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Abstract

Very recently, LIGO Scientific collaboration has made the first direct detection of
gravitational waves (GWs) emitted from two coalescing stellar mass black holes
(BHs). This detection, with the advanced GW detectors, has given hope to detect
more and more coalescing binaries, helping us to reveal their interesting properties.
There exist certain equilibrium configurations in spinning and precessing binaries
in which spins of the BHs and orbital angular momentum of the binary remain in a
plane (the resonant plane) during their evolution. The spin-orbit resonances have
important astrophysical implications as the evolution and subsequent coalescence
of super-massive BH binaries in this configuration leads to low recoil velocities
of merger remnants. Hence, the final BHs will be retained in their host galaxies
that are formed from the merger of smaller galaxies. Moreover, it has been shown
that the BH spins in comparable mass stellar mass binary would preferentially lie
in a resonant plane when their GWs enter the advanced LIGO frequency band.
Therefore, it is highly desirable to investigate the detectability of such systems in
advanced GW detector era which can, in turn, improve our perception of their
high mass counterparts. The current detection pipelines involve only non-spinning
and non-precessing template banks for compact binary searches. In this thesis,
we test the performance of these template banks in detecting spin-orbit resonant
binaries. We find that the full inspiral-merger-ringdown template banks are per-
forming better in detecting resonant binaries as compared to inspiral-only banks.
We show that generically precessing binaries can also be detected with statisti-
cally equal probability as resonant binaries. We give equilibrium solutions for the
sub-maximally spinning BH binaries, which were not studied in detail previously.
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Chapter 1

Gravitational Waves: an overview

Albert Einstein presented his theory of general relativity almost a century back.
In it he described how gravity can be thought of as curvature of space-time due
to the presence of mass or energy, rather than a physical force. This curvature,
in turn, determines how the matter must move. One of the most fascinating
implications of the theory was the existence of gravitational waves. Gravitational
waves (GWs) are often referred to as ripples in the fabric of space-time. The theory
suggests that when massive bodies accelerate, gravitational radiation is emitted
that carries the energy away.

Gravitational waves were directly detected for the first time last year in Septem-
ber by the LIGO (Laser Interferometric Gravitational wave Observatory) detectors,
operated by the LIGO Scientific Collaboration (LSC) [1]. Prior to this detection,
we only had an indirect observation of GWs from the Hulse-Taylor binary pulsar
[2]. This direct detection of GWs would revolutionize the way we look at astron-
omy and cosmology. Throughout the history, we have been detecting information
from the space in the form of electromagnetic waves. Now, since we are able to
detect GWs, it will open new doors of observational science. They offer a unique
probe into some of the most intriguing systems of our universe, which is not pos-
sible otherwise. Primordial GWs can actually tell us about the very early universe
right after the Big Bang.

The physics of GWs is itself very exciting, incorporating various theoretical
domains such as general relativity, astrophysics, field theory, etc. and also ex-
perimental techniques that aim towards more accurate detection with lesser and
lesser noise. As exciting as the field is, it is also very challenging. The ripples in
the fabric of space-time are created by enormous masses undergoing rapid accel-
erations. However, we know that gravity is the weakest of the four fundamental
interactions. That is why the strength of the GWs at the detectors on the Earth,
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coming from a far away source (for example, a coalescing binary system) is very
small. Detecting a strong GW is equivalent of measuring relative displacements
of the order of 10−18 m (see Sec. 1.3), which is less than the size of a proton by a
factor of 1000. It is increasingly challenging to detect weaker Gws.

The next section discusses the formalism of GWs, including the derivation of
the wave equation from general relativity.

1.1 Formalism
Gravitational Waves are the solutions to Einstein’s equation in the weak field

limit. Einstein’s equation governs the relation between space-time curvature and
energy - momentum:

Gαβ = Rαβ −
1

2
gαβR =

8πG

c4
Tαβ , (1.1)

where gαβ denotes the metric tensor, Rαβ the Ricci curvature tensor, R the Ricci
scalar, Tαβ the stress-energy tensor and Gαβ the Einstein tensor. In this section,
we derive the wave equations for GW and then discuss about the polarizations of
GWs.

1.1.1 Derivation of the Gravitational Wave Equation

The wave equation can be derived from the weak field approximation to general rel-
ativity, in which space-time is nearly flat and we can use Lorentz coordinates[3, 4].
The metric gαβ is separated into the flat Minkowski metric ηαβ and a perturbation
term hαβ:

gαβ = ηαβ + hαβ , (1.2)

where |hαβ| << 1 and

ηαβ =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (1.3)

We raise (and lower) the indices of the perturbation term with ηαβ:

hαβ = ηαγηβδhγδ . (1.4)

So the inverse metric (correct to first order) will be:

gαβ = ηαβ − hαβ . (1.5)
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Also, the trace-reversed metric perturbation will be:

hαβ = hαβ −
1

2
ηαβh , (1.6)

where h = ηαβh
αβ.

It can be shown that using some elementary identities and some algebra, the
Einstein tensor Gαβ in Eq. (1.1) is reduced to:

Gαβ =
1

2

(
∂2h̄lβ
∂xα∂xl

+
∂2h̄mα
∂xβ∂xm

− ηαβ
∂2h̄lm

∂xl∂xm
−�2h̄αβ

)
, (1.7)

where � is the d’Alembertian operator. This can be simplified by transforming
into coordinates in which the divergence of the trace-reversed metric is zero. That
is,

∂h
αβ

∂β
= 0 . (1.8)

Now, if we make a transformation

x→ x′ = x+ ξ , (1.9)

this implies that

g′αβ = gαβ −
∂ξβ
∂xα
− ∂ξα
∂xβ

, (1.10)

and
h′αβ = hαβ −

∂ξβ
∂xα
− ∂ξα
∂xβ

. (1.11)

We now choose the “Lorentz gauge”:

∂h
′
αβ

∂x′β
= 0 , (1.12)

so that from above equations, we get,

�2ξα =
∂hαβ
∂xβ

. (1.13)

We see that the Einstein’s equation, Eq. (1.1) reduces to:

�2h̄αβ = −16πG

c4
Tαβ . (1.14)
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If we are far away from the source, Tαβ = 0 and the linearized vacuum Einstein’s
equations are:

�h̄αβ = 0 . (1.15)
Eq. (1.15) gives us the wave equation and its plane wave solutions are known

as GWs:
hαβ = Aαβe

ikγxγ . (1.16)
Here A is the amplitude and kγ is the wave vector.

1.1.2 Gravitational Wave Polarizations

To further simplify h̄αβ, we use the Transverse Traceless (TT) gauge. In this
gauge:

1. h00 = h0α = 0 (Transverse)

2. hαα = 0 (Traceless)

Also, h̄TTαβ = hTTαβ , so that a GW propagating in the z-direction will be expressed
as:

hTTαβ =


0 0 0 0
0 h+ h× 0
0 h× h+ 0
0 0 0 0

 , (1.17)

where h+ and h× are the two independent polarizations of the GW:

h+ = A+e
ik(ct−z) , (1.18)

h× = A×e
ik(ct−z) . (1.19)

To visualize the two polarizations, consider a ring of test masses on the x-y
plane. Fig. 1.1 depicts what happens when a GW passes through this plane. In
the next section, we describe various kinds of GW sources.

1.2 Gravitational Wave Sources
Essentially, any body that has time varying quadrupole moment produces GWs.
However, since the waves are extremely weak, the present-day detectors can only
detect GWs from massive astrophysical systems. In this section, we discuss the
different types of Gravitational Wave sources. All these sources emit GWs of dif-
ferent frequencies and last for different time-scales. The detectors have to identify
these signals among the noise and so that we can study the properties of the source
from it.
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Figure 1.1: Motion of test masses in a ring as GW passes by. The two polariza-
tions are 45◦ rotated with respect to each other. The ring first compresses in one
direction and expands in another, and then visa versa as the Gw passes by. Image
taken from [5]

1.2.1 Compact Binary Coalescences

Compact Binary Coalescences (CBCs) consist of two compact objects such as
neutron stars (NSs) or black holes (BHs) orbiting around their center of mass.
They emit energy and angular momentum in the form of GWs and hence their
orbital separation decreases with time. CBCs are the most promising sources of
GWs for second generation ground based detectors - in fact, the source of the very
first detection GW150914, was a binary black hole (BBH) system [1].

