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Abstract

The Coleman maps are an important tool in arithmetic geometry and Iwasawa theory.

Perrin-Riou has constructed Coleman maps for any crystalline p-adic representation

of Gal(Qp/Qp). The case of the one dimensional representation produces the simplest

example of a Coleman map, described in chapter 1. Another example is that of the

Tate module of an elliptic curve which is the subject of study of this thesis. We

have followed the elementary proof of Shinichi Kobayashi in understanding the first

derivative of the Coleman map for an elliptic curve.
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Chapter 1

Coleman power series from norm
coherent sequences

In this section we construct the simplest of the many Coleman maps that arise in

Iwasawa theory.

Let us fix the notation for the this section:

• Kn = Qp(µpn) and K∞ = ∪∞n=0Kn

• G = Gal(K∞/Qp) ∼= Z×p

• U∞ = lim←−nO
×
Kn

is the inverse limit of O×Kn under the relative field norm map.

Definition 1.1. An element of U∞ shall be called a norm-coherent sequence of
units in the tower (Kn)n.

We will prove the following theorem.

Theorem 1.1. For every ~u = (un)n in U∞ there exists a unique f~u(T ) in Zp[[T ]] such that
f~u(ζpn − 1) = un for each n ≥ 0.

The above theorem was proved first by Coates and Wiles but soon after Coleman

found a more conceptual proof in for the general case of Lubin-Tate extensions. Lubin-

Tate extensions are generalisations of cyclotomic extensions: They are obtained by

attaching to Qp (or more generally a finite extension of Qp) zeros of certain special

2



1.1. NORM AND TRACE OPERATORS OF COLEMAN 3

power series. The more general and cumbersome result can be found in [8], Theorem

2.2. Throughout this chapter let πn denote ζpn − 1 and let R denote Zp[[T ]].

Example 1.0.1. Let a and b be non-zero integers which are relatively coprime to p.
Define

~c = (cn), where cn =
ζ
a/2
pn − ζ

−a/2
pn

ζ
b/2
pn − ζ

−b/2
pn

Then we can easily see that ~c ∈ U∞. It is also obvious that cn = f~c(πn) where

f~c(T ) =
(1 + T )a/2 − (1 + T )−a/2

(1 + T )b/2 − (1 + T )−b/2
∈ Zp[[T ]]×.

The uniqueness of f~u(T ) in Theorm 1.1 can be very easily derived from p-adic
Weierstrass preparation theorem:

Theorem. Any f ∈ R can be written uniquely as pmf(T )g(T ) wherem is a non-negative
integer, f(T ) a monic polynomial with every non-leading coefficient in the maximal
ideal pZp, and g(T ) ∈ R×.

So any power series can have only finitely many zeros and hence any two power

series’s agreeing at infinitely many points must be the same.

1.1 Norm and Trace operators of Coleman

Let R carry the topology induced by the maximal ideal m = (p, T ). That is, the open

sets are generated by the unions and finite intersections of translates of the powers

of the maximal ideal: the topology generated by the set {a + mk, | k ≥ 1, a ∈ R}. For

f ∈ R, let φ(f) denote the power series f((1 + T )p − 1). We can easily see that φ is a

Zp-algebra endomorphism. Full proofs of all the statements below are in chapter 2 of

[2].

Theorem 1.2. There exist unique continuous maps N and ψ from R to R satisfying

(φ(N (f))(T ) =
∏
ξ∈µp

f(ξ(1 + T )− 1)

(φ(ψ)(f))(T ) =
1

p

∑
ξ∈µp

f(ξ(1 + T )− 1)
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In addition, ψ is a Zp-module homomorphism and satisfies ψ · φ = idR. Products are
preserved under N , consequently N (R×) ⊆ R×.

The maps N and ψ above are called the Coleman norm operator and Coleman
Trace operator respectively.

Lemma 0.1. 1. Let f ∈ R×. Then we have N (f) ≡ f mod pR.

2. If f ≡ 1 mod pmR for some integer m ≥ 1, then N (f) ≡ 1 mod p1+nR.

Corollary 1.2.1. 1. Let f ∈ R×, and k1 ≤ k2 be two non-negative integers. We have

N k1(f) ≡ N k2(f) (mod pk1R).

2. For any element f in R× the limit g = limk→∞N k(f) exists and it satisfiesN (g) = g.

To prove Theorem 1.1 we take an arbitrary sequence (un)n from U∞. For each

un we have a corresponding fn ∈ R× such that fn(πn) = un. This can be done since

OQp(µpn ) = Zp[ζpn ]. Define gn(T ) := N n(f2n)(T ). By the compactness of R, the sequence

(gn(T ))n in R has a convergent subsequence, tending to h(T ). We have the following

Lemma 0.2. For all n ≥ 0 and all m ≥ n, gm(πn) ≡ un mod p1+n.

In particular, by taking m→∞ above, we get

lim
m→∞

gm(πn) = h(πn) = un.

We can take h(T ) to be f~u(T ) and Theorem 1.1 is verified.

1.2 Significance of the Coleman map

Definition 1.2. Let D be the operator on R given by D(f)(T ) = (1 + T )f ′(T ). For each

k ≥ 1, define the higher logarithmic derivative δk : U∞ → Zp by

δk(~u) := Dk−1

(
(1 + T )f ′~u(T )

f~u(T )

)∣∣∣∣∣
T=0

.
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where f~u(T ) is the Coleman power series corresponding to the norm coherent se-

quence ~u.

Lemma 0.3. Each δk is a group homomorphism satisfying

δk(σ(~u)) = χ(σ)kδk(~u).

for all ~u ∈ U∞ and σ ∈ G.

The next result due to Kummer computes the value of higher logarithmic

derivative for the cyclotomic units ~c(a, b) defined above (1.0.1).

Theorem 1.3.

δk(~c(a, b)) =

0 k = 1, 3, 5, . . .

(bk − ak)ζ(1− k) k = 2, 4, 6, . . .

where ζ is the classical Riemann zeta function.

Proof. See chapter 2 of [2]. ♣

We can see from the above theorem how the values of the classical zeta function

are related to the higher logarithmic derivatives of cyclotomic units ~c(a, b). In fact,

we have the following theorem that makes precise how to p-adically interpolate the

classical ζ function.

We derive the p-adic zeta function by interpolating the values of classical zeta

function at negative integers, with a factor involving p called the Euler factor. We

want to get a function from Zp to the p-adic complex numbers, integral of whose k-th

power over Zp is related to values of the classical zeta function at negative integers.

