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Abstract
This thesis presents the realization of a Bose-Einstein Condensate (BEC) based

Atom-Optics �-Kicked Rotor experiment (AOKR) using 87Rb atoms and its utility in

atom interferometry and precision measurements. The AOKR involves subjecting the

BEC to a series of optical lattice pulses. The phase modulation of the BEC wavefunc-

tion due to the optical lattice potential splits it into discrete momentum states. When

the pulse period is equal to an integer or half integer multiple of the ‘Talbot time’, the

total energy imparted to the system per pulse either quadratically increases (resonance)

or is completely suppressed (anti-resonance). Monitoring these resonances allows mea-

surement of Talbot time which is connected to the atomic recoil frequency. The recoil-

frequency along with other physical quantities constitutes the fine structure constant ↵.

Since the value of ↵ governs the strength of interactions between elementary particles,

its precision measurement via different techniques is important. In the AOKR pulse

scheme that we follow, the optical lattice pulse phase modulation is negated by invert-

ing its sign for the rest of the pulses. The measurement of the revival of the initial state

or the fidelity then constitutes as the Talbot time measurement. The sign inversion of

the phase modulation is brought about by shifting the phase of the optical lattice by ⇡-

radians. The pulse scheme can also be thought of as a multi-path atom interferometer.

The BEC which is used as an input for this interferometer is obtained after laser cooling

in a Magneto-Optical Trap (MOT) and subsequent evaporative cooling in an hybrid opti-

cal crossed dipole trap. Since the quasi-momentum dynamics are theoretically predicted

to play an important role in the dynamics of the AOKR pulse scheme, the characteriza-

tion of the BEC initial state and its evolution is done. The finite momentum spread of

the BEC is theoretically proposed to affect the sensitivity of the AOKR pulse sequence.

We measure this predicted deviation from ideal dispersion-less AOKR behavior and it

agrees with the simulations. Ultimately, we measure the Talbot time with a relative un-

certainty of 1.2 ⇥ 10
�3. While execution of the phase-inversion pulse sequences, it is

observed that the momentum distribution within a diffracted order and the population

of the orders about zero momentum state shows an asymmetry when the phase differed

from ⇡ radians. This intra-order and inter-order asymmetry is characterized for the case

of two pulses. The intra-order asymmetry has been previously unreported and is unique



as it possess a net asymmetry without a net momentum current. The enhancement in

sensitivity of inter-order asymmetry to resonance suggests that it can be used as a probe

in future AOKR experiments.
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5.3 Variation of fidelity I(l): Fidelity (I) as a function of scaled pulse
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6.2 Top left: Intra-order asymmetry for N = 1 as a function of the lat-
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9.2 AOKR based interferometer: The blue spheres denote the atomic en-
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Chapter 1
Introduction

1.1 The wave-particle duality
The birth of quantum mechanics can be dated to the formulation of the quantum theory

of radiation by Max Plank in 1900 [3]. He postulated that energy can be absorbed and

emitted only in quantized units i.e E = h⌫ (E =energy, ⌫ = frequency and h = Plank’s

constant). This equivalence of an object’s energy to frequency, was generalized by L. de

Broglie by ascribing a ‘phase wave’ to all particles in his short article in 1923 [4]. In his

view, the equations of motion for particles had to evolve beyond the geometric approach

towards an ‘undulation’ or wave theory, similar to the case of ‘electromagnetism’. The

wavelength �dB of this ‘phase wave’ or the ‘deBroglie wavelength’ for a particle is

related to its momentum p and Plank’s constant h in the following way:

�dB =
p

h

This implies that particles should be able to show interference effects like diffraction and

two slit interference on encountering a structure that is of the order of their deBroglie

wavelength. This hypothesis was soon confirmed by the famous Davisson-Germer ex-

periment in 1923-27. They observed that electrons, when scattered off a nickel crystal,

show a diffraction pattern which obeyed the Bragg condition [5]. This diffraction pat-

tern was later observed by G. P. Thompson for the case of electrons bombarded on a thin

celluloid in 1927 [6]. Davisson and Thompson were jointly awarded the 1937 physics

1
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Nobel prize for these groundbreaking experiments. This ‘wave-particle duality’ was

later found in other particles such as neutrons [7], neutral atoms [8] and molecules [9].

Matter-wave studies have lead to a wide variety of real world applications. Electron

microscopes are used to probe biological and mechanical structures at length scales 105

times smaller the optical diffraction limit [10]. Neutron/helium diffraction has become

an indispensable tool for solid state physics to probe material surface/structure proper-

ties [11, 12]. Diffraction and interference in large molecules is being used to test the

spatial limit and other degrees of complexity to which quantum effects still remain ob-

servable [13]. Apart from these, matter-wave interference is also a prospective tool for

precision measurement. This will be discussed in the next section.

1.2 Matter-wave Interferometry
The interference of light plays a key role in both cutting-edge science and real world

applications. It has been instrumental in the development of astronomy, metrology,

spectroscopy, etc to name a few. It was in the limelight for being at the core of the

recent gravitational wave detection at the Laser-Interferometer Gravitational-Wave Ob-

servatory (LIGO) [14]. LIGO is the biggest interferometer ever constructed with its

two arms measuring ⇠ 4 km each in a Michelson configuration. In the same spirit,

matter-waves can also be manipulated and made to interfere forming an atom inter-

ferometer. Similar to the optical interferometer, the initial wavefunction is separated

into two paths in momentum/position space and then recombined to observe interfer-

ence. A major advantage such interferometers have over the optical ones is that matter

interacts strongly with physical fields like gravity and electromagnetic. This makes pre-

cision measurement of these fields possible with matter-wave interferometers. Despite

of these advantages, carrying out interferometry with matter-waves is more challeng-

ing because of two major reasons: 1. the smaller deBroglie wavelength resulting from

the higher temperature of these particles makes it difficult to observe interference, 2.

lack of straightforward optics to manipulate such particles while preserving coherence.

The smaller deBroglie wavelength meant that the early matter-wave interferometry was

carried out using lighter particles like electrons and neutrons. The first neutron interfer-

ometer made use of single crystal silicon for neutron beam manipulation [15]. It was
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the first kind of matter-wave interferometer to measure gravitationally induced quantum

interference [16]. The technique of neutron interferometry is used to study gravity [17],

precision measurement of scattering lengths [18] and search for dark energy [19]. A

downside of neutron interferometer’s simplicity is that it requires state-of-the-art vibra-

tion isolation and precisely aligned crystal facets.

1.3 Atom Interferometry (AI)

Figure 1.1: Atom interferometer in a Mach-Zehnder (MZI) configuration: The atomic
cloud (blue sphere) is split and recombined by three pulses of a running wave optical lattice
formed from the laser beams with wave-vectors k1, k2 and frequencies !1, !2, thus forming
an atom interferometer. The states |0i and |1i are the momentum states coupled by the Bragg
interaction with the lattice. The interferometer sensitivity is directly proportional to the blue
shaded area, which is the total area enclosed by the interferometer.

With the advancement in laser and cold atom technology, realization of matter-wave

interferometer based on atoms became possible. The rapid improvements in techniques

to generate ultra-cold atoms increased the attainable deBroglie wavelength of atom sam-

ples to ⇠ 1 � 10 µm [20–22]. As mentioned before, the interferometric paths consist

of differing momentum states and require diffracting elements for momentum state ma-

nipulation. Initially there were several demonstrations of AI with the diffraction optics

consisting of micro-fabricated solid structures with silicon as the base material [23–25].

These were of transmission gratings with periodicity ⇠0.1-1 µm. For the case of atoms
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these were later replaced with a more reliable stationary or running optical lattice red-

detuned to the atoms resonant transition. The coupling between the optical field and the

atoms is due to the induced electric dipole moment. By 1980s, the lasers had achieved

sufficient spectral-densities to achieve coherent splitting in momentum via dipolar cou-

pling as demonstrated by Pritchard et. al. for the case of sodium atomic beam [26].

Thus the tool-kit to create atom interferometers was ready.

We will now describe briefly a typical configuration used by AIs today. Figure 1.1

shows an AI schematic in a Mach-Zehnder configuration. The first such interferometer

was demonstrated by M. Kasevich and S. Chu in 1991 [27]. The blue spheres represent

a cold atomic ensemble undergoing momentum state manipulation via Bragg diffrac-

tion from pulses of an optical lattice potential. The first ⇡/2-pulse pulse transfers puts

the ensemble in a superposition of two momentum states |0i and |1i and can be con-

sidered as the beam spiltter pulse. The ⇡-pulse acts as a mirror pulse and inverts the

momentum states of the two arms, thus refocusing them to interfere. The two momen-

tum states finally interfere at the location of the final ⇡/2- pulse or the readout pulse.

The readout state of the interferometer is dependent on the total phase �� gathered

during the pulse sequence. In an optical interferometer there is a sinusoidal variation

of intensity of the fringes when the path length is scanned. In an AI the fringe pattern

is observed by monitoring the population in one of the states that varies with the total

phase as (1 + C sin(��))/2. Here, C is called the contrast of the interferometer. The

interferometer signal can be scanned by varying the phase of the last ⇡/2-pulse. The

phase uncertainty �� in the fit to (1 + C sin(��))/2, determines the sensitivity of the

interferometer. Apart from the phase gathered from the lattice beams, any physical field

present which interacts with the atoms also introduces a phase called the propagation

phase in the interferometer [28]. As an example, the phase acquired due to gravitational

acceleration g is given by ��g = 2kgT 2. These interferometers have typical integra-

tion times of ⇠ 10 ms which makes the total phase acquired due to gravity ⇠ 10
5 rad.

Thus, an uncertainty in phase measurement of �� ⇠ mrad which is typical, allows these

interferometers to reach single shot sensitivities of �g/g ⇠ 10
�9 level [29, 30].

The acceleration and rotation measurement performance of the standard AI config-

uration as described in Figure 1.1 can be compared to that of an optical interferometer.
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Figure 1.2: Multi-path interferometer schematic: The blue spheres represent cold atom cloud
as the initial state with zero momentum in the frame of the optical lattice. The optical lattice
pulses couple multiple momentum states (denoted by black arrows), in contrast with a standard
two-path interferometer. Here |n ~Ki denote the momentum state populated by the atomic
ensemble on interaction with the lattice (K = k1 + k2).

In this configuration, an AI can measure rotation which occur perpendicular to the plane

of its enclosed area (A). As derived in Ref. [31], the phase shift in an AI induced due to

a rotation rate ⌦ is given by:

�atoms =
4⇡mA⌦

h

Where, m is the mass of the atoms used in the AI. This phase shift occurs due to the

Sagnac effect. For the case of an optical interferometer the corresponding phase shift is

given by:

�light =
4⇡A⌦

�c

Where, � is the wavelength of the light used in the interferometer and c is the speed of

light. Thus the ratio of phase shifts can be used as a criteria for comparing the relative

sensitivity of the interferometers. This ratio Rrotation = �atoms/�light = m�ch�1 can

be as high as ⇠ 10
10 for a typical set of parameters. It is reduced to about ⇠ 10

4
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due to two factors: 1. the fact that light makes multiple round-trips in an optical ring

gyroscope in the time that the AI takes to close once and 2. the flux of cold atoms is

much less in comparison to photon flux of a laser source. Among the state-of-the-art

AIs, a rotation sensitivity of 3⇥10
�10 rad/s (Earth’s rotation rate = 7.29⇥10

�5 rad/s) has

been demonstrated which is in favorable comparison to the state-of-the-art fiber optic

gyroscopes [32].

AI has undergone rapid developments over decades and the current generation in-

terferometers rival the optical interferometers in absolute gravity [30, 33–36], gravity-

gradient [37–39] and magnetic field gradient [34,40] measurement sensitivities. Unlike

other gravimeters like the falling corner-cube interferometer, AI has no moving parts

and is thus ideal for on field applications like air/ship borne gravity surveys [41, 42],

aid marine navigation in GPS denied environments [43], monitoring seasonal aquifer

changes [44], gravity reference for a Kibble balance [45],etc. AI also has been an ideal

test-bed for exploring fundamental physics experiments such as testing the equivalence

principle [46], detecting dark energy [47], precision measurements of the fine structure

constant [48] and the gravitational constant [49], tests of quantum superposition at large

length scales [50] etc. AI also lies at the core of the MIGA (Matter Wave laser Inter-

ferometric Gravitation Antenna) experiment which aims to detect gravitational waves

in a frequency band (100 mHz-1 Hz) not accessible to current generation light based

gravitational wave detectors [51]. When MIGA reaches design sensitivity, it will allow

observation of the low-frequency gravitational waves which begin years before the final

in-spiral phase of the black-hole mergers.

The interferometers explored above only utilize two momentum states in their work-

ing. This simplifies the readout and the associated uncertainties in it. Although a better

AI architecture is unlikely to emerge, a new interferometric scheme can be advanta-

geous for specific applications such as the measurement of atomic recoil frequency and

gravitational acceleration. One such non-standard configuration of AI are called multi-

path interferometers, which utilize more than two momentum states. The next section

describes a few leading realizations of multi-path interferometers.
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1.4 Multi-path atom interferometers

As shown in Figure 1.2, the primary difference between the traditional two-port and the

multi-path interferometers is that there are multiple interferometer loops present. For

the two path interferometers this type of coupling is undesired and such loops are known

as parasitic interferences [52]. However, certain multi-path schemes have been shown to

perform competently with the standard AI configuration for the measurement of atomic

recoil frequency and the acceleration due to gravity. The recoil frequency !r is defined

as the Er = ~!r, where Er is the energy imparted to the atoms after exchange of a

photon pair from the diffracting optical lattice. The measurement of recoil frequency

is one of the sought after pursuits of atom interferometry as it is directly related to the

precision measurement of the fine structure constant (↵). ↵ characterizes the strength

of interaction between elementary charged particles and thus holds an important place

in the Standard model. Currently, Holger Müller’s group at the University of Berkeley

holds the record of measuring ↵ with an uncertainty of 0.2 parts per billion (ppb) with

a Ramsey-Bordé interferometer and it reveals a 2.5� tension between the value mea-

sured by alternative means [53]. Alternative measurement of ↵ is important as such

discrepancies between measurement techniques may point towards new physics.

One of the first demonstrations among the multi-path interferometers used a su-

perposition of atomic ground states with different momenta, where a pair of counter-

propagating beams put the atoms in a non-absorbing dark state [54]. Due to multi-beam

interference, the phase-readout is like an Airy pattern rather than a sine wave analogous

to a Fabry-Pérot interferometer output. Though the transfer efficiency to higher momen-

tum states was high in this type of interferometer, eventually it was succeeded by optical

lattice based techniques. A leading contender capable of reaching ppb level of accuracy

is the contrast interferometer (CI). This interferometer uses a Bose-Einstein Condensate

(BEC) as the source and is arranged in a symmetric three path configuration [55]. An

important advantage that CI has over traditional interferometry is that the recoil phase

is recorded in the contrast of the output signal and not its phase. This makes the readout

inherently immune to lattice vibration noise which is an important systematic effect that

has to be considered in two-path interferometers. The next list of multi-path interferom-



8 Chapter 1. Introduction

Rydberg constant
0.007 ppb

Electron mass 
0.03 ppb

Rb87 mass
0.075 ppb

Determined by 
atomic recoil frequency

Figure 1.3: Measurement of the fine structure constant (↵): The uncertainty in the Rydberg
constant and rubidium mass is taken from Ref. [1]. The uncertainty in the electron mass value
is taken from Ref. [2]. ! denotes the angular frequency corresponding to the optical lattice
wave-vector.

eters we introduce are based on a phenomenon known as the matter-wave ‘Talbot-Lau’

effect. We will briefly introduce this effect in the next section.

1.4.1 The Talbot effect

The Talbot effect in light was first reported by H.F. Talbot in 1836 [56]. On illuminat-

ing a grating with a sunbeam and imaging the transmitted light via a lens, he observed

sharp lines or bands of colors, the direction of which was parallel to the lines of the

grating. In his report he described the patterns as being sharp enough to be compared to

a “tissue woven with colorful thread”. On traversing the distance between the lens and

the grating, these bands repeated distinctly and indefinitely even when the grating was

greatly out of focus of the lens. The occurrence of this repetition of band patterns was

later explained to be a natural consequence of near field diffraction by Lord Rayleigh

in 1881 using the Fresnel diffraction theory [57]. He derived the distance interval be-

tween two such revivals of the grating intensity pattern to be a2/�. Figure 1.3 shows

this reappearance of the intensity pattern repetition having a spatial periodicity of the

grating period. calculated near field pattern for a grating. This “lens-less” focusing and
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Figure 1.4: The optical Talbot effect: Simulated intensity profile |E|2 of a plane wave with
wavelength � incident from the left on a grating with period a. The color bar on the right is
an indicator of the same (intensity = |E|2, E being the electric field amplitude). The intensity
pattern is repeated with a shift of a/2 in the y-direction after integer multiples of LT . The
fractional Talbot effect at x = LT /2 is also visible.

self-imaging of the grating structure enables numerous applications of this effect in the

optical domain such as creating accurate grating copies [58], Talbot array illuminators as

optical interconnects [59], Talbot cavities for phase locking of a laser diode array [60],

X-ray phase contrast imaging of soft tissue [61], EIT based imaging of atoms [62], etc.

Since this phenomenon is based on coherent interference of waves, it has also been

observed in other quantum mechanical systems as well for example: surface plasmon

polaritons [63], molecular beams [64], atomic systems [25] etc.

In the case of atomic systems, the spatial Talbot effect was first demonstrated for

a beam of Na atoms [65]. Apart from the spatial Talbot effect, a temporal version of

the effect also exists for the case of matter-waves. In this ‘temporal Talbot effect’, the

wavefunction of the atoms/molecules diffracting from a pulsed optical lattice undergoes

periodic revivals in time. The time period of these revivals is called the Talbot time.

The origins of this Talbot effect lie in the discrete nature (in integral units of ~K) of

the momentum exchange from interaction with the optical lattice. To observe this effect

with good signal-to-noise ratio (SNR), the atomic ensemble must possess a sub-recoil

momentum width (�p << ~K) and thus it was demonstrated first for the case of a
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BEC [66]. This near-perfect revival of the initial state in the ‘BEC + pulsed optical

lattice’ system, also called as the BEC �-kicked rotor. In the �-kicked rotor, the BEC

is subjected to a series of sharp Dirac-� like pulses of a far detuned optical potential.

It is an experimental realization of the quantum �-kicked rotor Hamiltonian [67]. The

classical version of the Hamiltonian displays chaotic behavior in a certain parameter

regime and some signatures of this chaotic behavior is imprinted in the quantum dy-

namics. This makes ia a paradigmatic model for quantum chaos studies such as: chaos

assisted quantum dynamical tunneling [68], quantum-accelerator modes [69], quantum

ratchets [70], etc. A more detailed description of quantum chaos is given in chapter 4.

The BEC �-kicked rotor system is also an emerging platform for executing highly con-

trollable quantum walks, where the atomic spin constitutes the internal coherent ‘coin

state’ which is entangled with the external momentum state [71].