There are several reasons for these sources to be considered important [6]. CBCs
with total mass less than about 100 times that of the sun span a frequency range
which is audible to the second generation ground based detectors. Another im-
portant reason is that these systems can be modelled to a high accuracy. That is,
we have a very good idea from general theory of relativity of what the GW signal
from these systems will look like. Essentially, we already know what we will be
looking for in the strain data obtained from the detectors, and this greatly aids in
the detection through optimal techniques like matched filtering [7], which will be
discussed later. Another reason why we are so confident about CBCs is the event
rates - we expect upto 40 NS-NS binary coalescences per year to be detected by
advance LIGO (aLIGO), which is the second generation interferometric detector,
once it reaches its full sensitivity. The event rate for NS-BH is 10 per year while
for BH-BH 20 per year [8] (for updated event rates, please refer to [9]). That is
almost a detection per week! Chapter 2 discusses the GWs emitted by CBCs in
greater depth and Sec. 4.3 describes the data analysis work that undergoes in
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detection and characterization of GWs from these systems.

1.2.2 Gravitational Collapse

Gravitational waves can be produced when a core of a massive star collapses to
form a NS or a BH. This collapse results in Type II supernovae and are believed
to be accompanied by long duration gamma-ray-bursts. Such events are expected
to happen upto once every 10 years [10]. If the collapse is asymmetric in nature,
it will produce GWs.

The main obstacle in detecting such burst sources is that we know very little
about the physical processes that take place during such a collapse. Hence, we
have very little information to use when we are modelling GW signals coming
from these sources. The simulations that we rely on to model these waveforms are
oversimplified and take a lot of assumptions. Nevertheless, they predict that the
GWs emitted from these sources will lie well within the ground-based detectors,
and could be detected.

1.2.3 Continuous Wave Sources

Continuous GW sources include rapidly spinning neutron stars that have ax-
ial asymmetry. These are typically the systems which emit GWs at a particular
frequency for a long time. This frequency is determined by the frequency of the
rotating system in consideration, and lies well within the aLIGO observable fre-
quency.

However, the strain amplitude of the GWs from these sources is of the order of
10−25 on Earth [11]. This is orders of magnitude below the noise levels for aLIGO.
In spite of this, it may be possible to detect such systems by collecting data for
several months and over many cycles, since the effective amplitude is proportional
to the square root of the number of cycles. This introduces modulations in the
waveform due to the Earth’s motion around the sun and the consequent Doppler
effect, eliminating which is computationally expensive. Which is why there are
programs such as Einstein@Home to aid the data analysis for such searches.

1.2.4 Stochastic Gravitational Wave Background

When there are multiple sources of GWs such that their signals overlap in both
time and frequency and we cannot distinguish which signal belongs to which source,
they have comparable strains. Examples of such sources could be binary white
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dwarfs, which are plentiful in numbers in our galaxy itself. These would emit GWs
at low frequencies. Such multiple sources would provide a GW background for
low-frequency detectors such as the proposed space-based detector LISA (Laser
Interferometer Space Antenna).

Even more interesting sources of GW background are the GWs produced shortly
after the Big Bang [12] or during Inflation [13]. Electromagnetic cosmic back-
ground is limited to give information about the early universe only till the time
when universe was not opaque. However, since gravitational interactions are very
weak, matter is transparent for primordial GWs , and we can extract fundamental
information about very early universe from these GWs.

1.3 Gravitational Wave Detectors
This section describes how the GW detectors actually detect the waves. The basic
idea is that they detect the distortion in space-time due to GWs by the motion of
test masses (masses that move along the geodesics of the curved space-time but
their masses are small, so that they do not produce any curvature in space-time
on their own). There are two basic kinds of detector designs - Resonant mass
detector and Interferometer. We will only consider the latter in this thesis. In
the GW interferometer, there is a monochromatic light source (in this case laser),
whose light is separated and split into two halves of equal probability amplitude
by a beam-splitter (see Fig. 1.2). One beam goes into an arm of the detector,
while the another one goes into a second arm, which is orthogonal to the first. At
the end of both the arms, we put totally reflecting mirrors. After reflection, the
beams reunite at the beam splitter and a part of the interfered beam goes into the
photodetector that measures its intensity.

Currently, there are several Earth based detectors spread across the globe -

1. LIGO Hanford and LIGO Livingston (USA): Each of these detectors has an
arm length of 4Km.

2. VIRGO (Italy, under upgrade): Arm length of 3 Km.

3. GEO (Germany): Arm length of 600m

4. KAGRA (Japan, under construction): Arm length of 3 Km.

5. Einstein Telescope (planned): Arm length of 10 Km.

6. LIGO-INDIA (approved): Arm length of 4Km.
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Figure 1.2: Basic design of the GW interferometer with Fabry-Perot cavity. Image
taken form [14].

The LIGO detectors have the frequency bandwidth of a few Hz to a a few Mega
Hz. Apart from these, there are plans to send interferometer in space - LISA for
example, to detect low frequency GWs. Fig. 1.3.

1.3.1 Test Masses

As mentioned earlier, the detectors use freely falling test masses to detect the
waves. The nature of the wave is such that it expands the space-time in one
direction and contracts it in another. Suppose we have a grid of freely falling test
masses put in a plane and a GW is incident on them. Let the plane of masses be
characterized by x̂ and ŷ direction, and let the incident wave be incoming from the
ẑ direction. During the passage of the wave, a test mass m1 at (1,0,0) will oscillate
about its mean distance from the origin. Similarly, the test mass m2 at (0,1,0)
will oscillate about its mean distance from the origin. However, the polarization
of the wave will ensure that these two things happen out of phase with respect to
each other. That is, when m1 is furthest away from the origin, m2 is closest, and
visa-versa.

The GW strength is characterized by its amplitude, which is measured by the
detectors as:

h =
2∆L

L
, (1.20)

where L is the normal arm length of the interferometer, and ∆L is the change in
the two arm lengths when a GW passes through the detector.
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Figure 1.3: The frequency vs strain plots for different detectors. The plot shows
the sensitivities of the detectors at different stages of their development. The
image is taken from [14]

In the GW detectors involving interferometry, the mirrors at the end of each
arm act as the test masses. Of course, they are not completely freely-falling, and
suspensions in the design of the mirror mounts take care of that. However, these
forces are static compared to the frequency of the GW, and as far as motion in
the horizontal plane is concerned, they can be taken to be in free-fall.

1.3.2 Noise

Having defined the basic setup of the detector, we now look for the sensitivity at
which a GW interferometer must work to have good chances of detection. A to-the-
order calculation tells us that for a gravitational wave strength of ho ∼ 10−21, the
detectors with arm length 4Km need to measure ∆L of the order of ∆L ∼ 10−18,
which is smaller than the size of a proton by 1000 times! Hence, it becomes
imperative that the detector experiences as little noise as possible. Following are
some of the major sources of noise that limit the detector’s sensitivity.
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Seismic noise

The detector’s chosen site is mostly a quiet site on the Earth. However, even
for reasonably quiet site, the reduction of seismic noise required at a particular
frequency is quite high. In addition, this reduction is not just to be done in the
plane of the interferometer, but also in the vertical direction, since the noise in
vertical direction may couple to the system placed in the horizontal plane. Thus,
the mirrors in the arms (LIGO) have been suspended from a series of pendulums
so as to make them as isolated from the seismic noise as possible. In addition,
several hydraulic and electromagnetic systems have been installed to aid to the
former design. These techniques also help in reduce the gravity gradient noise.

Thermal noise

The thermal noise associated with the mirror masses and the last stage of their
suspensions is the most significant noise source at the low frequencies. In order to
keep thermal noise as low as possible, the mechanical loss factors of the masses and
pendulum resonances should be as low as possible. Further, the test masses must
have a shape such that the frequencies of the internal resonances are kept as high
as possible, must be large enough to accommodate the laser beam spot without
excess diffraction losses, and must be massive enough to keep the fluctuations due
to radiation pressure at an acceptable level.

Quantum noise

1. Photon shot noise: The origin of this noise lies in the fact that the laser is
made up quanta of energy, photons. The output of the GW interferometer is
set to a point in the fringes and is stabilized there by a feedback mechanism
involving a photodiode. However, since the photoelectrons in the photo diode
are distributed by Poisson distribution, which becomes Gaussian for large N
with standard deviation equal to

√
N . Because of this, stabilization becomes

difficult and this produces a limit to the sensitivities of the detector. The
power is increased to overcome this difficulty.

2. Radiation pressure: To reduce the shot noise, we increase the power. How-
ever, a beam of photons that falls on the mirror and is reflected back itself
exerts a pressure on the mirror. In addition, this pressure is not constant,
otherwise, it could have simply be compensated by the mounting mecha-
nisms of the mirror. However, since the number of photons that strike the
mirror fluctuate (Gaussian distribution, as discussed before), the radiation
pressure fluctuates in a stochastic manner. The effect of this pressure can
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be reduced by decreasing the power (while keeping in mind the shot noise)
or by increasing the mirror mass.

3. The standard quantum limit: We know that the shot noise varies with
the power as P−1/2 while the radiation pressure varies as P 1/2. The situation
is conceptually similar to Heisenberg’s Uncertainty Principle. When we use
photons to detect the position of the mirrors, they impart non-deterministic
radiation pressure. Thus, considering the combined effect of the shot noise
and the radiation pressure, we see that there is only a limit till which it can
be reduced.

