ) × (0,∞) and ρi(T, s) = K(s). Here, K is assumed to be a non-negative

function of at most linear growth. This has a unique classical solution with at most linear

growth (see [16, pg. 202]).

We define a function L : [0,∞)× (0,∞)× (0,∞)× χ× (0,∞), where

L(t, x, s, i, v) :=
ln
(
x
s

)
−
∫ t+v
t

(
r(i)− σ2(u,i)

2

)
du√∫ t+v

t
σ2(u, i) du

. (3.6)

We also define a function

α(x; t, s, i, v) :=
e−

1
2
L2

√
2πx

√∫ t+v
t

σ2(u, i) du
. (3.7)

For notational convenience, we let σ̄ denote the quantity
√∫ t+v

t
σ2(u, i) du.

Proposition 3.1.1. The function α is a log-normal probability density function.

Proof. We at once recognise α(x; t, s, i, v) to be a log-normal density function with the

mean of the underlying normal distribution being ln(s) +
∫ t+v
t

(
r(i)− σ2(u,i)

2

)
du and the

corresponding variance being
∫ t+v
t

σ2(u, i) du.

Proposition 3.1.2.

L
∂L

∂v
+ r(i)

L

σ̄
+
σ2(t+ v, i)L2

2σ̄2
− σ2(t+ v, i)L

2σ̄
= 0. (3.8)

Proof. We differentiate L(t, x, s, i, v) w.r.t v and apply Leibnitz’s rule to get the result.

Set B :=
{
ϕ : D̄ → [0,∞), continuous | ‖ϕ‖ := supD̄ |

ϕ(t,s,i,y)
1+s

|<∞
}

.
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Lemma 3.1.3. Consider the following integral equation

ϕ(t, s, i, y) =
1− F (T − t+ y | i)

1− F (y | i)
ρi(t, s) +

∫ T−t

0

e−r(i)v
f(y + v | i)
1− F (y | i)

×∑
j 6=i

pij(y + v)

∫ ∞
0

ϕ(t+ v, x, j, 0)α(x; t, s, i, v) dx dv (3.9)

with lim
s↓0

ϕ(t, s, i, y) = 0 ∀t ∈ [0, T ], i ∈ χ, y ∈ [0, t]. (3.10)

Then (i) the problem (3.9)-(3.10) has unique solution in B, (ii) the solution of the integral

equation is in C1,2,1(D), and (iii) ϕ(t, s, i, y) is non-negative.

Proof. (i) We first note that a solution of (3.9)-(3.10) is a fixed point of the operator A

and vice versa, where

Aϕ(t, s, i, y) :=
1− F (T − t+ y | i)

1− F (y | i)
ρi(t, s) +

∫ T−t

0

e−r(i)v
f(y + v | i)
1− F (y | i)

∑
j 6=i

pij(y + v)∫ ∞
0

ϕ(t+ v, x, j, 0)α(x; t, s, i, v) dx dv.

It is easy to check that for each ϕ ∈ B, Aϕ : D̄ → (0,∞) is continuous. The continuity of

Aϕ follows from that of ρi.

To prove that A is a contraction in B, we need to show that for ϕ1, ϕ2 ∈ B, ||Aϕ1−Aϕ2|| ≤
J ||ϕ1 − ϕ2|| where J < 1. In order to show existence and uniqueness in the prescribed

class, it is sufficient to show that A is a contraction in B. The Banach fixed point theorem

ensures existence and uniqueness of the fixed point in B. To show that for ϕ1, ϕ2 ∈ B,
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||Aϕ1 − Aϕ2|| ≤ J ||ϕ1 − ϕ2|| where J < 1, we compute

‖Aϕ1 − Aϕ2‖ = sup
D̄

∣∣∣∣Aϕ1 − Aϕ2

1 + s

∣∣∣∣
= sup
D̄

∣∣∣∣ ∫ T−t

0

e−r(i)v
f(y + v | i)
1− F (y | i)

∑
j 6=i

pij(y + v)×∫ ∞
0

(ϕ1 − ϕ2)(t+ v, x, j, 0)
α(x; t, s, i, v)

1 + s
dxdv

∣∣∣∣
≤ sup
D̄

∣∣∣∣ ∫ T−t

0

e−r(i)v
f(y + v | i)
1− F (y | i)

∑
j 6=i

pij(y + v)

∫ ∞
0

(1 + x)×

sup
(t′,x′,j′,y′)∈D̄

∣∣∣∣ϕ1(t′, x′, j′, y′)− ϕ2(t′, x′, j′, y′)

1 + x′

∣∣∣∣α(x; t, s, i, v)

1 + s
dxdv

∣∣∣∣
= sup
D̄

∣∣∣∣ ∫ T−t

0

e−r(i)v
f(y + v | i)
1− F (y | i)

‖ϕ1 − ϕ2‖
a(t, s)

1 + s
dv

∣∣∣∣
where,

a(t, x, s, i, v) :=

∫ ∞
0

(1 + x)α(x; t, s, i, v)dx

=1 + exp

{
ln s+ r(i)−

∫ t+v

t

σ2(u, i)

2
du+

∫ t+v

t

σ2(u, i)

2
du

}
=1 + ser(i)v.

Thus, ‖Aϕ1 − Aϕ2‖ ≤ J‖ϕ1 − ϕ2‖ where,

J = sup
D̄

∣∣∣∣ ∫ T−t

0

e−r(i)v
f(y + v | i)
1− F (y | i)

1 + ser(i)v

1 + s
dv

∣∣∣∣
≤ sup

D̄

(
1

1− F (y | i)

∫ T−t

0

f(y + v|i)dv
)

= sup
D̄

(
F (y + T − t | i)− F (y|i)

1− F (y|i)

)
<

1− F (y|i)
1− F (y|i)

= 1

using r(i) ≥ 0 and the properties of λ and F .

(ii) Using equation(2.3) and smoothness of ρi for each i, the first term on the right hand
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side is in C1,2,1(D). Under the assumptions on λ and F , the second term is continuous

differentiable in y and twice continuously differentiable in s, follows immediately. The con-

tinuous differentiability in t follows from the fact that the term ϕ(t+ v, x, j, 0) is multiplied

by C1((0,∞)) functions in v and then integrated over v ∈ (0, T − t). Hence ϕ(t, s, i, y) is in

C1,2,1(D).

(iii) We have shown that A : B → B is a contraction. It is evident that equation (3.5)

has a non-negative solution. Since all coefficients of the integral equation (3.9)-(3.10) are

non-negative, Aϕ ≥ 0 for ϕ ≥ 0. Now let V := {φ ∈ B | φ ≥ 0}. Then, V is a closed

subset of B. Consider A : V → V , and let v0 ∈ V . Define a sequence {vn}n≥0, such that

vn := Anv0. Then vn ∈ V . We note that

‖vm+p − vm‖ =‖(Ap − I)Amv0‖
≤‖(Ap − I)‖.‖A‖m.‖v0‖.

We have shown that ‖Aϕ1 − Aϕ2‖ ≤ J‖ϕ1 − ϕ2‖, where J < 1. Hence ‖A‖ < 1, which

means ‖vm+p− vm‖ → 0 as m→∞. Thus, {vn}n≥0 is a Cauchy sequence. Since V is closed,

vn → v, where v ∈ V . The continuity of A implies that Avn → Av. Also, Avn = vn+1 → v.

This means Av = v, i.e. v is a fixed point of A.

We have already shown that A has a fixed point in B. This fixed point is v, which is an

element of V . In other words, v is non-negative. Thus, we have established that the fixed

point of A in B is non-negative, i.e. ϕ is non-negative.

Lemma 3.1.4. Let ϕ be the solution of equations (3.9)-(3.10). Then

lim
u↓0

∫ ∞
0

ϕ(t+ u, x, j, 0)α(x; t, s, i, u) dx = ϕ(t, s, j, 0).

Proof. Since ϕ(t, · , i, y) is of at most linear growth, there exist positive constants k1 and

k2 such that ϕ(t, s, i, y) ≤ k1 + k2s for all s. Let {ul}l∈N be a decreasing sequence on (0, 1)

such that ul → 0. Let αl(x) := α(x; t, s, i, ul). Since αl is a lognormal density function for

each l, the sequence {αl}l∈N is uniformly integrable, that is

lim
k→∞

sup
l

∫ ∞
k

xαl(x) dx = 0.
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We fix t and s. Thus, for any ε > 0, we can find K > 0 such that
∫∞
K

(k1 + k2x)αl(x) dx < ε

for all l ∈ N. Now let {ϕn}n∈N be a non-negative increasing sequence of step functions in x

converging to ϕ pointwise. Then, given ε > 0 and K, we can find N such that for all n ≥ N ,∫ ∞
0

(ϕ(t+ ul, x, j, 0)− ϕn(t+ ul, x, j, 0))αl(x) dx

=

∫ K

0

(ϕ(t+ ul, x, j, 0)− ϕn(t+ ul, x, j, 0))αl(x) dx+

∫ ∞
K

(ϕ(t+ ul, x, j, 0)− ϕn(t+ ul, x, j, 0))αl(x) dx

≤εαl([0, K]) +

∫ ∞
K

(k1 + k2x)αl(x) dx+

∫ K

0

[ϕ(t+ ul, x, j, 0)− ϕ(t, x, j, 0)]αl(x) dx

<2ε+

∫ K

0

[ϕ(t+ ul, x, j, 0)− ϕ(t, x, j, 0)]αl(x) dx,

where αl(A) :=
∫
A
αl(x) dx. Also,

∫ ∞
0

(ϕ(t+ ul, x, j, 0)− ϕn(t+ ul, x, j, 0))αl(x) dx =

∫ ∞
0

ϕ(x)αl(x) dx−
Kn∑
i=1

ϕn(xi)αl(Ii),

where ϕn(x) =
∑Kn

i=1 ai1Ii(x) and xi ∈ Ii. As l→∞,

αl(Ii)→

0, if s /∈ Ii,

1, if s ∈ Ii.

