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Abstract
The objective of this thesis is to study the algebraic K-theory of exact categories. In
algebraic K-theory we construct a sequence of groups, called Kn, which are invari-
ants of a given exact category. We look at two different constructions of Kn, Quillen’s
Q-construction of the K-groups of an exact category as the homotopy groups of a
topological space and Wladhausen’s S-construction of the K-groups as the stable ho-
motopy groups of a spectrum, and show that they are equivalent. The S-construction
is then used to prove the main aim of this thesis, the additivity theorem. The ad-
ditivity theorem then helps us prove fundamental results about the K-groups. The
main results considered are, the cofinality theorem and resolution theorem for exact
categories, and the devissage theorem and localisation theorem for abelian categories.
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Chapter 1

Preliminaries

In this chapter we look at all the topological preliminaries that are required for this
thesis. The main reference for this section is [4].

1.1 CW complexes

Let Dn denote the closed unit ball in Rn, en denote the open unit ball in Rn and
Sn the n-sphere. We define ∂Dn, called the boundary of Dn, to be the boundary of
Dn as a subset of Rn, then ∂Dn ∼= Sn−1 and Dn − ∂Dn ∼= en. In this section we
define CW-complexes and state some of their properties that will be needed in this
paper, these are topological spaces constructed by gluing together Dns along their
boundaries. The following definition and theorems are from Hatcher’s book [4].

Definition 1.1.1. A topological space X is called a CW complex if there exist sub-
spaces Xn for all n ∈ N ∪ {0} satisfying the following,

(1) X0 is a discrete subspace of X,

(2) For all n, there exists a collection of continuous functions {Φn
α : Sn−1

α → Xn−1}
such that, Xn = Xn−1

∐
αD

n
α/ ∼, where the equivalence relation is, if x ∈ ∂Dn

α,
then x ∼ Φn

α(x) under the identification ∂Dn
α
∼= Sn−1

α .

(3) X =
⋃
nX

n with the weak topology, i.e, A ⊆ X is open iff A ∩Xn is open in
Xn for all n.

Note that the third condition does not follow from the first two in general, unless
X = Xn for some n. Given the maps Φn

α : Sn−1
α → Xn−1, we can use the identification

1



2 CHAPTER 1. PRELIMINARIES

∂Dn
α
∼= Sn−1

α to extend this to a map Φn
α : Dn

α → X such that restricted toDn
α−∂Dn

α
∼=

enα it is a homeomorphism onto the image. The images of enα under these maps are
called the n−cells of the CW complex, and enα = Φn

α(Dn
α). Also note that given a

topological space there maybe more than one way give it a CW complex structure, for
example a 2-sphere can be realised as a CW complex with a single 0-cell(a point) and a
single 2-cell, with its boundary collapsed to the single 0-cell, or it can be realised with
two 2-cells with their boundaries (which are the 1-cells) identified homeomorphically.
We call a subspace A of a CW complex X a sub-complex if for all cells enα of X,
enα ∩ A 6= ∅, implies enα ⊆ A. We note the following important facts about CW-
complexes [4, A.1],

Theorem 1.1.1. (1) Every CW complex is compactly generated, that is a subset is
open (or closed), iff its intersection with each compact subset is open(or closed).

(2) A subspace of a CW complex X is compact iff it is contained in a union of
finitely many cells

Product of CW complexes

The product of two CW complexes may not in general be a CW complex, similar to
how the product of two compactly generated spaces may not be compactly generated.
But given any topological space X we can define a new topology on X, where a subset
is said to be open if and only if its intersection with every compact set, under the
previous topology, is open. We denote this space by Xc, it has the same compact
subspaces as X and is compactly generated.

Theorem 1.1.2. Let X and Y be CW complexes with cell maps Φα and Ψβ, then
(X ×Y )c is a CW complex with cell maps Φα×Ψβ and it is the product of X and Y
in the category of compactly generated spaces. If either X or Y is compact or locally
compact then (X × Y )c = X × Y

1.2 Higher homotopy groups

Given a pointed topological space (X, x0) we can assign to it the fundamental group
π1(X, x0) comprising of homotopy classes of maps f : (I, 0)→ (X, x0), where I is the
unit interval, such that f(0) = f(1). These can also be seen as continuous functions
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f : (S1, (1, 0))→ (X, x0). Higher homotopy groups generalise this notion to classes of
maps from In → X. First we need some notation, by (X,A) we mean a topological
space X along with a subspace A ⊆ X and map f : (X,A)→ (Y,B) is a continuous
function X → Y such that f(A) ⊆ B.

Let In denote the product of n copies of I and ∂In its boundary as a subset of
Rn. The nth homotopy group πn(X, x0) of a pointed topological space (X, x0), as a
set is set of all homotopy classes of functions f : (In, ∂I) → (X, x0), where f and g
are homotopic if there exists F : (In× I, ∂In× I)→ (X, x0) such that F (~s, 0) = f(~s)

and F (~s, 1) = g(~s). The group structure is defined as follows:

f + g(x1, x2, . . . , xn) =

f(2x1, x2, . . . , xn) x1 ≤ 1/2

g(2x1 − 1, x2, . . . , xn) x1 ≥ 1/2
(1.1)

Just like for the case of π1, πn can be described as the set of maps f : (Sn, s0) →
(X, x0), as In/∂In is homeomorphic to Sn. The group operation is then given by first
considering the wedge sum f ∨ g of the given two maps defined on the wedge of two
copies of (Sn, s0), and then composing it with the map Sn → Sn ∨ Sn obtained by
collapsing the equator to a point. We have used the ‘+’ symbol for the group law here
because for n ≥ 2, πn(X, x0) is abelian for any space (X, x0). A proof of this fact is
given in [4, 4.1], we give a different proof here using the Eckmann-Hilton argument.

Theorem 1.2.1 (Eckmann-Hilton argument). Let X be a set equipped with two
binary operations ’◦’ and ’*’, such that,

1. Both operations have a two sided identity say 1◦ and 1∗

2. ∀a, b, c, d ∈ X(a ∗ b) ◦ (c ∗ d) = (a ◦ c) ∗ (b ◦ d)

Then * and ◦ are the same binary operation and both of them are commutative.

Proof. First we show that the identities of the two operations are the same.

1∗ = 1∗ ∗ 1∗ = (1◦ ◦ 1∗) ∗ (1∗ ◦ 1◦) = (1◦ ∗ 1∗) ◦ (1∗ ∗ 1◦) = 1◦ ◦ 1◦ = 1◦

Therefore we denote the identity by just 1. Now we have

f ∗ g = (f ◦ 1) ∗ (1 ◦ g) = (f ∗ 1) ◦ (1 ∗ g) = f ◦ g
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and
f ∗ g = (1 ◦ f) ∗ (g ◦ 1) = (1 ∗ g) ◦ (f ∗ 1) = g ◦ f

Therefore both the operations are the same and the unique operation is commutative.

We will use the above theorem and the fact that, for n ≥ 2 there is more than
one coordinate along which we can concatenate two functions, to show the group
structure on πn(X, x0) is abelian.

Theorem 1.2.2. Let + be the operation on πn(X.x0) as above for n ≥ 2 and +′ be
the operation as below

f +′ g(x1, x2, . . . , xn) =

f(x1, 2x2, . . . , xn) x2 ≤ 1/2

g(x1, 2x2 − 1, . . . , xn) x2 ≥ 1/2
(1.2)

Then f + g = f +′ g for all f, g ∈ πn(X, x0) and the operation is commutative

Proof. Let f, g, h, i : (In, ∂In)→ (X, x0), then

(f + g)(x1, x2, . . . , sn) =

f(2x1, x2, . . . , xn) x1 ≤ 1/2

g(2x1 − 1, x2, . . . , xn) x1 ≥ 1/2

and,

(f +′ g)(x1, x2, . . . , xn) =

f(x1, 2x2, . . . , xn) x2 ≤ 1/2

g(x1, 2x2 − 1, . . . , xn) x2 ≥ 1/2

Therefore we have,

(f + g) +′ (h+ i)(x1, x2, . . . , xn) =


f(2x1, 2x2, . . . , xn) x1 ≤ 1/2, x2 ≤ 1/2

g(2x1 − 1, 2x2, . . . , xn) x1 ≥ 1/2, x2 ≤ 1/2

h(2x1, 2x2 − 1, . . . , xn) x1 ≤ 1/2, x2 ≥ 1/2

i(2x1 − 1, 2x2 − 1, . . . , xn) x1 ≥ 1/2, x2 ≥ 1/2

Expanding out (f +′ h) + (g +′ i) we get the same expression as the RHS above.
Therefore by the theorem above [f ] + [g] = [f ] +′ [g] for all f and g.

Note that the equality of the operations is only true for the homotopy classes, even
though the equality above was equality as functions, as the Eckmann-Hilton argument
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only holds for operations with an identity and this is true only on homotopy classes.
Also, generalising the above argument we can show that on πn(X, x0), gluing along
any coordinate gives the same group structure. We state two important theorems
that are easy to verify.

Theorem 1.2.3. Let p : (E, e0) → (B, b0) be a covering map, then for all n ≥ 2,
p∗ : πn(E, e0)→ πn(B, b0) is an isomorphism.

The above theorem follows from the universal property of covering maps and
the fact that Sn is simply connected for n ≥ 2. This implies that if a space has a
contractible universal cover than its higher homotopy groups are trivial. The next
theorem is about homotopy groups of products of spaces.

Theorem 1.2.4. All homotopy groups commute with products, that is, πn(
∏

αXα, (xα)) ∼=∏
α πn(Xα, xα) for all n and all (Xα, xα)

1.2.1 Relative Homotopy groups

Given a pair (X,A) of a topological space and its subspace, we want to assign a
group structure to the homotopy class of maps (In, ∂In) → (X,A). But just like in
the case of homotopy groups of (X, x0), we need to fix a point so that we can glue
two such functions. To do this fist we define Jn−1 ⊂ ∂In be the subset consisting of
all the faces of In except for the interior of one face (we choose it to be xn = 0 face).
For example J1 consists of three sides of a square with the endpoints of the fourth
side, J0 is just the endpoint 1. Now we look at πn(X,A, x0), the set of homotopy
classes of maps between the triples of spaces (In, ∂In, Jn−1)→ (X,A, x0), where the
homotopies considered are maps of the kind, (In× I, ∂In× I, Jn−1× I)→ (X,A, x0).
The group operation can be defined similar to the case of homotopy groups, but
unlike the previous case, where we could concatenate along any coordinate, here we
cannot concatenate along xn as by definition, fixing xn = 0 does not guarantee that
f(x1, . . . , xn = 0) = x0. Therefore π1(X,A, x0) is the set of homotopy classes of paths
beginning at x0 and ending at a point in A, and for n ≥ 0 we have a group structure
which can be shown to be abelian for n ≥ 3 the same way as for πn(X, x0). If we take
A = x0, then πn(X, x0, x0) = πn(X, x0).

We have two inclusions j : (X, x0, x0) → (X,A, x0) and i : (A, x0) → (X, x0)

which induce maps j∗ : πn(X, x0) → πn(X,A, x0) and i∗ : πn(A, x0) → πn(X, x0) for
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all n. Along with these we have the boundary maps ∂ : πn(X,A, x0) → πn−1(A, x0)

which is the restriction of the map f : (In, ∂In, Jn−1)→ (X,A, x0) to the xn = 0 face
giving a map f : (In−1, ∂In−1)→ (A, x0), therefore we have a sequence

. . .
i∗−→ πn(X, x0)

j∗−→ πn(X,A, x0)
∂−→ πn−1(A, x0)

i∗−→ . . .

. . .
j∗−→ π1(X,A, x0)

∂−→ π0(A, x0)
i∗−→ π0(X, x0) (1.3)

Note that the last two terms are singleton sets. Now we state the most important
theorem we will need about relative homotopy groups. This is Th.4.3 in [4, Pg.344].

Theorem 1.2.5. The above sequence is exact.