Other noise sources

Apart from the major sources discussed above, there are various technical issues
that can become important during sensitivity measurements. For example, the
entire arm has to be in high vacuum in order to keep the noise induced by fluctua-
tions in the index of refraction below the design sensitivity. The mirrors are to be
polished to ultra-high accuracy to reduce the scattering effect. The fluctuations of
the laser in power and in frequency must be kept under control to great accuracy.

1.4 GW150914 - First Direct Detection of Gravi-
tational Waves

On September 14th, 2015 , both the aLIGO detectors at Hanford and Livingston,
USA observed the GWs coming from a BBH system (dubbed GW150914) [1]. This
was the first time that a direct detection of GWs was made. Before that, we only
had indirect evidence of GWs through the Nobel-Prize winning work of Hulse and
Taylor in 1974 on a binary pulsar system [2]. They had observed the puslar system
for several years and found out that the orbit of the binary system is shrinking.
This would mean that the system is loosing energy in the form of GWs. What
Hulse and Taylor found out was in exact accordance with the prediction made
by the General Theory of Relativity. Fig. 1.4 shows the accuracy to which the
predictions by the theory match the observations made by Hulse and Taylor.

However, with the GW150914 event, we have the first direct GW detection. This
not only confirmed the existence of GWs, but was another experimental evidence
that the General Theory of relativity is correct [15]. Also, this was the first time
we could detect a pair of BHs orbiting around each other.
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Figure 1.4: The Hulse-Taylor binary pulsar. The x axis is the time (in years) and
the y axis is the cumulative shift in the periastron (point of least distance between
the pulsars in their orbit)

The GW signal of GW150914 was a “chirp” signal. More about chirps is discussed
in Chapter 2. It was created by the coalescence of two BHs of masses 29M� and
36M�. The merger took place 1.3 billion light years away and released energy of
3M� in the form of GWs.

1.5 Gravitational Wave Astronomy
The first detection of GWs is bound to revolutionize the field of Astronomy.

Until now, we only had access to the electromagnetic signals coming from the
universe. Now, we have an entirely new and complementary spectrum in which
we can make observations.

Electromagnetic (EM) waves are generated when a charge particle oscillates.
However, since most of the universe is charge-neutral, we do not have access to
information about the phenomenon occurring in deep space. GWs, on the contrary,
are produced by acceleration of mass, and can provide us information in the areas
we did not have access to with EM waves.
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Also, GWs are weakly interacting with matter. So they would travel further
before being affected by mass distributions. Essentially, we can probe much fur-
ther into space, and much earlier into time, through GWs to understand physical
processes happening out there.

With the advent of GW astronomy, we will be finally able to get the complete
picture of our universe.
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Chapter 2

Compact Binary Coalescences

As discussed in Sec. 1.2.1, the most promising sources of GWs for the present day
ground based detectors are the CBCs. These comprise of NS-NS, BH-BH or NS-
BH binary systems. As the binary system radiates GWs, their orbital separation
decreases. Finally, they merge to form a final BH. Coalescence of a binary system
can have physically three distinct phases:

1. Inspiral: In this phase, the compact objects are well separated. The bi-
nary system loses energy and angular momentum in the form of GWs and
thus the separation between the compact objects decreases with time. Since
the compact objects are far apart, we can use the Post-Newtonian (PN)
approximation as the weak-field limit will be valid [16].

2. Merger: As the two compact objects are inspiraling towards each other,
after one point, the two compact objects strongly interact with each other
and the dynamics become unstable. The objects finally merge together to
form a single BH, still radiating GWs .

3. Ringdown: The final deformed BH formed after the merger settles down
into a stationary state, radiating GWs while removing its deformities.

The PN theory explains the inspiral phase with great accuracy, describing how
a GW signal from a CBC would look like in this phase. However, we have to
resort to the Numerical Relativity simulations for the merger phase. We have
some analytical tools, known as BH perturbation theory [17], at our disposal to
understand the ringdown phase. In practice, we can "stitch" the waveforms from
these three phases into one, and have an accurate description of the entire Inspiral-
Merger-Ringdown (IMR) waveform.
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This chapter first discusses the various parameters that the GWs emitted by
CBCs depend upon. Next, we look at mathematical formulation of GWs in the
inspiral phase of a binary system. Finally, we see how a GW signal from a CBC
looks like and briefly go through various ways in which it is being modelled.

2.1 Waveform Parameters
The GW signal from a CBC depends upon the following parameters:

1. Component masses of the binary system: m1, m2. We follow the convention
that m1 ≥ m2.

2. Spins are given by: S1 = (Gm2
1χ1/c)s1 and S2 = (Gm2

2χ2/c) s2, where χ1

and χ2 are the Kerr parameters and s1 and s2 are the unit vectors lying along
S1 and S2. S1 and S2 are described by four angles θ1,θ2, φ1 and φ2 in an
orbital triad. See Fig. 3.2.

3. Luminosity distance of the binary: DL

4. Inclination angle, with respect to the line of sight: ι

5. Right-Ascension: φ

6. Declination: θ

7. Polarization angle: ψ

8. Reference Phase: ϕc

9. Reference time of coalescence: tc

So in total, there are 15 parameters on which the signal coming from a binary
circular orbit depends. Out of the above mentioned parameters, the first 2 , i.e.
masses and spins, are intrinsic variables, while the rest of them are extrinsic ones.

The Kerr parameters mentioned above are in the range [0,1], where χ = 0 means
non-spinning compact object while χ = 1 means maximally spinning compact
object. If the spin vectors are not aligned (or anti-aligned) to the orbital angular
momentum L, the orbital plane as well as the spin vectors precess around the total
angular momentum. This results in modulations in the GW signal associated with
these binaries, which is discussed in Sec. 2.3.
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2.2 Binary System in a Circular Orbit
Consider a binary system with point masses m1 and m2 in a circular orbit on

the x-y plane. The orbital angular vector would point towards z direction. In the
center-of-mass frame, m1 and m2 will be at a distance r1 and r2 from the origin.
Let the orbital separation be a = r1 + r2, the total mass m = m1 + m2 and the
reduced mass µ = m1m2/m. This implies that r1 = am2/m and r2 = am1/m.

In our study, we consider only circular orbit since the eccentricities of the orbit
decay significantly by the time the GWs emitted by the binary become detectable
by the ground-based detectors.

It is also important to note that the timescale over which the orbit shrinks is
much more than the orbital period of the binary system. Hence, we can assume
that r1 and r2 (and consequently the orbital separation a) remain constant over
one orbit. The non-vanishing components of the quadrupole tensor, in terms of
the orbital phase ϕ = ωt, where ω is the angular velocity, are:

Ixx =
1

2
µa2(1 + cos 2ϕ) , (2.1)

Ixy =
1

2
µa2 sin 2ϕ , (2.2)

Iyy =
1

2
µa2(1− cos 2ϕ) . (2.3)

Taking the time derivatives twice,

Ïxx = −2µa2ω2 cos 2ϕ , (2.4)

Ïxy = −2µa2ω2 sin 2ϕ , (2.5)

Ïyy = 2µa2ω2 cos 2ϕ . (2.6)

Now, the observer on the z axis at a distance r from the origin will compute [3]:

hTTij = −4Gµa2ω2

c4r

cos 2ϕ sin 2ϕ 0
sin 2ϕ − cos 2ϕ 0

0 0 0

 , (2.7)

giving us the two polarizations:

h+ = −4Gµa2ω2

c4r
cos 2ϕ , (2.8)

h× = −4Gµa2ω2

c4r
sin 2ϕ . (2.9)
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We note that the frequency of the GW is twice that of the orbital frequency
(fGW = 2forbital = ω/π). We invoke a change of variables ν = aω, and we have :

ν = (πGmf)1/3 =

√
Gm

a
. (2.10)

Here, ν is the orbital velocity and ν/c is sometimes known as PN expansion pa-
pameter. Now, the polarizations, in terms of ν, become:

h+ = −4Gµ

c2r

(ν
c

)2
cos 2ϕ , (2.11)

h× = −4Gµ

c2r

(ν
c

)2
sin 2ϕ . (2.12)

Phase can be written as:
ϕ = ωt =

(ν
c

)3 c3t

Gm
. (2.13)

For an observer with the line of sight at an angle of inclination ι from the z axis,
the waveforms are:

h+ = −2Gµ

c2r
(1 + cos2 ι)

(ν
c

)2
cos 2ϕ , (2.14)

h× = −4Gµ

c2r
(cos ι)

(ν
c

)2
sin 2ϕ . (2.15)

These are the Newtonian waveforms. In practice, for real GW sarches we compute
more accurate PN waveforms. For further reading, see [18, 19, 20].