The measurement of Talbot time (TT ) is equivalent to that of the single-photon recoil

frequency as TT = ⇡/2!r. An attractive feature of measuring Talbot time in the �-

kicked rotor is that the signal width has been shown to display sub-Fourier scaling with

the interrogation time i.e �f ⇥ T < 1 (�f being the frequency resolution) [72]. This

type of scaling has been shown with BEC based �-kicked rotor, where the Talbot time

measurement resolution increased as N2, N being the number of pulses [73]. In chapter

5, we explore in detail a BEC �-kicked rotor scheme which is even more sensitive where

the resolution scales as N3. Apart from these BEC based approaches there have been

promising demonstrations of cold atom based recoil frequency measurement schemes.

These schemes are based on the Talbot-Lau effect, which is the Talbot effect analog for

incoherent ensembles (�p >> ~K).

1.4.2 The Talbot-Lau effect

In an initial ensemble with a broad distribution of momentum �p >> ~K, each mo-

mentum state carries a different Doppler shift. After the first optical lattice pulse, the

diffracted wavefunction originating from each momentum state revives after Talbot time

but due to the different Doppler shifts, the net effect gets washed out and there is no

clear spatial pattern in the atomic distribution. If two pulses with a temporal separa-

tion of T = nTT/2 (n being a positive integer) are applied, the density distribution
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at time T after the second pulse is spatially periodic consisting of several components

at integer multiples of the optical lattice vector K. In the double pulse approach, the

Doppler shifts get canceled out at time 2T after the first pulse [74]. This is analogous

to realizing a double slit experiment with an incoherent light source, where a single

slit is required between the illumination and the double slit arrangement to observe in-

terference. The contrast of the density modulation periodically repeats in intervals of

the recoil frequency 2!r and the readout of this pattern constitutes measurement of the

recoil-frequency.

In Ref. [75], !r was measured with a statistical precision of 37 ppb using Talbot-Lau

interferometer geometry. Here, the readout of the spatial modulation was carried out by

back-scattered light from the Bragg structure formed due to the interference. The cold

atom Talbot-Lau interferometer was also demonstrated to be capable of performing ppm

level measurement of local gravity [76, 77]. Here, a dissipative mechanism was used

where the lattice light was tuned very close to the resonance. At each pulse only the

atoms which fell at the nodes of the periodically repeating structure and the lattice light

survived. Monitoring these ‘survival resonances’ enabled measurement of gravitational

acceleration.

The Talbot-Lau interferometer is also used for studying the quantum interference of

large molecules (mass ⇠ 800-2000 amu), where the deBroglie wavelength is orders of

magnitude lesser than the size of the molecules [78, 79]. The study of quantum inter-

ference in such large and complex structures helps in answering fundamental questions

about decoherence and quantum to classical transition [80]. It is also used to study the

magnetic and electronic properties of large molecules [81].

1.5 Objective of the thesis
As discussed in section 1.4.1, there are BEC based �-kicked rotor schemes where the

Talbot time measurement resolution scales favorably with the interrogation time. This

thesis explores the utility of a particular scheme proposed in Ref. [82]. It sets up the

simulation and experimental methods that are required to carry out �-kicked rotor exper-

iments with BEC. The experimental results that are obtained, confirm for the first time,

the theoretical constraints placed on the measurement scheme proposed in Ref. [83].
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These were not observed in the earlier experiment [84]. These findings are also relevant

in light of the recent revival of the BEC �-kicked rotor platform for conducting quantum

random walks [71].

In addition to the above, the thesis presents two previously unexplored asymme-

try effects in the momentum distribution of the BEC �-kicked rotor. Based on these, we

suggest an alternative way of measuring the Talbot time and the lattice phase. In another

atom-light interaction regime, where the optical lattice pulse duration can no longer be

approximated as a Dirac-� function, we study the preparation of initial states with a net

non-zero momentum using Bragg diffraction. These states in combination with the �

pulses were then used to demonstrate a controllable quantum ratchet. This demonstra-

tion paves the way for next generation of BEC based �-kicked rotor experiments where

the dynamics can be tuned by controlling the initial state preparation [85, 86]. Bragg

diffraction was also used to measure the momentum distribution of the BEC, which is

an important factor that affects the �-kicked rotor experiments.

1.6 Organization of the thesis
Chapter 2 describes the production of the Bose-Einstein condensate (BEC) of 87Rb

atoms via laser cooling in a Magneto-Optical Trap (MOT) and evaporative cooling in

a hybrid crossed Optical Dipole Trap (ODT). Simplified expression for the scattering

force in a MOT and the conservative force in an ODT for a two level system is derived.

The chapter also discusses the BEC wavefunction confined in a harmonic potential and

the effects of repulsive interactions on it. This gives an estimate of evolution of the

momentum width of the BEC after releasing it from the trap.

Chapter 3 describes the coherent diffraction of the BEC in different regimes when

subjected to a far detuned optical lattice potential. Two extreme interaction regimes are

discussed i.e the Raman-Nath regime where the lattice potential is relatively high and

interaction time is short and the Bragg regime where the conditions are vice versa. The

optical and electronic layout for the preparation and control of the optical lattice is also

briefly discussed.

Chapter 4 introduces the �-kicked rotor Hamiltonian. Classical dynamics and ap-

proach to the chaotic regime is briefly discussed. The quantum version of this Hamil-
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tonian can be realized with the Atom Optics �-Kicked rotor (AOKR). The quantum

dynamics can be classified broadly in two regimes i.e the generic ‘dynamical localiza-

tion’ where the wavefunction is effectively ‘frozen’ due to destructive interference and

the ‘quantum resonances’ where the system undergoes ballistic growth in energy.

Chapter 5 introduces a BEC based AOKR pulse scheme to measure the Talbot

time. The scheme relies on the initial state revival or the fidelity, under the action of

the optical lattice pulses. For a plane wave initial state, it is expected that the scaling of

the measurement sensitivity of this scheme goes up as N3, where N is the number of

pulses in the sequence. This sub-Fourier scaling is highly desirable for the measurement

of Talbot time. The effect of momentum width of the BEC on the performance of the

pulse scheme is discussed. We find that the scaling of measurement sensitivity deviates

from the cubic law due to the finite momentum width. We also demonstrate the AOKR

functioning as a momentum filter due to the momentum sensitivity of the pulse sequence

to quasi-momentum.

Chapter 6 describes two different types of asymmetries in the momentum distribu-

tion of the BEC based AOKR, which are a function of the relative phase of the optical

lattice between pulses. This chapter discusses this ‘intra-order’ and ‘inter-order’ asym-

metry which occur at the Talbot time and away from the Talbot time respectively.

Chapter 7 describes the realization of a quantum-ratchet using AOKR dynamics.

The initial state is placed in a superposition of the first and the zeroth order momentum

state using Bragg diffraction. The subsequent application of AOKR pulse sequence

induces a net momentum current in the system which grows with the number of pulses,

thus forming a quantum ratchet. The direction of this momentum current is a function

of the relative phase between the AOKR lattice and the Bragg diffraction lattice.

Chapter 8 describes the numerical methods used for simulating the AOKR dynam-

ics. The simulations are done using the split-operator method where, the free propa-

gation operator is diagonal in momentum space and the optical lattice kick operator is

diagonal in position space in the �-kick approximation. The numerical code is imple-

mented in Python 2.7.

Chapter 9 is the concluding part of the thesis which summarizes the work. Based on

the experiments presented in this thesis, suggestions are listed for the future experiments
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that can be carried out in the 87Rb BEC setup.

Appendix section describes phase noise characterization using optical interferome-

try, Bragg spectroscopy for BEC momentum width measurement and absorption imag-

ing theory.



Chapter 2
Introduction to laser cooling and
Bose-Einstein Condensate

This chapter elucidates the principles of laser cooling of atoms and the subsequent pro-

duction of a Bose-Einstein condensate (BEC) of 87Rb atoms. The atoms are first trapped

and cooled to sub-Doppler temperature in a Magneto-Optical Trap (MOT) and are then

transferred to a far-detuned optical dipole trap for evaporative cooling. The atomic gas

reaches the BEC state at the end of the evaporative cooling cycle. We briefly discuss

the ground state of the BEC under harmonic confinement and its expansion after release

from the trap.

2.1 Phase space density (PSD)
The ultimate goal of cooling techniques that are described below is to reach the quantum

degenerate state i.e the Bose-Einstein condensate. Before we introduce the concepts

behind laser and evaporative cooling, we define phase-space density (PSD). PSD is a

metric that is useful for quantifying the overlap between the current state of the atomic

cloud and the quantum degenerate state. It is defined as:

⇢ = n�3dB (2.1)

Where, n is the density and �dB = h/
p
3MkBT is the deBroglie wavelength of the

atoms. For an un-trapped gas, the BEC phase transition occurs at ⇢ ' 2.612 [87].

15
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Typically, an atomic gas starts its journey towards BEC at ⇢ ⇠ 10
�10 [88]. We now

discuss the cooling techniques that lead to a gain in PSD.

2.2 The two-level system

To understand the optical forces behind laser cooling, it is useful to model the atom-light

interaction using a two-level system. This reduction of multi-level atomic states is valid

as long as the light addressing the relevant transition possess narrow frequency spread,

which is true for the case of laser radiation [89]. The two-level atomic wavefunction

can be given by:

| (t)i = Ca(t)e
�i!at |ai+ Cb(t)e

�i!bt |bi (2.2)

Where, |ai and |bi represent the eigenkets of the bare Hamiltonian without the electro-

magnetic interaction. Separating out the e�i!t terms from the complex coefficients, we

ensure that Ca(t) and Cb(t) are influenced only by this interaction. The term describing

the interaction between the atomic electron (charge q) and an electromagnetic field with

the electric field vector ~E(~R, t), is given by:

V = �~d · ~E(~R, t) (2.3)

Here ~d = q~r is the dipole moment, ~r is the position vector of the electron and ~R is the

same for the center of mass of the atom. This interaction term is valid in the limit that

the electric field doesn’t change appreciably over the size of the atom and is known as

the electric dipole approximation [88]. Unless the atom has a permanent electric dipole

moment, the diagonal matrix elements of the interaction term like ha|V |ai will vanish.

Thus, the off-diagonal matrix elements are given by:

Vab = �dabE(~R, t) (2.4)

Where, dab = ha|q~r · Ê|bi is the component of the dipole vector along the direction of

the electric field. Since this matrix element couples the two states, it can be called as the

transition matrix element. Consider an electric field oscillating with frequency !l i.e.

E(t) = E0 cos(!lt). Ignoring the spatial dependence, for this oscillating electric field,
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the transition matrix element becomes:

Vab = �dabE0 cos(!lt) (2.5)

We now proceed to derive how this oscillating electric field affects the time evolution of

the two states. To make calculations convenient, we use a unitary transformation on the

state vector | i, such that:

| (t)i = Ca(t)e
i(�/2�!a)t |ai+ Cb(t)e

i(��/2�!b)t |bi (2.6)

Where � = !�!l is the frequency detuning of the radiation from resonance. Substitut-

ing Eq. 2.6 in the Schrödinger’s equation gives rise to two coupled differential equations

in Ca and Cb. These equations are:

Ċa + i
�

2
Ca = i

E0dab
2~ Cb (2.7)

Ċb � i
�

2
Cb = i

E0dba
2~ Ca (2.8)

The term ⌦ = E0dba/~ is termed as the ‘Rabi frequency’ of the transition. These equa-

tions are used to derive the two kinds of forces resulting from the dipolar interaction.

These forces are used to cool and confine the atomic sample and will be discussed in

the subsequent sections.

2.2.1 The scattering force

The success of cold atom experiments comes from their ability to confine and cool down

atoms in a highly controllable manner. At the centerpiece of these experiments is the

technique of laser cooling. This method of cooling relies on the near resonant scattering

of laser light by atoms. The properties of the radiation field can be tailored such that it

also provides spatial confinement. We will now take a look at some basic concepts that

are behind this cooling technique.

The subsequent discussion is for a two level atom. The dynamics of the two level
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system can be recast in terms of the density matrix, which is defined as:

| i h | =
✓
C̃a

C̃b

◆
( C̃⇤

a C̃⇤
b ) =

✓
⇢aa ⇢ab
⇢ba ⇢bb

◆
(2.9)

Where, C̃a = Caei�t/2 and C̃b = Cbe�i�t/2. The Schrödinger equation can be now

written as a set of three coupled differential equations in terms of the density matrix

elements. These equations are collectively known as the optical Bloch equations:

u̇ = �v (2.10)

v̇ = ��u+ ⌦w (2.11)

ẇ = �⌦v (2.12)

Where, u = ⇢ab + ⇢ba, v = �i(⇢ab � ⇢ba) and w = ⇢aa + ⇢bb. We now incorporate

the effect of spontaneous emission on these equations such that the population of the

excited state decays with a time constant �. Therefore, ⇢aa(t) = ⇢aa(0)e��t. Under

steady state conditions t >> �
�1 and strong driving ⌦ ! 1, the Bloch equations can

be used to derive the population of the excited state [88]:

⇢aa =
⌦

2/4

�2 + ⌦2/2 + �2/4
(2.13)

Thus, the force imparted by the field with wave-number k = 2⇡/� and light intensity I:

Fscattering = ~k⇢aa� = ~k�
2

I/Is
1 + I/Is + 4�2/�2

(2.14)

Where, Is = ⇡�hc/3�3 is defined as the saturation intensity of the transition. In con-

junction with a varying magnetic field, this scattering force force is first employed to

slow down the atoms from the heated atomic reservoir in cold atom experiments. This

is done in the form of a laser beam pointed in a direction anti-parallel to the oven flux

. A spatially varying magnetic field is also utilized to keep the slowed atoms near res-

onance by using the Zeeman effect. This setup is called the Zeeman slower and is an

essential first stage as the potential depth of the subsequent traps which are used is not

enough for efficient capture of the hot atoms emanating from the oven [90]. For typical
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alkali metal experiments, it can slow down atoms to milli-Kelvin temperatures in about

a meters distance [91]. More details of the Zeeman slower that is used in our setup, are

described elsewhere [92,93]. After the atoms have been slowed down, they are captured

by another trap which employs the resonant scattering force and a quadrupole magnetic

field. This trapping configuration is called a magneto-optical trap (MOT) and will be

discussed in the next section.

2.3 The magneto-optical trap (MOT)

B
E

σ σ-

z

mJ mJ

-1

0 0

-1

Figure 2.1: MOT schematic for J = 0 ! J = 1 transition. The Zeeman splitting (exagger-
ated in the figure) caused by the magnetic field gradient causes preferential absorption of light
from either the �+ or the �� beams depending on the atoms position along the z-axis. This
position dependent imbalance between the imparted force from the two beams drives the atoms
towards z = 0 resulting in a net confinement.

The magneto-optical trap (MOT) uses a combination of six red-detuned laser beams

arranged in orthogonal pairs along with a quadrupole magnetic field to achieve con-

finement of neutral atoms. It has been a work-horse for cold atom experiments and is

the first trap that the atoms encounter after being slowed down by the Zeeman slower.

The captured atoms can then be transferred to other traps for further experiments. The

spatially varying magnetic field induces a Zeeman shift in the atoms, causing an imbal-

ance in the absorption from a pair of orthogonal laser beams thus creating a trapping
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configuration.
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Figure 2.2: 87Rb D2 line: (Left) The energy level diagram of the D2 transition with hyper-
fine splitting. The cooling laser is red detuned by about 2� from |F = 2i ! |F 0 = 3i, where
� = 2⇡ ⇥ 6 MHz while the repumper is almost resonant to the |F = 1i ! |F 0 = 2i transition.
(Right) the saturation absorption spectroscopy signal which is used to lock the lasers on the
relevant transitions. The numerals on top of the spectra denote the F 0 state. The lines which
possess two numbers represent the cross-over resonances.

We now discuss this mechanism for a simplified |J = 0i ! |J = 1i transition. As

shown in the Figure 2.1, the degeneracy of the excited state |J = 1i is broken by the

magnetic field gradient and it splits into three magnetic sublevels mJ = �1, 0,+1.

To have selective absorption on the transitions |J = 0,mJ = 0i ! |J = 1,mJ = ±1i,
pairs of orthogonal beams have circularly polarized light with opposite helicity. On the

left side of the B = 0 axis, the beam having �+ polarization is absorbed and scattered
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preferably in comparison to the �� beam due to the detuning of the �+ beam being

closer to the laser frequency. In addition to this, according to the selection rules for

electric-dipolar transition, absorption of the �+ beam is favored over the �� beam. This

pushes the atoms towards the field zero resulting in confinement. It can be seen that

the detuning and the field gradient decides the spatial point at which the maximum

absorption takes place and hence the extent of the trap. Thus, the trap can be compressed

by reducing the detuning or ramping up the field gradient. In addition to confinement,

the atoms also undergo cooling in all directions, due to the directional absorption and

scattering in random direction. The atoms undergo a random walk in momentum space

due to these scattering events and it can be shown that the ultimate limit on the reduction

of kinetic energy via these processes has a limit [88]. This is called ‘the Doppler limit’

and its temperature equivalent is given by:

kBTDoppler =
~�
2

(2.15)

Figure. 2.2 shows the energy level diagram of the D2 line of 87Rb. The transition

used for cooling is |F = 2i ! |F 0
= 3i. For cooling, the laser beams are kept red-

detuned at -2� where, � is the natural linewidth of the cooling transition (⇠ 2⇡ ⇥ 6

MHz) and the magnetic field gradient is about 13 Gauss/cm. The value of � puts the

laser cooling Doppler limit at ⇠146 µK. Since the detuning is enough to cause finite

spontaneous emission an additional repumping laser is required at |F = 1i ! |F 0
= 2i

bring the atoms back to the cooling cycle. The apparatus for generation of this cooling

light is described in more detail in the following works Ref. [92, 93].

In order to further cool and increase the density of the trapped atoms (causing a

corresponding increase in PSD), the atoms have to be transferred to a different trap

which has a smaller volume than MOT [94]. Thus to facilitate the transfer, the MOT

field gradient is increased to 22 G/cm over 40 ms to compress the atomic cloud and

the repump beam is gradually extinguished. The detuning is also increased to -12 �

in order to decrease the atom-atom repulsion effects due to photon re-absorption [95].

This is called as the compressed MOT technique. Due to the limitations on laser cooling

discussed before, further cooling has to be done using another kind of technique called
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the evaporative cooling. This is done in an optical dipole trap which will be discussed

in the next section.

2.4 The optical dipole trap

r

E
excited state

ground state beam du
sing lens

Figure 2.3: The AC Stark effect. (Left) The spatially varying energy splitting between the
ground and the excited state of the ‘atom+light field’ system for a negative detuning �. The blue
sphere represents the atoms which are attracted towards the point where the down shift in energy
is the highest i.e the point of highest intensity of the beam. (Right) Schematic of the far-detuned
crossed dipole trap configuration used in our setup. A pair of 1064 nm laser beams are focused
at the position of the atoms with a beam waist (2w0) of about 70 µm. The initial power in the
beams is about 6 W, providing confinement potential in the range of ⇠ 100s µK.

To understand the origin of the optical dipole first let us recast the equations derived

previously for the two-level system interacting with a monochromatic light field i.e Eq.

