Covering Arrays and Generalizations

A thesis
Submitted in partial fulfillment of the requirements
Of the degree of
Doctor of Philosophy

By

Yasmeen Akhtar
20113108

\G

IISER PUNE

INDIAN INSTITUTE OF SCIENCE EDUCATION AND RESEARCH PUNE






To my beloved mother
And

To the loving memory of my father
For their love, endless support, and encouragement



Declaration

| declare that this written submission represents my ideasyi own words and where oth-
ers’ ideas have been included, | have adequately cited &@need the original sources. |
also declare that | have adhered to all principles of acacleonesty and integrity and have
not misrepresented or fabricated or falsified any idea/fdatzsource in my submission. |
understand that violation of the above will be cause foridlstary action by the Institute

and can also evoke penal action from the sources which hagenttit been properly cited

or from whom proper permission has not been taken when needed

Yasmeen Akhtar

20113108
Date: July 22, 2016



Certificate

Certified that the work incorporated in the thesis entiti€bvVering Arrays and General-
izations” submitted by Yasmeen Akhtar was carried out bycdredidate, under my super-
vision. The work presented here or any part of it has not beelnded in any other thesis
submitted previously for the award of any degree or diploroenfany other University or

Institution.

Dr. Soumen Maity

Date: July 22, 2016



Acknowledgements

It is a great pleasure to express my deep sense of gratitube. t&Soumen Maity for
supervising my research work, for his valuable suggesaodghe constant encouragement
| received from him.

| am grateful to Prof. Charles Colbourn, Arizona State Ursitg, and Reshma Chan-
drasekharan, Indian Institute of Science Education aneéd&ek, Pune, for their kind per-
mission to include the results of the joint papers in thisigiefor going through parts of
my thesis and suggesting valuable improvements.

| am also grateful to Prof. Jaikumar Radhakrishnan, Tatétins of Fundamental
Research, Mumbai and Dr. Vivek Mallick, Indian Institute®dience Education and Re-
search, Pune for being in my research advisory committedaritieir valuable sugges-
tions. | would like to thank Prof. A. Raghuram for providingenwith requisite facilities
to carry out my doctoral research during his tenure as thie ohthe department. Thanks
are also due to Dr. Lucia Moura and Dr. Sebastian Raaphorsteltsity of Ottawa for
suggesting useful improvements.

| am grateful to the Indian Institute of Science Educatiod Research, Pune, for pro-
viding ample facilities for my research. | gratefully ackviledge financial support from
the Council of Scientific and Industrial Research (CSIRyidn during the work under
CSIR Junior and senior research fellow scheme. Thanks soedak to National PARAM
Supercomputing Facility, Center for Development of Adwar@omputing (C-DAC) for
providing me supercomputing facility.

Yasmeen Akhtar

Pune, India, 2016

Vi



Abstract

Covering arrays have been successfully applied in the desitest suites for testing sys-
tems such as software, circuits, and networks, where &sloan be caused by the interac-
tion between their parameters. There has been a great desaafrch on covering arrays
for last thirty years. Much research has been carried oukewreldping effective meth-
ods to construct covering arrays and generalizations cérooy arrays. Acovering array
t-CA(n,k,g), of sizen, strengtht, degreek, and ordeu, is ak x n array ong symbols such
that everyt x n subarray contains evety< 1 column ong symbols at least once. It is de-
sirable in most applications to minimize the sizeA covering array ioptimalif it has the
minimum number of columns among all covering arrays withgame degree, strength,
and order. In this dissertation, we give an algebraic canstn that can be used to build
strength four covering arrays. The construction given lyeglels many new upper bounds

on the size of optimal covering arrays whgg- 3.

For software or hardware testing applications, each rowcolvaring array corresponds
to a parameter; each column corresponds to a test case eamshtimbols correspond to the
values for each parameter. In most software developmeiroameents, we have limited
time, computing, and human resources to perform the tesfimgsystem. To model this
situation, we consider the problem of creating a best ptessgisting array (covering the
maximum number of-way parameter-value configurations) within a fixed numbjeest
cases. If the testing array is a covering array, then cordtgur coverage is 100%. We
present algebraic constructions for testing arrays wight8- and 4-way configuration

coverage.

Two vectorsu,v € Zg are qualitatively independerif for each ordered paifa,b) €

Zg x Zq there is a position £ i < nsuch that(u(i), v(i)) = (a,b). A strength two covering

vii
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array is an array with the property that every pair of rowsaralitatively independent. A
covering array on a grapks an array with a row for each vertex of the graph with the prop
erty that any two rows which correspond to adjacent verticesjualitatively independent.
Given a graphG and a positive integeg, a covering array o with minimum sizen is
calledoptimal Our primary focus is with constructions that make optintalering arrays
on large graphs that are obtained from a product of smalégtgy. We consider four most
extensively studied graph products in the literature amd gpper and lower bounds on the
size of an optimal covering array on a product graph. We findlfas of graphs for which
the size of a covering array on a product graph achieves ey loound with respect to the
Cartesian product. In addition, we present a polynomia¢ tapproximation algorithm for
constructing covering arrays on graphs hawmgime factors with respect to the Cartesian
product.

We consider a generalization of covering arrays on graphsgier strength, called
mixed covering arrays on 3-uniform hypergraphs. The aolditif a graph or hypergraph
structure to covering arrays makes it possible to use metfroch graph and hypergraph
theory to study covering arrays. We introduce four hypeyyraperations that allow us to
add new vertices to a hypergraph while preserving the sizerfxed covering array on
the hypergraph. Using these operations, for the case inhwhis a 3-uniforma-acyclic
hypergraph, a 3-uniform interval hypergraph, a 3-uniformnformal hypertree having a
binary tree as host tree, a 2-tree hypergraph, or a 3-unifoose cycle, we construct an

optimal mixed covering array o.
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Chapter 1

Introduction

Covering arrays have been the focus of much research fothligist years. They are nat-
ural generalizations of the well-known and well-studiethogonal arrays [49]. Covering
arrays are computationally difficult to find and have beenlisti for their applications to
software testing, hardware testing, drug screening, aadgas where interactions of mul-
tiple parameters are to be tested [41, 47, 48, 52, 53, 58,Todegin, we give a definition
of covering arrays. Aovering array tCA(n,k, g), of size n strength { degree kandorder

g, is ak x n array ong symbols such that evetyx n subarray contains eac¢kuple from
the set ofg symbols at least once as a column. A covering arragpismal if it has the

smallest possible numbarof columns. This number is th@vering array number
t-CAN(k,g) = min{n . there exist a-CA(n,k, g)}.

It is desirable in most applications to minimize the sizaf covering arrays. For example,
the following array is a covering array for= 2, g = 2 andk = 4, because whichever two
rows out of the four rows are chosen, all possible pair®0A0 and 11 come up at least

once.

o O O O

0
1
1
1

=

11
11
01
10

The above covering array with five columns is, in fact, optiraa set forth by a paper by

Kleitman and Spencer [55]. For the special case of strewgthbinary covering arrays

1



(covering arrays with = 2 andg = 2), the exact sizes of the smallest arrays are known
[54, 55, 80]. Except in this special case for 2 andg = 2, it is generally unknown what
are the sizes of optimal covering arrays. A database magdaby Charles Colbourn at
Arizona State University lists the best-known sizes of cmgearrays for a broad range of
configurations ranging from= 2 tot = 6 [31]. Much of the work on covering arrays has
been done on developing constructions for them. Thesercmtisins include the use of fi-
nite field theory [17, 94], group theory [20, 21, 60, 69], condtorial recursive techniques
[83, 104], coding theory [91], extremal set theory [66] arelhstic search algorithms
[14, 15, 26, 74]. In this dissertation, we consider the folltg four combinatorial prob-
lems related to covering arrays: An algebraic construatfstrength four covering arrays;
Testing arrays with high coverage measure; Covering aroayproduct graphs; Mixed
covering arrays on 3-uniform hypergraphs. In Section 1e gdescribe the problems con-
sidered and a brief outline of the solutions. Covering arase closely related to other
designs like Latin squares, orthogonal arrays, and trasalveéesigns. In the following

section, we give an overview of covering arrays and relagsiighs.

1.1 Covering arrays and some related designs

Covering arrays are a relaxation of the well-known and stidied orthogonal arrays.
In 1949, C.R. Rao [78] introduced orthogonal arrays for gieisig statistical experiments.
Orthogonal arrays have great significance in the field ofgiesf experiments; in an exper-
iment based on orthogonal array the estimated effect of actpff is statistically indepen-
dent of the estimated effect of any other factor [49]. Ortroa arrays are closely related

to Latin squares and transversal designs. The results iio8dc1.1 can be found in [12].

1.1.1 Latin squares

A Latin squareof ordern s identified as am x n square, th@? cells of which are occupied

by n distinct symbols such that each symbol occurs once in eaghanal once in each
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column. For example, the square in Figure 1.1 is a Latin sgaéorder 6, the symbols

for the square being,Q,2,3,4,5. Two Latin squares of order, one with symbols A, B,

g N O b~ W Bk
A B, N 01 O W
R 00~ W N O
N W o1l O b~
o A W L O DN
W O B N b~ O

Figure 1.1: A Latin square of order 6

C, ..., and one with symbols a, b, c,., areorthogonalif superimposing them leads to a
square array containing ai? possible pairs (A,a), (A,b),.., (B,a), (B,b),.... Figure 1.2

shows two orthogonal Latin squares of order 5. In 1779 Euweitccnot find a pair of

A B C D E a b c d e
B C D E A c d e a b
C D EAB e a b c d
D E A B C b c d e a
E A B CD d e a b c

Figure 1.2: Two orthogonal Latin squares of order 5

orthogonal Latin squares of order 6 and he conjectured lieaétis no pair of orthogonal

Latin squares of order 6, and in fact there is no pair of angitftat is twice an odd number.

The Euler Conjecture: Forn =2 (mod 4), there is no pair of orthogonal Latin squares of

ordern.
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In 1900 Tarry managed to list all Latin squares of order 6 dnuhv&d that Euler was correct
that there is no pair of orthogonal Latin squares of order Be §eneral form of Euler’s
conjecture remained unsolved till 1960 when Bose, Shridbaand Parker [13] showed
that the rest of Euler's conjecture was wrong. In fact, agthrwal Latin squares exist for
orders 10,14,18, and so on. Thus orthogonal Latin squaissfex every ordem except
n=12, and 6.

A set of Latin squares (all of the same order), any two of whiehorthogonal, is said to be
aset of mutually orthogonal Latin squarel$ has been proved that there cannot exist a set
of more tham — 1 mutually orthogonal Latin squares of orderA set ofn— 1 mutually
orthogonal Latin squares of ordaris said to be asomplete set of mutually orthogonal

Latin squaresWhenn is a prime power, we have the following theorem.

Theorem 1.1.1.[97] For any prime power n there exists a complete set of mutusathog-

onal Latin squares of order n.

Example 1.1.1.Let n = 3; then the two mutually orthogonal Latin squares of ordere3 a

exhibited in Figure 1.3.

01 2 0O 1 2
1 2 0 2 01
2 01 1 2 0

Figure 1.3: Complete set of mutually orthogonal Latin sgsaf order 3

LetN(n) be the maximum number of mutually orthogonal Latin squafesaern. Chowla,
Erdos and Straus [25] generalized the method used in [13jdw $hat linh_,. N(n) = 0.
Currently, it is known thaN(2) = 1, N(6) = 1 andN(10) > 2, and for all other values of

n, N(n) > 3 [97]. For more information see [33, 88].



1.1.2 Orthogonal arrays

Orthogonal arrays are combinatorial structures that haea lnsed in the statistical design

of experiments for over 60 years. The results in this sea#onbe found in [37, 49, 89].

Definition 1.1.1. An orthogonal arrayof size n with k factors g symbolsstrength t and
indexA, denotedDA(n, k, g,t), is ak x n array with entries fronZq = {0,1,...,g— 1} with
the property that in everyx n subarray, eack-tuple fromZg appears precisely = é‘f

times. AnOA(n,k,g,t) is also denoted bPA, (k,g,t). If t is omitted, it is understood to

be 2. IfA is omitted, it is understood to be 1.

It is clear that an orthogonal array of index 1 is a speciakaafscovering array, since
in a covering array eactituples from the set of symbols is required to appear at least
once. Thus, an orthogonal array is always an optimal cogeniray. Orthogonal arrays of
strength 2 and index 1 have been well studied as they areagnivo mutually orthogonal
Latin squares of orde.

It is not difficult to construct a®A(k+ 2, g) from k mutually orthogonal Latin squares
of orderg and vice versa [17]. Suppose thdsenutually orthogonal Latin squares of
orderg are named.,, Ly, ..., Ly, defined on symbol§0,1,...,g— 1}, and having rows and

columnslabelled0,1,...,g—1}. Foreveny, j €{0,1,...,g— 1}, construct dk+2)-tuple

(|7]7L1(|7J)7L2(|7J>77Lk(|7j>)

Then form an arraA whose columns consists of thege(k+ 2)-tuples. Itis easy to verify

thatAis anOA(k+2,9).

Example 1.1.2.Superimposing = 2 mutually orthogonal Latin squares of order 3 we

obtain:

0,0 1,1 2,2
1,2 2,0 0,1
2,1 0,2 1,0




The highlighted entry corresponds to 4-tuplel, 2, 0): row label 1, column label 1, entry

(2,0). Continuing in this way we obtai®A(4, 3) as shown below:

000111222
012012012
012120201
(012201120

It is well-known that there exists a set 9f- 1 mutually orthogonal Latin squares of
orderg if and only if there exists a finite projective plane of ordeit is also well-known
that a finite projective plane exists when the omglera power of a prime, that = p™ for
m > 1. The construction of projective planes of prime order warsegalized by Bush [17]
who proved the existence of orthogonal ar@#(g',g+ 1,9,t) wheng is a prime power.

We give a proof of this in Section 2.2.1.

1.1.3 Transversal designs

The orthogonal arrays and transversal designs are equiva@bgects. The results in this

section can be found in [96].

Definition 1.1.2. Letk > 2 andg > 1 be integers. Aransversal design T X, g) is a triple
(X,G,B) such that the following properties are satisfied:

1. X is a set okgelements callegtarieties

2. G is a partition of X’ into k subsets of sizg each. That isG = {G1,Gy,...,Gy}.

The set<5; are calledyroups

3. Bis asetok-subsets oft’ calledblocks Each block intersects each group in exactly

one variety.
4. Every pair of varieties from distinct groups is contaimeéxactly one block.

Example 1.1.3.Letk=4 andg = 3. Let



X ={(0,0),(0,1),(0,2),(0,3),(1,0),(1,1),(1,2),(1,3),(2,0),(2,1),(2,2),(2,3)}

be partitioned into group&g, G1, G, Gz where

Bo={(0,0),(0,1),(0,2),(0,3)} B1={(0,0),(1,1),(1,2),(1,3)}

B>={(0,0),(2.1),(22),(2.3)} Bs={(1,0),(0,1),(1,2),(2,3)}

Bs={(1,0),(1,1),(22),(0,3)}  Bs={(1,0),(21),(0,2),(1,3)}

Bs=1{(20),(0,1),(2,2),(1,3)} B7={(20).(1,1),(0,2),(2.3)}
Bs = {(2,0),(2,1),(1,2),(0,3)}.