2.2.1 Energy Loss and Luminosity

As the time progresses, the binary system will loose energy and angular mo-
mentum in the form of GWs, causing the orbit to shrink further and further. To
calculate this energy loss, we take the third derivative of the quadrupole tensor:

...
I xx = −

...
I yy = 4

G

c5
µ

m

(ν
c

)5
sin 2ϕ , (2.16)

...
I xy = 4

G

c5
µ

m

(ν
c

)5
cos 2ϕ . (2.17)

Using these time derivatives, the GW Luminosity is given by:

LGW =
32

5

c5

G
η2
(ν
c

)10
, (2.18)
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where η = µ/m is called the symmetric mass ratio. The Newtonian energy loss
is given by:

E =
1

2
m1ν

2
1 +

1

2
m2ν

2
2 −

Gm1m2

a
, (2.19)

= −1

2
µν2 . (2.20)

2.2.2 Time Until Coalescence

The luminosity is given by LGW = −dE/dt. Now, using the results obtained in
the previous section, we have :

⇒ d(ν/c)

dt
=

32η

5

c3

Gm

(ν
c

)9
. (2.21)

The time until coalescence, τc, can be found by integrating Eq. (2.21):∫ ∞
ν0/c

d(ν/c)

(ν/c)9
=

32η

5

c3

Gm

∫ τc

0

dt , (2.22)

where we start with some initial frequency. Since the correction is very small and
can be ignored, we take the upper limit to be infinity, rather than choosing the
cutoff frequency for which the binary travels at the speed of light, so as to make
the calculations simple. Now, the time till coalescence is given by:

τc =
5

256η

Gm

c3

(
πGmf0
c3

)−8/3
, (2.23)

where f0 is the starting frequency.

2.2.3 Phase Evolution

Since the orbital separation is reducing with time due to the emission of GWs, the
phase ϕ will not increase uniformly with time. To compute the phase evolution,
we introduce two dimensionless functions:

1. Energy function: E, which is related to the energy E by:

E(ν)−mc2 = mc2E(ν) . (2.24)

2. Flux function: F, which is related to the luminosity by:

LGW (ν) =
c5

G
F(ν) . (2.25)
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The time t at which the binary system reaches the orbital velocity ν is given by:

t(ν) = tc +
Gm

c3

∫ νc

ν

1

F
dE
dν
dν , (2.26)

and the orbital phase is given as:

ϕ(ν) = ϕc +

∫ νc

ν

(ν
c

)3 1

F
dE
dν
dν . (2.27)

2.2.4 Newtonian Chirp

Now that we have ϕ(ν) and t(ν), the waveform can be written in terms of ν as:

h+(t(ν)) = −2Gµ

c2r
(1 + cos2 ι)

(ν
c

)2
cos 2ϕ(ν) , (2.28)

h×(t(ν)) = −4Gµ

c2r
(cos ι)

(ν
c

)2
sin 2ϕ(ν) . (2.29)

The above two equations represent the “chirp” waveform - the frequency and am-
plitude both increase as the orbit decays. For the Newtonian case, we have:

E = −1

2
η
(ν
c

)2
, (2.30)

and
F =

32

5
η2
(ν
c

)10
. (2.31)

This yields us ϕ(ν) and t(ν) through Eqs. (2.26) and (2.27). Subsequently, we can
compute the time-derivative of the GW frequency:

df

dt
=

96

5
π8/3η

(
Gm

c3

)5/3

f 11/3 =
96

5
π8/3

(
GM
c3

)5/3

f 11/3 , (2.32)

where M = η3/5m = (m1m2)
3/5(m1 + m2)

−1/5 is called the chirp mass. The
frequency evolution depends on the companion masses only through the chirp
mass. Moreover, even the GW waveforms depend only on this combination of the
companion masses:

h+(t) = −GM
c2r

1 + cos2 ι

2

(
c3(tc − t)

5GM

)−1/4
cos

[
2ϕ− 2

(
c3(tc − t)

5GM

)5/8
]
, (2.33)

h×(t) = −GM
c2r

cos ι

(
c3(tc − t)

5GM

)−1/4
sin

[
2ϕ− 2

(
c3(tc − t)

5GM

)5/8
]
. (2.34)

In the next section we will see what kind of GW signals are produced from CBCs.
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2.3 Waveforms for Compact Binary Coalescences
A typical GW waveform from a coalescing binary system is shown in Fig.2.3 for

a BBH.

Figure 2.1: A typical chirp waveform showing the three different phases of coales-
cence - Inspiral, Merger and Ringdown.

We can notice that during the inspiral phase, as time increases, the frequency
and the amplitude of the waveform increases. During the merger phase, the rise in
the amplitude is significant - the binary system can release upto some percentage
of their total mass as GW while merging and forming a bigger BH. Finally, we can
see the damping down of the waveform during the ringdown phase, where the final
BH settles down. There are no sharp boundaries between the phases, although
that is what has been depicted in the figure for the sake of clarity.
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We know from the beginning of the chapter that the waveform depends on
various parameters. To see an example of that, we have three waveforms in Fig.
2.2 for a binary system with each of the component masses equal to 15M� where
M� is the mass of the Sun. All figures describe only the inspiral part, with the
lower cutoff frequency 20 Hz. In the first case, the compact objects in the binary
system are not spinning and there is no modulation in the waveform. In the
second case, they are spinning; however, since their spins are aligned with the
orbital angular momentum, they are not precessing. In the third case, the spins
are not aligned with the angular momentum and hence the orbital plane and the
spins are precessing, and we can clearly see the modulations in the waveform as a
result.

Figure 2.2: The first figure describes the waveform for a non-spinning BBH, the
second figure describes the waveform for non-precessing BBH while the third figure
describes the waveform for a precessing BBH.
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If the masses of the compact objects are higher, the length of the inspiral part,
with reference to a starting frequency, will be shorter. This is because binary
systems with higher mass tend to release energy through GWs quickly as compared
to the lower mass counterparts. So the time taken to reach the merger phase is
less.

Figure 2.3: The left panel describes the waveform for a BBH with total mass
40M�, while the one on the right describes the waveform for a BBH with total
mass 80M�.

Given a binary system and its parameters, it is not a trivial task to model the full
IMR waveform. The following subsections discuss what are the current techniques
to compute a desired waveform.

2.3.1 Numerical Relativity Simulations

Numerical Relativity (NR) has been remarkably successful in the recent years
to simulate binary BH systems and generate their GW waveforms. It specially
helps in predicting the behavior of the binary during the merger phase, for which
we do not have much analytical tools. Simulation platforms like SpEC (Spectral
Einstein Code) [21] have been extensively used to generate GW waveforms for
various binary systems.

2.3.2 Waveform Approximants

As accurate as they may be, NR simulations are computationally very expen-
sive - a high quality waveform may require months to be generated. For reasons
that we will discuss later in Sec. 4.3, we require large number of waveforms for
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detection and parameter estimation. Hence, we cannot rely on just NR waveforms
for these purposes. Consequently, we have developed several mathematical models
for the waveforms. These models span a wider volume in the parameter space (as
compared to just one point in case of a NR waveform) and have been calibrated
using NR waveforms so that they generate accurate waveforms. Some of these
models generate waveforms in time domain, while others in frequency domain. All
of them are coded in LIGO Algorithm Library’s LALSUITE [22]. Some of the
approximants covered in this thesis are described in the following paragraphs.

SpinTaylorT4

To compute a waveform, this approximant solves 14 first order coupled differential
equations. This is a time domain waveform and incorporates spin and precession
effects of the component masses [23]. However, this is inspiral-only waveform, i.e.
it generates only the inspiral part of the waveform.

Reduced Spin

This is a frequency-domain waveform model that is characterized by 3 parameters
- the masses and a reduced spin parameter χ = χs + δ χa − 76 η/113χs, where
δ = (m1 −m2)/m, χs = (χ1 + χ2)/2 and χa = (χ1 − χ2)/2. Here χ1 and χ2 are
the z-components of the Kerr parameters of component masses and m = m1 +m2.
This waveform model is inspiral-only [24].