2.7 and 2.8:

i
d

dt

✓
Ca

Cb

◆
=

✓
�/2 �⌦/2

�⌦⇤/2 ��/2

◆✓
Ca

Cb

◆
(2.16)

Here, ⌦ = E0dab/~ is the resonant Rabi frequency of the transition. This system has

solutions of the form: ✓
Ca

Cb

◆
=

✓
a

b

◆
ei�t (2.17)
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The phase term � can be calculated from solving the determinant of the matrix in Eq.

2.16 and comes out to be � = ±
p
�2 + ⌦2/2. As shown in Figure 2.3, in the absence of

interactions (⌦ = 0), the two states can be interpreted as being separated by �. Typically

for the optical dipole traps employed in cold atom experiments, the trapping laser is

kept far detuned from the resonant transition to reduce decoherence due to spontaneous

emission [96]. Therefore, in the limit � >> ⌦:

� = ±
✓
�

2
+
⌦

2

4�

◆
(2.18)

The eigen-states corresponding to the two values of � are called the ‘dressed states’

of the atoms and contain a superposition of the atomic ground and exited state [88].

The energy separation between these two states in the absence of the dipolar interaction

is ~�. The presence of light induces a shift in these two states w.r.t the unperturbed

energies and is called the ‘light shift’ or ‘AC Stark shift’. In the presence of a spatially

varying laser field, the shift in the state having lower energy can be considered as a

potential and the atom feels a conservative force as the gradient of this potential field:

Udipole = � ~
4�
⌦

2
(r) = � ~�2

8�Is
I(r) (2.19)
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Figure 2.4: Trapping frequency measurement: Atoms were given an impulse of magnetic
field force and allowed to oscillate for a variable time t in the optical dipole trap before being
released. The y-axes of the plots denote the displacement after a period of time-of-flight which
captures the velocity of the atoms when the trap is turned off. Vertical (2⇡ ⇥ 122 ± 5 Hz) and
horizontal (2⇡ ⇥ 134± 7 Hz) denote orientation w.r.t gravity.
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For a red-detuned field the potential minima occurs at the point of highest intensity.

Thus a far detuned focused laser beam can be used to create a confinement for the

atoms. This type of trap is called a far-detuned optical trap (FORT) and is an alternative

to magnetic traps for carrying out evaporative cooling and ultimately achieving BEC.

For a Gaussian beam with waist w0 and peak intensity I0, the transverse dipole potential

is given as:

Udipole = �~�2

8�

I0
Is
e�2r2/w2

0 (2.20)

For alkali atoms, this type of trap provides a trap depth in the range of ⇠ 100 µK using

commercially available high power infra-red (IR) lasers and thus can capture atoms with

good efficiency from MOT. As shown in Figure. 2.3 (right), the dipole trap in our setup

is arranged in a crossed beam configuration. The two beams are derived from a 20 Watt

IR fiber laser (IPG photonics, YLR-20-1064-LP-SF). The initial beam is split into two

paths, each one going through an acousto-optic modulator (AOM) for intensity control.

The two beams are then focused to achieve tight 3-D confinement for atoms. We also

keep the magnetic field gradient on at a value of 24.7 Gauss/cm to support the crossed

dipole trap in the direction of gravity. This configuration is explained in more detail

in Ref. [93]. One can characterize the harmonic confinement of this trap by measuring

the trapping frequencies along different axes. This is done by giving an impulse to the

atoms to displace them and observing the resultant oscillations in position. Fig. 2.4

demonstrates this measurement for the case of crossed dipole trap used in this work.

The trapping frequencies are in the range of kHz when the atoms are first transferred

from MOT to the dipole trap. The evaporative cooling carried out in this trap will be

described in the next section.

2.5 Evaporative cooling
Laser cooling techniques are not enough to provide the required PSD for achieving

BEC. After laser cooling, the optical density of the atomic cloud increases to the extent

that the light scattered by an atom is absorbed by the neighboring atoms causing the

sample to heat up [95]. Resonant light also leads to induced losses via inelastic colli-

sions between the atomic ground and exited states [97]. Thus to achieve further increase

in PSD, the atoms are transferred to an optical dipole trap for evaporative cooling. This
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trap boundary

escaping atoms

Figure 2.5: Evaporative cooling: The trapping potential is slowly lowered from left to right
resulting in the ejection of atoms having energy higher than the confinement threshold. The rest
of the atoms re-thermalize at a lower temperature via elastic collisions.

type of cooling can be modeled as several steps, where at each step the trap depth is

lowered by a fraction �kBT , T being the temperature of the ensemble at that step. The

fraction of atoms having energies above the threshold depth, escape from the trap. The

remaining atoms then re-thermalize to a lower temperature via elastic collisions. These

atoms also occupy a lower volume due to their reduced energy and hence results in a net

increased density and thus increased rate of collisions. This phenomenon is called ’run-

away evaporation’ [88]. The collision rate in a harmonic trap is dictated by its trapping

frequencies. The optical dipole trap typically possess !0 ⇠ kHz at the beginning of the

evaporation ramp which is enough for efficient re-thermalization. As shown in Fig. 2.5,

the power in the optical dipole beams and hence the trap depth is then lowered in an

exponential fashion, till the atomic gas reaches quantum degeneracy. The temperature

of the atomic gas is probed by turning off the trap and letting it undergo expansion and

free-fall under gravity. The momentum distribution and hence the temperature of the

gas can then be probed by acquiring an absorption image of the atomic gas. In Fig. 2.6,

the last few steps of the evaporation stage are shown, where the signature of BEC is

visible. In the next section we discuss the condensation process and the properties of

the BEC state.
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2.6 Condensation of a non-interacting Bose gas
It has been empirically established that all indistinguishable particles can be grouped

into two categories based on the behaviour of their collective wavefunction under an

exchange of any pair of particles [98]. These are called:

Bosons

Pij | (x1x2 · · · xixi+1 · · · xj · · · xN)i = | (x1x2 · · · xjxi+1 · · · xi · · · xN)i

= + | (x1x2 · · · xixi+1 · · · xj · · · xN)i
(2.21)

Fermions

Pij | (x1x2 · · · xixi+1 · · · xj · · · xN)i = | (x1x2 · · · xjxi+1 · · · xi · · · xN)i

= � | (x1x2 · · · xixi+1 · · · xj · · · xN)i
(2.22)

Where, | i is the N -particle wavefunction, xi is the index for a complete set of ob-

servables for the ith particle and Pij is the permutation operator that interchanges the

ith and the jth particle. As it can be observed, the Bosonic wavefunction is symmetric

under the action of Pij , while the Fermionic wavefunction is anti-symmetric. No two

Fermions can share the same set of observable indices xi i.e. they can’t be in the same

quantum state, as such a wavefunction would be inherently symmetric. This is the cel-

ebrated Pauli exclusion principle which states that no two Fermions can have the same

set of quantum numbers. This can also be elucidated by a two particle system, which

can occupy states a or b. If  1 and  2 are the wavefunctions of the two particles, then

their collective wavefunction is given by:

 ± =
1p
2
[ 1(a) 2(b)±  1(b) 2(a)] (2.23)

Here, the positive and the negative subscript of the collective wavefunction denotes

the Bosonic and the Fermionic state. In the case of the Fermionic state, the collective

wavefunction becomes 0 if the states a and b are the same, which is in agreement with

the exclusion principle. On the other hand, Bosons do not have this limitation and

any number of them can occupy the same quantum state. As the system temperature
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is lowered below a certain critical point, this exchange degeneracy leads to a phase

transition called as Bose-Einstein condensation where, the ground state of the system

becomes macroscopically occupied. It is purely driven by the quantum statistics arising

from the symmetric nature of the wavefunction as shown in Eq. 2.21. This transition

was first predicted by Einstein in Ref. [99], following the work of Satyendra Nath Bose

for the case of photon statistics in [100].

Experimental observation of BEC was thought to be difficult to observe as most par-

ticles form solids at low temperatures. Thus the ideal candidates for producing BECs

were weakly interacting dilute gases. The experimental possibility of producing a BEC

was first put forth by Hecht in 1960 [101] and later by William Stwalley and Lewis

Nosano in 1976 [102] for the case of spin-aligned hydrogen atoms in high magnetic

fields. The choice of hydrogen as the first species to attempt BEC on was natural due

to its simplicity and the fact that it was theorized to stay gaseous even at low tempera-

tures. Despite the simplicity, the attempts were hindered by two body collision losses

due to long range interaction [88]. After two decades of laborious experiments, the

hydrogen BEC was finally achieved in 1998 in T. Greytak’s group at MIT [103]. Ow-

ing to the rapid development in cooling and confinement of dilute samples of alkali

atoms using lasers and magnetic fields, the BEC was first achieved in this system in

1995. The observation was first reported by Eric Cornell and Carl Wieman with Rb

atoms at NIST [104] and later by Wolfgang Ketterle with Na atoms at MIT [105]. They

received the 2001 Nobel prize in physics for this achievement. Since this first obser-

vation, BEC has been achieved in many other atomic species: 4He⇤ [106], 7Li [107],
41K [108], 40Ca [109], 52Cr [110], 84Sr [111], 133Cs [112], 164Dy [113], 168Er [114],
169Tm [115], 174Yb [116] and molecules: Li2 [117]. The cold atom platform offers

exquisite control over the quantum state of the BEC. It also allows precise measurement

of the condensate wavefunction properties such as observation of matter-wave interfer-

ence [118], collective common-mode oscillations [119] and super-fluid vortices [120].

In contrast to photons which interact weakly with each other, the atomic BEC possess

tunable inter-particle interaction strength which has lead to observation of several ex-

otic phenomenon such as solitons [121], super-radiant scattering [122], formation of

quantum droplets [123],etc. The atomic spin degree of freedom also allows creation of
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multi-component BECs [124]. We will now discuss the BEC transition in more detail

for the case of harmonically trapped particles.

For 3D harmonic confinement, the energy states that the particles can occupy are of

the form:

✏nxnynz =

✓
nx +

1

2

◆
~!x +

✓
ny +

1

2

◆
~!y +

✓
nz +

1

2

◆
~!z (2.24)

Where, {nxnynz} are the quantum numbers of an harmonic oscillator m with trapping

frequencies of !x,!y,!z in the x, y and z direction respectively and m is the mass of

the trapped particle. The single particle wavefunction corresponding to the ground state

of the trap is given by a Gaussian:

 0 =

⇣m!0

⇡~

⌘3/4
exp

h
�m

2~(!xx
2
+ !yy

2
+ !zz

2
)

i
(2.25)

Where, !0 = (!x!y!z)
1/3. The harmonic oscillator length introduces a natural length

scale for the spatial extent of the wavefunction given by:

aHO =

✓
~

m!0

◆1/2

(2.26)

For 87Rb and !0 ⇠ 2⇡⇥100 Hz, which are typical trapping frequencies for experiments,

aHO ⇠ 1 µm. As we will see later, the wavefunction extent is significantly larger

than aHO i.e. the corresponding momentum spread of the wavefunction is narrower for

typical BECs due to inter-atomic interactions. Let us now consider a grand canonical

ensemble of N particles [87]. At a temperature T , the average occupation of a state with

energy ✏ is give by f(✏, T ) and is called the Bose-Einstein distribution:

f(✏, T ) =
1

exp[�(✏� µ)]� 1
(2.27)

Here, � = kBT , kB is the Boltzmann constant and µ = @A/@N is the chemical

potential, A being the Helmholtz free energy of the system. The above distribution

function places a bound on the value of the chemical potential to be µ < ✏0 [125]. If

µ > ✏0 then the occupation number for states with ✏ < µ becomes negative, which
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Figure 2.6: Bose-Einstein condensation of 87Rb in an optical dipole trap: The figure shows
time-of-flight images during the final evaporation steps in the ODT. The momentum distribu-
tion starts developing a deviation from the thermal distribution as the transition is approached.
The center image clearly shows this bimodal (Gaussian+Thomas-Fermi) distribution, where the
central component represents from the atoms in the condensed state. The final image shows an
almost pure BEC state. The mentioned temperature is of the thermal component.

is un-physical. As µ ! ✏0 from smaller values, the occupation of the ground state

starts becoming macroscopic, leading to the formation of the BEC state. We define the

critical temperature Tc for a given number of particles N , at which the all the atoms

occupy states other than the ground state when µ = ✏0:

N(T = Tc, µ = ✏0) =

Z 1

0

d✏g(✏)f(✏) (2.28)

Where, g(✏) is the density of states for the 3D harmonic oscillator and is given by:

g(✏) =
✏2

2(~!0)
3

(2.29)
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Assuming that the ground state energy is small compared to the other terms in the inte-

grand:

N =

Z 1

0

d✏
g(✏)

e✏/kTc � 1
=

1

2

✓
kTc

~!0

◆3 Z 1

0

dz
z2

ez � 1
=

1

2

✓
kTc

~!0

◆3

�(3)⇣(3)

=

✓
kTc

~!0

◆3

⇣(3)

(2.30)

Where, � and ⇣ is the gamma function and the Riemann-zeta function respectively. The

critical temperature for the transition to occur is then calculated as:

kBTc = ~!0

✓
N

⇣(3)

◆1/3

(2.31)

From this expression, it is seen that the transition temperature energy equivalent can

be many times larger than the ground state of the harmonic oscillator. The temperature

dependency of the condensate fraction N0/N can be calculated by separating out the oc-

cupation of the ground state at any temperature T < Tc and carrying out the integration

similar to the one done above. This gives:

N0

N
= 1�

✓
T

Tc

◆3

(2.32)

For N = 25000 and !0 = 2⇡ ⇥ 130 Hz (measurement shown in Fig. 2.4), the value of

Tc ⇡ 170 nK using Eq. 2.31. This agrees with the transition as shown in Fig. 2.6, where

a significant fraction is seen to be condensed at T = 113 nK. The non-interacting model

lets us calculate the relevant thermodynamic parameters of the BEC transition. These

properties do not differ significantly from the experimentally obtained values. Even so,

the effect of inter-particle interactions is significant and needs to be included to explain

effects such as suppression of peak density, increase in spatial extent of the wavefunction

relative to the harmonic-oscillator ground state and other non-linear properties of the

BEC state.



2.6. Condensation of a non-interacting Bose gas 31

2.6.1 Effect of interactions on the ground state of a trapped BEC

We are ultimately interested in the density profile of the trapped condensate and its tem-

poral evolution once the trapping potential has been turned off. We start by considering

the time independent Gross-Pitaevskii (GP) equation [125]:

✓
�~2r2

2m
+ V (r) + g| (r)|2

◆
 (r) = µ (r) (2.33)

Where, V (r) is the harmonic confinement potential and g = 4⇡~2a/m, a being the s-

wave scattering length of the species in consideration. The form of two-body interaction

energy g| (r)|2 comes from approximating the collision events between atoms at these

temperatures to be purely s-wave in origin. Even with such a simple form of the in-

teractions, the above equation can satisfactorily explain many experimentally observed

properties of the BEC. In the absence of this term i.e g = 0, the equation reduces into

single particle time independent Schrödinger equation. From the normalization condi-

tion, the density of the condensate n is related to the order parameter by  =
p
n. The

kinetic energy term in the GP equation is of the order of ⇠ ~2/2mR2 for a cloud with

spatial extent ⇠ R. In the case of strong interactions, the kinetic energy can be ignored

and the spatial extent R is decided by the equilibrium condition between the harmonic

potential and the interactions [126]. Thus, the cloud size is R ⇠ aHO(Na/aHO)
1/5.

This allows us to calculate the ratio of the kinetic energy to the other contributions to

the total energy, which is ⇠ (aHO/Na)4/5. For 87Rb, N = 25000 and !0 = 2⇡ ⇥ 130

Hz, this ratio is ⇠ 0.02. Thus, it is justifiable to ignore the kinetic energy term in the

GP equation. This is called the Thomas-Fermi approximation and under this the GP

equation reduces to:

| (r)|2 = n(r) =
1

g
(µ� V (r)) (2.34)

The normalization condition
R
n(r)dr = N , gives a relation between µ and the number

of particles N :

µ =
15

2/5

2

✓
Na

aHO

◆2/5

~!0 (2.35)

Using the above relation yields the characteristic inverted parabolic form of the den-
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Figure 2.7: Temporal evolution of the expansion scale factor bi: The plot shows the analytical
solutions for b(⌧) in different regimes along with the solution obtained from solving the second
order differential equation directly in MATLAB (⌧ = !0t). The solution is linear in the long
term showing that the expansion velocity attains a saturation after sometime.

sity profile:

n(r) = n0

✓
1� x2

R2
x

� y2

R2
y

� z2

R2
z

◆
(2.36)

Where, n0 = µ/g is the peak density of the BEC and Ri is called the Thomas-Fermi

radius. It demarcates the extent of the BEC in the ith dimension and is given by:

Ri = aHO15
1/5

✓
Na

aHO

◆1/5 !0

!i
(2.37)

The width of the momentum distribution of the atomic ensemble plays a vital role in the

applications related to atom interferometry [127]. A narrow momentum width is often

desired as it leads to more efficient beam splitting for the interferometry sequence. With

several experiments now utilizing BEC as a source for performing atom interferometry

it is worthwhile to investigate the momentum distribution of the BEC and its evolution.

The momentum distribution is obtained by performing a Fourier transform on the spatial

density profile as given by Eq. 2.36 [125]:

n(p̃) = N
15R3

16~3

✓
J2(p̃)

p̃2

◆2

(2.38)

Where, R = (RxRyRz)
1/3, p̃ =

p
p2xR

2
x + p2yR

2
y + p2zR

2
z/~ and J2 is the second order
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Bessel function of the first kind. As mentioned in Ref. [128], this distribution along any

direction resembles a Gaussian with a standard deviation �px =

p
21/8~/Rx. This

width is significantly narrower in comparison to that of the Gaussian ground state wave-

function of the harmonic trap due to the inter-particle interactions. The ratio between

the two is given by:
�pTF

�pGaussian
⇡ 1.33

⇣aHO

Na

⌘1/5
(2.39)

For N = 25000, !0 = 2⇡⇥130 Hz and a = 5.31 nm (87Rb) the ratio calculated using

Eq. 2.39 comes out to be ⇠ 0.5. Though the BEC momentum distribution is narrow

in the trap, once it is released the momentum distribution is broadened. This occurs

as the interaction energy gets converted into kinetic energy which leads to expansion

of the density profile. This conversion of energy also causes the momentum width of

the released BEC to broaden. This broadening of momentum distribution of BEC after

being released from the trap, was measured with Bragg spectroscopy in Ref. [128].

As shown by Castin and Dum in Ref. [129], one can obtain analytical expressions for

studying the expansion of the BEC. These expressions are derived under the assumption

that the condensate maintains its initial parabolic form. Let Ri(t) be the Thomas-Fermi

radius of the BEC at time t:

Ri(t) = bi(t)Ri(0) (2.40)

Where, bi is the dimensionless scale factor. As shown in Ref. [129], the time evolution

of bi is governed by three coupled differential equations:

b̈i + !2
i (t)bi �

!2
i (0)

bibxbybz
= 0 (2.41)

The above equations are subject to constraints bi(0) = 1 and ḃi(0) = 0. We are inter-

ested in the evolution of bi when the trap is turned off i.e. when !i(t) = 0. Assuming a

spherically symmetric trap and scaling the time as ⌧ = !t we get:

d2b

d⌧ 2
� 1

b4
= 0 (2.42)
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Figure 2.8: Expansion of BEC after release from the trap: (Top) Absorption images of the
BEC for different time-of-flights. The BEC under goes expansion as the interaction energy of
the BEC is released as kinetic energy. (Bottom) The calculated expansion coefficient along
with the experimentally observed one assuming a spherical trap with a trapping frequency of
!0 = 2⇡ ⇥ 129 Hz. ⌧ is expressed in dimensionless units as ⌧ = !0t.