An orthogonal arrayDA(k, g) is equivalent to a transversal desigD(k, g). We show how
to construct ar D(k,g) from an OA(k,g). Let A be an orthogonal arra@A(k,g) with
symbols fronZg. Label the rowsoAasQ1,...,k—1and columnsofasQ1,..., g’ —1.
Define

x={01,....g-1} x {0,1,...,k—1}.

For 0<i<k-—1, defineG; = {0,1,...,g— 1} x {i}, and then
G={G : 0<i<k-1}.

For 0< j < g?—1, defineBj = {(A(i, j),i) : 0<i<k—1}, and then
B={Bj:0<j<g’-1}.

It is easy to prove thatX’, G, B) is aT D(k,g). The construction can be reversed to obtain
an orthogonal array from a transversal design [33, 97]. Hwementioned transversal
designTD(4,3) is derived from the orthogonal arrayA(4,3) given in Example 1.1.2.
The equivalence between above mentioned three designdynaatia squares, orthogonal

arrays and transversal designs can be stated as follows.
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Theorem 1.1.2.[33, 96]Let k> 3 and g> 2 be two positive integers. Then the existence

of any one of the following designs implies the existenckeobther two designs:
1. k mutually orthogonal Latin squares of order g,
2. an OAk+2,9),
3. aTDk+2,9).

One well-known generalization of transversal design iteddtansversal coverthis
generalization is similar to the relaxation of orthogorredgs to covering arrays. A transver-
sal coverTC(k,qg) is a triple (X,G, B) with the same properties as that of a transversal
designT D(k,g) except the property that any pair of varieties from distgrctups occurs
in exactlyone block is relaxed to any pair of varieties from distinabugrs occurs irat
leastone block. Note that the number of blocks in a transversa¢icdC(k, g) is at least
g®. Thus, a transversal cova@iC(k,g) that has exactlg? blocks is a transversal design
TD(k,g). Stevens [93], Stevens, Moura and Mendelsohn [95] gave aleltstudy of
these designs and bounds on the fewest blocks possible amsvéarsal cover. Here we

give an example of a transversal cover.

Example 1.1.4.[93] Let X = Zg be the set of varieties. L&} be a partition ofX" into 4

groups of size 2 namely,
Go={0,1} G1={2,3} G, ={4,5} G3;={6,7}
andB be the set of 5 blocks of size 4 as given below:

Bo = {0,2,4,6} B, = {1,3,5,6} B, ={1,3,4,7}
Bs={1,2,5,7} B, = {0,3,5,7}.

Then(X,G,B) is a transversal covarC(4,2).



1.1.4 Covering arrays

Orthogonal arrays exist only for specific combination ofgmaetersn, k,g,t andA = é‘f.

In order to widen the use of orthogonal arrays to a largereasfgproblems, the balance
requirement that eveny tuple to appear precisely = gf times was relaxed to the require-
ment that everyg' tuple to appear at least= é‘f times; and the resultant structure named a

covering array. In practice, we are most interested in cabeseA = 1.

Definition 1.1.3. A covering array tCA(n,k,g), of size n strength t{ degree kandorder
0, is ak x n array ong symbols such that evety n subarray contains each possibleiple

from the set ofy symbols at least once as a column.

Figure 1.4 shows an example of a covering array of strengtettvith degree 4 and or-
der 2. We can see that every three rows of this array conthgigiit possible 3-tuples
(000001,010,011100,101,110,111) at least once.

1
1

o O O O

00
01
10
11

o +» B+, O
= O O

1
0
1
0

N

0
Figure 1.4: 3€A(8,4,2)

The number of columna in at-CA(n,k,g) is called thesizeof the covering array. It is
desirable in most applications to use a covering array Vghsimallest size. The smallest

possible size of a covering array for fixed parametgesaandg is denoted as
t-CAN(k,g) = min{n : 3t-CA(n, K, g)}.

A covering arrayt-CA(n, k,g) with n = t-CAN(k, g) is said to beoptimal For a covering
arrayt-CA(n,k, g) it is trivial thatn > ¢, and thus

t-CAN(k,g) > d".
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This lower bound is of little use as it does not tell us how fa&AN(k,g) grows as a
function ofk. The only case where tight lower bounds have been obtainvdtEeg =t = 2.
This result has been discovered by Rényi [80] whé&neven, and independently by Katona

[54], and Kleitman and Spencer [55] for all Fork > 1, we have

2-CAN(k,2):min{n : (Lg:i) zk}.

This lower bound is obtained using Sperner’s lemma [92] whiereven and using Erdos-
Ko-Rado theorem [40] whenis odd. Stevens [93], Stevens, Moura, and Mendelsohn [95]
have also proved some other lower bounds on the size of coyarrays. Stevens, Moura,

and Mendelsohn [95] established that
2-CAN(k,g) > g°+3

when 3< g < k— 3. Many of their results provide useful information on snpErameter

sets.

For strength three, Kleitman and Spencer [55] and Sloaney®dd results from binary
intersecting codes and probability theory to obtain theloiswon the size of binary covering

arrays. It says that fdr= 3 and largek, the minimunmn satisfies
3.21256< @ < 7.56444.

However, for fixed strength and orderg, probabilistic methods establish the following

result [44, 54, 55]:
t-CAN(k,g) = O(logk).
Research has been done to determine the value of

: t-CAN(k, 9)
d(t,g) = lim sup———*
( g) k—>oe |092k

The exact value od(t, g) is only known whert = 2 andg > 2 [43], which is equal td. In

general for any strength> 2 and a positive integeg, an upper bound od(t,g) is given

by Godboleet al. [44] as follows:
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d(t,g) < @T
Much of the research on covering arrays involves developavgconstructions and bounds
on the size of covering arrays [17, 20, 21, 26, 27, 60, 64, 8973, 74, 83, 91, 94, 104].
Many algorithms and constructions have been developeddimpating covering arrays,
but there is no uniformly best method, in the sense of alwayspuiting the smallest pos-
sible covering array. For a good up to date survey on covexirays see [47]. Improving
the best-known sizes of covering arrays for fixed strengtlyrele and order is considered

to be a primary concern in the study of covering arrays.

Just as strength two orthogonal arrays are equivalent ns\tessal designs, strength two
covering arrays are equivalentto transversal coversntitiglifficult to construct a ZA(n, k, g)
from aT C(k,g) wheren is the number of blocks in the transversal cover. A coverimgya
is formed by associating the samgary alphabetg0,1,...,g— 1} with elements of each
group and then listing the blocks explicitly as the columithe array. We give an example

to explain the method.

Example 1.1.5.[93] Below is a binary covering array @A(5, 4, 2) derived from the transver-
sal coverT C(4,2) given in Example 1.1.4. Here varietie204, 6 are associated with sym-
bol 0 and varieties B, 5,7 are associated with symbol 1, and bldgkcorresponds to the

ith column in the covering array.

O o o o
(o B N
R = T = =
B Rk O R
=

1.2 Generalizations of covering arrays

In this section we consider some generalizations of thelpnolof constructing covering

arrays with smaller size. Covering arrays have applicatiorthe design of test suites for
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testing systems such as software, circuits, and networkerenailure can be caused by
the interaction between their parameters. These genatializ are motivated by their ap-
plications in software and hardware testing. We look at tvesrof a covering array in a

different way which we also use throughout this thesis.

Definition: Letg; > g > ... > g be positive integers. A set bi/ectors{x,...,%} where
X € Zg, 1<i <t, is said to be-qualitatively independerit for everyt-tuple(ay,...,a) €

Zg, % -+ X Lg, there exists K j <nsuch that(x((j),...,x(j)) = (a1,...,&).

1.2.1 Mixed covering arrays

Mixed covering arrays are a generalization of coveringyarthat allow different values in
different rows. This generalization is typically based ba tmost practical constraint in a

testing process where different parameters in a systenmatdkéerent number of values.

Definition 1.2.1. Letn,k, g1, ..., 0k be positive integers. Aixed covering arrapf strength
t, denoted by-CA(n,k, [1%_; i), is ak x n arrayC with entries fromZg in rowi, such that

anyt distinct rows ofC aret-qualitatively independent.

The parameten is called the size of the array. The main problem is to coostmixed
covering arrays with minimum sizefor the given values df,t andg;’s. An obvious lower
bound for the size of a mixed covering array|"|$zlgi wheregy, ..., are the largest
values, in order to guarantee that the correspontliogvs bet-qualitatively independent.
Mouraet al. [72] developed a theory for mixed covering arrays and prieska detailed
study of constructing optimal mixed covering arrays witedfic parameters fdr= 2 and
k < 5. This problem is further discussed by Colbowtnal. in [34]. The casd = 3 is
studied by Colbouret al. in [35] for k < 6.
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1.2.2 Covering arrays on graphs

Another generalization of covering arrays are coveringyaon graphs. This is useful in
testing applications where two specific parameters do etant. Then it is not necessary
that each possible parameter-value configuration for ttves@arameters be tested, which
allows reductions in the number of required test cases. Weusa a graph structure to
describe which pairs of parameters need to be testedowkring array CAn,G,g) on

a graph Gwith alphabet sizeg is a [V(G)| x n array overZg. Each row in the array
corresponds to a vertex in the graBhThe array has the property that any two rows which
correspond to adjacent verticesGrare qualitatively independent. The size of the smallest
possible covering array on a grafhis called agy-qualitative independence number of G
or g-ary covering array number of Given by

CAN(G,g) = min{n : there exists £A(n,G,g)}.

neN

A CA(n,G,q) of sizen=CAN(G,g) is called optimal. A quick observation implies that
a covering array on a complete graph is a covering array. Hleea classical problem
is to construct covering arrays on graphs with the minimumiper of columns for a
given graphG and an integeg. Serroussi and Bshouty [90] showed that finding an optimal
covering array on a graph is NP-hard even for the binary c&sevens gave some basic
results on covering arrays on graphs in his Ph.D thesis [88jagher and Stevens [68]
developed further research in this topic and presentedadweunds for they-qualitative

independence number G

1.2.3 Mixed covering arrays on graphs

Mixed covering arrays on graphs are structures that gemethle notion of mixed covering
arrays as well as covering arrays on graphs. The parametensixXed covering arrays on
graphs are given by a weighted graph. In this context, a vwetgbraph is a graph with a

positive weight functioow : V(G) — Z*. Let G be a weighted graph witk vertices and
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weightsg: < go < ... < gk, and letn be a positive integer. Anixed covering array on G

denoted bYCA(N, G, |‘|!‘:1 gi), is ank x n array with the following properties:
1. rowi corresponds to a vertex € V(G) with weightg;;
2. the entries in roware fromZg;
3. pair of rows which correspond to adjacent verticeG afe qualitatively independent.

Given a weighted grap® with weightsgs, go, ..., 9k, the mixed covering array number on
G, denoted bCAN(G, [1¥_, 9i), is the minimunm for which there exists @A(n, G, [1*_, ).

In 2007, Meagheet al. [67] and Cheng [24] studied the problem of constructing mixe
covering arrays on graphs. Meagher, Moura, and Zekaouigt@]ied mixed covering
arrays on graphs in detail and gave many powerful resultsiditey upper bounds on
the mixed covering array number on all 3-chromatic and onrgelaumber of 4- and
5-chromatic graphs. They built optimal mixed covering gsran trees and cycles using
some basic graph operations, and using a different tecanifay built optimal mixed cov-
ering arrays on bipartite graphs. Cheng [24] mainly focuseelgorithmic constructions
for mixed covering arrays on graphs and on few families ofengmphs and developed

new techniques to construct optimal mixed covering arraybipartite graphs and cycles.

1.2.4 Variable strength covering arrays

In a software system, certain sets of parameters interactain sets of parameters are
known not to interact. If prior knowledge of the system untésting indicates that certain
parameters are known not to interact, it is unnecessargtalienteractions between them.

A set of parameters that jointly affect on of the output valaéa software system must be
considered to interact. To model this situation, the notbabstract simplicial complex
ASCis used. The covering arrays @&&Csare calledvariable strength covering arrays

or covering arrays on hypergraphd'he sets of parameters that we want to be tested are

recorded as the facets of #48C Let A be anASCover{0,...,k— 1} with set of facets
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A, and letr = rank(A). A variable strength covering arrdyCA(n,/A\,g) is ank x n array
over Zg with rows Q..,k— 1 such that if{bg,..,x_1} € A for t <r, then these rows are
t-qualitatively independent. TRéCAN(A, Q) is defined to be the smallestsuch that a
VCA(n,A\,g) exists. Coheret al. [29] used a simulated annealing algorithm to fiW@A
over a specific family oASCsand presented several other related results. Cle¢rd,
[24] proposed a problem reduction technique involving prapypergraph colouring and
greedy algorithm to fin/ CAover arbitraryASC Mixed variable strength covering arrays
have been systematically studied at length in Raapholstsd [77]. He gave a complete
solution for the problem of determining the covering arrayntver and constructing optimal

covering arrays on triangulation hypergraphs of the sphere

1.2.5 Covering arrays with budget constraints

A practical limitation in the area of testing is the budgetuelto limited time, human,
and computing resources, in most software developmests)gas performed with a fixed
number of test cases. To model this situation, we considgotbblem of building the best
possible testing array within a fixed number of test cases,ishfixed number of columns
of the array. To test a software system whktiparameters each haviggvalues, the total

number oft-tuples that needs to be covered feway interactions is(f)g‘. Thet-way

configuration coveragef a testing array is defined by

N (7 )
WL

whereN; (<) is the number of distindttuples covered in the columns of. Given fixed

(o) =

values oft,k,g andn, the problem is to build a testing array of size at mosh having
high configuration coverage measure. This problem is calte@ring array with budget
constraints This is one of the five natural generalizations of coveringys listed in
[48]. A brief discussion of covering arrays with budget doaisits problem is available in
[48, 57] and [56, Chapter 7]. Maity [61] studied this problerhent = 3 and for specific

values ofg.
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1.2.6 Covering arrays with forbidden configurations

For a set oft parameters, parameter-value configuratioils an ordered tuple df valid
values, one for each of the parameters. The generalizatiosidered here applies to the
situation in which some parameter-value configurationsiraralid, a requirement quite
common in software and hardware testing. If a system is gtibbe to failure due to

a single parameter-value configuration of two parameterigaat one of the tests given
by a covering array is guaranteed to fail. These forbiddeamater-value configurations
are modeled using k-partite graph oveg!‘zlgi vertices while testing a system with
parameters and parameiehaving g; values for 1<i < k. These are calledovering
arrays with forbidden configurationand are studied by Danziger, Mendelsohn, Moura,

and Stevens [36].