Phenomenological models: IMRPhenomD

For detection and parameter estimation of GWs, we require waveform models
in frequency domain and with low computational cost. Phenomenological models
have been proposed that stitch together PN waveforms and NR simulations to span
all the three phases of coalescence of a binary. This is a 3 parameter waveform
family that depends uponm, η and an effective spin parameter χeff = (1+δ)χ1/2+
(1− δ)χ2/2. This model made use of simple analytical ansätze for the phase and
amplitude of the PN-NR hybrids. Later on these ansätze were suitably modified
to make smooth transitions between their inspiral, merger and ringdown forms,
and improved the accuracy of the model [25]. The most recent IMRPhenomD
model has improvised on several features as compared to its predecessors. It has
also been calibrated using several NR waveforms and thus has a wide range of
applicability in terms of the parameter space it covers.
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Effective One-Body approximation: SEOBNRv2 and SEOBNRv3

These waveform model use the Effective-One-Body (EOB) method to solve the two
body problem in general relativity. In the Spin EOB framework, the conservative
dynamics of two compact objects of masses m1 and m2 and spins S1 and S2 is
mapped into the dynamics of an effective particle of mass µ = m1m2/(m1+m2) and
spin S∗ moving in a deformed Kerr metric with massm = m1+m2 and spin SKerr =
S1 + S2. Over a decade of improvements and developments, EOB model has now
become the most accurate IMR waveform model for spinning and non-precessing
binaries [26, 27]. This approximant aids in modelling the last stages of inspiral,
merger and ringdown. Since SEOBNRv2 itself is computationally expensive, we
use its reduced-order-modelling format (SEOBNRv2-ROM-DoubleSpin).

SEOBNRv3 is an inspiral-merger-ringdown model for precessing binaries [28].
SEOBNRv3 is mainly built upon its non-precessing version SEOBNRv2, and em-
ploys the precessing convention introduced by Buonanno, Chen, and Vallisneri
[29] and uses a non-inertial precessing source frame to describe the dynamics of
the system.
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Chapter 3

Spin-Orbit Resonances in Black
Hole Binaries

The GW that is produced from BBH depends on whether the BHs are spinning.
The modulation in waveform also depends on how fast the masses are spinning.
Moreover, if the spin vectors are not aligned with the orbital angular momentum,
they will precess about it, bringing more modulations to the GW waveform.

This chapter discusses about such highly spinning and precessing BBH. In the
first section, the dynamics of such systems is discussed. In the next section, we
discuss certain equilibrium configurations that may exist in some of these binary
systems.

3.1 Dynamics of Precessing Binary Black Hole sys-
tem

In the parameter space for a BBH system, there are 8 intrinsic variables: the
masses (2), the magnitudes of the spins (2) and the directions of the spins (4
angles). We have already mention the masses and the spins in Sec.(2.1). Similarly,
the orbital angular momentum is L = (Gm2η/c

√
x)L̂ where m = m1 + m2 is the

total mass, η = (m1m2/m
2), x = (Gmω/c3)

2/3, ω is the angular velocity and L̂ is
the unit vector along L.

The total angular momentum is given by :

J = L + S1 + S2 , (3.1)
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Figure 3.1: A schematic showing the precession of a binary system. Spins S1, S2

and L precess around the total angular momentum J [30]
.

and the vectors s1, s2 and L̂ all precess around J. For two point masses which are
spinning, the precession equations are [31, 32]:

Ṡ1 = Ω1 × S1 , (3.2)

Ṡ2 = Ω2 × S2 , (3.3)

where Ω1 and Ω2 are the precession frequencies of S1 and S2, defined for a circular
orbit for two masses separated by a distance r as:

Ω1 =
1

2r3

[(
2 +

3

q
− 3(qS2 + S1) · L

qL2

)
L + S2

]
, (3.4)

Ω2 =
1

2r3

[(
2 + 3q − 3(S1 + qS2) · L

L2

)
L + S1

]
. (3.5)

Here q = m1/m2 is the mass ratio.

There are three timescales involved in the evolution of BBH systems [33]. These
are the timescales associated with the orbital (τorb), precessional (τpre) and inspiral
(τrr) dynamics of the system. They are related to each other by the following
inequality:

τorb � τpre � τrr , (3.6)

which means that the two BHs will make many orbits around each other in the
same time as the orbital angular momentum (L) precesses once around the total
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angular momentum (J). Similarly, L would have made many precessing orbits
around J in the same time as the orbit size would have shrunk.

It is to be noted that J changes with time due to the radiation reaction (as L
changes). However, in the point mass approximation, the magnitude of spins |S1,2|
remains constant. If the BBH system did not emit GWs , the orbits will not shrink
and J would remain constant.

3.2 Equilibrium Configurations
In 2004, Schnittman observed that for spinning and precessing BH binaries,

there are some equilibrium configurations, in which L, S1 and S2 lie in a common
plane [33]. These configurations are called "spin-orbit resonant" configurations
since in the absence of radiation reaction, L, S1 and S2 precess around J at a
constant frequency. Fig. 3.2 shows the coordinate framework that is used in this
thesis. The three vectors, namely L, S1 and S2, determine the axes as follows: êz
is along L; S1,2 make angles θ1,2 with L and their projections on x− y plane make
angles φ1,2 with êx, respectively; we set φ1 = 0.

Figure 3.2: Reference frame used to describe the spin vectors: L is along the z-
axis. x axis is such that it makes an angle of 0◦ with the projection of S1 on x− y
plane. This figure is taken from [33].

29



Given the spin magnitudes |S1,2|, that do not change over time, we end up having
4 independent dynamical variables for determining the orientation of the binary
system: L, θ1, θ2 and ∆φ = φ2 − φ1.

As mentioned earlier, there are configurations in this coordinate framework in
which L, θ1, θ2 and ∆φ remain fixed in the absence of radiation reaction. The
individual vectors may vary with time as seen from another fixed inertial coordinate
framework.

The most trivial solutions are the ones in which S1,2 are collinear with L (i.e.
cosθ1 = ±1 and cosθ2 = ±1). However, there are more equilibrium configurations
when the spins and angular momentum are precessing, and are given when:

d

dt
(S1 · S2) = 0 , (3.7)

⇒
[
m2

m1

− m1

m2

+
(S1 − S2) · L

L2

]
S2 · (L× S1) = 0 . (3.8)

Eq. (3.8) means that the scalar triple product S2 · (L × S1) should vanish for all
times. That is, S1, S2 and L should be coplanar for all times. This means we have
to find the simultaneous solutions for the following two equations:

S2 · (L× S1) = 0 , (3.9)

and
d

dt
[S2 · (L× S1)] = 0 . (3.10)

Also, the scalar triple product, in terms of the four independent variables, can be
expressed as:

S2 · (L× S1) = S1S2L sin θ1 sin θ2 sin ∆φ . (3.11)

This, along with Eq. (3.9), provides the condition:

S1S2L sin θ1 sin θ2 sin ∆φ = 0 . (3.12)

The above equation generates two classes of solutions: ∆φ = 0◦ and ∆φ = 180◦.
Now, combining Eqs. (3.9),(3.10),(3.4) and (3.5) we get:

(Ω1 × S1) · [S2 × (L + S1)] = (Ω2 × S2) · [S1 × (L + S2)] , (3.13)

which is an equation in terms of the parameters L, θ1, θ2 and ∆φ. This allows
us to calculate θ2 given m1, m2, χ1, χ2, L, ∆φ and θ1. These configurations are
dominant when the mass ratio q ∈ [1, 3] and χ1, χ2 ∈ [0.5, 1] [33].
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The following Fig. 3.3 describes the two families of θ1-θ2 relations for various
spin magnitudes for masses m1 = 11M� and m2 = 9M�. We plot Schnittman’s
equilibrium solutions of θ2 as a function θ1. Also, different curves are for different
orbital separations: x = 1/1000, 1/500, 1/250, 1/100 and 1/10, where x = 1/1000
is equivalent to an orbital separation of r = 500Rs. Here Rs is the Schwarzschild
radius Rs = 2Gm/c2. Here, we considered BHs in the binary to have the spins
χ1 = χ2 = χ = 0.5, 0.75 and 0.98. Note that similar plots are presented in [33] and
[30] for maximally spinning BHs in Fig. 2,3 and Fig. 2, respectively. In this thesis,
we are presenting these solutions for submaximally spinning BHs for the first time.
We see that the solutions for sub-maximally spinning BBH are different than those
for maximally spinning cases. For ∆φ = 0◦ case, we get multiple branches even at
smaller separations as the spins are reduced. For ∆φ = 180◦, the range of solutions
becomes more shallow.

In the next section, we briefly describe the important astrophysical implications
of Spin-Orbit resonances.

3.3 Astrophysical Implications of Spin Orbit Res-
onant Binaries

The spin orbit resonances have important astrophysical implications. It has been
observed that during the later stages on inspiral for certain such configurations,
s1 ·s2 approaches unity [34]. Binaries that are near these equilibrium configurations
can get locked and liberate around them during their inspiral. For comparable
mass supermassive BH binaries, spin-alignment during late inspiral phase would
mean that the recoil velocity experienced by the resultant BH formed after merger
will not be large [34, 35]. Thus, the remnants will remain in the galaxies that are
hierarchically formed from the merger of smaller galaxies. It was recently shown
by Gerosa et al. that comparable stellar mass BH binary systems tend to lie in a
resonant plane by the time their GWs enter the frequency band of aLIGO [36].

