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Abstract  
Recent studies have shed light on the bidirectional communication between astrocytes and neurons 

for the brain's normal functioning. This bidirectional communication is thought to be occurring 

through the Calcium-dependent release of gliotransmitters. Anup and Nadkarni (1) have described a 

detailed biophysical model that can quantitatively describe this gliotransmitter release by a single 

astrocyte process in response to a wide range of synaptic activity. This project aims to reproduce the 

results of the work done by Anup and Nadkarni by implementing the model using python. Since this is 

a learning project, the report was divided into two modules (for ease of reporting). The first module 

simulates the classic Hodgkin-Huxley model of neuronal spiking, followed by the Li-Rinzel model for 

calcium dynamics in neurons and its stochastic modelling in the 2nd module.   

Module 1  
Introduction  
The Classic experiment of Hodgkin and Huxley in 1952(2) on the giant squid axon led to the discovery 

of 3 main ion currents, viz, Na+, K+ and a leak current mainly consisting of Cl- ions. These ionic currents 

were controlled by specific voltage-dependent, one for sodium and one for potassium. The other 

channels that are not specified explicitly are responsible for the leak current. This module simulates 

the classic space clamped Hodgkin-Huxley model for a patch of axonal membrane.  

The Hodgkin-Huxley model(3)  
The Hodgkin-Huxley model is a simple approximation of an axonal patch with only three types of 

channels. Here the semipermeable cell membrane separates the cell's interior from the extracellular 

material, acting as a capacitor, as shown in Figure 1.  

 

Figure 1:Approximation of an axonal patch in the Hodgkin-Huxley model  

Now since the cell membrane acts as a capacitor, if an input current is I(t) is passed into the cell, it may 

either add charge to the capacitor or leak through the channels in the cell membrane. The axonal 

membrane has Na+/K+ ATPase, which maintains the ion concentration inside the cell different from 

the extracellular space. The potential difference generated by the difference in ion concentration is 

similar to the role of the battery in an electric circuit.   

Hence the axonal patch may be approximated to an electric circuit with a capacitance C, resistance R, 

which can be thought of as the resistance of leak channel and two variable resistance, one 

representing Sodium and Potassium channels, respectively. This is represented in the circuit diagram 

shown in Figure 2. In the diagram, the earthing represents that the resting membrane potential is set 

to be zero.  
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Figure 2: Circuit diagram representation of the Hodgkin-Huxley model  

  

Putting all these into mathematical terms, we can say that when a current stimulates the patch I(t), it 

will be split into two currents: a capacitive current Ic, which charges the capacitor C and other 

components Ik which pass through the ion channels.   

Thus we can say,  

  𝐼(𝑡) = 𝐼𝑐(𝑡) + ∑𝑘 𝐼𝑘(𝑡)         (1)  

Since the Hodgkin-Huxley model describes only three types of channels viz., Na+, K+, and an unspecific 

leak channel with resistance R, the summation over k run over all these ion channels.  

𝑄 
 As capacitance is defined as 𝐶 = , where Q is the charge, and u is the voltage across the capacitor,  

𝑢 
ⅆ𝑢 

the stimulating current Ic can be written as 𝐼𝑐 = 𝑐 ⅆ𝑡.  

Hence equation (1) can be written as:  

ⅆ𝑢 
 𝑐 ⅆ𝑡 = − ∑𝑘 𝐼𝑘(𝑡) + 𝐼(𝑡)           (2)  

In terms of the axonal patch, u represents the voltage across the cell membrane and ∑𝑘 𝐼𝑘(𝑡) is the 

sum of the ionic currents that is passing through the membrane.  

In the Hodgkin-Huxley framework, the three channels are characterised by their resistance or  
1 

conductance. The leakage channel is described by a voltage-independent conductance 𝑔𝐿 =   
𝑅 

whereas the conductance of the other two channels is voltage-dependent. The opening of the sodium 

and potassium channels is probability dependent, and when all the channels are open, they conduct 

currents with a maximum capacity of 𝑔𝑁𝑎 or 𝑔𝐾, respectively. In the normal physiological state, some 

channels are closed. The probability that a channel is open is described by additional parameters called 

gating variables viz., m, n and k.   

The sodium channels are controlled by the combined action of the m and h gating variables. The 

variable n controls the opening and closing of the potassium channels. By considering this, Hodgkin 

and Huxley characterised the current components as:  

 ∑𝑘 𝐼𝑘 = 𝑔𝑁𝑎𝑚3ℎ(𝑢 − 𝐸𝑁𝑎) + 𝑔𝑘𝑛4(𝑈 − 𝐸𝑘) + 𝑔𝐿(𝑈 − 𝐸𝐿)    (3)  
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Here 𝐸𝑁𝑎,𝐸𝐾, 𝐸𝐿 are called the reversal potentials. Both the reversal potential as well as the 

conductance are determined empirically. The values of the parameters described by Hodgkin and 

Huxley where the resting membrane potential 

is zero is summarised in Table 1.  