1.2.7 Covering arrays with column limit

Covering arrays with column limitCACLs are another generalization of covering arrays.
A t-CACL(n,k,g,w) is ak x n array with some empty cells. A parameter is represented
by a row and takes values frody. In each column, there are exactlynon-empty cells,
that is, there arev parameters that have values frafg. The parametew is called the
column limit Moreover, every x n subarray contains eactftuples fromZq at least once.
Covering arrays with column limit is useful in pharmacologkiiere one has to limit the
number of drugs administered to an individual at a time. Hegdrug corresponds to a
row and an individual corresponds to a column, anid the number of drugs that can be
administered to an individual at a time. Covering arrayswiblumn limit are studied in

[41]. TheCACLshave close relation witlsroup Divisible Covering Desigrg2].
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1.3 Applications of covering arrays

Testing is an important but expensive part of software amdvare development process.
Typically, more than 50% of the total development cost goesoftware testing and veri-
fication. Software nonperformance and failure are expenditiere are many examples of
the catastrophic impact of software and hardware failufes. example, a software failure
interrupted the New York Mercantile Exchange and teleplsameice to several East Coast
cities in February 1998 (Washington Technology, 1998).[29] example of hardware bug
is the popular Pentium floating point division bug (1993)][3Because of this bug, the
processor could return incorrect decimal results wherddigi a number. This happened
due to a flaw in the look up table employed in the division discand led to a loss of $475
million. A study by NIST shows that software errors cost LeSonomy $5% billion an-
nually. The study also found that, although all errors caimeaemoved, more than a third
of these costs, or an estimated $8illion, could be eliminated by an improved testing
infrastructure [18]. Hence search for improved testindntegues has been a very active
research area. We give some examples of testing problemstizate the use of covering
arrays. Covering arrays are useful in multiple applicagjdar example in software testing
[1, 2,52, 53, 56, 58], in hardware testing [47], and in drugpsening [41, 48].

Software testing: Smartphones have become immensely popular because thdynsom
communication capability with powerful graphical dispdaynternet browsing, and pro-
cessing capability. A Huge number of smartphone applioatior“apps” are developed
annually. An application, for example, Android apps, musérate across a variety of
hardware and software platforms since not all products aihbe same options. For ex-
ample, some smart phones may have three Keyboard optienGrtssTap, FlickKey
andQWERTY. The table below shows the names of five parameters for amcapph and

values for each parameter.
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Parameters Values
Keyboard CrossTap (0), FlickKey (1), QWERTY (2)
Navigation DPAD (0), Trackball (1), Wheel (2)
Orientation Landscape (0), Portrait (1), Square (2)
Screenlayout size Large (0), Small (1), Normal (2)
Touchscreen Finger (0), Notouch (1), Stylus (2)

An exhaustive test suite will include®3= 243 test configurations. However, only 11 test
configurations are needed to cover all 2-way combinationsabfes. These 11 test cases

are obtained using aQA(11,5,3) [75].

Casel Case 2 Case 3 Case 4 Case 5 Case 6 Case7 Case 8 Case9 Case 10 Case 11
CrossTap CrossTap CrossTap FlickKey QWERTY FlickKey QWERTY FlickKey QWERTY FlickKey QWERTY
DPAD Trackball Wheel DPAD DPAD Wheel Trackball Trackball Wheel Trackball Wheel

Landscape Portrait Square Portrait Square Landscape Landscape Portrait Square Square Portrait
Large Normal Small Small Normal Normal Small Large Large Normal Small
Finger Notouch Stylus Notouch Stylus Notouch Stylus Stylus Notouch Finger Finger

Using covering arrays, one can produce test suites thar ¢eway combinations of
values. For many applications, 2-way or 3-way testing magg@opriate, and either of
these will require less than 1% of the total test cases requw cover all possible test
configurations. Consider a system with 7 parameters haviradues each. An exhaustive
test suite will require 4= 16384 test cases. Table 1.1 shows the number of test cases
required fort-way coverage at several valuestofThis illustrates the power of covering
arrays for combinatorial testing.

Some examples of case studies where covering arrays haveibee efficiently are the
following. Firstly, in Rich web application (RWA) [65], 2-ay or pair-wise test found all
but one fault found by exhaustive testing. It uses only 13%heftotal test cases required
for exhaustive testing. Secondly, in MP3 web applicatidi6]l most faults are detected by

2-way testing, except one fault that is caused by 4-wayactern. Finally, in web browser
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DOM modules [71], all faults are detected using 4-way testlhrequires less than 5% of

the total test cases required for exhaustive testing.

Table 1.1: Number of test cases required is a fraction of Aa@stive test suite.

t Number of Test Cases [31] % of Exhaustive
2 21 0.12

3 88 0.53

4 412 2.51

5 1536 9.37

6 4096 25.00

Hardware testing: Interaction testing is used for testing circuits and neks¢®8]. Con-
sider a circuit withk inputs, each of one bit. Within the circuit, the input signadteract
through arithmetic and logical operations to determine aput vector. This circuit can

be exhaustively tested usin§ @sts. Like software, we expect errors to be revealed by a
fraction of test configurations. Tareg al. [98], Borodaiet al. [11] performed circuit test-

ing in this environment using test configurations that caweay combinations of values.
Seroussi and Bshouty gave a comprehensive study in [90hdh ease, a binary covering

array of strength is used to generate the test configurations.

Multiple-Drug-Therapy and Drug screening: In some cases, multiple drugs are taken
simultaneously to treat a single disease. In such casesaations between drugs oc-
cur and cumulative effect of multiple drugs need to be saithiefore administering them.
Another application of interaction testing is in drug serieg [99]. Drug screening is a
cost-effective method to quickly review all samples. Cawgarrays help in establishing a

rapid and effective method for drug screening.

Other applications of covering arrays include authentcgtL02], data compression [93],
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intersecting code [28], and universal hashing [19].

1.4 Thesis contributions

In this thesis, we consider the following four combinatbpeoblems related to covering
arrays: An algebraic construction of strength four cowgarrays; Testing arrays with high
coverage measure; Covering arrays on product graphs; Mowegting arrays on 3-uniform
hypergraphs. We give below, chapter-wise, the problemsidered and a brief outline of

the solutions.

1. An Algebraic Construction of Strength Four Covering Arrays

This chapter focuses on constructing new strength fourramyearrays and establishing
improved bounds on the covering array numbeGAN(k,3). See also [8]. A strength
four covering array 42A(n,k,g), of sizen, degreek, and orderg, is ak x n array ong
symbols such that every>dn sub-array contains every>41 column ong symbols at least
once. It is desirable in most applications to minimize ttee si of covering arrays. The
covering array number @AN(k, g) is the smallest for which a 4CA(n, k, g) exists. There
is no uniformly best algorithm for computing the smallestgible covering array for a
particular problem. The method proposed here improves suttee best known upper

bounds on the size of strength four covering arrays wyith3.

Let X = GF(g— 1) U{x} be the set oy symbols on which we are to construct a
4-CA(n,k,g). We choose so thaty— 1 is a prime or prime power. Our construction called
PGL construction, involves selecting a groBmand finding vectorsi = (up, Uz, ..., Ux_1),

V= (Vo,V1,...,Vk_1) € XK, called starter vectors. We use the vectors to foknx @k matrix
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M as follows:
U Uk-1 ... uz Vo Vk-1 ... V1
Uy Uo R uo \%1 Vo ... Vo
M=
U—2 Uk—3 ... Uk-1 Vk—2 Y3 .- Vk-1
U1 Uk—2 ... Uo Vk—1 Vk—2 ... Vo

Let G = PGL(2,g—1). For eacho € PGL(2,g— 1), let M® be the matrix formed by
the action ofo on the elements d¥I. The matrix obtained by developing by G is the

k x 2k|G| matrixM® = [M? : g € G]. LetC be thek x g matrix that has a constant column
with each entry equal te for eachx € X. Vectorsu, v € XK are said to bstarter vectorgor

a 4CA(n,k,g) if any 4 x 2k subarray of the matrii has at least one representative from
each non-constant orbit 6fGL(2,g — 1) acting on 4-tuples fronX. If starter vectorsi, v
exist inXK (with respect to the grou@) then|[M®,C] is a 4CA(2kg(g— 1)(g—2) +g,k, 9).

If we do not find vectorss andv, we look for vectors that produce an array with high 4-
way configuration coverage. In order to complete the cogeronditions, we add a small
matrixC;. In this case[M®,C,C;] forms a covering array. For some valueskpbnly one
starter vectou and aC; matrix are enough to build a covering array. We use computer
search to find starter vector(s) and maix

We examine two methods, calledtending a solutiof69] andrandomized post opti-
mization[73], to obtain small improvements on the computationalitesobtained.

In the range of degrees considered in this chapter, the bestrkresults previously
come from [30]; in that paper, covering arrays are also fooypdsing a group action on
the symbols (the affine or Frobenius group), but no groumadain the rows is employed.
While for g = 3 the group that we employ on the symbols coincides with theeafiroup,
we accelerate and improve the search by also exploiting apgaction on the rows as
in [21, 69], and develop a search method that can be appliedtigEly wheneveg > 3
andg— 1 is a prime power. PGL construction is an extension of thesttantion method

developed in [21, 69]. The construction given in this chaptgroves many of the current
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best known upper bounds on®AN(k, g) with g= 3 and 19< k < 74.

2. Testing Arrays with High Coverage Measure

Using strength covering arrays, one can generate test cases thattcaxsgr combinations
of values. For most applications, 2-way (pair-wise) or 3suesting may be effective [26,
61, 63] and either of these will require less than one perattite time required to cover
all possible test configurations. A major concern in the aféasting is the budget. Due to
straightly limited time, human, and computing resourcesnost software developments,
testing is performed with a fixed number of test cases which lmessignificantly less than
the number of test cases required even for 2-way or 3-wamtesio model this situation,
we consider the problem of building the best possible tgsamay within a fixed number
of test cases, that is, fixed number of columns of the arraye3ioa software system with
k parameters each havimgvalues, the total number oftuples that needs to be covered
for t-way interactions |s('t‘) g!. Thet-way configuration coverage of a testing arayis

defined by
N ()

k
(g
whereN; (<) is the number of distindttuples covered in the columns of. Given fixed

(<) =

values ot, k, g andn, our objective is to build a testing array of size at mosh having high
t-way configuration coverage. This is one of the five naturalegalizations of covering
arrays listed in [48]. This chapter presents algebraic ttoagons for testing arrays with
high 3- or 4-way configuration coverage measure. See al$j.[7,

Given fixed values ok,n andg, so thatg— 2 is a prime power, we are to construct a
testing array/ with high 3-way configuration coverage measure. Xet {Fg, 07,005}
be the set of) symbols (values) on which we are to construct a testing draayng good
configuration coveraggs(<”). Clearly,|X| =g = q+ 2; we choosey so thatg— 2 is a
prime or prime power. Our construction requires selectiggoap G and finding a vector
v e XK, called a vector with good configuration coverage measure. ugé the vector

V= (Vo,V1,...,Vk_1) to form ak x k circulant matrixM. The group acting on the matri
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produces several matrices which are concatenated to foestiad array with high 3-way
configuration coverage. The construction for a testingyamigh high 4-way configuration
coverage is similar to the PGL construction described inpB#ra2.

The construction given here is an extension of the methodldped by Meagher and
Stevens in [69]. Their construction involves selecting augrG < Syny and finding a
vectorv € Z'é, called a starter vector, to construct a strength two cogeairray of size
k|G| + g and numerous improved upper bounds were obtainedAM (2, k, g). Maity [61]
generalizes this method to construct testing arrays wgh Biway configuration coverage
measure fog = p™or p™+ 1 wherep is a prime. This method produces several testing
arrays with high 3-way configuration coverage measure aBb%i to 99% for different
values ofg andk. In [61], a comparison of this method with tools like AETG [2fhd
IPOG [59] shows that this construction produces signifigesthaller test suites.

Test coverage is one of the most important topics in softwestng. Users would like
to have some quantitative measure to judge the risk whitegusproduct. Consider testing
a software system with 40 parameters each having threesvdue construction for testing
array with high 4-way configuration coverage generatestata® with 243 test cases that
ensure with probability @88 that the software cannot fail due to interactions of 2t 8 o
parameters whereas the best known covering array in [3Ljnex1465 test cases for full
coverage. The results show that the proposed method caludeehe number of test cases

significantly while compromising only slightly on the coniigtion coverage measure.

3. Covering Arrays on Product Graphs

The objects considered in this chapter are covering armaygaphs and our primary con-
cern is with constructions that make optimal covering aray large graphs that are ob-
tained from a product of smaller graphs. See also [3]. A gm@pHbuct is a binary operation
on the set of all finite graphs. However, among all possildeasative graph products, the
most extensively studied in the literature are the Canmegraduct, the direct product, the

strong product and the lexicographic product. Here we Féloaldefinition of Cartesian
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product only.

Definition : TheCartesian productf graphsG andH, denoted byGOH, is the graph with

V(GOH) = {(g,h)|ge V(G) andhe V(H)},
E(GoH) = {(g,h)(d,h)|g=d,hh € E(H), orgd € E(G),h=H}.

The graphss andH are called théactorsof the productGoH.

In [68], the definition of a covering array has been extendeiddlude a graph structure.
This has been applied in the context of software testing Bentng that we only need to
test interactions between parameters that jointly affaetaf the output values.

Two vectorsx,y in Zg arequalitatively independerit for all pairs (a,b) € Zg x Zg, there
existsi € {1,2,...,n} such thatx(i),y(i)) = (a,b). A covering array on a grapB, denoted
by CA(n,G,g), is a|V(G)| x n array onZg with the property that any two rows which
correspond to adjacent verticesGare qualitatively independent.

The smallest possible covering array on a gr&ak denoted
CAN(G,g) = miIQ {n : there exists £A(n,G,q) }.
ne

Given a graphG and a positive integeg, a covering array ois with minimum size is
calledoptimal We start with a review of some definitions and results froodpict graphs

in Section 4.3. In Section 4.5, we show that for all gra@hsandGo,
max{CAN(Gi,g) } < CAN(G10Gg,g) < CAN(max(x(Gi)},9)
1=1, =1,

where x (G;) is the chromatic number db;. We look for graph$s; and G, where the
lower bound orCAN(G10Gg,g) is achieved. LetH be a finite group an® be a subset
of H~ {id} such thatS= —S (i.e., Sis closed under inverse). The Cayley graphtbf
generated by, denotedCay(H,S), is the undirected grap6 = (V,E) whereV = H and

E={(x,sX | xe H,se S}. In Section 4.6, we obtain families of Cayley graphs thatewah

the lower bound on the covering array number on product gréfehlist below two related
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theorems:

Theorem 4.6.2: LetH be a finite group an&be a generating set fét such that
1. S=—-Sandid ¢ S
2.5°=S
3. there exisk; ands, in Ssuch that; # s, ands;s, € S
then forG; = Cay(H, S) and any three colourable gragh, we have
CAN(G10G2,g9) = CAN(Gq,Q).
Theorem 4.6.3: Let H be a finite group an8&be a generating set fét such that
1. S=-Sandid ¢ S
2. =S
3. there exisk; andsp in Ssuch that; # andS]_Sz,SlSEJ' €S
then forG; = Cay(H, S) and any four colourable grapby, we have
CAN(G10Gg,9) = CAN(Gy,9).

In Section 4.7, we present a polynomial time approximatigorthm with approximation
ratio [Iog (%ﬂ for constructing covering arrays on grapghs- (V, E) having more than

one prime factor with respect to the Cartesian product.

4. Mixed covering arrays on 3-uniform hypergraphs

Covering arrays have applications in many areas. Covenraysare particularly useful

in the design of test suites [26, 27, 47, 61, 62, 63]. Therigsapplication is based on the
following translation. Consider a software system that khaarameters, each parameter
can takeg values. Exhaustive testing would requigétest cases for detecting software

failure, but ifk or g are reasonably large, this may be infeasible. We wish tallauilest
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suite that tests all 3-way interactions of parameters vagminimum number of test cases.
Covering arrays of strength 3 provide compact test suitgiharantee 3-way coverage of

parameters.