As shown in Ref. [130], one can get simplified expressions for b(⌧) under certain

limits:

b(⌧) ⇡ 1 +
⌧ 2

2
� ⌧ 4

6
, (⌧ ! 0) (2.43)

b(⌧) ⇡
r

2

3
⌧ +

p
⇡�(2/3)

�(1/6)
, (⌧ ! 1) (2.44)

These solutions are plotted in Fig. 2.7 alongside the solution found by MATLABs

differential equation solver. It can be seen that after the initial accelerated expansion the
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BEC attains a constant velocity profile.

2.6.2 Calculation of BEC momentum width

For N = 25000 and !0 = 2⇡ ⇥ 129 Hz the initial Thomas-Fermi radius comes out to

be R0 = 4.37 µm. Fig. 2.8 plots the experimentally observed expansion coefficient

with R0 = 4.37 µm as the initial value alongside the analytically calculated one using

Eq. 2.44. The analytically determined expansion coefficient can be used to estimate

the momentum width of the BEC at different instances of time. The velocity of the

atoms at the edge of the atomic cloud i.e at the Thomas-Fermi radius is 0.0289 m/s or

0.246 ~K in terms of recoil momentum, a unit that will be relevant in later chapters

(K = 4⇡/�, � = 780 nm). For comparison, the momentum width in the trap calculated

from Eq. 2.38 is 0.023 ~K. This value agrees with the one suggested by the �-kicked

rotor experiments presented in the later chapters.
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Chapter 3
Matter-wave diffraction

Matter-wave diffraction is the matter-wave analog of optical diffraction. This chapter

introduces the basic concepts behind diffraction of matter waves from an optical lattice

and presents the relevant results for understanding it in different interaction regimes.

3.1 Coherent transfer of momentum from an optical po-

tential
When a plane wave optical beam is incident on an optical grating, the periodic modu-

lations of the grating refractive index are imprinted as phase modulations on the plane

wave. This results in the k-vector of the initial plane wave to possess additional com-

ponents with a magnitude decided by the grating period. This phenomenon is called as

diffraction and is of immense importance in the field of optics and spectroscopy [131].

An analogous phenomenon occurs for matter-waves where the momentum wavefunc-

tion of particles undergoes diffraction and splits into several momentum components

when incident on a grating. The matter-wave diffraction first predicted by Louis de-

Broglie in 1923 is a hallmark of the wave particle duality nature of quantum mechan-

ics [4]. The predicted diffraction pattern was first observed for the case of electrons

incident on a nickel crystal in the famous Davisson and Germer experiment in 1926 [5].

They were awarded the 1937 physics Nobel prize for this discovery, then – the newly

emerging field of quantum mechanics.

For matter-wave diffraction to occur at an observable amplitude in the case of par-

37
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ticles, their deBroglie wavelength (�dB = p/~, p being the particle momentum) must

be much larger than the period of the diffraction grating. The initial experiments which

studied matter-wave diffraction used physical gratings and atomic beams with a high

degree of collimation to increase the transverse coherence length [23]. In 1933, Pytor

Kaptisa and Paul Dirac proposed a novel mechanism for inducing coherent diffraction

in electrons using an optical standing wave potential [132]. The coupling potential in

this effect was due to the Lorentz force produced by the oscillating electromagnetic

field. This prediction was very exciting because it involved the exact role reversal of

matter and light and its demonstration would be a shining example of the wave-particle

duality principle. The demonstration of KD effect for electrons had to wait until the

invention of high power lasers as the spectral density of the light sources available in

1930s was not enough to appreciably observe the effect. It was finally observed by H.

Batelaan’s group at University of Nebraska-Lincoln in 2001 [133]. It was demonstrated

much earlier (1986) for the case of a beam of neutral Na atoms by D. Pritchard’s group

at MIT [26]. This was possible due to that fact that the electric-dipole type coupling

potential in this case was orders of magnitude higher.

We will now discuss the interaction between an optical lattice and neutral atoms in more

detail.

Figure 3.1: Momentum transfer using optical fields: (Left) No net momentum is imparted to
the atom (blue sphere) via a coherent process in the case of a running wave. (Right) In this case
a net momentum is imparted to the atom as it can absorb a photon from one field and emit it into
the other through a stimulated emission process.
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3.2 Two photon transitions

The requirement of a standing wave field as opposed to a running one for inducing

momentum to an atom can be understood in the following manner: Fig. 3.1 (left),

shows an atom in a running wave field. Assuming coherent excitation, a photon imparts

a momentum of ~K to the atom (K = 2⇡/� , � being the wavelength of the optical

field). The excited atom now can only emit the photon in the same mode of the optical

field and thus cannot gain a net momentum under this process. On the right, the two

photons ~K1 and ~K2 belong the two propagating modes that constitute the standing

wave. After absorbing a photon from one mode the atom can emit it in the other, gaining

a net momentum of ~(K1 + K2) in the process. To gain a quantitative understanding

of the diffraction process, we now turn to the two-level model which was introduced in

section 2.2.

We start by considering Eq. 2.7 and 2.8. For atoms that are initialized in the ground

state |bi, the exited state |ai can be adiabatically eliminated by using Ċa = 0 in the limit

of low interrogation time and sufficiently large detuning [134]. Thus, the ground state

evolution can be given as:

Ċb = i
�

2
Cb + i

⌦
2

2�
Cb (3.1)

Where, ⌦ = E0|dab|/~ is the Rabi frequency of the system. In case of a standing wave

formed by two counter-propagating laser beams of wavelength �, the Rabi frequency

will have a spatial variation of the form cos(2kx) (k = 2⇡/�). Thus, Eq. 3.1, becomes:

Ċb = i
�

2
Cb + i

⌦
2

2�
cos

2
(kx̂)Cb = i

�

2
Cb + i

⌦
2

4�
(1 + cos(2kx̂))Cb (3.2)

The dynamics so far only concerned the internal state manipulation of the atomic wave-

function. We are interested in the effect of this light-atom interaction on the motional

state of the atom. For this matter, the components in Eq. 3.2 which are not a function of

x̂ are of no concern as they will not affect the evolution of the momentum state occupa-

tion. Thus this “structureless” wavefunction of the atom obeys the Hamiltonian [67]:

H(x̂, p̂, t) =
p̂2

2m
� V0 cos(Kx̂) (3.3)
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Here, V0 = ~⌦2/4� is the lattice potential, p̂ = �i~@x is the momentum operator, M

is the mass of the atom under consideration and K = 2k is the lattice wave-number.

The Hamiltonian in Eq. 3.3 represents the underlying mechanism responsible for the

coherent exchange of momentum between an atom and an electromagnetic field via

the electric dipole interaction. Utilization of such an off-resonant optical lattice for

imparting momentum to an initially stationary ensemble of atoms is typically carried

out by temporally varying the potential V0 in Eq. 3.3 in the form of a pulse. Such

creation of a coherent multi-momentum state using an optical lattice pulse is the atomic

Kapitza-Dirac effect. The Kapitza-Dirac diffraction is categorized in three regimes:

Raman-Nath, Bragg and Stern-Gerlach [135]. In the first two regimes the spatial extent

of the initial ensemble of atoms (�x) is larger than the periodicity of the lattice (2⇡/K)

and are the relevant ones for the case of cold atom sources.

We now discuss the Raman-Nath regime and the Bragg regime in detail.

3.3 The Raman-Nath regime
In the Raman-Nath regime the kinetic energy term in Eq. 3.3 is ignored. We now

formally derive the equation for calculating the population in each diffracted order for

a given set of parameters. We begin by observing that the cos(Kx̂) operator in Eq. 3.3

can be expanded as:

H(x̂, t) = �V0

2
(eiKx̂

+ e�iKx̂
) (3.4)

The operators e±iKx̂ act as translation operators in momentum space such that:

e±iKx̂ |pi = |p± ~Ki (3.5)

Eq. 3.4 and 3.5 imply that interaction with the standing wave potential with a spatial

period of 2⇡/K couples the momentum states differing by discrete units of ~K [135].

Thus, the quantized nature of the momentum exchange emerges even though we treat

the light field classically. The evolution of the coefficient of the ground state vector in

the momentum space can be then calculated using the Schrödinger’s equation:

i~Ċb(p, t) = �V0

2
[Cb(p+ ~K, t) + Cb(p� ~K, t)] (3.6)
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Figure 3.2: Raman-Nath regime of diffraction: (Left) (a) The BEC, prepared and confined in
a crossed optical dipole trap is released after a certain wait time. (b) A standing wave is pulsed
on for a variable time. This standing wave periodically modulates the condensate wavefunction,
thus causing the BEC to diffract into different momentum states. (c) The BEC is then allowed to
undergo free fall till the diffracted wavepackets can be resolved via absorption imaging. (Right)
Experimentally observed absorption image of the diffraction process. The pulse period was
kept as t = 0.225 !�1

r (9.5 µs). The population in the diffracted orders agree with the Bessel
distribution formula (Eq. 3.10) applicable in the Raman-Nath regime for a Bessel function
argument of 1.7 as explained in the text below.

Now consider the initial momentum state of the atom to be a plane wave with momen-

tum p. According to Eq. 3.6, the evolution in momentum state will only populate plane

wave states which differ from p by m~K, where m is an integer. Therefore, Cg(p, t) can

be decomposed in a basis set spanned by the plane wave momentum states |p�m~Ki.

Cb(p, t) =
X

m

cb,m(t)�(p�m~K) (3.7)

Substituting Eq. 3.7 in Eq. 3.6 and dropping the index b denoting the internal ground

state, we get an infinite array of coupled differential equations:

i~ċm = �1

2
V0[cm�1 + cm+1] (3.8)
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Figure 3.3: Beyond the Raman-Nath regime: (a) Simulated momentum distribution of mo-
mentum states for variable evolution time under optical lattice potential with V0 = 80 ~!r. The
time axis is scaled w.r.t to the total pulse duration of 6 µs. It can be seen that after ⇠ 3 µs, the
population in diffracted orders beyond m ⇠ ±10 does not increase because of the breakdown
of the Raman-Nath regime. (b) Experimentally observed momentum distribution of BEC sub-
jected to a lattice potential for variable time. It can be seen that after sometime the initial zero
momentum state is again populated. This ‘rephasing’ time roughly corresponds to a quarter of
the oscillation period of the lattice harmonic potential.

As mentioned in Ref. [135], the solution to Eq. 3.8 is of the form:

cm(t) = imJm

✓
V0t

~

◆
= imJm

✓
⌦

2t

4�

◆
(3.9)

Where, Jm is an mth order Bessel function of the first kind. Thus, the probability Pm(t)

of occupying the momentum state |m~Ki after evolving under the interaction for time

t is given by:

Pm(t) = J2
m

✓
⌦

2t

4�

◆
(3.10)

This Bessel like intensity distribution is also observed in a light beam diffracted by

acoustic wave in a crystal. This distribution was first explained by C. V. Raman and

N. S. Nath in Ref. [136] and thus this regime for diffraction is named after them. For
87Rb atoms and a lattice formed of � = 780 nm, the recoil frequency is !r ⇡ 2⇡⇥ 3.77

kHz. Fig. 3.2 shows the diffraction of the BEC under Raman-Nath regime. After being

released from the trap, the optical lattice is applied for t = 9.5 µs (0.225 !�1
r ) and
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Figure 3.4: Bragg diffraction: (Left) Energy conservation condition for a two-photon transi-
tion connecting |0i ! |1~Ki momentum states. The difference in frequencies of the two beams
that make the running lattice should be !1 � !2 = 4Er/~ ⇡ 2⇡ ⇥ 15.2 kHz for 87Rb with 780
nm light. (Right) experimentally observed first order Bragg diffraction of the BEC.

agrees with the Bessel distribution for V0t/~ = 1.7. Thus, the optical lattice depth can

be determined as V0 = 7.56 ~!r. If the pulse duration is increased further, population of

the higher diffraction orders becomes significant enough to breakdown approximation

of ignoring the kinetic energy term in Eq. 3.3. Fig. 3.3 (right) shows the evolution

of with the same lattice potential (V0 = 7.56 ~!r) for longer time. As it can be seen

in the figure, the momentum growth is arrested and reversed at around 22 µs. This

can be understood as the diffracted atoms oscillating in the potential formed by the

optical lattice. The period of reversal is roughly equal to a quarter of the time period

corresponding to the trapping frequency of the lattice potential [137]. The trapping

frequency ! can be calculated using V0 = M!2X2/2, where X = �/4 is the extent

of the potential. For V0 = 7.56 ~!r and � = 780 nm, ! = 13.2 kHz and the quarter

oscillation period to be ⇠ 19 µs which is in agreement with Fig. 3.3 (right).

Increasing the lattice potential depth increases the amount of diffraction orders which

are initially populated, in turn decreasing duration of the Raman-Nath regime to be

valid. This is seen in Fig. 3.3 (left) which plots the simulated evolution of the mo-

mentum state distribution under the Hamiltonian as given in Eq. 3.6. The simula-
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tion parameters are the following: V0 = 80 ~!r, t = 6 µs and the initial momentum

state Cg(p, t = 0) = �(0). As observed in the figure, the number of diffraction or-

ders grow for a certain amount of evolution time after which the growth is arrested.

From the analytical properties of Bessel function used in Eq. 3.9, the maximum number

of the populated order (mmax) after an interaction time t should increase according to

mmax = 2V0t/~ [135].

3.4 The Bragg regime
The regime where Raman-Nath condition is violated and the duration of the interaction

is comparatively large is called the Bragg regime. Due to this large interaction duration,

the energy-momentum conservation requirements are strict and only the momentum

states which satisfy these are populated during evolution. The evolution of the ground

state Cb(x, t) without ignoring the kinetic energy term, is:

i~@Cb

@t
= � ~2

2M

@2Cb

@x2
� V0 cos(Kx̂)Cb (3.11)

Dropping the subscript denoting the ground state, we expand the wavefunction in a

series of plane wave momentum states as shown before and obtain a series of an infinite

set of coupled differential equations of the form:

i~ċm = m2~!rcm � V0

2
(cm+1 + cm�1) (3.12)

The energy-momentum conservation for a n-photon transition is completely de-

scribed by the condition [128]:

n~�⌫ =
q2

2m
+ ~

~ki · ~q
m

(3.13)

Where, q = n~K is the total amount of momentum transfer to the atoms in the Bragg

process and n�⌫ is the frequency detuning of between the two Bragg beams N�⌫ =

!1�!2. This reduced two level system then oscillates with a frequency of V0/2~ [135].

These oscillations are called as Pendellösung oscillations, derived from similar oscil-

lations in neutron diffraction [138]. For 87Rb and a lattice formed from 780 nm laser
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beams, the frequency difference for carrying out first order diffraction can be calculated

using Eq. 3.13. For an initially stationary BEC in the lab reference frame, ~ki = 0, the

frequency difference turns out to be�⌫ = ~K2/2m = 2⇡⇥ 15.07 kHz. Fig. 3.4 shows

the first order diffraction with BEC.

3.5 Preparation and control of diffraction beams

This section briefly describes the optical arrangement for the production of the lattice

beams. The light used to create this lattice is derived from the same laser as used for

the primary cooling transition and hence is naturally ⇠ 6.8 GHz red detuned for the

atoms which are in the |F = 1,mF = �1i state. As shown in the Fig. 3.5, this laser

beam is first reduced in size by lenses L1 and L2 and is then divided into two paths.

Each of these beams is then passed through an acousto-optic modulator (AOM) from

IntraAction Corp. (model no. ATM-801A2). The acoustic wave inside the AOM acts

like a diffraction grating for the laser beam and the first order Bragg diffracted beam is

steered into an optical fiber for delivery to atoms. The diffracted beam is frequency up

or downshifted according to the order of diffraction:

Ed = E0e
2⇡i[(f+nf0)t+�d] (3.14)

Where, Ed is the diffracted beam, f0 is the frequency of the acoustic wave running

in the AOM crystal (80 MHz), n = 0,±1,±2.... is the order of diffraction and �d is

the phase of the drive frequency. Thus if the two AOMs are driven by the RF sources

which are phase locked to each other then the interference of the diffracted orders will

create a standing wave whose phase can be arbitrarily controlled. The fast (compared

to all other time scales in the experiment) rise time of the AOMs (⇠ 100 ns) also allows

precise control on the pulse duration. The lattice depth V0 is controlled by the amplitude

of the RF drive. The beams are then coupled into polarization maintaining optical fibers

and delivered to the atoms. The beam radius at the position of the atoms is ⇠350 µm.

For realization of Bragg diffraction the frequency difference between the two AFGs is

kept as required by the Bragg condition as given in Eq. 3.13.

The next section describes how the diffraction of cold atoms in the Raman-Nath
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regime is used to emulate a Hamiltonian known as �-kicked rotor.
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Figure 3.5: Lattice preparation: (Top) The optical lattice is formed from two counter propa-
gating beams, each derived from a diffracted AOM order and delivered to the atoms via optical
fibers. The AOMs are driven by two phase locked RF sources AFG-1 and AFG-2 (Tektronix,
AFG 3101). Their relative phase can be set to any value. (Bottom) The signal from these AFGs
is fed to the AOMs via RF amplifiers (Mini-Circuits, ZHL-1-2W). AOM-1 can be driven by
either of the two function generators depending on the state of the source toggle TTL (Mini-
Circuits, ZYSWA-2-50DR). Thus the phase of the optical lattice beam can be toggled between
any two fixed values within ⇠ 10s of ns. The amplitude of the optical lattice is pulsed via
switches 2 and 3. The pulse train for these is passed through a delay generator (SRS, DG-535)
to adjust for a time lag between the pulses caused due to different electronic paths.
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Chapter 4
The �-kicked rotor

This chapter introduces the implementation of the �-kicked rotor Hamiltonian in a sys-

tem consisting of a cold atom ensemble subjected to pulses of standing wave lattice

potential. The quantum version of the kicked rotor shows resonant features which are

absent in the classical version and can be potentially useful for precision measurements.

4.1 Classical �-kicked rotor and chaos

The �-kicked rotor has been a paradigmatic system for the study of chaos. It can be

visualized as a particle attached to a mass-less rigid rod of length R and is allowed to

rotate with one end of the rod fixed. The angular momentum of the particle is given by

L and its moment of inertia is given by I . As shown in the figure, the system is then

driven by application of an impulse force F having a shape of a � with time period T ,

such that F (t) = f
P1

n=0 �(t � nT ) [139]. The Hamiltonian of the classical kicked

rotor is then given by:

H�KR =
L2

2I
� fR cos(✓)

1X

n=0

�(t� nT ) (4.1)

49
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Figure 4.1: Classical chaos in �-kicked rotor: (Left) Representative model of the �-kicked ro-
tor. A particle (blue sphere) which is free to rotate on a ring of radius R, is periodically ‘kicked’
with a force F . (Right) Poincaré sections of the �-kicked rotor, governed by the standard map
(Eq. 4.3). As the stochasticity parameter  is increased beyond ⇠1 the system dynamics become
chaotic.