𝐸𝑥  x (mV) 

𝑔𝑥 

(mS/cm2)  x 𝜶𝑥 (mV)  𝜷𝑥 (mS/cm2)  

  

  

Table 1: Parameters of the Hodgkin-Huxley Model. Here the membrane capacitance, C = 1 µF/cm2 and membrane voltage 

set to 0 mV.  

The three gating variables evolve according to the differential equation described below:  

𝑚  = 𝛼𝑚(𝑢)(1 − 𝑚) − 𝛽𝑚(𝑢)𝑚  

𝑛  = 𝛼𝑛(𝑢)(1 − 𝑛) − 𝛽𝑛(𝑢)𝑛  

 ℎ  = 𝛼ℎ(𝑢)(1 − ℎ) − 𝛽ℎ(𝑢)ℎ      (4)  

ⅆ𝑚 
Here 𝑚  denotes  and so on for n and h. The functions α and β are described in Table 1 and are ⅆ𝑡 

empirical functions that fit the data collected from the giant axon of the squid by Hodgkin and Huxley.  

Methods  
Simulating the Hodgkin-Huxley model:  
The explicit Euler method was used to simulate the equations described above using custom python 

scripts. The simulations were done for 100 ms with a time step of 0.01 ms for integration. The stimulus 

(input current) of 10 μA/cm2  was provided from 10th ms to the end of the simulation.  

Plotting the bifurcation diagram:  
The model was stimulated with input currents varying from 1 to 300 μA/cm2 in steps of 1 μA/cm2   

throughout the simulation, and the maximum and minimum membrane voltages were plotted for the 

last 20 ms in each run to obtain the bifurcation diagram.  

Results and Discussion  
Hodgkin-Huxley model could reproduce various observations attributed to typical neuronal 

spiking.  
A characteristic spike train was observed after the simulation. The spiking in the membrane potential 

was correlated with the time of application of the stimulating current. The plots for the gating 

variables' dynamics and membrane potential are shown in Figure 3.  

  

n  

m  

0.1 − 0.01𝑢 

  
ⅇ1−0.1𝑢 − 1 

 0.125ⅇ−𝑢/80  

2.5 − 0.1𝑢 

  
ⅇ2.5−0.1𝑢 − 1 

 4ⅇ−𝑢/18  

h  0.07ⅇ−𝑢/20   
  

Na  115  120  

K 

L  

-12  36  

10.6  0.3  
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Figure 3: Simulating the Hodgkin-Huxley model. (A) Dynamics of the three gating variables. (B) Application of input current. (C) 

Membrane potential varying with time. The red arrow denotes the time of application of stimulating current.  

In the case of constant current input, we could observe regular spiking of the membrane potential 

with maximum value at the first spike. The interval seen between two spikes is called the refractory 

period. This is because the sodium channels will be inactivated at this time, and hence the cell cannot 

respond to the input current.   

The maximum value of membrane potential is seen in the first spike. This can be attributed to the 

phenomenon called refractoriness. In this model of neuronal firing, the maximum value of the 

membrane potential depends on the amplitude of the stimulating current. Since we have a constant 

input current, the 2nd spike initiated during the refractory period, a higher amplitude current is 

required to get the same level of membrane potential. This can be seen more clearly in Figure 4. Here 

a much stronger current is needed for getting a second spike during the hyperpolarisation phase.  

A 
  

B 
  

C 
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Figure 4: (A) Stimulating with 3 μA/cm2 current for 5 s, 10 s apart. (B) Stimulating with 3 μA/cm2 and 15 μA/cm2 current for 5 s, 

10 s apart.  

  

It was also observed that there is a particular current threshold below which we could not obtain the 

spiking activity. For the parameters described in this model, this threshold was found to be between 

2-3 μA/cm2. The maximum voltage in response to varying input current is shown in Figure 5.  

  
Figure 5: Maximum membrane voltage in the initial spike with varying input current  

The bifurcation diagram for constant continuous current is shown here. We can see that at very low 

currents, the voltage has a stable fixed point. As the value of current increases, voltage executes a 

longer trajectory to reach its stable fixed point. After a critical current value ~2.3 µA/cm2, the stable 

node disappears, and a stable spiral appears in the phase diagram. Now there is an unstable node 

inside the stable loop. This behaviour resembles a supercritical Hopf bifurcation, i.e., a stable node 

changes to an unstable node surrounded by a stable spiral. The voltage value oscillates between a 

minimum and maximum value  

After this, when we increase the current further, the radius of the stable spiral decreases and finally 

collapses to a stable fixed point at another critical current value ~160 µA/cm2. This is a subcritical Hopf 

bifurcation, as a stable spiral disappears, and a stable fixed node appears when the parameter value 

increases. The fixed point is a stable spiral, as noted from the simulations. The minimum and maximum 
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values of the voltage are the same, implying that the voltage remains fixed even though a stimulating 

current is provided. Also, note that the stable voltage is a non-zero value (~25 mV and increasing).  