Hence, for each n,

lim
l→∞

∫ ∞
0

ϕnαl(x) dx = ϕn(s).

Thus, for n ≥ N(ε,K),

0 ≤ lim
l→∞

∫ ∞
0

ϕ(t+ ul, x, j, 0)αl(x) dx− ϕn(s)

≤2ε+ lim
l→∞

∫ K

0

[ϕ(t+ ul, x, j, 0)− ϕ(t, x, j, 0)]αl(x) dx

=2ε,

since ϕ(· , s, i, y) is smooth. Thus, limn→∞ ϕn(t, s, j, 0) = liml→∞
∫∞

0
ϕ(t+ul, x, j, 0)αl(x) dx.

Proposition 3.1.5. The unique solution of (3.9)-(3.10) also solves the initial value problem
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(3.2)-(3.4).

Proof. Let ϕ be the solutions of (3.9)-(3.10). Thus using (3.9), ϕ(T, s, i, y) = ρi(T, s) =

K(s), i.e., the condition (3.4) holds. From Lemma 3.1.3 (ii), ϕ is in C1,2,1(D). Hence we can

perform the partial differentiations w.r.t. t and y on the both sides of (3.9). We obtain

∂

∂t
ϕ(t, s, i, y) =

f(T − t+ y|i)
1− F (y | i)

ρi(t, s) +
1− F (T − t+ y | i)

(1− F (y | i))
∂ρi(t, s)

∂t
− e−r(i)(T−t)f(y + T − t | i)

1− F (y | i)
×

∑
j 6=i

pij(y + T − t)
∫ ∞

0

ϕ(T, x, j, 0)α(x; t, s, i, T − t)dx+

∫ T−t

0

e−r(i)v
f(y + v | i)
1− F (y | i)

×

∑
j 6=i

pij(y + v)

∫ ∞
0

∂ϕ

∂t
(t+ v, x, j, 0)α(x; t, s, i, v)dxdv

+

∫ T−t

0

e−r(i)v
f(y + v | i)
1− F (y | i)

×
∑
j 6=i

pij(y + v)×∫ ∞
0

ϕ(t+ v, x, j, 0)α(x; t, s, i, v)

(
σ2(t+ v, i)− σ2(t, i)

2

)(
L2

σ̄2
− L

σ̄
− 1

σ̄2

)
dx dv

(3.11)

by differentiating w.r.t. t under the sign of integral. Now, before we take the partial deriva-

tive w.r.t. y on both sides of (3.9), we first simplify the right-hand side. Let qij(y + v) :=

f(y + v | i)pij(y + v). Then

∂

∂y
ϕ(t, s, i, y) =− f(T − t+ y | i)

1− F (y | i)
ρi(t, s) +

1− F (T − t+ y | i)
(1− F (y | i))2 f(y|i)ρi(t, s)

+
∂

∂y

∫ T−t

0

e−r(i)v
qij(y + v)

1− F (y | i)

∫ ∞
0

ϕ(t+ v, x, j, 0)α(x; t, s, i, v) dx dv.

The last term can be simplified further.

∂

∂y

∫ T−t

0

e−r(i)v
f(y + v | i)
1− F (y | i)

∑
j 6=i

pij(y + v)

∫ ∞
0

ϕ(t+ v, x, j, 0)α(x; t, s, i, v) dx dv

=
∑
j 6=i

∂

∂y

[
1

1− F (y | i)

∫ T−t

0

(
e−r(i)v

∫ ∞
0

ϕ(t+ v, x, j, 0)α(x; t, s, i, v) dx

)
qij(y + v) dv

]

Let bij(v; t, x, s) := e−r(i)v
∫∞

0
ϕ(t+ v, x, j, 0)α(x; t, s, i, v) dx. Also let q̃ij(y) :=

∫ y
0
qij(w) dw,
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so that q̃′ij(y) = qij(y). Then, using the integration by parts formula, we get

∫ T−t

0

bij(v; t, x, s)qij(y + v) dv = [bij(v; t, x, s)q̃ij(y + v)]T−t0

−
∫ T−t

0

∂bij(v; t, x, s)

∂v
q̃ij(y + v) dv.

Now,

bij(T − t; t, x, s)q̃ij(y + T − t) =e−r(i)(T−t)q̃ij(y + T − t)
∫ ∞

0

ϕ(T, x, j, 0)α(x; t, s, i, T − t) dx

while

bij(0; t, x, s)q̃ij(y) =q̃ij(y)

[
lim
u↓0

∫ ∞
0

ϕ(t+ u, x, j, 0)α(x; t, s, i, u) dx

]
=q̃ij(y)ϕ(t, s, j, 0)

by lemma 3.1.4.

Hence, the partial derivative of ϕ w.r.t y is

∂

∂y
ϕ(t, s, i, y) =− f(T − t+ y | i)

1− F (y | i)
ρi(t, s) +

1− F (T − t+ y | i)
(1− F (y | i))2 f(y|i)ρi(t, s) +

f(y|i)
1− F (y | i)

×(
ϕ(t, s, i, y)− 1− F (T − t+ y | i)

1− F (y | i)
ρi(t, s)

)
+ e−r(i)(T−t)

f(T − t+ y | i)
1− F (y | i)

×∑
j 6=i

pij(y + T − t)
∫ ∞

0

ϕ(T, x, j, 0)α(x; t, s, i, T − t) dx

− f(y | i)
1− F (y | i)

∑
j 6=i

pij(y)ϕ(t, s, j, 0)

−
∫ T−t

0

e−r(i)v
f(y + v | i)
1− F (y | i)

∫ ∞
0

α(x; t, s, i, v)

{
− r(i)

∑
j 6=i

pij(y + v)ϕ(t+ v, x, j, 0)

−
∑

pij(y + v)ϕ(t+ v, x, j, 0)

(
L
∂L

∂v
+
σ2(t+ v, i)

2σ̄2

)
+
∑
j 6=i

pij(y + v)
∂ϕ(t+ v, x, j, 0)

∂t

}
dx dv. (3.12)
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By adding equations (3.11) and (3.12), we get

∂

∂t
ϕ(t, s, i, y) +

∂

∂y
ϕ(t, s, i, y)

=
1− F (T − t+ y | i)

1− F (y | i)
∂ρi(t, s)

∂t
+

f(y|i)
1− F (y | i)

(
ϕ(t, s, i, y)−

∑
j 6=i

pij(y)ϕ(t, s, j, 0)

)

+

∫ T−t

0

e−r(i)v
f(y + v|i)
1− F (y|i)

∑
j 6=i

pij(y + v)

∫ ∞
0

ϕ(t+ v, x, j, 0)α(x; t, s, i, v)×(
r(i) + L

∂L

∂v
+
σ2(t+ v, i)L2

2σ̄2
− σ2(t, i)L2

2σ̄2
− σ2(t+ v, i)L

2σ̄
+
σ2(t, i)L

2σ̄
+
σ2(t, i)

2σ̄2

)
dx dv.

(3.13)

Now we differentiate both sides of (3.9) w.r.t. s once and twice respectively and obtain

∂

∂s
ϕ(t, s, i, y) =

1− F (T − t+ y | i)
1− F (y | i)

∂ρi(t, s)

∂s
+

∫ T−t

0

e−r(i)v
f(y + v | i)
1− F (y | i)

∑
j 6=i

pij(y + v)×∫ ∞
0

ϕ(t+ v, x, j, 0)α(x; t, s, i, v)
L

sσ̄
dx dv, (3.14)

∂2

∂s2
ϕ(t, s, i, y) =

1− F (T − t+ y | i)
1− F (y | i)

∂2ρi(t, s)

∂s2
+

∫ T−t

0

e−r(i)v
f(y + v | i)
1− F (y | i)

∑
j 6=i

pij(y + v)×∫ ∞
0

ϕ(t+ v, x, j, 0)α(x; t, s, i, v)
1

s2

(
L2

σ̄2
− L

σ̄
− 1

σ̄2

)
dx dv. (3.15)

From equations (3.14) and (3.15), we get

r(i)s
∂ϕ

∂s
+

1

2
σ2(i)s2∂

2ϕ

∂s2

=
1− F (T − t+ y | i)

1− F (y | i)

(
r(i)s

∂ρi(t, s)

∂s
+

1

2
σ2(i)s2∂

2ρi(t, s)

∂s2

)
+

∫ T−t

0

e−r(i)v
f(y + v | i)
1− F (y|i)

×∑
j 6=i

pij(y + v)

∫ ∞
0

ϕ(t+ v, x, j, 0)α(x; t, s, i, v)

(
r(i)L

σ̄
+
σ2(t, i)L2

2σ̄2
− σ2(t, i)L

2σ̄
− σ2(t, i)

2σ̄2

)
dx dv.