Solving the Hamilton’s equation of motion for this, one can get iterative equations for

the evolution of particle trajectory in the phase-space:

✓n+1 = ✓n + L
0

n+1 (4.2)

L
0

n+1 = L
0

n +  sin(✓n) (4.3)

Where, L0
= LT/I is the dimensionless angular momentum parameter and  = fRT/I

is called the stochasticity parameter. These set of equations are called the standard

map or the Chirikov map and have been subjected to extensive studies to model chaos

[140]. The phase-space behavior of the system is dictated by the single parameter .

The critical parameter region where the transition from stability is predicted to occur is

0.971635 < c < 63/64. The transition to chaos can be clearly seen in the Poincaré
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plots for different  shown in Fig. 4.1.

4.2 Atom-optics quantum �-kicked rotor (AOKR)

Chaos doesn’t exist for a quantum system as its evolution is completely determinis-

tic and governed by the Schrödingers equation [141]. Even then, quantum analogues

of systems whose classical phase space is chaotic, exhibit signatures of this chaos in

their evolution [142]. The �-kicked rotor is one such system where some aspects of the

quantum behavior can be explained by studying the underlying chaotic or mixed phase

space [143,144]. The quantum �-kicked rotor has been realized in several systems such

as ionization of Rydberg atoms in microwave field [145], molecular rotors [146], etc.

The most resourceful of these realizations has been the atom-optics �-kicked rotor or

AOKR [147]. Owing to the advancement in techniques for preparation of cold atomic

ensembles and manipulation of their momentum state, the typical parameter space re-

quired for AOKR can be easily reached in a standard cold atom laboratory. We will now

discuss this system in detail.

We recast the Hamiltonian of a two level atom subjected to a far-detuned standing-

wave light potential (K = 4⇡/�) as derived in Eq. 3.3 in the following form:

Ĥ =
p̂2

2m
� ~�d cos(Kx̂)

1X

n=0

�(t� nT ) (4.4)

Where, p̂ and x̂ are the momentum and position conjugate variables respectively. The

optical field is applied as a series of pulses with time period T . The shape of the pulses

is assumed to be a Dirac-� function. The parameter �d = V0tp/~ is called the kick

strength, where tp is the duration of the pulse. The form of this Hamiltonian is valid

only under the Raman-Nath regime, where the kinetic energy evolution is ignored for

the duration of the pulse. Since the momentum exchange happens in discrete units of

~K, there is a natural time scale to the kinetic energy phase evolution. At a pulse period

of TT = 4⇡m/~K2, the kinetic energy term becomes unity. This time is called the

Talbot time and its significance will be discussed later. Using this, the Hamiltonian can
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be expressed in a dimensionless form:

Ĥ
0
= ⇡p̂2 � �d cos(x̂)

1X

n=0

�(t� nl) (4.5)

Where the scaling that is used is p ! p/~K, x ! xK and t ! 2t/TT . l = 2T/TT de-

notes the scaled period. Since the pulses are applied with a definite period, the dynamics

of the system is governed by the one period Floquet operator [139]. This operator is a

time ordered product of the free evolution operator and the phase modulation or the kick

operator:
eF = exp

⇥
i⇡lp̂2

⇤
⇥ exp [�i�d cos(x̂)] (4.6)

The quantum dynamics is influenced by two parameters, the kick strength �d and the

scaled Plank’s constant ~eff = 2⇡l. The relation between the stochasticity parameter

 introduced earlier and these two parameters is  = �d~eff . Depending on the value

of ~eff the behavior of the quantum �-kicked rotor can be divided into three categories:

dynamical localization, resonance and anti-resonance. We will discuss these regimes

below.

4.3 Dynamical localization
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Figure 4.2: Localization in quantum �-kicked rotor: (Left) The average energy of the system
as a function of the number of kicks. The energy growth is arrested beyond a certain ‘quantum
break time’. The simulation parameters are  = 11.6 and ~eff = 1. (Right) The momentum
distribution in this ‘localized’ regime assumes a double-exponential profile.

In the classical picture, the energy evolution can be considered as a random walk in
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phase space and the energy growth of the system is diffusive in nature with the diffusion

constant being a quadratic function of the kick strength, such that < p2 >= 2l/2 [140].

In contrast to this, when ~eff is an irrational multiple of ⇡, the corresponding quantum

system follows this behavior until a certain ‘Heisenberg time’ or ‘quantum break time’

after which the dynamics effectively freezes. Upon further application of pulses the

energy does not grow and the system is said to be ‘localized’. This can be seen in Fig.

4.2, where the simulated energy plot for clearly shows saturation in comparison to the

classical energy growth. The plot on the right in the same figure shows the simulated

momentum distribution after 400 pulses assuming a double exponential ‘localized’ pro-

file (e�|p|/c). The experimental demonstration of quantum localization in AOKR was

first done by M. Raizen in 1995 [148]. This demonstration rejuvenated the experimen-

tal efforts towards quantum chaos studies using AOKR. The phenomenon of quantum

localization is of a broader interest as it has been exactly mapped to the Anderson lo-

calization problem in condensed matter physics [149, 150]. When confined in a dis-

ordered potential, the electron wavefunction in position space has the same functional

form (e�|x|/c) as the localized momentum profile in AOKR. This is behavior of electrons

is known as the Anderson localization. Apart from the generic dynamical localization

which occurs at any period satisfying the irrationality condition of the effective Plank’s

constant, the �-kicked rotor also exhibits resonant behavior at integer multiples of Talbot

time. The next sections introduces these ‘quantum resonances’.

4.4 Quantum resonances

When ~eff = 2⇡(q + 1) or 4⇡q (q = integer), the dynamics of the system shows a

dramatic deviation from the generic localized behavior. These can be understood in the

following manner. Consider a plane wave state with zero momentum denoted as |0i.
The resulting wavefunction immediately after the application of the first standing wave

�-pulse can be given by [151]:

| (t = 0
+
)i = ei�d cos(x̂) |0i =

1X

n=�1
inJn(�d) |ni (4.7)
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Figure 4.3: Quantum resonance: (Left) Time-of-flight images after subjecting the BEC to �-
pulses of standing wave at resonant period (T = 66.34 µs for 87Rb) with kick strength �d = 0.8.
The momentum orders get progressively populated as number of kicks increase. (Right) Energy
growth corresponding to the images shown on the left along with a power law fit (E = ANB).
The fit parameters are A = 0.59 ± 0.11, B = 1.81 ± 0.15, implying that the energy grows
quadratically with each kick. The red circles correspond to the experimental data. The black
squares correspond to the numerical simulations.

For a pulse period of l, the wavefunction just before the second pulse is:

| (t = l�)i =
1X

n=�1
ine�i⇡ln2

Jn(�d) |ni (4.8)

Where, each basis state (hx|ni = e�inx) is tagged with its corresponding free evolution

term. If the pulse period l is an even number, then this free propagation phase turns out

to be unity and the wavefunction resembles the initial one.

| (t = l�)i =
1X

n=�1
inJn(�d) |ni = | (t = 0

+
)i (4.9)

This revival of the wavefunction after a period of free propagation is called the matter-

wave Talbot effect. This is analogous to the optical Talbot effect, where similar revival

of the interference pattern occurs in the near field of a diffraction grating [56]. If a

second pulse of same kick strength is applied then it doubles the phase modulation of

the previous pulse and results in even more states being populated.

| (t = l+)i = ei2�d cos(x̂) |0i (4.10)
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This effect is called as Talbot resonance and leads to a quadratic increase in the total

energy of the system with the number of kicks [152]. This can be seen in Fig. 4.3.
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Figure 4.4: Quantum anti-resonance: (Left) Time-of-flight images after subjecting the BEC
to �-pulses of standing wave (�d = 0.8) at anti-resonant period (T = 33.15 µs for 87Rb). Each
kick cancels out the phase modulation produced by the previous one. (Right) Energy evolution
corresponding to the images shown on the left. The contrast in anti-resonant behavior is not
perfect due to a finite momentum width of the BEC.

For pulse periods which are odd, the free propagation phase that is gathered for each

basis state in this case depends on its momentum. The resulting summation can then be

reduced to a form where the �d gets a negative sign:

| (t = l�)i = e�i�d cos(x̂) |0i (4.11)

Thus after the application of the next pulse keeping the lattice phase unchanged, the

modulation of the previous pulse is exactly canceled out. This leads to revival of the

initial state:

| (t = l+)i = ei�d cos(x̂)e�i�d cos(x̂) |0i = |0i (4.12)

This revival can be seen in Fig. 4.4. The revival is not perfect because of the finite

momentum spread of the BEC [153]. This can be understood by looking at the Floquet

operator for a wave-packet |�i which is not an integral multiple of ~k. In this case,

the free propagation phase at resonance will be e�2⇡i�2 , which is not unity. Thus, for

an initial state ensemble with a distribution ��, the resonance and anti-resonance dy-

namics will deviate from ideal behavior with the extent of deviation depending on the
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narrowness of the spread [152].

The fidelity of the reversal process is sensitive to the pulse period and the pulse

sequence can be considered as an atom interferometer where any deviation from the

anti-resonance condition leads to drop in reversal fidelity. This is the general idea behind

the pulse sequence for measurement of Talbot time which will be introduced in the next

chapter.



Chapter 5
Measurement of Talbot time using
AOKR

The results presented in this chapter have been published in:
“Effects of finite momentum width on the reversal dynamics in a BEC based atom optics

�-kicked rotor”

Jay Mangaonkar, Chetan Vishwakarma, S Sagar Maurya, Sumit Sarkar, Jamie L. MacLen-

nan, Pranab Dutta and Umakant D. Rapol

Journal of Physics B: Atomic, Molecular and Optical Physics, 53, 235502 (2020)

The Talbot time in AOKR is essentially a measurement of the recoil frequency of

the atom. As shown in Fig. 1.3, together with other well known constants, this is

used to determine the fine structure constant ↵. This chapter introduces a Talbot time

measurement scheme in AOKR that uses a fidelity based approach. The AOKR pulse

scheme is demonstrated which maximizes the initial state fidelity when the pulse period

is set to an integer multiple of Talbot time. We study the effect of initial state width on

the performance of this pulse sequence.

5.1 Measurement scheme
As discussed in the previous chapter, apart from the generic localization behavior in

AOKR, for certain pulse periods the system shows resonant behavior. In the resonance

57



58 Chapter 5. Measurement of Talbot time using AOKR

case, the energy imparted to the system after N kicks is sensitive to the pulse period

and peaks at the Talbot time (l = 2q, where q is an integer). It has been shown that,

due to the quantum interference between the participating basis states, the width of this

measurement is not limited by the Fourier relation (�T / N�1, N being total number

of pulses or the total interrogation time). In fact it has been shown that the width of the

resonance in energy scales as N�2 [73].

In Ref. [154], it was shown that the sensitivity to deviation from the resonant pulse

period of the final wavefunction obtained after application of a pulse series, did not fully

reflect in the momentum space measurement. Thus the energy measurement based ap-

proach used in Ref. [73] did not fully exploit the changes in the relative phases between

the basis states participating in the interference. A better technique was proposed in

Ref. [154], where the final pulse returned the evolved state back to the initial state at ex-

act resonance. The overlap of the final state to the initial one (fidelity), is then maximum

for resonance and drops for any deviations from resonance. The width of the resonance

in this case was theoretically predicted to scale as �T / N�3. We discuss this pulse

sequence in the next section.

5.1.1 Pulse scheme-1
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Figure 5.1: Pulse scheme-1: (Left) Schematic of the pulse scheme. After the first N pulses, the
phase of the optical lattice is shifted by ⇡ radians and the lattice power is ramped up such that the
phase modulation depth is N�d. At resonance this last pulse cancels out the phase modulation
of the previous pulses and revives the initial state. (Right) Experimental implementation of the
pulse sequence for N = 4,�d = 0.8. As it can be seen the fidelity at resonance is less than unity
due to the momentum width of the BEC. Simulated values accommodate this momentum spread
in initial ensemble (�p = 0.035).
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Figure 5.2: Pulse scheme-2: The evolution of the BEC wavefunction is shown in momentum
space at the resonance condition (T = TT ). The spheres represent of the relative population
present in different momentum states after each pulse in the sequence shown at the bottom. The
number in nth order is / | h2n~k| (p)i |2. ~k1 and ~k2 denote the wave vectors of the two laser
beams forming the standing wave that is pulsed for a duration of ⌧p, according to the shown
sequence.

As shown in Fig. 5.1(left), the pulse sequence mentioned in Ref. [154] used N kicks

at a constant kick strength �d and a final kick with N times the kick strength but having a

negative sign. The sign of the kick strength is inverted by shifting the phase the standing

wave by ⇡ radians. The Hamiltonian for the pulse sequence for N is then:

Ĥ
0
= �⇡p̂2 + �d cos(x̂)

N�1X

n=0

�(t� nl)�N�d cos(x̂)�(t�Nl) (5.1)

As shown in Ref. [154], for a plane wave initial state (�� = 0) and in the limit of large

N , the expression for fidelity I for a small deviation ✏ = (l � 2) from the resonance

condition is

I(✏) = J2
0

✓
⇡N3�2

d✏

6

◆
(5.2)

Where, J0 is the Bessel function of the first kind. From Eq. 5.2, it can be seen that the

width of the resonance decreases as / N�3��2
d . This scaling in N was demonstrated in

Ref. [84] and is very favorable for measurement of the Talbot time. Fig. 5.1(right) shows
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the implementation of this sequence for N = 4,�d = 0.8. We used this measurement-

set to benchmark the phase inversion sequence with our setup. One of the limitations

of this scheme is that the power in the last pulse needs to be dynamically ramped up

to a higher value at the end of the sequence. To circumvent this, another variant of the

pulse sequence was proposed in Ref. [82]. This pulse sequence keeps the kick strength

uniform throughout but utilizes twice the amount of kicks in comparison to the previous

one.
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5.1.2 Pulse scheme-2
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Figure 5.3: Variation of fidelity I(l): Fidelity (I) as a function of scaled pulse period (l)
for different number of kicks N at a constant kick strength �d = 0.8. The red dots are the
experimental data and the blue solid lines are the numerical simulations. The error bars represent
± one standard deviation over 5 data points. �� is the only free parameter used to match the
experimental values at different number of kicks. The values for �� used are 0.023 for N=2
and 0.017 for N = 3, 4, 5 respectively. Data for N = 1 is not shown here as fidelity doesn’t
undergo significant change at this scale.

As seen in Fig. 5.2, the pulse sequence proposed in Ref. [82] is symmetric in time.

The phase of the lattice is shifted by ⇡ radians after the first N pulses are delivered. At

resonant pulse period (l = 2), each subsequent pulse after this phase shift, reverses the
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dynamics of the previous pulses and the initial state is retrieved. The Hamiltonian for

this pulse scheme is:

Ĥ
0
= �⇡p̂2 + �d cos(x̂)

 
N�1X

n=0

�(t� nl)�
2N�1X

n=N

�(t� nl)

!
(5.3)

We have seen previously that the resonant dynamics is affected by the momentum width

of the initial ensemble �� affects the state evolution of the system. The dependency of

fidelity I on deviation from the zero-momentum plane wave state can be calculated by

incorporating the quasi-momentum �, (�1/2  � < 1/2) into the Floquet operator:

eF (�) = exp

h
�i⇡l(k̂ + �̂)2

i
⇥ exp [i�d cos(x̂)] (5.4)

Considering the initial state as |�i, the final state after 2N pulses then becomes

| (t = 2N)i = eFN
⇡ (�) eFN

0 (�) |�i (5.5)

Where, eF0(�) is the Floquet operator for each of the first N kicks and eF⇡(�) is that for

the subsequent phase-shifted kicks. The reversal fidelity is given as:

I(l, �) =| h�| eFN
⇡ (�) eFN

0 (�) |�i |2=

�����

1X

n=�1
d⇤nen

�����

2

(5.6)

Where en = hn~K| eFN
0 |�i and d⇤n = hn~K| eFN

⇡ |�i⇤. An analytical expression can be

derived for I(l, �) to the first order in l and �, as shown in Ref. [82]. We briefly present

the relevant results here. Recasting en and d⇤n in polar form and using a first-order Taylor

expansion in the variable ✏ = (l � 2), one arrives at their analytical forms:

en = Jn(N�d) exp{i⇡[L+(l � 2)� 2�n(N + 1)� n/2]} (5.7)

d⇤n = Jn(N�d) exp{i⇡[L�(l � 2) + 2�n(N � 1) + n/2]} (5.8)
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Where Jn is an nth order Bessel function of the first kind. The sum in Eq. 5.6 can

be appropriately truncated to compute this value, as only finite number of orders are

populated significantly during a pulse sequence. In the asymptotic limit of large N and

for |� = 0i, a simple expression can be obtained by keeping only the dominant terms

/ n2N in Eq. 5.9. As shown in Ref. [82], under these approximations Eq. 5.6 can be

reduced to:

I(l, � = 0) ⇡ J2
0

⇣⇡
3
N3�2

d(l � 2)

⌘
(5.10)

Thus, the scaling for this sequence is / N�3 which is the same as that for pulse

sequence-1. It was observed that the experimentally determined scaling deviates from

the first order prediction made in Eq. 5.10 and never reaches the value of �3 which is

predicted in the limit of large N . To understand the reason behind this, we look at the

regimes in which the approximations made in deriving Eq. 5.10 fail to be valid. The

first assumption is that the initial state is a plane wave with zero momentum, which is

not true even for very narrow momentum ensembles like the BEC. The typical value

of the momentum width of BECs varies around �� ⇠ 0.1 � 0.01. Thus to determine

the scaling for experimentally realistic ensembles we need to calculate the ensemble

fidelity. Approximating the ensemble by a Gaussian G(�) with a standard deviation of

��, the fidelity is thus:

I 0(l) =

Z 0.5

�0.5

G(�)I(l, �)d� (5.11)

The fidelity width S predicted by Eq. 5.6 under the plane wave approximation of � = 0,

is in agreement with Eq. 5.11 when the distribution G(�) is narrower than the momen-

tum width of the pulse sequence, i.e the width of I(l = 2, �). In Ref. [82], Daszuta and

Andersen derive an expression for the fidelity I(l = 2, �):

I(l = 2, �) ' J2
0 (4⇡N

2�d�) (5.12)
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The width of I(l = 2, �) represents the range of values of � which well-approximate

the zero-momentum plane-wave state. The width of I(l = 2, �) decreases inversely

proportionally to N2. The deviation of I 0(l) from the analytically expected scaling due

to the effect of finite � distribution has been reported in the simulation work done in

Ref. [82]. We now proceed to validate this model with experimental data.

