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Synopsis

Thermoelectric (TE) materials have attracted particular attention in the last decade be-
cause they act as a green way of converting waste heat energy to electrical energy through
Seebeck effect. The efficiency of a thermoelectric device is measured by the dimension-
less figure of merit (ZT ), which is directly proportional to the square of Seebeck coef-
ficient, electrical conductivity, and inversely proportional to thermal conductivity. De-
pending on the operational temperatures, materials like bismuth telluride, lead halides,
MgAgSb, skutterudites, and copper and tin chalcogenides are promising candidates for
use in thermoelectric devices. To the best of our knowledge, the highest reported value
of ZT is about 2.6 at 573 K, which is observed for cadmium-doped AgSbTe2 (Science,
371, 722727 (2021)). In terms of the efficiency of thermoelectric devices, the presently
achievable ZT is still quite small compared to traditional power generators. Hence, there
are still efforts to improve/design novel materials with high ZT . Improving ZT implies
that one needs to increase Seebeck coefficient and electrical conductivity and reduce lat-
tice thermal conductivity. However, the mechanisms that improve one of them deteriorate
the other, making it challenging to design novel materials with improved ZT . Over the
last several years, many strategies like nanostructuring, band structure engineering, het-
erostructure formation, dimensionality reduction, etc., have been developed to improve
ZT .

In addition to experimental techniques, computational materials design is also an impor-
tant tool for the discovery of novel thermoelectric materials. In this thesis, using com-
putational tools like density functional theory, semiclassical Boltzmann transport theory,
and many-body electron-phonon coupling, we have studied two aspects of computational
research in thermoelectric materials. This thesis is divided into two parts consisting of six
chapters.

Chapter 1 provides the general introduction to the field of thermoelectrics, challenges
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hindering the progress of the field, and strategies to overcome these challenges. We have
briefly discussed two main strategies employed in the first part of this thesis to improve
the thermoelectric properties of bulk and layered materials.

In Chapter 2, we have briefly explained the density functional theory (DFT) and its prac-
tical facets of the plane-wave implementation. DFT has been exploited to compute the
electronic structure properties. This information is further combined with Boltzmann
transport theory to determine the transport properties of the materials under consideration.

The first part of the thesis consists of two chapters where we have used conventional
computational methods to study the effect of structural modifications on the electronic
structure and transport properties of bulk and layered materials.

Chapter 3 deals with a bulk material, copper chalcogenides (BaCu2Se2), which is a
promising thermoelectric material. We have exploited the band engineering technique
to investigate how doping BaCu2Se2 with suitable dopants introduces resonant states in
the electronic band structure of this material. As of result, it leads to improvement in
transport properties of the system.

Chapter 4 is based on the idea of reduced dimensionality suggested by Dresselhaus et

al. In this work, we have selected monolayers of BiI3 and ZrS2 to form a novel van der
Waals heterostructure. We have shown how this heterostructure can improve the transport
properties compared to the individual monolayers.

The second part of the thesis consists of Chapter 5, where we have critically examined
the validation of some approximations that are typically made in the calculations. It is
important to compute carrier relaxation time to predict the transport properties of novel
materials. Usually, this is computed using deformation potential theory where only cou-
pling of electrons/holes and acoustic phonons are considered. Our work shows that for
ionic solids (like BiI3 and ZrS2 monolayers), the coupling of charge carriers with optical
phonons is significantly substantial. Neglecting them, while computing relaxation times
not only results in quantitative errors (by orders of magnitude) but also gives qualitative
incorrect trends.
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Chapter 1

Introduction

Natural resources such as petroleum and natural gases are being exhausted rapidly over
several years to fulfill domestic and industrial needs. Usage of these resources increases
global warning and releases an enormous amount of heat energy as a waste. To reduce
the consumption of these resources, researchers worldwide are faced with new challenges
to search for alternative means of clean energy. It can be advantageous if waste heat
ejected from industries or automobiles etc., can be converted into some useful form of
energy. Thermoelectric materials can play a prominent role in converting waste heat into
electricity.

1.1 Thermoelectric Effects

The processes through which heat can be converted into electricity or vice versa are called
thermoelectric effects. While the former is called the Seebeck effect, the latter is called
Peltier effect. Below we briefly describe the two.

1.1.1 Seebeck effect

If a temperature gradient (∆T) is maintained across a junction consisting of two different
electrically conducting materials joined in series but thermally connected in parallel (Fig.
1.1 (a)), then a potential difference (∆V) is generated across the junction. This process
is known Seebeck effect, and the ratio (∆V / ∆T) is termed as Seebeck coefficient (S).
Mathematically, it is expressed as:

S =
∆V

∆T
(1.1)
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1.1.2 Peltier effect

In this process, when an electric current is passed through the junction a temperature gra-
dient is developed across its ends. Thus heat evolves from one end and gets absorbed at
the other end of the junction (Fig. 1.1 (b)). It is the reverse of Seebeck effect. The amount
of heat evolved or absorbed at the junction per unit time (Q̇) is given by Q̇ = Π × I, where
Π is the Peltier coefficient and I is the magnitude of current. The Seebeck and Peltier
effects are used for power generation and refrigeration, respectively.
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Figure 1.1: Schematic of thermocouple demonstrating (a) Seebeck effect (b) Peltier cooling.

1.2 Efficiency of thermoelectric device

The conversion efficiency (η) of a thermoelectric device is given by:

η =

(
1− Tc

Th

) √
1 + ZTavg − 1√

1 + ZTavg + Tc/Th
(1.2)

where Th (Tc) is the temperature of hot (cold) end and Tavg is the average of the temper-
ature at the hot and cold end (Tavg = (Th + Tc)/2). ZT is the material’s figure of merit
and is related to the material properties like Seebeck coefficient, electrical conductivity
(σ) and thermal conductivity (κ). ZT is given by:

ZT =
S2σT

κ
(1.3)
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Larger the value of ZT more is the value of η.

However, finding materials with considerable ZT is challenging due to the interconnect-
edness of the various physical quantities involved. For instance, S is inversely propor-
tional to doping concentration while σ increases with it. Furthermore, an increase in σ also
increases electronic conductivity (κe) because they are related through Wiedemann-Franz
Law. So these factors bring up great challenges to independently control ZT . Despite the
difficulties, researchers have developed various new techniques to improve the value of
ZT for several materials. In the following sections, we briefly describe various classes of
thermoelectric materials, and then we will discuss some of the strategies employed in this
thesis to enhance ZT of a few materials.

1.3 Classes of TE materials

1.3.1 Phonon glass electron crystal based TE materials

TE material should have high electrical conductivity and low lattice thermal conductivity,
thus possessing high ZT. Materials exhibiting such properties are called “phonon glass and
an electron crystal (PGEC).” In the following, we briefly discuss a few important classes
of TE materials that possess properties similar to PGEC. Usually, such materials have
complex cage-like structures filled with heavy atoms, namely skutterudites and clathrates.

1.3.1.1 Skutterudites

Skutterudites derive their name from naturally occurring arsenic minerals (CoAs3) found
in Skutterud, Norway, in 1845. These bulk materials have cubic crystal structures with a
space group Im3̄ [4]. The general formula representing the unit-cell of binary skutterudites
is �2T8X24, where T denotes transition metal, X indicates pnictogen, and � symbolizes
the voids. These voids that can be filled with alkaline-earth or rare-earth elements with
heavy atomic masses.

Within the filled skutterudites, the guest atoms act as independent oscillators giving rise
to the “rattling effect.” Since rattlers are weakly bound inside the cages formed by host
atoms, they vibrate locally with lower frequencies. These rattlers scatter the heat-carrying
normal phonon modes of lower frequencies and thus prevent the flow of heat through-

— [ 3 ] —



out the crystal. So, the rattling effect lessens the lattice thermal conductivity, whereas
rattlers do not affect the high electrical conductivity of filled skutterudites. Thus filled
skutterudites behaves as PGEC. Nolas et al. have demonstrated PGEC characteristics in
Yb0.19Co4Sb12 in 2000 [5].

These materials are earth-abundant and more cost-effective than other TE materials [6].
They can function at a wide range of temperatures (up to 900 K) [6]. However, the ap-
plication of skutterudites is limited by their non-resistance to oxidation and sublimation
of group 5 elements [7]. These materials exhibit very highZT with suitable fillers. For ex-
ample, Xun et al. had demonstratedZT of 1.7 at 850 K for n-type Ba0.08La0.05Sb0.04Co4Sb12

[8]. Some latest reviews by several authors on skutterudites are available elsewhere [6,9].

1.3.1.2 Clathrates

Clathrates exist in a more complex cage-like structure than skutterudites and show vari-
ation in their compositions. These materials are most commonly found in two types of
structures described by general formula XaYbZ46−b (type-I) and XaYbZ136−b (type-II),
where Y and Z are Group 3 and 4 elements that form cage-like structures to host guest
atoms X from alkali or alkaline-earth metals. Type-I clathrates crystallize in cubic struc-
ture with Pm3̄n space group forming cage-like framework composed of 6 tetrakaidecadron
and 2 dodecahedron cages per unit cell. The unit cell of these clathrates is made up of 46
tetrahedrally coordinated host atoms. In Wyckoff notation, the host atoms occupy at 6c,
6i and 24k Wyckoff sites, whereas the 8 guest atoms occupy 6d and 2a Wyckoff sites at
the center of the cages formed by tetrakaidecadron and dodecahedron, respectively.

On the other hand, type-II clathrates also possess cubic crystal structure, but with Fd3̄m

space group. They also exist in a cage-like framework made up of 8 hexakaidecahedra and
16 dodecahedron cages per unit cell. The unit cell of clathrates type-II contains 136 tetra-
hedrally coordinated host atoms occupying 96g, 32e and 8a Wyckoff positions, whereas
the 24 guest atoms occupy 8b and 16c Wyckoff positions at the center of cages formed
by hexakaidecahedra and dodecahedron, respectively. A detailed information on crystal
structures of type-I and type-II clathrates can be found elsewhere [10, 11].

Similar to skutterudites, clathrates also possess remarkably low lattice thermal conductiv-
ity due to the rattling effect of guest atoms [12, 13]. Furthermore, these materials exhibit
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comparable Seebeck coefficient and electrical conductivity relative to that of commer-
cially used TE materials [10,13]. As a result, a significantly high ZT (> 1) is observed for
this class of materials. For example, a high ZT ∼ 1.35 is observed in n-type Ba8Ga16Ge30

at 900 K [13]. Some reviews on clathrates can be found elsewhere [10, 14].

1.3.2 Metal Oxides

Oxide-based TE materials are cost-effective and environment-friendly. They are chemi-
cally and thermally stable. However, this class of materials could not get much attention
due to its relatively high lattice thermal conductivity [15]. However, in 1997, interest
in oxide-based layered materials was kindled when Terasaki et al. discovered highly
anisotropic NaCo2O4 single crystals with high in-plane power factor ∼50µWK−2cm−1,
which is greater than that of Bi2Te3 [16]. Since then, many high-temperature (> 800 K)
oxide-based TE materials, like (Ca2CoO3)0.7CoO2, Bi2Sr2Co2Oy, and NaxCoO2−δ, have
been discovered with ZT around 1 [17–19]. Based on theoretical calculations, Dressel-
haus et al. predicted that low-dimensional systems can give rise to enhanced ZT relative
to their bulk counterparts [20, 21]. Following these novel routes suggested by Dressel-
haus et al. [20, 21], the highest ZT of about 2.5 was observed for SrTiO3 superlattice by
Ohta et al. [22]. Further elaborative information on oxide-based TE materials is available
elsewhere [23–26].

1.3.3 Half-Heusler (HH) alloys

Half Heusler alloys (XYZ) are composed of three different types of atoms, where X and
Z can be transition metals, and Y is a metal or non-metal. They crystallize in cubic crystal
structure with space group F4̄3m. In the primitive unit-cell, X and Z are located at 4a (0,
0, 0) and 4b (0.5, 0.5, 0.5) Wyckoff positions forming a rock-salt crystal structure, while
Y atom occupies 4c (0.25, 0.25, 0.25) Wyckoff position along body diagonal and leaving
the 4d (0.75, 0.75, 0.75) Wyckoff position vacant [27].

HH has attracted immense attention from researchers due to their mechanical robustness,
remarkable electronic transport properties, and thermal stability [28, 29]. These materials
can provide larger output power than other state-of-art TE materials due to their higher
power factors [30–32]. These materials are environment-friendly, cost-effective, and have
flexible compositions [7]. Additionally, these materials can operate in temperatures rang-
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ing from 600 K to 1000 K [7, 33]. There are many HH alloys with significant ZT (∼1)
values. For example, Fu et al. found a maximum ZT ∼ 1.1 for p-type FeNb1−xTixSb at
1100 K [32]. Zhu et al. have reported a ZT ∼ 1.52 for p-type TaFeSb-based HH alloys
at 973 K [34]. Similarly, a peak ZT ∼ 0.9 was obtained for n-type Nb0.83CoSb at 1123 K
by Xia et al. [35]. Likewise, in a recent experimental work, Yu et al. obtained a ZT ∼ 1
for n-type Hf0.5Zr0.5NiSn0.98Sb0.02 system [36].

Since HH alloys are composed of the lightweight elements, thus they exhibit high lattice
thermal conductivity relative to that of commercially used TE materials. Heavy atoms can
replace lighter ones with appropriate doping to overcome these challenges. Some in depth
reviews on HH alloys are available elsewhere [33, 37–41].

1.3.4 Metal chalcogenides

The metal chalcogenides (MCs) are composed of metal and chalcogenides (X = S, Se
and Te). MCs are at the forefront of TE materials due to their better and more reliable
performance relative to any other class of TE materials. Notably, heavy atomic mass is
responsible for these materials’ low lattice thermal conductivity, and thus, MCs exhibit
very high ZT > 1. Based on the composition and crystal structure, Chao et al. have
divided MCs into nine groups [42], and here we discuss some paramount classes of MCs
as follows:

1.3.4.1 Lead chalcogenides

Lead is the most promising element in this class of TE materials due to its high earth
abundance and heavy atomic mass. Lead chalcogenides can operate in mid-range temper-
atures (600-800 K). They exist in a rock-salt crystal structure with lead atoms inhabiting
the cation sites and chalcogens populating anion sites. Amongst lead chalcogenides, in
particular, PbTe has played a vital role in the field of thermoelectrics for the last five
decades. The full potential of PbTe was realized in 2011 when Snyder et al. demonstrated
the ZT ∼1.4 in p-type, and n-type PbTe at 750 K [43, 44]. Furthermore, Kanishka et al.

achieved a ZT ∼ 2.2 (at 915 K) in p-type PbTe with maximum reduction in the lattice
thermal conductivity [45].
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1.3.4.2 Bismuth chalcogenides

Bismuth chalcogenides represent another exciting TE material class used widely near
room temperature. In particular, Bi2Te3 is a layered semiconductor and narrow bandgap
(160 meV) material [42]. It exists in trigonal crystal structure with space group R3̄m,
where Bi and Te layers are arranged in a ... Te-Bi-Te-Bi-Te ... manner. Be and Te lay-
ers are bonded by robust covalent bonds, whereas Te layers interact via weak van der
Waals forces along the z-axis [46]. As a result, anisotropy is observed in electronic trans-
port properties and lattice thermal conductivity of Bi2Te3. For instance, Bismuth telluride
shows in-plane (cross-plane) lattice thermal conductivity of 1.5 (0.7) Wm−1K−1 [46]. In
1950, Bi2Te3 was used in TE refrigerators with ZT ∼ 0.6 at 300 K [42]. Recently, a
ZT for p-type Bi0.5Sb1.5Te3 (n-type Bi2Se0.3Te2.7) has touched 1.86 at 320 K (1.2 at 445
K) [42, 47, 48]. Moreover, Rama et al. observed a ZT of 2.4 (at 300 K) in Bi2Te3/Sb2Te3

superlattices [49].

1.3.4.3 Superionic conductors (SICs)

There is a particular class of materials called superionic conductors (SICs), which ex-
hibits properties similar to PGEC. For example, Cu2Se and Cu2S are the two SICs that
have played a vital role in developing TE materials. These materials exist in the low-
temperature α-phase and high-temperature β-phase (so-called SICs). In the β-phase,
chalcogenide atoms adopt a rigid crystal structure and offer a pathway for charge trans-
port, whereas Cu ions move in a highly disordered fashion around the chalcogen sublat-
tice, hindering the transport of heat [50, 51]. Therefore, when Cu ions flow liquid-like
around the chalcogenide sublattice, the chalcogenide sublattice acts as the phonon-liquid
and electron crystal (PLEC), basically analogous to PGEC. Thus an outstanding perfor-
mance was demonstrated in p-type Cu2−xSe with ZT of 1.5 at 1000 K [50]. Moreover, in
2013, Liu et al. had reported the highest ZT of 2.3 at 400 K in n-type Cu2Se. [51].

1.3.4.4 Layered structure materials

Layered structure materials are divided into three categories: Ternary ACrX2 layered
structures, Bi-O-X systems, and transition metal dichalcogenides (TMDCs) [42]. Here
we focus on TMDCs as follows:
TMDCs
These materials possess trigonal crystal structure with space group P3m1. In particular,
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bulk TiS2, in its most stable form (1T-TiS2), crystallizes in a layered structure. Each
layer is formed by a Ti sublayer sandwiched between two S sublayers. Thermoelectric
properties of Ti1+xS2 have been investigated by intercalating the excess Ti atoms into
the layers, and transport coefficients are reported with increasing with the content of Ti
atoms [52]. Moreover, thermoelectric properties of CuxTiS2 in-plane and cross-plane have
been inspected by Guilmeau et al. [53]. Apart from TiS2, many other TMDCs have been
investigated, such as MoS2 [54, 55], WSe2 [54], ZrS2 [56], TiS3 [57], etc.

1.3.4.5 Other metal chalcogenides

Other metal chalcogenides are divided into Ga-Te systems and Non-layered transition
metals chalcogenides [42]. The latter is discussed as follows:
Non-layered transition metals chalcogenides
Apart from layered TMDCs, many TMDCs exist in non-layered crystal structures as ex-
emplified by CeSe2, Ce3Te4, FeS2, MnTe, and BaCu2Se2, etc. These materials possess
promising TE properties either due to their band structure stemming from distinctive prop-
erties of transition metals or complex crystal structure [42]. For instance, Na doping on
Ba-site increases the electrical conductivity by two orders of magnitude, giving rise to a
ZT ∼1 at 773 K in BaCu2Se2 [58].

The rest of the classes belonging to MCs are discussed in detail by Chao et al. [42] and
Priyanka Jood and Michihiro Ohta [59].

1.3.5 Metal Halides

Metal halides are a new class of materials defined by a chemical formula MX3, where
M denotes a metal atom and X indicates a halide ion. Recently, great interest is arisen
in studying physical properties of metal halides [60–64]. Recently, the family of MX3

(where M=Sc, Y, As, Sb, and Bi) is shown to be a semiconductor by Liu et al. [64].
Amongst them, the Bismuth triiodide (BiI3) is notably fascinating due to its Mexican hat-
like valence bands that might result in a high Seebeck coefficient [65]. Moreover, BiI3 is
predicted to possess an ultralow thermal conductivity [66].