(3.16)
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Finally, from equations (3.9), (3.5), (3.8), (3.13) and (3.16) we get

∂

∂t
ϕ(t, s, i, y) +

∂

∂y
ϕ(t, s, i, y) + r(i)s

∂

∂s
ϕ(t, s, i, y) +

1

2
σ(t, i)2(i)s2 ∂

2

∂s2
ϕ(t, s, i, y)

=
1− F (T − t+ y | i)

1− F (y | i)

[
∂ρi(t, s)

∂t
+ r(i)s

∂ρi(t, s)

∂s
+

1

2
σ2(t, i)s2∂

2ρi(t, s)

∂s2

]
− f(y | i)

1− F (y | i)
×∑

j 6=i

pij(y)(ϕ(t, s, j, 0)− ϕ(t, s, i, y)) + r(i)

(
ϕ(t, s, i, y)− 1− F (T − t+ y | i)

1− F (y | i)
ρi(t, s)

)
= − f(y | i)

1− F (y | i)
∑
j 6=i

pij(y)(ϕ(t, s, j, 0)− ϕ(t, s, i, y)) + r(i)ϕ(t, s, i, y).

Thus equation (3.2) holds.

From Lemma 3.1.3 and Proposition 3.1.5 it follows that (3.2)-(3.4) has a classical solution.

We prove uniqueness in the following section.

3.2 Uniqueness

We consider equations (3.2)-(3.4).

It is interesting to note that although the domain D has non-empty boundary, we have

obtained existence of a unique solution of the IE in the prescribed class without imposing

boundary conditions. Furthermore, we shall show that the uniqueness of the IE implies

uniqueness of the PDE. This invokes an immediate surprise as we know that boundary

condition is important for uniqueness for a non-degenerate parabolic PDE. In this connection,

we would like to recall, here the PDE is degenerate. For one part of boundary, i.e s = 0,

coefficients of all the differential operators w.r.t. s vanish. Thus, it is natural to expect

that a condition on s = 0 might not be needed for uniqueness. In other words, the PDE

would have non-existence for any boundary condition except possibly only an appropriate

one obtained from the terminal condition. We further clarify this apparently vague reasoning

with a precise calculation below. Other than s = 0, the remaining parts of the boundary

is due to the boundary of the y variable, i.e y = 0 and y = t. Here the non-rectangular

nature of D becomes apparent. We recall that we address a terminal value problem, thus

the range of y shrinks linearly in t as t decreases to zero. On the other hand only the first

33



order differential operator w.r.t. y appears in the PDE. Thus the absence of boundary data

is not leading to a under-determined problem.

We consider continuous solutions to the problem (3.2)-(3.4) on the closure of the domain D,

in particular, the set {(t, s, i, y) ∈ D̄ | s = 0}. For s = 0, the PDE is(
∂

∂t
+

∂

∂y

)
ϕ(t, 0, i, y) +

∑
j 6=i

λij(y)[ϕ(t, 0, j, 0)− ϕ(t, 0, i, y)] = riϕ(t, 0, i, y). (3.17)

Let ϕ̂i(t, y) := ϕ(t, 0, i, y). Then,(
∂

∂t
+

∂

∂y

)
ϕ̂i(t, y) +

∑
j 6=i

λij(y)[ϕ̂j(t, 0)− ϕ̂i(t, y)] = riϕ̂i(t, y),

with the terminal condition ϕ̂i(T, y) = K0. Now, for any t0 < T , consider ct0(t) := t − t0.

Then,
d

dt
ϕ̂i(t, ct0(t)) =

(
∂

∂t
+

∂

∂y

)
ϕ̂i(t, ct0(t)).

Let gi(t; t0) := ϕ̂i(t, ct0(t)). Then

d

dt
gi(t; t0) +

∑
j 6=i

λij(ct0(t))[ϕ̂j(t, 0)− gi(t)] = rigi(t; t0).

Hence,
dgi(t; t0)

dt
= p(t)gi(t; t0)− q(t), gi(T ; t0) = K0

where p(t) := ri+
∑

j 6=i λij(c(t)) and q(t) :=
∑

j 6=i λij(c(t))ϕ̂j(t, 0). This is a first-order linear

ODE, which can easily be solved to give

gi(t; t0) =

∫ T

t

e
−

∫ u
t0

(ri+
∑
j 6=i λij(ct0 (s))) ds

∑
j 6=i

λij(ct0(u))ϕ̂j(u, 0) du−K0e
−

∫ u
t0

(ri+
∑
j 6=i λij(ct0 (s))) ds

.

Now, gi(t0, t0) = ϕ̂i(t0, 0). Thus, we obtain the following equation for ϕ̂:
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ϕ̂i(t, 0) =

∫ T

t

e−
∫ u
t (ri+

∑
j 6=i λij(ct(s))) ds

∑
j 6=i

λij(ct(u))ϕ̂j(u, 0) du−K0e
−

∫ u
t (ri+

∑
j 6=i λij(ct(s))) ds,

(3.18)

This is an integral equation in ϕ̂(t, 0). If we show that this system of integral equations has

a unique solution, our reasoning regarding the redundancy of the boundary condition on s

will be justified. To this end, we proceed in a manner similar to the proof of Lemma 3.1.3.

We define the operator A to be

Aϕ̂i(t, 0) =

∫ T

t

e−
∫ u
t (ri+

∑
j 6=i λij(ct(s))) ds

∑
j 6=i

λij(ct(u))ϕ̂j(u, 0) du−K0e
−

∫ u
t (ri+

∑
j 6=i λij(ct(s))) ds.

(3.19)

The solution to equation (3.18) is obviously a fixed point of the operator A. If we are

able to establish that A is a contraction in the class of functions we are about to consider,

Banach fixed point theorem can be used to show that the integral equation (3.18) has a

unique solution which is a fixed point of A. We define Γ := χ × [0, T ] to be the domain

which we shall now consider. Consider the Banach space B = C (Γ), endowed with the

sup-norm. In order to show that A is a contraction, we need to prove that for ϕ̂1, ϕ̂2 ∈ B,

||Aϕ̂1 − Aϕ̂2|| ≤ J ||ϕ̂1 − ϕ̂2|| where J < 1. Now,

A(ϕ̂1
i − ϕ̂2

i ) =

∫ T

t

e−
∫ u
t (ri+

∑
j 6=i λij(ct(s))) ds

∑
j 6=i

λij(ct(u))
(
ϕ̂1
j(u, 0)− ϕ̂2

j(u, 0)
)
du

≤
∫ T

t

e−
∫ u
t (ri+

∑
j 6=i λij(ct(s))) ds

∑
j 6=i

λij(ct(u)) sup
u,j

(
ϕ̂1
j(u, 0)− ϕ̂2

j(u, 0)
)
du.
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Since r(i) > 0 for all i,

A(ϕ̂1
i − ϕ̂2

i ) ≤‖ϕ̂1 − ϕ̂2‖
∫ T

t

e−
∫ u
t (ri+

∑
j 6=i λij(s−t)) ds

∑
j 6=i

λij(u− t) du

=‖ϕ̂1 − ϕ̂2‖
∫ T

t

e−ri(u−t)e−
∫ u
t

∑
j 6=i λij(s−t) ds

∑
j 6=i

λij(u− t) du

<‖ϕ̂1 − ϕ̂2‖
∫ T

t

e−
∫ u
t

∑
j 6=i λij(s−t) ds

∑
j 6=i

λij(u− t) du

=‖ϕ̂1 − ϕ̂2‖
∫ T

t

d

du

(
e−

∫ u
t

∑
j 6=i λij(s−t) ds

)
du

=‖ϕ̂1 − ϕ̂2‖
(

1− e−
∫ T
t

∑
j 6=i λij(s−t) ds

)
=J‖ϕ̂1 − ϕ̂2‖,

where J = 1−e−
∫ T
t

∑
j 6=i λij(s−t) ds < 1. This proves that A is, in fact, a contraction. Thus, the

uniqueness of ϕ̂, the solution to equation (3.18) is established. The uniqueness of ϕ̂(t0, 0) for

all t0 ∈ [0, T ] implies the uniqueness of g(t; t0) for all t ≥ t0 ≥ 0. Also, ϕ̂i(t, t− t0) is unique

for all t ∈ [t0, T ], t0 ∈ [0, T ]. Since, for y ∈ [0, t], ϕi(t, 0, i, y) = ϕ̂i(t, y) = ϕ̂i(t, t − (t − y)),

with t − y ∈ [0, t], equation (3.17) has a unique solution. Hence, ϕ(t, s, i, y) is unique for

s = 0.

Proposition 3.2.1. Assume (2.2) and (2.3). We also assume that the transition matrix

p̃ij :=
∫∞

0
pij(y) dFi(y) is irreducible. Let ϕ be a classical solution of (3.2)-(3.4). Then (i) ϕ

solves the integral equation (3.9)-(3.10); (ii) ϕ(t, s, i, y) ≤ k1 + k2s for some k1, k2 > 0.