Therefore, it will be interesting to see if the binaries in these configurations
can be detected by the advanced GW detectors. Currently, the detection pipelines
used by LSC employ only non-spinning and non-precessing waveforms for CBC
searches. In this thesis, we are testing the performance of these template banks in
detecting spin-orbit resonant binaries.

The next chapter describes the data analysis tools that we have used for this
investigation.
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Figure 3.3: Equilibrium solution for θ2 as a function of θ1. The plots are for the masses
m1 = 11M� and m2 = 9M� both having the same Kerr parameter χ. The left panel is for
∆φ = 0◦ family, while the right panel is for ∆φ = 180◦ family. The top panel describe the
solutions for χ = 0.5, the middle for χ = 0.75, and the bottommost for χ = 0.98.
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Chapter 4

Gravitational Wave Data Analysis

The data we get from the inferometric LIGO-like detectors is a discretized time
series in strain. Let the strain data from the detector be given by s(t). This data
consists of two components: the random noise n(t) and a possible GW signal h(t),
so that:

s(t) = n(t) + h(t) . (4.1)

Since GW signals are extremely weak signals, even with the sensitivity of current
detectors, these are buried inside a lot of noise and we have to extract it out. The
optimal technique of Matched Filtering maximizes the signal-to-noise ratio (SNR),
assuming that the signal is present in the data stream.

4.1 Matched Filtering
This section contains the details about the Matched Filtering technique of extract-
ing signals from noisy data [7]. The basic idea of matched filtering is used in many
signal extraction process, including radio engineering. Using this technique, we
can detect h(t) ≤ n(t) if we have some idea of the signal we are looking for.

4.1.1 Power Spectral Density

Consider a time series data x(t) having the probability distribution px for the value
of x at time t. The expectation value of x at that time is given as:

< x >=

∫
xpx(x)dx = lim

T→∞
1

T

∫ T/2

−T/2
x(t)dt . (4.2)

If the distribution function of the process does not alter with time then it is
called a stationary random process. Now, consider a signal with zero mean (i.e.
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< x >= 0). The power is defined as :

< x2 >= lim
T→∞

1

T

∫ T/2

−T/2
x2(t)dt . (4.3)

If the signal x(t) is present in the interval [−T/2, T/2], we can define a windowed
signal as:

xT (t) =

{
x(t) −T/2 < t < T/2 ,

0 otherwise

so that :

< x2 > = lim
T→∞

1

T

∫ ∞
−∞

x2T (t)dt , (4.4)

= lim
T→∞

1

T

∫ ∞
−∞
|x̃2T (f)|df , (4.5)

= lim
T→∞

2

T

∫ ∞
0

|x̃2T (f)|df , (4.6)

=

∫ ∞
−∞

Sx(f)df . (4.7)

Here Sx(f) is the one-sided power spectral density (PSD), since we have removed
the negative frequency components. In the above derivation, we have used the
Parseval’s theorem: ∫ ∞

−∞
|x2T (t)|2dt =

∫ ∞
−∞
|x̃T (f)|2df . (4.8)

Thus, the PSD of a stationary random process x(t) is given as:

Sx(f) = lim
T→∞

2

T

∫ T/2

−T/2
x(t) e−2πiftdt 2 . (4.9)

It depicts the frequency composition of the power of that signal. The PSD for a
stationary process is also two times the Fourier transform of the autocorrelation
function, which is given as:

Rx(t) =< x(t)x(t+ τ) > . (4.10)

We define the noise weighted inner product (a, b) of two time series a(t) and
b(t) as:

(a, b) = 4Re

∫ ∞
0

ã(f)b̃∗(f)

S(f)
df . (4.11)
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Also, we define the match between a and b as (a|b):
(a|b) = (a′, b′) , (4.12)

where
a′ =

a

σa
, (4.13)

and
σa =

√
(a|a) . (4.14)

4.1.2 Detection Statistic and Bayes’s Theorem

For the given strain data s(t), we have two hypotheses:

1. Null Hypothesis H0 : s(t) = n(t)

2. Alternative Hypothesis H1 : s(t) = n(t) + h(t)

where s(t), n(t) and h(t) are the strain data, noise and signal, respectively. We
wish to distinguish between the two hypotheses using Bayes’s theorem.

We denote the probability of the event A happening by P (A) and for the event
B happening by P (B). The conditional probability of the event A given that event
B has happened is given by:

P (A|B) =
P (A

⋂
B)

P (B)
, (4.15)

where P (A
⋂
B) is the probability of both A and B happening. Similarly, we can

write for the probability that B is true given that A is true:

P (B|A) =
P (A

⋂
B)

P (A)
. (4.16)

Eliminating P (A
⋂
B) from the above two equations, we get:

P (B|A) =
P (B)P (A|B)

P (A)
. (4.17)

Now since P (A) = P (B)P (A|B) + P (¬B)P (A|¬B), we can write:

P (B|A) =
P (B)P (A|B)

P (B)P (A|B) + P (¬B)P (A|¬B)
=

Λ(B|A)

Λ(B|A) + P (¬B)/P (B)
, (4.18)

where we define the likelihood ratio Λ(B|A) as:

Λ(B|A) =
P (A|B)

P (A|¬B)
=

p(A|B)

p(A|¬B)
, (4.19)

where in the last step the probabilities have been replaced by respective probability
densities.
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4.1.3 Matched Filter

To distinguish between the two hypotheses mentioned above, we would like to
compute the likelihood ratio for the alternate hypothesis. That is,

Λ(H1|s) =
p(s|H1)

p(s|H0)
. (4.20)

We can now compute the probability densities, assuming the noise is Gaussian.
We can assume the noise to be Gaussian since its coming from multiple sources
as multiple independent components, which turns out more or less Gaussian. The
probability distribution function for a Gaussian random process with mean µ and
variance σ2 is :

f(x|µ, σ2) =
1

σ
√

2π
e−

(x−µ)2

2σ2 . (4.21)

For the alternate hypothesis,

p(s|H1) = pn[s(t)] ∝ e−(s,s)/2 , (4.22)

while for the null hypothesis,

p(s|H0) = pn[s(t)− h(t)] ∝ e−(s−h,s−h)/2 , (4.23)

so that the likelihood ratio becomes:

Λ(H1|s) =
e−(s−h,s−h)/2

e−(s,s)/2
= e(s,h) e−(h,h)/2 . (4.24)

This motivates us to define the inner product (s, h) as the matched filter :

(s, h) = 4Re

∫ fup

flow

s̃(f)h̃∗(f)

Sn(f)
df . (4.25)

In Eq.(4.25), fup and flow are the lower and upper frequency cutoffs, respectively.
We can choose the upper frequency cutoff to be that corresponding to the Inner-
most Stable Circular Orbit (ISCO), which means an orbital separation of 3Rs,
where RS is the Schwarzschild radius.

The matched filter is essentially the noise-weighted correlation of the strain data
with an anticipated signal. We see that the likelihood ratio only depends on the
data s(t) through the matched filter. Also, the likelihood ratio is a monotonically
increasing function of the matched filer. This gives us an ideal choice for the
optimal detection statistic, since any threshold we set for the likelihood ratio for
claiming that the alternative hypothesis is true can be computed using the matched
filter. That is, if we set a threshold k on the likelihood ratio, then if Λ(H1|s) ≥ k
then we adopt the alternate hypothesis. And if Λ(H1|s) ≤ k then we adopt the
null hypothesis. Setting a threshold also decides the false-alarm rate. A lower
threshold value will give high false alarm rate.
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4.1.4 Statistical Properties of the Matched Filter

Let a gravitational wave signal be h(t;A) where A is the (unknown) amplitude of
the signal. If h(t;A) has a known signal form g(t), the logarithm of the likelihood
ratio will be:

ln Λ(H|s) = (s, h(A))− 1

2
(h(A), h(A)) = A(s, g)− 1

2
A2(g, g) . (4.26)

We get the amplitude Amax when the above equation is maximized:

Amax =
(s, g)

(g, g)
. (4.27)

Putting this back in the equation gives us the maximum log-likelihood ratio:

ln Λ(H|s) =
1

2

(s, g)2

(g, g)
. (4.28)

We call the signal form g(t) as a template. It is proportional to the anticipated
signal.

Now, it can be easily shown when there is no signal, the variance of the matched
filter (Eq. 4.25) is σ2 = (g, g). This is because we assume that the noise is zero
mean Gaussian random process. When a signal h(t;A) is present:

< x >=< (s, g) > +(h, g) = Aσ2 , (4.29)

< x2 >= σ2 + A2σ4 , (4.30)

so that the variance:

Var(x) =< x2 > − < x >2= σ2 . (4.31)

This means that the matched filter x = (s, g) is a Gaussian random variable in the
presence of a signal.