It turns out that we actually get a map from Z×p and not Zp. We discuss briefly p-adic

measures below:

Let X be a compact open subset of Qp, which will usually be Zp or Z×p . A p-adic

distribution µ on X is a map from the collection of compact open sets in X to Qp

which is disjoint additive, i.e., we have

µ
( k⋃
i=1

Ui
)

=
k∑
i=0

µ(Ui)
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whenever k is a natural number and Ui’s are mutually disjoint. A measure on X is a

distribution which is bounded, i.e., there is a B > 0 such that

|µ(U)|p ≤ B

for all compact open sets U in X. An example is the Haar distribution µHaar on Zp
defined by

µHaar(a+ pnZp) =
1

pn
.

We can easily see that this a distribution invariant under translation.

More generally, if B is a profinite abelian group (which is mostly Zp or Z×p ) we

can define a p-adic distribution on B to be a map from the collection of compact-

open sets of B to Qp (or Cp) which is disjoint additive. The group B has a base of

neighbourhoods around the identity given by open normal subgroups {H}. So any

compact open subset of B is a finite union of cosets of H’s. It is hence enough to

know the value of the measure on these cosets of H. The above idea can be nicely

formulated using the Iwasawa algebra of B.

We define the Iwasawa algebra of B to be the inverse limit

Λ(B) := lim←−Zp[B/H]

where the inverse limit is by natural projections induced by the Zp[B/K]→ Zp[B/H]

whenever K is a subgroup of H.

For an element λ of Λ(B), let its image in Zp[B/H] be written as
∑

x∈B/H
cH(x)x. We

can think of λ as assigning the p-adic integer to the subset x of B. The inverse limit

condition implies that this assignment is additive w.r.t. the cosets. Hence we can

think of λ as a p-adic integral distribution on the group B. Since the coefficients are

in Zp, it is also a measure.

We want to construct the p-adic analogue of the Riemann zeta function, which

has a pole at 1. To take into account this fact (the p-adic zeta function also has a

pole at 1.), we introduce the concept of a pseudo-measure.

Let Q(B) be the localisation of Λ(B) outside the set of zero-divisors. An element
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λ of Q(B) is called a pseudo-measure if

(g − 1)λ ∈ Λ(B)

for all g in B.

Theorem 1.4. There exits a unique pseudo-measure ζ̃p on G such that

∫
G

χ(g)k dζ̃p =

0 k = 1, 3, . . .

(1− pk−1)ζ(1− k) k = 2, 4, . . .

Proof. This is Proposition 4.2.4 in [2]. ♣



Chapter 2

The Tate Elliptic Curve

By the theory of Weierstrass ℘ function for any elliptic curve E defined over C the

solution set E(C) is isomorphic to a torus C/Λ for some unique lattice Λ. We naturally

want to look at the p-adic analogue of the above construction. A lattice is a discrete

subgroup. In Qp or any p-adic field (any finite extension of Qp) K there are no non-

trivial discrete subgroups. Given any subgroup Λ ↪→ Qp, 0 is a limit point in Λ since

given any a 6= 0 the sequence (apn)n≥0 converges to 0. So the above approach may fail.

However the multiplicative group Q×p (and also K×) has discrete subgroups. For

example, the subgroup generated by p, pZ is a discrete subgroup in Q×p since the only

limit point of pZ in Qp is 0 which is not in pZ. In fact, if K is any finite extension Qp

with the norm | · | and q ∈ K× with | q |< 1, then for a certain elliptic curve Eq, Eq(K)

is isomorphic to K
×
/qZ.

Definition 2.1. Let K be a p-adic field and let q ∈ K× with | q |< 1. Then we define

the Tate curve Eq to be the curve defined by the equation

Eq : y2 + xy = x3 + a4(q)x+ a6(q)

where a4(q) = −s3(q), and a6(q) = −5s3(q)+7s5(q)
12

, for

sk(q) =
∑
n≥1

nkqn

1− qn

8
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Theorem 2.1. (Tate)

1. The series a4(q) and a6(q) converge in K.

2. The Tate curve is an elliptic curve over K with discriminant

∆ = q
∏
n≥1

(1− qn)24

and the j-invariant

j(Eq) =
1

q
+
∑
n≥0

c(n)qn

where each c(n) is an integer.

3. There exists a group isomorphism via an analytic map

φ : K
×
/qZ ∼= Eq(K)

sending
u (X(u, q), Y (u, q)), u ∈ K×

where
X(u, q) =

∑
n∈Z

qnu

(1− qnu)2
− 2s1(q)

Y (u, q) =
∑
n∈Z

(qnu)2

(1− qnu)3
+ s1(q)

and φ(u) = O if u ∈ qZ.

4. The map φ above respects the action of the Galois group G(K/K), i.e.,

φ(σ(u)) = σ(φ(u))

for all u ∈ K×, σ ∈ G(K/K).

5. For any algebraic extension L/K, φ induces an isomorphism

L×/qZ
∼−→ Eq(L).

Proof. See Theorem 3.1 of [9]. ♣
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We considered above a special type of curve called Tate curve. The j-invariant

of the Tate curve is of the form ≡ 1
q

(mod Zp[[q]]) so we have | j(Eq) |> 1 as a necessary

condition for a Tate curve. By the following result of Tate the converse is also true,

that is, an elliptic curve can be brought to Tate curve form if | j(Eq) |> 1.

Theorem 2.2. (Tate) Let K be a finite extension of Qp, let E/K be an elliptic curve with
| j(E) |> 1. Then there exists a unique q ∈ K× with | j(Eq) |> 1 so that E is isomorphic
to the Tate curve Eq via an isomorphism defined over K.

In this thesis we shall consider the Tate curve.



Chapter 3

Structure of the p-adic Tate module

3.1 p-adic representations

In this section we define a p-adic representation and give some examples:

cyclotomic character

Let K be the algebraic closure of the field K. Let σ be an element of G(K/K). The

roots of the polynomial
xp

n − 1

xpn−1 − 1
are permuted by σ, we get the following equation,

for every natural number n:

σ(ζpn) = ζanpn , for some integer an ⊥ pn.

ζpp1+n = ζpn

σ(ζpp1+n) = σ(ζp1+n)p = σ(ζpn)

ζ
pa1+n
p1+n = ζ

a1+n
pn = ζanpn .

implying that
a1+n ≡ an mod pn, for all n.

11
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Hence the sequence (. . . , a2, a1) defines an element of Z×p . This gives a map

G(K/K)
χp−→ Z×p (3.1)

defined by
σ(ζpn) = ζ

χ(σ)
pn . (3.2)

It is straightforward to see that the above map χp is a group homomorphism. In

general it does not possess any special property like injectivity or surjectivity. The

subgroup G(K/K(µp∞)) of G(K/K) is contained in the kernel of χp, therefore χp factors

through
G(K/K)

G(K/K(µp∞))
∼= G(K(µp∞)/K). We get a map

G(K(µp∞)/K)→ Z×p

which shall also be denoted by χp. The new map is easily seen to be a bijection when

K = Qp which we shall call the (p-adic) cyclotomic character.