  

 

  

Figure 6:  Bifurcation diagram  

Conclusions and Future Prospects  
Even though the Hodgkin-Huxley is a simple approximation of the spiking behaviour of an axonal patch, 

it could reproduce some of the classical characters attributed with a typical neuronal spiking. This 

report summarises a few of them, and there are a lot of special cases that can be tried and tested 

using this model, which is beyond the scope of this study. Thus this has become one of the successful 

theoretical models describing neuronal spiking. All the parameters were estimated from various 

experiments by the original authors cited in the appropriate sections and have not been validated in 

the present study.  
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ⅆ 𝑡 

Module 2  
Introduction  
In 1992, De Young and Keizer proposed the first theoretical model for the agonist-induced Ca2+ 

oscillations based on the kinetics of 1,4,5-trisphosphate (IP3) and the gating of the IP3 Receptor (IP3R). 

This model assumes that the IP3R has three independent subunits for conducting. Each subunit has 

three binding sites, 2 for Calcium and one for IP3. The binding of Calcium to one of the sites activates 

and to the other deactivates the channel. Thus there are 23 states for each subunit. All the subunits 

must have Calcium bound to the activation site and IP3 to the IP3 site for the channel to conduct. 

Though this model could reliably capture the complex gating dynamics, the number of variables was 

relatively high. Li and Rinzel proposed a relatively simple approximation of this model in 1994. From 

the observation that the De Young-Keizer model was symmetric in some bound states, the IP3 binding 

is at least 200 times faster than Ca2+ activation binding while this in-turn is at least 10 times faster than 

Ca2+ deactivation binding. Thus the De Young-Keizer model was approximated to a system of 2 coupled 

ordinary differential equations.  

This module will consist of simulating the deterministic Li-Rinzel model for a patch of a cell membrane. 

Recent high-resolution microscopic recordings suggest that these channels are spatially organised as 

clusters. The collective opening and closing of these channels are responsible for the Ca2+ puffs 

observed in experiments. Since mathematical models are directly based on these experiments, 

deterministic Li-Rinzel may be insufficient to model the stochastic nature of these experimental 

observations due to the relatively small number of calcium release channels in a patch. Hence the 

Langevin approximation of the Li-Rinzel model proposed by Shuai et al. to introduce stochasticity in 

the deterministic model will be simulated in the later sections of this module.  

The Li-Rinzel Model(4)  
The Li-Rinzel model for agonist-induced calcium dynamics in the cytosol consists of 2 coupled ordinary 

differential equations described below:  

ⅆ[𝐶𝑎2+] 
 = −𝐽𝐶ℎ𝑎𝑛𝑛𝑒𝑙 − 𝐽𝑃𝑢𝑚𝑝 − 𝐽𝐿𝑒𝑎𝑘              (5)  

ⅆℎ 
 ⅆ𝑡 = 𝛼ℎ(1 − ℎ) − 𝛽ℎℎ                 (6)  

Here 𝐽𝐶ℎ𝑎𝑛𝑛𝑒𝑙 represents the flux of calcium ions from the ER to the intracellular space through the IP33R 

channels, 𝐽𝑃𝑢𝑚𝑝 represents the flux of Calcium being pumped out from the intracellular space to the 

ER and 𝐽𝐿𝑒𝑎𝑘 represents the flux of Calcium being leaked into the intracellular space from the ER. They 

are given by the expressions below:  

 𝐽𝐶ℎ𝑎𝑛𝑛𝑒𝑙 = 𝑐1𝑣1𝑚∞
3 𝑛∞

3 ℎ3([𝐶𝑎2+] − [𝐶𝑎2+]
𝐸𝑅)           (7)  

𝑉3[𝑐𝑎2−]2 

 𝐽𝑃𝑢𝑚𝑝 =  𝑘 2+[𝑐𝑎2−]2                  (8)  
3 

 𝐽𝐿𝑒𝑎𝑘=𝑐1𝑣1([𝐶𝑎2+] − [𝐶𝑎2+]𝐸𝑅)              (9)  

Where,  

 𝑚                ∞ = 
[ 𝐼𝑃 3 ] 

[ 𝐼𝑃 3 ] + ⅆ 1 
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𝑛    

 𝛼     

𝛽ℎ = 𝑎2[𝐶𝑎2+]   

The parameters used in the model are summarised in Table 2.  