There is an endless list of many more classes of TE materials like silicon-based, organic,
and spinels TE materials [7, 67, 68]. In this thesis we have chosen ZrS2, BaCu2Se2, and
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BiI3 from layered and non-layered transition metal chalcogenides and metal halides, re-
spectively. The motivation to select each one of them is discussed in respective chapters.

1.4 Strategies to enhance ZT

From Eqn. 1.3 we note that the lattice contribution to the thermal conductivity (κL) is
independent of the other material parameters that depend on the electronic properties.
This suggests two major strategies that can be employed to improve ZT of thermoelectric
materials: reduce the κL and enhance S2σ. Methods to reduce κL are discussed elsewhere.
[69] In the following, we briefly describe two methods that have been employed in this
thesis to enhance the power factor.

1.4.1 Resonant doping

It is a band engineering technique used to improve the ZT by increasing the values of
S. The phenomenon of resonant levels and their influence on transport coefficients are
treated as follows.

1.4.1.1 Resonant levels

Typically in doped semiconductors, the impurity states are in the band gap and carriers
from these states can be excited to conduction or valence bands by providing activation
energy (ED). However, when defect state overlaps with the electronic states of parent
crystal for which ED is negative, these states are called resonant levels (RLs) or also
labeled as “virtual bound states” as shown in Fig. 1.2 (a). The term “Resonant levels
(RLs)” was first introduced for metals in solid-state physics [70]. RLs refer to impurity
states that overlap with the energy spectrum of the host material. So all the impurity states
in metals and semi-metals can be assigned as RLs.
As the energy of defect state coincides with that of parent electronic state, so they resonate
to create two new states with slightly different energies. Two newly-formed extended
states further resonate with other extended states of corresponding energies and so on.
As a result, resonant state acquires finite width Γ and produces a distortion in electronic
density of states of parent crystal (Fig. 1.2 (b)).
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Figure 1.2: (a) Schematic diagram of a conduction band with defect state (blue) and a resonant
state (pink) and (b) resonant state producing distortion is density of states (DOS).

1.4.1.2 Resonant doping and thermoelectricity

The RLs affect the transport properties in two ways : by induced distortion in density of
states (DOS) and through resonant scattering.

Distortion in DOS
The Seebeck coefficient within Mott picture is given as follows [71]:

S =
kB
q

1

σα,β

∫ ∞
0

σE,α,β(E)

(
E − EF
kBT

)(
− ∂f

∂E

)
dE (1.4)

where f denotes Fermi-Dirac occupation, σα,β is conductivity tensor and zero of energy is
set at the band edge. Notice that Eq. (1.4) can be applied only to a material having Fermi
surface composed of a single pocket.
S can be approximated using Bethe-Sommerfeld expansion for a single parabolic band as
follows [71]:

S =
π2

3

kB
q

(kBT )

[
1

n(E)

dn(E)

dE
+

1

µ(E)

dµ(E)

dE

]
=
π2

3

kB
q

(kBT )

[
g(E)

n(E)
+

1

µ(E)

dµ(E)

dE

] (1.5)

where kB is Boltzmann constant, µ is mobility of charge carriers, g(E) is DOS and
n(E) =

∫
g(E)dE.

Eq. 1.5 suggests that S can be improved through two mechanisms : (i) local increase in
DOS can increase g(E) (ii) an increase in dµ(E)

dE
. For example, µ(E) can decrease due to

scattering mechanism between conduction electrons and resonant state that has strong de-
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pendence on the energy of charge carriers. This is called “resonant scattering”. However,
resonant scattering is more prominent at low temperatures. The increase in g(E) term,
due to distortion produced in DOS (Fig. 1.2 (b)), has a prominent influence and is respon-
sible for the enhancement of thermoelectric properties of the materials. Lately, Heremans
et al. have demonstrated that ZT of p-type PbTe can be increased to 1.5 at 773K through
resonant doping [72]. We have employed this approach to enhance transport properties of
BaCu2Se2 in Chapter 3 of this thesis.

1.4.2 Reduced dimensionality

Properties of the materials can be boosted by increasing the DOS as suggested by the first
term in Eq. 1.5. A significant enhancement in DOS can be achieved when dimensions
of the materials are reduced and approach to nanometers length scales. This remarkable
strategy was proposed by Dresselhaus et al. to design thermoelectric materials with en-
hanced ZT by reducing dimensionality. [20, 21] Theoretically, it was shown that Bi2Te3

with quantum well structure might possess great potential to attain a significant ZT [20].
The improvement in ZT mainly originates from enhancement in S due to increased DOS
when the dimensionality of the materials is reduced. These predictions have been a great
insight to develop various new routes such as nanostructuring to improve the power factor.
We use this strategy to form a novel van der Waals heterostructure (HS) of BiI3 and ZrS2

monolayers in Chapter 4 of this thesis.

1.5 Thesis outline

The rest of the thesis is arranged as follows.

Chapter 2 includes a description of density functional theory (DFT) used to calculate
the electronic structure of the materials. Additionally, it has a brief description of the
semiclassical Boltzmann transport theory (BTT) that is used to calculate the transport co-
efficients.

Further, this thesis is partitioned into two parts.

Part 1
In this part we use conventional computational methods to study the effect of structural
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modifications on transport properties of bulk and layered materials.

Cu based chalcogenides are emerging to be promising thermoelectric materials. To iden-
tify resonant dopants to enhance Seebeck coefficient and thereby ZT of α-BaCu2Se2, we
have studied the effect of doping, with Boron group of elements, on the electronic and
transport properties of α-BaCu2Se2. The results of our study are presented in Chapter 3.

In Chapter 4 we present the study of electronic and transport properties of a heterostruc-
ture of BiI3 and ZrS2 monolayers. Subtle modifications are observed in the electronic
band structure of the heterostructure compared to individual layers that also affect trans-
port properties. We have calculated the relaxation time of charge carriers in the parent
compound and the heterostructure based on deformation potential theory. These are fur-
ther used to transport coefficients.

Part 2
In this part we critically examine the validation of some approximations that are typically
made in the calculations. It is important to compute carrier relaxation time to predict the
transport properties of novel materials. Usually, this is computed using deformation po-
tential theory where only coupling of electrons/holes and acoustic phonons are considered.

In Chapter 5, we investigate the effect of electron-phonon interactions on the electronic
and thermoelectric properties of ZrS2 and BiI3 monolayers. The relaxation time of charge
carriers is computed for these materials incorporating the contributions of the optical
modes. Further relaxation time is also computed based on deformation potential theory.
Comparison between the two is very insightful from the perspective of computational ma-
terial design.
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Chapter 2

Theoretical methods

The physical properties of a material can be, in principle, calculated from first principles
by solving the many-body Schrödinger equation (SE). However, it is not possible to do
so practically thereby necessitating the usage of some approximations. In this chapter
we briefly describe the challenges to solve the many-body SE and describe one of the
methodologies, namely density functional theory, developed to overcome the challenges
to solve the SE. We have also briefly discussed the theory of electron-phonon interactions
in solids from first principles. Further, this thesis also includes the computation of trans-
port properties, we have briefly described the semiclassical Boltzmann transport theory.

2.1 Many body Schrödinger equation

Matter is composed of N nuclei (positively charged) and n electrons (negatively charged)
interacting with each other via Coulomb forces. Time-independent Schrödinger equation
(TISE) for this system is given by

(2.1)ĤtotΨ(R, r) = EtotΨ(R, r)

where Ψ(R, r) denotes many-body wavefunction which depends on the position of all the
nuclei {R} and electrons {r} constituting the system. Hamiltonian (Ĥtot) of the system is
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given by

(2.2)

Ĥtot = −
N∑
I=1

h̄2

2MI

∇2
I −

n∑
i=1

h̄2

2me

∇2
i +

e2

2

1

4πε0

N∑
I=1

N∑
J=1,
I 6=J

zIzJ
|RI − RJ |

+
e2

2

1

4πε0

n∑
i=1

n∑
j=1,
i 6=j

1

|ri − rj|
− e2

4πε0

N∑
I=1

n∑
i=1

zI
|RI − ri|

,

where zI and e denote the charges of Ith nuclei and an electron, respectively. MI and
me indicate masses of Ith nuclei and electron respectively. In Eq. (2.2), first two terms
refer to the kinetic energy (K.E.) of the nuclei and electrons respectively. The 3rd, 4th
and 5th terms in Eq. (2.2) indicate nuclei-nuclei, electron-electron and nuclei-electron
Coulomb interactions, respectively. In principle, all the information about the system can
be obtained by solving the TISE. However, main difficulty to solve Eq. (2.1) is posed by
the non-local potential terms in Eq. (2.2). Hence some approximations must be invoked
to solve it.

2.2 Adiabatic or Born-Oppenheimer approximation

Within this approximation, it is assumed that decoupling of electronic and nuclear motion
is possible. The mass of a nucleus is enormously greater than an electron ( mproton

melectron
≈

1836). Thus the motion of nuclei is very slow compared to electrons. In other words,
timescale associated with the motion of electrons is quite small relative to the nuclei
(tnuclei >> telectrons). One can safely assume that the electrons will instantly respond
to the motion of nuclei with hardly any change in their the electronic states. It is the Born-
Oppenheimer (BO) approximation. As a result Ψ(R, r) can be decoupled as a product of
nuclear wave function (ΦN (R)) and electronic wavefunction (ψ (R; r)), where ψ (R; r)
has only parametric dependence on the nuclear coordinates. Mathematically,

(2.3)Ψ(R, r) =
∑
n

Φn(R)ψn(R; r)
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Hence for a given value of {R} we write the electronic Schrödinger equation (SE) using
Eq. (2.3) as follows:

(2.4)

(
− h̄2

2m

n∑
i =1

∇2
i +

e2

2

1

4πε0

N∑
I=1

N∑
J=1,
I 6=J

zIzJ
|RI − RJ |

+
e2

2

1

4πε0

n∑
i=1

n∑
j=1,
i 6=j

1

|ri − rj|

− e2

4πε0

N∑
I=1

n∑
i=1

zI
|RI − ri|

)
ψn(R; r) = Eele

n (R)ψn(R; r)

where the motion of nuclei can be ignored. However, Eq. (2.4) still has the non-local
electron-electron (two-body) interaction term. Hence analytic solution of electronic SE is
not possible and some more approximations need to be invoked.

2.3 Density functional theory

Hohenberg and Kohn (HK) proposed to develop density functional theory (DFT) as an
exact theory of many-body systems, which forms the basis of present day electronic struc-
ture theory. They came up with an alternative approach to use charge density (n(r)) as the
basic variable rather than the many-body wavefunction. Since n(r) can greatly diminish
the complexity of the many-body problem by shrinking the degree of freedom from 3n
variables to 3 (n being the number of electrons). DFT is applicable to any system of n
interacting electrons moving in an external potential (Vext(r)) due to clamped nuclei. [73]
The Hamiltonian for a system of interacting electrons is given by (using Hartree atomic
units; h̄ = m = e = 4πε0 = 1),

(2.5)Ĥint = −
∑
i

∇2
i

2
+
∑
i

Vext(ri) +
1

2

∑
i 6=j

1

|ri − rj|
.

Following two theorems pave the way for DFT [74]

2.3.1 Hohenberg-Kohn theorems

The following theorems are given by P. Hohenberg and W. Kohn [73, 75].

Theorem 1: For any system of interacting particles in an external potential Vext(r), the
potential Vext(r) is determined uniquely, except for a constant, by the ground state particle
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density n0(r).

Theorem 2: A universal functional for the energy E[n] in terms of the density n(r) can
be defined, valid for any external potential Vext(r). For any particular Vext(r), the exact
ground state energy of the system is the global minimum value of this functional, and the
density n(r) that minimizes the functional is the exact ground state density n0(r).

The first theorem establishes that two distinct external potentials can not give rise to the
indistinguishable ground state (GS) charge density (n0(r)). Specifically, Vext is known
uniquely through n0(r).

n0(r) −→ Vext(r). (2.6)

The second theorem tells that E[n] can be minimized with respect to (w.r.t) variations in
n(r). The value of density that minimizes E[n] gives the GS density n0(r) and the corre-
sponding value of energy is the GS energy (Emin). In summary, if n0(r) is specified, all
properties can be uniquely characterized.

If Vext(r) is given, then HK energy functional (EHK) is written as:

EHK [n] = FHK [n] +

∫
Vext(r)n(r)dr, (2.7)

where FHK [n], being the sum of the K.E. of the electrons (T [n]) and the electron-electron
interaction (Eee[n]) terms, can be written as:

FHK [n] = T [n] + Eee[n]. (2.8)

If FHK [n] is given, it implies the information of the GS properties is known for the sys-
tem. HK theorem predicts existence of a universal functional form of FHK [n] that could
give all the GS properties of the system. However, it does not give a recipe to calculate it.
In the next section, we have briefly discussed a practical way to find FHK [n] suggested by
Kohn and Sham.
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2.3.2 Kohn and Sham Approach

By mid 1960, Kohn and Sham addressed the problem to tackle unknown functional (FHK [n])
[76]. They replaced the difficult many-body system with interacting electrons by a ficti-
tious system of independent (non-interacting) electrons for the sake of numerical treat-
ment. Kohn and Sham’s ansatz is as follows [73]:

• The GS density of the fictitious system is same as that of actual system.

• The calculations can be performed on a fictitious independent-particle systems de-
fined by Hamiltonian (Ĥs) for single electron having the K.E. term and subjected to
an effective local potential (Veff(r)). (Here we adopt Hartree atomic units h̄ = m =
e = 4πε0 = 1).

Ĥs = −∇
2

2
+ Veff(r) (2.9)

Using above two ansatz, the KS suggested to rewrite expression of FHK [n] functional in
the following manner:

FKS[n] = Ts[n] + EH [n] + EXC [n], (2.10)

where Ts[n] denotes the ground state K.E. of non-interacting electrons of the supplemen-
tary system and is written as:

Ts[n] =
1

2

∑
i

∫
| ∇ψi(r) |2 dr. (2.11)

Notice that, this is not equal to the K.E. of interacting system (T [n]). EH [n] denotes the
Hartree energy given by

EH [n] =
1

2

∫ ∫
n(r)n(r′

)

| r− r′ |
drdr′

, (2.12)

So, EKS[n] can be expressed as:

EKS[n] = FKS[n] +

∫
n(r)Vext(r)dr. (2.13)

KS equations (2.17) for a system of independent electrons moving in local effective po-
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tential (VKS(r)) can be derived by the minimizing EKS[n]. This property is known as
“Hohenberg-Kohn variational principle” and can be written as follows:

δEKS[n]

δn

∣∣∣∣
n0

= 0 (2.14)

The functional form of effective KS potential for a system of non-interacting electrons is
the following:

VKS(r) = Vext(r) +

∫
n(r′

)

| r− r′ |
dr′

+ VXC(r), (2.15)

where the 2nd term in the R.H.S is the Hartree potential (VH) and VXC in the 3rd term de-
notes exchange-correlation potential. The exchange-correlation potential can be expressed
as the functional derivative of EXC w.r.t n(r).

VXC(r) ≡ δEXC
δn(r)

, (2.16)

Thus, if we know VKS (local effective potential), we can solve the following set of single
electron Kohn-Sham equations and obtain information of GS of the system of interacting
electrons: (

−1

2
∇2 + VKS(r)

)
ψi(r) = εiψi(r). (2.17)

where, ψi(r) denotes Kohn-Sham orbitals which are related to n(r) as follows:

n(r) =
n∑
i=1

| ψi(r) |2 . (2.18)

All the GS properties of the system can be determined by solving the set of n KS equations
(2.17). The computational strategy to solve (2.17) self consistently is demonstrated in Fig.
2.1.

2.3.3 Exchange and correlation

In previous section, we found that the problem of finding F [n] for a system of interact-
ing particles was boiled down to a system of non-interacting particles by introducing the
exchange-correlation energy EXC , which is a sum of exchange (EX) and correlation (EC)
energies. The exchange interaction essentially originates from Pauli’s exclusion principle,
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First guess
n(r)

Compute Veff

VKS(r) = Vext(r) + VH [n] + Vxc[n]

Find solution of KS equations(
− h̄2

2me
∇2
i + VKS

)
ψi = εiψi

Compute the new electron density
n(r) =

∑
i | ψi(r) |2→ Etot[n(r)] = ...

Is it (n(r)) self
consistent?

Compute various physical properties of system

Yes
No

Figure 2.1: KS equations can be solved as illustrated by self consistent cycle.
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which demands a spatial separation between the electrons having the same spin entering
in the same quantum state and thus reducing the Coulomb repulsion. This reduction in
energy is known as the exchange energy. The correlation effect comes into play when two
electrons with opposite spins are also separated spatially. It further reduces the Coulomb
repulsion but at the price of increase in K.E. of electrons. This reduction in energy is
called correlation energy. We can incorporate such many-body effects of interacting elec-
trons into the calculations via the exchange-correlation functional. The expression of
exchange-correlation energy is given by,

EXC [n] =

∫
n(r)εXC([n](r))dr, (2.19)

where, εXC([n](r)) denotes the energy density at r which depends on n(r) in the vicinity
of point r. So far, the functional form of εXC(n(r)) has not been discovered and thus
approximated. The most commonly used approximations are discussed as follows.

2.3.3.1 Local density approximation (LDA)

In LDA, the exchange-correlation energy functional is constructed using the local electron
density at point r in space. The exchange-correction energy is written as:

ELDA
XC =

∫
n(r)εhomXC (n(r))d3r (2.20)

where εhomxc (n(r)) denotes exchange-correlation energy per particle for a homogeneous
electron gas with density n(r) at a point r. LDA provides exact functional form of
exchange-correlation energy for homogeneous electron gas and thus it performs splen-
didly for systems whose electron density vary slowly. Hence properties of weakly corre-
lated systems can be predicted with reasonable accuracy using LDA.

2.3.3.2 Generalized gradient approximation (GGA)

In GGA, the inhomogeneity of electronic density of system is plugged through the magni-
tude of gradient of the electron density ( | ∇n(r) |) in company with local electron density
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and the EGGA
XC is given by:

EGGA
XC =

∫
n(r)εXC(n(r), | ∇n(r) |)d3r (2.21)

Various approximations of GGA functional are available, for e.g., Becke (B88) [77],
Perdew and Wang (PW91) [78] etc. In this thesis, we employ GGA functional param-
eterized by Perdew, Burke and Ernzerhof (PBE) as it provides better description of many-
body electron system than LDA [79].

2.4 Periodic Supercells

So far it was shown that many-body problem can be replaced by single electron SE equa-
tion for non-interacting particles subjected to VKS . However, two intimidating challenges
are lurking here: one is to solve KS equations for infinite number of independent electrons
moving in Vext due to infinite number of nuclei and the second challenge is how to use
intractably large basis sets while expanding each of the wavefunction. In the following
section we describe how periodic nature of crystals can be taken into account to resolve
both the difficulties.