Where at the end of the sequence exactness just means that the map π1(X, x0)
j∗−→

π1(X,A, x0) is surjective. An important application of this theorem is to fibration
sequences which will be described in a later section.

1.3 Cellular maps and Cellular approximation

In this section we state two important theorems about CW-complexes, Whitehead’s
theorem [4, Th.4.5] and Cellular approximation [4, Th.4.8]. As CW complexes are
built from copies of Dn, which are homeomorphic to In, their homotopy groups
are easier to study. In particular all n-spheres are CW complexes and the theorem
below helps calculate their homotopy groups, but first we make a definition. A map
f : X → Y of CW complexes is called cellular, if f(Xn) ⊂ Yn for all n, or equivalently
it can be constructed as a sequence of compatible maps fn : Xn → Yn. Again a map
being cellular depends on the cell structure assigned. Now we are ready to state the
theorem.

Theorem 1.3.1 (Cellular Approximation). Let f : X → Y be a continuous function
between CW complexes, then f is homotopic to a cellular map. Moreover, if f is
already cellular on a sub-complex A of X, then the homotopy can be chosen to be
constant on A.

As each Sn has a CW complex structure with one 0-cell and one n-cell, we have
the following corollary.

Corollary 1.3.2. πn(Sm, s0) = 0 for all n < m.
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Definition 1.3.1 (Weak equivalence). A continuous function f : X → Y is called a
weak equivalence if the induced map f∗ : πn(X, x0)→ πn(Y, f(x0)) is an isomorphism
for all n ≥ 0 and all x0 ∈ X. Where at n = 0 we mean a bijection of connected
components. Then X and Y are said to be weakly equivalent spaces.

Note that the above definition is stronger than all homotopy groups of X and
Y being isomorphic, as here we require the isomorphisms to be induced by a map
f : X → Y . It is easy to see that every homotopy equivalence is in fact a weak
equivalence. The converse is not true in general but is true for CW complexes.

Theorem 1.3.3 (Whitehead’s Theorem). If f : X → Y is a weak equivalence between
CW complexes then f is a homotopy equivalence. Moreover, if f is an inclusion of a
sub-complex, then X is a deformation retract of Y .

A direct consequence of this result is that if a connected CW complex has all
homotopy groups trivial, then it is contractible.

Space of functions

Given topological spaces X and Y we would like to have a suitably nice topology on
Hom(X, Y ), the set of all continuous functions from X to Y . Given sets A, B and C,
we know there is a bijection of sets between Hom(A×B,C)↔ Hom(A,Hom(B,C)).
Here the notation Hom(A,B) denotes the set of all functions from A to B. Our
goal is to define a topology on Hom(X, Y ) above for all topological spaces such that
a similar results holds. That is, for all topological spaces X, Y and Z, there is a
homeomorpism Hom(X × Y, Z) ↔ Hom(X,Hom(Y, Z)). Now we try to define such
a topological space.

Definition 1.3.2. Let X and Y be topological spaces. We make Hom(X, Y ) a topo-
logical space from the following collection: Given K ⊆ X compact and U ⊆ Y open
we define M(K,U) to be the subset of Hom(X, Y ) of all continuous functions such
that f(K) ⊆ U this is called the compact open topology on Hom(X, Y )

A special case of this construction is when X is the n-dimensional cube, this space
Hom(In, X) is called the n-dimensional path space of X. We quickly summarise the
properties of this construction below, which can be found in [4, A.2].

Theorem 1.3.4. If X is locally compact, then:
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(1) the evaluation map e : Hom(X, Y )×X → Y , e(f, x) = f(x) is continuous.

(2) A map f : X × Z → Y is continuous iff the map f̂ : Z → Hom(X, Y ),
f̂(z)(x) = f(x, z) is continuous.

(3) If X is locally compact Hausdorff and Z is Hausdorff, then the map Hom(X ×
Z, Y )→ Hom(X,Hom(Z, Y )), f → f̂ above is a homeomorphism.

In the case of path spaces we have Hom(In, X) ∼= Hom(In−1,Hom(I,X)).

1.3.1 Smash products and Loop spaces

As seen in our definition of homotopy groups we are mostly interested in pointed
topological spaces and maps that preserve base point. We are therefore interested
in Hom(X, x0, Y, y0), the subspace of Hom(X, Y ) consisting of base point preserving
maps. These have a relation similar to Theorem 1.3.4. Before we state it we need to
make a definition

Definition 1.3.3. Given two pointed space (X, x0) and (Y, y0) their Smash Prod-
uct is defined as the quotient X ∧ Y = X × Y/X ∨ Y , where X ∨ Y is identified
homeomorphically with X × {y0} ∪ {x0} × Y .

The smash product gives a way to construct higher dimensional spheres from lower
dimensional ones. More precisely,

Sn ∧ Sm ∼= Sn+m

where we have suppressed the base point as the spheres are homogeneous.

Theorem 1.3.5. If (X, x0) is locally compact Hausdorff and (Z, z0) is Hausdorff,
then the map Hom(X ∧Z, Y, y0)→ Hom(X, x0,Hom(Z, z0, Y, y0)), f → f̂ induced by
the map in Theorem 1.3.4, is a homeomorphism.

A special case of this relation arises X and Z are spheres. We fix the notation
Hom((Sn, s0), (X, x0)) = Ωn(X, x0), where if n = 1, we drop the superscript and call
it the loop space of (X, x0). Note that the nth homotopy group of a pointed space is
a quotient of its Ωn(X, x0). From here we drop the base point when talking about
pointed spaces if it doe not matter in the context. Let (Sn, s0) ∧ (X, x0) be denoted
by

∑
X. Then we have, Hom∗(

∑
X, Y ) ∼= Hom∗(X,ΩY ), when X is locally compact
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Hausdorff (from here we use the subscript * to denote that we are talking about maps
that preserve base points). In particular we have Hom∗(Sn, Y ) ∼= Hom∗(Sn−1,ΩY ).
Therefore we have the induced isomorphism on the homotopy groups,

πn(ΩX) ∼= πn+1(X) (1.4)

.From this correspondence it is easy to see that ΩnX ∼= ΩΩn−1X. Hence ΩnX are
called the iterated loop spaces of X.

1.4 Fibration sequences

Fibration sequences will be an important tool in this thesis. The main reference for
this section will be [1, Ch.6]. Before we talk about them we need to make a couple
of definitions. A map p : E → B is said to have homotopy lifting property with
respect to a space X if given any commutative of the form

X E

X × I B

i0 p

there exists a lift X × I → E, that makes both the diagrams commute. We we are
ready to define fibration sequences.

Definition 1.4.1. • A map p : E → B is called a Serre fibration if it has the
homotopy lifting property with respect to disks Dn for all n.

• For a Serre fibration p : E → B and given b0 ∈ B, if we define F = p−1{b0},
then F ↪→ E → B is called a fibration sequence.

Theorem 1.4.1. Let F ↪→ E
p−→ B be a fibration sequence where F = p−1{b0}. For

all x0 ∈ F , the map p∗ : πn(E,F, x0) → πn(B, b0) is an isomorphism and hence by
Equation 1.3 we have a long exact sequence

. . .→ πn(E, x0)→ πn(B, b0)→ πn−1(F, x0)→ . . . . . .→ π1(B, b0)→ 0 (1.5)

A important class of fibrations are given by path spaces. Given X a topological
space and x0 ∈ X, then Path(X, x0) = Hom∗((I, 0), X, x0) is the space of all paths
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in X that begin at x0 with the subspace topology from the path space. Then the
evaluation map Path(X, x0)→ X given by p→ p(1) is a fibration. To see this let us
begin with a commutative diagram,

A Path(X, x0)

A× I X

f

H

Then we can construct the lift Ĥ : A× I → Path(X, x0) given by

Ĥ(a, t)(s) =

f(a)((t+ 1)s) 0 ≤ s ≤ 1/(t+ 1)

H(a, (1 + t)s− 1) 1/(t+ 1) ≤ s ≤ 1

This makes the diagram commute. Hence Path(X, x0)→ X is a fibration with fibre
ΩX. We can easily see that Path(X, x0) is contractible and hence the long exact
sequence of homotopy groups (Theorem 1.4.1) give the isomorphisms in Equation 1.4.



Chapter 2

Simplicial sets

In this chapter we define simplicial sets and study some of their important properties.
The references for this chapter are [3] and [2]. Simplicial sets provide a way to study
and construct CW complexes with purely combinatorial data. We can do this, as
giving a CW complex is the same as giving the number of each n-cells and how they
are glued together. We first give a rigorous definition through category theory and
then look at what the definition entails.

Definition 2.0.2. Let ∆ denote the category whose objects are sets [n] = {0, . . . , n}
and a morphism f : [n] → [m] is an non decreasing function [n] → [m]. That is,
x ≤ y =⇒ f(x) ≤ f(y), ∀x, y ∈ [n]. It is easy to see that this makes ∆ a small
category with terminal object [0].

Definition 2.0.3 (Category of simplicial sets). A simplicial set is a contravariant
functor X : ∆op → Set. The functor category [∆op,Set] is called the category of
simplicial sets and is denoted by sSet. For a simplicial set X,we fix the notation
Xn = X([n])

As with the case of any functor category, sSet has elements Hom(−, [n]), the
Hom functors. We denote these by Hom(−, [n]) = ∆n. Then by Yoneda embedding,
Xn = HomsSet(∆

n, X). Using results about the functor category [Cop,Set] for a small
category C, we get that sSet is complete and cocomplete, and every simplicial set is
a colimit of ∆n(as ∆n are the Hom functors), precisely

X ∼= colim
∆n→X

∆n (2.1)

Where the colimit notation means taking colimit over the slice category, ∆ ↓ X.

11
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2.1 Face and degeneracy maps

Every simplicial set is a functor from ∆op → Set, therefore it not only consists of sets
Xn, but also maps between them induced by morphisms in ∆. These are called the
simplicial maps. Let us look at the morphisms in ∆. We have two special categories
of morphisms of ∆. For any [n], let si : [n + 1]→ [n] be the map si(j) = j for j ≤ i

si(j) = j − i for j > i. This map repeats i, it sends both i and i + 1 to i. For
any [n] let di : [n] → [n + 1] be the map si(j) = j for j < i and si(j) = j + 1 for
j ≥ i. This is the map that skips i, meaning i has no pre-image under this map. The
simplicial maps induced by di and sj are denoted by d∗i and s∗j and are called the
face and degeneracy maps respectively. Note that as X is contravariant the induced
maps are in the opposite direction, that is, d∗i : [n] → [n + 1] and s∗j : [n + 1] → [n].
Elements of Xn are called n-simplices of X, (this is consistent with naming of ∆n as n-
simplices due to Yoneda lemma as stated above). An n-simplex x is called degenerate
if x = s∗i (y) for some y ∈ Xn−1 and it is called non-degenerate otherwise. The face
and degeneracy maps satisfy some relations summarised by [2].

d∗i d
∗
j = d∗j−1d

∗
i i < j

d∗i s
∗
j = s∗j−1d

∗
i i < j

d∗js
∗
j = d∗j+1s

∗
j = id

d∗i s
∗
j = s∗jd

∗
i−1 i > j + 1

s∗i s
∗
j = s∗j+1s

∗
i i ≤ j

(2.2)

We can easily show that all other simplicial maps can be obtained from composing
the face and degeneracy maps stated above.