To address different requirements of the software and henelwesting applications,
many generalizations of covering arrays have been intedi(see [32, 48])Mixed cov-
ering arraysare a generalization of covering arrays that allow diffexketues for different
rows. This fulfills the need that different parameters ingiistem take a different number
of possible values. Some techniques to construct mixedricmyarrays are presented in
[34, 72]. Maegher and Stevens introduce and study covermag an graph in [68]. This is
useful in testing applications where we may know in advaheetivo specific parameters
do not interact. Then it is not necessary that each poss#érenpeter-value configuration
for these two parameters be tested, which allows reductiothee number of required test
cases. We can use a graph structure to describe which paiasaheters need to be tested.
Serroussi and Bshouty [90] showed that finding an optimaédag array on a graph is
NP-hard even for the binary case. Meagher, Moura, and Zekéoustudied mixed cov-
ering arrays on graphs in details and gave many powerfulteeddixed variable strength
covering arrays have been introduced and systematicaltiiest at length in Raaphorst’s

thesis [77] and also dealt in [23].

The objects considered here generalize mixed coveringsaoa graphs introduced
in [67] but are a special case of mixed variable strength ogearrays introduced in
[77], focusing on hypergraphs that are 3-uniform, rathantgeneral hypergraphs. See
also [5]. The motivation for this work is to improve applicats of covering arrays to
software, circuit and network systems. This also gives wg ways to study covering

arrays construction.

Let n,k be positive integers witk > 3. Three vectors € Zg , y € Zg,, Z€ Zg, are 3-
qualitatively independerit for any triplet (a, b,c) € Zg, x Zg, x Zg,, there exists an index
j € {1,2,...,n} such that(x(j),y(j),z(j)) = (a,b,c). LetH be a 3-uniform hypergraph

with k verticesvy, o, .. ., vk with respective vertex weights, gz, . . ., Gk. A mixed covering
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array onH, denoted byCA(n,H, |‘|}‘:l gi), is ak x n array such that row corresponds to
vertexv, entries in row are fromZg; and if {vy, w,V,} is a hyperedge ifl, then the rows
X, Y,z are 3-qualitatively independent. The parametercalled the size of the array. Given
a weighted 3-uniform hypergragh, a mixed covering array oH with minimum size is

called optimal.

In Section 5.1, we outline the necessary background in theryhof hypergraphs. In Sec-
tion 5.2, we recall the definition of mixed covering arrayshympergraphs and related re-
sults. In Section 5.3, we give results related to balancetpairwise balanced vectors

which are required for basic hypergraph operations.

Definition: A lengthn vector with alphabet sizg is balancedif each symbol occurs

In/g] or [n/g] times.

Definition: Two lengthn vectorsx; and x, with alphabet sizey; and g, are pairwise
balancedif both vectors are balanced and each pair of symbalb) € Zg, x Zg, occurs
In/g102] or [n/g102] times in(x1,X2), so forn > g10, pairwise balanced vectors are al-

ways 2-qualitatively independent.

Definition: LetH be a weighted hypergraph. Balanced covering arrapn H is a cov-
ering array orH in which every row is balanced and the rows correspond tacesin a

hyperedge are pairwise balanced.

In this section, we prove two important theorems relatech donstruction of optimal
mixed covering arrays on some specific class of 3-uniformely@phs. Theorem 5.3.2

proves Conjecture 3.4.27 posted by Raaphorst in [77].

Theorem 5.3.1: Letx; € Zgl andxp € Zgz be two balanced vectors. Then for any positive

integerh, there exists a balanced vecyor Z;) such thak; andy are pairwise balanced and
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X2 andy are pairwise balanced.

Theorem 5.3.2: Letx; € Zgl andx, € ZSZ be two pairwise balanced vectors. Then for
anyh such thaig;goh < n, there exists a balanced vectoe Z;} such thatx;, x, andy are
3-qualitatively independent and andy are pairwise balanced anxg andy are pairwise

balanced.

In Section 5.4, we introduce four basic hypergraph opematio
1. Single-vertex edge hooking |
2. Single-vertex edge hooking Il
3. Two-vertex hyperedge hooking
4. Single-vertex hyperedge hooking

Using these operations, we construct optimal mixed cogexirays orx-acyclic 3-uniform
hypergraphs, 3-uniform interval hypergraphs, conformah8orm hypertrees having a bi-
nary tree as host tree, 2-tree hypergraphs, and 3-unifasseloycles. In this section, we

give a solution to Conjecture 3.4.28 posted by Raaphorstih |



Chapter 2

An Algebraic Construction of Strength Four

Covering Arrays

Covering arrays are useful in multiple applications, foample in software testing [1, 2,
47,52, 53, 56, 58, 70], in experimental designs [49, 82, @d]ia drug screening [41, 48].
Pair-wise (2-way) interaction testing requires that foraeg number of input parameters
to the system, each possible combination of values for amyopparameters be covered
by at least one test case. 2-way and 3-way interaction tgati@ known to be effective
for different types of software testing [26, 61, 63]. In tlealrworld, there may be 4, 5
or even more, parameters involved in failures, so our tagt sovering 2-way and 3-way
interactions might not detect them. Depending on the budgdtthe software, two-way
through five-way or six-way interaction testing may be appiate [58]. Here we consider
the problem of constructing strength four covering arrdyach column of a strength four
covering array is a test case for the problem of 4-way interadesting of parameters.

In this chapter, we present an algebraic construction thataves many of the best
known upper bounds on for covering arrays £A(n,k,g) with g=3. See also [8]. In
Section 2.1, we summarize the results from group theorywveatise in our construction.
In Section 2.2, we describe two known constructions for dogearrays. In Section 2.3,
we give a new construction that can be used to build covenrays 4CA(n,k,g) for
g=pm+1, pis prime. This construction is an extension of the consimacimethod
developed in [21, 69]. The construction given in this chaptgroves many of the current

best known upper bounds onGAN(k,g) with g = 3 and 19< k < 74. Colbourn [31]

29
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maintains a repository of the best known upper bounds foemoy array sizes. In Section
2.4, we examine two methods to obtain small improvementhiercomputational results

obtained. In Section 2.5, we present the computationalteesu

2.1 Transitive action of groups

In this section, we summarize the results from group thduaywe use. All the definitions
and results mentioned in this section are standard andedfénom [81]. Apermutation
of a non-empty seX is a bijectionrt: X — X. The set of all permutations of, denoted
by Sym X forms a group with respect to functional composition. TheSym Xof all
permutations oK is called thesymmetric grouplf X is a non-empty set, a subgro@of
the symmetric groufsym Xis called apermutation group The degreeof a permutation

group is the cardinality oX.

Two elementx andy of X are said to bequivalentunderG if there exists a permutation
rmin G that maps<toy. This relation is an equivalence relation ¥rand the equivalence

classes are callagrbitsunderG. More formally, for eactx € X, let
orbitg(x) = {xm| me G}.
The set orbig(x) is a subset oK called the orbit ok underG. For eachx € X, let
stali(x) = {me G| xm=x}.

We call the set staf{x) thestabilizer of x in G. The permutation grou@ is calledtransi-
tiveif, given any pair of elementsandy of X, there exists a permutatianin G which maps

xtoy. ThusG is transitive if and only if there is exactly one orbit uné&mwhich isX itself.

Let the cardinality oX ben andG be a permutation group oX. For 1< k < n, we denote

XX for the set of all orderel-tuples of distinct elementsq, X, ..., Xx). The permutation
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groupG exhibits natural action component wise ¥, that is, if e G,
(X1, X2, « « o, X)) TT—> (X1 T, X2TT, . .., X TT).

Definition 2.1.1. A permutation groups on X is said to bek-transitive on Xif for any
two orderedk-tuples of distinct elementy, Xo, ..., %) and(y1,Yz,...,Yx) in XK there is

ame Gsuchthakimr=y;for 1 <i <k

Definition 2.1.2. A permutation groups on X is said to besharply k-transitive on Xf
given two tuples inX¥, there exists a unique permutationGrmapping oné-tuple to the

other.
Theorem 2.1.1. 1. The symmetric group,3s sharply n-transitive.
2. If n> 2, the alternating group Ais sharply(n— 2)-transitive.

There are certain examples of sharply 2-transitive an@sttive permutation groups that
are not of alternating or symmetric type. Some examplesraatiénal linear groug.(q)

or projective general linear groupGL(2,q) and its subgroup called affine linear group
AGL(1,q).

2.1.1 Fractional linear group

Let Fq be a Galois field5F(q) whereq = p™ and p is a prime. We now adjoin a new
element, which we denote by, to F, to obtain a seK = FqU {}. One may think of the

resulting seiX = FqU {0} as the projective line consisting qf 1 points. Define

ax+b
L(q) = {a X = X | x0 = 20 \vherea,b,c,d € Fq andad — bc # O}
cx+d
with standard convention abowt for examplex+co = 00, X x 00 =00, 2 =1, ¥ = o for

ant+c __ a
X# 0, andp—¢ = §.
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It is easy to verify that (q) is a group with respect to functional composition, calkect-
tional linear group In fact, L(q) is isomorphic with theprojective general linear group
PGL(2,qg). Note that

(*—1)(q?—q)
qg—1

IL(9)| = |PGL(2,q)| = =(q+1)a(q—1).

We now define
H(g) = {a : X — X | xa = ax-+bwherea,b € Fy anda # 0} .

Note thatH (q) is the stabilizer ofo in L(g) and hence a subgroup bfg). The groupH (q)
is isomorphic to affine general linear groAGL(1,q) and|H(g)| =q(q—1).

Theorem 2.1.2.The group HQ) is sharply 2-transitive on GF) with degree gq. The group
L(q) is sharply 3-transitive on Gf) U {0} with degree ¢ 1.

For the undefined terms and more details see [81, Chapter 7].

2.2 Some known constructions

There are several known methods for constructing covenrays. In this section, we
review two constructions: the finite field construction (BU952) [17, 47] and algebraic

constructions [21, 60, 69].

2.2.1 The finite field construction

It is well-known that there exists a set@f 1 mutually orthogonal Latin squares of order
g if and only if there exists a finite projective plane of ordgerlt is also well-known that
a finite projective plane exists when the ordgs a power of a prime, that ig= p™ for

m > 1. The construction of projective planes of prime order warsegalized by Bush [17].
Theorem 2.2.1 ensures existence of orthogonal adaig', g+ 1,g,t) wheng is a prime

power, which are alsbCA(¢',g+1,9).
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Theorem 2.2.1.[17] Letg = p™ be a prime power witly > t. Thent-CAN(g+1,9) = ¢'.

Proof. The proof given here is similar to that given in [47]. llet= {0, 1,...} be the finite
field of orderg, with 0 being the zero element of the field. We construgtial x ¢' array
A whose rows are indexed by membersFof) {} and whose columns are indexed by
t-tuples(ao,ay,...,ar_1) € FL. The entry in this array in the row indexed(# 0) and
i—bajxl. The entry in this array in the

row oo (resp. 0) and column indexéddro, a,...,0a;—1) is defined to bexg (resp. ai_1).

column indexedag, ay, ..., 0_1) is defined to b&

Now consideiT = (fy, fo,..., fi_1) an arbitraryt-tuples ofF!. Let A’ be a submatrix oA
induced by an arbitrary choice bfows (x1,Xo,...,%). To complete the proof we need to
show thafT is a column ofA’. To verify this we first consider the case whegrt 0, « for
1 <i <t. We solve the following system ofequations fot unknown quantitiesj, which

index the columiT:
t-1
Z)a,-x{ = fi with 1<i <t.
j:

Note that the system of equations has a unique solution aso#ficient matrix has the
form of a Vandermonde matrix, which is invertible. Seconglyppose that the submatrix
A’ contains either row 0 op or both, then we have a systemtof 1 ort — 2 equations that

also have a Vandermonde coefficient matrix, and thus hasgaersolution. O

Example 2.2.1.Below is an example of a €A(25,6,5) obtained using the construction
given in Theorem 2.2.1.

00 01 02 03 04 10 11 12 13 14 20 21 22 23 24 30 31 32 33 34 40 41 42 43 44

0012340123 40123401234012324
1101 23 412340234013 401240123
2/0 2413130242 41303024141320 2
3103 142142032031431422042©031
410 4 32110432 210433210443210
|0 00001111122 222333334444 4
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2.2.2 Algebraic constructions

Chateauneuf, Colbourn and Kreher [20] introduced an algelbnethod to construct cover-
ing arrays of strength three. The idea is to construct a coyerray starting from a small
array, astarter array M and a groups. The goal is to choose the matiw and group

G so that the group acting on the ardslyproduces several arrays which are concatenated
to form a covering array. In some cases, a small array willgpeaded to complete the

covering condition. For example, whé&-= Syn{0, 1,2} and

N B O O

00
11
2 0|
2 1

= O O B

we get a covering array GA(27,4, 3) as shown below:

(01 0002002122101112112020F
001100222211110011222200
1020201012020121210102T1Fp
(212112120101202002021010

An array is a starter array fdr= 3 if on each set of three rows there is a representative
from each non-constant orbit & acting on 3-tuples from the set of symb&lsThey used
one factorization of complete graphs, combinatorial desldke near resolvable design and
pairs of disjoint Steiner triple systems in order to constgiarter arrayl.

Meagher and Stevens [69] extended the idea of Chateauneifp@n and Kreher
and proposed a strategy for construction of covering arodysrength two, and several
improved upper bounds were obtained @A&N(k, g). A key advantage of their method is
that they search for a small vector, callgdrter vector that is used to construct a starter
array, and hence a covering array. This construction irg8electing a subgroup of the

symmetric group oig elementsG < Syny, and finding a starter vectorc Zg. The starter
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vector depends on the gro@ They usedG = ((1,2,...,g—1)) < Symy. Note thatG
employs action oy — 1 symbols and fixes one symbol 0. The veactas used to form a
circulant arrayM. The vectow is selected such th¥ is a starter array, that is, on each set
of two rows there is a representative from each non-constéittof G acting on 2-tuples
from Zg. The groupG acting onM produces several matrices which are concatenated to
for a covering array. Often, it is needed to add a small matoxcomplete the covering
conditions. Using this construction, if a starter vectoisexin Z'é with respect tdG, then

there exists £A(k(g—1) +1,k,9).

Finally, Lobb, Colbourn, Danziger, Stevens and Torresefiez [60] extended the idea
of Meagher and Stevens by permitting the action of the grauphe symbols to fixf
symbols, wherd is any non-negative integer and by allowing the group to barhitrary
group of orderg— f. When the number of fixed symbols can take any non-negative va
f, it suffices to use a group of ordgr f, thereby requiring onlg — f matrices to be con-
catenated to construct a covering array. This construct@nonstrated improvements in

upper bounds for numerous covering array numbers of stnéngt using heuristic search.

2.3 PGL construction

The construction given in this section is new and improvesyra the upper bounds on
the size of strength four covering arrays. et GF(g— 1) U{} be the set 0§ symbols
on which we are to construct a@A(n,k,g). We choose so thatg— 1 is a prime or prime

power.
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2.3.1 Case 1: Two starter vectors

Our construction involves selecting a groGpand finding vectorsi, v € XX, called starter

vectors. We use the vectors to fornk & 2k matrix M.