5.2 Experimental results
The pulse sequence as shown in Fig. 5.2 was applied ⇠100 µs after the hybrid dipole

trap was turned off. The pulse duration and kick strength was ⌧p = 550 ns and �d = 0.8

respectively. For these parameters the Raman-Nath regime is valid as long as ⌧p << 12

µs [155]. The state fidelity was calculated using time-of-flight method which will be

discussed in a later section. Fig. 5.3, shows this calculated fidelity I as a function of

pulse period l for different number of pulses N = 2 � 5. The simulation data shown

in the plot was calculated using split-operator method which is explained in detail in

chapter 8. The value of �� for carrying out the simulations was estimated from the

measured trapping frequencies of the hybrid optical dipole trap in which the BEC was

created. The trapping frequency measurement is shown in Fig. 2.4. For the mean

value of the measured trapping frequencies (129 ± 7 Hz), the momentum width of the

harmonic-oscillator ground state is �� = 0.0229 ± 0.007. The fidelity plots can be

used to determine the sensitivity of the pulse sequence for Talbot time measurement.

This is defined as S = �T/TT = �l/2. To determine the experimental sensitivity S

of the pulse scheme, a Gaussian peak is fitted between the first minimas on either side

of the central maxima of the experimental I(l) curves for each N and the width (�l)

thus obtained is used to calculate S = �l/2 (�l =
p
2 ⇥ standard deviation). Fig.

5.4 shows the variation of S as a function of N . We observe the experimental scaling

exponent (S / N�a) to be a = �1.85 ± 0.12, which is smaller in magnitude than

the expected value from Eq. 5.10 (a = �3). As mentioned before, this discrepancy

can happen due to two reasons: (1). the asymptotic approximation is invalid or (2).

the initial state as a plane wave is not a good approximation. For our experimental

parameters (i.e. for �d = 0.8), the values of S calculated using Eq. 5.6 and Eq. 5.10

differ significantly for low N but become close for N = 4 � 5. The two functions
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Figure 5.4: Scaling of sensitivity (S = �l/2) with number of pulses (N = 1 � 5): using
fidelities obtained from the experimental measurements (red circles), from the analytical equa-
tions with �� = 0 (Eq. 5.6, black squares) and with �� = 0.0229 (Eq. 5.11, blue triangles),
each with linear fits for �d = 0.8. The slopes of the linear fits are �1.85± 0.12 (red solid line),
-2.23 (black dashed line) and -1.95 (blue dash-dot line). Eq. 5.6 and 5.11 were truncated to
n = ±20 (convergence observed for |n| � 7).

converge for N > 5. The scaling exponent for N  5 according to Eq. 5.6 is �2.23.

Thus, the reduced magnitude of the experimentally-derived value from �3 is mostly but

not fully explained by the failure of the asymptotic approximation. We now look at the

approximation of the initial state as a plane wave. This approximation will hold in the

regime where the width of the initial wave-packet in momentum space is significantly

narrower than the width of I(l = 2, �) as calculated using Eq. 5.12. For �d = 0.8, the

width of I(l = 2, �), at N = 2 is 0.021. This is not significantly higher than the value

of 0.023, which our simulations and experiment suggest is the momentum width (��)

of our BEC. Thus we can expect the experimentally observed reduction of the scaling

of sensitivity with N for N � 2. For N = 1 and �d = 0.8, the width of I(l = 2, �)

is ⇡ 0.1. Since �� = 0.02 < 0.1, the plane wave approximation is valid. The value

of S calculated using Eq. 5.6 for N = 1 and �d = 0.8 is 0.285, which is close to the

experimentally obtained value of 0.26 ± 0.02. We can also analytically calculate the

fidelity for an ensemble possessing finite momentum width �� from Eq. 5.11. As seen

in Fig. 5.4, the scaling exponent obtained from using this equation and �� = 0.0229

is -1.95. This value is within the error bounds of the experimentally determined value
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Figure 5.5: Suppression of resonant fidelity with number of pulses: (Left) The evolution of
population in different momentum states as a function of kick number at resonant pulse period
l = 2, where the phase of the lattice is inverted from kick 5 onward. The simulation data
depicts the amount of population in each momentum state for parameters �d = 0.8, N = 4 and
�� = 0.023. The experiment data contains the absorption images taken for �d ⇠ 0.8 after 7 ms
time of flight. (Right) Peak fidelity at resonance I(l = 2) as a function of number of kicks N .
The red dots are experimental data of fidelity at resonance and the blue squares are theoretical
values obtained from Eq. for parameters �d = 0.8 and �� = 0.023. Error bars on experimental
values indicate ± one standard deviation over 5 data points.

of �1.85 ± 0.12. These observations validate our model, where the finite momentum

width of the initial state is responsible for a loss in the scaling of sensitivity S with the

number of pulses N . We also observe that the fidelity is higher for off resonant periods

for N � 4. This occurs due to reduction in the energy imparted to the atoms for off-

resonant pulse periods. Though the suppression is less in than the anti-resonant pulse

period (l = 1), the energy minima near l = 1.73 has been observed before in Ref. [153].

The suppression of fidelity at resonance (l = 2) with N , can be calculated by com-

bining Eq. 5.11 and 5.12:

I 0(l = 2) '
Z 0.5

�0.5

G(�)J2
0 (4⇡N

2�d�)d� (5.13)

The atoms which cause this suppression in fidelity because of finite �, leak to the other

non zero momentum states |n~Ki as the phase shifted kick sequence is applied. This

leaking of atoms to the non-zero momentum states can be observed in the evolution

of momentum distribution for a BEC as a function of kicks, as shown in Fig. 5.5. In

the simulations section of the figure, each momentum order is depicted by a Gaussian

distribution whose total area is proportional to the simulated population occupied by
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that order for N = 4, �d = 0.8 and �� = 0.023. The experiment section of the figure

shows the absorption images taken after each kick for the same parameters.

5.3 AOKR as a velocity filter
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Figure 5.6: AOKR as a velocity filter: (Left) absorption images of the BEC subjected to two
kicks (�d ⇠ 2.1) with a relative lattice phase of ⇡-radians between them. The pulse period was
equal to the Talbot time. The kicks were delivered 5 ms after the trap release and images were
captured after an additional 15 ms time-of-flight. In comparison to the un-kicked BEC (a), the
narrowing of the zeroth momentum order profile in the direction of the lattice is clearly visible
in (c). (Right) the absorption image data in (c) is integrated to give a line plot. The simulation
data is also displayed for the parameters �d = 2.1,�� = 0.031. The dashed circle highlights
the gap left in the second diffracted order due to momentum selectivity of the AOKR resonance.

The dependence of the initial state fidelity at resonant pulse period (l = 2) on de-

viation from zero momentum by an amount denoted by � (Eq. 5.12) gives rise to a

momentum filtering action. Due to this selectivity, the atoms which return to the ze-

roth order after execution of the sequence, possess a narrower momentum distribution

in comparison to the initial state. The filtering action can be seen in Fig. 5.6 for a two

pulse sequence. In the figure, the BEC in (a) measures 0.33 ~K while the zeroth mo-

mentum state in (c) measures 0.17 ~K. Thus, the post sequence profile of the zeroth

order is twice as narrow. The effect of momentum selectivity is also seen in the other

diffracted orders as gaps around the center of the order. This is seen in Fig. 5.6 (right),

where the gap in the second order is highlighted by a dashed circle. These depleted

regions in the higher orders represent atoms which have returned to the zeroth order

as they are in a momentum state closer to an integer multiple of ~K. It can also be

noticed that the gap in the first order is much narrower than the second order. This can
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be explained as follows: an atom in the diffracted orders possess a momentum (n + �)

~K, where n is an integer. The free propagation phase contribution increases as n2 and

is relatively larger than the quasi-momentum phase (�2
+ n�) for the second order in

comparison to the first. This makes the atoms in the second order less sensitive to quasi-

momentum phase and the gap in the momentum distribution more prominent. Reducing

the momentum width of the initial ensemble is an important step in atom interferometry

applications [127]. The AOKR sequence can be used as a momentum filter as demon-

strated above [156]. It doesn’t require a separate setup of laser beams for execution, as

the AI diffraction beams themselves can be used for this purpose.

5.4 Conclusion
The results obtained here experimentally confirm, for the first time, the effect of fi-

nite width of the BEC on the Talbot time measurement sensitivity in the �-kicked rotor

schemes. The best measurement of Talbot time we obtain is TT = 65.567±0.0853 µs for

N = 4 and �d = 0.8. This translates to a relative uncertainty of 1.2⇥ 10
�3. Ref. [157],

seems to have obtained similar measurement uncertainty using �-kicked rotor with a

cold thermal ensemble of 85Rb atoms. The Talbot time is related to the atomic recoil

frequency !r by the relation TT = ⇡/2!r, which is in-turn related to the fine structure

constant ↵ as shown in Fig. 1.3. The current record for precision measurement of the

atomic recoil frequency was accomplished using a Ramsey-Bordé atom interferometer

where a relative uncertainty of 1.2 ⇥ 10
�9 was achieved [53]. The recoil frequency

has been measured by using Talbot resonances with a relative statistical uncertainty of

37 ⇥ 10
�9, however the systematic uncertainty is at 10�6 level [75]. Thus, the relative

uncertainty that we obtain is far from the state-of-the-art measurements. As mentioned

in the sensitivity can be improved by decreasing the momentum width of the initial mo-

mentum state. Initial states with momentum widths lower than the one used here have

been reported in such as: �� = 0.008 [158], 0.004 [73]. One can also use the technique

of delta-kick cooling to lower the momentum width post BEC formation [159]. This

has been demonstrated to produce very cold ensembles with temperatures: 50 pK [160],

1.3 nK [161].

While performing the phase-inversion sequence, it was noticed that when the phase
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deviates significantly from ⇡-radians the momentum distribution possessed an asymme-

try. This occurs due to the breaking of the spatial symmetry of the Hamiltonian and is

explored further in the next chapter.
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Chapter 6
Asymmetry in AOKR

The results presented in this chapter have been published in:
“Effects of finite momentum width on the reversal dynamics in a BEC based atom optics

�-kicked rotor”

Jay Mangaonkar, Chetan Vishwakarma, S Sagar Maurya, Sumit Sarkar, Jamie L. MacLen-

nan, Pranab Dutta and Umakant D. Rapol

Journal of Physics B: Atomic, Molecular and Optical Physics, 53, 235502 (2020)

This chapter describes the lattice-phase dependent intra-order and inter-order asym-

metry observed in the momentum distribution post kicking. The inter-order asymmetry

can be useful as an alternative technique to measure Talbot time. Both of these asym-

metries can be used to monitor the phase drift of the lattice.

6.1 Intra-order asymmetry
The �-kicked rotor dynamics gives rise to two types of asymmetries in the momentum

distribution after application of the kick sequence. Both of them occur due to the relative

lattice phase between the first and last sets of N pulses deviating from ⇡. The first kind

of asymmetry is seen in the quasi-momentum distribution within the diffracted orders

and occurs at the resonant condition l = 2. One can derive a simplified expression for

this asymmetry for a case of two pulses (N = 1) using a position space treatment as

outlined in Ref. [139]. Thus, if ckj denotes the probability of occupation in the state

71
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Figure 6.1: Intra-order and inter-order asymmetry: Simulated momentum distribution after
an initial Gaussian wave-packet centered at j = 0 with momentum spread �� = 0.05 is sub-
jected to two pulses of kick strength �d = 0.8. The red dashed line indicates k,� = 0. (a) Here,
the pulse period is l = 2 and the relative lattice phase between the two pulses is � = ⇡. The
distribution is symmetric about � = 0 for each j and no net momentum current is present. (b)
At l = 2 and � = ⇡ + 2, the asymmetry in the � distribution of j = 0 is clearly visible. As
explained in the text, no net current is induced despite of the asymmetry. (c) For � = ⇡ + 0.5
and l = 1.5, a net momentum current is induced, as seen in the population difference between
the 1 and �1 orders. The y-axis scale is not the same for the three cases.

|j + �i, with initial state being |k + �i:

ckj(�,�) = J2
j�k


2�d cos

✓
2⇡(1 + 2�)� �

2

◆�
(6.1)

Here, � is the conserved quasi-momentum and � is the relative lattice phase shift be-

tween the two kicks. As seen in Eq. 6.1, for a fixed phase � and kick strength �d, the

value of ckj(�,�) will vary with the sign of �. This variation breaks the symmetry of

momentum distribution in � about a discrete order k after application of the kick se-

quence. In Fig. 6.1(b), this asymmetry can be seen in the simulated distribution for two
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kicks. For an initial state with a Gaussian distribution G(�) centered around k = 0, the

intra-order asymmetry in the jth order can be defined as:

Aj(�) =

R 0

�0.5 Cj(�,�)d� �
R 0.5

0 Cj(�,�)d�
R 0

�0.5 Cj(�,�)d� +
R 0.5

0 Cj(�,�)d�
(6.2)

Where, Cj(�,�) = G(�)c0j(�,�). Any change in the occupation of the |0 + �i state

from its initial value has to be balanced by an opposite change in the rest of the |j + �i
states, as

P
J2
n(↵) = 1, for a fixed argument ↵. This results in the sign of the asymmetry

Aj(�) for j = 0 being opposite to that of the rest of the orders. Furthermore, J2
�j(↵) =

J2
j (↵), making the populations of any symmetric orders equal, as seen in Fig. 6.2. Thus,

the phase offset between the two kicks gives rise to a curious phenomenon where a net

asymmetry is present in the system without a net current. The sign of this asymmetry

changes as the phase � is swept across ⇡.

We study this asymmetry for N = 1, which is a simple case to theoretically model.

As seen in Eq. 6.1, this asymmetry is tunable with the lattice phase of the second

kick. This can be clearly seen in the experimental distribution plotted in Fig. 6.2 (top

right panel), where the quasi-momentum distribution of each order differs across the

� = 0 value. Fig. 6.2 (top left panel) plots the asymmetry as defined in Eq. 6.2. As

expected, the sign of this asymmetry for j = 0 is opposite to that of j = ±1. The

total population in j = ±1 is observed to be equal, implying the absence of a net

momentum current. The asymmetry undergoes a sign change as the lattice phase � is

scanned across ⇡ radians which can be seen in Fig. 6.2 (top left panel). The data for

observing this asymmetry effect was taken at a relatively larger time-of-flight of 20 ms,

to resolve the sub-recoil structure within the diffracted orders. Although the sub-recoil

structure has been previously shown to be affected by the resonance dynamics in AOKR

experiments [153], this is the first characterization of an asymmetry present within the

momentum state distribution of the diffracted orders.
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Figure 6.2: Top left: Intra-order asymmetry for N = 1 as a function of the lattice phase.
The asymmetry (A00 in Eq. 6.2) is calculated as (n+ � n�)/(n+ + n�), where n+ and n�
denote the integrated probability density in the positive and the negative sections of the 0th order
momentum bin (�0.5  � < 0.5). Red dots denote the average experimental asymmetry value
over 3 data points. Blue solid line denotes the theoretically calculated value for �d = 1.15 and
�� = 0.023 using Eq. 6.2. Top right: experimental absorption images taken after 20 ms time-
of-flight for the following lattice phase settings � = (a) ⇡/3, (b) ⇡ and (c) 5⇡/3 radians. White
dashed lines indicate the � = 0 position at each discrete momentum bin. Bottom left: Inter-
order population asymmetry for N = 1 as a function of pulse period, at a fixed lattice phase.
The asymmetry here is calculated in the same manner as above, where n+ and n� denote the
integrated probability density in first order diffracted populations (±1 ~K). Red dots denote the
average experimental asymmetry value over 5 data points. Blue solid line denotes the simulated
curve for �d = 0.8, �� = 0.023 and � = ⇡ + 0.35. Bottom right: experimental absorption
images taken after 7 ms time-of-flight for the following pulse periods l = (d) 1.4, (e) 2 and (f)
2.5. Error bars in both the figures denote ± one standard deviation.
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6.2 Inter-order asymmetry
The second type of asymmetry is observed as a population difference between any pair

of orders j and �j, when there is a phase offset from the reversal phase ⇡ for an initial

state k = 0. This phase offset breaks the spatial symmetry of the kick-potential, induc-

ing a net momentum current in the wavefunction, which can be seen in Fig. 6.1(c). As

explained in the previous section, the population ckj of any pair of orders ±j is the same

for l = 2, resulting in zero asymmetry. Unlike the first case which is at resonance l = 2,

no simple expression for ckj can be derived in this case (lattice phase difference is a

non-integer multiple of ⇡ and off resonant pulse period). Previous demonstrations of a

net current in BEC based AOKR systems have been performed by using asymmetric po-

tentials [162] and accelerator modes [163, 164] at resonant or near resonant conditions.

However, a net current is manifested in our case for a zero-momentum initial state at

pulse periods away from resonance.
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Figure 6.3: Comparison of asymmetry and fidelity for the measurement of Talbot time:
The blue dash-dot line denotes the simulated fidelity for a two kick sequence based on the phase
reversal scheme explained in section 5. The red solid curve denotes the simulated absolute value
of the asymmetry for a two kick sequence as defined in Fig. 6.2. It can be clearly seen that
the asymmetry signature is much narrower than the fidelity near resonance, for the same kick
strength (�d = 0.8) and initial state momentum width (�� = 0.023). The phase offset between
the two kicks for the asymmetry plot is 0.35 rad.

As seen in Fig. 6.2 (bottom left panel), this kind of asymmetry peaks at pulse periods

away from resonance. It is quantified by the normalized population difference between
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the first order diffraction population (±1 ~K) as plotted in Fig. 6.2 (bottom left panel).

The net momentum current induced is apparent in the absorption images shown in the

Fig. 6.2 (bottom right panel). We compare the temporal response of this asymmetry with

that of the initial state fidelity. For N = 1 and �d = 0.8, the observed standard deviation

in fidelity is 0.37. In comparison, the asymmetry reaches 0.61 times its peak signal of

⇡ 0.5 in l � 2 = 0.07. Thus, the response of inter-order asymmetry is about 5.3 times

sharper around resonance. This enhancement in sensitivity suggests that intra-order

asymmetry can be used to measure Talbot time. Fig. 6.3 shows a simulated comparison

between the fidelity based sequence and the inter-order asymmetry signature for the

same set of parameters, where this enhancement in sensitivity is clearly visible. Further

investigation is required for optimal definition of asymmetry as the number of diffracted

orders grows. The effect can also be used as a coherent asymmetric beam splitter for

BEC based interferometers [165]. Since the interaction time for Raman-Nath pulses

is at least an order of magnitude less than the Bragg based beam splitters, using them

can reduce the undesired AC-Stark phase shift associated with the pulse [166]. The

zero-crossing signal obtained from the asymmetry effects can be used to diagnose any

undesired phase shifts in the kick sequence at resonant and off-resonant pulse periods.

Such phase shifts induced due to lattice vibrations can be a detriment in the applications

of BEC based AOKR experiments to implement quantum walks in momentum space

[71, 167].