2.2 Realisation

As we observed before, for any simplicial set, X ∼= colim
∆n→X

∆n. From this we can
deduce that to define a functor from sSet to any category which has all colimits,
we only need to define the map on the standard n-simplices and extend it to a
colimit preserving functor (this is a property of the category of functors from any
small category to sets). We use this to construct a functor |.| : sSet → Top which

sends ∆n to the topological n-simplex |∆n| = {(x0, x2, .....xn)|
n∑
i=0

xi ≤ 1}, which
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is homoemorphic to the n-dimensional disc. Then we can extend it uniquely up
to isomorphism to get a functor |.| : sSet → Top called the realisation functor.
As colimits in the category of topological spaces are constructed by taking disjoint
unions and quotients by equivalence relations, we can see that the realisation of a
simplicial set is a CW-complex. Note that sSet has all limits and colimits and while
the realisation functor preserves coproducts, it takes the product of simplicial sets
to their product as compactly generated spaces and not the topological product in
general. This realisation functor has a left adjoint,

Definition 2.2.1. Let X be a topological space. We define a simplicial set Sing(X)

called its singular set as follows. Sing(X)n = {f : |∆n| → X}. The ith face map
is given by the composing with the inclusion ∆n−1 ↪→ ∆n of the nth face. The ith

degeneracy map is given by collapsing of the ith face (by removing the ith component
of each point), giving a simplex of one smaller dimension. As all other simplicial maps
are a combination of these we have defined the simplicial set required.

Note: The topological simplices and their face maps were the original motivation
for the definition of simplicial sets and the degeneracy maps serve the purpose of
treating simplices of lower dimension as degenerate simplices of higher dimension.

We state the adjoint relation here from [2, Th.4.10].

Theorem 2.2.1. The functors |.| and Sing() are adjoints, that is, there is a natural
isomorphism,

HomTop(|X|, Y )↔ HomsSet(X,Sing(Y ))

The study of simplicial sets is deeply rooted in the study of topological spaces.
Most of the tools we develop for simplicial sets are done so with the aim of study-
ing topological spaces. With this in mind we define a morphism of simplicial sets
X → Y to be a weak equivalence if its realisation |X| → |Y | is a weak equivalence
of topological spaces. Note as realisation of simplicial sets are CW-complexes, such a
map is a weak equivalence if and only if it is a homotopy equivalence on the realisa-
tions. Therefore for simplicial sets we use the term weak equivalence and homotopy
equivalence interchangeably. We try to define paths and homotopy of morphisms of
simplicial sets similar to topological spaces. Here ∆1 plays the role of the unit interval
(in fact |∆| is the unit interval).

Definition 2.2.2. (1) A simplicial path in a simplicial set X is a morphism of
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simplicial sets ∆1 → X. This is nothing but a 1-simplex of X. The end points
of this path are defined to be d∗0 and d∗1 of the corresponding 1-simplex.

(2) A simplicial homotopy of morphisms of simplicial sets f, g : X → Y is a map
of simplicial sets F : X ×∆1 → Y such that F (1, d0) = f and F (i, d1), where
by 1 we mean identity on X and d0 and d1 are the maps ∆0 → ∆1 induced
by d0, d1 : [0] → [1] respectively (here as ∆0 is the terminal object in sSet we
identify X ×∆0 with X).

Note that unlike homotopy in topological spaces, the definition of simplicial ho-
motopy is not symmetric, that is there may not be a morphism, G : X × ∆1 → Y

with G(1, d0) = g and G(i, d1) = f . It is straightforward to see that a simplicial
homotopy of morphisms gives a homotopy of their realisations. Simplicial paths and
homotopies are not as well behaved as their topological counterparts. For example,
given three 0-simplices a,b and c in X, a path from a to b and a path from b to c does
not necessarily give a path from a to c. We now therefore study a class of simplicial
sets and morphisms that are more well behaved.

2.3 Kan fibrations

Given the standard n-simplex ∆n, we define its kth horn denoted by Λn
k as the sim-

plicial subset of ∆n generated by all its non degenerate n− 1-simplices except for the
kth face. Where the kth face is d∗k(1), and 1 is the identity map in ∆n

n = Hom([n], [n]).
The horns of ∆n are constructed from gluing n many ∆n−1 together along their
faces. An important property of the horns is that the realisation of the horn inclusion
|Λn

k | ↪→ |∆n| is a deformation retract (equivalent to the map being a weak equiva-
lence). Any such monomorphism of simplicial sets whose realisation is a deformation
retract will be called a trivial cofibration. Now we are ready to define Kan fibrations.

Definition 2.3.1. A map of simplicial sets f : X → Y is called a Kan fibration if for
every commutative diagram of the type

Λn
k X

∆n Y
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There exists a lift (may not be unique) ∆n → X which makes the resultant triangles
commute (as in the case of topological spaces,we call this the right lifting property).
A simplicial set X is said to be Kan fibrant, if the unique map X → ∆0 is a Kan
fibration.

We state here the important properties of Kan fibrations given in [3, I.10].

Theorem 2.3.1. (1) Kan fibrations have the right lifting property with respect to
every trivial cofibration

(2) The realisation of a Kan fibration is a Serre fibration.

(3) Any map of simplicial sets X → Y can be factored as,

X Y

X ′

where X → X ′ is a trivial cofibration, X ′ → Y is a Kan fibration and this fac-
torisation is unique up to weak equivalence, that is given any other factorisation

X Y

X ′′

We would have a homotopy equivalence X ′ → X ′′ making the relevant diagrams
commute (this can be checked easily using the right lifting property above).

Again mimicking the constructions in topological spaces we call a sequence of
maps of simplicial sets F → E → X a fibration sequence if E → X is a Kan fibration
and F → E is the pullback

F ∆0

E X

For some ∆0 → X. A sequence F → E → X of simplicial sets is called a homotopy
fibration sequence if for some factorisation E → E ′ → X of E → X into trivial
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cofibration and Kan fibration, the map induced from F to the pullback of the diagram
∆0 → X ← E ′′, is a weak equivalence. Any homotopy fibration sequence will give us
a long exact sequence as in section 1.4, when we take the geometric realisation. We
will need a slightly more general notion.

Definition 2.3.2. A diagram of the form

A B

C D

is called homotopy cartesian if given a trivial cofibration-Kan fibration factorisation
B → B′ → D. The map from A to the pullback

A′ B′

C D

is a weak equivalence.

2.3.1 Bisimplicial sets

Similar to the definition of simplicial sets. Given any category C we can define the
category of simplicial objects in C as the category of functors ∆op → C. In particular
we can define the category of simplicial objects in the category of simplicial sets. These
can equivalently be viewed as functors (∆×∆)op → Set. This is called the category of
bisimplicial sets, denoted by s2Set. Any simplicial set can be made into a bisimplicial
set in a trivial way by making the functor constant on one component. As morphisms
in ∆×∆ are ordered pairs of morphisms in ∆, we have bisimplicial maps generated
by (d∗i , s

∗
j),(d∗i , d∗j),(s∗i , s∗j) and (s∗i , d

∗
j). We have a functor ∆ → ∆ ×∆ which sends

[n]→ ([n], [n]), inducing a functor d : s2Set→ sSet such that, d(X)n = Xn,n for all
n. We say a map of bisimplicial sets X → Y is a weak equivalence if the induced
map d(X) → d(Y ) is a weak equivalence. Given a bisimplicial set X.., we can fix
one of the components and get a simplicial set X.n for each n. The following lemma
[3, IV.1.9] is an important tool from the theory of bisimplicial sets that we will need
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later.

Lemma 2.3.2 (realisation lemma). Given a morphism of bisimplicial sets f : X..→
Y.., if the induced level wise maps fn : X.n → Y.n are weak equivalences for all n then
the map of diagonals d(f) : d(X)→ d(Y ) is a weak equivalence.

Note that the converse is not true. For example take any simplicial set X and
make it a bisimplicial set by taking it to be constant on one component. Then if
the corresponding bisimplicial set is X.. with Xm,n = Xn, then X.n is a constant
simplicial set and hence given X → Y of simplicial sets the map X.n → Y.n is a weak
equivalence iff it is a bijection of sets for all n, hence an isomorphism. However we
know of weak equivalences which are not isomorphisms.

2.4 Nerve of a Category

In this section we construct a functor that assigns a simplicial set to every small
category. That is a functor Cat → sSet. The functor will have many important
properties, for example it will be a full and faithful functor and hence identifies
Cat as a subcategory of simplicial sets. In our construction we will use the following
observation. Viewing the partially ordered sets [n] = {0, 1, . . . , n} as poset categories,
we can identify ∆ as a full subcategory of Cat.

Definition 2.4.1. Let C be a small category. We define the Nerve of C to be N(C)n =

HomCat([n], C). Then, the property of Hom functors make N(C) a simplicial set.
Explicitly, objects of N(C)n are sequences a0 → a1 → . . . → an of morphisms in C
and the face and degeneracy maps compose maps to decrease the chain length and
add identities respectively. Note that N([n]) = ∆n.

The functorial nature of this construction is easy to see as given a functor F : C →
D, we get maps HomCat([n], C) → HomCat([n],D) by composition, which induces a
map of simplicial sets N(F ) : N(C)→ N(D).

Theorem 2.4.1. The Nerve functor N is fully faithful.

Proof. Consider N(C)0 = Hom([0], C) is nothing but the set of objects in C and
similarly N(C)1 is the set of morphisms in C with the face maps d∗0 and d∗1 give
the source and target of the morphism. Then given a morphism of simplicial sets



18 CHAPTER 2. SIMPLICIAL SETS

N(C) → N(D), we construct the functor C → D by defining the map on objects
to be the one induced by N(C)0 → N(D)0 and the map on morphisms is given by
N(C)1 → N(D)1. To show that this gives a functor, all we need to show is it preserves
composition. But N(C)2 is just the set of ordered pairs of composable morphisms,
where if the pair is (f, g),the face maps give the 1-simplices corresponding to f , g and
f ◦g. Therefore composition is preserved under the map of morphisms we constructed.
Hence N is full. To show that N is faithful we see that in the previous construction
there was no choice, the functor we constructed was the unique functor that gives
this simplicial morphism. Therefore the functor N is faithful.

We denote the geometric realisation of N(C) by BC = |N(C)| and call it the
classifying space of C. Then BC ∼= BCop as the direction of the arrow does not matter
after taking realisation. An important example of the classifying space construction
is the classifying space of a group. Given a group G we can consider it as a category
with one object ∗ and Hom(∗, ∗) = G. In other words, morphisms are elements of
the group and composition is given by the group law. Then its classifying space
|N(C)| = BG has the property that, BG is connected, π1(BG) = G and πn(BG) = 0

for all n > 1.

Remark 2.4.2. Given two small categories C and D, any natural transformation of
functors F,G : C → C, induces a homotopy between their realisation. This stems
from the fact that any natural transformation of functors F,G : C → C, defines a
functor F̂ : [1] × C → D and N([1]) = ∆1. The realisation of any adjoint pair of
functors is a homotopy equivalence. In particular, any small category with an initial
or final object has a contractible realisation.

Definition 2.4.2 (Comma category). Given a functor F : C → D and an object d of
D, the comma category F/d is the category whose objects are ordered pairs (c, f) of
an object c in C and f a morphism F (c)

f−→ d and morphisms (c, f) → (c′, f ′) given
by morphisms c g−→ c′ such that the diagram

F (c) d

F (c′)

f

F (g)
f ′
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commutes. We also have the dual notion of d/F whose objects are pairs (c, f) with
d

f−→ F (c) and morphisms given by c→ c′ making resultant diagrams commute.

Now we state two important theorems due to Quillen. These can be found in [8,
IV.3].

Theorem 2.4.3 (Quillen’s Theorem A). Let F : C → D be a functor of small
categories such that F/d is contractible (by that we mean its classifying space in con-
tractible) for all d ∈Obj(D). Then the induced map BF : BC → BD is a homotopy
equivalence.

Theorem 2.4.4 (Quillen’s Theorem B). Let F : C → D be a functor of small
categories such that for every morphism d→ d′ in D, the induced map F/d→ F/d′

is a homotopy equivalence. Then for each d the sequence F/d→ C F−→ D is a homotopy
fibration sequence and hence by Theorem 1.4.1, induces a long exact sequence

. . .→ πn(BC)→ πn(BD)→ πn−1(BF/d)→ . . .