2.4.1 Bloch’s theorem

It follows from Bloch’s theorem that electronic wave function can be represented as.

ψi(r) = eik.rui(r) (2.22)

where ui(r) is the periodic function (cell-periodic part) that has same periodicity as that
of the crystal. This periodic function is expanded with a discrete basis set of plane waves.

ui(r) =
1

V

∑
G

Ci,G eir.G (2.23)

where G indicates the reciprocal lattice vector (with G.T = 2πp, where T is the translation
lattice vector in real space and p is an integer.) Using above two equation, we can expand

— [ 21 ] —



ψi as the sum of plane waves as shown below.

ψi(r) =
1

V

∑
G

Ci,k+G ei(k+G).r (2.24)

First challenge is tackled by utilizing periodic property of Bloch functions and thus wave-
functions contained within a primitive unit cell are determined instead of finding wave-
functions for infinite number of electrons.

Moreover, we infer from above equation that infinite number of plane waves are required
to expand the Bloch wavefunction. Customarily, the contribution of plane waves with
small K.E. ( h̄

2

2m
| k+G |2) is relevant. So we neglect the chunk of plane waves with large

values of G and truncate the basis set at a certain cutoff energy (Ecut), which is given by:

h̄2 | k+G |2

2m
≤ h̄2G2

cut

2m
= Ecut (2.25)

Then the infinite sum becomes

ψi(r) =
1

V

∑
|k+G|≤Gcut

Ci,k+G ei(k+G).r (2.26)

Furthermore the value of Ecut can be chosen by examining the convergence of the total
energy. This approach helps us to overcome the second difficulty.

2.4.2 k-point sampling

To compute physical quantities like total energy one needs to perform numerical integra-
tions using a set of infinite number of k-points to sample the irreducible Brillouin zone
(BZ). In practice we can only perform calculations with a few k-points by selecting spe-
cial k-points in BZ. In this thesis, we followed a method given by Monkhorst et al. [80] to
generate of a finite grid of k-points. Using this method, one can generate k-points spaced
uniformly in the BZ.

kj = x1jb1 + x2jb2 + x3jb3 (2.27)

where bi denotes the reciprocal lattice vector, and

xij =
(2j − q − 1)

2q
, j = 1, 2, 3, ..., q (2.28)
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where q is an integer which determines the size of set of k-points.

2.4.3 Pseudopotentials

The properties of the crystals are primarily governed by the valence electrons of con-
stituent atoms. The core electrons do not take part in bond formation, while valence
electrons actively do so. Thus the computational cost can be reduced by neglecting the
core electrons. In pseudopotential approximation, the actual potential felt by the valence
electrons can be replaced with a weak potential screened by the core electrons. So one
replaces Vext in KS equations by the pseudopotential (Vpseudo). Additionally, the rapidly
oscillating true wavefunction in the core region requires large number of plane waves
to expand it. To rectify this problem true wave function is replaced with ψpseudo which
behaves smoothly in the core region (Fig. 2.2) [1]. From the perspective of the computa-
tional cost, this approximation reduces the size of the basis set since the valence electron
wavefunctions do not have the nodes and sharp peaks and few Fourier modes are needed
to represent this wavefunction.

Two types of pseudopotentials are used in plane wave electronic structure calculations:
norm-conserving and ultrasoft pseudopotentials. Two condition are obeyed in norm-
conserving pseudopotentials: (1) the valence electron and pseudo wavefunction should
coincide beyond a cutoff radius (labeled as rc) and (2) norm of the pseudo wavefunction
should match with that of the valence wavefunction below rc [81]. In the ultrasoft pseu-
dopotentials, the norm-conserving condition is relaxed which reduces the size of basis
set [82].

2.5 Electron-phonon interactions

Frenkel coined the term “phonon” in 1932 to replace the “elastic waves.” The interac-
tion of electrons with the elastic waves of the lattice is termed electron-phonon interac-
tions (EPIs) [83]. Electron-phonon interactions lead to many physical phenomena like
superconductivity, and temperature-dependence of electrical conductivity of materials,
etc. This section briefly describes the history of electron-phonon interactions and then
discusses how to compute it from the first principles. Furthermore, we will discuss the
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Vpseudo

ψV

ψpseudo

Z/r

rc

Figure 2.2: Schematic demonstration of all-electron (solid red lines) and pseudo-electron potential
(dashed red lines) and corresponding wavefunctions (green curves). All-electron and pseudopo-
tential are coincide beyond cut-off radius (rc). (Reprinted with permission from ref. [1]. Copyright
c©1992, American Physical Society)

electron self-energies useful for computing the carriers’ relaxation time and band struc-
ture renormalization.

2.5.1 History of the electron-phonon interactions

The Hamiltonian of a coupled electron-phonon system is given by [84]

Ĥ = Ĥe + Ĥp + Ĥep + Ĥ(2)
ep (2.29)

where
Ĥe =

∑
nk

εnkĉ
†
nkĉnk (2.30)

Ĥp =
∑

qν

h̄ωqν(â
†
qν âqν +

1

2
) (2.31)

Ĥep = N−1/2
p

∑
k, q
mnν

gmnν(k, q)ĉ†mk+qĉnk(âqν + â†-qν) (2.32)

Ĥ(2)
ep = N−1

p

∑
k, q, q′

mnνν′

gDW
mnνν′(k, q, q′)ĉ†

mk+q+q′ ĉnk(âqν + â†-qν)(âq′ν′ + â†-q′ν′) (2.33)

The first and second terms, in Eqn. 2.29, describe the electron and phonon subsystems
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expressed within the formalism of the second quantization. The third and fourth terms
represent the electron-phonon interactions to the first and second order in atomic dis-
placement, respectively. Here εnk represents the electron eigenvalue with wavevector k
and band n. ωqν indicates the frequency of a phonon with wavevector q and mode ν.
ĉ†nk and ĉnk (â†qν and âqν) denote the fermionic (bosonic) creation and annihilation oper-
ators, respectively. Here Np represents the number of unit cells in a periodic supercell.
gmnν(k, q) and gDW

mnνν′(k, q, q′) quantify the strength of electron-phonon interactions.

The entire history of EPIs revolves around determining the parameters entering the Eqn.
2.29. The subsequent sections discuss the early and present approaches to estimate these
parameters.

2.5.1.1 Metals

In early approaches, the free electron gas model (εn,k = h̄2k2

2me
− EF , where EF is Fermi

energy) described the electronic excitation in Eqn 2.29, while the Debye model (ωqν =

Vs|q|, Vs indicates the speed of sound inside the medium) described the lattice vibrations
as acoustic waves. These approximations worked reasonably well for elemental, noble
and monovalent alkali metals. However, it was more difficult to specify reasonable ap-
proximations to estimate the EP matrix elements.
In 1929, Bloch provided the first expression for the EP matrix element, which represents
the scattering of the electronic state |k〉 to |k+q〉 through an acoustic phonon (with fre-
quency ωqν) and defined by [85]

gmn,ν(k, q) = −i

√
h̄

2NpMκωqν
q.eκν(q)Vκ(q) (2.34)

where Mκ denotes the mass of the κth nucleus, and polarization vector of the acoustic
wave is indicated by eκν(q) associated with the wavevector q and mode ν. In 1929,
Bloch replaced Vκ(q) with a unit-cell averaged effective potential V0 experienced by the
electrons inside the medium [85]. For a continuously deformable medium, Bloch derived
an expression for V0 = h̄2

16mea20
(where a0 is Bohr radius), which was useful to understand

EPIs in monovalent metals.
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2.5.1.2 Semiconductors

In 1950, Bardeen and Shockley developed a “deformation-potential” theory to tackle EPIs
in non-polar semiconductors [86]. Their theory assumes that local deformations caused by
the long-wavelength acoustic waves are identical to those in a homogeneously deformed
crystal. Since the charge carriers are generally trapped within the narrow energy window
near the band extrema in the semiconductors; therefore, it was anticipated that the ap-
preciable contribution to EPIs might arise due to the long-wavelength acoustic phonons
(q→0). Furthermore, a system’s elastic constant is associated with acoustic phonons.

Using the effective mass approximation, Bardeen and Shockley established that the effec-
tive potential (V0) in Eqn. 2.34 can be described by the deformation potential constant
(Edp) of the system and is given by

V0 −→ Edp =
∂εn,k
∂δ

(2.35)

Here δ is the strain on the system and εn,k denotes the valence (conduction) band edge
energy. Further details can be found in the original work by Bardeen and Shockley [86].

2.5.1.3 Ionic materials

Polar materials have played a vital role in developing the theory of EPIs. In polar mate-
rials, the vibration pattern of the atoms induces an oscillating electric field that results in
additional scattering to the charge carriers. Thus EPIs are usually strong in ionic materials.

In 1950, Frohlich et al. took into account the screening effects occurring due to dielec-
tric polarization of the insulating medium and provided a model to estimate the effective
potential (V0) inside isotropic ionic systems, defined by

V0 −→
−1

|q2|

√[
e2ω2

qνMκ

ε0V

(
1

ε∞
− 1

ε0

)]
(2.36)

Here ε0 is the permittivity of the free space. ε0 and ε∞ indicate the static and high-
frequency relative permittivities, respectively. V denotes the unit cell volume. For ε0

> ε∞, EP matrix elements can be computed using 2.34 and 2.36. Notice that EP matrix
elements (gmn,ν(k, q)) diverge as 1

|q| at long-wavelengths and give strong EPIs in the polar
materials.
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2.5.1.4 First calculations of EPIs from first principles

Estimating EPIs became possible after the significant development of ab initio DFT meth-
ods by 1981. The first predictive EPIs calculations were performed by Dacorogna et al.

using “frozen-phonon” methods in 1985 [87]. They performed first principle calcula-
tions to compute Aluminum’s electronic and phonon band dispersions. Moreover, they
performed self consistent field calculations to compute electron-phonon matrix elements
(gmnν(k, q)) and the electron-phonon coupling strength (λqν) throughout the Brillouin
zone for a few phonon bands. The average EP coupling strength was found to have a good
agreement with the experiments.

2.5.2 Electron-phonon interactions in DFT

This section will discuss calculations of EPIs from DFT. First, we set up the formalism to
obtain phonon frequencies and EP coupling Hamiltonian. Then we discuss the method to
compute EP matrix elements based on density functional perturbation theory.

2.5.2.1 Standard formalism of lattice vibrations

Let us consider M nuclei inside a unit cell. The κth nucleus’s cartesian coordinates and
position vector are denoted by uκα and uκ. Here we apply Born-von Kármán (BvK)
boundary conditions to represent an infinite solid. The vectors Rp (with p = 1, ..., Np)
identify Np unit cells in a periodic supercell. Thus position of κth nucleus inside pth unit
cell is the sum of Rp and the position vector of the nucleus within the unit cell.

uκp = Rp + uκ (2.37)

Within the BO approximation, the total potential energy of the crystal can be obtained
from a standard DFT code implemented to handle periodic systems. Here U ({uκ}) labels
the total energy of the system and {uκ} denotes the set of all nuclei.

If BO approximation is relaxed and assumed that the nuclei vibrate about their mean
positions ({u0

κp}) with tiny amplitudes, then, within the harmonic approximation, the
total energy of the system can be expressed as follows:

U = U0 +
1

2

∑
καp
κ′α′p′

Φκαp,κ′α′p′∆uκαp∆uκ′α′p′ (2.38)
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where U0 indicates the total energy of the system at equilibrium, and Φκαp,κ′α′p′ indicates
interatomic force constants (IFCs) and is given by

Φκαp,κ′α′p′ =
∂2U

∂uκαp∂uκ′α′p′
(2.39)

The dynamical matrix (DM) can be obtained by performing the Fourier transform of IFCs
as follows [88]:

DDM
κα,κ′α′(q) =

1√
(MκMκ′)

∑
p

Φκα0,κ′α′pexp(iq.Rp) (2.40)

where Mκ is the mass of the κth nucleus and q denotes a set of phonon wavevectors form-
ing a uniform grid of Np points to sample the one unit of reciprocal space.

The dynamical matrix is hermitian and yields real eigenvalues (ω2
qν).∑

κ′α′

DDM
κα,κ′α′(q)eκ′α′,ν(q) = ω2

qνeκα,ν(q) (2.41)

where ν varies from 1 to 3M. ωqν denotes the frequency of the phonon mode ν with
wavevector q and eκα,ν(q) indicates the normal mode of vibration corresponding to mode
ν. We can use the frozen-phonon method or density functional perturbation theory (DFPT)
to calculate the dynamical matrix [89].

Using Eqn. 2.38, one can write the Hamiltonian for nuclei being treated as quantum
particles as follows:

Ĥp = −
∑
καp

h̄2

2Mκ

∂2

∂u2
καp

+
1

2

∑
καp
κ′α′p′

Φκαp,κ′α′p′∆uκαp∆uκ′α′p′ (2.42)

Here we have dropped the constant term the U0. The above equation holds good under the
following approximations:

• Harmonic approximation which neglects the higher-order terms in the Taylor expan-
sion of U. These higher-order terms are called anharmonic terms and are significant
at higher temperatures [90].

• BO approximation while computing IFCs.
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The above Hamiltonian can be expressed in the framework of second quantization as
follows [85]:

Ĥp =
∑

qν

h̄ωqν(â
†
qν âqν +

1

2
) (2.43)

2.5.3 EP coupling Hamiltonian

This section will address how the rest of the terms are calculated entering in Eqn. 2.29.

2.5.3.1 KS Hamiltonian

Within the formalism of second quantization, we can express the KS Hamiltonian as fol-
lows:

Ĥe =
∑
nk,n′k′

〈ψnk| ĤKS |ψn′k′〉 ĉ†nkĉn′k′ =
∑
nk

εnkĉ
†
nkĉnk (2.44)

2.5.3.2 EP coupling Hamiltonian to first and second order in DFT

In the following sections, we briefly discuss the formalism to obtain electron-phonon ma-
trix elements from the first principles. More excellent details on the same are available
elsewhere [85]. The first (gmnν(k, q)) and second-order (gDW

mnνν′(k, q, q′)) EP matrix ele-
ments can be obtained by expanding VKS in terms of the first and second derivates with
respect to atomic displacements about their mean positions.

VKS({uκp}) = VKS({u0
καp}) +

∑
καp

∂VKS
∂uκαp

∆uκαp (2.45)

The above expression can be be rewritten as follows:

VKS({uκp}) = VKS({u0
καp}) +

1√
Np

∑
qν

∆qνVKS(âqν + â†-qν) (2.46)

using

∆uκαp =

(
M0

NpMκ

)1/2∑
qν

eiq.Rpeκα,ν(q)lqν(âqν + â†-qν) ; lqν =

√
h̄

2M0ωqν
(2.47)
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where M0 is taken to be the mass of the proton and lqν is called “zero-point” amplitude.

∆qνVKS = eiq.r∆qνvKS ; ∆qνvKS = lqν
∑
κα

√
M0

Mκ

eκα,ν(q)∂κα,qvKS (2.48)

∂κα,qvKS =
∑
p

eiq.(r-Rp)∂VKS
∂uκα

∣∣∣∣
r-Rp

(2.49)

where ∆qνvKS and ∂κα,qvKS are named as lattice-period functions.
The above expression can be related to first order EPIs within the formalism of second
quantization as follows:

Ĥep =
∑
nk,n′k′

〈ψnk|VKS({uκp})− VKS({u0
καp}) |ψn′k′〉 ĉ†nkĉn′k′ (2.50)

Using Eqn. 2.48, 2.49 and ψnk(r) = N
−1/2
p unk(r)eik.r, one can write as follows:

Ĥep = N−1/2
p

∑
k, q
mnν

gmnν(k, q)ĉ†mk+qĉnk(âqν + â†-qν) (2.51)

where the EP matrix element within the unit cell is given by

gmnν(k, q) = 〈umk+q|∆qνvKS |unk〉 (2.52)

If we expand the VKS up to second derivate w.r.t to atomic displacements and follow a
similar method, then we obtain the second order EP coupling Hamiltonian as follows:

Ĥ(2)
ep = N−1

p

∑
k, q, q’
mnνν′

gDW
mnνν′(k, q, q′)ĉ†mk+q+q′ ĉnk(âqν + â†-qν)(âq′ν′ + â†-q′ν′) (2.53)

where gDW
mnνν′(k, q, q′) = 1

2
〈umk+q+q′ |∆qν∆q′ν′vKS |unk〉 is computed within the unit cell.

2.5.3.3 Calculation of EP matrix elements

The EP matrix elements (gmnν(k, q)) are obtained using the frozen-phonon method, DFPT
and the dielectric approach. This section will succinctly discuss the first two approaches
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to obtaining EP matrix elements. The dielectric approach is discussed elsewhere [85].

Within the frozen-phonon method, one can evaluate the derivative of potential using the
finite difference method as follows:

∂VKS
∂uκαp

∣∣∣∣
u0κp

'
VKS(r;u0

καp + d)− VKS(r;u0
καp − d)

2d
(2.54)

In the above expression, d is a tiny displacement of the κth nucleus of the pth unit cell along
the α-direction, which is of the order of zero-point amplitude (lqν) defined by Eqn. 2.47.
This method is widely used in the scientific community. However, this method requires
a big supercell to calculate the EP matrix elements corresponding to large-wavelength
phonons.

Baroni et al. have proposed a new approach to compute the scattering potential using
DFPT [89]. The advantage of their method is that it is computationally cheaper than the
frozen-phonon method since one does not require a supercell to compute scattering po-
tential (∆qνvKS).

Within the DFPT approach, the lattice-period scattering potential (∂κα,qvKS) is computed
by differentiating VKS using 2.49 and is given by

∂κα,qvKS = ∂κα,qvext + ∂κα,qvH + ∂κα,qvXC (2.55)

The variation of the above potentials are computed using Vext, VH and VXC and results are
expressed in Fourier transform as follows:

∂κα,qvext(G) = −i(q+G)αVκ(q+G)e−i(q+G).uκ (2.56)

∂κα,qvH(G) = ΩvC(q+G)∂κα,qn(G) ; where vC(q) =
1

Ω

e2

4πε0

∫
dr
e−iq.r

|r|
(2.57)

∂κα,qvXC(G) = Ω
∑

G′

fXC(q+G,q+G′)∂κα,qn(G′) (2.58)
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where fXC(r, r′) is the second-order functional derivative of EXC with n(r), given by

fXC(r, r′) =
δ2EXC [n]

δn(r)δn(r′)

∣∣∣∣
n(r;{u0καp})

(2.59)

The above equations 2.57 and 2.58 involve the variation of the charge density rendered by
perturbation potential. The charge density variation is computed by finding the first-order
correction to KS wavefunctions using perturbation theory. More details on this can be
found elsewhere [85, 89].