U Uk-1 ... uz Vo Vg1 ... V1
uz Up ce ) V1 Vo ce \)
M=
U—2 Uk—3 ... Uk-1 Vk—2 V-3 ... Vk-1
Uk—1 Uk—2 ... Uo Vk—1 Vk—2 ... Vo

Let G = PGL(2,g—1). For eacho € PGL(2,g— 1), let M® be the matrix formed by
the action ofg on the elements d¥l. The matrix obtained by developing by G is the

k x 2k|G| matrixM® = [M? : g € G]. LetC be thek x g matrix that has a constant column
with each entry equal tg, for eachx € X. Vectorsu,v € XK are said to bastarter vectors
for a 4CA(n,k,g) if any 4 x 2k subarray of the matriM has at least one representative
from each non-constant orbit BIGL(2,g— 1) acting on 4-tuples fronX. Under this group
action, there are precisety+ 11 orbits of 4-tuples. Thesp+ 11 orbits are determined by

the pattern of entries in their 4-tuples:
1. {(a,a,a,a)T :ac X}
2. {(a,a,a,b)T :a,bec X,a#b}
3. {(a,ab,a)T :a,bec X,a+#b}
4. {(ab,a,a)" :a,bec X,a#b}
5. {(b,a,a,a)" :a,bc X,a#b}
6. {(a,abb)":abeX,a#b}

7. {(a,b,a,b)T :a,be X,a#b}



8.

9.

10

11

12

13

14

15

{(a,b,b,a)T :a,bec X,a#b}

{(a,a,b,c)" :a,b,ce X,a#b#c}
.{(b,a,a,c)T :a,b,ce X,a#b#c}
.{(a,b,a,c)T :a,b,ce X,a#b#c}
.{(b,a,c,a)T :a,b,ce X,a#b#c}
.{(a,b,c,a)T :a,b,ce X,a#b+#c}

. {(b,c,a,a)T :a,b,ce X,a#b+#c}
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. g — 3 orbits of patterns with four distinct entries. The reassrhis. There are

0(g—1)(g—2)(g— 3) 4-tuples with four distinct entries and each orbit contains

9(g—1)(9—2) 4-tuples asPGL(2,9g—1)| =g(g—1)(g—2).

If starter vectorsi, v exist inXK (with respect to the grou@) then there exists a@A(2kg(g—

1)(9

—2)+9,k,g). We give an example to explain the method.

Example 2.3.1.Letg=3,k=30,X = GF(2) U{e} andG = PGL(2,2). The action olG
on 4-tuples fronX has 14 orbits:

Orb 1:{(0,0,0,0)T, (00,00, 00,00)7,(1,1,1,1)T}

Orb 2:{(0,0,0,1)",(0,0,0,0)T  (c0,00,00,0) T (00,00,00,1)T,(1,1,1,0)", (1,1,1,00)T}
Orb 3: {(1,,0,0)T (1,0,0,0)7,(0,1,1,1)7,(,0,0,0)", (0,00,00,00)T (00,1,1,1)7}
Orb 4:{(0,1,0,0)T, (e,0,00,00)T (0,00,0,0)T, (00,1,00,00)T (1,0,1,1)7,(1,00,1,1)T}
Orb 5:{(1,1,00,1)T, (e0,00,1,00)T (0,0,1,0)T,(1,1,0,1)",(0,0,00,0), (20,00, 0,00) T }
Orb 6:{(1,1,00,00)T (e0,00,1,1)7,(0,0,1,1)7,(1,1,0,0)7,(0,0,00,00) T (00,00,0,0)7 }

Orb 7: {(007 07 007 O)T ) (07 17 07 1)T ) (w7 17 w? 1)T7 (07 w? 07 CX))T’ (17 07 17 O)T ) (17 007 17 OO)T}
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Orb 8: {(0,1,1,00)7,(1,00,00,1)7,(1,0,0,1)7,(0,1,1,0)", (,0,0,)T, (0,00,00,0)7 }
Orb 9:{(1,1,0,0)T, (e0,00,1,0)7,(0,0,1,00)T,(1,1,0,00)T,(0,0,00,1) T, (00,00,0,1)T }
Orb 10:{(e0,0,00,1)T,(0,1,0,00)T, (c0,1,00,0)7,(0,00,0,1)7,(1,0,1,00)7,(1,00,1,0)7}
Orb 11:{(1,00,0,1)T,(0,00,1,0)T, (0,1,0,00) T, (0,1,00,0)7, (20,0,1,00)7,(1,0,00,1)7 }
Orb 12:{(1,0,0,00)T,(0,00,1,00)T, (00,1,0,1)",(0,1,0,1), (20,0,1,0)", (1,0,00,0)" }
Orb 13:{(1,00,0,0)T,(0,00,1,1)T, (,1,0,0),(0,1,00,00)T, (00,0,1,1)7,(1,0,00,00)7 }
Orb 14:{(1,00,%,0)7,(1,0,0,00)7, (0,1,1,00)", (20,0,0,1)T, (0,00,00,1)7 (00,1,1,0)7 }

The following are starter vectors to constr{ii®,C], a 4CA(363 30, 3):

U = (012001 100000000 10000001001 000000001100001)

V = (11000001101006°1019010000000001B00000).

We used computer search to findandv. One can check that on each set of 4 row$/of

there is a representative from each orbit 2-14. ThuSAM(30, 3) < 363.

2.3.2 Choice of starter vectorsi and v

The problem is to find two vectons, v € XK such that on each set of 4 rows Mf there
is a representative from each orbit 2-15. To determine wigdtors work as starters, we

define the setd|x,y, Z| for positive integers,y andz as follows:

dx,y,z = {(Ui, Ui 4, Ui pxtys Uipxrytz) -0 <i < k— 1} U

{(Vi,Vi+x7Vi+x+y,Vi+x+y+z) 0<i<k- 1}

where the subscripts are taken modkild-or computational convenience, we partition the
collection of('j) choices of four distinct rows frorkrows into disjoint equivalence classes.

Formally, letSbe the set of al('fl) 4-combinations of the sdD,1,....k— 1}. Define a
binary relationR on Sby putting
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{s1.9, 33,4} R{s},%, 3,5} iff
{si+d,s,4+d,s3+d,s4+d} = {S], 5,55, 5,} for somed € N

where all of the addition is modulk. BecauseR is an equivalence relation 0§ S
can be partitioned into disjoint equivalence classes. Thevalence class determined by

{s1,%,%3,%4)} € Sis given by
(s, 9,89} = {{s1+d, % +d,s3+d, s +d}0<d <k—1}.

Without loss of generality, we may assume that 8; < s, < s3 < $4 for each equiva-
lence class representatifes;, s, S3,4}]. As an illustration, wheiX = {0,1,2,...,7}. Sis

partitioned into 10 disjoint equivalence classes:
[{0,1,2,3}] [{0,1,2,4}] [{0,1,2,5}] [{0,1,2,6}] [{0,1,3,4}]

[{0,1,3,5}] [{0,1,3,6}] [{0,1,4,5}] [{0,1,4,6}] [{0,24,6}]

A distance vectofx,y, z,w) is associated with every equivalence clgss, sy, S3, 4} where
X=%—51,Y=S3—%,Z2=—S3, W= — 4 modk. The fourth distance is redundant be-
causex+Yy-+z+w = k. We rewrite the equivalence class of 4-combinatidiss, sz, Sz, }]

as

Xy, 2] = {{i,i + X0+ X+, +X+Y+ 2z} :0,1,2,...,k—1}.

Fork=8,[1,1,1] = [{0,1,2,3}], [1,1,2] = [{0,1,2,4}], [1,1,3] = [{0,1,2,5}], [1,1,4] =
[{0,1,2,6}],[1,2,1] = [{0,1,3,4}],[1,2,2] = [{0,1,3,5}],[1,2,3] = [{0,1,3,6}],[1,3,1] =
[{0,1,4,5}], [1,3,2] = [{0,1,4,6}], [2,2,2] = [{0,2,4,6}].

Lemma 2.3.1.Let S be the set of al-combinations of0,1,...,k—1}. Then S can be

partitioned into disjoint equivalence classes
Xy,7 = {{i,i +X i+ X+Y, i +X+Yy+ 2z} :0,1,2,...,k—1}

where x=1,2,..., L'ﬂ, y=XxXx+1 .. k—1andz=x,x+1,...,k— 1 such that
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() 2x+y+z< kwhenz> x.
(i) x <y < |*5Z] when z= x.
There are no further classes distinct from these.

Before proving the result, we give an example. WIsda the set of all 4-combinations of
{0,1,2,3,4,5,6,7}, Scan be partitioned into 10 disjoint classék; 1,1}, [1,1,2], [1,1, 3],
[1,1,4],[1,2,1],[1,2,2],[1,2,3],[1,3,1], [1,3,2] and[2, 2, 2].

Proof. Let (x,y,z w) be the distance vector corresponding to equivalence class

[{S1,52, 83, 4}] wherex =s, — 51, y =3 — %, Z= 54 — 53, W = S1 — 4 (modk). Then,
[{817&733754}] - [X7y7 Z] - [y? Z7W] - [Z7W7X] - [W7X7y] (21)

Without loss of generality, we choosey,z as class representativexf< y, x < z and
X<Ww. Thus 1< x < "—‘1, y=xXx+1..k—1andz=xx+1,....k—1. We consider two
cases.

Case (i)z> xandx <y < k— 1. Here we prove that has to be strictly greater than If
w = x andy > x, then Equation 2.1 givelg,y, 7] = [x,X,y]. But classes of the forra, a, b]
are also generated when-y. If w=xandy = x, then Equation 2.1 giveg, X, z| = [X, X, X].
But the classes of the forfa, a,a] are also generated under Case (ii). Therefore, in order
to avoid repetitiony has to be strictly greater tham That is,w = k—x—y—z > x which
implies X+y+z<k.

Case (ii):z=xandx <y < k—1. If z= x, then Equation 2.1 gives,y,X| = [X,w, X]; they
are obtained from the distance vectary,x,w) wherey+w = k— 2x. Thus it suffices to

consider the classes of the fofry, x| fory < L"‘ZZXJ only. Hence the lemma follows.

At this stage, we make a few remarks about the size of equivalelasses defined by above

choices ofx,y andz.

1. If kis an odd integer, each class contains exdatligtinct choices from the collection

of (Z) choices and hence there are w distinct classes of side
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2. If kis an even intege% can be written as sum of two positive intega@andb where
a<bin |¥| different ways.
Case 11f k# 0 (mod 4), a class of the forifia, b, a contains onlyé distinct choices.
There are tota["—‘d equivalence classes of the foifa b, a] with size'z‘ and the re-
maining classes are of sike
Case 2 If k=0 (mod 4), a class of the forfa, b, a] contains onlyg distinct choices
and a class of the forrfa, a,a] wherea = '4—‘1 contains only'g distinct choices. Here
we get total¥ — 1 equivalence classes of si§gexactly one class of sizgand the

remaining classes are of sike

Fork = 8, there are 10 equivalence classes. The cld4s8sl]| and|[2,2,2] are of size 4

and 2 respectively and the remaining 8 classes are of sizet8 €aus 8x 8+4+2 = (2).

Algorithm 1 will generate all the equivalence classes withepetition.

Theorem 2.3.1.Let X=GF(g—1)U{»} and G=PGL(2,g—1). If there exists a pair of
vectors yv € XX such that each oy, 7] has a representative from each of the orbits 2-15,

then there exists 4CA(2kg(g—1)(g— 2) + g,k,g) covering array.

Proof. Let u,v € XK be vectors such that eadix,y,z] has a representation from each of
the orbits 2-15. Using, v, we create the matrifM® C]. Let {s1, s, S3, 54} be a member in

S By Lemma 1, there exists three positive integers/o andzy such that{s;, s, s3, 4} €
[Xo0,Y0,20]. It is given thatd|xo, Yo, Z0] has a representative from each of the orbits 2-15. In
other words, if we look at the rows, s, s3, &4 of M, we see a representative from each
of the orbits 2-15. Consequently, becal®@L(2,g— 1) is 3-transitive orX, [M®, C] is a
4-CA(Zkg(9—1)(9—2) +9,k ). O
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Algorithm 1 Equivalence-Classds@)

Input: Kk
Output: All [x,y,Z] classes.

for x < 1to X do

for y< xtok—1do

- k—2
if y > “== then

for z< x+1tok—2x—y—1do
add [x,y, 7
end for

else

for z< xtok—2x—y—1do
add [x,y, 7]
end for
end if
end if
end for

end for
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2.3.3 Case 2: Two vectors,vand a matrix Cy

If we do not find vectoras andv such that eacld|x,y, z] contains a representative from
each of the orbits 2-15, we look for vectors that produce sayarith maximum possible
coverage. In order to complete the covering conditions, dekaasmall matrixC;. We give

an example below to illustrate the technique.

Example 2.3.2.Let k = 21 andg = 3. Here we are unable to find vectarandv such
that eachd|x,y, | contains a representative from each of the orbits 2-15kFe@1, there
are 285[x,y,7] classes. All classe,y,z] are obtained by the algorithm@®IVALENCE-

CLAssegk,4). One can check that for the vectors
U= (0000101@1000010c00000001)

v = (0000106o00x01000%0111c0)

there is a representative from each orbit 2-15 on 276 aditkg, Z] classes. Table 2.1 shows

nine classes which do not have representative from all thiesor

Table 2.1: List of classes not having representative frdrthalorbits fork = 21 andg = 3

Class | Missing orbits
d[1,2,2] 10
d[1,5,6] 2
d[1,6,12] 5
d[1,13 5] 9
d[2,3,8] 6
d[2,7,3] 10
d[2,12,3] 13
d[3,6,8] 6
d[3,7,7] 10
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In order to complete the covering conditions, we add a smattimC,.

o o 0 0 1 o oo 0 0 1 o 0 0 0 0 o o 1 0 0 o
0 1 1 0 0 0 o 1 0 0 o 1 1 o 0 0 1 1 o o 0
1 1 o0 0 0 0 o o0 1 0 0 0o 1 1 0 0 0 100 o 0
1 o1 0 0 o 1 1 0 0w 1 0 0 o 1 0 1 0 o 1
Ct=]1 0 0 1 1 0 0 0w 1 1 0 0o o 1 o 0 0 1 o o
0o 0 0 0 o oo 0 0 0w 0 1 1 o 0o 0 1 0 0 o O
o 0 1 0 1o 0 1 01 1w o 0 1 0 1 1 1 1
0o 1 0o 0 0 0o 1 1 0 o o oo 1 0 0 0 1 0o 0 o
1 00 0 0O1 0 00O 0w 00 O0wOO0101

We use computer search to find mai@x This matrix has the property that every choice
of four rows in[1,2,2], [2,7,3] and[3,7, 7] contains at least one representative from orbit
10; every choice of four rows if2,3,8] and[3,6, 8] contains at least one representative
from orbit 6; each choice of four rows i, 5, 6], [1,6,12], [1,13,5] and[2,12, 3] contains

at least one representative from orbit 2, 5, 9 and 13 reshgtiWe also need to use the

following matrix

to ensure the coverage of all identical 4-tuples. Theref€, CS, Cis a4CA(309,21,3).