. . .→ π1(BD)→ π0(BF/d)→ π0(BC)→ π0(BD)→ 0 (2.3)

Note that by the observation earlier that BC ∼= BCop, dual of the above theorem,
obtained by replacing F/d with d/F , is also true.

2.5 Spectra

Definition 2.5.1. A Spectrum is a sequence of pointed simplicial sets (or topolog-
ical spaces), written as X = (Xn)n≥0 with simplicial maps σn : S1 ∧ Xn → Xn+1,
where S1 is the pointed simplicial set (resp. topological space) ∆1/∂∆1. Note that
the smash product of simplicial sets is defined in the same way as the smash product
of topological spaces. The maps σn induce maps πi(Xn)→ πi+1(Xn+1) by,

πi(Xn)
S1∧−−→ πi+1(S1 ∧Xn)

σn−→ πi+1(Xn+1)

then for every integer n, the nth stable homotopy group of X is defined to be,

πn(X) := lim
→
πn+i(Xi) (2.4)
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where πn+i(Xi) is zero for n + i ≤ 0. Note that here we have non-zero negative πn
unlike the case of homotopy groups of topological spaces. The morphisms between
spectra are defined in the natural way and a morphism between spectra induces a
homomorphism between corresponding stable homotopy groups.

Thus spectra form a category with stable homotopy groups giving a functor from
the category of spectra to groups. The spectral maps σn : S1 ∧ Xn → Xn+1 induce
maps σ̂n : |Xn| → Ω|Xn+1| by the adjoint relation Equation 1.4. A spectrum is
called an Ω-spectrum if each of these induced maps is a homotopy equivalence. For
an Ω-spectrum X we have

πk(X) = πk+i(Xi) (2.5)

for all k + i > 0.



Chapter 3

Algebraic K-theory

The main goal of this fifth year project was to study the K-groups of small exact
categories. The main references for this chapter are [8] and [7]. Classically, K-groups
were invariants assigned to commutative rings based on the structure of the category
of finitely generated modules over them. Quillen later gave a definition of K-groups
for special subcategories of abelian categories called exact categories. This more
general definition has the advantage that it is functorial and allows us to construct
the K-groups as the homotopy groups of a topological space.

3.1 Definition of K0

The "Grothendieck group" K0 of a ring is the starting point of Algebraic K-theory.
We construct K0(R) of a ring R as the group completion of the commutative monoid
P(R) of finitely generated projective R-modules under the direct sum (we identify
isomorphic modules so that this is a set and the monoid operation is well defined).
Here we give the general construction of the group completion of a commutative
monoid.

Definition 3.1.1. Let M be a commutative monoid where the groups operation is
given by ′+′, and let S be a submonoid of M . We define S−1M = M × S/ ∼, where
(m, s) ∼ (m′, s′) iff m + s′ = m′ + s. Using the fact that S is a submonoid, we
can show that this is an equivalence relation and (m, s) + (m′, s′) = (m + m′, s + s′)

gives a commutative monoid structure on S−1M such that every element of the form
(s, 0) has an inverse (0, s). Therefore, we represent the class of an element (m, s) by

21
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[m]− [s]. In particular, M−1M is an abelian group and is called the group completion
of M .

Now we are ready to define K0(R) of a ring R. Let P(R) be as above the com-
mutative monoid of finitely generated projective R-modules under direct sum, then
K0(R) = P(R)−1P(R). The simplest cases of K0(R) are for rings where all modules
are free or more generally all finitely generated projective modules are free. In these
cases P(R) ∼= N, therefore K0(R) ∼= Z. Note that non-isomorphic projective modules
may represent the same element in K0(R), for example if A ⊕ B = A ⊕ C, then by
cancellation property of groups [B] = [C]. If the ring R is commutative, then we can
further define a ring structure on K0(R) using the tensor product ⊗, we define

([A]− [B])× ([C]− [D]) = [(A⊗ C)⊕ (B ⊗D)]− [(B ⊗ C)⊕ (A⊗D)]

which you can check gives a commutative ring structure on K0(R). In the following
section we try to give more generalised version of this construction that makes it more
functorial.

K0 of an symmetric monoidal category

A symmetric monoidal category is a category C along with a functor � : C × C → C
and a distinguished object e, and natural isomorphisms of functors

s�t ∼= t�s s�e ∼= e�s ∼= s s�(t�w) ∼= (s�t)�w

such that, these natural isomorphisms satisfy some coherence conditions. If the
symmetric monoidal category C is small (or skeletally small), then � defines a com-
mutative monoid structure on the set of isomorphism classes of C. Then K�

0 (C) is
defined as the group completion of the monoid structure so induced. An important
example of the functor � is the product functor (the functor is only unique up to
natural isomorphisms) in a category with an initial object and all finite products.
Similarly we have a symmetric monoidal structure given by the coproduct in a cate-
gory with all finite coproducts and a terminal object. The K0(R) for a ring above is
just K⊕0 (P(R)), where by P(R) we mean the symmetric monoidal category of finitely
generated projective R-modules (which is skeletally small) with � being the direct
sum ⊕.
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Note: As most of the constructions of K-groups of categories that follow will rely
on there being a set of objects in the category, from now on all categories considered
will be small or at the least skeletally small unless explicitly stated otherwise.

K0 of an exact category

For an abelian category A, we can define K⊕0 (A) as above with the functor being the
direct sum. However we would not only like to identify [A⊕B] with [A] + [B] but we
also want [A] + [B] = [C], for any exact sequence,

A� C � B

We formalise this as follows, K0(A) is defined as the quotient of the free abelian group
on the set of isomorphism classes ofA by the subgroup generated by all elements of the
form [A]+[B]−[C] for all exact sequences A� C � B. Note that in most interesting
cases, such as the category of R-modules, the category is not small and if we take
the category of all finitely generated R-modules or finitely generated projective R-
modules, they are in general not abelian. However, the above definition only depends
on notion of exact sequences in the abelian category. With this in mind we make the
following definition:

Definition 3.1.2. An exact category is a pair (C, E) of a category C with zero objects
(denoted by 0) and E , a class of sequences in C of the form 0 → A → C → B → 0,
such that:

(i) C is a full subcategory of some abelian category A

(ii) Each 0→ A→ C → B → 0 in E is a short exact sequence in A

(iii) If 0 → A → C → B → 0 is a short exact sequence in A, with A,B and C

belonging to C, then 0→ A→ C → B → 0 belongs to E .

(iv) If 0 → A → C → B → 0 is a short exact sequence in A, with A, B belonging
to C, then C is isomorphic to an object in C.

If a monomorphism A � B fits in an exact sequence A � B � C in E , then
A � B is called an admissible monomorphism, we define admissible epimorphisms
dually. From now on by an exact sequence in an exact category, we mean an element
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of E and the arrows � and � will exclusively denote admissible monomorphisms
and admissible epimorphisms respectively. In the last point of the definition, we use
isomorphism rather than asking the object itself belong to C because we will mostly
consider small exact subcategories of large abelian categories in this thesis.

Note that (ii) guarantees that C is closed under direct sum. Therefore we can
define K⊕0 (C) as in the previous section for any exact category. We can also extend
the definition of K0 for an abelian category by making K0(C) the quotient of the
free abelian group on the set of isomorphism classes of objects of C by the subgroup
generated by elements of the form [A] + [B]− [C] for all 0→ A→ C → B → 0 in E .
In general these two definitions may not give the same K0, but if every sequence in
E splits then these two definitions agree. Therefore for a ring R, the category P(R)

is an essentially small exact category, and K0(P(R)) ∼= K⊕0 (P(R)) which we define
to be K0(R). Note that since for any A, B objects in C we always have the exact
sequence A� A⊕B � B, [A] + [B] = [A⊕B] in K0(C). So collecting terms of the
form [A] and −[A], every element in K0(C) is of the form [A]− [B].

3.2 Quillen’s Q-construction

The goal of this section is to assign a collections of groups Kn(C) to a small exact
category C. This construction is from [8, IV.6]. First, we assign a new category QC
to C. Then we define Kn(C) = πn+1(BQC) where, by BC of a category C we mean
its classifying space as defined in section 2.4.

Definition 3.2.1. Let C be a small exact category. We define QC to be the category
whose objects are the same as the objects in C and a morphism between two objects
A and B in QC is an equivalence class of diagrams of the form

A� C � B

where two such diagrams are equivalent if there is an isomorphism between them
which is identity on A and B.

Before we define composition of two morphisms in this category, we need a result
about exact categories.
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Theorem 3.2.1. Let A � B � C be an exact sequence in an exact category C
and let D � B be an admissible epimorphism. Then, the base change sequence
A′ � D � C is an exact sequence in C where A′ is the pullback,

A′ D

A B C

, D � C is the composite map, and A′ � A is an admissible monomorphism.

Proof. First, working in the ambient abelian category, the pullback exists and the
pullback of a monomorphism is a monomorphism and the pullback of an epimorphism
along a monomorphism in an abelian category is an epimorphism and the resultant
sequence is exact as the composition is zero by commutativity of the square and
using the property of pullback we can show that A′ � D is the kernel of D � C. As
D � B is admissible, there is an exact sequence E � D � B. Now by property of
pullbacks we have the induced map E � A′ which is the kernel of A′ � A, then by
property (ii), A′ is an element of C and by property (iii), A′ � D � C is an exact
sequence in C.

Invoking duality, we have a similar result for taking pushouts along an admissible
monomorphisms. Then we have a simple corollary,

Corollary 3.2.2. In any exact category, composition of two admissible monomor-
phisms(epimorphisms) is an admissible monomorphism (epimorphism).

Using the above theorem, we can define the composition in QC. Given A� C �

B and B � C ′ � D, their composition is defined by

E C ′ D

A C B

where the square is the pullback and the composite morphisms are admissible by the
corollary. It is obvious from this definition that the identity morphism of an object A
is A = A = A(where the equality denotes the identity morphism of A in C). A thing
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to note here is, taking equivalence classes of diagrams was important as the pullback
above is unique only up to isomorphism.

There are two distinguished classes of morphisms in QC, the first class is the set
of diagrams A � C = C which we denote by just A � C and call admissible epics,
similarly the second class is the set of diagrams A = A � B, which we denote by
A � B and call admissible monics. Note that A � C � B is the composition of
A � C with C � B. In fact, we can write any morphism as a composition of and
admissible epic and monic in a unique way up to isomorphism. In QC, the 0 of C is
no longer the zero object, but for any other object A there are still morphisms 0 � A

and A � 0, hence its nerve is connected. Now we are ready to define the higher
K-groups.

Definition 3.2.2. Let C be a small exact category, then we defineKn(C) = πn+1(BQC) ∼=
πn(ΩBQC), where BQC is the geometric realisation of the nerve of QC.

Now we need to check that the above definition of K0 agrees with our previous
definition.

Proposition 3.2.3. For an exact category C, π1(BQC) ∼= K0(C), where K0(C) is
as defined in the previous section for exact categories. The element of π1(BQC)
corresponding to [A] ∈ K0(C) is given by,

0 � A� 0

where the arrows represent an admissible monic and epic in QC. Hence, their com-
position gives a loop in π1(BQC).