2.6 Electron self-energy

Inside a crystal, the electron’s energy is influenced by the many-body interactions oc-
curring due to the other electrons and phonons. Thus electron self-energy arising due to
EPIs can be described with infinite Feynman diagrams. Notably, Migdal has shown that
only the lowest order Feynman diagram is sufficient to consider while calculating elec-
tron self-energy [91]. Within the Migdal approximation, Feynman diagram of electron
self-energy arising due to EPIs is shown in Fig. 2.3. Following the Green’s function ap-
proach to many-body interactions so-called “Field-theoretic approach,” one can arrive at
the following expression for electron-self energy within the Migdal approximation:

EP∑
nk

=
∑
qν,m

wq|gmn,ν(k,q)|2
[

nqν + 1− fmk+q

εnk − εmk+q − h̄ωqν − iδ
+

nqν + fmk+q

εnk − εmk+q + h̄ωqν − iδ

]
(2.60)

where gmn,ν(k, q) = ( h̄
2m0ωqν )1/2 < ψmk+q|∂qνVKS|ψnk >. wq is the weight associated

with phonon wavevector q in the Brillouin zone, ∂qνVKS is the derivative of self consis-
tent potential associated with a phonon of wavevector q, branch index ν and frequency
ωqν . The temperature dependence of electron self-energy originates from the Fermi-Dirac
(fmk+q) and Bose-Einstein occupations (nqν), while EP matrix elements are calculated at
0K using DFPT. In 2.60, the first and second term in square bracket refer to phonon emis-
sion and absorption, respectively.

Notice that electron self-energy is computed for each band and k point, thus providing
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nk nk

gnm,ν

Figure 2.3: Feynman diagram for electron self-energy arising due to EPIs within Migdal approxi-
mation. This diagram is made up of two diagrams representing the phonon emission (left half) and
absorption (right half).

vast information on the microscopic level. Therefore, electron self-energy convergence
usually requires an ultra-dense q-grid containing 104−106 q-points to sum over q in equa-
tion 2.60. However, the direct calculation of EP matrix elements is impossible on such
a dense grid using DFPT due to intractable computational cost. Thus one relies on an
interpolation scheme using maximally localized Wannier functions to achieve so. Further
computational details can be found elsewhere [85, 92].

Temperature-dependent band structure can be obtained by adding the real part of electron
self-energy to the KS eigenvalues as follows:

En,k = εn,k + Re
EP∑
nk

(2.61)

The relaxation time of the charge carriers in each electronic state nk can be obtained from
the imaginary part of self-energy as follows:

τn,k =
h̄

2

(
Im
∑EP

nk

) (2.62)

The electronic transport properties of a material, like electrical conductivity, electronic
thermal conductivity and mobility, etc., depend on the relaxation time τn,k, which depends
on the strength of EPIs in the system. If one can not capture the scattering contribution due
to various phonon modes, the wrong estimate of τn,k is possible, and it might overestimate
the transport properties. Thus the determination of τn,k to a reasonable accuracy is crucial
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for in silico search of new thermoelectric materials. The same is true at elevated temper-
atures. Further, as discussed in the following section, one can incorporate the computed
relaxation time into the transport coefficients to get their absolute values.

2.7 Semiclassical Boltzmann Transport

In general, transport properties of a material can be understood in terms of the response
of carriers to external perturbations like external electric fields or temperature gradient,
etc. Boltzmann transport theory can be applied to understand transport properties and
calculate the transport coefficients. The electric current ji in the presence of electric fields
and temperature gradient can be expressed in terms of conductivity tensors as follows [93]:

ji = σijEj + νij∇jT + .... (2.63)

The conductivity tensor in terms of group velocity (v) and relaxation time (τ ) is written as

σαβ(i,k) = e2τi,kvα(i,k)vβ(i,k) (2.64)

where group velocity along α-direction can be computed from electronic band structure.

vα(i,k) =
1

h̄

∂εi,k
∂kα

(2.65)

τn,k depends on several factors like scattering by defects, disorders and electron-phonon
interactions, etc. Dependence of τn,k on scattering from phonons can be theoretically esti-
mated from electron-phonon coupling as described in the previous sections. One can also
assume that τi,k is independent of the electronic states and temperature and thus it can be
treated as a constant. This approximation is called constant relaxation time approximation
(CRTA). Further, we can write the conductivity tensor in terms of energy by projecting
the density of states with conductivity tensor as follows.

σαβ(ε) =
1

N

∑
i,k

σαβ(i,k)
δ(ε− εi,k)

dε
(2.66)

This is called transport distribution function. Transport coefficients can be obtained as a
function of chemical potential (µ) and temperature (T ) as below.
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σαβ(T ;µ) =
1

V

∫
σαβ(ε)

[
−∂f0(T, ε, µ)

∂ε

]
dε (2.67)

Sαβ(T ;µ) =
1

eTσαβ(T ;µ)

∫
σαβ(ε)(ε− µ)

[
−∂f0(T, ε, µ)

∂ε

]
dε (2.68)

καβ(T ;µ) =
1

e2TV

∫
σαβ(ε)(ε− µ)2

[
−∂f0(T, ε, µ)

∂ε

]
dε (2.69)

ναβ(T ;µ) =
1

eTV

∫
σαβ(ε)(ε− µ)

[
−∂f0(T, ε, µ)

∂ε

]
dε (2.70)

where f0 is the Fermi Dirac occupation, V indicates the volume of the unit cell. The
absolute values of transport coefficients can be obtained by incorporating τi,k calculated
explicitly by various methods like deformation potential theory, by computing imaginary
part of self-energies of carriers and through experiments, etc.
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Chapter 3

Identifying resonant dopants for BaCu2Se2

3.1 Introduction

We have discussed in Chapter 1 that ZT can be enhanced by increasing the power factor
(PF=α2σ) and reducing the thermal conductivity. In this chapter, we adopt a band struc-
ture engineering technique to increase the PF. Amongst the different ways to achieve band
engineering, we chose resonant doping approach to do so. Conventionally, in semiconduc-
tor physics, donor (acceptor) impurity provides free charge carriers through the discrete
donor (acceptor) levels formed in the band gap near the conduction (valence) bands. An
activation energy (ED) is required to excite these extra charge carriers to participate in
the transport phenomenon. In contrast, a resonant state is formed when a defect level lies
inside the conduction (valence) bands and overlaps with energies of conduction (valence)
electronic states. As a result, it acquires a width Γ and produces a distortion in density
of states (Fig. 1.2). Furthermore, its effects on electronic and transport properties are
discussed in detail in chapter 1.

A couple of experimental reports have demonstrated the potential of resonant doping in
practice. For instance, Heremans et al. have successfully achieved a ZT value of 1.5 due
to enhancement of thermopower with 2% of Tl doping in PbTe at 773 K. [72]. Moreover,
Zhang et al. have obtained a ZT value of 1.3 through Al doping in PbSe [94]. Interest-
ingly, an experimental and theoretical study by Pan et al. has investigated the impact of
resonant doping by Na and Tl co-doping in PbSe [95]. Their study reveals that resonant
dopants do not always enhance ZT since enhancement in S, sometimes, comes with sig-
nificant reduction of mobility [95]. Theoretically, Jiahong et al. have investigated that In
(Tl) doping in BiCuSeO could give rise to resonant states near the conduction (valence)
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bands [96].
In this project, we identify resonant dopants for copper chalcogenide (BaCu2Se2). Sim-
ilar to clathrates, this class of materials is given a huge amount of attention in thermo-
electrics because they contain rattling atoms residing in large cages formed by other types
of atoms. [97] Thus these materials usually possess ultralow lattice thermal conductivities
since the rattling atom disrupts the other vibrations as they travel through the medium.
Moreover, this class of materials is also cost-effective [98].

BaCu2Se2 exists in two phases, a stable orthorhombic phase and a metastable tetrago-
nal phase. Theoretically, it has been predicted that phase transition may occur from
orthorhombic to tetragonal phase at 950 K, but no such transition was seen experimen-
tally until 873 K. [99] We have investigated both the phases, but we discuss results only
for orthorhombic phase because results are not promising for the tetragonal system. Or-
thorhombic BaCu2Se2 exhibits high Seebeck coefficient (390 µV/K), moderate electri-
cal conductivity (5.5 S cm−1) and low lattice thermal conductivity (∼1.5 W/mK) at 300
K. [58] Zheng et al. have shown that potassium doping on Ba-site could give ZT value
of 0.3 at 800 K by increasing the electrical conductivity by one order of magnitude [100].
Moreover, it has been reported that Na doping on Ba-site improves the electrical conduc-
tivity by 2 orders of magnitude which give rise to a ZT ∼1 at 773 K, which reflects that
orthorhombic BaCu2Se2 is a prominent thermoelectric materials. [58]

In this project, we study the effect of doping group 13 elements, namely Al, Ga, In and
Tl, in BaCu2Se2. Here group 13 elements are chosen because it has been observed that
s and p-orbitals of dopants are more likely to hybridize with band structure of parent
system and produce localized states [71]. In particular, we are interested in identifying
dopants that give rise to resonant states. Some of these dopants have been reported to
improve ZT of some materials like GeTe and PbTe through resonant doping [72, 101].
Here we investigate effects of these dopants on the electronic and transport properties of
orthorhombic BaCu2Se2.

3.2 Computational details

We have performed first principles calculations based on density functional (DFT) the-
ory as implemented in the Quantum ESPRESSO software [102, 103]. Ultrasoft pseu-
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dopotentials have been used to describe the interactions between the valence electrons
and ionic cores [82]. For the different elements following valence electronic configura-
tion have been used: Ba-5s25p66s2, Cu-3d104s1, Se-4s24p4, Al-3s23p1, Ga-3d104s24p1,
In-4d105s25p1 and Tl-5d106s26p1. The exchange-correlation potential of electrons was
described by using the Perdew-Burke-Ernezerhof (PBE) form of generalized gradient
approximation (GGA) [79]. We have used energy cutoffs of 50 and 450 Ry for wave-
function and charge density, respectively. For conventional unit cell, Brillouin zone (BZ)
integrations are performed using a (12× 4× 4) Monkhorst-Pack [80] k-point grid.

We have constructed (2 × 1 × 1) supercell containing 40 atoms. We have sampled its
Brillouin zone using a (6 × 4 × 4) Monkhorst-Pack [80] k-point grid for the BZ inte-
grations. The boron group of elements was tried as dopants, namely, Aluminium (Al),
Gallium (Ga), Indium (In) and Thallium (Tl). We have substituted one of the host atoms
in supercell by a dopant atom resulting in doping concentrations of 12.5%, 6.25% and
6.25% when Ba, Cu and Se are substituted, respectively.

As DFT fails to describe accurate electronic picture of atoms with strongly correlated
electrons. Therefore, Hubbard U corrections (with U = 4 eV) is considered in our study
to account for the on-site Coulomb interaction in d orbitals of Cu-atoms [104]. The rea-
son for choosing U = 4 eV is discussed in Appendix A. We have also carried out spin-
polarized calculations to determine the ground state of doped systems and it is observed
that all dopants prefer a non-magnetic ground state.

Based on PBE+U band structure, transport properties are computed as function of electron
doping by solving the semiclassical Boltzmann transport equations using BoltzTraP code
[93]. A k-point grid of (36× 24× 24) is used for accurate Fourier interpolation of energy
eigenvalues and to ensure the convergence of transport properties with respect to k-points.

3.3 Results and discussion

3.3.1 Structure and electronic properties of BaCu2Se2

BaCu2Se2 is known to exist in orthorhombic (α) crystal structures with space group
Pnma. In this system, Ba is sevenfold coordinated with Se atoms in a trigonal prismatic
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geometry where the seventh Se atom caps one of rectangular faces. Each Ba is also sur-
rounded by nine Cu atoms arranged in a tricapped trigonal prismatic configuration (Fig.
3.1). We find that Ba-Se distances vary from 3.20 to 3.43 Å and Ba-Cu distances range
from 3.42 to 3.72 Å. There are two kinds of Cu atoms (Cu1 and Cu2) forming tetrahedra
(T1 and T2, respectively) with the anions. T2 (blue) is more distorted relative to T1 (red)
due to fact that Cu atom is closer to tetrahedral face. This also gives rise to two types
of Se atoms (Se1 and Se2) corresponding to T1 and T2 tetrahedra. In T1, Cu1-Se bond
distances are 2.59 (twice) and 2.54 (twice) Å, while the Cu2-Se bond distances are 2.50
(twice), 2.52 and 2.62 Å in T2.

(a) (b)
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Figure 3.1: (a) Crystal structure of orthorhombic BaCu2Se2. Brown, red, blue and green colored
spheres are used to represent Ba, Cu1, Cu2 and Se atoms, respectively. (b) Electronic band structure
(left) and the projected density of states (right) of BaCu2Se2 computed at the PBE+U level. The
valence band maximum (VBM) is set to zero.

We have obtained the lattice constants after geometry optimization of the conventional
unit cell (Table 3.1). We have provided the previous computational and experimental
reports on these systems for comparison. Our results are in agreement with previous
computational and experimental studies. [105, 106].
The electronic band structure for pristine BaCu2Se2 is shown in Fig. 3.1 (b) (left). It
has a direct band gap at Γ point of the BZ. We have obtained a band gap of ∼ 0.98
eV with PBE+U functionals. Further, Gau-PBE hybrid functionals have been used to
predict the band gap accurately [109]. The estimated band gap with PBE+U and Gau-
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Table 3.1: The optimized lattice constants for BaCu2Se2 are listed. For comparison, we have
mentioned the lattice constants from the previous theoretical and experimental reports.

BaCu2Se2 PBE+U Exp [105] Exp [106] (others, PBE) [107] (others, PBE) [99] (others, revPBE [108])

a (Å) 4.23 4.21 4.21 4.20 4.24 4.32
b (Å) 9.80 9.59 9.59 9.57 9.66 9.74
c (Å) 10.82 10.77 10.78 10.75 10.88 10.94

PBE functionals are listed in Table 3.2. For the sake of comparison, we have mentioned
the band gap reported by previous computational and experimental studies. We noticed
that band gap computed with Gau-PBE is in close agreement with experiments, while the
same estimated with HSE computed by Zuo et al. is underestimated by 0.42 eV compared
to experimental value [106, 108]. Fig. 3.1 (b) (right) shows the density of states (DOS)
projected onto the atomic orbitals of Ba, Cu and Se atoms. We find that the valence bands
are comprised of 3d-orbitals of Cu and 4p-orbitals of Se atoms, while 5d-orbitals of Ba
atoms have dominant contribution in the conduction bands.

Table 3.2: The band gaps for BaCu2Se2 computed with PBE+U and Gau-PBE functionals. The
values of band gap from previous theoretical and experimental reports are also given.

BaCu2Se2 PBE+U Gau-PBE Exp. [106] (others, PBE) [106] (others, HSE) [108] (others, revPBE+U) [108]

Eg (eV) 0.98 1.85 1.80 1.30 1.38 0.85

3.3.2 Effect of doping BaCu2Se2

Fig. 3.2 shows the formation energies (Ef ) of doped configurations computed using Eq.
(3.1).

Ef = Etot − Epristine − ED + EH (3.1)

where D stands for dopant atoms (Al, Ga, In, Tl) and H stands for the available lattice
sites i.e. (Ba, Cu and Se). Etot and Epristine are the DFT total energies of doped and
pristine system, respectively. ED and EH are the DFT energies of one dopant atom and
one host atom in its respective bulk phase. We notice that all the elements prefer Cu-site
as the formation energies are lowest in these cases (Fig. 3.2) with comparable values of
the formation energies for doping on Cu1 and Cu2-site. The reason can be attributed to
comparable sizes of atomic radii of the dopants to that of Cu atoms. Hence both the Cu-
sites are considered for further investigations.
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The optimized lattice parameters of the doped configurations with the lowest formation
energies are mentioned in Table 3.3. The changes in bond distances are mentioned in
Appendix A.
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Figure 3.2: The formation energies are computed for boron group of elements doped on Cu, Se
and Ba lattice sites.

Table 3.3: The optimized lattice constants for pristine and doped configurations with (2× 1× 1)
supercell.

Cu1-site
BaCu2Se2 Parent Al Ga In Tl

a (Å) 8.46 8.45 8.47 8.51 8.53
b (Å) 9.79 9.75 9.79 9.81 9.84
c (Å) 10.82 11.05 11.00 11.10 11.10

Cu2-site
Parent Al Ga In Tl

a (Å) 8.46 8.41 8.46 8.54 8.55
b (Å) 9.79 9.82 9.87 9.90 9.92
c (Å) 10.82 11.05 10.96 10.89 10.90

Electronic properties:
In the doped configurations (including both Cu1 and Cu2-sites), we observe three distinct
peaks arising due to electronic states of dopant atoms (Fig. 3.3 (a-d) and Fig. 3.4 (a-d)).
Two of them are occupied states and contribute primarily from s-orbital of impurity atom.
The first occupied state is deep defect state which lies in the deep valence bands around∼
-6 eV and the second one is found in the gap. The third peak is unoccupied and arises due
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to p-orbitals of impurity atom. This impurity state hybridizes with the conduction band
states (due to Se-s and Ba-d orbitals) of the parent compound giving rise to resonant levels
(RLs). When one host Cu1 (Cu2) atom is removed from the bulk system it leaves one hole
in system. Doping with boron group of elements on Cu1 (Cu2) site donates three extra
electrons into the system. One of them is used to compensate the hole, while other two
reside in Cu-Se network and give rise to occupied state at the band gap (slightly below
Fermi energy). As a result, two extra electrons do not contribute to the transport.

In general, adding the dopants on the Cu2-site has similar effects on its electronic structure
(Fig. 3.4). However, the empty states observed in these doped configurations are delocal-
ized compared to the case where the dopants occupy Cu1-site. The reason behind this is
the nearest neighboring environment of the Cu1 and Cu2 sites. When Al is doped on Cu1-
site, Al-p orbital strongly interacts with s orbitals of the nearest two Cu atoms. Moreover,
it also strongly interacts with p orbitals of the nearest three Se atoms, whereas it interacts
weakly with p-orbital of the fourth Se atom (Fig. A.2(c)). On the other hand, when Al
occupies Cu2-site, it interacts uniformly with p orbitals of four Se atoms and s-orbital of
two Cu atoms (Fig. A.2(d)). Similar trends are observed in other doped configurations.

3.3.3 Transport properties of doped configurations

To investigate the effect of resonant states on transport properties we have computed trans-
port coefficients as a function of electron concentration. We have only considered elec-
trons as the carriers because from our electronic structure calculations we have found that
the defect induced state is in resonance with the bottom of the conduction band.