Definition 3.1. • Let L/K be a Galois extension. A p-adic representation V is

a finite dimensional Qp-vector space V with a continuous Qp-linear action of

G = Gal(L/K).

• Let V be a p-adic representation of G of dimension d. A lattice in V is a free

sub-Zp-module of rank d.

• A Zp-representation of G is a finitely generated free Zp-module with a continuous

Zp-linear action of Zp.

Example 3.1.1. • We have the trivial representation Qp, with the action of G give
by σ · a = a for all a ∈ Qp and σ ∈ G.

• Given two representations V1 and V2 we can define their tensor product V1 ⊗Qp V2

with σ · (v1 ⊗ v2) := σ · v1 ⊗ σ · v2.

• Given a representation V we can form its dual V ∗ = Hom(V, Qp). If σ ∈ G and
φ ∈ V ∗ then σ · φ ∈ V ∗ is given by σ · φ(v) := φ(σ−1 · v). V ∗ is called the dual
representation of V .

• If M is a Zp or Qp-representation with the action · of G(Qp/Qp), then M(r) for
r ∈ Z will denote the same underlying module with the new action ? of G(Qp/Qp)



3.1. P -ADIC REPRESENTATIONS 13

obtained by twisting · by the r-th power of the cyclotomic character G(Qp/Qp)
χ−→

Z×p .
σ ? m := χ(σ)r ·m.

M(r) is called the r-th Tate twist of M .

3.1.1 Some examples

In this section we will consider some natural examples of p-adic representations and

Zp-representations that occur in the thesis.

The Tate module of the multiplicative group Gm

For a field F let µpn(F ) be the set of all pn-th roots of unity in F . Consider a perfect

field K. We have µpn(K) ∼= Z/pnZ. We can form an inverse system of these groups:

Define the the Tate module of the multiplicative group Gm to be

Tp(Gm) := lim←−
n∈N

µpn(K).

Tp(Gm) is a free Zp-module of rank 1. The Galois module structure of Tp(Gm) will be

discussed in section 3.2 where we will see that it is isomorphic to the Tate twist of

the Zp by the cyclotomic character, i.e., Zp(1).

The p-adic Tate module of an elliptic curve

Let p be a prime number. The p-adic Tate module T = Tp(E) of the elliptic curve E is

the inverse limit of the groups of pn-torsion points of E(K).

T = lim←−
n∈N

E(K)[pn]

where the inverse limit is taken over the multiplication-by-p-map.

By Theorem 2.1, part 3 above, we get an easy way of determining the structure of

the p-adic Tate module T and the action of G = Gal(K/K) on it for the Tate curve

E = Eq. First we determine the structure of E[pn] as a Z/pnZ-module and by taking
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inverse limit we get the Zp-module structure of T .

3.2 p-adic Tate module of the Tate curve

Let K be a finite extension of Qp and let E = Eq be a Tate curve defined over K. By

part 3 of 2.1 above, one has

Eq(K)[pn] ∼= {α ∈ K×/qZ | αp
n ∈ qZ}.

We fix two sequences ε(n) and q(n) for n ≥ 0 in K
×

satisfying the relations

(ε(n))p
n

= 1, (q(n))p
n

= q, (ε(1+n))p = ε(n) and (q(1+n))p = q(n) ∀n ≥ 0,

with ε(1) 6= 1. Any element α can be represented upto qZ as q(n)j1ε(n)j2 for some unique

integers j1 and j2 in {0, 1, . . . , pn − 1}. The automorphism σ ∈ G(K/K) acts on ε(n) by

the cyclotomic character χ : G −→ Z×p , the action being

σ(ε(n)) = (ε(n))χ(σ).

We have
(σ(q(n)))p

n

= σ((q(n))p
n

) = σ(q) = q = (q(n))p
n

,

so
(σ(q(n))/q(n))p

n

= 1.

Hence there is a unique integer c(n) ∈ {0, 1, . . . , pn − 1} such that

σ(q(n)) = q(n)(ε(n))c(n).

So Eq(K)[pn] is a free Z/pnZ-module of rank 2. The Galois action is compatible with

respect to taking p-th power. When we form the inverse limit of Eq(K)[pn], we get a

module over the inverse limit lim←−Z/pnZ = Zp. We write e for the inverse limit of the

sequence ε(n) and f for the inverse limit of q(n). Zpe is the additive notation for the

module Zp(1) := lim←−
n

µpn(Q×p ). Written additively, one gets σ(e) = χ(σ)e, σ(f) = f + c(σ)e,

hence the following

Theorem 3.1.
T ∼= Zpe⊕ Zpf
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The action of σ w.r.t. the basis (e, f) is given by the 2× 2 matrix(
χ(σ) c(σ)

0 1

)
.

The map σ  c(σ) is a member of H1(K,Zp(1)).

Proof. The only fact remaining to be proved is that c is a cocycle. For that, we observe

that

(σ1σ2) · f = σ1 · (f + c(σ2)e)

= σ1 · f + σ1(c(σ2)e)

= f + c(σ1)e+ c(σ2)χ(σ1)e

= f + (c(σ1) + χ(σ1)c(σ2))e

= f + c(σ1σ2)e

=⇒ c(σ1σ2) = c(σ1) + χ(σ1)c(σ2)

♣



Chapter 4

Formal group of an elliptic curve

In this section we define formal group laws and describe the formal group of an

elliptic curve. First we’ll discuss some general examples about formal groups. Let’s

take an elliptic curve given by the Weierstrass form:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

Make the change of variables

z = −x
y

and w = −1

y

so that we have
x =

z

w
and y = − 1

w
.

The advantage of doing so is that the point at infinity O is brought to the origin, (0, 0).

The Weierstrass equation above then takes the form

w = z3 + a1zw + a2z
2w + a3w

2 + a4zw
2 + a6w

3 = f(z, w).

We want to solve for w as a power series in z. That is, we want a w(z) ∈ Z[a1, . . . , a6][[z]]

satisfying
w(z) = f(z, w(z)).

To this effect we have the following

Theorem 4.1. There exists a unique power series w(z) = z3(1+A1z+. . .) ∈ Z[a1, . . . , a6][[z]]

16
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satisfying
w(z) = f(z, w(z)).

Proof. See Proposition 1.1 of [10]. ♣

Since we know w in terms of z, we can also find x and y in terms of z. We derive

the following Laurent series expansion for x and y,

x(z) =
z

w(z)
=

1

z2
− a1

z
− a2 − a3z − (a4 + a1a3)z2 − . . . ,

y(z) = − 1

w(z)
= − 1

z3
+
a1

z2
+
a2

z
+ a3 + (a4 + a1a3)z − . . . .