Proof. The proof here will closely follow the proof in [8, Prop.IV.6.2]. Let T denote
the maximal tree whose elements are 0 � A for each A in C, by an application
of van-Kampen theorem and cellular approximation (Theorem 1.3.1), we can see
that π1(BQC) is generated by [f ] where each [f ] is a morphism in QC, such that
[0 � A] = 1 for all A, and [f ◦ g] = [f ] ∗ [g] generate all the relations in π1(BQC).
Now for any admissible monic B � C, we have 0 � B � C = 0 � C, where the
composition on the right is the composition in QC. Therefore, [B � C] = 1, giving

[A� B � C] = [A� B][B � C] = [A� B]
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, but [0 � B] = [A � B][0 � A] by composition, giving [A � B] = [0 � B][0 �

A]−1. Hence π1(BQC) is generated by elements of the form [0 � A]. As stated
previously [0 � A] is the loop 0 � A � 0 and under our identification goes to [A]

in K0(C).
Now for any exact sequence A � B � C in C, the composition of C � B and

0 � C in C is the morphism 0 � A� B, giving

[0 � B] = [C � B][0 � C] = [0 � A][0 � C]

Where the last equality arises from [C � B][0 � C] = [A � B][0 � A] and
cancelling the terms equal to identity. Applying this to the split exact sequences
A� A⊕B � B and B � A⊕B � A, we get

[0 � A][0 � B] = [0 � A⊕B] = [0 � B][0 � A]

Hence the group is abelian and the group homomorphism π1(BQC)→ K0(C) sending
[0 � A]→ [A] is well defined and surjective. If we show all the composition relations
[f ] ∗ [g] = [f ◦ g] arise from these then the above morphism will be an isomorphism.
Now the composition of A � C � B and B � C ′ � D is A � F � D where F is
the pullback. But the relation [B � C ′ � D][A � C � B] = [A � F � D] can
be simplified to [0 � C ′][0 � B]−1[0 � C][0 � A]−1 = [0 � F ][0 � A]−1, we can
rewrite this as,

[0 � C ′][0 � C] = [0 � F ][0 � B]

Now by construction of F we have two exact sequences F � C ′ � G and C � B �

G. It is easy to see that the relation we obtained in π1(BQC) from the composition
can be obtained from multiplying the relations obtained from the above two exact
sequences and cancelling [0 � G] on both sides. Thus no new relation is obtained
and hence π1(BQC) ∼= K0(C).

Properties of Quillen’s Q-construction:

The Q-construction in functorial in the following sense,

Theorem 3.2.4. Let ExCat be the category of small exact categories where the
morphisms are exact functors, that is, functors which take exact sequences to exact
sequences. Then Q is a functor from ExCat to Cat, the category of small categories.
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Proof. Let F : C → D be an exact functor between two exact categories, then by
definition F takes admissible monics to admissible monics and admissible epics to
admissible epics. Hence it takes diagrams of the form A � C � B to diagrams of
the same form. To show QF is a functor all we have to do is show that F preserves
pullbacks of diagrams of the form

B

A C

But if A � B � D is exact then the pullback F of the above diagram is the kernel
of the composite C � B � D. (Note then the map F → A is uniquely determined
by kernel property). As exact functors preserve kernels (and cokernels) of admissi-
ble epics (monics), QF preserves such pullbacks. The functorial composition rule
Q(F ◦ G) = QF ◦ QG also follows easily. Hence Q is functorial and by functoriality
of the nerve construction, so are the K-groups.

If C and D are small exact categories, the product category C ×D is naturally an
exact category, where the exact sequences are component wise exact sequences. Then
it is east to see Q(C × D) = QC ×QD and hence, Kn(C × D) = Kn(C)⊕Kn(D).

For any exact category C, its opposite category Cop is an exact category with
admissible monics and epics interchanged. Then QCop ∼= QC by sending the diagram
A� C � B to its pushout, and using the fact that in an abelian category, a diagram
of the form

A B

C D

is a pushout iff it is a pullback. The Q construction is useful in many cases, but
the difficulty of calculating higher homotopy groups for topological spaces restricts
its usefulness especially in explicit calculations. One way to get around this problem
is to try and define K-groups as stable homotopy groups of spectra (section 2.5),
rather than homotopy groups of topological spaces. In the next section we will look
at Waldhausen’s S-construction which does exactly that and see its usefulness by
deriving several results from it.
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3.3 Waldhausen’s S construction

Waldhuasen’s S construction gives a way to define the K-groups of a small Wald-
hausen category as the stable homotopy groups of a spectrum of simplicial sets, in
the case of exact categories this gives the same K-groups as Quillen’s Q-construction.
The treatment here will closely follow Wladhausen’s original paper [7], but we will
restrict ourselves to exact categories.

3.3.1 S. of an exact category

In this section let C be a small exact category with a distinguished zero object 0.
For the poset [n] = {0, 1, ....n}, viewed as a category, we define Ar[n] to be the
category whose objects are morphisms of [n] and morphisms are commutative squares.
Simply put, Ar[n] is a poset category with objects (i, j),where i ≤ j and a morphism
(i, j)→ (k, l) exits if and only if i ≤ k and j ≤ l. Then the category of functors from
Ar[n] to C, i.e., [Ar[n], C] has a natural exact category structure where admissible
monics (rep. epics), are given objectwise. Note that this is also a small category.

Definition 3.3.1. Sn(C) is the full subcategory of [Ar[n], C] of functors A : Ar[n]→
(C) with the following properties,

1. for all j, Aj,j = 0 the distinguished zero object,

2. for all i ≤ j ≤ k, Ai,j → Ai,k is an admissible monic,

3. the commutative diagram,

Ai,j Ai,k

Aj,j Aj,k

is a pushout. That is, Ai,j � Ai,k � Aj,k is an exact sequence.

Proposition 3.3.1. The above definition is equivalent to defining objects of Sn to
be sequences of monomorphisms 0 = A0 � A1 � A2 � ...... � An with a choice of
cokernals Ai � Aj � Aj/Ai for all i ≤ j, with Ai/Ai = 0 for all i. Then morphisms
are morphisms between such sequences which naturally induce a morphism between
corresponding cokernels by universal property.
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Proof. An object A in Sn(C) gives rise to a sequence as above in a natural way by
letting Ai = A0,i and Aj/Ai = Ai,j for all i ≤ j. For the converse, we have to show
the reverse of the construction above gives an object in Sn(C). Let 0 = A0 � A1 �

.... � An be a sequence as above, we define Ai,j = Aj/Ai and A0,i = Ai. Then by
definition, A0,i � A0,j is a monomorphism for all i ≤ j. For i > 0 and i ≤ j ≤ k we
have the commutative diagram,

A0,i A0,i

A0,j A0,k Aj,k

Ai,j Ai,k Aj,k

where the maps Ai,j → Ai,k and Ai,k → Aj,k are induced by the universal properties of
Ai,j = Aj/Ai and Ai,k = Ak/Ai respectively. All we need to show is that Ai,j → Ai,k

is monic, Ai,k → Aj,k is epic, and the sequence is exact. As we can embed any exact
category in an abelian category, a mono epi sequence is exact if and only if their
composition is zero, and we see that the composition is zero by pre-composing with
the epimorphism A0,i → Ai,j and using the fact that the diagrams commute. Next,
the map Ai,k → Aj,k is epic as the composition A0,k → Ai,k → Aj,k is epic, and
Ai,j → Ai,k is monic because the lower left square is a pushout, and A0,j → A0,k is
monic.

Now, each θ : [n]→ [m], a morphism between [n] and [m] as objects of mathbf∆,
induces Arθ : Ar[n] → Ar[m], a functor which is just θ acting on each component.
Therefore we have θ∗ : [Ar[m], C] → [Ar[n], C], and this restricts to a functor from
θ∗ : Sm(C)→ Sn(C). Hence, S.(C) is a Simplicial exact category.

Simplicial maps

As stated above S.(C) is a simplicial exact category. So, what do the simplicial maps
look like?
Let us look at the face and degeneracy maps. Similar to the nerve construction, the
ith degeneracy takes (0 = A0 � A1 � A2 � . . . � An, Aj/Ak) to (0 = A0 �



3.3. WALDHAUSEN’S S CONSTRUCTION 31

A1 � A2 � . . . � Ai → Ai � Aj � . . . � An, Aj/Ak) that is, insertion of an
identity morphism at the ith position and setting the corresponding quotient to be
the distinguished zero object. The similar statement is true for face maps except
for i = 0 in which case the degeneracy map is given by (0 = A0 � A1 � A2 �

. . . � An, Aj/Ak) → (0 = A1/A1 � A2/A1 � A3/A1 � . . . � An/A1, Aj/Ak =

(Aj/A1)/(Ak/A1)).

We have defined a small exact category SnC for each n. Of particular interest is
S2C whose objects are nothing but exact sequences A � B � C. We will denote
S2C by E(C) as this particular category will be of importance later.

3.3.2 Sn(C) of an exact category C

Now as each Sn(C) is an exact category, we can apply S. again on each Sn(C) and get
a bisimplicial exact category. Recursively we define Sn(C) as,

S0(C) = C

Sn(C) = S.Sn−1(C)

Therefore, for each n ≥ 0 we get an n-simplicial exact category. Hence we
will use the notation Sn(C)[−,−, ...−], to represent the fact that for every n-tuple
(a1, a2, ..., an) with ai ∈ N ∪ {0} we have an exact category Sn(C)[a1, a2, ...an].

Functoriality:

Note that the given constructions are functorial, in the sense that given an exact
functor between two exact categories F : C → D, we get an exact functor Sn(F) :

Sn(C)→ Sn(D) , for each n, which is a restriction of the functor,

[Ar[n], C]→ [Ar[n],D]

G → F ◦ G

and further induces a morphism of simplicial exact categories from S.(C) → S.(D).
Inductively, S. is a functor from the category of small n-simplicial categories to the
category of small n+ 1-simplicial categories.
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3.3.3 Construction of K-theory

Let Sn(C) be as above, define iSn(C) to be the n-simplicial subcategory of isomor-
phisms of Sn(C). That is, for all (a1, a2, ..., an), iSn(C)[a1, a2, ..., an] is the subcategory
of Sn(C)[a1, a2, ..., an], of all isomorphisms. Therefore its nerve, N(iSn(C)) is an n+1-
simplicial set. Now we are ready to construct the desired spectrum. For n ≥ 0 define

K(C)n = |N(iSn(C))|,

where |.| is the diagonal functor to the category of simplicial sets. Now to construct
the spectrum K(C), we need to define the maps

σn : S1 ∧K(C)n → K(C)n+1,∀n ∈ N

we do this by first constructing a map σn : ∆1×K(C)n → K(C)n+1, and showing that
restricted to ∂∆1 ×K(C)n ∪∆1 × {0}, the map is constant (0 ∈ K0(C) = {0}). First
we observe that, S1(C) ∼−→ C, and inductively, S1(Sn(C)) ∼−→ Sn(C). We then have an
induced map, |N(iS1(Sn(C))| ∼= |N(iSn(C))|. So we can construct maps,

σn : ∆1 × |N(iS1Sn(C))| → |N(iSn+1(C))|

By, (θ, x) → θ∗(x) where θ ∈ Hom([m], [1]) and x ∈ iSn(C)[m,m, ..., 1,m]. Let
θ ∈ Hom([m], [1]). Then, either θ(i) = 0 ∀i ∈ [m] or ∃j ≤ m such that, θ(i) = 0 for
all i < j and θ(i) = 1 for all i ≥ j. We will therefore denote by vj the morphism
whose first non-zero is at its jth position. Then we define the map to be,

(vj, 0 = c0 � c1 � ...� cm)→

0 0 . . . 0

...
...

...
...

c0 c1 ... cm

c0 c1 ... cm

...
...

...
...

c0 c1 ... cm
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Where the first non-zero sequence occurs at the jth position, and it is the constant 0

sequence when θ maps all values to 0. Note here if the sequence was 0 to begin with,
it would go to the diagram with all zeroes, and if θ ∈ ∂∆1 = Hom([0], [1]), then still
we would get a diagram of zeroes. Hence we have constructed the maps,

σn : S1 ∧K(C)n → K(C)n+1,∀n ∈ N

Therefore K(C) = (K(Cn))n≥0 is the desired spectrum and the K-groups are,

Kn(C) = πn(K(C))

We can again check that the construction of the K-theory is functorial as we did
above for S..
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Chapter 4

The Additivity Theorem

In the last chapter, we have given two different constructions of K-groups of an exact
category. We would like to show that these two definitions are in fact equivalent.
To do this we first prove an important result about the S-constructions called the
additivity theorem. The version we prove is the one given by Waldhausen [7, 1.4].
This theorem is the main goal of this thesis and is a very important tool in proving
several important properties of the K-groups which we will prove in the next chapter.
There are several equivalent formulations of the additivity theorem, but before we
state them here we need a few more definitions. We had defined E(C) earlier for an
exact category C. We now generalise this and define E(A, C,B) for an exact category
C and exact subcategories A and B as the full subcategory of E(C) of exact sequences
of the form,

A� C � B, A ∈ A, B ∈ B

Let C, D be exact categories. Then an exact sequence of exact functors C → D
is a sequence of natural transformations F ′ → F → F ′′, where F ,F ′,F ′′ : C → D
are exact functors such that, F ′(C) → F(C) → F ′′(C) is an exact sequence for all
C ∈ C.