Doping at Cu1-site: When the carrier concentration is in between (1020 − 1021) cm−3,
Seebeck coefficient (S) of pristine system starts from 32 µV/K and attains a maximum
value of 40 µV/K at (3.8 × 1020) cm−3 (Fig. 3.5 (a)). This carrier concentration cor-
responds to the chemical potential (µ) touching the second CBM which has a greater
curvature compared to that of the first CBM (Fig. 3.1 (b)). For Al-doped BaCu2Se2, S
has increased significantly compared to pristine and varies from 38− 141 µV/K. For Ga-
doped BaCu2Se2, S attains a maximum values of ∼ 61 µV/K around 1021cm−3, while S
of In-doped system shows good improvement (23− 68 µV/K) compared to the pristine in
doping range (1020 − 1021) cm−3. In Tl-doped case, S is slightly greater than that of pris-
tine system below (1.9×1020), but it is smaller than the pristine in range (1.9×1020−1021)
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Figure 3.3: The total DOS of pristine (black) and doped (red) BaCu2Se2 computed at the level
of PBE+U. The DOS projected on dopant s and p-states are shown in dashed and solid blue lines
respectively. (a), (b), (c) and (d) are for Al, Ga, In and Tl doped cases. The dopant atom occupies
Cu1-site. The VBM is set to zero in all the cases.

cm−3. The origin of increase in S in doped configurations can be attributed to local in-
crease in the density of states due to resonant states. In particular, we find that an increase
in DOS occurs due to resonant states when µ reaches around 1.43, 1.62, 1.42 and 1.61
eV corresponding to 1020 , 1021, 2 × 1020 and 6 × 1020 cm−3 in Al, Ga, In and Tl-doped
systems respectively.

The electrical conductivity in terms of scattering time (σ/τ ) has been shown in Fig. 3.5 (b)
for the pristine and doped configurations. The conductivity values of all systems are com-
parable around 1020 cm−3. However, as the carrier concentration increases for the doped
system σ/τ shows a significant reduction with respect to the pristine one. The electronic
part of thermal conductivity in terms of scattering time (κe/τ ) has similar behavior as ob-
served for σ/τ (Fig. 3.5 (d)) since they are connected by Wiedemann-Franz law.

The power factor in terms scattering time (PF/τ ) as function of electron concentration is
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Figure 3.4: The total DOS of pristine (black) and doped (red) BaCu2Se2 calculated at the level
of PBE+U. The DOS projected on dopant s and p-states are shown in dashed and solid blue lines
respectively. (a), (b), (c) and (d) are for Al, Ga, In and Tl doped cases. The dopant atom occupies
Cu2-site. The VBM is set to zero in all the cases.

shown in Fig. 3.5 (c) for the pristine and doped configurations. The optimized PF/τ of
pristine system is found to be (∼3.1 W/mK2sec at 5 × 1020 cm−3). The highest value of
optimized PF/τ is observed (∼ 7.8 W/mK2sec at 1020 cm−3) in Al-doped BaCu2Se2 when
µ touches the energy of resonant level (µ ∼ 1.4 eV). In similar manner, optimization of
PF/τ occurs (∼6.25 W/mK2sec at 9.68×1020 cm−3) for Ga-doped system around 1021

when µ (∼ 1.6 eV) starts to touch the resonant level. Since the power factor is the product
of square of Seebeck coefficient and electrical conductivity. In our case, we see that doped
configurations show increment in S while decrement in electrical conductivity compared
to pristine system in between (1020 − 1021) cm−3. Therefore, any increment in PF can be
attributed to an increment in S due to the presence of resonant states.

The electronic figure of merit (ZTe), independent of τ , is shown for these systems as a
function of carrier concentration (Fig. 3.5 (e)). While at low carrier concentration ZTe
is large in accordance with the fact that PF and S, are enhanced, at carrier concentration
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Figure 3.5: (a,d) | S |, (b,e) σ/τ and (c,f) PF/τ as a function of carrier concentration for pristine
and doped configurations corresponding to Cu1-site (left) and Cu2-site (right).

of about 1021cm−3 and higher, ZTe decreases drastically for all the cases. This can be
attributed to the fact that the κe is significantly large at the above mentioned carrier con-
centration.

Doping at Cu2-site: Similar to what was observed for doping at Cu1-site, here also we
find that Al-doped BaCu2Se2 has the largest value of S compared to the pristine one at
low carrier concentration, whereas S of other doped cases is comparable to that of the
parent compound. In particular, for Al-doped BaCu2Se2, S varies between 19-107 µV/K
when carrier concentration is in between (1020 − 1021) cm−3, whereas S varies between
24-57, 27-52 and 46-28 µV/K for Ga, In and Tl-doped systems, respectively. Since the
resonant states are delocalized when dopants occupy Cu2-site, steepness in DOS is less
compared to the cases when dopants occupy Cu1-site. Therefore, the overall increment
in S is small in these doped configurations corresponding to Cu2-site compared to that of
Cu1-site. Moreover, for the other dopants the steepness in DOS near the conduction band
edges is similar, resulting in comparable S values for these systems.
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The electrical conductivities of these doped configurations are similar to that of pristine
around 1020cm−3, whereas doped configurations show reduction in σ/τ at high carrier
concentrations (Fig. 3.5 (g)). The electronic thermal conductivity varies with respect to
carrier concentration in a similar manner as observed for σ/τ (Fig. 3.5 (i)).

As a result, a significant enhancement in PF/τ (∼5.2 W/mK2sec at 1020) in Al-doped
BaCu2Se2 is observed compared to pristine system (Fig. 3.5 (h)), while PF/τ for Ga-
doped system is comparable to the pristine system in (1020 − 1021) cm−3. For In and
Tl-doped systems, PF/τ is comparable to pristine around 1021 cm−3. Any improvement
in PF/τ is associated with the increment in S which is similar to what observed in doped
systems corresponding to Cu1-site. Furthermore, ZTe is plotted for these systems as a
function of carrier concentration (Fig. 3.5 (j)) which is independent of τ . ZTe shows
features that are similar to the case when the dopants occupy Cu1-site.

3.4 Summary

In conclusion, we have studied the effect of substitutional doping by group 13 elements
on electronic and transport properties of BaCu2Se2. Our calculations of formation energy
show that the dopants prefer Cu1 and Cu2-site. From DOS calculations, we find the for-
mation of resonant states at the bottom of the conduction bands arising from the p-orbitals
of dopants. Transport calculations have shown that Al and Ga-doped systems (at Cu1-site)
significantly improve Seebeck coefficient with electron doping when chemical potential
touches the resonant states, thereby increasing PF/τ of these systems compared to pristine
system. In similar manner, we have observed enhancement in transport properties with
Al doping at Cu2-site, whereas other doped configurations attain optimized power factor
values comparable to pristine system. Though the enhancement in S and PF/τ results
in enhancement of ZTe at low carrier concentration; at higher carrier concentration the
enhanced κe/τ reduces ZTe drastically.
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Chapter 4

First Principles Investigations of Structural, Electronic
and Transport Properties of BiI3/ZrS2 van der Waals

Heterostructure†

4.1 Introduction

Based on theoretical calculations, Dresselhaus et al. predicted that reducing the dimen-
sionality can significantly enhance the power factor and thereby ZT compared to their
bulk counterparts. [20, 21] Following their predictions researchers have developed novel
routes like adopted nanostructuring [110–115], band structure engineering, [116] to en-
hance the power factor. This has led to a large family of thermoelectric materials based
on metal chalcogenides (Bi2Te3, Sb2Te3 and PbTe), superionic conductors, metal oxides,
SiGe alloys, etc. [117] Additionally, with the advancement in nanotechnology, several
low-dimensional materials apart from graphene are being prepared with improved and/or
novel properties. Amongst them phosphorene [118], transition metal dichalcogenides
(TMDC) [119–122], have been predicted to be possible candidates for thermoelectric ap-
plications. In a recent work Lv et al. predicted that ZrS2 monolayer, which belongs to the
family of TMDC and has a low lattice thermal conductivity, shows a high ZT value [56].
They further showed that the Seebeck coefficient can be increased by engineering the band
structure through strain, which results in an increased value of ZT .

†Reprinted with permission from Journal of Electronic Materials, 50, 1644-1654, (2021). Copyright
c©2021, Springer Nature.
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In addition to TMDCs, there has been a relatively new family of materials with a chemi-
cal formula of MX3, where X is a halide ion and M is a metal atom. Recently, there has
been great interest in investigating its physical properties [60–64]. Recent calculations
by Liu et al. on MX3 (where M=Sc, Y, As, Sb, and Bi) showed that these are semicon-
ductors [64]. Amongst them, BiI3 is particularly interesting because of the presence of
a Mexican hat like band structure in the valence band that might lead to high value of
Seebeck coefficient [65]. Moreover, it has been predicted that BiI3 has a very low value
of thermal conductivity [66]. However, it has a large value of effective masses for holes
and a band gap that is larger compared to other semiconductors that are typically used for
TE devices. These two properties might be detrimental for their performance as a thermo-
electric device.

One of the ways to improve material properties is to form van der Waals heterostructures.
There have been many reports of such heterostructures (HS) that show enhanced transport
properties. For example, Mohanta et al. showed that forming vertical heterostructures
of boron monosulphide with MoS2 show an enhanced value of ZT [123]. Nguyen et

al. showed that vertical HS of graphene layers show a larger value of ZT due to re-
duced thermal conductivity [124]. In addition to vertical HS there are also efforts to form
lateral HS of layered materials to improve ZT . For example Ding et al. produced a two-
dimensional superlattice-monolayer structure of ZrSe2/HfSe2 with a highly degenerate
conduction level, which gives a high n-type power factor [125].

Based on the encouraging results reported in the previous studies, in this chapter, we
have studied the structure, electronic and transport properties of vertical HS of ZrS2/BiI3.
Besides the interesting properties of each individual component mentioned in the previous
paragraphs, we also note that the lattice parameters of BiI3 monolayer is twice that of
ZrS2. Hence a (2×2) supercell of ZrS2 is perfectly lattice matched with that of a (1×1)
supercell of BiI3. Moreover, based on the positions of the valence and conduction band
edges of the individual components, as reported in the literature [56,63], we show that the
HS will most probably form a Type-II heterojunction, thereby having a smaller band gap
compared to the parent components. This suggests that it may be interesting to investigate
the properties of the HS for thermoelectric applications. The rest of the chapter is as
follows: Section 4.2 contains the computational details. The results are summarized in
Section 4.3. Finally we conclude in Section 4.4.
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4.2 Computational details

The calculations in the present chapter are performed using the Quantum ESPRESSO soft-
ware, which is a plane-wave based implementation of density functional theory. [102,103]
The electronic exchange and correlation potential was described by the generalized gradi-
ent approximation (GGA) as parametrized by Perdew, Burke and Ernzerhof (PBE). [79]
We have used ultrasoft pseudopotentials to account for the electron-ion interactions. [82]
The pseudopotentials have been generated using 4s24p64d25s2, 2p63s23p4, 4d105s25p5

and 4f 145d106s26p2 valence configurations for Zr, S, I and Bi respectively. The kinetic
energy cutoffs for wavefunction and charge density used for the calculation are 80 Ry and
800 Ry respectively. To sample the Brillouin zone (BZ), we used a (9×9×1) Monkhorst-
Pack k-mesh. [80]

Since we are using periodic boundary conditions, to avoid the spurious interactions be-
tween the periodic images we used 22 Å vacuum along the direction perpendicular to the
plane of the monolayers and the heterostructure (z-axis of the unit cell in this case).

Earlier studies have shown that van der Waals interactions are important for these sys-
tems [63]. However, these are not accounted for within the PBE exchange correlation
functional. Hence we used the semi-empirical Grimme-D2 van der Waals (vdW) cor-
rections in all the calculations. [2]. The vdW radius and the C6 coefficients used in our
calculations for each of the atomic species are listed in Table 4.1. Additionally, Bi and
I are heavy atoms, spin orbit interactions (SOI) are important. To correctly account for
the SOI, the Kohn-Sham equations were solved self consistently using fully relativistic
ultrasoft pseudopotentials. [126, 127]. Further, standard PBE functionals are also known
to severely underestimate the band gap. Since we are interested in transport properties of
these materials and the latter in turn depends on the band gap, it is important to compute
the band gap with reasonable accuracy. For that purpose the band structures for the mono-
layers and heterostructures were computed using the singularity free Gaussian-attenuating
Perdew-Burke-Ernzerhof (Gau-PBE) hybrid functionals [109]. To include the SOC effects
along with the hybrid functional calculations, we used norm-conserving pseudopotentials
with a plane wave cut off of 125 Ry for Gau-PBE calculations [81]. The matrix elements
of the Fock operator have been evaluated with a 3×3×1 q-mesh.
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Table 4.1: van der Waals radius (rvdW ) and the C6 coefficients for the different atomic species
used in the Grimme-D2 vdW corrections. These values are taken from Ref. [2].

Atomic species rvdW (bohr) C6 (Ry/bohr6)

Bi 3.586 2204.274
I 3.575 1092.775

Zr 3.097 855.833
S 3.180 193.230

For transport property calculations, we used the BoltzTraP package, [93] which solves the
semi-classical Boltzmann transport equation (BTE) within the rigid band (RB) and con-
stant relaxation time approximations (CRTA) [93]. While within the CRTA it is assumed
that the relaxation time (τ ) is same for all the electronic states, RB approximation consid-
ers that doping the material does not alter band dispersion and only results in a shift of the
chemical potential of the system. For transport properties, we used (57× 57× 1) k-point
grid to obtain the Kohn-Sham eigenvalues, which are further fed into BoltzTraP code to
yield transport properties.

Computation of τ : In addition to the CRTA, the BoltzTraP code computes the transport
properties in terms of τ . Hence to know absolute values of the transport coefficients, we
must compute τ . τ depends on several factors like electron-phonon coupling, scattering
by defects and disorders. However, computing these from first principles is either difficult
or for some cases impossible. The contribution to τ from electron-phonon coupling can
be obtained from first-principles calculations. However, for our case, particularly for the
HS, the unit cell is quite large. This coupled with the fact that we must include SOC, made
direct computation of τ impossible with our limited computational resources. Hence, in
this chapter, we used the deformation potential theory, together with the effective mass
approximation to obtain the phonon-limited mobility µ2D from which we computed τ

using the following equation:

µ2D =
eτ

m∗
(4.1)

where e is the charge of an electron and m∗ is the effective mass of an electron. µ2D is
given by:

µ2D =
eh̄3C

kBTm∗mdE2
dp

(4.2)
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where C is the 2D elastic constant, md =
√
m∗xm

∗
y is the average effective mass. C =

∂2E
∂δ2

1
A0

is the elastic modulus of the 2D material. A0 is the area of the surface unit cell.
To compute C we applied uniaxial strain (δ) along the a direction and computed the
total energy E of the strained system. From this we computed the second derivative of
total energy with respect to strain at δ = 0. The deformation potential (Edp) is given by
Edp = ∂Eedge/∂δ, where Eedge is the edge of the valence and conduction band. In order
to compute Edp we computed the band structure of the system both under compressive
and tensile strain. From the band structure we plotted Eedge as a function of strain. The
plot is fitted to an equation of a straight line, the slope of which gives the value of Edp.
Therefore from Eqn 4.1 and 4.2 we get:

τ =
h̄3C

kBTmdE2
dp

. (4.3)

4.3 Results and discussion

4.3.1 Structure and energetics

In bulk, both ZrS2 and BiI3 form layered structures, which are held together through weak
van der Waals (vdW) interaction. Each layer of ZrS2 (BiI3) comprises of three atomic
layers where the atomic layer contains metal atoms, i.e. Zr (Bi) is sandwiched between
two atomic layers of S (I). The three atomic layers (S-Zr-S of ZrS2 and I-Bi-I of BiI3)
are stacked in an ABC pattern such that each of the metal cations are at the centre of
the octahedron formed by the anions. Though both bulk ZrS2 and BiI3 belong to the
hexagonal crystal system, their space groups are different. While the former has a P3̄m1

space group, the later belongs to the R3̄ space group. A monolayer of these materials
forms a two-dimensional hexagonal unit cell (Fig. 4.1). Our calculations, at the level of
PBE+vdW+SOC yield lattice parameters of 3.64 Å for a monolayer of ZrS2 (ML-ZrS2)
and 7.41 Å for a monolayer of BiI3 (ML-BiI3). We note that these are in excellent agree-
ment with previous literature reports [63] [128] [56]. The Zr-S (Bi-I) bond lengths are
2.56 Å (3.11 Å). Further the thickness of each ML, calculated by measuring the distance
between the two anionic layers along the z-direction, is about 2.94 Å and 3.62 Å for ZrS2

and BiI3 respectively.

In order to make the vertical heterostructure, i.e., where one layer is stacked over another,
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Figure 4.1: The top and side views of the structures of a monolayer of (a) ZrS2 and (b) BiI3. The
two-dimensional unit cell for each case is denoted by a black parallelogram. The large light green
and violet spheres denote Zr and Bi ions respectively. The S (I) atoms in the top and bottom layers
of ZrS2 (BiI3) are represented with yellow (blue) and golden (green) spheres respectively.

we begin by noting that the (2×2) 2D unit cell of ZrS2 is almost lattice matched with the
(1×1) unit cell of BiI3. The mismatch between the two is about 2%, with the ZrS2 layer
slightly smaller than BiI3. Hence, when the HS is to be constructed with the lattice pa-
rameter of BiI3, the ZrS2 layer experience a tensile strain. Similarly, when the HS is to be
constructed with ZrS2 lattice parameter, the BiI3 layer experiences a compressive strain.
To minimize this strain due to the lattice mismatch, we further optimized the lattice pa-
rameter of the HS. Moreover, depending on the way the 2 MLs are stacked to form the HS,
there are three non-equivalent configurations. To explain the stacking, we label the three
sublayers of ML-ZrS2 by A, B and C and that of ML-BiI3 by A′, B′ and C′ as displayed in
Fig. 4.2(a). Additionally, we define sulphur (iodine) atoms belonging to sublayers C (C′)
and A (A′) as Sup (Iup) and Sdown (Idown) respectively. In the B′BC configuration each of
the B′ atoms (Bi atoms) of BiI3 is placed on the B and C atoms of ZrS2, i.e., on the Zr (in
sub-layer B) and Sup (in sub-layer C) of ML-ZrS2 as shown by dotted lines in Fig. 4.2(a)
and (b). The B′BA configuration is generated by placing each of the B′ atoms of ML-BiI3

on the B and A atoms of ZrS2, i.e., on Zr and Sdown belonging to ML-ZrS2 (Fig.4.2 (c,d)).
In the B′AC configuration the two B′ atoms (Bi) of ML-BiI3 are placed on the A and C
atoms (Sdown belonging to A sublayer and Sup belonging to C sublayer, respectively) of
ML-ZrS2 as depicted in Fig. 4.2 (e,f).

In order to compare the thermodynamic stability of the HS and to determine the lowest
energy configuration we have computed the binding energy (EBE) of the heterostructure.
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(a) Side view of B'BC         

(c) Side view of B'BA          

(e) Side view of B'AC           

(b) Top view of B'BC 

(d) Top view of B'BA 

(f) Top view of B'AC 

A'

B'

C'

C
B
A

Figure 4.2: The side (a,c and e) and top view (b,d and f) for HS-BiI3/ZrS2 in configurations (B′BC,
B′BA and B′AC, respectively). The Bi, Zr, Iup, Idown, Sup and Sdown atoms are represented by
violet, light green, blue, dark green, yellow and golden colored spheres, respectively.