Considering the equation y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 formally, the ordered

pair (x(z), y(z)) provides a solution formally. We observe that in the expansion for x(z)

and y(z) above, only finitely many terms have z in the denominator. This suggests

that if we take a ring R complete with respect to a maximal ideal M with fraction

field K and allow z to take values from M the ordered pair (x(z), y(z)) is actually a

point on the elliptic curve defined over K. Hence we get a map

M ι−→ E(K), z  (x(z), y(z)). (4.1)

If for z1, z2 ∈ M we have (x(z1), y(z1))= (x(z2), y(z2)) then z1 = −x(z1)
y(z1)

= −x(z2)
y(z2)

= z2. So

the map above in one-one.

We would like to have a group structure on M such that the map ι becomes a

homomorphism. For this we need the concept of formal groups.

4.1 Formal groups

Definition 4.1. Let R be a commutative ring. Then a one-parameter commutative
formal group law or simply a formal group law is a power series F (x, y) ∈ R[[x, y]]

such that

• F (x, 0) = x

• F (x, y) = F (y, x)
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• F (x, F (y, z)) = F (F (x, y), z)

We often write x+F y for F (x, y) for convenience. It can be seen that the above condi-

tions are nothing but the requirement that the composition law +F be commutative

and associative, and that 0 acts as the identity element.

We sometimes use the term formal group to mean a formal group law.

Example 4.1.1. Let R = Z.

• The formal additive group, denoted by Ĝa, is defined by to be the usual addition

F (x, y) = x+ y.

• The formal multiplicative group, denoted by Ĝm, is defined by

F (x, y) = x+ y + xy = (1 + x)(1 + y)− 1.

Theorem 4.2. If F is a formal group law over R then

1. F (x, y) = x+ y + higher degree terms.

2. There exists a unique power series i(x) ∈ R[[x]] such that x+F i(x) = 0.

Proof. See Lecture 10, section 2 in [4]. ♣

Definition 4.2. Let F and G be formal group laws over R. Then a homomorphism
from F to G is a power series f(x) ∈ R[[x]] such that

f(F (x, y)) = G(f(x), f(y)) i.e., f(x+F y) = f(x) +G f(y).

f is said to be an isomorphism if ∃ g ∈ R[[x]] such that f(g(x)) = g(f(x)).

We observe by looking at the linear terms in the equation f(F (x, y)) = G(f(x), f(y))

that f has no constant term. Further it can also be seen that f is an isomorphism if

and only if f ′(0) is a unit in R.
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Example 4.1.2. Let Ĝm be the formal multiplicative group x + y + xy and Ĝa be the
additive formal group x+ y. Consider the formal power series

L(x) =
∑
n≥1

(−1)n−1x
n

n
and E(x) =

∑
n≥1

xn

n!
.

These power series have zero constant term and it is easy to see the following identi-
ties

L◦R(x) = x, R◦L(x) = x, L(Ĝm(x, y)) = Ĝa(L(x), L(y)), E(Ĝa(x, y)) = Ĝm(E(x), E(y)).

Hence we have the following isomorphisms of formal groups:

Ĝm

L

�
E

Ĝa

Theorem 4.3. If R is a local ring complete w.r.t. its maximal ideal M and F is a
formal group law defined over R, then under the operation defined by F or +F M is
an abelian group.

Proof. All group axioms follow formally from the definition of formal group law and

Theorem 4.2. It just remains to prove that F (x, y) and i(x) actually belongs to M
when x and y are inM. But that is obvious since R is complete w.r.t. M. ♣

4.2 Logarithm of a formal group

The map L from Example 4.1.2 gives us an isomorphism from Ĝm to Ĝa. In other

words it gives us a bijective map that converts the formal group law Ĝm to addition.

We can in fact generalize this to any formal group provided that it is defined over a

ring without torsion.

Let F be a formal group defined over a torsion-free ring R. We want to get a power

series L(x) = LF (x) such that L(x+F y) = L(x) + L(y), i.e., L should act as logarithm

for the operation F . We will see that L(x) may not actually have coefficients in R. We

want
L(F (x, y)) = L(x) + L(y)
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Taking the partial derivative with respect to the first variable x we get

L′(F (x, y))F1(x, y) = L′(x)

Put x = 0.

L′(F (0, y))F1(0, y) = L′(0)

L′(y)F1(0, y) = L′(0)

L′(y) =
L′(0)

F1(0, y)

This suggests that we use
∫ L′(0)

F1(0,y)
dy as a suitable candidate for L(y). We check below

that
∫ L′(0)

F1(0,y)
dy is indeed the right choice.

Theorem 4.4. If F is a formal group defined over a torsion-free ring R then there
exists an isomorphism L(x) : F

∼=−→ Ĝa with coefficients in R⊗Q.

Proof. Begin with the associative law for F :

F (x, F (y, z)) = F (F (x, y), z).

Taking partial derivative w.r.t. x and putting x = 0 we get

F1(x, F (y, z)) = F1(F (x, y), z)F1(x, y)

F1(0, F (y, z)) = F1(F (0, y), z)F1(0, y)

F1(0, F (y, z)) = F1(y, z)F1(0, y)

L′(0)

L′(F (y, z))
= F1(y, z)

L′(0)

L′(y)

Since L is an isomorphism L′(0) is a unit so we get

L′(y) = F1(y, z)L′(F (y, z))∫
L′(y) dy =

∫
L′(F (y, z))F1(y, z) dy

L(y) = L(F (y, z)) + C(z)

To evaluate C(z) we just put y = 0. C(z) = L(0) − L(F (0, z)) = −L(z) since L(0) = 0.
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Therefore we have
L(F (y, z)) = L(y) + L(z)

♣

Since we are integrating a power series to L(x) the coefficients involve denomi-

nators containing natural numbers. So L(x) has coefficients in R⊗Q.

Corollary 4.4.1. Any two formal groups over a Q-algebra are isomorphic.

4.3 Formal group of an elliptic curve

Now we can give a group structure on M so that the map ι defined above (Equa-

tion 4.1) is a group homomorphism. We work with (z, w) coordinates. Let w1 = w(z1)

and w2 = w(z2). By elementary calculations we see that the sum of the points

(z1, w1) and (z2, w2) is of the form (z3, w3) where z3 = F (z1, z2) where F (z1, z2) belongs to

Z[a1, . . . , a6][[z]] and is of the form z1 + z2 + higher degree terms.

F (z1, z2) = z((z1, w(z1)) +E (z2, w(z2))).

From the above equation it is evident that F satisfies the axioms of formal group law.

Definition 4.3. The set M with the power series F defined above is called the

formal group of the elliptic curve E. The group structure thus induced onM will

be denoted by Ê(M).



Chapter 5

A particular group of local units

In this section we want to construct a norm coherent sequence (dn)n of units in the

cyclotomic Zp extension of Qp which will be useful in the construction of the Coleman

map later.

Definition 5.1. Let p be a prime number. A Galois extension K/F is said to be a

Zp-extension if the Galois group of K/F is isomorphic to the additive group of Zp.