Theorem 4.0.2 (Equivalent statements of Additivity theorem). The following state-
ments are equivalent:

(1) The following projection is a homotopy equivalence for all small exact categories
C,

iS.(E(C)) −→ iS.(C)× iS.(C)

35
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A� C � B −→ (A,B) (4.1)

(2) The following projection is a homotopy equivalence for all small exact categories
C,

iS.(E(A, C,B)) −→ iS.(A)× iS.(B)

A� C � B −→ (A,B)

(3) The following two maps are homotopic for all small exact categories C,

iS.E(C) −→ iS.C

A� C � B −→ C, resp.A⊕B

(4) Given an exact sequence of exact functors F ′ → F → F ′′, then there is homo-
topy ,

|iS.F| ' |iS.(F ′ ⊕F ′′)|

Here all homotopies are taken to mean homotopies after taking the diagonal of
the nerve to obtain a simplicial set.

Where E(A, C,B) is as defined in the previous section.

Proof. (2) is a special case of (1) whenA = B = C, and (3) is a special case of (4) when
the three functors are the projections. So we have (1) =⇒ (2) and (3) =⇒ (4).
Therefore it is enough to show (2) =⇒ (3) =⇒ (4) and (4) =⇒ (1).

(3) =⇒ (4). Lets denote the projections iS.E(C) → iS.(C) by pi, i = 1, 2, 3.
Then (3) can be rephrased as |iS.(p2)| ' |iS.(p1⊕ p3)|. Now given an exact sequence
of exact functors F ′ → F → F ′′, D → C, we get an exact functor G : D → E(C)
sending A → F ′(A) � F(A) � F ′′(A). Then F = p2G, F ′ = p1G and F = p3G.
Hence (3) =⇒ (4) as composition preserves homotopies.

(2) =⇒ (3). We have a map iS.(C)× iS.(C) −→ iS.(E(C)), given by (A,B) −→
A � A ⊕ B � B, (where you make a choice of direct sum). Composing this with
p2 and p1 ⊕ p3 gives us the same maps up to isomorphism and hence are homotopic.
So to show that the maps themselves are homotopic, it is enough to show that the
above map is a homotopy equivalence. But the map is a section of the projection
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map of (2) which by hypothesis is a homotopy equivalence, hence is also a homotopy
equivalence. Therefore (2) =⇒ (3).

(4) =⇒ (1). Restricting the map from previous argument, we get that p :

iS.(E(A, C,B)) → iS.A × iS.B sending A � C � B −→ (A,B) has a section
(A,B) −→ A � A⊕ B � B, lets denote it by i. therefore to show p is a homotopy
equivalence we just need to show ip is homotopic to the identity. For this we will use
(4) on the exact sequence of exact functors,

(A = A→ 0)

A� C � B (A� C � B)

(0→ B = B)

Applying (4) to this sequence gives us the desired homotopy and hence all the state-
ments are equivalent.

4.1 Proving Additivity Theorem

In this section we will try and prove the additivity theorem in steps. The proof given
here is identical to that in [7, 1.4]. We will first define a simplicial set that contains
the essential information from iS.(C).

If C is a small exact category, we define the snC = Ob(Sn(C)) the set of objects of
Sn(C). Then s.C is a simplicial set.

Lemma 4.1.1. An exact functor of exact categories f : C → D induces a map of
simplicial sets s.f : s.C → s.D. A natural transformation of functors f and f ′ induces
a homotopy of maps s.f and s.f ′.

Proof. The fact that we have an induced map is clear as it follows from the result
for S.(C). To show there is a homotopy, we will give an explicit simplicial homotopy
between the maps, that is a map s.C ×∆1 → s.D which restricts to the given maps
when restricted via the face maps of ∆1. To do this we give an alternate and equivalent
definition of simplicial homotopy. Let X be a simplicial set, then X is a functor
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X : ∆op → Set. Let X∗ denote the composite functor

(∆/[1])op −→∆op X−→ Set

([n]→ [1]) −→ [n] −→ X[n]

Where ∆/[1] is the slice category of objects over [1]. Then we have maps ∆op ∼=
(∆/[0])op ⇒ (∆/[1])op induced by the face maps d0, d1 : [1] → [0] let’s denote these
by d̂0,d̂1. A simplicial homotopy of maps f, g : X → Y is then equivalent to a natural
transformation F : X∗ → Y ∗ such that F d̂0 = f and F d̂1 = g. The equivalence
of these definitions can be easily obtained the identification of X∗ with X × ∆1 by
(x, θ) ∈ Xn → x ∈ X∗θ . Note that simplicial homotopy is not symmetric, that is
we might not be able to find a homotopy with d̂0 and d̂1 interchanged. But we can
always find such a map after realisation.

We will now construct the desired maps. A natural transformation of two functors
f, g : C → D is equivalent to a functor F : C × [1] → D, where [1] is the poset
[1] = {0 < 1} taken to be a category. We then obtain the required simplicial homotopy
by

(a : [n]→ [1]) −→ ((A : Ar[n]→ C) −→ (A′ : Ar[n]→ D)

where A′ is defined as the composition

Ar[n]
(A,a∗)−−−→ C × Ar[1]

id×p−−→ C × [1]
F−→ D

p : Ar[1] → [1] is a map of posets given by (0, 0) → 0, (1, 1) → 1 and (0, 1) → 1.
We can see that this works by composing this map with d̂0 and d̂1 which from the
definition of p and the fact that F restricted to 0 and 1 in [1] give f and g respectively,
gives us that the composition map above is the desired homotopy.

This lemma gives us an important corollary immediately.

Corollary 4.1.2. (1) An exact equivalence of exact categories C → D gives a ho-
motopy equivalence of simplicial sets s.C → s.D.

(2) Let C be a small exact category. Then there is a homotopy equivalence s.C →
N(iS.(C), where s.C is viewed as bisimplicial set which is constant in the second
component.
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Proof. (1) is clear from the lemma. For (2) the map is very straightforward, we send

(0 � a1 � a2 . . .� an)→

0 a1 a2 . . . an

0 a1 a2 . . . an

0
...

...
...

...

0 a1 a2 . . . an

0 a1 a2 . . . an

Where on sn,mC we send it to m-copies of the equality. To show that this is a
homotopy equivalence, we observe that N(iSn(C))m is snC([m], i), where C([m], i)

is the subcategory of the functor category [[m], C] where all the morphisms go to
isomorphisms. Note that there is an equivalence of categories C → C([m], i) sending
each object to the identity sequence of m elements and the map above is just the
induced map s.C → s.C([m], i) at each [m] and hence by the lemma above is a
homotopy equivalence. Therefore by the realisation lemma (Theorem 2.3.2) s.C →
N(iS.(C) is a homotopy equivalence.

Recall that one of the equivalent statements of the additivity theorem was that
iS.E(C) −→ iS.C × iS.(C) is a homotopy equivalence. As this map was induced by
an exact functor E(C)→ C ×C, it also induces a map s.E(C)→ s.C × s.C. Therefore
by the above corollary, the additivity theorem is equivalent to showing this map is
a homotopy equivalence. Before we prove this lemma we need to prove a version of
Quillen’s theorem A and B(Theorem 2.4.3 and Theorem 2.4.4).

Let ∆n be the standard n-simplex as always. Let f : X → Y be a map of simplicial
sets and let y ∈ Yn. We define the simplicial set f/(n, y) to be the pullback

f/(n, y) X

∆n Y

f

y
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We then have the following lemmas

Lemma 4.1.3 (lemma A). If f/(n, y) is contractible for every (n, y) then f is a
homotopy equivalence.

Lemma 4.1.4 (lemma B). If for every a : [m] → [n], and every y ∈ Yn, the in-
duced map f/(m, a∗y)→ f/(n, y) is a homotopy equivalence then for every (n, y) the
pullback diagram above is a homotopy cartesian (2.3.2).

To prove this using Quillen’s Theorem A and B we need to translate this into a
statement about categories. We define the functor simp : sSet → Cat, which takes
a simplicial set Y to a small category simp(Y ), whose objects are ordered pairs (n, y)

for every y ∈ Yn, and where a morphism (n′, y′)→ (n, y) is a morphism a : [n′]→ [n]

such that a∗(y) = y′. It can be easily checked that this construction is functorial.

Lemma 4.1.5. 1. simp(f/(n, y)) is naturally isomorphic to the fibre over (n, y)

of the induced map of categories simp(f).

2. For all simplicial sets X, Nsimp(X) is homotopy equivalent to X.

Proof. For (1) we see that m-simplices of f/(n, y) correspond to pairs (x, θ) where
x ∈ Xm and θ ∈ Hom([m], [n]) such that θ∗(y) = f(x), so objects of simp(f/(n, y))

will be of the form (m, (x, θ)), but elements of simp(f)/(n, y) will be of the same form
if we unravel the definition of F/d for a functor. This will give a natural isomorphism
between the corresponding categories.

For (2) we will first prove the statement for ∆n. An m-simplex in Nsimp(∆n) is
a sequence of maps in ∆ (after applying Yoneda lemma),

[n0]
a0−→ [n1]

a1−→ [n2]
a2−→ . . .→ [nm]

am−→ [n]

We send each of these to a map [m]→ [n] given by

b(i) = amam−1 . . . ai(ni)

Now we know that ∆n is always contractible and simp(∆n) has a terminal object
(n, Id) and is therefore contractible (section 2.4). Therefore the above map gives
us a homotopy equivalence. To extend this map to all simplicial sets we note that
simp preserves colimit, as colimits of simplicial sets are defined obejctwise. Therefore
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using X ∼= colim
∆n→X

∆n to get a map Nsimp(X)→ X for every simplicial set. The map
preserves colimits we can use the homotopy equivalence for the standard simplices
and the Gluing lemma[3, II.9.8] for pushouts if we can construct each simplicial
set as a sequence of pushouts of disjoint unions of ∆n, which we will do now. Let
X≤n = colim

∆k→X
k≤n

∆k. Its realisation is then the n-skeleton of X. Hence if for each n

Nsimp(X≤n) is homotopy equivalent to X≤n under the same map, then Nsimp(X)

is homotopy equivalent to X. We prove this statement by induction. For n = 0 this
is true as we only have a discrete set of point. Assuming the homotopy equivalence
for all k < n we prove the statement for n. This we obtain as X≤n is the pushout

∐
k<n ∆k

∐
∆n→X

∆n

X≤n−1 X≤n

Where we have on diagram of the form

∆k ∆n

X≤n−1

For each map ∆k → X for k < n such that it factors as ∆k → ∆n → X. Therefore
by induction hypothesis and gluing lemma we have a homotopy equivalence for all
simplicial sets.

Using the above lemma, the proof of lemma A and B follow directly from theorem
A and B.

Now we state the most tricky part of proving the additivity theorem.
Sublemma: The map f : s.E(C)→ s.C, (A� C � B)→ A satisfies the hypothesis
of lemma B above.

Proof of sublemma. In this context, the assertion is that for all y ∈ snC and w :

[m] → [n] in ∆, the map induced by pullback property, w∗ : f/(m,w∗y) → f/(n, y)

is a homotopy equivalence. For every such w we have commutative diagrams of the
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form
[m] [n]

[0]

w

u v

Therefore it is enough to prove the assertion for the case [0] → [n], as in the above
diagram, u∗ and v∗ being homotopy equivalences guarantees that w∗ is a homotopy
equivalence.