EBE is given by:

EBE =
EHS − EBiI3 − EZrS2

A
, (4.4)

where EHS , EBiI3 and EZrS2 are the total energies of the HS, BiI3, and ZrS2, respectively.
A denotes the area of the HS unit cell. The binding energy and the optimized lattice pa-
rameter for each of the three configurations are listed in Table 4.2. We find that all the
3 configurations of the HS have the same lattice parameter; 7.30 Å. The B′BC configu-
ration is lowest in energy with a binding energy of -0.165 J/Å2. We note that the B′AC
and B′BA are about 18 and 2 meV higher is energy than that of the B′BC configuration.
Similar values of the binding energy were also observed in HS of graphene and BiI3. [128].

The separation between the two layers in the HS is about 3.46 Å. Similar separation is also
observed in other HS, for eg. between graphene/BiI3, MX2/MX2 (M=Zr,Hf and X=S,Se)
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Table 4.2: The lattice parameters (a) and binding energy per unit area (EBE) of the three possible
configurations of the HS-BiI3/ZrS2 obtained with PBE+vdW+SOC.

Configuration a (Å) EBE (J/Å2)

B′BC 7.30 -0.165
B′AC 7.30 -0.164
B′BA 7.30 -0.159

and transition metal dichalcogenides. [128] [129] [130] The thickness of the ZrS2 and
BiI3 in the HS are 2.94 Å and 3.76 Å respectively. While the thickness of ZrS2 in the
HS remains unchanged compared to that observed in the monolayer, for BiI3 it increases
by 0.14 Å up on the formation of the HS. This increase in thickness of the BiI3 layer
in the heterostructure can be attributed to the in-plane compressive strain the BiI3 layer
experiences due to the formation of the HS (lattice parameter of the HS is 7.30 Å while
that of the BiI3 monolayer is 7.41 Å). The Bi-I bond length in the heterostructure is about
3.10 Å and is similar to that observed in the BiI3 monolayer. Within the ZrS2 layer in the
heterostructure, the Zr-S bond lengths are similar to that observed in the ZrS2 monolayer.

4.3.2 Electronic properties

As mentioned in the previous section, all three configurations of the HS are similar in
energy. Hence, for the study of the electronic and transport properties we used the B′BC
configuration.

Fig. 4.3 shows the band structures of ZrS2, BiI3 and HS calculated with PBE (blue lines)
and Gau-PBE (red lines) functionals. For both the functionals we used vdW corrections
and have incorporated SOC interactions. The monolayers have indirect band gaps as seen
in Fig. 4.3(a) and (b). ZrS2 has a band gap of 1.00 eV at PBE level, with the valence
band maxima (VBM) at the Γ point of the BZ and the conduction band minima at the
M -point (Fig. 4.3(b)). In contrast, BiI3 has a band gap that is about 0.36 eV larger than
that of ZrS2. For the former, the VBM lies along the Γ → M direction of the BZ while
the CBM is at the Γ point (Fig. 4.3(b)). Additionally we find another maxima that is very
close in energy to the VBM along the Γ → K direction. Moreover, as mentioned in the
introduction, the valence band edge exhibits a Mexican-hat like structure in the dispersion
of VBM around the Γ-point of the BZ. We note that similar band dispersion resulted in
high values of Seebeck coefficient for holes in other materials [131]. The major effect
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of the hybrid functional is the shift in the positions of the CBM and VBM that results in
an increase in the band gap. However, we observe a larger increase in the band gap for
ZrS2 compared to BiI3. For example, while for BiI3 the band gap increases to 1.64 eV
with Gau-PBE functional (0.28 eV increase), the band gap for ZrS2 also increases to 1.91
eV (about 0.9 eV increase). This can be attributed to the fact that both the valence and
conduction bands of ZrS2 are more shifted compared to that of BiI3. Unlike BiI3 where
the VBM and CBM are shifted by about 0.14 eV each, for ZrS2 we observe a shift of
0.41 eV each for the VBM and CBM. The band dispersion is more or less similar to that
obtained with PBE (red curves in Fig. 4.3).
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Figure 4.3: The electronic band structure computed using PBE (blue) and Gau-PBE (red) func-
tionals for monolayers of ZrS2 (a), BiI3 (b) and the B′BC configuration of the HS(c). The Fermi
energy is set to zero.

We compared our computed values of the band gaps of the monolayers with those re-
ported in literature (PBE, HSE-functional and GW calculations) in Table 4.3. For the
ZrS2, our PBE results are in excellent agreement with the corresponding ones in the lit-
erature [56, 132]. While in the literature, most studies used the HSE functionals we used
Gau-PBE functionals. We find that the values of the band-gap obtained from our Gau-
PBE calculations is about 0.25 eV smaller than those obtained with HSE [132]. However,
our band gap is in excellent agreement with those obtained using more accurate GW cal-
culations [133]. For BiI3, we find that our PBE band gaps are slightly smaller than those
reported in literature [63,128]. This is because in those studies vdW interactions have not
been taken into account.

Upon the formation of the HS, we find that the VBM of the HS is localized on BiI3 and
the CBM is localized on ZrS2 (Fig. 4.3). This is further corroborated by the plot of the
band structure showing contributions from ZrS2 and BiI3 in Fig. 4.4(a). Although the
band dispersions of the conduction and valence band look very similar to those of ZrS2

— [ 55 ] —



z (Å)

-0.0001

-5e-05

0

5e-05

0.0001

e/
Å

0 2 4 6 8 10 12 14 16 18 20

S SZ
r

I B
i

I

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

M Γ K M

E
-E

F
(e

V
)

0

0.2

0.4

0.6

0.8

1

(a)
(c)(b)

0

2

4

6

8

10

12

14

�2 �1.5 �1 �0.5 0 0.5 1 1.5 2

D
O

S
 (

st
at

es
/e

V
)

E�EF (eV)

Total�DOS
Bi�s

Bi�p�j1/2
Bi�p�j3/2

I�p�j1/2
I�p�j3/2

Zr�d�j3/2
Zr�d�j5/2

S�p�j1/2
S�p�j3/2
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PBE+vdW+SOC. (c) Planar average of the charge transfer due to the formation of the HS.

and BiI3 monolayers respectively, a closer look at the band structure shows subtle dif-
ferences, which as discussed in the next section can affect the transport properties of the
HS. Fig. 4.5(a) shows the dispersion of the conduction band edge of the HS and ZrS2

monolayer around the Γ-point. For ZrS2 monolayer, there are six degenerate bands at
the Γ point. On moving away from the CBM, they split into a set of 2 bands, the flatter
one has a pair of degenerate bands while the second one has 4 bands. In contrast, in the
heterostructure, the bands split weakly resulting into 3 sets of bands at the Γ point. Each
of these have two degenerate bands. Additionally, we observe that the curvature of the
bands also increases in the HS, compared with that in ZrS2 monolayer. On comparing the
valence band edge of the HS with that of BiI3 monolayer (Fig. 4.5(b)), we find that the
two almost degenerate maxima around the Γ-point show slight changes. In the HS, this
degeneracy is broken and we observe a maxima along the Γ → K direction. Further, the
Mexican-hat like dispersion observed in BiI3 remains intact even in the HS. In contrast
with the ZrS2 ML, we find the CBM of the HS lies at the Γ-point of the BZ. The change
in the position of the CBM in the BZ can be attributed to the folding of the BZ in the
reciprocal space for the HS. We note that the unit cell of the HS in real (reciprocal) space
is twice (half) that of ZrS2. As a result the M point of the larger BZ of ZrS2 folds into the
Γ-point of the smaller BZ of the HS.

The HS belongs to type-II with a PBE-band gap of about 0.72 eV (1.20 eV with Gau-
PBE). Because of the staggered nature of the alignment of the bands of the individual
components of the HS, we find that its band gap is significantly reduced compared to the
individual monolayers. Additionally, we find that the weak interaction between the two
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Table 4.3: The band gap (Eg, in eV) of BiI3, ZrS2 and the B′BC configuration of the HS obtained
with PBE and Gau-PBE hybrid functionals.

Systems Eg (ours, PBE) Eg (ours, Gau-PBE) Eg (others, PBE) Eg (others, HSE) Eg (others, GW) Exp.

ML-ZrS2 1.01 1.91 1.02 [132], 1.10 [56] 2.16 [132] 1.95 [133] -
ML-BiI3 1.43 1.64 1.55 [63], 1.57 [128] 2.21 [63] - 2.8 [134]
HS-BiI3/ZrS2 0.72 1.20 - - - -

ML results in small amount of charge transfer (Fig. 4.4(c)) from BiI3 to ZrS2. As a result
the occupied BiI3 states move closer to the Fermi level. Further, the density of states
(DOS) projected onto the atomic orbitals (Fig. 4.4(b)) show that the VBM of the HS has
states comprising primarily from I-p orbitals while the CBM have major contributions
from Zr-d orbitals.
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Figure 4.5: Magnified view of the band structure around (a) the conduction band minima and (b)
valence band maxima of the HS. For sake of comparison, also shown in (a) and (b) the same for
ZrS2 and BiI3 monolayers respectively. For both the cases, the bands are shifted with respect to
the minima and maxima respectively.

4.3.3 Computation of relaxation time

Table 4.4 lists the values of C, m∗, Edp and τ for the three systems. Since C and Edp
are related to the acoustic phonons, we note that the computation of τ by the above men-
tioned method ignores the contributions coming from coupling of optical phonons with
the electrons. Amongst the three systems, we find that BiI3 has the lowest value of C
while the HS has the largest. The same for ZrS2 lies at an intermediate value. The larger
value of C for the HS compared to that of the individual monolayers can be attributed to
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Table 4.4: C, m∗, Edp and τ for the electrons and holes in ZrS2 and BiI3 monolayers and in the
HS.

System C m∗ (zigzag) m∗ (armchair) Edp τ (10−14s)
(eV/Å2) (me) (me) eV T = 300 K T = 400 K T = 500 K

ZrS2 electron 6.04 0.28 1.97 -3.47 13.10 9.83 7.86
hole 0.23 0.27 -9.18 5.58 4.18 3.35

BiI3 electron 1.29 2.06 0.50 -5.14 0.93 0.70 0.56
hole 0.59 1.16 -6.08 0.82 0.61 0.49

HS electron 7.42 0.29 0.56 -3.81 24.60 18.50 14.80
hole 0.68 1.10 -8.79 2.15 1.62 1.29

the strain in the monolayers due to formation of the HS and the van der Waals interaction
between them. We note that similar enhanced strain was also observed in heterostructures
of MoS2/WS2 [135] and graphene/MoS2 [136]. Further, the negative sign of Edp for both
the valence and conduction band implies that upon deformation, both the band edges go
down in energy. The magnitude of Edp is an indication of the strength of electron-phonon
coupling in these systems. A comparison of |Edp| between the holes and electrons sug-
gests that holes couple more strongly with the lattice vibrations compared to electrons. In
the heterostructure, the |Edp| for electrons (holes) are similar to that of ZrS2 (BiI3).

The effective masses show significant amount of anisotropy based on transport direction.
While for BiI3,m∗ for electrons has the largest value along the zigzag direction, for ZrS2 it
is heaviest along the armchair direction. In BiI3 the holes are heaviest along the armchair
direction. In contrast, in ZrS2, along both the directions, the holes have a lighter mass.
For the HS, it is expected that the effective masses of electrons (holes) will be similar to
that of ZrS2 (BiI3). From Table 4.4 we find that the effective mass of electrons along the
zigzag direction is indeed similar to that of ZrS2. However, along the armchair direction
we find that the electron effective mass is significantly reduced compared to that in ZrS2

along the same direction. This can be attributed to the changes is the band dispersion
observed in the conduction band of the HS due to the interactions between ZrS2 and BiI3.
For the holes, as per our expectation, we find that the effective masses are close to that
observed in BiI3.

The combined effect of C, m∗, Edp results in smallest value of relaxation time in BiI3 for
both electrons and holes. Amongst the three systems, the electrons in the HS have the
largest value of τ . This is primarily because of the reduction of the effective masses of
electrons in the HS along the armchair direction. For holes largest value of τ is observed
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in ZrS2 monolayer. Further, the relaxation time decreases with increase in temperature.

4.3.4 Electronic transport properties

Based on the electronic structure of the three materials we now evaluate the transport co-
efficients of these three materials by solving the Boltzmann transport equations. Fig. 4.6
shows the plots of the Seebeck coefficient (α) as a function of chemical potential. Fig. 4.7
(Fig. 4.8) shows the plots for electrical conductivity (σ), power factor (PF = α2σ) and
(κe) for the three systems for holes (electrons). These properties have been computed
using the band dispersion obtained from PBE calculations. The PBE band gap has been
corrected with the Gau-PBE one for each of the cases.

Near the band edges, we observe that the maximum values of α is similar for all three
cases varying between 1.81 and 3.15 mV/K for holes and electrons at 300 K (Fig. 4.7(a)-
(c)). With other factors remaining constant, it is usually expected that a larger band gap
will result in a greater value of Seebeck coefficient at the band edges. This is because the
magnitude of S for non-degenerate semiconductors depends on the distance between the
energy at which S is computed and the Fermi level (EF ), the latter is typically close to the
middle of the band gap. We note that though ZrS2 has a larger band gap than BiI3 and the
HS, we find that the Seebeck coefficients for the three systems are comparable. This can
be attributed to the fact that even though the latter two have a smaller band gaps than ZrS2,
they have a Mexican-hat like structure at the valence band edge, that gives rise to three,
almost degenerate, maxima. In contrast, for ZrS2, there is just one maximum. This results
in increase of density of states at the valence band edge for BiI3 and the HS, that inturn
increases the value of α. Moreover, compared with that of the monolayers, for the HS the
Seebeck coefficient decreases more rapidly with higher value of chemical potential, i.e.
increase in carrier concentration. On increasing the temperature, we find that there is a
reduction of the Seebeck coefficient for all the cases.

Compared to BiI3, the σ values for ZrS2 are larger for both electrons and holes (Fig. 4.7(a),(b)
and Fig. 4.8(a),(b)). However, due to larger band gap of ZrS2, we observe that the peaks
in the σ plots occur at higher value of chemical potential. This implies that larger number
of charge carriers are necessary to achieve electrical conductivity in ZrS2 than in BiI3.
For example, while in BiI3, the first peak in σ for holes is at µ =-0.96 eV (9.88×1014

cm−2 carrier concentration), for ZrS2 the same occurs at 1.54 eV, corresponding to a car-
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Figure 4.6: Seebeck coefficient (α) as a function of chemical potential (µ) in (a) ZrS2, (b) BiI3

and (c) HS. The black, red and green plots are at 300 K, 400 K and 500 K respectively. Negative
(Positive) values of µ denote holes (electrons).

rier concentration of 1.69×1015 cm−2. The holes in the HS resides in BiI3 and since the
dispersion of the valence band is similar in both the cases, one would have expected that
the σ values for the holes in HS should be closer to that observed in BiI3. However, we
observe that in HS σ is one order of magnitude larger than that in BiI3 (Fig. 4.7(b) and (c)).
This can be attributed to the faster relaxation times of holes in the HS. Amongst the three
materials considered in this chapter, for holes, it is observed that ZrS2 shows largest value
of σ (Fig. 4.7(a)). For the electrons, amongst the three systems, the HS shows the largest
value of σ. Infact σ of electrons in the HS is one order of magnitude larger than that ob-
served in ZrS2 and three order of magnitude larger than that observed in BiI3 (Fig. 4.8(a),
(b) and (c)). Since the band gap of the HS is significantly smaller than that of the individ-
ual monolayers, we observe the peaks in the conductivity at lower value of the chemical
potential. For example, for holes, the first peak is at -0.74 eV, corresponding to that of
2.86×1014 cm−2 while for electrons, the first peak is observed at 1.14 eV corresponding
to a carrier concentration of 6.71×1014 cm−2.

Further, to separate out the effects of the band gap and τ on the conductivity of the charge
carriers in the HS, in Fig. 4.9 we have plotted σ of the HS as a function of the chemi-
cal potential using the band gaps and τ ’s of the individual components of the HS. Since
the holes reside in BiI3, we have computed σ for HS with band gap of BiI3 and τHS and
also with band gap of HS and τBiI3 (Fig. 4.9(a)). Similarly for electrons, we have used
the band gap and τ of ZrS2 (Fig. 4.9(b)). A comparison of the σ plot computed with
the band gap of the HS and τHS (black line in Fig. 4.9(a)) with that calculated with the
band gap of BiI3 and τHS (red line in Fig. 4.9(a)) shows that the primary effect of the
reduced band gap of the HS is that it changes the doping concentration at which one can
observe a given value of conductivity. The plot with a larger band gap shifts to higher (in
magnitude) value of µ. In contrast, when we compare the σ computed with the band gap
and τ of the HS (black line in Fig. 4.9(a)) with that calculated with the band gap of HS
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Figure 4.7: Electronic conductivity, σ (a, b, c), power factor PF (d, e, f) and electronic contribu-
tion to thermal conductivity, κ (g, h, i) for holes as a function of the chemical potential (µ) at three
different temperatures, namely 300 K, 400 K and 500 K. The first, second and third columns are
results for ZrS2, BiI3 and the HS respectively.
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Figure 4.8: Electronic conductivity, σ (a, b, c), power factor PF (d, e, f) and electronic contribu-
tion to thermal conductivity, κ (g, h, i) for electrons as a function of the chemical potential (µ) at
three different temperatures, namely 300 K, 400 K and 500 K. The first, second and third columns
are results for ZrS2, BiI3 and the HS respectively.
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and τBiI3 (blue line in Fig. 4.9(a)) we observe that the magnitude of σ changes because the
τ ’s are different in the two cases. Similar effect is also observed for electrons (Fig. 4.9(b)).