Let p > 2 be a prime number. The Galois group of Qp(µp∞) over Qp is isomorphic

to
Z×p = µp−1 × (1 + pZp).

Let
∆ := µp−1 and Γ := 1 + pZp, so that Z×p = ∆× Γ.

If a ∈ 1 + pZp and not in 1 + p2Zp, then the map

x ax

gives a topological isomorphism from Zp to Γ = 1+pZp [3]. Under this map the (closed)

subgroups pnZp of Zp correspond to 1 + p1+nZp. Let us denote 1 + p1+nZp by Γp
n and

Γ/Γp
n ∼= Z/pnZ by Γn.

The subgroup ∆ is closed and hence corresponds uniquely to a subfield of Qp(µp∞). Let

k∞ be the unique extension of Qp contained in Qp(µp∞) such that G(k∞/Qp) = Γ ∼= Zp.
We have constructed a Zp-extension of Qp. A Zp-extension constructed like this by

adjoining p-th power roots of unity is called a cyclotomic Zp-extension.

22
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All the closed subgroups of Zp are of the form pnZp for some n ≥ 0 or the zero

subgroup 0. Let the subfield of k∞ corresponding to the subgroup pnZp be denoted

by kn and let k0 := Qp. Then G(kn/Qp) = Γ/Γp
n is the cyclic group of order pn. We fix

a topological generator γ of Γ (e.g., 1 + p or any element in Γ− Γp). Then each Γn is

generated by γ mod Γp
n.

Let ℘n denote the maximal ideal of the integer ring On = Okn of kn. Let U1
n := 1 + ℘n be

the subgroup of O×n of principal units.

Define
`(x) := ln(1 + x) +

∑
k≥0

∑
δ∈∆

(1+x)p
kδ−1

pk
.

Lemma 0.4.
`(x) ∈ Qp[[x]].

Proof.

`(x) = ln(1 + x) +
∑
j≥1

xj
(∑
k≥0

1

pk

∑
δ∈∆

(
pkδ

j

))
.

Expanding (1 + x)p
kδ using binomial series and collecting like powers of x we get

`(x) = ln(1 + x) +
∑
j≥1

xj
(∑
k≥0

1
pk

∑
δ∈∆

(
pkδ

j

))
= ln(1 + x) +

∑
j≥1

Ajx
j.

It is sufficient to check that Aj ∈ Qp ∀ j ≥ 1. Because Aj =
∑
k≥0

1
pk

∑
δ∈∆

(
pkδ
j

)
it suffices to

check that the kth term 1
pk

∑
δ∈∆

(
pkδ
j

)
tends to 0 in Qp as k →∞.

Aj =
1

j!

[∑
δ∈∆

pkjδj

pk
±
∑
δ∈∆

pkj−kδj−1

pk
(integer)± . . .±

∑
δ∈∆

pkδ

pk
(integer)

]
.

All the terms in the above sum are divisible by pk except the last term which vanishes

due to the presence of
∑
δ∈∆

δ = 0. Hence Aj → 0 as k →∞ and the claim is proved. ♣

In addition `(x) satisfies the following properties:

Lemma 0.5. 1. `(x) = x+ higher degree terms

2. `′(x) ≡ 1 mod xZp[[x]]

3. `((1 + x)p − 1) ≡ p`(x) mod pZp[[x]]
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Proof. The first property is straightforward. To prove the second we differentiate

`(x) to get `′(x) = 1
1+x

+
∑
j≥1

jAjx
j. Since Aj =

∑
k≥0

1
pk

∑
δ∈∆

(
pkδ
j

)
, we get jAj =

∑
k≥0

∑
δ

(
pkδ−1
j−1

)
δ.

Each summand is a p-adic integer since if x ∈ Zp and n ∈ N then
(
x
n

)
is also in Zp [3].

And since we already know Aj converges jAj belongs to Zp for all j ≥ 2. A1 = 0 as can

be seen by putting x = 0 in the definition of `(x). (3) follows similarly. ♣

The properties (1), (2) & (3) listed above together satisfy the hypothesis for

Theorem 8.3(iii) in [5] with the Eisenstein polynomial u(t) being t− p. Hence there

exists a formal group F over Zp that has ` as its logarithm. The formal group Ĝm is a

formal group over Zp whose logarithm L(x) = ln(1 + x) also satisfies the conditions (1),

(2) & (3) above. Hence by Theorem 8.2(ii) of [5] the power series ι(x) := exp ◦`(x)− 1

belongs to Zp[[x]] and acts as an isomorphism from F to Ĝm.

We are now ready to define the local units. Pick an ε from pZp such that `(ε) = p and

define

cn := ι((ζp1+n − 1) +F ε)

= exp(`((ζp1+n − 1) +F ε))− 1

= exp(`(ζp1+n − 1) + `(ε))− 1

= epe`(ζp1+n−1) − 1.

The element cn is fixed under the action of ∆, so belongs to Ĝm(℘n). We define

dn := 1 + cn ∈ U1
n = epe`(ζp1+n−1) which satisfies the relation

logp(dn) = `(ε) + `(ζp1+n − 1) = p+
∑
k≥0
δ∈∆

ζδ
p1+n−k − 1

pk
.

Lemma 0.6. 1. (dn)n is a norm coherent sequence and d0 = 1.

2. Let u be a (topological) generator of U1
0 . Then as a Zp[Γn] module, dn and u gener-

ate U1
n, and dn generate (U1

n)N=1 where N is the norm from kn to Qp.

Proof. For the first claim, We have dn = epe`(ζp1+n−1) and dn−1 = epe`(ζpn−1).

Nn/n−1(dn) =
∏

σ∈G(kn/kn−1)

σ(epe`(ζp1+n−1)) = ep
2

∏
σ∈G(kn/kn−1)

e`(σ(ζp1+n )−1).
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Hence it is enough to show that

p2 +
∑

σ∈G(kn/kn−1)

(`(σ(ζp1+n)− 1)) = p+ `(ζpn − 1).

But this follows from the structure of G(kn/kn−1) which is the set {γj+pn|0 ≤ j ≤ p− 1}.
The equation d0 = 1 follows from `(ζp − 1) = −p which is verified directly.

For the second claim we inductively show that (σ(ι−1(cn)))σ∈Γn generate F(℘n) as a

Zp-module.

F
`
∼=

**

ι=exp ◦`(·)−1

∼=
// Ĝm

Ĝa

∼= exp(·)−1

OO

The case n = 0 is immediate from the fact that U1 is generated by u. For n ≥ 1, we

first prove that
F(℘n)

F(℘n−1)
∼=

`(℘n)

`(℘n−1)
∼=

℘n
℘n−1

.