We can now define the signal-to-noise ratio (SNR) as ρ = x/σ. It is a normalized
matched filter that is a Gaussian random variable. When there is no signal, it has
zero mean and unit variance (< ρ >= 0;Var(ρ) = 1). When a signal is present,
the mean becomes equal to (h, h)1/2.

4.2 Template Banks
Usually, h(t) will be dependent on a set of parameters, say λi. For a gravitational

wave signal this could be the masses, spins, etc. Let all these parameters be
represented by a vector λ = [λ1, ..., λN ] in an N -dimensional parameter space.
The signal can now be written as h(t;λ).

37



We do not know a priori what should be chosen for the template g(t;λ). The
signal can be in any region of the parameter space. Thus, we have to discretize
the parameter space sufficiently finely and compute the template at each of these
points. Then, the maximum likelihood ratio can be identified as the template which
has the best match. Each of these templates is normalized (u(t;λ), u(t;λ)) = 1 so
that the SNR ρ(λ) = (s, u(t;λ)).

This set of templates, u(t;λ), called as the template bank, has to constructed so
that the signal h(t;λ) should lie close enough to one of the templates. The fitting
factor F tells us how well the template waveforms match a true signal:

F =max
λ

(h, u(λ))√
(h, h)

. (4.32)

4.2.1 Placement of the Templates

In Sec.(4.1.4), it was described how we can maximize over extrinsic parameters
such as the amplitude. The other extrinsic parameters can also be dealt with
similarly. However, we need to search over the intrinsic parameters over which
the GW signal would depend. For example, for CBCs, these could be the masses,
spins, etc. So we have to place the templates in the template banks densely.
Since it is computationally impossible to place the templates extremely densely,
we compromise by reducing the number of templates - we allow the number of
templates to minimize such that the maximum mismatch between the signal and
the template does not go beyond a tolerable value. If we allow for 10% loss of the
signals, it corresponds to 3% loss in SNR.

This mismatch can be quantified in terms of the ambiguity function, defined as:

A(λ,λ′) = (u(λ), u(λ′)) , (4.33)
where the templates u(λ) are normalized. That means, they lie on a submanifold
of a hyperspace of N − 1 dimensions.

Now, expand λ′ = λ+∆λ with small ∆λ so that we only allow for 3% mismatch.
The ambiguity function, then, becomes:

A(λ,λ + ∆λ) ' 1 +
1

2

∂2A
∂λα∂λβ

∆λα∆λβ , (4.34)

where the metric gαβ has been used:

gαβ = −1

2

∂2A
∂λα∂λβ

, (4.35)
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If we had defined the maximum mismatch to be ∈ then A((λ), (λ)′) ≥ 1− ∈=
minimum match. So, if we allow for 3% loss in SNR, then ∈= 0.03 and minimum
match = 0.97. The placement of the templates is then described as:

gαβ∆λα∆λβ =∈ , (4.36)

4.3 Detection of Gravitational Waves from Com-
pact Binaries

The technique of matched filtering works very well for CBCs since we can model
the GW signal coming from such sources, as was discussed in Sec. 2.3.1 and
Sec. 2.3.2. We create a template bank of waveforms which spans the relevant
parameter space. Instead of NR waveforms, we use the various approximants to
generate the waveforms for the template bank, because NR waveforms take too
much computational resources and time. Template banks may contain ∼ 1 million
points in the parameter space and it is not feasible to generate NR waveforms for
each of these points.

We can generate waveforms, place the template banks, calculate match, etc.
using LALSUITE [22](a package developed by the LSC) and/or PyCBC [37](a
python toolkit for data analysis of GWs from CBCs). Using these tools, we can
check if a given GW signal is detectable using a certain template bank. We can
also determine the parameters that the signal is characterized by.

We can create waveforms from the approximants and treat them as GW signals.
These are called as "injections". Also, as mentioned before, we can create template
banks using the available approximants and then check if the template banks can
recover the injections from the noisy data using matched filtering. This is done
by calculating the fitting factors, which tell us how effectual the approximant we
used for template bank is for detection of GW signal.

The purpose of this project is to test the effectualness of approximants SEOBNRv2-
ROM-DoubleSpin, IMRPhenomD and TaylorF2RedSpin using current pipelines
available in LALSUITE/PyCBC in recovering GW signals from SOR binaries.
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Chapter 5

Results and Conclusion

For the purpose of this project, we model SOR GW signals by using two kinds of
waveform approximants: SpinTaylorT4 and SEOBNRv3 (see Sec. 2.3.2 for more
details). SpinTaylorT4 models only the inspiral phase of the waveform, while
SEOBNRv3 models the entire Inspiral-Merger-Ringdown waveform. For generat-
ing the template bank to recover these signals, we use three approximants: Tay-
lorF2RedSpin, IMRPhenomD and SEOBNRv2-ROM-DoubleSpin. TaylorF2RedSpin
is an inspiral-only waveform, while IMRPhenomD and SEOBNRv2 are full IMR
waveforms. All the three template approximants are aligned-spin, i.e. their spins
are aligned with the orbital angular momentum, while the spins of the injected
signals follow the SOR condition and may not be aligned to the orbital angular
momentum. We also have injections for generic precessing binaries, for which the
spins may oriented in any possible way. This chapter begins with giving the details
of the parameters used for SOR signals and template banks in the study.

5.1 Parameters Used
The various parameters used for the simulations are as follows:

• INJECTIONS

– Waveform Approximant: SpinTaylorT4 and SEOBNRv3 (SOR ∆φ =
0◦, SOR ∆φ =180◦ and generic)

– Mass ratio (q) range: 1 - 3

– Total Mass (m) range: 6M� − 20M� for SpinTaylorT4 and 6M� −
64M� for SEOBNRv3

– Spin magnitude (χ1, χ2) range: 0.5 - 0.98

– Lower cutoff (f-low) frequency: 20Hz

– Number of injections: 10,000
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• TEMPLATE BANKS

– Waveform Approximant: TaylorF2RedSpin, SEOBNRv2-ROM-DoubleSpin,
IMRPhenomD

– Noise PSD: aLIGOZeroDetHighPower

– Minimum Match (1− ∈): 0.97
– Lower cutoff (flow) frequency: 20Hz

– Component Mass (m1,m2) range: 3M� − 30M� for SpintaylorT4
Injections and 3M� − 50M� for SEOBNRv3 injections

– z-component spin range: −0.99, 0.99

The simulations involve computing the fitting factor values for the various kinds
of injections. We can compare the various template approximants on the basis of
the fitting factor values we obtain. The results are shown by plotting cumulative
histogram of the fitting factor values for all the 10000 injections. The following
section contains the results obtained for injections modelled by SpinTaylorT4,
while the section after that shows the results of SEOBNRv3 injections.

41



5.2 SpinTaylorT4 Injections

5.2.1 Effect of Truncating the Waveform at Innermost Stable Cir-
cular Orbit

Figure 5.1: We plot the cumulative histogram of the fitting factors against the fraction
of sources. The left panel is for IMRPhenomD template, while the right panel is for
SEOBNRv2-ROM-DoubleSpin template. The top panel describes ∆φ = 0◦ family, the
middle ∆φ = 180◦ family, and the bottommost generic binaries.

Since our injections are inspiral-only waveform, we investigate the effects of truncating
the template waveforms at ISCO. We can clearly see that terminating the waveform at
frequency corresponding to ISCO improves the performance in all the cases of SEOBNRv2
and IMRPhenomD templates. We do not study for TaylorF2RedSpin as it is already
inspiral-only waveform.
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5.2.2 Comparison of Performance of Template Banks

Figure 5.2: We plot the cumulative histogram of the fitting factors against the fraction
of sources. The left panel is for full IMR waveforms for IMRPhenomD and SEOBNRv2,
while in the right panel these are truncated at ISCO. The top panel describes ∆φ = 0◦

family, the middle ∆φ = 180◦ family, and the bottommost generic binaries.

In the Fig. 5.2 we compare the performance of the three approximants used to cre-
ate the template banks, namely IMRPhenomD, SEOBNRv2-ROM-DoubleSpin and Tay-
lorF2RedSpin. We see that if we take the full IMR waveform to generate the template
bank, IMRPhenomD and SEOBNRv2 behave almost similarly, at the same time yielding
higher fitting factors than TaylorF2RedSpin. Hence, these approximants perform better
than TaylorF2RedSpin. If we terminate the waveform at ISCO, the performance improves
even further, with SEOBNRv2 recovering the SOR signal better than IMRPhenomD.
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5.2.3 Comparison between recovery of Spin Orbit Resonances
and Generic Binaries

Figure 5.3: We plot the cumulative histogram of the fitting factors against the
fraction of sources. The first figure is for IMRPhenomD template, the second for
SEOBNRv2 template and the third for TaylorF2RedSpin template.