Proof. (i) Let (Ω̃, F̃ , P̃ ) be a probability space which holds a standard Brownian motion W

and the Poisson random measure ℘ independent of W . Let S̃t be the strong solution of the

following SDE

dS̃t = S̃t(r(Xt)dt+ σ(t,Xt)dWt), S̃0 > 0

where Xt is the age-dependent process given by equations (2.6) and (2.7). Let F̃t be the

underlying filtration generated by S̃t and Xt satisfying the usual hypothesis. We observe
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that the process {(S̃t, Xt, Yt)}t is Markov with infinitesimal generator At, where

Atϕ(s, i, y) =
∂ϕ

∂y
(s, i, y) + r(i)s

∂ϕ

∂s
(s, i, y) +

1

2
σ2(t, i)s2∂

2ϕ

∂s2
(s, i, y)

+
∑
j 6=i

λij(y)
(
ϕ(s, j, 0)− ϕ(s, i, y)

)
for every function ϕ which is compactly supported C2 in s and C1 in y. If ϕ is the classical

solution of (3.2)-(3.4) then by using the Itô’s formula on Nt := e−
∫ t
0 r(Xu)duϕ(t, S̃t, Xt, Yt), we

get

dNt = e−
∫ t
0 r(Xu)du

(
−r(Xt)ϕ(t, S̃t, Xt, Yt) +

∂ϕ

∂t
(t, S̃t, Xt, Yt) +Atϕ(t, S̃t, Xt, Yt)

)
dt+ dMt

where Mt is a local martingale. Thus from (3.2) and above expression, Nt is also an F̃t
local martingale. The definition of Nt suggests that there are constants k1 and k2 such that

|Nt| ≤ k1 + k2S̃t for each t, since ϕ has at most linear growth. Again, from the following

expression

S̃t = S̃0 exp

(∫ t

0

(r(Xu)−
1

2
σ(u,Xu)

2) du+

∫ t

0

σ(u,Xu) dWu

)
one concludes that S̃t is a submartingale with finite expectation. Therefore Doob’s inequality

can be used to obtain E supu∈[0,t] |Nu| <∞ for each t. Thus {Nt}t is a martingale. Hence

ϕ(t, S̃t, Xt, Yt) = e
∫ t
0 r(Xu)duNt = E[e

∫ t
0 r(Xu)duNT | Ft] = E[e−

∫ T
t r(Xu)duK(S̃T ) | S̃t, Xt, Yt].

(3.20)

By conditioning at transition times and using the conditional lognormal distribution of S̃t,
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we get

ϕ(t, S̃t, Xt, Yt)

=E[E[e−
∫ T
t r(Xu)duK(S̃T ) | S̃t, Xt = i, Yt, Tn(t)+1] | S̃t, Xt = i, Yt]

=P (Tn(t)+1 > T | Xt, Yt)E[e−
∫ T
t r(Xu)duK(S̃T ) | S̃t, Xt = i, Yt, Tn(t)+1 > T ]

+

∫ T−t

0

E[e−
∫ T
t r(Xu)duK(S̃T ) | S̃t, Xt, Yt, Tn(t)+1 = t+ v]

f(t− Tn(t) + v | Xt)

1− F (Yt | Xt)
dv

=
1− F (T − Tn(t) | Xt)

1− F (Yt | Xt)
ρXt(t, S̃t) +

∫ T−t

0

e−r(Xt)v
f(Yt + v | Xt)

1− F (Yt | Xt)
×∑

j 6=i

pij(Yt + v)

∫ ∞
0

E[e−
∫ T
t+v r(Xu)duK(S̃T ) | S̃t+v = x, Yt+v = 0,

Xt+v = j, Tn(t)+1 = t+ v]
exp{−1

2
((ln( x

S̃t
)−

∫ t+v
t

(r(i)− σ2(u,i)
2

) du) 1√∫ t+v
t σ2(u,i) du

)2}

x
√

2π
√∫ t+v

t
σ2(u, i) du

dx dv

=
1− F (T − t+ Yt | Xt)

1− F (Yt | Xt)
ρXt(t, S̃t) +

∫ T−t

0

e−r(Xt)v
f(Yt + v | Xt)

1− F (Yt | Xt)
×

∑
j 6=i

pij(Yt + v)

∫ ∞
0

ϕ(t+ v, x, j, 0)
e
−1
2
L2

x
√

2π
√∫ t+v

t
σ2(u, i) du

dx dv.

Finally by using irreducibility condition (A1), we can replace (S̃t, Xt, Yt) by generic variable

(s, i, y) in the above relation and thus conclude that ϕ is a solution of (3.9)-(3.10). Thus (i)

holds.

(ii) We note that since K is of at most linear growth, there exist k1, k2 > 0 such that

K(s) ≤ k1 + k2s for all s ≥ 0. Hence,

ϕ(t, S̃t, Xt, Yt) =Ẽ[e−
∫ T
t r(Xu) duK(S̃T ) | F̃t]

≤Ẽ[e−
∫ T
t r(Xu) du(k1 + k2S̃T ) | F̃t]

≤k1 + k2Ẽ[e−
∫ T
t r(Xu) duS̃T | F̃t].

Since ϕ(t, S̃t, Xt, Yt) = Ẽ[e−
∫ T
t r(Xu) duK(S̃T ) | F̃t], using the martingale property of e−

∫ t
0 r(Xu) duS̃t,

from equation (3.20) and the above, we get

ϕ(t, S̃t, Xt, Yt) ≤ k1 + k2S̃t.
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From equation (3.20), it is evident that ϕ is an expectation of a non-negative quantity, and

hence is non-negative. Thus (ii) holds.

Theorem 3.2.2. The initial-boundary value problem (3.2)-(3.4) has a unique classical solu-

tion in the class of functions with at most linear growth.

Proof. Existence follows from Lemma 3.1.3 and Proposition 3.1.5. For uniqueness, first

assume that ϕ1 and ϕ2 are two classical solutions of (3.2)-(3.4) in the prescribed class. Then

using Proposition 3.2.1, we know that both also solve (3.9)-(3.10). But from Lemma 3.1.3,

there is only one such in the prescribed class. Hence ϕ1 = ϕ2.

Remark 3.2.1. The above theorem can also be proved in a different manner which heavily

depends on the mild solution techniques [20] and Proposition 3.1.2 of [1]. Such an alternative

approach is taken in [9] to establish well-posedness of a special case of (3.2)-(3.4). The reason

for adopting the present approach is that, it enables us to establish the equivalence between the

PDE and an IE in the go. This in tern suggests an alternative expression of partial derivative

of the solution. In the next section the importance of such representation is explained.
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Chapter 4

The option pricing problem

We concern ourselves with an extension of the widely-studied Black-Scholes model of financial

markets. In our model, the market exhibits semi-Markov regime-switching. The Markov-

modulated regime-switching model has been studied in [2]. We use age-dependent processes,

which have been discussed in Chapter 2 of this thesis, to extend this model.

Various financial instruments are traded in financial markets. Some of these instruments are

stocks, bonds, options, futures, swaps, etc. Financial instruments whose price depend on the

price of some other commodity are called derivatives. Options and futures are examples of

derivatives.

An option is a contract between two parties- the writer of the option, and the holder of

the option. The holder of the option purchases the option from the writer at a premium,

called the “price” of the option. There are several types of options. The most common are

European and American options. These are usually traded on exchanges, and are referred to

as “vanilla” options. The other kinds of options are not so common, and are called “exotic”

options. All options are further classified into call options and put options. A European call

option confers upon its holder the right to buy a certain amount of stock at a fixed price,

called the “strike price”, at the time of maturity, while a European put option allows its

holder to sell the same.

It is obvious that one must pay a premium to purchase an option. Without the premium,

the holder of an option would never suffer a loss, violating the no-arbitrage condition which
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is satisfied in most real-life markets. The premium must be fair to both the holder as well as

the writer of the option. The price of an option is thus the expected value of the discounted

price of its corresponding contingent claim in a risk-neutral market.

The Black-Scholes model is a standard model used for pricing European-style options. It

makes a number of assumptions, which are stated below:

1. The rate on the riskless asset is constant, and is thus called the risk-free interest rate.

2. The logarithm of the stock price is a geometric Brownian motion (GBM) with constant

drift and volatility.

3. The stock is dividend-free.

4. There are no arbitrage opportunities.

5. It is possible to borrow or lend any amount, even fractional, of cash at the risk-free

interest rate.

6. It is possible to buy or sell any amount, even fractional, of the stock. This includes

the possibility of short selling, i.e the act of selling a stock one does not own.

7. The market is frictionless, i.e devoid of any fees or taxes, etc.

The present price of a European call option, in the Black-Scholes model, can be expressed

as

η(t, s) = Ẽ[e−r(T−t)(ST −K)+ | St = s],

where Ẽ is the risk-neutral measure, r is the risk-free interest rate, St is the stock price at

the present time t and T and K are the maturity and the strike price, respectively.