We have the following diagram

Qp

kn

Qp(µp1+n)

pn

pn(p− 1)

p− 1

The extension

kn

Qp(µp1+n)

p− 1

is tamely ramified and hence the restriction of the trace map to respective integer
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rings is surjective. Write x ∈ F(℘n) as

x = TrQp(µp1+n )/kn

(
p1+n−1∑
i=0

aiζ
i
p1+n

)
=
∑
δ∈∆

p1+n−1∑
i=0

aiζ
iδ
p1+n .

We then have
xp ≡ y mod pOkn ,

where y =
∑
δ∈∆

pn−1∑
i=0

aiζ
iδ
pn ∈ ℘n−1. For k ≥ 1 we have the following congruence

∑
δ∈∆

(1 + x)p
kδ − 1

pk
≡
∑
δ∈∆

(1 + xp)p
k−1δ − 1

pk
≡
∑
δ∈∆

(1 + y)p
k−1δ − 1

pk
mod ℘n.

From the above we have
∑
δ∈∆

(1 + x)p
kδ − 1

pk
∈ ℘n + kn−1. By studying the coefficients of

`(x) it is easy to deduce that `(x) converges when x ∈ ℘n. Since `(x) converges, the tail

of the series after sufficiently long will belong to ℘n. That is, for some k0 sufficiently

big we have
∑
k≥k0

∑
δ∈∆

(1 + x)p
kδ − 1

pk
∈ ℘n. Therefore `(x) ∈ ℘n + kn−1, meaning

`(℘n) ⊆ ℘n + kn−1. (5.1)

The group Ĝm has no non-trivial torsion element (it has no prime-to-p-torsion by

Proposition 3.2.b of [10] and has no p-power torsion because if it contained a pk-

torsion point then ζpk and hence ζp would belong to ℘n hence kn and this is impossible

by degree considerations) and since F(℘n) is isomorphic to Ĝm, F(℘n) also has no

torsion point. Hence the map ` is injective on F(℘n), and can be easily seen to be

compatible with the Galois action. This gives

(℘n) ∩ kn−1 = `(℘n−1). (5.2)

Using Equation 5.1 and Equation 5.2 we get the following injection:

`(℘n)/`(℘n−1) ↪→ (℘n + kn−1)/kn−1
∼= ℘n/℘n−1.

From elementary calculations it is seen that
∑
δ∈∆

∑
k≥1

ζδp1+n − 1

pk
belongs to kn−1 as it is
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fixed by any element of 1 + pnZp so we have

`(ι−1(cn)) = p+ `(ζp1+n − 1) ≡
∑
δ∈∆

(ζδp1+n − 1) mod kn−1.

Since
∑
δ∈∆

(ζδp1+n − 1) mod kn−1 generates ℘/℘n−1 as a Zp[Γn], hence the map above

is a bijection. Thus `(ι−1(σ(cn)))σ∈Γn generate F(℘n)/F(℘n−1). By induction, ε and

`(ι−1(σ(cn)))σ∈Γn generate F(℘n). Since Ĝm is isomorphic to F over Zp, we have proved

the second statement. ♣

Since dn has norm 1 Hilbert’s theorem 90 gives xn from kn such that dn = γ(xn)/xn.

Put πn =
∏
δ∈∆

(ζδp1+n − 1). We can see directly from the definition that (πn)n is a norm

coherent sequence of uniformizers of kn. Hence xn can be written as πenn un for en ∈ Z
and un ∈ (U1

n)N=1.

The following result will be useful later.

Theorem 5.1. With the notation introduced above, one has

p ≡ en(p− 1) logp χ(γ) mod p1+n

Proof. Define

G(x) = exp(p) exp ◦`(x) = exp ◦`(x+F ε) ∈ 1 + (p, x)Zp[[x]]

and for σ ∈ Γ

Gσ(x) = G((1 + x)χ(σ) − 1).

By item 2, we can write un as
∏
σ,a

(σ(dn))a. Putting H(x) =
∏
σ,a

Gσ(x)a where a, σ are the

same as those appearing in the factorization for un, we get H(ζp1+m − 1) = Trkn/km(un)

for 0 ≤ m ≤ n. Put

F (x) =

(∏
δ∈∆

(1 + x)δχ(γ)− 1

(1 + x)δ − 1

)en
H((1 + x)χ(γ) − 1)

H(x)
.

G(x) and F (x) coincide when x = ζp1+m − 1 for m ∈ {0, . . . , n}, consequently we have

G(x) ≡ F (x) mod
(1 + x)p

1+n − 1

x
.
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By putting x = 0 in the above congruence and taking (p-adic) logarithm we get the

desired congruence. ♣



Chapter 6

The Coleman map for the Tate
elliptic curve

In this section we consider the Tate elliptic curve over the cyclotomic Zp- extension

of Qp. First fix a tate curve

E = Eq : y2 + xy = x3 + a4(q)x+ a6(q)

where q = qE ∈ Q×p satisfying | q |p< 1.

By Tate’s uniformization (Theorem 2.1) one has

φ : Q×p /qZ
∼=−→ Eq(Qp), φ(u) = (X(u, q), Y (u, q)).

Calculating X(u, q)/Y (u, q) gives a power series in Qp[[q, u]] and since Qp[[q]] = Qp,

X(u, q)/Y (u, q) is a power series in Qp[[u]]. Considering the quantities just formally φ

induces an isomorphism φ̂ over Qp of formal groups Ê and the formal multiplicative

group Ĝm. Expicitly, φ̂ equals the power series expÊ ◦ ln(1 + x)− 1 ∈ Zp[[x]], where expÊ
is the exponential map of the formal group Ê:

Ê
exp

Ê−−−→∼= Ĝa.

With the isomorphism φ̂ from now onwards we identify Ê with Ĝm.

The cup product in Galois cohomology gives a non-degenerate bilinear pairing

( , )E,n : H1(kn, T )×H1(kn, T
∗(1)) −→ H2(kn,Zp(1)) ∼= Zp.

29
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The isomorphism H2(kn,Zp(1)) ∼= Zp can be seen as follows: Let k be any finite

extension of Qp. We will show that H2(k,Zp(1)) ∼= Zp.

Lemma 0.7.
H2(kn,Zp(1)) ∼= Zp

Let n be any natural number. We have the Kummer sequence for the field k.

1→ µn(k
×

)
i−→ k

× x xn−−−→ k
× → 1

where i is the inclusion map.

We derive the long exact sequence from it:

. . .→ H1(k, k
×

)
δ−→ H2(k, µn(k

×
))

i−→ H2(k, k
×

)
[n]−→ H2(k, k

×
)→ . . .

By Hilbert’s theorem 90, the group H1(k, k
×

) is trivial. Hence we have

H2(k, µn(k
×

)) = ker(H2(k, k
×

)
[n]−→ H2(k, k

×
)).

From local class field theory H2(k, k
×

) = Q/Z (Theorem 19.6 of [11]).