2.3.4 Case 3: One vectou and a matrix C;

Fork = 37 to 58, it is enough to use one vectoaind aC; matrix of orderk x ¢ with ¢ < k.
For vectoru = (up, us, . ..,Ux_1), we define the setd|x,y, z for positive integerx,y,z as

follows:

dx,y,z = {(Ui, Ui 4, Ui pxtys Uipxrytz) -0 <i < k— 1}
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where the subscripts are taken modkil&/ectoru = (up, us, ..., Ux_1) is said to be a vector
with good 4-way configuration coverage, if eadlx,y,z] class has a representative from

most of the orbits 2-15. We use the vector to forkak matrix

Uo Ug—1 ... up
Uy Uo R Uz
M=
Uk—2 Uk—3 ... Uk—1
Uk—1 Uk—2 ... Up

In order to complete the covering conditions, we add a smaitisiC;. Therefore[MS,CE,C]

is a strength four covering array.

Example 2.3.3.Letk = 39 andg = 3. Here we are unable to find a vectosuch that each
d[x,y, Z] contains a representative from each of the orbits 2-15kFeB9, there are 2109

[X,y,Z] classes. The vector
U= (001000011001 100000301 10010 1000000100000001B00000000)

is a vector with high 4-way configuration coverage measurat is eachd[x,y, z] class
corresponds tal has a representative from most of the orbits 2-15. In ordeotoplete
the covering conditions, we use computer search to find>a®®matrixCy,. To ensure the
coverage of all identical 4-tuples we concatenate the m@triTherefore[M€, CS, C] is

a 4CA(441,39,3).

2.4 Improving the solutions

We examine two methods to obtain small improvements on thgatational results ob-

tained.



46

2.4.1 Extending a solution

Until this point, covering arrays have been developed byyapg a cyclic rotation of the
starter vectors in addition to the action®GL on the symbols. As in [69], one can also
consider fixing one row, and developing the remairkrgl cyclically. This can be viewed
as first finding a solution of the type already describeckenl rows, but requiring an
additional property. For the 4-subsets{é ...,k — 2}, equivalence classes are defined as

before, with arithmetic modulk — 1:

{s1. 2,0} = {{s1+d,+d,3+d,4+d} | 0<d < k—2}.
For 3-subset$t;, to, t3} of {0,...,k— 2} we define further equivalence classes as
[{ts,to,t3,k—1}] = {{t1 +d,to+d,t3+d, k—1} | 0 <d < k—2}.

If we can place an entry in positidn— 1 to extend the length of each starter vector so
that every one of the (old and new) equivalence classessepieeach of the orbits 2-15,
we obtain a strength four covering array of degke&Ve show an example to explain the

method.

Example 2.4.1.This example explains how a covering array of dedree35 can be ex-
tended to one of degrde= 36 without increasing the size of the covering array. For the
4-subsets of0,...,34}, there are total 1496 equivalence classes obtained froomitdm

Equivalence-Classds@). Two length-35 starter vectors are shown below:

U = (0100000001000001000000010011 1000000010001 00B01)
V = (0000011 30000110%011001100010010008> 100c00)

Each new equivalence clag$s, to, t3, 35}] corresponds to a 3-subdet, to, t3} of {0, ...,34}
represents each of the orbits 2-14 whegp = o« andvzs = . We form a 36x 70 starter

matrix M for k = 36 as follows:



Up Uk-1 Ui Vo Vk-1 V1

Uy Uo uz \%1 Vo V2
Ml -

Uc—2 Uk—3 Uk—1 Vk—2 Vk-3 Vk—1

Uk—1 Uk—2 Uo Vk-1 Vk-2 Vo

(00] [00] [00] (00] [00] [00]

a7

Now [MC, CJ is a 4CA(423 36,3) obtained by extending @A(423 35, 3).

The potential advantage of this approach is that a soludodégreek — 1 can sometimes
be extended to one of degrke&vithout increasing the size of the covering array produced.
Indeed we found that the solutions flor- 1 € {32 34,35} do ensure that the new equiv-
alence classes also represent each of the orbits 2-15. kenobétain the following im-
provements. Old indicates the bound obtained by applyirrgheethods tdk; Improved
gives the bound by applying the methodkie- 1 and ensuring that the new equivalence

classes represent all orbits:

Table 2.2: Improved bounds on@AN(k, 3) obtained by extending a solution.

k Old
36 435

k Old
33 399

k Old
35 423

Improved

423

Improved

387

Improved

411

2.4.2 Randomized Post-optimization

Nayeri, Colbourn, and Konjevod [73] describe a post-optation strategy which, when
applied to a covering array, exploits the flexibility of syoiin an attempt to reduce its
size. We applied their method to the arrays provided hekt@arrays obtained by remov-
ing one or more rows. Because the method is described inl def@B], we simply report

improvements for eight values &f Basic gives the bound from starter vectors, Improved
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gives the bound on GAN(k, 3) after post-optimization:

Table 2.3: Improved bounds on@AN(k, 3) obtained by randomized post-optimization.

k Basic Improved k Basic Improved
19 309 300 20 309 303
21 309 305/ 22 309 307
27 351 345/ 28 363 360
34 411 410 37 435 433

2.5 Results

Tables 2.4, 2.5, 2.6 and 2.7 give a list of starter vectorsmaattix C; that improves the

best known bounds. The old bounds are from [30]. When the rewdbis marked with

an asterisk, post-optimization has been applied (seedpez ).



Table 2.4: Improved strength four covering arraysdes 3.

Starter vectors and matr&;

New

bound

Old
bound [30]

21

22

u = (0000101@>1c00010c0c000101)
v = (000010600x01000%k0111c0)

00000 10000010000l Ooo
011000010001 1000 11l
110000001000l 1000Ilocw0
101000110001 000101001
00110000110000l0001lowow
000000000001 10010000
0010100101100 010111 loo
001000l 100wl 000100000

100001000006000wx00101

u = (0000012000011301c0c000010)
v = (00010016 1c0c00c0010010c0c01)

Ci=

OO0 0wwcw0 000000000
00000 0w Qoo ) 0 Ocwcooo O 0o
1010000 lwlowleowlw0001l0l1lO
0111001200011 001100010
000 00wl 0100 00w 01lcw00 1oo
0001110101000111001 100

000001 0000000101000 o

305*

307*

315

315

49
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Table 2.5: Improved strength four covering arraysdet 3 (continued).

Starter vectors and matr®;

New

bound

Old
bound [30]

27

28

30

32

33

34

35

U= (110101%0000000000c00010001100010C0)

V = (1100000101 Jpo000000000001000000 Tocoo)
0101011010101010101010101 ZIT.

C,— 01010101010101011010101010J2
00000000 ow0ow0o0o0oo oo oco(oo

0000000000010000000000 0000

U = (1c0000000001000110111 800001 07e0c0001)

V = (1011011000000 100001 00000000000001)
0000000 0w 0D Ooo ) oooooo

co_ 0001010001 00c0010000010100110
1= 100000 000]lol 000101 00lw]l 00011

0000000000101 000100001000000

U = (011001 100000000 10000001001 000000001100001)
V= (11000001101000°101601000c000001 00000 )

U= (001100010011 100100010000010B00000000010)
V = (0000001000000000011@0001000000110011117)

Obtained fronCA(387,32,3)

U = (000010100000010010001 00000000000 10000000111117)
V= (1100010001001011@0000c00001100101002000)

Obtained fronCA(411,34,3)

345*

360*

363

387

387

410*

411

378

383

393

409

417

423

429




Table 2.6: Improved strength four covering arraysdet 3 (continued).

51

k | Starter vectors and matr New | Old
bound| bound [30]

U = (0100000001003 0100000c0 10011 100000001000100B0 1)

35 423 429
V= (0000011%0000110011001100010010006>1c0000)

36 | Obtained fronTCA(423 35,3) 423 441
U= (0010010001000100301100010111 1000 1e0c00000000)

37 433* | 441
C1: 37 x 35 matrix
U= (00100011001 100000Ie01 100101000000 100000001300 0c0000)

39 441 453
C1: 39x 34 matrix
U= (000010001 0000000010111 200001 1000010000 00000100000 1)

41 453 465
C1: 41 x 34 matrix
U= (00011%r01000010001010001003001 100101001 2000c0 1000000

42 465 471
Ci: 42 x 35 matrix
u = (0000000110001@0101c00010001000011B00000001100110%01010)

46 477 483
C1: 46 x 33 matrix
U= (0000110110700 10000001000100000011101 0000000001 (000010000 0000 )

47 483 489
C1: 47 x 33 matrix
U = (010000001100010010101 100000 1000000001 1001000000001 0@000)

48 489 495
Ci: 48 x 33 matrix
U = (000000010101 200000001 100100100 Ip0c000000011

51 | ©00001000111100100£00) 501 507

Ci: 51x 32 matrix
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Table 2.7: Improved strength four covering arraysdet 3 (continued).

Starter vectors and matr®;

New

bound

Old
bound [30]

55

57

58

63

67

70

72

74

U = (1oocol0010000011 10000100001 300000001101 01000
00001 1000001020001 11 @000)
C1: 55x 30 matrix

U = (0010000000001 10001001 0001100%k010000001I000110
110111016°001000000000201)
C1: 57 x 29 matrix

U = (00000000010%00013000010010000000110020000130111
0000001101101 d0000c000c0)
C1: 58x 29 matrix

U = (1102010001 00000000010%0000c00c00010001 001 100000001
10010110008 0c011c0000c00c011)
C1: 63x 26

u=(01010211000100x1100000000011000111T000101 Ioo0Oc0
1103e00c0000001 010000 100001000@000)
Ci: 67x 25

U = (100007001 1001 0000000001 100000000 1000001 IoQcococ000111
0010100201001 20c001000@01 000001100
Ci: 70x 24

U = (00000000101 00000000000101110061101%00111 0200000010000
0010010000010010110@00100c0c0 10000000
Ci: 72x 24

U = (100001B»000010000001 1100001000001 0000000001000101101 b0
001100008000000000000010110@0 100010011 100)
C1:74x 24

513

519

525

537

555

567

573

585

519

531

531

549

561

573

579

591
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Chapter 3

Testing Arrays with High Coverage Mea-

sure

In most software development environments, time, comgwtimd human resources needed
to perform the testing of a component is strictly limitedv&i the different input parame-
ters with multiple possible values for each parametergoering exhaustive testing which
tests all possible test cases is practically impossibleeMthsting a software system with
k parameters, each of which must be tested gitlalues, the total number of possible test
cases ig¥. For instance, if there are 20 parameters and three valuesafh parameter
then the number of input combinations or test cases of thitgenayis 3° = 3486784401.

A fundamental problem with software testing is that testimgler all combinations of in-
puts is not feasible, even with a simple product [53, 58]. dgid assigned for software
testings are generally limited. Software developers catasb everything, but they can use
combinatorial test design to identify a small number of testes with high configuration
coverage. The goal of the most combinatorial testing rebeiarto create test suites that
find a large percentage of errors of a system while having & semaber of tests required.
To model this situation, we consider the problem of detemgira testing array with high
configuration coverage measure within a fixed number of et More formally, given
fixed values oft,k,g andn our objective is to build a testing array’ of size at mosn
having hight-way configuration coverage measure. This chapter preséggbraic con-
structions for testing arrays with high 3- and 4-way confagian coverage measure. See

also [7, 6]. In Section 3.1, we recall the definitions of conattorial coverage and config-

54
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uration coverage from [48, 56]. In Section 3.2, we presendlgrbraic construction for
testing arrays with high 3-way configuration coverage mesadua Section 3.3, we present
another algebraic construction for testing arrays witthidgway configuration coverage

measure. In Section 3.4, we present the computationaksesul

3.1 Preliminary

Let n,k andg be positive integers. Aesting array.<Z is ak x n array in which entries are
from a finite set ofg symbols. Each row of the testing array corresponds to a peEm
each column corresponds to a test case, ang $yebols correspond to the values for each

parameter.

Example 3.1.1.Here is an example of a testing arraf/for a system with four parameters

A, B,C, andD each of which having two values or symbols.

4 a a a a a a a
by by bo bo by by b
Cc G0 G C C C C G
do di do di di di do dp

O 0O mw >
g

Definition 3.1.1. For a set ot parameters, &way parameter-value configuratiaa an

ordered tuple of valid values, one for each of the parameters.

Fort = 3, (by,Co,dp) and(by, ¢y, dp) are two different parameter-value configurations for
parameter8,C, andD. We now recall two types of coverage measure from [48, 56] and

refer these articles for motivation.

Definition 3.1.2. For a given set ok parameterssimple t-way combination coveragethe
proportion oft-way combinations ok parameters for which all parameter-value configura-

tions are fully covered.
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In Example 3.1.1, out of four 3-way combinatioABC, ABD, ACD, andBCD, only ABC
has all eight 3-way parameter-value configurations cove@the simple 3-way combina-

tion coverage for the test array is %1 = 25%.

Whent parameters witly values each are considered, theregireway parameter-value
configurations. So fok parameters witlg values each, there al(é) g possiblet-way
parameter-value configurations to be covered in a strangiliering array. We now recall

a measure with respect to the number of parameter-valugycoafions covered.

Definition 3.1.3. Thet-way configuration coveragg (<) of a testing array7 is defined
by the ratio between the numberteivay parameter-value configurations contained in the

column vectors oy and the total number dfway parameter-value configurations given
k
by (;)g"

If the testing array is a covering array, then both the singgsbination coverage and
configuration coverage measure are 100%. In Example 3Heile are(g) = 4 possible
parameter combinations ar(é) 23 = 32 possible 3-way parameter-value configurations.
Among these 32 3-way parameter-value configurations, 28Bparameter-value config-
urations are covered and missing ones (@xgcy,do), (a1,bo,do), and(as,cy1,do). Thus
we haveus(«/) = %—92’ = 90.6% for 3-way configuration coverage measure. Our objecsive i
to construct a testing array’ of size at mosh having hight-way configuration coverage
measure, given fixed values tk,g andn. This problem is also calledovering arrays

with budget constraints

3.2 Construction of testing arrays with high (<)

Given fixed values ok, n andg, so thaty— 2 is a prime power, we are to construct a testing
array .« with high 3-way configuration coverage measure. 4 ee a prime power angy

be the finite field withg elements. LeX = {Fg, o1,0,} be the set of symbols (values)
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on which we are to construct a testing array having good 3-@zmfiguration coverage
measure. ClearlyX| =g = q+ 2; we choose so thatg — 2 is a prime or prime power.
Our construction requires selecting a grasand finding a vectov € XK, called a vector
with good configuration coverage. We use the veuter(vo, vy, ..., Vk_1) to form ak x k

circulant matrix

Vo V-1 ... V1
V1 Vo )

M=
Vk—1 Vk—2 ... VO

LetG=AGL(1,q) = {a . Fq— Fq | xa = ax+b;a# 0anda,b c Fq} be the set of all
linear transformations. Note th&is a group with respect to functional composition and
|G| =q(g—1). By Theorem 2.1.2, the group is sharply 2-transitiveFgn Consider the
stabilizer staB(x) for eachx € Fy. If stals(x) is nontrivial for eachx € Fy, we defineH to

be a non-empty subset Gfsuch that
1. H = gandH does not contain the identity transformation®f
2. |HNstaly(x)| = 1 for everyx € K.