Under the usual notation, the price of a European call option in the Black-Scholes model

can also be expressed as the solution to a parabolic partial differential equation, known as

the Black-Scholes PDE. This PDE is

∂η(t, s)

∂t
+ rs

∂η(t, s)

∂s
+

1

2
σ2s2∂

2η(t, s)

∂s2
= rη(t, s), (4.1)

with appropriate terminal conditions.
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This PDE is a particular case of (3.5), for a fixed i, where r and σ are time-independent.

Equation (4.1) can be solved analytically to give

η(t, s) = N

 ln
(
s
K

)
+
(
r + σ2

2

)
(T − t)

σ
√
T − t

 s−N

 ln
(
s
K

)
+
(
r − σ2

2

)
(T − t)

σ
√
T − t

Ke−r(T−t),

(4.2)

where N(.) is the cumulative distribution function of the standard normal distribution.

However, in practice, few of the conditions of the Black-Scholes model are met. Hence, we

consider regime-switching models. Section 2.4 has discussed the motivation behind our study

of age-dependent processes.

4.1 The Market Model

Let {Bt}t≥0 be the price of money market account at time t where, spot interest rate is

rt = r(Xt) and B0 = 1. Here, {Xt}t≥0 is taken to be an age-dependent process discussed in

Chapter 2. We have Bt = e
∫ t
0 r(Xu)du. Let {St}t≥0 be the price process of the stock, which is

governed by a semi-Markov modulated GBM i.e.,

dSt = St (µ(t,Xt)dt+ σ(t,Xt)dWt), S0 > 0, (4.3)

where {Wt}t≥0 is a standard Wiener process independent of {Xt}t≥0, µ : X → R is the drift

coefficient and σ : [0, T ] × X → (0,∞) corresponds to the volatility. Let Ft be a filtration

of F satisfying usual hypothesis and right continuous version of the filtration generated by

Xt and St. Clearly the solution of the above SDE is an Ft semimartingale with almost sure

continuous paths.

We address the problem of pricing derivatives under the above market assumptions. To this

end we recall the quadratic hedging approach in a general market setup below.
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4.2 Quadratic Hedging

Let a market consist of two assets {St}t≥0 and {Bt}t≥0 where St and Bt are continuous

semi-martingales and Bt is of finite variation. An admissible strategy is a dynamic allocation

to these assets and is defined as a predictable process π = {πt = (ξt, εt), 0 ≤ t ≤ T} which

satisfies conditions, given in (A1) below. The components ξt and εt denote the amounts

invested in St and Bt respectively at time t. The value of the portfolio at time t is given by

Vt = ξtSt + εtBt. (4.4)

Here we assume

(A1) (i) ξt is square integrable w.r.t St,

(ii) E(ε2
t ) <∞,

(iii) ∃a > 0 s.t. P (Vt ≥ −a, t ∈ [0, T ]) = 1.

It can be shown, in a similar vein as in [9], that the market model under consideration admits

the existence of an equivalent martingale measure. Hence, under the class of admissible

strategies defined above, the market is free of arbitrage opportunities. This allows us to

consider pricing using the Föllmer-Schweizer decomposition of the contingent claim.

Let Ct be the accumulated additional cash flow due o a strategy π at time t. Then Vt can

also be written as sum of two quantities, one is the return of the investment at an earlier

instant t−∆ and the other one is the instantaneous cash flow (∆Ct).

ie. Vt = ξt−∆St + εt−∆Bt + ∆Ct (4.5)

or ∆Ct = St(ξt − ξt−∆) +Bt(εt − εt−∆)

which is different from St−∆(ξt − ξt−∆) + Bt−∆(εt − εt−∆). The above observation indicates

that the external cash flow can be represented as a stochastic integral (but not in the Itō

sense) resembling Stdξt +Btdεt. It would have the same integrator and integrand but would

be defined by taking the right end points instead of left end points unlike the Itō integral.

However, here we confine ourselves in the formalism of Itō calculus alone. In order to derive

an expression using Itō integrals, we note that the equations (4.4) and (4.5) lead to the
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following discrete equation

Vt − Vt−∆ = ξt−∆(St − St−∆) + εt−∆(Bt −Bt−∆) + ∆Ct

or equivalently the SDE

dVt = ξtdSt + εtdBt + dCt. (4.6)

This observation essentially makes the following (see [25] for details) definition, which is

standard in the literature, self explanatory.

Definition 4.2.1. A strategy π = (ξ, ε) is defined to be self financing if

dVt = ξtdSt + εtdBt, ∀t ≥ 0.

Now using integration by parts rule of Itô integration, we deduce from (4.4)

dVt = ξtdSt + εtdBt + Stdξt +Btdεt + d〈S, ξ〉t + d〈B, ε〉t.

By comparing this with equation (4.6) we get

dCt = Stdξt +Btdεt + d〈S, ξ〉t + d〈B, ε〉t. (4.7)

Since, Bt is of finite variation and of continuous path, 〈B, ε〉t = 0 for all t. We further notice

that

d((ξtS
∗
t )Bt) =ξtS

∗
t dBt +Bt d(ξtS

∗
t ) + d〈ξS∗, B〉t

=ξtS
∗
t dBt +BtS

∗
t dξt +Btξt dS

∗
t +Bt d〈ξ, S∗〉t + d〈ξS∗, B〉t (4.8)

and

d(ξt(S
∗
tBt)) =ξt d(S∗tBt) + S∗tBt dξt + d〈ξ, S∗B〉t

=ξtBt dS
∗
t + ξtS

∗
t dBt + ξt d〈S∗, B〉t + S∗tBt dξt + d〈ξ, S∗B〉t. (4.9)
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Thus, from equations (4.8) and (4.9), we get

Bt d〈ξ, S∗〉t + d〈ξS∗, B〉t = ξt d〈S∗, B〉t + d〈ξ, S∗B〉t. (4.10)

Thus,

Btd〈S∗, ξ〉t =d〈BS∗, ξ〉t + ξtd〈S∗, B〉t − d〈S∗ξ, B〉t
=d〈S, ξ〉t,

where S∗t := B−1
t St. Thus using (4.4) and above identity, equation (4.7) gives

dCt =St dξt +Bt d(V ∗t − ξtS∗t ) +Bt d〈S∗, ξ〉t
=Stdξt +Bt(dV

∗
t − ξtdS∗t − S∗t dξt − d〈S∗, ξ〉t) +Btd〈S∗, ξ〉t

=Bt(dV
∗
t − ξtdS∗t )

or,
1

Bt

dCt = dV ∗t − ξtdS∗t . (4.11)

The process C∗t := C∗0 +
∫ t

0
1
Bt
dCt, for obvious reason, is called the discounted cost process

which gives the net present value at t = 0 of the accumulated additional cash flow up to time

t. If a strategy π is self-financing, clearly C∗t (π) = constant and hence one has from (4.11),

dV ∗t = ξtdS
∗
t .

The Black-Scholes model is an example of what is called a complete market. A complete

market is one in which all contingent claims are attainable by self-financing strategies. In

many market models, the class of self financing strategies is inadequate to ensure a perfect

hedge for a given claim. Such markets are called incomplete. In such a market an optimal

strategy is an admissible hedging strategy for which the quadratic residual risk, a measure

of the cash flow, is minimized subject to a certain constraint(see [8] for more details). This

optimal strategy need not be self-financing. It is shown in [8] that if the market is arbitrage

free, the existence of an optimal strategy for hedging an FT measurable claim H, is equivalent

to the existence of Föllmer Schweizer decomposition of discounted claim H∗ := B−1
T H in the
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form

H∗ = H0 +

∫ T

0

ξH
∗

t dS∗t + LH
∗

T , (4.12)

where H0 ∈ L2(Ω,F0, P ), LH
∗

= {LH∗t }0≤t≤T is a square integrable martingale starting with

zero and orthogonal to the martingale part of St, and ξH
∗

= {ξH∗t }t≥0 satisfies A1 (i).

Further ξH
∗

appeared in the decomposition, constitutes the optimal strategy. Indeed the

optimal strategy π = (ξt, εt) is given by

ξt := ξH
∗

t ,

V ∗t := H0 +

∫ t

0

ξudS
∗
u + LH

∗

t , (4.13)

εt := V ∗t − ξtS∗t ,

and BtV
∗
t represents the locally risk minimizing price at time t of the claim H. The pricing

and hedging problems in any market, especially an incomplete one, can thus be addressed

by constructing the Föllmer-Schweizer decomposition of the relevant contingent claim.

Returning to our particular market model as described in Section 4.1, we aim to construct

the Föllmer-Schweizer decomposition.

4.3 Hedging and Pricing equations

We seek to find an expression for the optimal hedging strategy for a number of European-type

options. In this section, we discuss call, put and barrier options. Options can be categorised,

depending on their dependence on the path of the stock price process.

4.3.1 Path-independent options

Path-independent options such as European call/put options and their combinations (but-

terfly spreads, etc.) are the easiest to price.

Theorem 4.3.1. Let ϕ be the unique classical solution of (3.2)-(3.4) in the class of functions

with at most linear growth.
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1. Let (ξ, ε) be given by

ξt :=
∂ϕ(t, St, Xt−, Yt−)

∂s
and εt := e−

∫ t
0 r(Xu)du(ϕ(t, St, Xt, Yt)− ξtSt). (4.14)

Then (ξ, ε) is the optimal admissible strategy.