So
H2(k, µn(k

×
)) = ker([n]) =

Z
n
/Z ∼= Z/nZ

Putting pm in place of n and taking inverse limit over m, one obtains

lim←−
m

H2(k, µpm(k
×

)) ∼= H2(k, lim←−
m

µpm(k
×

)) = H2(k,Zp(1)) ∼= lim←−
m

Z/pmZ = Zp

♣
The multiplication by n homomorphism is surjective on E(k). There is a Kummer

sequence for the elliptic curve

0→ E(k)[n]→ E(k)
n−→ E(k)→ 0

which induces the long exact sequence:

0→ E(k)[n]
G(k/k) → E(k)

G(k/k) [n]−→ E(k)
G(k/k) δ−→ H1(k,E(k)[n])

→ H1(k,E(k))
[n]−→ H1(k,E(k))→ . . .
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from which we derive the inclusion

E(k)/nE(k) ↪→ H1(k,E(k)[n]).

Replacing n with pm and taking inverse limit gives

lim←−
m

E(k)/pmE(k) ↪→ lim←−
m

H1(k,E(k)[pm])

Interchanging inverse limits with cohomology groups we have

lim←−
m

H1(k,E(k)[pm]) ∼= H1(k, lim←−
m

E(k)[pm]) ∼= H1(k, T )

. We have
E(k) ∼= k×/qZ,

and k×/qZ, by Proposition 5.7 [7] admits the decomposition

k× ∼= Z⊕ Z/(pb − 1)Z⊕ Z/paZ⊕ Z[k : Qp]
p

for some non-negative integers a, b. From this decomposition we can see directly the

isomorphism
lim←−
n

E(k)/pnE(k) ∼= lim←−
n

E(k)⊗Z Z/pnZ ∼= E(k)⊗Z Zp.

We have the map ι : Ê(M)� E(k). The group Ê(℘) sits inside E(k) injectively. The

group Ê(℘) no prime-to-p torsion (Chapter 4, Proposition 3.2 of [10]), and hence sits

injectively inside the tensor product E(k)⊗ Zp. We shall regard Ê(M) as a subgroup

of H1(k, T ). We shall return to the cup product pairing described above. We put

k = kn and by fixing the sequence of elements cn ∈ ℘n ↪→ H1(kn, T ) described in the

previous section, we define at each level n, the map

Definition 6.1.

Coln : H1(kn, T
∗(1))→ Zp[[Γn]], Coln(z) :=

∑
σ∈Γn

(σ(cn), z)E,nσ.

The group Gk1+n is a finite index subgroup of Gkn hence there exists corestriction
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map H1(k1+n, T
∗(1))

Cor−−→ H1(kn, T
∗(1)). The following diagram commutes for every n:

H1(k1+n, T
∗(1))

Col1+n
//

Cor
��

Zp[Γ1+n]

proj
��

H1(kn, T
∗(1))

Coln // ZP [Γn]

where proj is induced by the natural projection Γ1+n → Γn. So we can give the

following definition:

Definition 6.2. Because the above diagram commutes, we can form the inverse limit

of the maps Coln to get a map

Col : lim←−
n

H1(kn, T
∗(1))→ Λ = Zp[[Γ]]

and the map Col is called the Coleman map.

There is an isomorphism between Λ and Zp[[x]] and the image of Col(z) in Zp[[x]]

shall be denoted by Cz(x) = C(x). We want to compute C ′(0).

For each n, let tan(E/kn) denote the tangent space of E(kn) at the identity. There

exists an exponential map

expE,n : tan(E/kn)→ E(kn)⊗Qp

The dual of the above map, exp∗E,n satisfies the property

(x, z)E,n = Trkn/Qp(logÊ(x) exp∗E,n(z)) (6.1)

for every x ∈ Ê(℘n) and z ∈ H1(kn, V
∗(1)).



Chapter 7

Computing C ′z(0) and the MTT
conjecture

7.1 First derivative of the coleman at 0

In this section we will find the value of C ′z(0).

Theorem 7.1. For z ∈ H1(kn, T
∗(1)), Col(z)(x) ∈ Zp[[x]] satisfies

C ′z(0) =
d

dx

(
Col(z)(x)

)∣∣∣∣
x=0

=
p

(p− 1) logp(χ(γ))

logp(qE)

νp(qE)
exp∗ωE(z).

By Tate’s uniformization we have the following short exact sequence

0→ T1 → T → T2 → 0

where T1
∼= Zp(1) and hence T2 = T/T1

∼= Zp. The cup product again induces a

non-degenerate pairing

H1(kn, T1)×H1(kn, T
∗
1 (1))→ H2(kn,Zp(1)) ∼= Zp.

Since T1 is isomorphic to Zp(1), the above pairing takes the form:

H1(kn,Zp(1))×H1(kn,Zp)→ Zp

33
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which we denote by ( , )Gm,n or sometimes just ( , )Gm. The Zp-module T1 is a direct

summand of T and hence there exists a natural map T ∗ → T ∗1 which induces

T ∗(1) → T ∗1 (1) which further induces the map H1(kn, T
∗(1))

π−→ H1(kn, T
∗
1 (1)). The

element cn in T1 becomes 1 + cn = dn in the group Gm(kn) so for cn ∈ Ê(℘n) and

z ∈ H1(kn, T
∗(1)) we have the equation

(σ(cn), z)E,n = (σ(dn), π(z))Gm,n.

Lemma 0.8.
C ′(0) = Col(z)′(0) = − p

(p− 1) logp χ(γ)
(p, π(z))Gm . (7.1)

We have, the n-th Coleman map given by

Coln(z) =
∑
σ∈Γn

(σ(cn), z)E,nσ =
∑
σ∈Γn

(σ(dn), π(z))Gm,nσ.

From the definition Col = lim←−Coln we get the following

Col(z) ≡ Coln(z) mod Zp[Γn]

=
∑
σ∈Γn

(σ(cn), z)E,nσ

=
∑
σ∈Γn

(σ(dn), π(z))Gm,nσ

=
∑
σ∈Γn

(σ(γ(xn)/xn), π(z))Gm,nσ

=
∑
σ∈Γn

(σγ(xn)/σ(xn), π(z))Gm,nσ

Since the cup product is bilinear one gets

=
∑
σ∈Γn

(σ(γ(xn)), π(z))Gm,nσ −
∑
σ∈Γn

(σ(xn), π(z))Gm,nσ

= γ−1
∑
σ∈Γn

(σ(γ(xn)), π(z))Gm,nσγ −
∑
σ∈Γn

(σ(xn), π(z))Gm,nσ

As γ acts as a generator for each Γn, we get

= (γ−1 − 1)
∑
σ∈Γn

(σ(xn), π(z))Gm,nσ.
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The ring Zp[[Γ]] is isomorphic to the ring Zp[[x]] by the isomorphism γ  1 + x and for

each n the ring Zp[Γn] is isomorphic to Zp[x]/((1+x)p
n−1) by the map γ mod Γn  1+x

mod ((1 + x)p
n − 1) (section 7.1,[12]). We shall use these identifications to get a power

series for Col(z).