The power-factor is a good measure of a thermoelectric performance of a device. Fig. 4.7(d)-
(f) and Fig. 4.8 (d)-(f) show the variation of PF with µ for the three cases. Analogous
to the conductivity plots, we find that for the monolayers, the PF for both the electrons
and holes are larger in ZrS2 than in BiI3. In ZrS2 the PF for the holes are smaller than
that observed for electrons, while in BiI3 they are comparable. For the HS, the PF values
of the electrons are not only larger than that of the holes, but also they are largest com-
pared to the individual monolayers. This suggests that the heterostructure might show an
improved performance over its individual monolayers as a n-type thermoelectric. Fur-
ther, in comparison with the monolayers, we can achieve a large value of PF at lower
carrier concentration. For example, for holes, the first peak in PF observed in ZrS2 and
BiI3 corresponds to 1.25×1015 cm−2 and 4.72×1014 cm−2 holes respectively, while in the
HS, values of PF similar to that of BiI3 can be observed at 3.75×1013 cm−2 holes. The
corresponding numbers for electrons are 4.41×1014 cm−2 and 2.36×1014 cm−2 for ZrS2

and BiI3 respectively compared with that of 2.81×1013 cm−2 for the HS. In addition to
the PF , we have computed the electronic contribution to the thermal conductivity (κe)
for the three cases (Fig. 4.7(g)-(i) for holes and Fig. 4.8(g)-(i) for electrons). For all three
cases, the behaviour is similar to that observed for σ.
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4.4 Summary

In conclusion, we have investigated the electronic and transport properties of monolayers
of ZrS2 and BiI3 and a vertical HS formed using them for plausible application for ther-
moelectric devices. While the individual materials have a large band gap, the HS forms a
type II junction with a reduced band gap of 1.20 eV. This reduction in band gap results in
significant amount of electrical conductivity and PF at low concentration of electrons and
holes. Further, the interactions between the monolayers in the HS induce subtle changes
in the band dispersion such that electron effective masses are significantly different in the
HS than in ZrS2 monolayer. Moreover from the calculation of deformation potential and
two dimensional elastic constants, we find that the phonons of the HS are hardened com-
pared to that of the individual monolayer. All these changes in the electronic and structural
properties of the HS results in significantly different relaxation times of charge carriers in
the HS compared to that of ZrS2 or BiI3. Further, these are also reflected in their transport
properties. In particular, we find that for the electrons in the HS, the power factor is 2 and
100 times larger than those observed in ZrS2 and BiI3. This suggests that the maximum
power output from a device made with n-doped heterostructure will be larger than that of
the individual components. This suggests that the HS is a plausible candidate for an n-type
thermoelectric. However, we note that the efficiency of the device needs to be tested by
computing ZT , computation of which is beyond the scope of the present study. We hope
that our results will motivate further experimental and theoretical studies on this HS.
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Chapter 5

Effect of Electron-Phonon Coupling on Transport
Properties of Monolayers of ZrS2, and BiI3: A

thermoelectric Perspective

5.1 Introduction

From the perspective of designing novel materials with higher ZT or improving ZT of
existing thermoelectric materials, computational material design can play a significant
role [66, 137–139]. For in silico search of novel thermoelectric materials it is necessary
to compute the transport coefficients, which is done by solving the semiclassical Boltz-
mann transport equations. However, to do so one not only needs to compute the electronic
structure of the material but also the relaxation time (τ ) of the carriers. With the advent of
fast computers, computing a reasonably accurate electronic structure ab initio is relatively
simpler. Yet, computing the carrier relaxation time from first principles is challenging.
Hence one usually resorts to approximations. One of the most commonly used approx-
imations is the constant relaxation time approximation (CRTA) where it is assumed that
the carrier relaxation time is independent of the electronic state of the carrier. Under this
assumption one can compute σ and κe in terms of relaxation time. Nonetheless, for the
simulations to have predictive capabilities, it is also necessary to have estimates of τ . Usu-
ally τ has a dominant dependence on electron-phonon coupling and is usually estimated
from deformation potential theory. However, in this approximate method the effect of the
coupling of the phonons with the electrons is incorporated through the elastic constants
and change in the position of the band edges in response to applied strain. Both the elastic
constants and the strain are connected to the acoustic mode of the system. Thus through
this method one usually considers the coupling of the carriers with the acoustic modes of
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the system.

In a recent work by Liao et al., it has been shown that for the case of phosphorene mono-
layer, in addition to the acoustic modes, the optical modes also contribute significantly to
the scattering of the carriers, thereby effecting its transport properties by orders of mag-
nitude [140]. Moreover, they have also shown that in highly anisotropic materials, since
the deformation along a specific direction can result in scattering along all directions the
deformation potential theory is not applicable for such cases. For ionic solids, the dis-
placement pattern associated with the optical modes induce oscillating dipole moments.
It is expected that these dipole moments will couple strongly with the carriers [141] and
hence ignoring their contribution to τ might result in erroneous predictions. However, still
deformation theory is being used to compute τ for such solids [56]. Hence it is desirable
to understand and quantify the effect of these approximations in computing the transport
coefficients.

In an effort to achieve this, in this work we have studied the effect of electron-phonon
coupling on the electronic and transport properties of two dimensional ionic materials,
namely monolayers (MLs) of ZrS2 and BiI3. The reason for choosing low dimensional
materials in general is due to the fact that Dresselhaus et al. predicted enhancement of
the power factor and thereby ZT through reduction of dimensionality. [20, 21] Following
their predictions novel routes like adopted nanostructuring [110–115], band structure en-
gineering, [116] etc. have been developed to enhance the power factor of thermoelectric
materials. This has led to the development of large families of thermoelectric materials
based on metal chalcogenides (Bi2Te3, Sb2Te3 and PbTe), superionic conductors, metal
oxides, SiGe alloys, etc. [117] These monolayers were chosen in particular because their
bulk forms are known to have very low lattice thermal conductivity [66, 142]. Since the
thermal conductivity is low, if the transport properties are conducive then these can have
large values of ZT . Further these are ionic solids with a different degree of ionicity.
The degree of ionicity for binary compounds can be estimated based on the difference
in electronegativity (∆|EN |) of the two elements forming the compound. Based on the
Pauling electronegativity scale of the different elements (See Table B.1 of Appendix B)
we find that ∆|EN | for ZrS2 and BiI3 are 1.25 and 0.64 respectively, indicating that the
Zr-S bonds in ZrS2 have the largest ionic character, followed by the Bi-I bonds in BiI3.
Hence, a comparison of the strength of electron-phonon coupling and transport properties
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in these materials will also throw light on the effect of ionicity on the transport properties.
In particular, here we have investigated the effect of electron-phonon coupling on the band
structure and the carrier relaxation times of these materials and how these in turn affect
their transport properties.

The rest of the chapter is divided as follows. Section 5.2 contains details of the calcula-
tions. The structure and vibrational properties of these monolayers are discussed in Sec-
tion 5.3.1. In Section 5.3.2 we discuss the effect of electron-phonon coupling on the band
structure. The results for computing the relaxation times explicitly considering electron-
phonon coupling and deformation potential theory are presented in Section 5.3.3. The
effects of the different approximations on the transport properties are discussed in Section
5.3.4. Finally we conclude in Section 5.4.

5.2 Computational details

DFT calculations: Our first principles calculations are based on density functional theory
as implemented in the Quantum ESPRESSO software [102,103]. Norm-conserving pseu-
dopotentials [81] have been used to account for interactions between the valence electrons
and ionic cores. Moreover, Bi and I being heavy atoms, spin orbit interactions (SOI) are
important. To correctly account for the SOI, relativistic Kohn-Sham equations have been
solved self consistently using fully relativistic norm conserving pseudopotentials [126]
for the monolayers. The valence electronic configuration considered in our calculations
for Zr, Bi, I and S are 4s24p64d25s2, 4f 145d106s26p2, 4d105s25p5 and 2p63s23p4 respec-
tively. The exchange-correlation potential of electrons was described by using the Perdew-
Burke-Ernzerhof (PBE) form of generalized gradient approximation (GGA) [79]. We use
an energy cutoff of 70 Ry and 145 Ry to truncate the plane wave basis used in calculating
the Kohn-Sham wave-function for ML-ZrS2 and ML-BiI3 respectively. Previous compu-
tational studies of these monolayers indicated that van der Waals (vdW) interactions are
important for them [63,128,132,133]. Since PBE-GGA does not include the vdW interac-
tions, so it was included in our calculations using the semi-empirical approach as proposed
by Grimme [2] for ML-BiI3, whereas no vdW correction is incorporated for the calcula-
tions of ML-ZrS2 to compare our results with those of the study by Lv et al. [56]. Brillouin
zone integrations are done using a Monkhorst-Pack [80] k-point grid of a 9×9×1 grid for
both the monolayers. To avoid the spurious interactions between periodic images in the
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direction perpendicular to the plane of the ML (along z-direction in this case), we have
used a vacuum of 13 Å along the z-direction. In order to ascertain the dynamical stability
of the MLs and to compute the vibrational properties and electron-phonon coupling, we
have used density functional perturbation theory [89]. The calculations have been carried
out using a 5× 5× 1 q-mesh for both the monolayers.

Electronic transport properties: To obtain the transport properties, we have solved the
semiclassical Boltzmann transport equations within the rigid band approximation as im-
plemented in the BoltzTraP code [93], where it uses a Fourier expansion scheme to fit the
band structure for calculation of transport properties. A Γ-centred 15× 15× 1 grid is in-
troduced for both the monolayers to enable accurate Fourier interpolation of Kohn-Sham
eigenvalues.

BoltzTraP can either compute σ/τ and κe/τ within the constant relaxation approximation
(CRTA) or use explicitly relaxation times for each state and compute the transport proper-
ties (b-CRTA). Hence, to obtain absolute values of the transport coefficients, one needs to
know the values of τ /τnk. τ depends on various factors like electron-phonon interactions
(EPIs), defects, impurities, etc. Computing contributions to τ from first principles calcu-
lations for all the factors is challenging. However, the contribution to τ from EPIs can
be computed in two ways. The average value of τ can be obtained using the deformation
potential theory and the effective mass approximation. Using these, it can be shown that
τ is given by:

τ =
h̄3C

kBTmdE2
dp

(5.1)

where C is the 2D elastic constant, md is the average effective mass, Edp is the deforma-
tion potential, T is the temperature and kB is the Boltzmann constant. h̄ = h/2π, h being
the Planck’s constant. The details of computing the various terms in the above equation
has been described in Chapter 4 (Section 4.2) [143].

Computing τ using Eqn. 5.1 has two limitations: (a) it provides us with the average value
of τ and (b) considers only the contributions from the acoustic modes. However, for
those systems where scattering from optical modes are important this method will typi-
cally overestimate τ . Moreover in order to go beyond CRTA, τ for each nk is necessary.
Hence to understand the effect of CRTA and the negligence of the contributions from the
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scattering of the electrons/holes by optical phonons, we have explicitly calculated τn,k

from the imaginary part of the electron self-energy. In addition to the relaxation time,
the electron-phonon coupling also renormalizes the band structure and thereby the band
gap and transport properties of the system. The band-structure renormalization can be
obtained from the real part of the electron self-energy. The electron-self energy within the
Migdal approximation are given by

EP∑
nk

=
∑
qν,m

wq|gSEmn,ν(k,q)|2
[

nqν + 1− fmk+q

εnk − εmk+q − h̄ωqν − iδ
+

nqν + fmk+q

εnk − εmk+q + h̄ωqν − iδ

]
(5.2)

where gSEmn,ν(k, q) = ( h̄
2m0ωqν )1/2 < ψmk+q|∂qνV |ψnk >. wq is the weight associated with

phonon wavevector q in the BZ, ψmk represents the electronic wavefunction for band m,
wavevector k, and eigenvalue εnk. ∂qνV is the derivative of self consistent potential asso-
ciated with a phonon of wavevector q, branch index ν and frequency ωqν . fmk+q (nqν) is
the occupation of the electronic (vibrational) state and is given by the Fermi-Dirac (Bose-
Einstein) distribution. The electron self-energies have been calculated using the EPW
software [92]. The electron-phonon matrix elements are first computed using coarse k
and q grids as mentioned in the previous paragraphs. These are then interpolated to a
dense 300 × 300 × 1 q-mesh for both the monolayers. We have used 25 meV Gaussian
broadening to smear the δ function of equation:5.2 for the monolayers. We have consid-
ered the EP scattering rate due to acoustic and optical phonons in our calculation for all
the monolayers. From the imaginary part of electron self-energy (

∑EP
nk ) the relaxation

time for each state is calculated by using the relaxation τnk = h̄

2(Im∑EP
nk )

, where h̄ is re-

duced Planck constant. The normalized electronic eigenvalues (εRGnk ) is given by [85]:

εRGnk = εnk + Re
EP∑
nk

(5.3)

5.3 Results and discussion

5.3.1 Crystal structure and lattice vibrations.

Both the materials form layered structures in their bulk and belong to the hexagonal crystal
system. ZrS2 is known to possess P3̄m1 symmetry, whereas BiI3 belongs to the R3̄ space
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(b)(a)

a
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Figure 5.1: The top and the side view of (a) ML-ZrS2 and (b) ML-BiI3, where Sulfur (Iodine) is
represented by light yellow (light green) and dark yellow (dark green) colored balls belonging to
two different sublayers. Zr and Bi are shown by sky blue and red balls respectively.

group. Each layer of these materials is composed of three atomic layers with the metal
atoms (Zr/Bi) sandwiched between two layers of S/I. These atomic layers are stacked in
ABC form. Within each layer, the positively charged metal atoms occupy the centre of the
octahedra formed by the anions (made of S or I). The layers are bound together through
van der Waals interaction.

The top and side views of the relaxed structures of the monolayers are shown in Fig.
5.1. For ML-ZrS2, we obtain a lattice parameter of 3.69 Å, which is in excellent agree-
ment with that reported in previous studies. [56] The monolayer has a thickness (distance
between the positions of the atoms in the two anionic layers) of 2.90 Å. The interlayer
distance is about 3.70 Å and the Zr-S bond lengths are about 2.57 Å.
Our calculations yield a lattice parameter of 7.35 Å for the ML-BiI3. Zhang et al., using
non-local vdW density functionals (optB88-vdW), obtained a lattice parameter of 7.59
Å. [63] Calculations performed by Fengxian et al. with DFT-D3 vdW corrections yield a
lattice parameter of 7.64 Å. [128] We obtain the Bi-I bond lengths of 3.09 Å in the ML.
The I-I and Bi-I distances are 3.68 Å and 1.84 Å respectively.

To check the dynamical stability, we have calculated the phonon dispersion of the ZrS2,
BiI3 monolayers. The results are shown in Fig. 5.2 (a-b). We have not found any imagi-
nary modes for ML-ZrS2, whereas we have obtained slight phonon softening (smaller than
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Figure 5.2: The phonon band structures (a) ML-ZrS2 and (b) ML-BiI3

0.2 cm−1) near the zone center for ML-BiI3, which could be due to numerical inaccuracy.
Therefore, all the investigated systems are found to be dynamically stable at 0 K.

For ZrS2, the phonon frequencies extend up to about 350 cm−1 (Fig. 5.2(a)) while those
for BiI3, they extend till 150 cm−1 (Fig. 5.2(b)). This suggests that the stiffness of the
bonds is less in ML-BiI3 than ML-ZrS2, which is in accordance with the observed in-
crease in cation-anion bond length in these systems. Additionally for ZrS2, we do not
observe mixing of the longitudinal and acoustic modes over the complete BZ.

5.3.2 Temperature dependent renormalization of the band structure.

Fig. 5.3 shows the DFT and renormalized band structures of these monolayers. For each
case we observe an indirect band gap. While for ZrS2 (Fig. 5.3(a)) the valence band max-
ima (VBM) and the conduction band minima (CBM) are at the Γ and M -points of the BZ,
for BiI3 (Fig. 5.3(b)) the VBM is along the Γ → K direction (closer to the Γ point). In
addition to the DFT band structure, we have also plotted the renormalized band structure
at 0K (Fig. 5.3(a)-(b)) and 300 K ((Fig. 5.3(c)-(d)). The 0K renormalized band structure
corresponds to zero-point energy (ZPE) corrections to the band structure due to lattice
vibrations. While the positions of the VBM and CBM in the BZ are unaffected by the
band structure renormalization, we observe significant shifts in the renormalized energy
eigenvalues with the VBM (CBM) moving up (down) in energy. This results in significant
reduction in the band gaps. For example, in ZrS2, the renormalized band gap is reduced
from 1.16 eV to 0.51 eV at 0K. Similarly for BiI3 we observe a band gap reduction of
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Figure 5.3: The DFT band structure (black) and the renormalized ones at 0K (colored lines) for
(a) ML-ZrS2, (b) ML-BiI3 and at 300 K ((c) ML-ZrS2, (d) ML-BiI3). For the renormalized band
structure, the magnitude of the imaginary part of electron-phonon self energy is also shown. For
both the cases, the energy eigenvalues are shifted with respect to the Fermi energy. The Fermi
energy is taken to be at the middle of the band gap.
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Figure 5.4: The variation of the renormalized band gap as a function of temperature for (a) ML-
ZrS2 (left panel) and (b) ML-BiI3 (right panel).

about 0.25 eV. Fig. 5.4 shows the temperature dependence of the band gap. We find that
as the temperature is increased, the band gap reduces further. However, the rate at which
the reduction occurs is different in ZrS2 compared to that observed in BiI3. While for BiI3

monolayer the band gap reduces by 0.47 eV as the temperature is increased from 0K to
500 K, in the case of ZrS2 we observe a reduction of only 0.14 eV. This can be understood
from the phonon frequencies. One observes significant softening of the phonon frequen-
cies from ZrS2 to BiI3. As a result as the temperature is increased, it is easier to excite
more phonon modes in BiI3 compared to that in ZrS2 resulting in larger changes in the
temperature dependent band gap. A comparison of the changes in band gaps across these
materials due to ZPE corrections and temperature renormalization shows that while the
change in the band gap due to ZPE corrections does not show any trends as a function
of ionicity, the rate at which the band gap reduces as a function of temperature increases
with decrease in ionicity of the bonds.

In addition to the shifting of the band edges, we find that the band dispersion is also signif-
icantly altered due to renormalization. For both the cases we observe an enhancement of
curvature compared to the DFT band structure. The curvature increases with an increase in
temperature (Fig. 5.3(a)-(b) vs. Fig. 5.3(c)-(d)). To quantify the effect, we have computed
the effective masses of the electrons and holes along certain high symmetry directions in
these materials using the DFT band structure and the renormalized band structure. The
same is listed in Table 5.1. We find that for these cases the effective masses of both holes
and electrons are significantly reduced due to band structure renormalization.
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Table 5.1: Comparison of effective masses of electrons and holes in the monolayers between the
DFT-band structure and the renormalized band structure.

System Carrier type PBE band
Renormalized band
structure @ 300K

m∗ (zigzag) m∗ (armchair) m∗ (zigzag) m∗ (armchair)
(me) (me) (me) (me)

ZrS2 electron 0.29 2.08 0.11 0.61
hole 0.25 0.28 0.11 0.25

BiI3 electron 1.83 0.50 0.28 0.11
hole 0.52 1.16 0.11 0.14

For the renormalized band structure, we have also plotted the Im
∑EP

nk in the colour scale.
The inverse of Im

∑EP
nk is related to the life-time of carriers in that state. At 0K, we find

that electron and hole pockets in ZrS2 have similar and low values of Im
∑EP

nk (Fig. 5.3(a))
indicating a longer lifetime of the carriers. In contrast, Im

∑EP
nk at the electron and hole

pockets in BiI3 (Fig. 5.3(b))) have larger values compared to that observed in ZrS2. More-
over, in BiI3 Im

∑EP
nk for hole pockets are larger than that for electron pockets suggesting

that electrons in BiI3 will have a larger lifetime than holes. As the temperature is in-
creased to 300 K, we observe significant changes in the electron lifetime, particularly for
BiI3 ((Fig. 5.3(c)-(d)).

5.3.3 Computation of τ .

5.3.3.1 τ from electron-phonon coupling.

The temperature dependency of the imaginary part of the electron-phonon self-energy
(ImΣ) for the valence and conduction bands along high symmetry directions of the BZ is
shown in Fig. 5.5. The values of Im

∑EP
nk for BiI3 are larger than those observed for ZrS2.