2. ϕ(t, St, Xt, Yt) is the locally risk minimizing price of K(S̃T ).

Proof. Under the market model, the mean variance tradeoff (MVT) process K̂t (as defined

in Pham et al [21]) takes the following form

K̂t =

∫ t

0

(
µ(s,Xs)− r(Xs)

σ(s,Xs)

)2

ds.

Hence K̂t is bounded and continuous on [0, T ]. We also know that St has almost sure

continuous paths. Since, H∗ ∈ L2(Ω,F , P ) for H = K(S̃T ) we apply corollary 5 and Lemma

6 of [21] to conclude that H∗ admits a Föllmer-Schweizer decomposition

H∗ = H0 +

∫ T

0

ξH
∗

u (dA∗u + κ(u,Xu)A
∗
u du) + LH

∗

T , (4.15)

with an integrand ξH
∗

satisfying A1 (i) and LH
∗

being square integrable. Therefore, to prove

the theorem it is sufficient to show that

(a) there exists F0 measurable H0 and FT measurable LT such that Lt := E[LT | Ft] is

orthogonal to
∫ t

0
σ(Xt)S

∗
t dWt i.e., the martingale part of S∗t and H∗ = H0 +

∫ T
0
ξtdS

∗
t +

LT ;

(b) 1
Bt
ϕ(t, St, Xt−, Yt−) = H0 +

∫ t
0
ξtdS

∗
t + Lt for all t ≤ T ;

(c) ϕ(t, St, Xt, Yt) = Btεt + ξtSt for all t ≤ T ;

(d) P (ϕ(t, St, Xt, Yt) ≥ 0∀t ≤ T ) = 1,

where ϕ is the unique classical solution of (3.2)-(3.4) in the prescribed class and (ξ, ε) is as

in (4.14).
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In Lemma 3.1.3 it is shown that ϕ is a non-negative function. Hence (d) holds. From the

definition of εt in (4.14), (c) follows. Next we show the condition (b). We apply Itô’s formula

to e−
∫ t
0 r(Xu)duϕ(t, St, Xt, Yt) under the measure P to get

e−
∫ t
0 r(Xu) duϕ(t, St, Xt, Yt) =ϕ(0, S0, X0, Y0) +

∫ t

0

e−
∫ u
0 r(Xv) dv ∂ϕ

∂u
(u, Su, Xu−, Yu−) du

+

∫ T

0

e−
∫ u
0 r(Xv) dv (−r(Xu))ϕ(u, Su, Xu−, Yu−) du

+

∫ T

0

e−
∫ u
0 r(Xv) dv ∂ϕ

∂s
(u, Su, Xu−, Yu−) dSu

+
1

2

∫ T

0

e−
∫ u
0 r(Xv) dv ∂

2ϕ

∂s2
(u, Su, Xu−, Yu−) d〈S〉u

+

∫ T

0

e−
∫ u
0 r(Xv) dv ∂ϕ

∂y
(u, Su, Xu−, Yu−) dY (c)

u

+
∑
u≤t

e−
∫ u
0 r(Xv) dv (ϕ(u, Su, Xu, Yu)− ϕ(u, Su, Xu−, Yu−)) ,

(4.16)

where Y
(c)
t is the continuous part of Yt. Now,

ϕ(u, Su, Xu, Yu)− ϕ(u, Su, Xu−, Yu−) =ϕ

(
u, Su, Xu− +

∫
R
h(Xu−, Yu−, z)℘(du, dz),

Yu− −
∫
R
g(Xu−, Yu−, z)℘(du, dz)

)
− ϕ(u, Su, Xu−, Yu−)

=

∫
R

[ϕ (u, Su, Xu− + h(Xu−, Yu−, z), Yu− − g(Xu−, Yu−, z))

− ϕ(u, Su, Xu−, Yu−)] ℘(du, dz)

=

∫
R

[ϕ (u, Su, Xu− + h(Xu−, Yu−, z), Yu− − g(Xu−, Yu−, z))

− ϕ(u, Su, Xu−, Yu−)] (℘̂(du, dz) + du dz),
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where ℘̂ is the compensated Poisson random measure. We set

Lt :=

∫ t

0

e−
∫ u
0 r(Xv)dv

∫
R
[ϕ(u, Su, Xu− + h(Xu−, Yu−, z), Yu− − g(Xu−, Yu−, z))

−ϕ(u, Su, Xu−, Yu−)]℘̂(du, dz).

From the definitions of h and g, we can write

Xu− + h(Xu−, Yu−, z) =
∑
j 6=Xu−

j1ΛXu−j(Yu−)(z) +Xu−1
⋃
j 6=i ΛXu−j(Yu−)c(z)

and

Yu− − g(Xu−, Yu−, z) =Yu−1⋃
j 6=i ΛXu−j(Yu−)c(z).

Thus,∫
R

[ϕ (u, Su, Xu− + h(Xu−, Yu−, z), Yu− − g(Xu−, Yu−, z))− ϕ(u, Su, Xu−, Yu−)] du dz

=
∑
Xu− 6=j

[ϕ(Su, j, 0)− ϕ(Su, Xu−, Yu−)]λXu−j(Yu−) du.

We know that dSt = St(µ(t,Xt) dt + σ(t,Xt) dWt, d〈S〉t = σ2(t,Xt) dt and dY
(c)
t = dt.

Hence, from (4.16), we get

e−
∫ t
0 r(Xu) duϕ(t, St, Xt, Yt) =ϕ(0, S0, X0, Y0) +

∫ t

0

e−
∫ u
0 r(Xv) dv×(

∂ϕ

∂u
+
∂ϕ

∂y
+ µ(u,Xu)Su

∂ϕ

∂s
+

1

2
σ2(u,Xu)S

2
u

∂2ϕ

∂s2
− r(Xu)

+
∑
Xu− 6=j

[ϕ(Su, j, 0)− ϕ(Su, Xu−, Yu−)]λXu−j(Yu−)

 du

+

∫ t

0

e−
∫ u
0 r(Xv) dvσ(u,Xu)

∂ϕ

∂s
(u, Su, Xu−, Yu−) dWu + Lt.
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Using (3.2), this simplifies to

ϕ(0, S0, X0, Y0) +

∫ t

0

e−
∫ u
0 r(Xv) dv(µ(u,Xu)− r(Xu))Su

∂ϕ

∂s
du

+

∫ t

0

e−
∫ u
0 r(Xv) dvσ(u,Xu)

∂ϕ

∂s
(u, Su, Xu−, Yu−) dWu + Lt.

Now, S∗t = B−1
t St = e−

∫ t
0 r(Xu) duSt. Hence

dS∗t = e−
∫ t
0 r(Xu) duSt((µ(t,Xt)− r(Xt)) dt+ σ(t,Xt) dWt.

Thus, we obtain, for all t < T

e−
∫ t
0 r(Xu) duϕ(t, St, Xt, Yt) =ϕ(0, S0, X0, Y0) +

∫ t

0

∂ϕ(u, Su, Xu−, Yu−)

∂s
dS∗u + Lt.

Since, Lt is an integral w.r.t. a compensated Poisson random measure, it is a martingale.

Again the independence of Wt and ℘ implies the orthogonality of Lt to the martingale part

of S∗t . Thus, we obtain the following F-S decomposition by letting t ↑ T ,

B−1
T K(S̃T ) = ϕ(0, S0, X0, Y0) +

∫ T

0

ξtdS
∗
t + LT . (4.17)

Thus (a) and (b) hold.

Theorem 4.3.2. Let ϕ be the unique solution of (3.2)-(3.4). Set

ψ(t, s, i, y) :=
1− F (T − t+ y | i)

1− F (y | i)
∂ηi(t, s)

∂s
+

∫ T−t

0

e−r(i)v
f(y + v | i)
1− F (y | i)

×
∑
j

pij(y + v)

∫ ∞
0

ϕ(t+ v, x, j, 0)
e
−1
2
L(t,i)2

√
2πxsσ̄

(
ln(x

s
)− (r(i)v − σ̄2)

)
σ̄2

dxdv

(4.18)

where (t, s, i, y) ∈ D and σ̄2 =
∫ t+v
t

σ(u, i)2 du. Then ψ(t, s, i, y) = ∂
∂s
ϕ(t, s, i, y).

Proof. We need to show that ψ (as in (4.18)) is equal to ∂ϕ
∂s

. Indeed, one obtains the RHS

of (4.18) by differentiating the right side of (3.2) with respect to s. Hence the proof.
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Remark 4.3.1. We have shown that ∂
∂s
ϕ(t, s, i, y) is a necessary quantity to be calculated

in order to find the optimal hedging. Attempting to compute ∂
∂s
ϕ(t, s, i, y) using numerical

differentiation would increase the sensitivity of ∂ϕ
∂s

to small errors. Equation (4.18) gives a

better, more robust approach to computing ∂
∂s
ϕ(t, s, i, y), using numerical integration.

4.3.2 Weakly path-dependent options

In this subsection, we consider barrier options. These are the options which are either

exercised or allowed to expire immediately upon the stock price hitting a certain “barrier”.