Let the image of Coln(z) in Zp[x]/((1 + x)p
n − 1) be Cn(x) and let C(x) denote the image

of Col(z) in Zp[[x]].

C(x) ≡ (
1

1 + x
− 1)

pn−1∑
j=0

(σj(xn), π(z))Ĝm,n(1 + x)j mod ((1 + x)p
n − 1)

C(x)− C(0)

x
≡ − x

1 + x

pn−1∑
j=0

(σj(xn), π(z))Ĝm,n(1 + x)j mod
(1 + x)p

n − 1

x

By taking the limit as x→ 0 we have the following equation.

C ′(0) ≡ −
pn−1∑
j=0

(σj(xn), π(z))Ĝm,n mod pn.

By the linearity of the cup product in the first variable we get

C ′(0) = Col(z)′(0) ≡ −(Nn/0(xn), π(z))Gm,0 mod pn

It remains to calculate (Nn/0(xn), π(z))Gm,0. We know that xn = πenn un where un ∈ (U1
n)N=1.

Therefore by item 2 Nn/0(xn) = pen.

(Nn/0(xn), π(z))Gm,0 = (pen , π(z))Gm,0

= en(p, π(z))Gm,0

≡ p

(p− 1) logp χ(γ)
(p, π(z))Gm,0 mod pn

Taking the limit as n→∞,

C ′(0) = Col(z)′(0) = − p

(p− 1) logp χ(γ)
(p, π(z))Gm .

♣
The exact sequence

0→ T1 → T → T2 → 0
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is split exact and hence on taking dual and tensoring with Zp(1) produces

0→ T ∗2 (1)→ T ∗(1)
π−→ T ∗1 (1)→ 0.

We get the following exact sequence from the long exact sequence of the above

sequence:
H1(Qp, T

∗(1))
π−→ H1(Qp, T

∗
1 (1))

δ−→ H2(Qp,Zp(1)) ∼= Zp.

We have the following diagram coming from Galois cohomology [6].

It is easy to calculate the map δ1 from H0(Qp, T2) = Zp to H1(Qp, T1).

Theorem 7.2. The image of 1 ∈ T2 under the map

H0(Qp, T2) = Zp
δ1−→ H1(Qp, T1)

∼=−→ Q×p ⊗Z Zp

is given by qE ⊗ 1.

Proof. The G(Qp/Qp)-modules T2 and Zp are isomorphic, so H0(Qp, T2) = Zp. The

element 1 in Zp which actually is f̄ in T2 = T/T1 is sent to the the element σ  c(σ)

since for any σ ∈ G(Qp/Qp) we have

σ · f − f = c(σ)e.

But we also have

H1(Qp, T1) = H1(Qp,Zp(1)) ∼= lim←−H
1(Qp, µpn(Q×p )).

Under this isomorphism the element c : σ  c(σ)e can be thought of as the compatible

sequence
(cn : σ  cn(σ)en)

where cn(σ) is c(σ) mod pn and en is the n-th component of e. The term cnen is
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the additive notation for the element ε(n)cn from H1(Qp, µpn(Q×p )). The element ε(n)cn

corresponds to the class of q(n) in Q×p /Q×p
pn since we have

σ · q(n)/q(n) = ε(n)cn .

The image of q(n) in Q×p ⊗ZZ/pnZ is q(n)⊗1 which under inverse limit is q⊗1 = qE⊗1. ♣

If w ∈ H1(Qp, T
∗(1)), the commutative diagram above gives

(q ⊗ 1, w)Gm = (δ1(1), w)Ĝm = (1, δ2(w))Gm .

If w is of the form π(z) for some z ∈ H1(Qp, T
∗(1)) then

(q ⊗ 1, π(z))Gm = (1, δ2 ◦ π(z))Gm = (1, 0)Gm = 0 (7.2)

since δ2 ◦ π = 0. Factorising q in Qp as q = pνp(q)ωu where ω ∈ µp−1 and u ∈ Γ, we have

(q ⊗ 1, w)Gm = νp(q)(p, w)Gm + (u, w)Gm (7.3)

= νp(q)(p, w)Gm + logp(u) exp∗ωGm
(w). (7.4)

Using Equation 7.2 and Equation 7.3 we have

(p, π(z))Gm = −
logp(u)

νp(q)
exp∗ωGm

(π(z)) (7.5)

= −
logp(q)

νp(q)
exp∗ωE(z). (7.6)

Combining Equation 7.1 and Equation 7.5 we obtain the following

d

dx

(
Col(z)(x)

)∣∣∣∣
x=0

=
p

(p− 1) logp(χ(γ))

logp(qE)

νp(qE)
exp∗ωE(z). (7.7)

The Mazur-Tate-teitelbaum conjecture

We have the equation:
Coln(z) =

∑
σ∈Γn

(σ(cn), z)E,nσ.
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From the equation Equation 6.1, we have

Coln(z) =
∑
σ∈Γn

Trkn/Qp

(
logp(σ(dn)) exp∗ωE

(z)
)
σ

=
∑
σ∈Γn

[ ∑
σ1∈Γn

σ1

(
logp(σ(dn))

)
exp∗ωE(z)

]
σ

=
∑

σ,σ1∈Γn

logp
(
σ1σ(dn)

)
exp∗ωE(zσ1)σ

=
∑
σ1

exp∗ωE(zσ1)
∑
σ

logp(σ1σ(dn))

=
(∑

σ1

exp∗ωE(zσ1)σ−1
1

)(∑
σ

logp(σ1σ(dn)σ)
)
.

Kato showed that there exists an element zKato ∈ lim←−nH
1(kn, T

∗(1)) such that

∑
σ

exp∗ωE
(
σ(zKato)

)
χ(σ)−1 = ep(χ)

L(E,χ, 1)

Ω+
E

,

where

ep(χ) =

1 χ is not trivial

1− 1
p

χ is trivial

and Ω+
E is the real period of the elliptic curve.

The p-adic L-function of an elliptic curve Lp(E, s) can be written as Lp,γ(E,χ(γ)s−1−
1). It follows that

Col(zKato)(X) = Lp,γ(E,X).

Combining the above with equation Equation 7.7, we get the following theorem,

which is the Mazur-Tate-teitelbaum conjecture.

Corollary 7.2.1. Let Lp,γ(E,X) be the power series in Zp[[X]] such that

Lp(E, s) = Lp,γ(E,χ(γ)s−1 − 1).

Then, we have
d

dX
Lp,γ(E,X)

∣∣
X=0

=
1

logp χ(γ)

logp qE

νp(qE)

L(E, 1)

Ω+
E

or,

L′p(E, 1) =
logp qE

νp(qE)

L(E, 1)

Ω+
E

.
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