Moreover, as expected, with rise in temperature the Im
∑EP

nk also increases suggesting
enhanced scattering of electrons due to a larger number of excited phonons. Furthermore,
by plotting the mode resolved Im

∑EP
nk (Fig. B.1 in the Appendix B) we find that for each

system only one optical mode have a dominant contribution. These modes are shown in
Fig. 5.5(c)-(d). For ZrS2 (Fig. 5.5(c)), these modes correspond to compression and expan-
sion of the monolayer along the direction normal to the plane of the monolayer. For BiI3

the vibrational motion corresponds to a more complex motion that involves rumpling the
BiI3 sheet. This result clearly shows that computing τ by ignoring the contribution of the
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optical modes, for this class of systems will clearly give erroneous results.

As mentioned in Section 5.2 the relaxation time of a carrier residing in a state labelled by
n and k (τnk) is related to the inverse of Im

∑EP
nk . Using the value of τnk we can compute

the average value of the relaxation time for a given band n (τnav), which is given by:

τnav =
∑
k

τn,kεn,k
εn,k

(5.4)

where the summation is over the complete BZ. The τav for the conduction (for electrons)
and valence bands (for holes) of these systems as a function of temperature is shown in
Fig. 5.5(e)-(f). We find that for both the valence and conduction bands τav decreases as
one moves from ZrS2 to BiI3 suggesting that in these systems τ decreases as the ionicity of
the material decreases. Additionally the difference of τav at a given temperature between
the conduction and valence bands increase from ZrS2 to BiI3. Since τ has a complex de-
pendence on the vibrational and electronic properties of a material and their coupling, it
is difficult to exactly identify the cause of such a difference. However, based on Fig. 5.5
(a)-(b), one can conclude that the phonons couple with the conduction band and valence
band electronic states differently in BiI3 while in ZrS2 both show similar coupling. As a
consequence, one observes different values of τ for electrons and holes in BiI3. For both
the materials the average relaxation times also reduce with increase in temperature.

5.3.3.2 τ from deformation potential theory.

In this section we compute the average relaxation time for the electrons and holes in these
materials from deformation potential theory. We note that the major difference between
the two methods is that in the latter the contributions to τav from the optical phonon modes
are neglected.

The values of C,Edp and τ computed from deformation potential theory are given in Table
5.2. We note that the value of C is larger for ZrS2 compared to that of BiI3. The coupling
strength between the electrons/holes and the acoustic phonons is indicated by |Edp|. For
both the systems, we find that |Edp| is larger for the holes than for the electrons suggest-
ing that holes couple more strongly to acoustic phonons than electrons. The anisotropy
in the transport properties is reflected in anisotropy of the effective masses of the charge
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Table 5.2: C, Edp and τ for the electrons and holes in ZrS2 and BiI3 monolayers.

System C Edp τ (10−14s)
(eV/Å2) (eV) T = 300 K T = 400 K T = 500 K

ZrS2 electron 5.34 -1.97 34.98 26.23 20.98
hole -7.38 7.06 5.30 4.24

BiI3 electron 1.40 -6.57 0.66 0.49 0.39
hole -7.38 0.64 0.48 0.39

carriers along the armchair and zigzag directions of the monolayer. Furthermore, the ef-
fective masses differ significantly depending on the system. Along the zigzag direction,
m∗ values for electrons and holes are larger in BiI3 compared to that observed in ZrS2. In
contrast, along the armchair direction, the electron effective mass decreases from ZrS2 to
BiI3.

The τ values for the electrons and holes in these monolayers, as a function of temperature,
are shown in Fig. 5.6 and also listed in Table 5.2 for some temperatures. In both the mate-
rials, over the complete temperature range considered in this study, τ values for electrons
are larger than those observed for holes. However, the magnitude by which the relaxation
times differ varies from system to system. While for ZrS2, the τ values for electrons are
about two orders of magnitude larger than those observed for holes, for BiI3 the difference
is much smaller.

A comparison of τ computed using EPIs (Fig. 5.5) and deformation potential theory
(Fig. 5.6) shows stark differences, not only quantitatively but also qualitatively. On the
quantitative side, the values of τ computed using deformation potential theory are overes-
timated by about two orders of magnitude compared to those obtained from EPIs. More-
over, the qualitative picture is also different. For example, in ZrS2, τ values computed
using EPIs show that τ values for electrons are slightly larger than those for holes, while
the difference is larger for BiI3. In contrast, the difference in the relaxation time between
holes and electrons obtained from deformation potential theory is larger for ZrS2 than
BiI3. These differences can be understood from the fact that in the case of deformation
potential theory we consider the coupling of the acoustic phonons only (which has negli-
gible contributions), while in these systems the coupling with the optical phonons is much
stronger as captured from the EPW calculations.
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5.3.4 Transport properties

5.3.4.1 Transport properties with τ obtained from EPIs and DP theory.

In this section we explicitly show the effect of τ obtained using EPIs and DP theory on
the transport properties of ZrS2. Fig. 5.7 shows the transport properties (within the con-
stant relaxation time approximation) as a function of carrier concentration computed using
EPIs and DP theory. Since the Seebeck coefficient is independent of τ , for both the cases
it remains unchanged (Fig. 5.7(a) and (d)). In contrast we find drastic changes in σ and
power factor, Fig. 5.7(b), (c), (e) and (f), respectively. Due to orders of magnitude differ-
ences in the values of τ using the two theories, we observe orders of magnitude changes
in the value of σ and power factor. We note that our results for the calculation of the
transport properties using DP theory are in excellent agreement with those reported by Lv
et al. [56], where they have obtained the results using DP theory. These results suggest
that it is imperative to compute τ for these systems by explicitly considering the electron-
phonon coupling.

5.3.4.2 Effect of CRTA and EPIs on transport properties.

In order to understand the effectiveness of the CRTA and the effect of the band structure
renormalization on the transport properties, we have computed S, σ, power factor (S2σ)
and κe at room temperature for the monolayers. In each case, the transport coefficients
have been computed in four different ways: (a) using DFT band structure and band gap
within CRTA [DFT-BS (τCRTA)], (b) using DFT band structure and band gap with τnk for
each band [DFT-BS (τb-CRTA)], (c) using DFT band structure and renormalized band gap
within CRTA [EPW-gap+DFT-BS (τCRTA)], (d) using renormalized band structure and
band gap within CRTA [EPW-gap+EPW-BS (τCRTA)]. For both the cases we have used
the values of τ obtained from the EPW calculations. A comparison between (a) and (b)
enables us to understand the effectiveness of the CRTA while that between (a) and (c)
highlights the effect of the band gap on the transport properties. Comparing (c) and (d)
will help us in understanding the importance and influence of the changes in the transport
properties due to changes in the band structure because of the finite temperature effects.
The results as a function of chemical potential (µ) at 300K are plotted in Fig. 5.8. Nega-
tive (positive) values of µ implies hole (electron) doping.
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Going beyond the CRTA and using explicit values of τ yield values of S that are similar
to those obtained within CRTA, at least for the range of chemical potential considered in
this study (black and green dashed lines in Fig. 5.8(a)-(b)). However, for σ, we observe
small changes as one goes beyond CRTA. For the systems considered in our study, we
observe that the changes are more for electrons compared to holes. While at low hole
doping concentration we do not observe significant changes in the values of σ obtained
within CRTA and using explicit values of τ for each electronic state, at higher doping
concentration small changes are observed in the magnitude of σ (black and green dashed
lines for negative values of µ in Fig. 5.8(c)-(d)). In contrast, for electrons, there are differ-
ences in the values of σ obtained using the two methods. These differences increase with
the increase in the doping concentration. Consistent with the changes in the values of S
and σ, we observe small changes in the values of power factor (PF) as one goes beyond
the constant relaxation time approximation (Fig. 5.8(e)-(f)). Similar to that observed in
the case of conductivity, we note that the changes in PF for the electrons are larger than
that observed for holes. Additionally, we have also studied the effect of the two methods
on estimates of electronic contribution to thermal conductivity (κe) (Fig. 5.8(g)-(h)). We
find that the changes in κe follow the changes in σ.

In contrast with the choice of τ , i.e. CRTA or beyond CRTA, used to compute S, the
magnitude of the band gap significantly alters the values of Seebeck coefficient observed
for these systems. As observed in Fig. 5.8(a)-(b) (black vs. red plots) we find that the
maximum value of Seebeck coefficient is significantly reduced with the decrease in the
band gap. In case of σ and PF, the band gap results in shift of the σ plots (black vs. red
lines in Fig. 5.8(c)-(d), (e)-(f)). This implies that with the decrease in the band gap, it is
possible to achieve the same value of conductivity and PF at smaller doping concentration.

A comparison of the red and blue plots in Fig. 5.8 highlights the effect of the band struc-
ture renormalization on the transport properties. The modified band structure slightly
enhances the maximum value of Seebeck coefficient. For the Seebeck coefficient, the ef-
fect of the band structure renormalization is quite small because S being the ratio of the
first and zeroth moments of the generalized transport coefficients, the effect due to the
changes in the band structure is almost nullified. However, the effect is stronger for σ.
In the monolayers considered in this study, the effect is stronger on the holes compared
to that in electrons (Fig. 5.8(c)-(d)). While for the electrons the overall shape of the con-
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ductivity plots is similar, for the holes we not only observe changes in their magnitude
but also changes in their shape. For example, in ZrS2 monolayer, σ computed with the
renormalized band structure shows a peak at µ=-0.62 eV which was not observed when
computed with the DFT band structure. The large changes in the σ for the holes due
to band structure renormalization are also reflected in the computed PF. Particularly, in
ZrS2, the presence of a peak in σ at µ =-0.62 eV results in a significant enhancement in
the power factor. As observed in the previous cases, the changes in κe follow the changes
in σ.

5.4 Summary

In conclusion, we have studied the effect of electron-phonon interactions on the transport
properties of two ionic monolayers, namely, ZrS2 and BiI3. Furthermore, we also evalu-
ated the validity of the constant relaxation time approximation. EPI affects the transport
properties in two ways: (a) the relaxation time of the carriers and (b) the renormalization
of the band structure. Our calculations show that for ionic systems it is crucial to incorpo-
rate the effect of scattering of electrons by optical phonons because this is the dominant
scattering channel for the carriers in these systems. Neglecting the contributions of the
scattering of charge carriers by optical phonons results in overestimation of relaxation
times by two orders of magnitude. Comparison of the computed values of τ obtained
within CRTA and beyond CRTA shows that for heavy doping it might be important to go
beyond CRTA to make reasonable estimates of the transport coefficients. Additionally,
our results also show that in these systems, since the EPI results in significant changes in
the band gap and the band structure, it is important to consider these effects in order to pre-
dict or understand the transport properties of ionic solids. For these materials we find that
the band gap decreases faster with temperature as the ionicity decreases. Moreover, the
relaxation time due to electron-phonon scattering also reduces as the ionicity decreases.
We hope that our results will motivate further investigations on other low-dimensional
ionic materials.
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Figure 5.5: The imaginary part of the electron self-energy for the conduction (solid lines) and
valence band (dashed lines) for ML-ZrS2 (a) and ML-BiI3 (b) at 300 K (black), 400 K (red)
and 500 K (blue). The vibrational patterns of optical modes at Γ point which have the largest
contribution to ImΣn,k are shown for ML-ZrS2 and ML-BiI3 in (c-d). The average relaxation
times for electrons (blue) and holes (red) as a function of temperature for the ML-ZrS2 (e) and
ML-BiI3 (f) are also shown.

— [ 79 ] —



0

5

10

15

20

25

30

35

300 400 500 600

τ
a
v
(1

0
-1

4
s)

T(K)

ZrS2

τe
τh

0.3

0.4

0.5

0.6

0.7

300 400 500 600
τ
a
v
(1

0
-1

4
s)

T(K)

BiI3

τe
τh

(a) (b)

Figure 5.6: The average relaxation time estimated using deformation potential theory for electrons
(blue) and holes (red) as a function of temperature for (a) ZrS2 and (b) BiI3 monolayers.
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Figure 5.7: Comparison of the transport properties for n-type (solid lines) and p-type (dashed
lines) doping of ML-ZrS2 at 300 K, where τ for the charge carriers is obtained using EPIs (top
panel) and deformation potential approximation (bottom panel).
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show plots of α, σ, power factor (S2σ) and κe, respectively. The left and right panels are for ZrS2,
BiI3 respectively.
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Appendix A

A.1 Computational details

We have used a q-mesh of (1× 1× 1) to sample the Fock operator in Gaussian attenuated
Perdew-Burke-Ernezerhof (Gau-PBE) hybrid functional calculations for all the configu-
rations. [109]

A.2 Determination of U

In order to choose an appropriate value of U, we first computed the band gap for bulk
BaCu2Se2 varying U from 4 eV to 12 eV and with Gau-PBE hybrid functional. We ob-
served that while for PBE the computed band gap is 0.69 eV, for U=4 to 12 eV the band
gaps varied from 0.96 eV to 1.23 eV. These values are significantly lower than the exper-
imental value of 1.80 eV and that of 1.85 eV, computed with Gau-PBE. Since the value
of U is already quite large and the band gap does not increase significantly (tripling U
resulted in an increase in the band gap by 0.27 eV), we decided to choose the value of
U that results in similar hybridization of Cu-3d and Se-4p as observed in the Gau-PBE
calculations. We chose hybridization as a criterion because while band gap affects the
transport properties primarily through change of carrier concentration, the hybridization
will affect the band dispersion and thereby result even in qualitative changes of the trans-
port properties.

In order to choose the appropriate value of U, we computed the DOS of the Al-doped
system with U = 4 eV and 12 eV and compared them with the more accurate Gau-PBE
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hybrid functionals. The density of states projected on the atomic orbitals of Ba, Cu and Se
atoms in Al-doped BaCu2Se2 computed using Gau-PBE hybrid functionals and PBE+U
with two different values of U parameter (Fig. A.1 (a-c)). Gau-PBE calculations show that
the valence band is comprised of electronic states of Se-4p and Cu-3d orbitals whereas the
conduction band is composed of Ba-5d orbitals. These features are preserved in PBE+U
calculations with U=4 eV. However, with U=12 eV, we observe a splitting between the
electronic states of Cu-3d and Se-4p. Cu-3d states are shifted downwards with larger U
value. Therefore, we have performed all the electronic and transport calculations with
PBE+U (4 eV) that are inexpensive computationally relative to Gau-PBE calculations.
Similar features are observed for Ga, In and Tl-doped configurations.
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Figure A.1: The projected DOS of Al-doped BaCu2Se2 computed at the level of (a) Gau-PBE (b)
PBE+U (4 eV) and (c) PBE+U (12 eV). The dopant atom occupies Cu1-site. The VBM is set to
zero in all the cases.

A.3 Effect of doping BaCu2Se2

Fig. A.2 (a) and (b) show the T1 and T2 tetrahedra when Al is doped on Cu1 and Cu2-
sites respectively. The corresponding projected projected DOS of nearest neighbouring
atoms and the dopant are shown in Fig. A.2 (c-d). Table A.1 shows the bond distances
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of dopant atoms with neighbouring Se atoms in doped configurations and corresponding
bond distances in pristine system. We notice that bond distances increase while going to
Al to Tl in all the doped configurations due to increase in atomic size of dopant while
moving down the group.
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Figure A.2: Al doped on Cu-site in (a) T1 and (b) T2 tetrahedron. T1 and T2 tetrahedra are rep-
resented by red and blue color respectively. The projected DOS of Al-doped BaCu2Se2 computed
at the level of PBE+U when Al occupies (c) Cu1 and (d) Cu2-site. The VBM is set to zero in all
the cases.
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Table A.1: Bond distances in the tetrahedra T1 and T2 for pristine and doped configurations. All
the distances are in Å.

Pristine Dopants on Cu1-site
Cu1-Se Al-Se Ga-Se In-Se Tl-Se

2.59 2.78 2.83 2.97 3.00
2.59 2.78 2.83 2.97 3.00
2.54 2.61 2.74 2.83 2.88
2.54 2.74 2.76 2.91 3.00
Pristine Dopants on Cu2-site
Cu2-Se Al-Se Ga-Se In-Se Tl-Se
2.50 2.64 2.74 2.83 2.89
2.50 2.64 2.74 2.83 2.89
2.52 2.67 2.78 2.96 2.97
2.62 2.79 2.85 3.00 3.00
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Appendix B

Table B.1: Pauling electronegativity (EN ) values for the different elements present in the mono-
layers [3]. Difference between the electronegativity (∆EN ) of the elements present in the mono-
layers.

Element EN
Zr 1.33
Bi 2.02
I 2.66
S 2.58
System ∆EN
ZrS2 1.25
BiI3 0.64
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B.1 Mode-resolved imaginary part of electron-phonon self-
energy

0

100

200

300

400

500

600

700

(a)

M Γ K M

M
o

d
e-

se
p

a
ra

te
d

Σ
V

B
(m

eV
)

ZrS2

A1g
Eg
Eg

A2u
A2u
Eu
Eu
Eu
Eu

0

100

200

300

400

500

600

700

(c)

M Γ K M

M
o

d
e-

se
p

a
ra

te
d

Σ
C

B
(m

eV
)

A1g
Eg
Eg

A2u
A2u
Eu
Eu
Eu
Eu

0

100

200

300

400

500

600

700

800

900

1000

1100

(d)

M Γ K M

M
o
d

e-
se

p
a
ra

te
d

 Σ
C

B
(m

eV
) Ag

Ag
Ag
Ag
Eg
Eg
Eg
Eg
Eg
Eg
Eg
Eg

Au
Au
Au
Au
Eu
Eu
Eu
Eu
Eu
Eu
Eu
Eu

0

100

200

300

400

500

600

700

800

900

1000

1100

(b)

M Γ K M
M

o
d

e-
se

p
a

ra
te

d
 Σ

V
B

(m
eV

)

BiI3

Ag
Ag
Ag
Ag
Eg
Eg
Eg
Eg
Eg
Eg
Eg
Eg

Au
Au
Au
Au
Eu
Eu
Eu
Eu
Eu
Eu
Eu
Eu

(e) (f)

Figure B.1: The mode resolved imaginary part of electron-phonon self energy for the valence (top
panels (a-b)) and conduction (middle panels (c-d)) bands for the ML-ZrS2 and ML-BiI3 at 300
K, where contribution from various modes are shown by different colors. The largest contribution
to ImΣn,k due to optical modes is shown by red curves in each case. The vibrational patterns
of optical modes at Γ point with dominant contribution to ImΣn,k are shown for ML-ZrS2 and
ML-BiI3 in (e-f).

— [ 87 ] —



Bibliography

[1] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, Iterative
minimization techniques for ab initio total-energy calculations: molecular dynam-
ics and conjugate gradients, Rev. Mod. Phys. 64, pp. 1045–1097 (1992). xii, 23,
24

[2] Grimme Stefan, Semiempirical GGA-type density functional constructed with a
long-range dispersion correction, Journal of Computational Chemistry 27(15), pp.
1787–1799 (2006). xvii, 49, 50, 66

[3] R. L. Keiter J. E. Huheey, E. A. Keiter and O. K. Medhi, Inorganic Chemistry,
Pearson Education India 4 edition (2006). xvii, 86

[4] Marta Rull-Bravo, Alberto Moure, JF Fernández, and Marisol Martı́n-González,
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