Here, we want to compare the performance of a template approximant over the
three kinds of injections - SOR binary belonging to ∆φ = 0◦ family, SOR binary
belonging to ∆φ = 180◦ family and generic precessing binaries with high spins.
Since SOR binaries have fewer degrees of freedom than the generic precessing
binaries, we expect that the fitting factors for them would be more than, or at
least equal to, those of generic precessing sources. We find that the recovery for
all the types of injections is remarkably similar. This is also true no matter what
template approximate we choose.
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5.2.4 High Spin vs Low Spin: Comparison

IMRPhenomD

Figure 5.4: We plot the cumulative histogram of the fitting factors against the fraction
of sources recovered by IMPRPhenomD. The left panel is for full IMR waveforms, while
in the right panel these are truncated at ISCO. The top panel describes ∆φ = 0◦ family,
the middle ∆φ = 180◦ family, and the bottommost generic binaries.
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SEOBNRv2

Figure 5.5: We plot the cumulative histogram of the fitting factors against the fraction
of sources recovered by SEOBNRv2-ROM-DoubleSpin. The left panel is for full IMR
waveforms, while in the right panel these are truncated at ISCO. The top panel describes
∆φ = 0◦ family, the middle ∆φ = 180◦ family, and the bottommost generic binaries.
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TaylorF2RedSpin

Figure 5.6: We plot the cumulative histogram of the fitting factors against the fraction
of sources recovered by TaylorF2RedSpin. The first plot describes ∆φ = 0◦ family, the
second ∆φ = 180◦ family, and the bottommost generic binaries.

We know that different approximants use different effective spins as one of their free
parameters. Here we study how effectual these approximants are for different regions in
the spin parameter space. Our injections have their spins lying between 0.5 − 0.98. We
further divide them into three categories: high spins - if spins of both the component
masses are above 0.75, low spins - if spins of both the component masses are in the range
0.5 -0.75, and the third category includes the injections for which the spin of only one
component mass is above 0.75 and that of other is below 0.75.

From the results of comparison, we can see that low spin injections are recovered better
than high spins for all template banks and all injection configurations. The injections with
one high and one low spin have similar fitting factors to the case when we are considering
all the spins at once.
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Comparison of Performance of Template Banks for High Spin and low
spin Signals: full IMR template waveforms

Figure 5.7: We plot the cumulative histogram of the fitting factors against the
fraction of sources for high spins (left panel) and low spins (right panel) separately
for all three template approximants using their entire waveform. The top panel
describes ∆φ = 0◦ family, the middle ∆φ = 180◦ family, and the bottommost
generic binaries.
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Comparison of Performance of Template Banks for High spin and Low
spin signals: IMR templates trunctaed at ISCO

Figure 5.8: We plot the cumulative histogram of the fitting factors against the
fraction of sources for high spins (left panel) and low spins (right panel) separately
for all three template approximants with their waveforms terminated at ISCO.
The top panel describes ∆φ = 0◦ family, the middle ∆φ = 180◦ family, and the
bottommost generic binaries.
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5.3 SEOBNRv3 Injections

5.3.1 Comparison of Performance of Template Banks

Figure 5.9: We plot the cumulative histogram of the fitting factors against the
fraction of sources. The first plot describes ∆φ = 0◦ family, the second ∆φ = 180◦

family, and the bottommost generic binaries.

In the Fig. 5.9 we compare the performance of the two approximants used to cre-
ate the template banks, namely IMRPhenomD and SEOBNRv2-ROM-DoubleSpin.
We see that the recovery of the injections by SEOBNRv2 is marginally more than
IMRPhenomD.
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5.3.2 Comparison between recovery of Spin Orbit Resonances
and Generic Binaries

Figure 5.10: We plot the cumulative histogram of the fitting factors against the
fraction of sources. The first figure is for IMRPhenomD template and the second
for SEOBNRv2 template.

Here, we want to compare the performance of a template approximant over
the three kinds of injections - SOR binary belonging to ∆φ = 0◦ family, SOR
binary belonging to ∆φ = 180◦ family and generic precessing binaries with high
spins. The results for this study with SEOBNRv3 injections is the same as that
for SpinTaylorT4 - the recovery of all the types of injections is almost the same,
no matter what template approximant we use.

5.4 Discussion and Conclusion
In this thesis, we test the performance of various template banks employed in

the detection pipelines used in the CBC searches in detecting GWs from the Spin
Orbit Resonant (SOR) binaries. The template approximants used to model these
banks are :

• SEOBNRv2-ROM-DoubleSpin: This has the entire IMR waveform, has
its spins aligned to the orbital angular momentum , and uses the Effective-
One-Body approximation to generate the waveform.

• IMRPhenomD: This has the entire IMR waveform, is aligned spin, and is
the lates phenomenological waveform model.
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• TaylorF2RedSpin : This is inspiral-only waveform, is aligned-spin, and
uses an effective spin to model the waveform.

We also had two different approximants used to model the GW signal which are
used as injections:

• SpinTaylorT4 : This is an inspiral only approximant. However, the spins
can be oriented in any direction with respect to the orbital angular momen-
tum.

• SEOBNRv3 : This approximant generates the entire IMR waveform and
spins may not be aligned to the orbital angular momentum. This approxi-
mant uses the Effective-One-Body approximation to generate the waveform.

We find that SEOBNRv2 and PhenomD perform better than RedSpin templates.
The performance in recovering injections from SOR binaries is the same as that
for generic precessing binaries. Additionally, we have also presented Schnittman’s
equilibrium configurations for sub-maximally spinning BBHs.

For SpinTaylorT4 injections, we tested the effectualness of SEOBNRv2 and IM-
RPhenomD in recovering generic and SOR injections by providing a high-frequency
cutoff at the Innermost Stable Circular Orbit (ISCO). We found that their per-
formance improves after doing so, as compared to the case when their entire IMR
waveform is being used. It is because the injections have inspiral part only, and re-
covering them through IMR template waveforms would result in higher mismatch.

Using SpinTaylorT4 as injection approximant, if we make a comparison between
the performance of the template approximants, we find that TaylorF2RedSpin can
only recover∼ 80% of the sources with fitting factors higher than 0.95. SEOBNRv2
and IMRPhenomD, using their full IMR waveform, can yield ∼ 90% of injections
with fitting factors higher than 0.95. However, if we cutoff their waveforms at
ISCO, the recovery fraction of injections with fitting factors higher than 0.95 goes
to ∼ 93% for IMRPhenomD and as high as ∼ 98% for SEOBNRv2.

When we use SEOBNRv3 as the waveform approximant for modelleing GW
signals as injections, we see that SEOBNRv2 performs marginally better than
IMRPhenomD. Both recover ∼ 98% of sources with fitting factor values higher
than 0.95.
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We also show that the magnitude of the spins play an important role in deter-
mining the fitting factors. The general trend that was observed was that injections
with low spins (spins of both components lower than 0.75) are recovered better
than the injections with high spins. For all the three approximants, low spin had
∼ 20% more sources that had fitting factors more than 0.95 as compared to high
spins, when using their full IMR waveform. If the waveform is cutoff at ISCO,
∼ 98% of the sources with low spins have fitting factor more than 0.95 for IMR-
PhenomD, while 100% of the low spinning injections had fitting factor more than
0.96 for SEOBNRv2.

We also compared the performance of different templates banks for different re-
gions in the spin parameter space. For low spin cases, considering full IMR wave-
forms, we found that SEOBNRv2-ROM-DoubleSpin and IMRPhenomD perform
equally well, but better as compared to TaylorF2RedSpin. For high spin cases,
both these waveforms recover ∼ 80% injections while TaylorF2RedSpin recovers
∼ 70%.

When we truncate the IMR waveforms at ISCO, SEOBNRv2 performs the best
in recovering injections in both the cases. The performance of IMRPhenomD is
also better than TaylorF2RedSpin, and it improves in recovering low spin injections
as compared to recovering high spin injections.

The main motive of the project was to test the effectualness of the approximants
- SEOBNRv2-ROM-DoubleSpin, IMRPhenomD and TaylorF2RedSpin - in recov-
ering SOR signals (from both families ∆φ = 0◦ and ∆φ = 180◦). We find that ∼
90% of the sources had their fitting factors higher than 0.95 when SEOBNRv2 or
IMRPhenomD were used to create template waveforms. The fraction decreased to
∼80% in the case of TaylorF2RedSpin templates.

Also, SOR binaries have two degrees of freedom less than the general precessing
binary system. Hence it was expected that the fitting factors obtained for SOR
binaries would be not less than those of generic precessing binaries. It is found
that the generic precessing binaries and SOR binaries are recovered equally well.

It will be interesting to do similar studies with NR waveforms computed for
SOR binaries. These NR waveforms are believed to be the most accurate ones and
will give us more insight about the detectability of such systems. One can further
perform Parameter Estimation studies for the same approximants. The future
work may also include generating template banks following the SOR conditions.
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