If stabs(X) is trivial for somex, thenH is empty. We define an action @& on the set
{001,005} as follows:
]
o, oOtherwise

, If a € Hwherei # j

If H is non-empty then the action is transitive ¢®1,05}. This action together with
natural action of5 on Fy exhibits an action oG on X. This action ofG on 3-tuples from

X has the following orbits:
(1) {(a7 a, a)T Lac Fq}

(2) {(o01,001,001)T, (005,005, 005)T}
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(3) {(c01,001,002)T, (002,009,001) T}
(4) {(e01,002,001)T, (002, 001,005) T}
(5) {(c02,001,001)T, (001,009,005) T}
6) {(a,a,)T :ae Fy}

() {(a,0i,a)T :ae Fy}

(8) {(~i,a,a)" :a€ Fy}

(9) {(a i )" ra€ Fy}

(10) {(wj,a,0)" :a€ Fy}

(11) {(wj,05,)T @€ Fy}

(12) {(a o0, 0))" rae Fy,i # }
(13) {(oon,,0))T ra€ Fy,i # j}
(14) {(ooi,05,@)T ra€ Fy,i # j}
(15) {(a,b,)T :a,b € Fg,a# b}
(16) {(a,i,b)" :a,b e Fg,a# b}
(17) {(wj,a,b)" :a,be Fg,a#b}
(18) {(a,a,b)" : a,b e Fy,a+ b}
(19) {(a,b,a)" : a,b € Fy,a+ b}
(20) {(b,a,@)" : a,b € Fy,a+ b}

(21) q— 2 orbits of the form{(a,b,c)™ : a,b,c € Fy,a# b # c}.
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Depending on the value a@f there could be more than one orbit of the form 6-17. ¥or
to be a starter vector, any three rows in the matixust have at least one representative
from each of the orbits 6-21. If starter vector is not foune, ok for a vectow with
good configuration coverage measure. Veeter (Vp,Vv1,...,Vk_1) IS said to be a vector
with good 3-way configuration coverage, if every & subarray oM has a representative
from most of the orbits 6-21. We also need to @e= 3-CA(n',k,2), a minimum size
covering array with entries frorfro1, 005} to ensure the coverage of all triples in the orbits
2-5. LetC be thek x g matrix that has a constant column with each entry equalftar each

x € Fg. We useC to ensure the coverage of all triples in orbit 1. The gréi (1,9 —2)
acting on the matriM produces several matrices that are concatenatedGyigndC to
form a testing array of sizk(g—2)(g— 3) + ' +g— 2 having good 3-way configuration
coverage. More formally, itr € AGL(1,g—2), thenM? is thek x k matrix where the

i, j]th entry isM[i, j]9, the image oM[i, j] undera. The matrix obtained by developing
M by AGL(1,g—2) is thek x k(g — 2)(g — 3) matrix

MACLLO-2) — (MY : a € AGL(1,g—2)].

Thus, ifk(g—2)(g—3) +n' +g—2 < n, then[MACLL9-2) C, C] is a testing array of size
less than or equal to having high 3-way configuration coverage. We give two exaspl

to illustrate the method.

Example 3.2.1.Letg=5, k=32, X = GF(3) U{1,0,} andG = AGL(1,3). The ele-
ments ofG area, a», a3, s, as andag where

X1 =X Xad2=X+1 Xaz=X+2

X4 =2X Xa5=2X+1 Xag=2X+2
for all x € GF(3). The stabilizers of elements fro®F(3) are stag(0) = {a1,a4},
stals (1) = {a1, 06} and stab(2) = {a1,05}. As a; is the identity ofAGL(1,3), we set
H = {a4,as,as}. Thus the action o6 on {04,005} is given by
007101 = 07,0710 = 07,0703 = 007,010 = 02,0705 = 002, 0071Ug = 02

00001 = 92,0002 = 03,0003 = 03,0004 = 01,0005 = 01, 000F = 7.
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The action ofG on 3-tuples fronX has 24 orbits:
Orb 1:{(0,0,007,(1,1,1)7,(2,2,2)T}
Orb 2: {(o07,001,001)", (002,007, 00) "}
Orb 3: {(001,007,00)", (002, 00,001) "}
Orb 4: {(o01,002,001)T, (002, 001,005) T}
Orb 5: {(o01,002,005)T, (002,001,001) T}
Orb 6: {(0,0,001)T,(1,1,001)7,(2,2,001)T,(0,0,005) T, (1,1,005)7,(2,2,00,)T}
Orb 7:{(0,001,0)T, (1,001,1)7,(2,001,2) T, (0,005,0) T, (1,000,1)7,(2,00,,2) T}
Orb 8: {(01,0,0)7, (c01,1,2)7,(001,2,2)T, (02,0,0)T, (005,1,1) T, (005,2,2) T}
Orb 9: {(0,001,001)", (1,00,001)", (2,00,001) 7, (0,002,005) ", (1, 002,007) T, (2, 002,005) T}
Orb 10: {(e01,0,001)", (001,1,001)", (001,2,001)T, (002,0,002) T, (002, 1,002) T, (002, 2,002) T}
Orb 11:{(c01,001,0)7, (001,001, 1)T, (001,001, 2)T, (00, 002,0) T, (002,002, 1) T, (002,002, 2) T }
Orb 12:{(0,001,005)T, (1,001,00)", (2,001,002)7, (0,002, 001)T, (1,002, 001)T, (2,009, 001) "}
Orb 13:{(e01,0,002)T, (01,1,005) ", (001,2,005) T, (002,0,001) T, (002,1,007)T, (002, 2,001) T}
Orb 14:{(001,00,0)T, (007,00, 1)1, (007,007,2)T, (002,007,0)T, (002,007, 1)T, (002, 00,2)7 }
Orb 15 1: {(0,1,001)7,(1,2,001)T,(2,0,001)T,(0,2,005) T, (1,0,00,) T, (2,1,005)7}
Orb 15 11: {(0,1,007)7,(1,2,005) T, (2,0,00,)T,(0,2,001)7,(1,0,001)T,(2,1,001)T}
Orb 16 1:{(0,001,1)T,(1,001,2)T,(2,001,0)7,(0,009,2)T,(1,00,0)T, (2,005, 1)7}
Orb 16 11: {(0,002,1) 7, (1,007,2) T, (2,00,,0)T, (0,001,2) T, (1,001,0) T, (2,001,2)7 }
Orb 17 1: {(e01,0,1)T, (001,1,2)T, (001,2,0) 7, (00,0,2) T, (002,1,0)T, (005,2,1)7 }

Orb 1711 {(0027 07 1)T7 (0027 17 2)T7 (0027 27 0)T7 (0017 07 2)T7 (0017 17 0)T7 (0017 27 1)T}
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Orb 18:{(0,0,1)",(1,1,2)7,(2,2,0)7,(0,0,2)7,(1,1,0)7,(2,2,1)T}
Orb 19:{(0,1,0)7,(1,2,1)7,(2,0,2)7,(0,2,0)7,(1,0,1)7,(2,1,2)T}
Orb 20:{(0,1,1)7,(1,2,2)7,(2,0,0)7,(0,2,2)7,(1,0,0)7,(2,1,1)T}
Orb 21:{(0,1,2)7,(1,2,0)7,(2,0,1)7,(0,2,1)7,(1,0,2)7,(2,1,0)"}

We use computer search to find a vestaiith good 3-way configuration coverage measure,

that is, each X k sub-matrix ofM has a representative from most of the orbits 6-21:
V = (002001220001 21 007 1001200111011 2020002051001 007 2001 005).

Build the 32x 32 matrixM from v. The action ofG = {x,x+ 1,x+ 2,2x,2x+ 1,2x+ 2}
on M produces six matrices which are concatenated tavifgt A small covering array
C1 = 3-CA(24,32,2) on symbols{ej, 05} and a 32< 3 arrayC as shown below needs to

be concatenated to cover interactions in orbits 1-5:

The matrixe/ = [M®,Cy,C| is a 32x 219 testing array with 3-way configuration coverage
measureuz(«7) = 0.905.

Example 3.2.2.Letg=4, k=50, X = GF(2) U{1,02} andG = AGL(1,2). The ele-

ments ofG area, a», where
X1 =X and Xxa;=Xx+1

for all x € GF(2). The stabilizers of elements fro®F(2) are stab(0) = {a;} and
stalx(1) = {a1}. As a is the identity ofAGL(1,2), we setH = @. Thus the action

of G on {01,005} is given by
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00701 = 07,0070 = 7,005071 = 03,0007 = 3.

The action ofG on 3-tuples fromX has 36 orbits:

Orb 1:{(0,0,0)T,(1,1,1)T} Orb 10 I1: {(c02,0,005) T, (002, 1,005) T}
Orb 2 1: { (001,007, 007)T} Orb 11 1: {(c0g,001,0)7, (007, 001,1) T}
Orb 2 1I: {(00p,009,007) 7} Orb 11 1I: {(02,002,0)T, (00,005, 1) T}
Orb 3 I: { (007, 001,005)T} Orb 12 1:{(0,001,005) T, (1,001,005) T}
Orb 3 11: {(00p,005,001)T} Orb 12 11: {(0,00,001) T, (1,005, 001)T }
Orb 4 1: {(007,009,007) T} Orb 13 1:{(01,0,002) T, (001, 1,005) T}
Orb 4 1I: { (003,007, 005)T} Orb 13 11: {(c02,0,001) T, (005, 1,001) T}
Orb 5 I: {(c07,005,005)T} Orb 14 I:{(c01,007,0)T, (007,005, 1)T}
Orb 5 11: {(c0p,001,001)T} Orb 14 I1: {(002,001,0) T, (005,007, 1)T}
Orb 6 1:{(0,0,001)7,(1,1,001)7} Orb 15 1:{(0,1,001)T, (1,0,001)T}
Orb 6 11: {(0,0,007) 7, (1,1,00,) "} Orb 15 11: {(0,1,00) T, (1,0,005) T}
Orb 7 1:{(0,001,0)7, (1,001,1)7} Orb 16 1:{(0,001,1), (1,001,0)T}
Orb 7 11: {(0,007,0)7, (1,00,1)"} Orb 16 11: {(0,005, 1), (1,002,0)T}
Orb 8 I: {(®01,0,0)T, (01,1,1)T} Orb 17 I:{(01,0,1)T, (01,1,0)T}
Orb 8 I1: {(07,0,0)7, (0,1,1)7} Orb 17 11: {(,0,1), (002,1,0)T}
Orb 9 1: {(0,007,001) T, (1,001,001)T} Orb 18:{(0,0,1)7,(1,1,0)™}

Orb 9 11: {(0,007,00,) T, (1,009,005) T} Orb 19:{(0,1,0)7,(1,0,1)™}

Orb 10 I:{(e01,0,001)7, (001,1,001)T} Orb 20:{(0,1,1)7,(1,0,0)"}

We use computer search to find a vestwith good 3-way configuration coverage measure,

that is, each X k sub-matrix ofM has a representative from most of the orbits 6 I-20:
V= (001110000900500071 01101 o1 0070091005 100700900071002100002001001 1000900111070 009001 00100070011).

Build the 50x 50 matrixM from v. The action ofG = {x,x+ 1} on M produces two ma-

trices which are concatenated to §&¢. A small covering arraf; = 3-CA(28,50,2) on
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symbols{c1, 05} and a 50x 2 arrayC as shown below needs to be concatenated to cover

interactions in orbits 1-5 II;

The matrixe” = [M®,Cy,C] is a 50x 130 testing array with 3-way configuration coverage
measureuz (<) = 0.90202.

3.2.1 Choice of vectow

The problem is to find a vectare XX with good 3-way configuration coverage measure,
that is, each X k submatrix ofM has a representative from most of the orbits 6-21. To
determine which vector works as a vector with good 3-way goméition coverage, we

define the setd|x, y] for positive integers andy as follows:
dX,¥] = { (M, Vi, Vigxsy) 10 < < K—1}

where the subscripts are taken modklo For computational convenience, we partition
the collection of(g) choices of three distinct rows frokrows into disjoint equivalence
classes. Formally, Ief be the set of all(g) 3-combinations of the s€i0,1,...,.k— 1}.

Define a binary relatioR on Sby putting

{s1,%,53} R{S,S,, s} iff

{s1+d,+d,s3+d} = {s], 5,53} for somed € N

where the addition is moduk BecauseR is an equivalence relation & S can be parti-
tioned into disjoint equivalence classes. The equivalefass determined b{s;, sy, s3} €

Sis given by

[{s1,%,83}] = {{Sl+d,52+d,83+d} |0<d< k—l}.
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Without loss of generality, we may assume that § < s, < sz for each equivalence class
representativé{s;, sp,s3}]. As an illustration, whel = 6, Sis partitioned into four disjoint

equivalence classes:

[{0,1,2}] [{0,1,3}] [{0,1,4}] [{0,2,4}]

A distance vectofx,y, z) is associated with every equivalence clgss, $, S3}] wherex =
S-S, Y=%3—S, 2= 1 —S3 modk. The third distance is redundant becaxsey+ z= k.

We rewrite the equivalence class of 3-combinatidss, s, s3}] as
X,y = {{i,i +Xi+X+y}|i= 0,1,2,...,k—1}.
Fork=6,[1,1] =[{0,1,2}],[1,2] = [{0,1,3}], [1,3] = [{0,1,4}] and[2,2] = [{0,2,4}].

Lemma 3.2.1.Let S be the set of ali-combinations 0f0,1,2,...,.k—1}. Then S can be

partitioned into disjoint equivalence classes
X,y] = {{i,i Fxix+y)]i=0,1,2,... k- 1}
where x=1,2,..., | ¥] and y=x,x+1,...,k— 1 such that
(i) 2x+y<Kk

(i) when k= 0 (mod3), apart from above mentioned classes consider one more class

There are no further classes distinct from these.
Before proving the result, we give an example. Wisga the set of all 3-combinations

of {0,1,2,3,4,5}, Scan be partitioned into four disjoint class€g; 1], [1,2], [1,3] and
2,2].

Proof. Let (X,Y,z) be the distance vector corresponding to equivalence ¢{ass,, sz} .
Classed{s1,s,s3}], [X,Y], [y,Z and [z x] are the same. Without loss of generality, we

choosex,y| as class representativexf<y andx <z Thus 1< x < % andy = X, X+
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1,...,k—1. Itis enough to consider> x. If z= x, then the class€g,y| and|x,X] obtained
from distance vectofx,y,X) are the same equivalence class. The classes of the[oxm
are generated whep= x. In order to avoid repetitionz has to be strictly greater than

X. Thatis,z=k—x—y > x which implies X+y < k. Whenk = 0 (mod 3, the class

['g,'g is not considered under the inequality-2y < k. To include this class, we consider
X=y=2= '% as well. Hence the lemma follows. O

We present the following algorithm that generates all thawedence classes without rep-

etition.

Algorithm 2 Equivalence-Classds@)
Input: k

Output: All [x,y] classes.

for x< 1to ¥ do

for y< xtok—2x—1 do
add [x,y]
end for
end for
if k=0(mod 3) then
add [4, &)

end if

At this stage, we make a few remarks about the size of equigalelasses defined by

above choices of andy.

1. k# 0 (mod 3:

If kis not a multiple of 3, then each class contains exdctlistinct choices from the

(k

collection of(g) choices. Hence there are- % distinct classes of sie
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2. k=0(mod 3:
If k is a multiple of 3, then a class of the forja a,a] wherea = % contains onlyg
distinct choices. Here we get exactly one class of éim\d the remaining classes

are of sizek.