There are four types of European barrier options (the barrier is assumed to be b > 0):

1. Down-and-out: The option becomes worthless if the barrier S = b is reached from

above before expiry.

2. Up-and-out: The option becomes worthless if the barrier S = b is reached from below

before expiry.

3. Down-and-in: The option becomes worthless unless the barrier S = b is reached from

above before expiry.

4. Up-and-in: The option becomes worthless unless the barrier S = b is reached from

below before expiry.

The payoff function for barrier options is not solely determined by the stock price at maturity.

The option expires, or is immediately exercised (as the case may be), depending on whether

the stock price process, St, hits a certain barrier or not. In other words, the payoff is path-

dependent. However, the payoff does not depend on the entire history of the stock price; it

only depends on a particular attribute of the stock price process. Thus, barrier options are

called “weakly path-dependent”.

These barrier conditions can apply to call options as well as put options. We consider the

problem of pricing an up-and-out European call option in this subsection. We, however,

restrict ourselves to the case where the volatility does not depend explicitly on time, so that

σ(t, i) = σ(i) for all i and t. Let the price of the up-and-out European call option be ϕuoc .
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Then, the contingent claim can be written as

H = (ST −K)+
1

{
max
t∈[0,T ]

St < b

}
, (4.19)

under the usual notation. We define τ := min{t > 0 : St = b}. Thus, τ is an Ft-stopping

time, which is almost surely finite. Now, if S0 ≥ b, then the option will already be in a state

of expiry. Hence, we only consider the non-trivial case S0 < b. In this case, the contingent

claim H can be written in an alternative form as

H = (ST −K)+
1 {τ > T} .

The pricing problem for barrier options reduces to the one of solving equation (3.9) on the

domain

D− := {(t, s, i, y) ∈ (0, T )× (0, b)× χ× (0, T )}

with the boundary condition

ϕ(t, b, i, y) = 0 for all t ∈ (0, T ), i ∈ χ. (4.20)

The analysis we have made in Section 3.2 regarding the redundancy of the boundary condi-

tion as s ↓ 0 does not apply here, for s ↑ b, because the pricing PDE does not reduce to an

s-independent PDE. Hence, the boundary condition (4.20) is necessary.

Lemma 4.3.3. Consider the following integral equation

ϕuoc (t, s, i, y) =
1− F (T − t+ y | i)

1− F (y | i)
ηuoc;i(t, s) +

∫ T−t

0

e−r(i)v
f(y + v | i)
1− F (y | i)

×[
Φ

(
ln
(
b
s

)
− (r(i)− σ2(i)

2
)v

σ(i)
√
v

)
− exp

{(
2r(i)

σ2(i)
− 1

)
ln

(
b

s

)}
×

Φ

(
− ln

(
b
s

)
− (r(i)− σ2(i)

2
)v

σ(i)
√
v

)]
×

∑
j 6=i

pij(y + v)

∫ b

0

ϕuoc (t+ v, x, j, 0)α(x; s, i, v) dx dv.

(4.21)

Then (i) equation (3.2) has a unique solution C(D−), (ii) the solution of the integral equation
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is in C1,2,1(D), and (iii) ϕ(t, s, i, y) is non-negative.

Proof. The proof is similar to that of Lemma 3.1.3.

Proposition 4.3.4. The unique solution of equation (4.21) also solves the initial value

problem (3.2)-(4.20).

Proof. The proof is similar to that of Proposition 3.1.5, albeit slightly less tedious, since

ϕuoc is a bounded function, and also because σ(t, i) = σ(i) for all t and i.

Proposition 4.3.5. Assume (2.2) and (2.3). We also assume that the transition matrix

p̃ij :=
∫∞

0
pij(y) dFi(y) is irreducible. Let ϕ be a classical solution of (3.2)-(4.20). Then ϕ

solves the integral equation (4.21).

Proof. Much of the proof is similar to that of Proposition 3.2.1. We construct S̃t as given

there. Now if ϕuoc is the classical solution of (3.2)-(4.20) then by using the Itô’s formula on

Nt := e−
∫ t
0 r(Xu)duϕuoc (t, S̃t, Xt, Yt), we get

dNt = e−
∫ t
0 r(Xu)du

(
−r(Xt)ϕ

uo
c (t, S̃t, Xt, Yt) +

∂ϕuoc
∂t

(t, S̃t, Xt, Yt) +Atϕuoc (t, S̃t, Xt, Yt)

)
dt+ dMt

where Mt is a local martingale.

Since S̃t is a martingale and ϕuoc is a bounded function, {Nt}t is a martingale. Hence

ϕuoc (t, S̃t, Xt, Yt) =e
∫ t
0 r(Xu)duNt

=E[e
∫ t
0 r(Xu)duNT | Ft]

=E[e−
∫ T
t r(Xu)duK(S̃T )1{τ > T} | S̃t, Xt, Yt].
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By conditioning at transition times and using the conditional lognormal distribution of S̃t,

we get

ϕuoc (t, S̃t, Xt, Yt)

=E[E[e−
∫ T
t r(Xu)duK(S̃T )1{τ > T} | S̃t, Xt = i, Yt, Tn(t)+1] | S̃t, Xt = i, Yt]

=P (Tn(t)+1 > T | Xt, Yt)E[e−
∫ T
t r(Xu)duK(S̃T )1{τ > T} | S̃t, Xt = i, Yt, Tn(t)+1 > T ]

+

∫ T−t

0

E[e−
∫ T
t r(Xu)duK(S̃T )1{τ > T} | S̃t, Xt, Yt, Tn(t)+1 = t+ v]

f(t− Tn(t) + v | Xt)

1− F (Yt | Xt)
dv

=
1− F (T − Tn(t) | Xt)

1− F (Yt | Xt)
ηuoc;Xt(t, S̃t) +

∫ T−t

0

e−r(Xt)v
f(Yt + v | Xt)

1− F (Yt | Xt)
×∑

j 6=i

pij(Yt + v)

∫ ∞
0

E[e−
∫ T
t+v r(Xu)duK(S̃T )1{τ > T} | S̃t+v = x, Yt+v = 0,

Xt+v = j, Tn(t)+1 = t+ v]
exp{−1

2

(
(ln( x

S̃t
)− (r(i)− σ2(i)

2
)v) 1

σ(i)
√
v

)2

}

x
√

2πσ(i)
√
v

dx dv,

where ηuoc;Xt(t, S̃t) is the Black-Scholes price of a European up-and-out call option with con-

stant interest rate r(i) and time-independent volatility σ(i). Thus,

ϕuoc (t, S̃t, Xt, Yt)

=
1− F (T − t+ Yt | Xt)

1− F (Yt | Xt)
ηuoc;Xt(t, S̃t) +

∫ T−t

0

e−r(Xt)v
f(Yt + v | Xt)

1− F (Yt | Xt)
×

E[e−
∫ T
t+v r(Xu)duK(S̃T ) | S̃t+v = x, Yt+v = 0, Xt+v = j, Tn(t)+1 = t+ v, τ > T ]×

P [τ > T | S̃t+v = x, Yt+v = 0, Xt+v = j, Tn(t)+1 = t+ v]×∑
j 6=i

pij(Yt + v)

∫ b

0

ϕuoc (t+ v, x, j, 0)
e
−1
2
L2

x
√

2πσ(i)
√
v
dx dv.
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It can be proved, using the reflection principle, that

P

[
max
[t,T ]

Su < b | S̃t+v = x, Yt+v = 0, Xt+v = j, Tn(t)+1 = t+ v

]
=

[
Φ

(
ln
(
b
s

)
− (r(i)− σ2(i)

2
)v

σ(i)
√
v

)
− exp

{(
2r(i)

σ2(i)
− 1

)
ln

(
b

s

)}
×

Φ

(
− ln

(
b
s

)
− (r(i)− σ2(i)

2
)v

σ(i)
√
v

)]
,

which means

ϕuoc (t, S̃t, Xt, Yt) =
1− F (T − t+ Yt | Xt)

1− F (Yt | Xt)
ηuoc;Xt(t, S̃t) +

∫ T−t

0

e−r(Xt)v
f(Yt + v | Xt)

1− F (Yt | Xt)
×[

Φ

(
ln
(
b
s

)
− (r(i)− σ2(i)

2
)v

σ(i)
√
v

)
− exp

{(
2r(i)

σ2(i)
− 1

)
ln

(
b

s

)}
×

Φ

(
− ln

(
b
s

)
− (r(i)− σ2(i)

2
)v

σ(i)
√
v

)]
×

∑
j 6=i

pij(Yt + v)

∫ b

0

ϕuoc (t+ v, x, j, 0)α(x; s, i, v) dx dv.

(4.22)

Due to the irreducibility condition (A1), we can replace S̃t, Xt, and Yt by s, i, and y,

respectively.

Theorem 4.3.6. The initial-boundary value problem (3.2)-(4.20) has a unique classical so-

lution in the class of functions with at most linear growth.

Proof. The proof is similar to that of Theorem 3.2.2.