Parameter Value  

c1  0.185  

v1 

v2 

v3 

k3 

d1 

d2 

d3 

d5  

6 s-1  

0.11 s-1  

0.9 µM s-1  

0.1 µM  

0.13 µM  

1.049 µM  

0.9434 µM  

0.08234 µM  

a2  0.2 µM-1s1  

[𝐶𝑎2+]   
𝐸𝑅 

c0  

𝑐0−[𝐶𝑎2+] 

   
𝑐1 

2.0 µM  

Table 2: Parameters used in the Li-Rinzel model with the initial value of [𝐶𝑎2+] and h to be zero.  

Langevin approximation of Li-Rinzel model:(4)  
In the Langevin approximation of the Li-Rinzel model, the stochastic behaviour of the channel is 

captured by adding a gaussian white noise term to the equation for a fraction of open channels as 

expressed in equation (10). Equation (11) describes the formula for generating the zero mean, 

uncorrelated Gaussian white noise. Hence the Langevin approach indicates that the stochastic 

dynamics of the IP3R channels can be treated as deterministic dynamics distributed by Gaussian white 

noise.  

 ⅆ ⅆ𝑡ℎ𝑖 = αℎ(1 − ℎ𝑖) − βℎℎ𝑖 + 𝐺ℎ𝑖(𝑡)                (10)  

 ⟨𝐺ℎ𝑖(𝑡)𝐺ℎ𝑗(𝑡′)⟩ = αℎ(1−ℎ𝑁𝑖)−βℎℎ𝑖 δ(𝑡 − 𝑡′)δ𝑖𝑗              (11)  

Where i,j = 1,2,3  

For simplifying the problem, we can write h1h2h3 as h3, assuming that the three gates of the IP3R are 

identical. The creates a gain in computational speed by a factor of 3.  

Methods  
Simulating the deterministic Li-Rinzel model:  
The odeint() function of the SciPy(6) package in Python 3.6.6(7) was used to numerically solve the 

equations described in equations (5) and (6) with a time step of integration as 0.001 s. The entire 
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simulation was run for 100 s using [𝐼𝑃3] as the stimulating parameter. The stimulus was given between 

the 60th and 90th s with an IP3 concentration of 0.5 µM.  

Langevin approximation of the Li-Rinzel model:  
The equations described in equations (5) and (10) were solved using the odeint() function of the SciPy 

package in Python 3.6.6, as discussed in the previous section with a timestep of integration 0.001 s. 

The gaussian white noise term was generated using the normal() function in the NumPy(8) package in 

python using default parameters. It was run for 400 independent trials to capture the stochastic 

behaviour, and a histogram was plotted with the peak amplitude of calcium spike in each run.  All 

simulations were run for at least 50 s before applying the stimulus (0.5 µM of IP3). A scaling factor was 

introduced to match the random term generated to the values of the h gating variable. A check was 

performed after every simulation to check if the value of h goes beyond 0 and 1.  

Results and discussion  
The Deterministic Li-Rinzel model captures the calcium spike in response to IP3 stimulation.  
A characteristic spike of calcium concentration was observed upon IP3 application. Though the model 

started with an initial calcium concentration of 0 µM, it soon reached an equilibrium value within 

seconds after the start of the simulation. The concentration returned to this equilibrium value soon 

after the stimulating IP3 was removed. This is the resting calcium concentration in the cytosol. The 

calcium dynamics captured from the model is shown in Figure 7.  

 

Figure 7: : Calcium dynamics captured by the deterministic Li-Rinzel model. Here the stimulus was provided between the 60th and the 90th s.  

  

Figure 8: : Calcium dynamics captured by the deterministic Li-Rinzel model. Here the stimulus was provided between the 60th and the 90th s.  

The Langevin approximation of the Li-Rinzel model was able to capture the stochasticity of the 

IP3R channel opening.  
The histogram plotted for the maximum peaks of calcium concentration of 400 independent trials had 

a normal distribution, as shown in Figure 8.  
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Figure 10: Calcium peak histogram for the Langevin approximation of the Li-Rinzel model  

Conclusions and Future prospects  
The Langevin approximation of the Li-Rinzel model is a computationally less demanding model for 

capturing the stochastic behaviour of the IP3R channels. It can be used to model various complex 

calcium dynamics in different cell types. Pillai et al. 2019(1) has used the Langevin approximation to 

create a detailed biophysical model of gliotransmitter release in response to calcium signalling in a 

tripartite synapse. The next step of this project would be implementing the model proposed by Pillai 

et al. and reproducing their results. This can further be expanded by modelling how this gliotransmitter 

release affects synaptic signalling.  
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