Chapter 7
Quantum ratchet

The experiments with �-kicked rotor in the previous chapters concerned with a plane

wave initial state possessing a single momentum component. The position distribution

of such a state is spatially uniform. When the spatial symmetry of the initial state is

broken one can achieve a net momentum current with the application of �-kicked ro-

tor pulses. This current arises even though the driving optical lattice potential possess

spatial symmetry and is hence unbiased. Such net motion in the absence of a biased

drive force is known as the ratchet effect. The ratchet motion in classical microscopic

systems arises from random dissipative processes such as Brownian motion [168] and

is the underlying mechanism for the conversion of chemical energy to directed motion

in tiny biological motors [169]. The conditions for realization of the ratchet motion

in quantum systems were explained in Ref. [170]. Here, it was predicted that directed

motion in quantum Hamiltonians with spatial and temporal periodicity, can arise when

the underlying classical Hamiltonian has a mixed phase space. The ratchet effect has

been demonstrated in quantum systems such as Josephson junction arrays [171], pho-

tons [172] and ultra-cold atoms [70].

In the ultra-cold atomic system, ratchet motion has been induced using an asymmet-

ric driving potential [162, 173], lattice phase modulation [164, 174, 175] and engineer-

ing the initial momentum state [70]. The method of engineering the initial momentum

state is interesting as it has been theoretically predicted to produce momentum distri-

butions with tailored spread under the action of resonant �-kicked rotor pulses [86].
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Figure 7.1: Gradient force on atoms: The distribution of the wavefunction  (x) = |0 ~Ki+
ei⇡/2 |1 ~Ki = 1 + ieiKx is shown in position space alongside the optical lattice potential
V (x) = cos(Kx). The maximum gradient of the potential coincides with the peak of the
distribution. The force due to this gradient drives the ratchet.

Such control over the momentum distribution is desirable as the �-kicked rotor is an

emerging platform to perform quantum random walks in momentum space [71]. The

dependence of the ratchet current on the initial state preparation has been extensively

studied [163, 176, 177]. Its replication that we present here serves to demonstrate the

capability of our setup for coherent preparation of asymmetric momentum states.

As mentioned previously, an asymmetric momentum state is needed for the direc-

tional motion to take place. This is done by utilizing Bragg diffraction. As described

in section, one can create a coherent momentum state with almost equal population in

the zeroth and any diffracted order with this technique. For this experiment, the Bragg

pulse duration is kept as 66.34 µs so that the free propagation phase gathered by the first

order during preparation is unity. Thus, the initial state at the end of the Bragg pulse is

given by:

 =
1p
2
(|0 ~Ki+ ei� |1 ~Ki) (7.1)

Here, � is the phase of the optical lattice when the Bragg pulse is being applied. The

probability distribution P (x) corresponding to this wavefunction in position space then



79

becomes [163]:

P (x) = | (x)|2 = 1

2⇡
[1 + cos(x+ �)] (7.2)
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Figure 7.2: Realization of a quantum ratchet: Top: Pulse schematic for creation of the quan-
tum ratchet. The Bragg pulse prepares the initial state which is then subjected to the �-kicked
rotor pulses. The phase offset of the optical lattice between the Bragg and the kicked rotor
pulses was �. The kicked rotor pulses were applied with a resonant period of T =33.17 µs and
a frequency detuning of ⇠15 kHz between the kicking beams. The kick strength was kept as
�d ⇠ 1. Bottom: Time-of-flight images of the BEC after application the Bragg and �-kicked
rotor pulses. The color-bar indicates optical density.

After the preparation pulse is over, the phase of the optical lattice is adjusted such

that its relative phase between w.r.t the Bragg pulse optical lattice is �. In our setup this

is done by using two phase locked function generators as described in chapter 3. Fig. 7.1

shows the position distribution of the wavefunction alongside the optical lattice potential
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over two grating periods. When � = ⇡/2, the peak of the distribution | (x)|2 coincides

with the maximum gradient of V (x). Thus, when the optical pulse is applied, the atomic

wavefunction feels a force in the direction defined by this gradient. If the phase is

adjusted such that � = �⇡/2, the direction of this force and thus that of the ratchet can

be reversed. We keep the frequency difference between the kicking beams at 15 kHz and

the kick period as 33.17 µs to be at Talbot resonance [73]. The experimentally obtained

results are shown in Fig. 7.2, where the reversal of the ratchet current with lattice phase

is clearly visible.



Chapter 8
Numerical methods

To simulate the evolution of a cold atom ensemble under the action of a sinusoidal

optical potential in different parameter regimes, we use the split-operator method. It

was proposed in Ref. [178] and has been successfully used to tackle a variety of prob-

lems concerning the solution of time-dependent Schrödinger equation. It uses dis-

crete Fourier transform at its heart, for which a very fast algorithm is available [179].

The central tenet of the method is that the evolution operator exp

⇣
�iĤ�t/~

⌘
can

be split into Ûp(�t) ⇥ Ûx(�t) where, Ûp(�t) = exp(�ip̂2�t/2m~) and Ûx(�t) =

exp(�iV (x̂)�t/~). Here, an error of the order of O(�t2) is accumulated due to non-

commutativity of Ûx and Ûp. The evolution unitary for a time step �t is thus given

as:

Û(t+�t, t) ⇡ Ûp(�t)Ûx(�t) +O(�t2) (8.1)

One can gain back an order of in accuracy by using the Baker-Campbell-Hausdorff

theorem. This is called ‘Strang splitting’ [180].

Û(t+�t, t) ⇡ Ûp(�t/2)Ûx(�t)Ûp(�t/2) +O(�t3) (8.2)

Thus, for n steps in time:

81
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Û(t+ n�t, t) ⇡ Ûp(�t/2)Ûx(�t)

 
Y

n�1

Ûp(�t)Ûx(�t)

!
Ûp(�t/2)

+O(�t3)

(8.3)

In the spatial domain, application of the momentum evolution operator Up is non-trivial

as it involves a derivative. This operation in the momentum domain is achieved by

simply multiplying the wavefunction by exp(�ip2�t/2m~). Thus we switch back and

forth from the momentum and position representations by Fourier transform for the

application of the operators Ûp and Ûx respectively. For computation, we need to dis-

cretize the position and momentum space. The discrete approximation of the continuous

Fourier transform looks like:

�(k, t) =
1p
2⇡

Z 1

�1
 (x, t)e�ikxdx ! �(km, t) ⇡

�xp
2⇡

N�1X

n=0

 (xn, t)e
�ikmxn (8.4)

Where we have switched the momentum notation to the so called k-space (p = ~k)

to get rid of the ~ in normalization of the Fourier transform. The x-space has been

partitioned into N points which makes the corresponding k-space spacing to be �k =

2⇡/N�x. The code written in Python 2.7.15 that is used for implementing this routine

for evolution under an optical lattice potential having a spatial periodicity of 2⇡/K0, is

given below. Note that the physical quantities in the code are scaled in the following

manner: V (x) ! V (x)/Er, t ! t!r, x ! xK0, k ! k/K0. The recoil energy,

Er = ~2K2
0/2m = ~!r, is the energy of an atom of mass m after exchange of two

photons from the optical lattice field.

The code implemented in Python 2.7 is given below:

1

2 import matplotlib.pyplot as plt

3 import numpy as np

4 from scipy.fftpack import fft,ifft

5

6 #setting up simulation parameters
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Figure 8.1: Simulated momentum distribution in the Raman-Nath regime. The simulation
parameters are: potential depth V0 = 160 ~!r and interaction time t = 0.01 !�1

r . Since the
parameters satisfy the Raman-Nath regime, the population distribution follows a Bessel distri-
bution J2

n(V0t/~), where n is the diffraction order.

7

8 time_division = 100 #number of temporal subdivisions

9 time_final = 0.01 #final evolution time in units of recoil

frequency

10 dt = time_final/time_division #resolution in time

11 t_grid = np.linspace(0,time_final,time_division)

12 x_max = 40 #max extent of x_space in terms of lattice period

13 dx = 0.01 #resolution in x_space

14 x = np.arange(-x_max,x_max+dx,dx) #x_space

15 N = len(x) #number of steps in space

16 k = np.concatenate((np.arange(0,(N-1)*0.5+1,1),np.arange

(-(N-1)*0.5,0,1)),axis=0)*((2*np.pi/(N*dx))) #k_space

17 k_mod = np.roll(k,(len(k)-1)/2) #used for plotting

convenience

18 V = 160 #standing wave potential in units of recoil

energy

19 dk = (2*np.pi/(N*dx)) #step in momentum grid

20

21

22 #Define evolution operators

23

24 Vx = V*np.cos(x) #periodic static potential

25 Vk = k**2 #kinetic energy
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26 Ux = np.exp(-1j*Vx*dt) #full time-step operator in x space

27 Uf = np.exp(-1j*Vk*dt) #full time-step operator in k space

28 Ufh = np.exp(-1j*Vk*dt/2.0) #half time-step operator in k space

29

30

31 #Prepare the initial state in space domain

32

33 sigma_K = 0.02 #scaled width in k_space

34 mu = 0 #offset in x_space

35 sigma = 1/(2*sigma_K) #width in x_space

36

37 def Gauss(x):

38 return np.exp(-0.5*((((x-mu)/sigma)**2)))

39

40 psi_0 = Gauss(x) #initialized as a Gaussian

41 psi_x_initial = psi_0

42 psi_p_initial = fft(psi_x_initial)

43 norm = np.sum(np.abs(psi_p_initial)**2) #normalization

factor for momentum distribution

44

45

46 ########## Begin evolution ##########

47

48 psi_0 = fft(psi_0)

49 psi_0 = psi_0*Ufh

50 psi_0 = ifft(psi_0)

51 psi_0 = psi_0*Ux

52

53 for i in range(len(t_grid)-1):

54

55 psi_0 = fft(psi_0)

56 psi_0 = psi_0*Uf

57 psi_0 = ifft(psi_0)

58 psi_0 = psi_0*Ux

59

60 if i%(np.int(0.1*(len(t_grid)-1))) == 0: #displays % completion of

loop in units of 10%

61 q = i/np.int((0.1*(len(t_grid)-1)))
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62 print str((q+1)*10) + ’% complete’

63

64 psi_0 = fft(psi_0)

65 psi_0 = psi_0*Ufh

66

67 ########## End evolution ##########

68

69 psi_0_mod = np.roll(psi_0,(len(k)-1)/2) #rearrange for displaying

70

71 k_prob_density = (np.abs(psi_0_mod)**2)/norm #normalized

probabiliy index

72 k_max = np.int(np.ceil(np.max(k_mod)))-1 #max val

discrete k bin

73 store_int_pop = np.zeros(2*k_max+1) #

store amount of population in each discrete k bin

74 discrete_index_array = np.arange(-k_max,k_max+1,1) #discrete k values

75 Bessel_array = np.zeros(2*k_max+1) #to store values

according to Bessel formula

76 max_order = np.int(len(Bessel_array)*0.5) #maximum order

of diffraction

77

78 for i in range(len(discrete_index_array)): #loop for summing up

quasimomentum in each discrete bin

79 indices = np.zeros(len(k_mod),dtype=bool)

80 for j in range(len(k_mod)):

81 indices[j] = discrete_index_array[i]+0.5 > k_mod[j] >

discrete_index_array[i]-0.5

82 store_int_pop[i] = np.sum(k_prob_density[indices])

83

84 Bessel_array[i] = special.jv(np.int((i-max_order)),V*time_final)**2

85

86 plt.figure(figsize=(5,5))

87 plt.plot(discrete_index_array,Bessel_array,’ro’, label =’Bessel’)

88 plt.bar(discrete_index_array,store_int_pop)

89 plt.xlabel("Momentum orders (h_bar K)")

90 plt.ylabel("Probability")

91 plt.legend(loc=’upper right’)
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Running the code as it is given above will generate a plot of the momentum distri-

bution a narrow momentum wave-packet under the action of a standing wave potential

which is displayed in Fig. 8.1. The momentum distribution is binned in units of the

wave-number of the optical lattice potential (K0). As seen in the plot, the distribution

matches the calculated values matches the expected values under the Raman-Nath ap-

proximation. This code can be easily modified to realize different spatial and temporal

profile than the one which we are interested in here.



Chapter 9
Conclusion and future experiments

9.1 Summary

9.1.1 Realization and characterization of BEC

The primary motivation of this thesis was to setup and characterize a BEC based �-

kicked rotor (AOKR) interferometer experiment for a fidelity based measurement of

Talbot time. The pulse scheme that was experimentally demonstrated here was origi-

nally proposed in Ref. [82]. The initial state used as an input for this interferometer was

a BEC of 87Rb atoms obtained after laser cooling in a MOT and subsequent evaporative

cooling in an hybrid optical crossed dipole trap. Since the quasi-momentum dynamics

were theoretically predicted to play an important role in the dynamics of the AOKR

pulse scheme, the characterization of the BEC initial state and its evolution was done.

The Thomas-Fermi radius and thus the momentum width of the BEC in trap was esti-

mated by measuring the trapping frequencies. These measurements were used to study

the expansion dynamics of the BEC upon release from the trap and the results were in

agreement with the theoretical model.

9.1.2 Preliminary experiments with diffraction using an optical lat-
tice

The BEC thus obtained was subjected to a standing wave lattice of far-detuned laser

radiation (� = 780 nm). The phase modulation of the BEC wavefunction causes it

87
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to diffract into discrete momentum states separated by ~K, K = 4⇡/� being the lat-

tice constant. This diffraction was studied in two different interaction regimes i.e. the

Raman-Nath regime (short pulse duration) and the Bragg regime (long pulse duration).

Diffraction in the Raman-Nath regime was then used to realize the �-kicked rotor Hamil-

tonian using BEC as the initial state. This is called the atom-optics �-kicked rotor or

AOKR. The Talbot resonances, a unique feature of the quantum �-kicked rotor, were

observed at a pulse period of T ⇠ 66 µs (resonant effect) and T ⇠ 33 µs (anti-resonant

effect). The revival of the initial momentum state in anti-resonant Talbot effect occurs

due to cancellation of phase modulation of two subsequent pulses. This is the basic

principle behind the Talbot time measurement schemes that were tested.

9.1.3 AOKR pulse scheme for measurement of Talbot time

The Talbot time measurement pulse schemes were based on the principle of initial state

revival or fidelity (I) when the pulse period was set to Talbot time. In this case the

cancellation of lattice phase modulation was induced by inverting its sign. This inver-

sion was carried out by shifting the phase of the optical standing wave by ⇡ radians. In

pulse scheme-1, the sign inverted pulse was applied with a kick strength of N�d after

N pulses. Thus, when the pulse period was set to Talbot time, initial state fidelity was

maximum. The sensitivity (S) of this pulse sequence i.e. the FWHM of I as a function

of deviation from Talbot time ✏ = l�2 was proposed in Ref. [154] to decrease favorably

as N�3. We carried out this pulse sequence to benchmark the lattice phase inversion ex-

perimentally. The pulse sequence-2 circumvented the need of ramping up the power of

the final pulse in sequence-1 by replacing it with another phase inverted N pulses having

the same kick strength. The observed sensitivity for this sequence differed significantly

from the theoretically predicted one for a plane wave. The observed scaling factor here

was a = �1.85± 0.12 differing from the ideal a = �3, where S = Na. This is the first

reported deviation of the scale factor from -3 which was predicted in Ref. [83]. Analysis

showed that the difference arises whenever the sensitivity of the pulse sequence to the

deviation of the initial momentum state from 0 ~K (ideal plane wave state), becomes

narrower than the momentum width of the initial state. This amounts to breakdown of

the approximation of BEC as a plane wave state. The best measurement of Talbot time
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we obtain is TT = 65.567 ± 0.0853 µs for N = 4 and �d = 0.8. Ref. [157], seems

to have obtained similar precision using �-kicked rotor with a cold thermal ensemble of
85Rb atoms. The sensitivity can be improved by decreasing the momentum width of the

initial momentum state. Initial states with momentum widths lower than the one used

here have been reported in such as: �� = 0.008 [158], 0.004 [73].

In the context of the phase reversal sequence as a continuous-time quantum walk,

the finite momentum width of the initial state needs to be considered while executing re-

cently proposed schemes [85,86]. The quantum-walk-based search algorithm described

in Ref. [85] relies on detecting atoms of a predefined tagged momentum state, essen-

tially demanding the reversal of wavepackets at non-tagged momentum states with high

fidelity. The finite momentum width results are also important for simulation of quan-

tum systems using AOKR as seen in Ref. [167]. Here, the simulated signature of the

topological phase becomes distorted for distributions �� ⇠ 0.03. Thus the effect of

finite momentum width on reversal fidelity that we report, plays an important role in the

above mentioned quantum walker dynamics.

9.1.4 Asymmetry in momentum distribution

While execution of the phase-inversion pulse sequences, it was observed that the mo-

mentum distribution within a diffracted order and the population of the orders about zero

state, showed an asymmetry when the phase differed from ⇡ radians. This intra-order

and inter-order asymmetry was characterized for the case of two pulses. The intra-order

asymmetry has been previously unreported and is unique as it possess a net asymmetry

without a net momentum current. The response of inter-order asymmetry is about 5.3

times sharper around resonance in comparison to fidelity for the same parameters. This

enhancement in sensitivity suggests that intra-order asymmetry can be used as a probe in

AOKR experiments. The effect can also be used as a coherent asymmetric beam splitter

for BEC based interferometers [165]. Since the interaction time for Raman-Nath pulses

is at least an order of magnitude less than the Bragg based beam splitters, using them

can reduce the undesired AC-Stark phase shift associated with the pulse [166]. The

zero-crossing signal obtained from the asymmetry effects can be used to diagnose any

undesired phase shifts in the kick sequence at resonant and off-resonant pulse periods.
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Such phase shifts induced due to lattice vibrations can be a detriment in the applica-

tions of BEC based AOKR experiments to implement quantum walks in momentum

space [71, 167].

9.2 Future experiments

9.2.1 Continuous-time quantum walk (CTQW) with AOKR

The difference between a discrete quantum walk and a continuous one is the absence of

the coin degree of freedom in the later. Ref. [85] proposes the realization of a quantum

search algorithm using a BEC based CTQW. In this proposal, a uniform momentum

state distribution is created by initiating the sequence with a coherent multi-component

momentum state such that:

| i = 1p
5
(C�2 |�2i+ C�1 |�1i+ C0 |0i+ C1 |1i+ C2 |2i) (9.1)

Where, |ni denotes the nth diffraction order. An arbitrary combination of such states

can be created by a Bragg pulse sequence. An example of this is the demonstration of a

quantum ratchet in chapter 7 (Fig. 7.2), where the phase between the two participating

states was used to steer the symmetry of the final distribution. As shown in Ref. [86],

for certain values of the state coefficients Cn, subjecting the prepared state to �-pulses

at Talbot time creates an ensemble with almost uniform distribution. One can then

use velocity selective Raman pulses to invert the phase of a particular diffraction order

[181]. This ‘tagged’ momentum state from the uniform ensemble will then separate

out at the end of the sequence. The reversal sequence without this momentum selective

tagging has been realized in this thesis for 5 steps (Fig. 5.5).

9.2.2 Effect of interactions on the Talbot effect

This is a relatively unexplored area in BEC based AOKR. Most of the experiments are

carried out in the regime after the interaction energy of the condensate has been con-

verted to the kinetic energy. Ref. [182] predicts that the anti-resonance fidelity decreases

with an increase in the interaction energy. Surprisingly, it also predicts that the state re-

versal is recovered upon being in the parameter range where the underlying classical
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phase-space is chaotic. In 87Rb the interaction term can be increased by accessing the

magnetic [183] or optical Feshbach resonances [184].

t = 6 ms

t = 0 ms

Figure 9.1: Diffraction profile for different pulse application times: In the first row the
optical lattice pulse was applied immediately after releasing the BEC from the trap (t = 0 ms).
It can be seen that the diffraction orders are significantly narrower in comparison to the case
where the pulse is applied much later (t = 6 ms). No pulse is applied in the last row. All images
are taken after 20 ms from the trap release.