Now the statement we need to prove is the following: let A’ be an n-simplex of
s.C, and 0 the unique 0-simplex os s.C. Let vi : [0] → [n] for i ≤ n denote the map
that takes 0 to i. The for every i the induced map

vi∗ : f/(0, 0)→ f/(n,A′)

is a homotopy equivalence. An m-simplex of s.E(C) can be identified with an object
of E(Sm(C)). That is, an exact sequence in the exact category Sm(C). Similarly an
m-simplex in f/(n,A′) is then a pair consisting of an exact sequence A� C � B in
Sm(C) along with a map u : [m]→ [n] such that the composition,

Ar[m]
u∗−→ Ar[n]

A′−→ C

is equal to A. If we look at f/(0, 0) then by above identification, its m-simplices are
exact sequences in Sm(C) such that the first term is 0, hence by exactness the second
map is an isomorphism. f/(0, 0) is then s.C ′ where C ′ is the subcategory of E(C)
consisting of sequences of the form 0 � B

∼−→ C. But this category is equivalent to C
and we have a homotopy equivalence, s.C j∗−→ f/(0, 0). Where j∗ acts by A → (0 �

A = A). The composition of the quotient projection (A � C � B) → B with the
pullback map f/(n,A′) → s.E(C) gives us a map p : f/(n,A′) → s.C. This map is
the left inverse of the composition,

s.C j∗−→ f/(0, 0)
vi∗−→ f/(n,A′)

and since j∗ is already a homotopy equivalence, to show vi∗ is a homotopy equivalence
for all i it is enough to show that p is a homotopy equivalence.

To show that p is homotopy equivalence, it is enough to show that vn∗j∗p :
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f/(n,A′) → f/(n,A′) is homotopic to the identity map. We have the pullback map
f/(n,A′) → ∆n, we will construct the required homotopy by lifting the simplicial
homotopy that contracts ∆n to its last vertex. This is a homotopy given by a map
of the composed functor

(∆/[1])op −→∆op −→ Set

([m]→ [1]) −→ [m] −→ Hom([m], [n])

to itself namely,

(v : [m]→ [1]) −→ ((u : [m]→ [n])→ (u′′ : [m]→ [n])

where u′′ is defined by the composition,

[m]
(u,v)−−→ [n]× [1]

w−→ [n]

with w(j, 0) = j, w(j, 1) = n. A lifting of this homotopy to f/(n,A′) will be a map
taking,

(v : [m]→ [1])→ ((A� C � B, u : [m]→ [1]) −→ (A′′ � C ′′ � B′′, u′′ : [m]→ [n])

where u′′ is as obtained above and A′′ must be equal to the composition

Ar[m]
u′′∗−→ Ar[n]

A′−→ C

and thus is fixed. We wish that this is possible and will give us the remaining
conditions. For this let us observe that for all j ∈ [m] we have

u(j) ≤ u′′(j)

by our above definition. Viewing [m] and [n] as poset categories, this says that there
exists a natural transformation of functors u→ u′′ (which is necessarily unique). This
induces a natural transformation

(u∗ : Ar[m]→ Ar[n])to(u′′∗ : Ar[m]→ Ar[n])
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giving a map of composed functors,

Ar[m]→ Ar[n]→ C

which is map from A to A′′ in SmC. This map is forced to be unique as it is induced
from a natural transformation between poset categories, which if existing must be
unique. Now we define our define the required sequence A′′ � C ′′ � B′′ from
A � C � B by taking pushout along A → A′′ to obtain C ′′ and by property of
pushouts we can take B′′ = B

A C B

A′′ C ′′ B′′

||

Here the pushouts are only unique up to isomorphisms. So we make a choice but
we make choices in C and these choices will fix all choices of pushouts in Sm(C) as
they are defined object wise. The only special choices we make are, when A→ A′′ is
identity, we choose C → C ′′ to be identity and if A′′ = 0 we choose C ′′ → B′′ to be
identity. These conditions make sure that the homotopy starts at identity and the
image of vn∗j∗ is fixed under the homotopy. As we have made the construction of
(A′′ � C ′′ � B′′) object wise, we need to verify that this construction is compatible
with the structure maps of ∆/[1]. To see first composing A→ A′′ with a map induced
by some t : [m′]→ [m] gives us is a natural transformation between At∗ → A′′t∗ but
this must be the natural transformation we constructed between them as it is unique.
For the pushouts note that we made choices in C and since an element in Sm(C) is
a diagram over C on which the structure acts by omission or/and repetition, we will
then obtain the required compatibility. Hence this is a homotopy and by above choices
it is a homotopy between the desired maps. Hence the sublemma is proved.

Using the sublemma, we now prove the lemma we require.

Proof of lemma. We can apply lemma B to obtain a homotopy cartesian square for
each simplex (n, y) of s.C. For the 0-simplex we then have a fibration up to homotopy
f/(0, 0) → s.E(C) → s.C. From previous observation the fibre is homotopic to s.C,
then we get the sequence

s.C → s.E(C)→ s.C
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which sends B → 0 � B = B and A � C � B to A is a fibration up to homotopy.
There is a map to this sequence from the product fibration sequence which is identity
at the ends and is s.C × s.C → s.E(C) sending (A,B) → (A � A ⊕ B � B) at the
middle. Hence this map must be a homotopy equivalence. Then, this is a section of
the desired map and hence it is also a homotopy equivalence as desired.

4.2 Applications of additivity theorem

We will here see some applications of additivity theorem. One of the main results we
will prove is that theK-theory spectrum we constructed is an Ω spectrum (section 2.5)
beyond the first term. This will give us two important results, namely a version of
additivity theorem for the K-groups and the equivalence between the two definition
of K-theory. First we need some tools.

Definition 4.2.1 (Path object). The shift functor is a functor shift : ∆→ ∆ that
takes [n] to [n+ 1] and takes a morphism f to f ′, where f ′(0) = 0 and f(i+ 1) = f(i)

for all 0 < i ≤ n. We also then have a natural transformation Id =⇒ shift

which is at each [n] the morphism that takes i to i + 1. Then for a simplicial object
X : ∆→ C in a category C the associated path object PX is the composite simplicial
object X ◦ shift.

Lemma 4.2.1. PX is simplicially homotopy equivalent to the constant simplicial
object [n]→ X0

Proof. We have the composite map PX → X0 → PX induced by

[n]→ ([n+ 1]→ [0]→ [n+ 1])

, where the last map is given by 0 → 0 for all n. So it is enough to show that the
identity on PX is homotopic to this composite map. The homotopy is given by the
natural transformation

(a : [n]→ [1])→ (φ∗a : Xn+1 → Xn+1)



46 CHAPTER 4. THE ADDITIVITY THEOREM

where φ∗a is the simplicial map induced by the morphism φa : [n+ 1]→ [n+ 1] where

φa(i) =


0 i = 0

i a(i− 1) = 1

0 a(i− 1) = 0

Now PX0 = X1, so we have an inclusion of the constant simplicial object X1

into PX. We also have a projection PX → X which is obtained by applying the
d0 of X to obtain PXn = Xn−1 → Xn from the properties of simplicial objects, we
can check that this is a morphism of simplicial sets. Now the composite sequence
X1 → PX → X takes every 1-simplex to its first vertex and hence contained in the
constant simplicial object X0. If we apply this to the simplicial category iS.C we
obtain a sequence iS1C → P (iS.) → iS.C and we know iS1(C) is isomorphic to iC
the category of all isomorphisms in C. Then we get a sequence

iC → P (iS.(C)→ iS.(C)

. As the composite is always contained in iS0(C) which has a unique 0-simplex,
the realisation of the composite is constant and |P (iS.(C))| is contractible by above
lemma, so we obtain a map well defined upto homotopy,

|iC| → Ω|iS.C|

But we already have a natural choice of such a map which is adjoint (subsection 1.3.1)
to the map we used in our definition of K(C)(subsection 3.3.3).

In this construction, we can replace C with S.(C) to get another sequence,

iS.(C)→ P (iS.S.(C))→ iS.S.(C)

Proposition 4.2.2. The above sequence is a fibration up to homotopy. Therefore
as |P (iS.S.(C))| is contractible as before, we have a homotopy equivalence |iS.C| →
Ω|iS.S.C|.

We will prove this proposition as a special case of the next proposition.
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Definition 4.2.2. Let f : A → B be an exact functor of exact categories. Then
S.(f : A → B) is the pullback

S.(f : A → B) PS.B

S.A S.B

Where the map PS.B → S.B is the map PX → X as before. Using the sequence

B → P (iS.(B)→ iS.(B)

as above whose composition is constant along with the trivial map B → S.A induces
a map B → S.(f : A → B) giving a sequence

B → S.(f : A → B)→ S.A

whose composition is trivial.

Proposition 4.2.3. The sequence

iS.B → iS.S.(f : A → B)→ iS.S.A

is a fibration up to homotopy.

Proof. We will use the fibration criterion ([6, lemma 5.13]), which says that it is
enough to show that for all n, the sequence

iS.B → iS.Sn(f : A → B)→ iS.SnA

is a fibration up to homotopy. Using additivity theorem we will show that this
sequence is, up to homotopy, the trivial fibration sequence associated to the product
iS.B × iS.SnA.

Objects in Sn(f : A → B) are pairs of sequences 0 � A0,1 � A0,2 � . . . �

A0,n and 0 � B0,1 � B0,2 � . . . � B0,n+1 with f(A0,1) � f(A0,2) � . . . �

f(A0,n) ∼= B0,2/B0,1 � B0,3/B0,1 . . . � B0,n+1/B0,1 plus some choice of quotients.
As dropping the choices of quotients will give us an equivalent category we will do
so. Let C ′ denote the subcategory of objects where all the maps B0,1 � B0,2 �
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. . . � B0,n+1 are identity and all A0,i are the distinguished 0. Then objects in C ′

are uniquely determined by B0,1 and is hence C ′ is isomorphic to B. Let C ′′ denote
another subcategory where B0,1 = 0 then C ′′ is isomorphic to SnA as the sequence
f(A0,1) � f(A0,2) � . . . � f(A0,n) then has unique lift. We then have functors
j′ : Sn(f : A → B)→ C ′, given by

(0 � A0,1 � A0,2 � . . .� A0,n, 0 � B0,1 � B0,2 � . . .� B0,n+1) −→
(0 � A0,1 � A0,2 � . . .� A0,n, 0 � 0 � f(A0,1) � f(A0,2) � . . .� f(A0,n))

(4.2)

and j′′ : Sn(f : A → B)→ B given by

(0 � A0,1 � A0,2 � . . .� A0,n, 0 � B0,1 � B0,2 � . . .� B0,n+1) −→
(0 � 0 � . . .� 0, 0 � B0,1 = B0,1 = . . . = B0,1) (4.3)

This gives an exact sequence of exact functors

j′ � id� j′′

then by additivity theorem we have the identity on iS.Sn(f : A → B) is homotopic
to the sum of iS.j′ and iS.j′′ whose images are isomorphic to iS.SnA and iS.B
respectively. Using the exactness of the sequence of functor we can construct a functor,

iS.B × iS.SnA → iS.Sn(f : A → B)

which is a retraction upto homotopy by the homotopy above. As j′ and j′′ are
constant on C ′ and C ′′, left composing the above map with the sum of iS.j′ and iS.j′′

(identifying the isomorphic categories) gives identity on iS.B × iS.SnA. Therefore
the given map is a homotopy equivalence. It is not hard to see that this extends
to give a homotopy equivalence of the product fibration sequence and the desired
sequence. Hence iS.B → iS.S.(f : A → B) → iS.S.A is a fibration sequence up to
homotopy.

Now if we choose f to be the identity functor C → C, then we get the result
desired.