Theorem 4.3.7. Let ϕuoc (t, s, i, y) denote the unique solution of the problem (3.9,4.20). Then

the following statements hold true:

1. ϕuoc (t, s, i, y) is the locally risk-minimizing option price at time t for an up-and-out

European call option with strike price K, barrier b > K and maturity T > t.
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2. An optimal hedging strategy π∗ = {ξ∗t , η∗t } is given by

ξ∗t =
∂

∂s
ϕuoc (t, St, Xt−, Yt−)1(τ > T )

η∗t =V ∗t − ξ∗t S∗t , (4.23)

where

V ∗t =ϕuoc (0, S0, X0, Y0) +

∫ t

0

∂

∂s
ϕuoc (u, Su, Xu−, Yu−)1(τ > u) dS∗u

+

∫ t

0

∫
R
e−

∫ u
0 r(Xv) dv {ϕuoc (u, Su, Xu− + h(Xu−, Yu−, z), Yu− − g(Xu−, Yu−, z))

− ϕuoc (u, Su, Xu−, Yu−)}1(τ > u) ℘̂(du, dz).

3. The residual risk at time t is given by

Rt(π
∗) =E

[∫ T

t

e−2
∫ u
0 r(Xv) dv f(Yu|Xu)

1− F (Yu|Xu)
×

∑
j 6=Xu

pXu,j (ϕuoc (u, Su, j, 0)− ϕuoc (u, Su, Xu, Yu))
2
1(τ > u) du

∣∣∣∣∣Ft
]
. (4.24)

Proof. Let 0 ≤ t ≤ T . We define

Nt :=e−
∫ t
0 r(Xu) duϕuoc (t, St, Xt−, Yt−)1(τ > T )

=e−
∫ t∧τ
0 r(Xu) duϕuoc (t ∧ τ , St∧τ , Xt∧τ , Yt∧τ ),

since ϕuoc (τ, Sτ , Xτ , Yτ ) = 0. By Itō’s formula, we obtain, under P ,

Nt =ϕuoc (0, S0, X0, Y0) +

∫ t

0

∂

∂s
ϕuoc (u, Su, Xu−, Yu−)1(τ > u) dS∗u

+

∫ t∧τ

0

∫
R
e−

∫ u
0 r(Xv) dv {ϕuoc (u, Su, Xu− + h(Xu−, Yu−, z), Yu− − g(Xu−, Yu−, z))

− ϕuoc (u, Su, Xu−, Yu−)} ℘̂(du, dz). (4.25)

By Doob’s option sampling theorem, the R.H.S of (4.25) is an Ft-martingale under P , which

is orthogonal to {Mt} (owing to the independence of {Wt} and ℘̂(·, ·)). Thus, as t ↑ T ,

equation (4.25) provides the Föllmer-Schweizer decomposition of NT (i.e, the discounted
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contingent claim). Hence, the propositions in Theorem 4.3.7 follow immediately.

4.4 An example of a volatility model

There are many different ways in which the volatility can be modelled. Based on empirical

data, several models of volatility can be constructed. We consider, in this section, a kind

of “Monday effect”, which is a surge in the volatility of stocks on Monday, due to the two

non-trading days preceding it. The volatility can also be assumed to drop throughout the

course of a typical week, only to increase sharply at the beginning of the trading week. One

of the models which captures this effect is the following:

σ(t, i) = σ(0, i)

[
α + 4(1− α)

(
tβ − 1

2

)2
]
,

where t is the time in weeks and α and β are parameters with 0 < α < 1 and β > 0.

This model assumes the volatility to decrease to a level α times its maximum value, before

jumping back up. The minimum volatility is attained at t = (1
2
)

1
β . In this model, higher

values of α indicate lower variation in the volatility, while β dictates the position of the

volatility trough, with higher values of β leading to later troughs.

Here is an example of the volatility model with σ(0, 1) = 0.2, σ(0, 2) = 0.5 and σ(0, 3) = 0.3,

with parameters α = 1
2

and β = 3.

Figure 4.1: Volatility vs. time
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Chapter 5

Defaultable bonds

5.1 The Market Model

We consider a market on a probability space (Ω,F , P ), with a finite state space χ =

{1, 2, . . . , k}. The market dynamics are modelled by an age-dependent process X = {Xt}t≥0

on χ, as described by equations (2.6) and (2.7). We define the following market parameters

as the functions

r : χ→ (0,∞), µ : (0,∞)×χ→ (0,∞), κ : (0,∞)×χ→ R, σ : (0,∞)×χ→ (0,∞). (5.1)

Here, r, µ, κ, σ are the interest rate, the drift coefficient, the dividend payout rate and the

volatility, respectively.

We consider a structural model of the company’s bond, in which the company defaults on

its bond if its asset value drops below a certain threshold. The company’s asset value, At,

is assumed to follow a geometric Brownian motion modulated by an age-dependent process

Xt given by equations (2.6) and (2.7). Thus,

dAt = At [(µ(t,Xt)− κ(t,Xt)) dt+ σ(t,Xt) dWt] , A0 > 0 (5.2)

where {Wt}t≥0 is a standard Wiener process independent of X. The market is also assumed
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to contain an amount Bt a locally risk-free money-market account, where

Bt = e
∫ t
0 r(Xu) du. (5.3)

We use the structural approach to model the credit risk, i.e the risk of the company defaulting

on its debt (bonds). We regard the firm’s equity as well as the defaultable bond as contingent

claims on the firm’s assets. The equity and the debt of the company are denoted by Et and

Dt, respectively.

5.1.1 Model 1

The first model that we consider is Merton’s classical model ([18]), with a few modifications

to account for the fact that the market is modulated by an age-dependent process. We

consider a coupon-free bond that can default only on maturity (t = T ). In the event of a

default, the creditors are entitled to the firm’s assets under consideration. Hence, the firm’s

equity holders receive a payoff only if AT > K, where K is a certain threshold. The total

payoff, at maturity, to the equity holders, is

E(T,AT , XT ) = (AT −K)+ = max(AT −K, 0). (5.4)

The price of the defaultable bond at maturity is given by

D(T,AT , XT ) = min(AT , K) = K − (K − AT )+. (5.5)

Since the above payoff is the same as that of a portfolio consisting of a default-free loan with

face value K, maturing at time T and a short European put option on At with dividend rate

κ(t,Xt), strike price K and maturing at time T , it suffices to solve the problem of pricing

European call options under the same market model. We have done that in 4.3.1. Therefore,

we do not produce any further details here.
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5.1.2 Model 2

Merton’s classical model does not allow a premature default. It may be that there is a critical

threshold below which the firm would be disposed to default on its debt. Such a model is

more favourable to the owners of the defaultable bonds. We consider a model where the firm

defaults if the asset value At dips below a critical threshold J for any time t ∈ (0,∞], or if

the terminal asset value, AT is less than K. We assume that J < K. Define the following

stopping times

τ1 =

T, if AT < K

∞, otherwise,
(5.6)

and τ2 = inf{t ∈ (0, T ]|At < J}. If At never drops below J , we set τ2 =∞. Then the default

time, τ , is given by

τ = min(τ1, τ2). (5.7)

If the default time is infinity, the firm does not default and the bondholders receive their

principal entirely. We can write the value of the defaultable bond at time T as

D(T,AT , XT ) = K − (K − AT )+ + (AT −K)+
1(min

t≤T
At < J). (5.8)

The above payoff can at once be recognised as that of a portfolio consisting of the following

three components:

1. A default-free loan of face value K, with maturity T ,

2. A short European put option on At with dividend rate κ(t,Xt), strike price K and

maturing at time T , and

3. A long European down-and-out call option with strike price K, barrier J and maturing

at time T .

The value of the defaultable bond under this model is at least as much as that under Merton’s

classical model, due to the presence of the third term in (5.8). The bondholders are thus

better protected. If the volatility does not depend explicitly on time, i.e. if σ(t, i) = σ(i) for

all t and i, then the pricing and hedging problems may be addressed using our analysis in

4.3.2.
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5.1.3 Model 3

In this model, the criteria for a default are the same as that for Model 2. The recovery rule,

however, is different. In case of a premature default, the bondholders are paid a fraction of

the face value of the bond at a pre-determined constant recovery rate, δ, which satisfies the

following inequality

0 ≤ δ ≤ J

K
(≤ 1) . (5.9)

The procedure for debt recovery is the same as that in Model 2 if the firm defaults at

maturity. If the firm does not default, the debt is paid of entirely at maturity. The value of

the defaultable bond at maturity can thus be written as

D(T,AT , XT ) = min(AT , K)1(τ ≥ T ) + δKB(τ, T,Xτ )1(τ < T ), (5.10)

where B(τ, T,Xτ ) denotes the price at time τ of a default-free couponless bond with unit

face value and maturity T . This model is different from the two models previously discussed

in that the recovery is at the time of the default, and not necessarily strictly at maturity.

As in Model 2, an integral equation formalism can be used in the case where the volatility

has no explicit time-dependence.

The market we are considering is incomplete (i.e not all contingent claims can be perfectly

hedged by self-financing strategies). This is due to the presence of semi-Markov modulated

regime switching. We can, however, minimize the residual risk arising from the incomplete-

ness of the market. We look for the price of derivative securities that minimizes the residual

risk. This can be done by considering the Föllmer-Schweizer decomposition of the relevant

contingent claim.
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