There is another effect which is observed in the diffraction profile of the BEC which

is possibly interaction induced. As seen in Fig. 9.1, when the optical lattice pulse is

applied immediately after the BEC is released from the trap, the diffraction profile of

the orders appear to be significantly narrow in comparison to the same when the pulse is

applied a few milliseconds later. When the BEC is immediately released from the trap

it takes sometime for the interaction energy to be released as kinetic energy. This can

be seen in Fig. 2.7, where the accelerated expansion ceases past ⌧ > 2. For our case

i.e. !0 = 2⇡ ⇥ 130 Hz, the expansion ceases past t > 2.5 ms. Further simulation and

experimental study is required to conclude the origins of this effect.

9.2.3 Realization of asymmetric beam splitter and combiner with
AOKR

The ⇡/2 Bragg pulse in a traditional Mark-Zehnder AI configuration can be replaced by

an asymmetric AOKR beam splitter to couple the zeroth and the first diffracted order.

As shown in Fig. 9.2 this AOKR beam splitter consists of a �-pulse pair. The time sepa-

ration of the pulse pair is away from the Talbot time (l1 6= 2) and there is a lattice phase
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l1, 1 l2, 2
Bragg pulse

V0

t

Figure 9.2: AOKR based interferometer: The blue spheres denote the atomic ensemble. The
first pulse pair splits this ensemble into a equal superposition of |0i and |1i states, where |ni
denotes the nth diffraction order. l and � denote the pulse pair separation and the relative lattice
phase between the pair respectively. The Bragg ⇡-pulse transfers atoms into the |�1i state. The
interferometer is then closed by the final pulse pair.

offset (�1) between the two pulses. This splitting has experimentally been demonstrated

in Fig. 6.2. An AI sequence can be constructed from the pulse pair as shown in Fig.

9.2. The Bragg pulse with zero frequency difference between the counter-propagating

beams couples the |1i and |�1i states, while keeping the |0i state unchanged. The pa-

rameters for the final pulse pair for closing the interferometer and optimizing the entire

sequence requires further theoretical modeling and simulations. Using such short dura-

tion pulses which are at least an order of magnitude lesser in duration in comparison to

Bragg pulses will reduce systematic effects due to AC Stark shift [166] and diffraction

phase [185].
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Appendix

A.1 Characterization of lattice phase noise induced due

to vibrations

Figure A.1: Interferometric diagnosis of vibration noise: Schematic of the test setup used to
characterize the vibration noise introduced in the optical lattice. Light from the laser was split
into two paths using a non-polarizing beam splitter. The longer path traversed the optical fiber
length and a distance 2L = 18 cm, which is the separation between the two steel posts. This
path was then interfered with the shorter one on the photo-diode. Any vibrations in the steel
posts �x (highly exaggerated in the figure) produced a intensity variation in the interferometer
signal. The photo-diode signal was fed to a spectrum analyzer (SRS’s SR785).
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Figure A.2: FFT of photo-diode data: The marked peaks in frequency are as follows: f1 =
64.5 Hz, f2 = 72 Hz and f3 = 89.5 Hz. Thus, the timescale for the vibrations is at the level
of ⇠ 10 ms for this configuration of optics. Inset shows the time series data captured on an
oscilloscope over a time scale of 80 ms.

Vibration noise is one of the major noise sources that affect the performance of

an atom interferometer [186]. In the AOKR experiments, the vibration noise enters

as fluctuations of lattice phase. These fluctuations can significantly affect the quan-

tum dynamics [167]. We observed that the readout of the AOKR sequence (chapter

5) showed considerable fluctuations as the total number of pulses were increased be-

yond 5. Since the sequence did not break spatial symmetry, any asymmetric distribution

which changes shot-to-shot is caused due to phase noise. To determine the characteristic

time scale at which the vibration induced phase noise is dominant, a dummy setup was

arranged as shown in Fig. A.1. The two 2-inch steel posts were separated by approxi-

mately 900 mm. The collimator and the retro mirror were mounted on a height of 280

mm on the 2-inch posts to mimic the kicking beams on the 87Rb setup. The two mirrors

shown in Fig. A.1 form a Michelson interferometer whose fringe readout is done at the

photo-diode. An iris is arranged in the common path such that only a single fringe falls

on the photo-diode. The intensity fluctuations due to vibrations of the posts are then
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monitored on a spectrum analyzer (SRS’s SR785). As it can be seen from the spectrum

analyzer data in Fig. A.2, the time scale for these vibrations are of the order of ⇠ 10

ms.

A.2 BEC momentum width measurement using Bragg

spectroscopy
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Figure A.3: Bragg spectroscopy of BEC: The BEC was subjected to a Bragg pulse of 200 µs
duration, 100 µs after release from the trap. The frequency difference between the Bragg beams
was scanned from 0-30 kHz. The standard deviation of the Gaussian fit to diffraction efficiency
peak is 2.26 kHz.

The Bragg diffraction process is dependent on the initial momentum of the atoms

as shown in Eq. 3.13. Thus for a width of �⌫ in the Bragg frequency spectrum, the

equivalent momentum spread of the BEC �� is given by:

�� =
2⇡m�⌫

K
(A.1)

Here, K = 4⇡/� is the grating constant. For�⌫ = 2.26 kHz the measurement of which

is shown in Fig. A.3, �� = 0.075 ~K. Though this seems broader than the value of

�� ⇠ 0.02 � 0.03 ~K, estimated from the AOKR experiment and the measurement

of trapping frequency it maybe likely due not using Fourier limited pulse width. A
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pulse width of greater than 250 µs is required to resolve the spectrum beyond 1 kHz.

Ref. [128] used a pulse width of 500 µs to resolve a spectrum whose width was 2 kHz

(rms width). Our attempts to increase the pulse duration beyond 200 µs resulted in

increased fluctuation in diffraction efficiency. This is already seen in the relatively large

error bars in Fig. A.3. Simulation results indicate that this fluctuation is likely due to a

phase noise in the lattice. Thus, the lattice has to be stabilized further to perform a more

accurate momentum spectroscopy experiment.

A.3 Absorption imaging
Absorption imaging is a reliable way of obtaining high SNR images of cold atom clouds.

It is a form of destructive imaging of atoms as the light used to observe the atomic cloud

is on resonance with the relevant transition. When an absorption image is to be acquired,

the cloud is illuminated with a pulse of on resonance laser beam with intensity I0. The

transmitted light due to absorption by the atomic cloud is given by the Beer-Lambert’s

law:

I = I0e
�n(x,y)� (A.2)

Where, n(x, y) is the integrated column density in the direction of the beam and � is

the absorption cross-section. The exponent n(x, y)� is called the optical density or OD.

If the illumination is on resonance and the intensity is near saturation, once can use the

resonant absorption cross-section �0 = ~!�/4Is (! = laser angular frequency, � =

decay rate of transition, Is = saturation intensity). To eliminate the effects of stray light

and dark counts in the camera, a reference image (Iref ) is used where the camera image

is acquired without the imaging illumination. Thus the measured optical density is:

ODm = ln
Il � Iref
Ia � Iref

(A.3)

Where Ia and Il are light intensities measured in and without the presence of atoms.

This is the OD that is mentioned in all the images in this thesis. In our setup we use

a single lens of 200 mm focal length to image the atomic cloud [93]. This lens is kept

between equidistant from the camera and the atoms such that it is 2f away from both.

The imaging beam diameter is 22 mm and typically has a power of 3-4 mW. To obtain
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the amount of atoms in each diffracted order in the AOKR experiments, we use linear

number density (nl), integrated along the direction orthogonal to the lattice light.

nl =
1

�0

Z 1

�1
ODmdx (A.4)

This linear number density is plotted in Fig. 3.2 to determine the population in each

diffracted order.
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[54] M. Weitz, T. Heupel, and T. W. Hänsch. Multiple beam atomic interferometer.

Phys. Rev. Lett., 77:2356–2359, Sep 1996.



104 BIBLIOGRAPHY

[55] Alan O. Jamison, Benjamin Plotkin-Swing, and Subhadeep Gupta. Advances in

precision contrast interferometry with yb bose-einstein condensates. Phys. Rev.

A, 90:063606, Dec 2014.

[56] Henry Fox Talbot. Lxxvi. facts relating to optical science. no. iv. Philos. Mag.,

9(56):401–407, 1836.

[57] Lord Rayleigh F.R.S. Xxv. on copying diffraction-gratings, and on some phe-

nomena connected therewith. The London, Edinburgh, and Dublin Philosophical

Magazine and Journal of Science, 11(67):196–205, 1881.

[58] Jianming Wen, Yong Zhang, and Min Xiao. The talbot effect: recent advances

in classical optics, nonlinear optics, and quantum optics. Adv. Opt. Photon.,

5(1):83–130, Mar 2013.

[59] H. Hamam. Talbot array illuminators: general approach. Appl. Opt.,

36(11):2319–2327, Apr 1997.

[60] S. Sanders, R. Waarts, D. Nam, D. Welch, J. C. Ehlert, W. J. Cassarly, J. M.

Finlan, and K. M. Flood. Phase locking of a two-dimensional semiconductor

laser array in an external talbot cavity. In Proceedings of LEOS ’93, pages 590–

591, 1993.

[61] Christian Kottler, Vincent Revol, Rolf Kaufmann, and Claus Urban. Dual en-

ergy phase contrast x-ray imaging with talbot-lau interferometer. J. Appl. Phys.,

108(11):114906, 2010.

[62] Zhaoyang Zhang, Xing Liu, Dan Zhang, Jiteng Sheng, Yiqi Zhang, Yanpeng

Zhang, and Min Xiao. Observation of electromagnetically induced talbot effect

in an atomic system. Phys. Rev. A, 97:013603, Jan 2018.

[63] Weiwei Zhang, Chenlong Zhao, Jiayuan Wang, and Jiasen Zhang. An experi-

mental study of the plasmonic talbot effect. Opt. Express, 17(22):19757–19762,

Oct 2009.



BIBLIOGRAPHY 105

[64] Stefan Gerlich, Lucia Hackermüller, Klaus Hornberger, Alexander Stibor, Hen-

drik Ulbricht, Michael Gring, Fabienne Goldfarb, Tim Savas, Marcel Müri, Mar-
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Grimm. Bose-einstein condensation of cesium. Science, 299(5604):232–235,

2003.

[113] Mingwu Lu, Nathaniel Q. Burdick, Seo Ho Youn, and Benjamin L. Lev. Strongly

dipolar bose-einstein condensate of dysprosium. Phys. Rev. Lett., 107:190401,

Oct 2011.

[114] K. Aikawa, A. Frisch, M. Mark, S. Baier, A. Rietzler, R. Grimm, and F. Ferlaino.

Bose-einstein condensation of erbium. Phys. Rev. Lett., 108:210401, May 2012.

[115] E. T. Davletov, V. V. Tsyganok, V. A. Khlebnikov, D. A. Pershin, D. V. Shaykin,

and A. V. Akimov. Machine learning for achieving bose-einstein condensation of

thulium atoms. Phys. Rev. A, 102:011302, Jul 2020.

[116] Yosuke Takasu, Kenichi Maki, Kaduki Komori, Tetsushi Takano, Kazuhito

Honda, Mitsutaka Kumakura, Tsutomu Yabuzaki, and Yoshiro Takahashi. Spin-

singlet bose-einstein condensation of two-electron atoms. Phys. Rev. Lett.,

91:040404, Jul 2003.

[117] S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, S. Riedl, C. Chin,

J. Hecker Denschlag, and R. Grimm. Bose-einstein condensation of molecules.

Science, 302(5653):2101–2103, 2003.

[118] M. R. Andrews, C. G. Townsend, H.-J. Miesner, D. S. Durfee, D. M. Kurn, and

W. Ketterle. Observation of interference between two bose condensates. Science,

275(5300):637–641, 1997.

[119] D. S. Jin, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell. Col-

lective excitations of a bose-einstein condensate in a dilute gas. Phys. Rev. Lett.,

77:420–423, Jul 1996.

[120] J. R. Abo-Shaeer, C. Raman, J. M. Vogels, and W. Ketterle. Observation of vortex

lattices in bose-einstein condensates. Science, 292(5516):476–479, 2001.



BIBLIOGRAPHY 111

[121] S. Burger, K. Bongs, S. Dettmer, W. Ertmer, K. Sengstock, A. Sanpera, G. V.

Shlyapnikov, and M. Lewenstein. Dark solitons in bose-einstein condensates.

Phys. Rev. Lett., 83:5198–5201, Dec 1999.

[122] S. Inouye, A. P. Chikkatur, D. M. Stamper-Kurn, J. Stenger, D. E. Pritchard, and

W. Ketterle. Superradiant rayleigh scattering from a bose-einstein condensate.

Science, 285(5427):571–574, 1999.

[123] C. R. Cabrera, L. Tanzi, J. Sanz, B. Naylor, P. Thomas, P. Cheiney, and L. Tarru-

ell. Quantum liquid droplets in a mixture of bose-einstein condensates. Science,

359(6373):301–304, 2018.

[124] D. M. Stamper-Kurn, M. R. Andrews, A. P. Chikkatur, S. Inouye, H.-J. Miesner,

J. Stenger, and W. Ketterle. Optical confinement of a bose-einstein condensate.

Phys. Rev. Lett., 80:2027–2030, Mar 1998.

[125] Lev Pitaevskii and Sandro Stringari. Bose-Einstein Condensation and Superflu-

idity. Oxford university press, Great Clarendon Street, Oxford, OX2 6DP, United

Kingdom, 2016.

[126] C. J. Pethick and H. Smith. Theory of the condensed state, pages 159–181. Cam-

bridge University Press, 2 edition, 2008.

[127] S S Szigeti, J E Debs, J J Hope, N P Robins, and J D Close. Why momen-

tum width matters for atom interferometry with bragg pulses. New J. Phys.,

14(2):023009, feb 2012.

[128] J. Stenger, S. Inouye, A. P. Chikkatur, D. M. Stamper-Kurn, D. E. Pritchard, and

W. Ketterle. Bragg spectroscopy of a bose-einstein condensate. Phys. Rev. Lett.,

82:4569–4573, Jun 1999.

[129] Y. Castin and R. Dum. Bose-einstein condensates in time dependent traps. Phys.

Rev. Lett., 77:5315–5319, Dec 1996.



112 BIBLIOGRAPHY

[130] Rui-Zong Li, Tian-You Gao, Dong-Fang Zhang, Shi-Guo Peng, Ling-Ran Kong,

Xing Shen, and Kai-Jun Jiang. Expansion dynamics of a spherical bose–einstein

condensate. Chin. Phys. B, 28(10):106701, oct 2019.

[131] Max Born, Emil Wolf, A. B. Bhatia, P. C. Clemmow, D. Gabor, A. R. Stokes,

A. M. Taylor, P. A. Wayman, and W. L. Wilcock. Principles of Optics: Elec-

tromagnetic Theory of Propagation, Interference and Diffraction of Light. Cam-

bridge University Press, 7 edition, 1999.

[132] P. L. Kapitza and P. A. M. Dirac. The reflection of electrons from standing

light waves. Mathematical Proceedings of the Cambridge Philosophical Soci-

ety, 29(2):297–300, 1933.

[133] Daniel L. Freimund, Kayvan Aflatooni, and Herman Batelaan. Observation of

the kapitza–dirac effect. Nature, 413(6852):142–143, Sep 2001.

[134] E Brion, L H Pedersen, and K Mølmer. Adiabatic elimination in a lambda system.

J. Phys. A Math. Theor., 40(5):1033–1043, jan 2007.

[135] Pierre Meystre and Murray SargentIII. Elements of Quantum Optics. Springer,

Berlin, Heidelberg, 4 edition, 2007.

[136] C V Raman and N S Nagendra Nath. The diffraction of light by high frequency

sound waves: Part one. Proc. Indian Acad. Sci., A2:406–412, 1936.

[137] J. H. Huckans, I. B. Spielman, B. Laburthe Tolra, W. D. Phillips, and J. V. Porto.

Quantum and classical dynamics of a bose-einstein condensate in a large-period

optical lattice. Phys. Rev. A, 80:043609, Oct 2009.

[138] J. Baruchel, J.P. Guigay, C. Mazuré-Espejo, M. Schlenker, and J. Schweizer. Ob-

servation of pendellösung effect in polarized neutron scattering from a magnetic

crystal. Physica B+C, 120(1):80, 1983.

[139] Mark Saunders. Manifestation of quantum resonant effects in the atom-optical

delta-kicked accelerator. PhD thesis, Durham University, Durham, United King-

dom, 9 2011.



BIBLIOGRAPHY 113

[140] B.V.Chirikov. Research concerning the theory of nonlinear resonance and

stochasticity. Preprint N 267, Institute of Nuclear Physics, Novosibirsk, 1969.

[141] Wojciech Hubert Zurek and Juan Pablo Paz. Decoherence, chaos, and the second

law. Phys. Rev. Lett., 72:2508–2511, Apr 1994.

[142] G. Casati, I. Guarneri, and D.L. Shepelyansky. Classical chaos, quantum local-

ization and fluctuations: A unified view. Physica A: Statistical Mechanics and its

Applications, 163(1):205–214, 1990.

[143] B. G. Klappauf, D. A. Steck, and M. G. Raizen. Quantum chaos in mixed phase

space: Beyond the delta kicked rotor. In Quantum Electronics and Laser Science

Conference, page QWD12. Optical Society of America, 1997.

[144] H. J. Korsch, E. M. Graefe, and Hans-Jörg Jodl. The kicked rotor: Computer-

based studies of chaotic dynamics. Am. J. Phys., 76(4):498–503, 2008.

[145] M. Arndt, A. Buchleitner, R. N. Mantegna, and H. Walther. Experimental study of

quantum and classical limits in microwave ionization of rubidium rydberg atoms.

Phys. Rev. Lett., 67:2435–2438, Oct 1991.

[146] M. Bitter and V. Milner. Experimental observation of dynamical localization in

laser-kicked molecular rotors. Phys. Rev. Lett., 117:144104, Sep 2016.

[147] B. G. Klappauf, W. H. Oskay, D. A. Steck, and M. G. Raizen. Observation

of noise and dissipation effects on dynamical localization. Phys. Rev. Lett.,

81:1203–1206, Aug 1998.

[148] F. L. Moore, J. C. Robinson, C. F. Bharucha, Bala Sundaram, and M. G. Raizen.

Atom optics realization of the quantum �-kicked rotor. Phys. Rev. Lett., 75:4598–

4601, Dec 1995.

[149] D. R. Grempel, R. E. Prange, and Shmuel Fishman. Quantum dynamics of a

nonintegrable system. Phys. Rev. A, 29:1639–1647, Apr 1984.
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Diffraction phases in atom interferometers. Phys. Rev. A, 68:013607, Jul 2003.
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