Corollary 4.2.4. The K-theory spectrum is an Ω-spectrum beyond the first term.
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Proof. As shown earlier, the map |iC| → Ω|iS.C| was the same as the map in the
spectrum. Repeatedly applying iS. we get maps |iS.n(C)| → Ω|iS.n−1(C)| and from
the above theorem all but the first if these is a homotopy equivalence. Therefore
the K-theory spectrum is an Ω-spectrum beyond the first term and πk(K(C)) ∼=
πk(iΩS.C) for all k ≥ 0.

Also note that since each of K(C)n = |iS.n(C)| is connected, we can show that the
negative homotopy groups are all 0(Equation 2.5) and as we have shown d(iS.C) is
homotopy equivalent to s.C and therefore πk(K(C)) ∼= πk(Ω(s.C)).

Given two exact functors between exact categories A → B → C we have the
following commutative diagram,

iS.B iS.S.(f : A → B) iS.S.A

iS.B iS.S.(f : A → C) iS.S.A

Since the rows are fibrations up to homotopy, we can prove a result, similar to that
about pullbacks, that then the first square,

iS.B iS.S.(f : A → B)

iS.B iS.S.(f : A → C)

(4.4)

is homotopy cartesian.

4.3 Equivalence of definitions of K-theory

Here we prove that the K-groups defined by Quillen’s Q-construction and Wlad-
hausen’s S-construction are isomorphic for any small exact category C. For that it is
enough to show that QC viewed as a constant simplicial category is homotopy equiv-
alent to iS.C. To do this we replace both these with equivalent categories and then
show that they are equivalent. The proof is sketched in [7].
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4.3.1 Segal-Quillen subdivision

Consider the functor T : ∆→∆ that sends [n]→ [2n+1] = [0, 1, . . . , n, 0′, . . . , n′] we
have written [2n+ 1] this way as it makes describing the morphisms easier. Given an
morphism f in ∆, we define T (f)(i) = f(i) and T (f)(i′) = f(i)′. Then composition
with T gives a functor [∆op,D] → [∆op,D] for any category D. We denote this
functor by X → Xe. Here Xe

n = X2n+1.
Suppose C is a small category, define Ce to be the category whose objects are

morphisms of C and whose morphisms from A
i−→ B to A′ i

′
−→ B′ is a pair of morphisms

A′ → A and B → B′ such that the composite A′ → A
i−→ B → B′ is i′. It can be

seen that this construction is functorial. Note that objects in Ce are 1-simplices in
N(C) and morphisms in Ce are 3-simplices in N(C). Therefore we can show that
N(Ce) = N(C)e.

Proposition 4.3.1. For any category C, the source and target functors Cop ← Ce → C
are homotopy equivalences.

Proof. We prove the target functor is a homotopy equivalence, the other case is
similar. Let F : Ce → C be the target functor. Then for any C in C, objects in F/C
are pairs (A → B,B → C) and morphisms (A → B,B → C) → (A′ → B′, B′ → C)

are
B C

B′

such that A′ → A → B → B′ is the original A′ → B′ for some A′ → A, this has the
obvious terminal object (C

id−→ C,C
id−→ C) and it therefore contractible (section 2.4).

Hence by Quillen’ Theorem A, the target map is a homotopy equivalence.

By realisation lemma we can extend this to a statement about simplicial categories.
Therefore iS.C is homotopy equivalent to iS.Ce. For convenience we will denote iS.Ce

by iSe.C.

4.3.2 Swallowing Lemma

In the previous subsection, we constructed a simplicial category which is homotopy
equivalent to iS.C, now we will construct a simplicial category which is homotopy
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equivalent to QC. Let C be any category and let A and B be subcategories of C, with
Ob(A) = Ob(B) = Ob(C). Then we define a simplicial category A.B(C), where for
any n ≥ 0, AnB(C) is the category whose objects are sequences

A. := A0 → A1 → . . .→ An

where each morphism Ai → Ai + 1 is in A and whose morphisms from A.→ A.′ are
compatible maps Ai → A′i each contained in B. The simplicial functor defined by
θ : [m]→ [n] is θ∗ : AnB(C)→ AmB(C) such that θ ∗ (A.)i = A(θ(i)). We define

A.B.(C) = dN(A.B(C))

Note that A.B.(C) = B.A.(C), and N(C) = Id.C.(C), where Id is the subcategory of
identity maps.

Lemma 4.3.2 (swallowing lemma). Let C be any small category and A be a subcat-
egory with the same set of objects. The natural map

N(C) = Id.C.(C)→ A.C.(C)

is a weak equivalence.

Proof. We have N(C) = Id.C.(C) → A.C.(C) induced by the inclusion Id � A. We
show this is a weak equivalence by showing that for each n, IdnC(C)→ AnC(C) induces
a homotopy equivalence on the nerves. For this we construct Fn : AnC(C)→ IdnC(C)
which sends

A0 → A1 → . . .→ An −→ A0 → A0 → . . .→ A0

, where each A0 → A0 is identity. If in : IdnC(C) → AnC(C) is the map induced by
the inclusion, we see that Fnin is identity and there is a natural transformation from
inFn to the identity on AnC(C). Hence this is a homotopy equivalence.

4.3.3 Equivalence of Q construction and S construction

Let iQ.C denote QC.iC(C), where iC is the category of all isomorphisms in iC. From
the swallowing lemma iQ.C is homotopy equivalent to N(QC). Therefore to prove
the definitions are equivalent, we show iQ.C is homotopy equivalent to iSe.C.



52 CHAPTER 4. THE ADDITIVITY THEOREM

Theorem 4.3.3. iQ.C is homotopy equivalent to iSe.C.

Proof. We prove the assertion by showing the category iQnC is equivalent to iSenC.
An object in iSenC is a sequence

0 � A1 � A2 � . . .� An � A0′ � A1′ � . . .� An′

with choice of quotients. From this we diagrams

Ai/(i+1)′ A(i+1)/(i+1)′

Ai/i′

This gives a sequence A0/0′ → A1/1′ → . . . → An/n′ in QC. For the other direction,
given a sequence A0/0′ → A1/1′ → . . . → An/n′ in QC, taking successive pushouts
of the diagrams given by Ai/i′ → A(i+1)/(i+1)′ will give us all the required quotients
up to isomorphism. Hence there is an equivalence of categories between iQnC and
iSenC.

This shows that both constructions give the same K-groups.

4.4 Fundamental theorems of Algebraic K-theory

In this section we state some fundamental theorems of algebraic K-theory. Their proof
follow quiet straightforwardly from the results stated above and are given elaborately
in [5]. These theorems relate the K-theory of an exact category A to the K-theory
of some special subcategories.

Theorem 4.4.1 (Cofinality Theorem). Let A be a small exact category and let B be
a full exact subcategory which is cofinal in A. That is, B is closed under extensions
and for each A in A, there exists a A′ in A, such that, A ⊕ A′ is in B. We define
G = K(A)/K(B). Then there is a homotopy fibration sequence

iS.B → iS.A → BG

In particular Kn(A) ∼= Kn(B) for all n ≥ 1.
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An important example of a cofinal subcategory is the category of finitely generated
free modules as a subcategory of the category finitely generated projective modules
over a ring R.

Theorem 4.4.2 (Resolution Theorem). Let A be a small exact category and B be an
full exact subcategory that is closed under extensions, exact sequences and cokernels
and for every object A in A there is an exact sequence

A� B � B′

where B and B′ are objects of B. That is every object of A is a kernel of some
morphism in B. Then the morphism

iS.B → iS.A

is a homotopy equivalence.

Note that since a category C and its dual Cop give the same K-spectrum, the dual
of the above statement is also true.

Theorem 4.4.3 (Devissage Theorem). Let A be a small abelian category and B a
full abelian subcategory which is closed under direct sum, subobjects,and quotient
objects. If every A object in A has a finite filtration,

0 � A1 � A2 � . . .� An = A

where each quotient Ai/Ai−1 is in B and so is A1. Then the morphism

iS.B → iS.A

is a homotopy equivalence.

An abelian subcategory of an abelian category is called a Serre subcategory if it
is closed under extensions, subobjects and quotients. Given a small abelian category
A and a Serre subcategory B, the quotient category A/B is defined as the category
obtained by inverting all morphisms in A whose kernel and cokernel are in B (as all
categories considered are small we can do this and obtain a category). Then we can
show that A/B is an abelian category and A → A/B is an exact functor [8, II.A].
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The localisation theorem is stated in [5] is for the particular case of localisation of
rings at multiplicatively closed sets, but the proof for general Serre subcategories goes
through similarly.

Theorem 4.4.4 (Localisation Theorem). Let A be a small abelian category and B
be a Serre subcategory. Then

iS.B → iS.A → iS.A/B

is a homotopy fibration sequence. In particular we have a long exact sequence

. . .→ Kn+1(A/B)→ Kn(B)→ Kn(A/B)→ . . .→ K0(B)→ K0(A)→ K0(A/B)



Bibliography

[1] Davis, James F. ; Kirk, Paul: Graduate Studies in Mathematics. Bd. 35: Lecture
notes in algebraic topology. American Mathematical Society, Providence, RI, 2001.
– xvi+367 S. – URL http://dx.doi.org/10.1090/gsm/035. – ISBN 0-8218-
2160-1

[2] Friedman, Greg: Survey article: an elementary illustrated introduction to sim-
plicial sets. In: Rocky Mountain J. Math. 42 (2012), Nr. 2, S. 353–423. – URL
http://dx.doi.org/10.1216/RMJ-2012-42-2-353. – ISSN 0035-7596

[3] Goerss, Paul G. ; Jardine, John F.: Simplicial homotopy theory. Birkhäuser
Verlag, Basel, 2009 (Modern Birkhäuser Classics). – xvi+510 S. – URL
http://dx.doi.org/10.1007/978-3-0346-0189-4. – Reprint of the 1999 edi-
tion [MR1711612]. – ISBN 978-3-0346-0188-7

[4] Hatcher, Allen: Algebraic topology. Cambridge University Press, Cambridge,
2002. – xii+544 S. – ISBN 0-521-79160-X; 0-521-79540-0

[5] Staffeldt, Ross E.: On fundamental theorems of algebraic K-theory. In:
K-Theory 2 (1989), Nr. 4, S. 511–532. – URL http://dx.doi.org/10.1007/

BF00533280. – ISSN 0920-3036

[6] Waldhausen, Friedhelm: Algebraic K-theory of generalized free products. I, II.
In: Ann. of Math. (2) 108 (1978), Nr. 1, S. 135–204. – ISSN 0003-486X

[7] Waldhausen, Friedhelm: Algebraic K-theory of spaces. In: Algebraic and
geometric topology (New Brunswick, N.J., 1983) Bd. 1126. Springer, Berlin, 1985,
S. 318–419. – URL http://dx.doi.org/10.1007/BFb0074449

[8] Weibel, Charles A.: Graduate Studies in Mathematics. Bd. 145: The K-book.

55

http://dx.doi.org/10.1090/gsm/035
http://dx.doi.org/10.1216/RMJ-2012-42-2-353
http://dx.doi.org/10.1007/978-3-0346-0189-4
http://dx.doi.org/10.1007/BF00533280
http://dx.doi.org/10.1007/BF00533280
http://dx.doi.org/10.1007/BFb0074449


56 BIBLIOGRAPHY

American Mathematical Society, Providence, RI, 2013. – xii+618 S. – An intro-
duction to algebraic K-theory. – ISBN 978-0-8218-9132-2


	Abstract
	Preliminaries
	CW complexes
	Higher homotopy groups
	Cellular maps and Cellular approximation
	Fibration sequences

	Simplicial sets
	Face and degeneracy maps
	Realisation
	Kan fibrations
	Nerve of a Category
	Spectra

	Algebraic K-theory
	Definition of K0
	Quillen's Q-construction
	Waldhausen's S construction

	The Additivity Theorem
	Proving Additivity Theorem
	Applications of additivity theorem
	Equivalence of definitions of K-theory
	Fundamental theorems of Algebraic K-theory

	Bibliography