3.2.2 Configuration coverage measurgz(.</)

Given a lengthk vectorv, we define the setd|x,y| correspond to each equivalence class

[X,y] generated by Algorithm 3.2.1 as follows:

DIxyl = U { (VW) 0 <k—1]

X4
aeG y

where the subscripts are taken modkiandv® stands for the image of undera that is,
v = vja. For computational convenience, we formulate the 3-wayigoration coverage

in terms of equivalence classpsy] from Lemma 3.2.1 an®[x,y] as follows:

|[x,y]| x number of distinct 3-tuples of the form 6-21 coveredifx,y] + () (22 +g—2)

(5)¢°

_ X?y

Uz (A)

The second term in the numerator represents the coveragple§tof the form 1-5 by the

matricesC; andC. Thus,

Y |[X,y]| x number of distinct 3-tuples of the form 6-21 coveredix,y] g+ 6
Xy

+ .
(56 ¢’

ps(A) =

3.3 Construction of testing arrays with high i, (<)

In this section, we build several testing arrays with higtvaly configuration coverage
measure fog > 3. Given fixed values df, n, andg, so thaig— 1 is a prime or prime power,
we are to construct a testing arrag with high 4-way configuration coverage measure. Let

X =GF(g—1)U{} be the set off symbols on which we are to construct a testing array.
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Our construction requires selecting a grasand finding a vectov € XX, called a vector
with good configuration coverag&\Ve use the vector= (vp,v1,...,Vk_1) to form ak x k

circulant matrix

Vo V-1 ... V1
V1 Vo ... Vo

M=
Vk—1 Vk—2 ... V0

LetG=PGL(2,g—1). The action ofs on 4-tuples fronX hasg+ 11 orbits. Refer Section
2.3 of Chapter 2 for the list of orbits. Vecter= (vo,v1,...,Vk_1) is said to be a vector with
good 4-way configuration coverage, if every & subarray oM has a representative from
most of the orbits 2-15. Lef = [xJ D XE X] be thek x g array whose columns are al-

vectorsxJ where

The groupPGL(2,g— 1) acting onM producesg(g — 1)(g— 2) matrices that are con-
catenated witlC to form a testing array of sizkg(g— 1)(g— 2) + g having high 4-way
configuration coverage. Kg(g— 1)(g—2) +g < n, then

MPCL(2.9-1) 7 C]

is a testing array of size at masthaving high 4-way configuration coverage.

3.3.1 Choice of vectown

Given a lengthk vectorv, we define the setB[x,y, Z] for positive integers,y andz as

follows:

VG

i-+X+y+2z

Dl y2d = U {0V

U 9 iy ):0<i<k-1}

where the subscripts are taken modklandv stands for the image of undero. For

computational convenience, we formulate the 4-way corditjom coverage in terms of
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equivalence classés,y, 7] from Lemma 2.3.1 an®[x,y, Z], as follows:

5 |[xY,2| x number of distinct 4-tuples of the form 2-15 coveredifx,y, 7] + (¥)g

Ha(el) = e (k) q
4

The second term in the numerator represents the coveragaipfes of the form

{(a,a,aa) : aeX}

by matrixC. Here all the equivalence clasggsy, z| are obtained from Algorithm 1.

3.4 Results

We search by computer to find vecterthat produce testing arrays with high configuration
coverage measure. Tables 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 8/33®, 3.10, 3.11, and 3.12
show vectors with high configuration coverage, the numbeestfcasegn) generated by
our technique, and the best known size with full coveragé [8lcomparison of our con-
structions with the best known covering array sizes shoasdhbr constructions produce
significantly smaller testing arrayg’ with high configuration coverage. Test configuration
coverage is one of the most important topics in softwarengstJsers would like to have
some quantitative measure to judge the risk while using dymio Consider testing a soft-
ware system with 40 parameters each having three valuesddstruction generates a test
suite with 243 test cases that ensure with probabili®d8 that software cannot fail due to
interactions of 2, 3 or 4 parameters whereas the best knowariog array in [31] requires
465 test cases for full coverage. The results show that thygoged methods could reduce

the number of test cases significantly while compromisinlg slightly on the coverage.



Table 3.1: Vectow with good coverage far= 3 andg = 4.

69

k | Vectorvwith good coverage Our Results Best known
n (M) n(us = 1) [31]

(00090050090 1001 0090070010051 1007 11009 100,0000,01 100100

35 L o) 96 (0.812667) | 152
001002007
(000200110011000210020020020000200100100102100100100100

36 cog001 1160,1) 98 (0.815966) | 152
2000111004
(101110:b0100200200210011000200002001000111030100200111

37 coy030eoy01001) 100 (0.824554) 152
10020007007 007
(001001001100100001002000100100111100210020020100130110

38 cogoo109960,01 1) 103 (0.833474) 152
200100700 2

39 (001001000200200011001002101001020003010010020002100101 105 (0 839705) 188
0100100071007 001007) .

go | (720021 1020021621000m001 12100122000122000 001 107 (0.847166) 191
000110010101 B0;0011) '

1Uo02 140100g 00 2UV 1002007 007007007 10050007

10007 000200007101001010300,0000,00 1 1oos000111

41 co30001695003557) 109 (0.85613) | 191
1000100300700
(0005001 0091007 0051009009007 1010010000001 10005007 0001 1000,011

42 o logeoy0050,10) 111(0.86074) | 191
2100500700001
002007007 100050007 0090000501 1007 007 10001 00,0000 Qo0 001 100G,

43 113 (0.86748) | 191
1000011 000210051011) '

a4 (0071002107001 0000500091001 0070010001 007 00051 10090010111 %0,001 115 (0.87209) | 191
0000 100500110001 00) © )
(0000010071 01002000001005000051005 10010051 1007 00007001 1005001

45 118(0.87741) | 191

00200100.1.@0100020002011)
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Table 3.2: Vectow with good coverage far= 3 andg = 4 (continued).

k | Vectorv with good coverage Our Results | Best known
N (Ks) n(us =1)[31]
(10011 0009009001 01001 1009005 1009001 1 1009001001 0001 Oc01 110B0500,

46 120 (0.88304)| 192
1000’01002100200110020110)
(011@020020020100100100001100100011001100200110002100210000X)1

47 123 (0.88813)| 193
007005010051 0p03001 001 0001 00)

(001001111002000210020021000100021003021100200 — 10010021000110

48 125 (0.89254) 193
0010000 01009001 10007 0001 0020050)

(0011011 %0500 009001 00001009001 0010010010091101B0p001 000900510

49 127 (0.89744) 194
0021000010001 1001 0091009001001 1)
(00111002002002000101101:b01°01°021002100200200010021000302001

50 130 (0.90202)| 194
001100020071 110700700001 0010007007 1)
(0020010011002001110@010020000”1010302000200100200210010011001

51 132 (0.90778)| 212
007001 000910051 0005001 100901001 10)
(007001009002100,011 00491101 J0001 0001 010B02001 005000211 Joog

52 134 (0.91014) 212
000070070051 010071009005007 007007 Qo0 1)

(000210001 11008020020 100,00000001 1005000009001 1 1007 00500100

53 137 (0.91395)| 212
0001001 00021101B01005001 005001007001 01)

(0010110020071007 00009007001 10051 10051 0e0 0001 0000001001 009007 001

54 139 (0.91788)| 212
0000071002100200901010%05000101 10051)

(0020051001 11001 107005007 003007 0005010051 1007005000000 0 100004

55 141 (0.92079)| 240
002001101l:bolloo1001000100200011001001001)

(10000001 001002007009007 005001 0000000021 1001 002002001011 (01005
56 144 (0.92430)| 240

0010021000100011000100101100211.1.@021100110)
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Table 3.3: Vectow with good coverage far= 3 andg = 4 (continued).

k | Vectorvwith good coverage Our Results | Best known
N (us) n(ps=1)[31
(0020004009 10051000001 009 007 10001 00020020110 T0,000004 001 00c0;

57 146 (0.92901)| 240
001100900001 0001005 100510021100%0100p001 007 007)
(0010020010020110]902000200100200100020110010103920010021103010

58 149 (0.93203)| 240
009009(000700900009001 1111 J0100p001 001110010011 )
(0002111@02002001000110000020001001100100020001110010020020011

59 151 (0.93387)| 240
0020020101001100200200100200020010010020110010100])

(0000200101 (09009009001 1 1001001 001 00001 0090051001 0c01 01005000051
60 153 (0.93512)| 240
1002010010020010021103021000211010010010010021001110)
Table 3.4: Vectow with good coverage far= 3 andg = 5.
k | Vectorvwith good coverage Our Results | Best known
n (Hs) n(uz=1)[31]

15 | (002009100,002100110072007112) 110 (0.68035), 245

16 | (011c090050210071 2005001 20050) 116 (0.70102) 245

17 | (0c0p009100102700101(005001220) 123 (0.72640), 245

18 | (0223e090011070052001001 0001 007120) 129 (0.73917), 245

19 | (0070011001100121%0y200100100,220) 135 (0.76094) 245

20 | (0090092001201 2010111 %01 200700,20) 141 (0.77431), 245
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Table 3.5: Vectow with good coverage far= 3 andg = 5 (continued).

k | Vectorvwith good coverage Our Results | Best known
n (us) n(uz=1)[31]
21 | (00212100720010000207001 2007001010) 148 (0.79082)| 245
22 | (0090071000222 100,001 Io012100500900,2020) 154 (0.80731)| 245
23 | (10022110071212B0500,002201 100001 0co1 ) 161 (0.82233) 245
24 | (00922 2005005007009100101205010070100,1200) 168 (0.83266)| 245
25 | (0090012009009201007005000500012121 30511122 174 (0.84556)| 249
26 | (Loog0011005200100100221222@0111001000100201) 181 (0.85408)| 249
27 | (0092100700100120103070220071110010001001005,21) 188 (0.86619)| 249
28 | (0022005001 00051 007001121 008020051 20071222 %0,0) 194 (0.87241)| 249
29 | (00921007202205100101100100100100021 F0p200100212) 200 (0.88190), 249
30 | (02007000101009001 1009221 (k05001007 100500,202220,200) 206 (0.88969)| 249
31| (0090090010007 0001212 700100510090022001002,11021101010) 213 (0.89605), 249
32 | (00900122000121 0011001 200111011%0,00020210010072007007) 219 (0.90523)| 349
33 | (Loo10100500700020200920051 00005009001 007001 202009221 1001012) 225 (0.91406)| 365
34 | (00900920090052001 1001 1000010121 %01009100,2200202%0700,021) | 231 (0.91981) 365




Table 3.6: Vectow with good coverage far= 3 andg = 5 (continued).
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k | Vectorvwith good coverage Our Results | Best known
n (us) n(uz=1)[31]

(0112%072200710000100,002007 000101007 120090050001 1

35 237 (0.92222) 365
00001001 0)
(0022111005012 201 2007005020022002 o1 0001 000051 1007 00

36 243 (0.92755) 365
001000200)
(12210:b02°0210°021002002001200222200200100112002000221

37 249 (0.93782) 365
00120011000)
(1002001022001:b0120012121002002001202001002220010002

38 255 (0.94118) 365
20001011002001)
(2001002001212@02102002002002020302022011:b02120020

39 262 (0.94264) 365
001 1007005000051)
(2000110020020001002200022002002001210010011121000

40 268 (0.94694) 365
00110012010>010001102)

Table 3.7: Vectow with good coverage far= 4 andg = 3.
k | Vectorv with good coverage Our Results | Best known
N (Ua) n(us=1)[31]

16 | (0000100%000011c0l00) 99 (0.828) | 237

17 | (000001@o0101001001) 105 (0.851) | 282

18 | (0001@00001001011I0000) 111 (0.864)| 293

19 | (00001001601c00c0111c0) 117 (0.883) | 305
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Table 3.8: Vectow with good coverage far= 4 andg = 3 (continued).

k | Vectorvwith good coverage Our Results| Best known
N (Ua) n(Hs=1)[31]
20 | (0000110100001 000001 100) 123 (0.892)| 314
21 | (0000101@01c0c01 00000001001 ) 129 (0.906)| 315
22 | (000001 30000011 (0lc00000010) 135(0.913)| 315
23 | (0000001000010100100010c000c01) 141 (0.923)| 315
24 | (0000000%000010101000101c0c01) 147 (0.924)| 315
25 | (000000001&0000110001c00c01 100) 153 (0.930)| 363
28 | (100000000001000110111%0000010%000001) 171 (0.957)| 383
29 | (010000001c00000000101000000000111010) 177 (0.961)| 392
30 | (011c01100000000 10000001001 0000000011000 01) 163 (0.969)| 393
35 | (020000000100000 1000000010011 Io0c0c001000100B01) 213(0.979)| 429
36 | (11000110000000011110101 0000000000010 0c0) 219(0.981)| 441
38 | (1ooleo111000001 000100000001 Boc00000000110Te00010000) 231 (0.985)| 447
39 | (001001 1001100000e01 10010 Ie00000100000001 0000000 237 (0.986) | 453
40 | (100r0000000%0001001000000000000001000c01001000111001) | 243 (0.988)| 465




Table 3.9: Vectow with good coverage far= 4 andg = 4.

k | Vectorvwith good coverage Our Results| Best known
N (Ua) n(Hs=1)[31]

18 | (0001002%000002102302) 436 (0.851)| 760

19 | (000012101&0100000221) 460 (0.866)| 760

20 | (00001121012028022102) 484 (0.878)| 760

21 | (0000011021019200022 ) 508 (0.887)| 1012

22 | (000000110®0202%k0c001001) 532(0.894)| 1012

23 | (000000012102169002011201) 556 (0.898)| 1012

24 | (0000000012&01 10002000001 12) 580 (0.899)| 1012

25 | (00000000012122601 10201 20) 604 (0.901)| 1012

26 | (0010302221110102002200202) 628 (0.921)| 1012

27 | (01000222111010200220020»2) 652 (0.928)| 1012

28 | (0111600102002111002200%1001) 676 (0.933)| 1012

29 | (00000122102000022020022122602) 702 (0.937)| 1012

30 | (10002000020020020001002222002200201) 726 (0.943)| 1012
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Table 3.10: Vectov with good coverage far= 4 andg = 5.

k | Vectorvwith good coverage Our Results | Best known
N (Ua) n(us=1)[31]
21| (11013130830013003203 1265 (0.834)| 1865
22 | (3003201120°0000000010010 1325 (0.842)| 1865
23 | (0002003103020302133232pD 1385 (0.854) 1865
24 | (003»21022212300032302310 1445 (0.860)| 1865
25 | (02000000003102303003030033) 1505 (0.869) 2485
26 | (20200221100801210310002300 1565 (0.873)| 2485
27 | (0000300203@000201100003130%03) 1625 (0.880) 2485
28 | (013333130320101003200310300 1685 (0.883)| 2485
29 | (00012212:0103110031020031010 1745 (0.891) 2485
30 | (33002000000033@0001001201313001 1805 (0.894) 2485
31| (033»021333010318303320030012020 1865 (0.895)| 2485
32 | (31003100633013032800303111131p 1925 (0.897)| 2485
33 | (000103000300000200010000001222200003000200) 1985 (0.904)| 2485
34 | (0003000010100%00000100002001110231119 2045 (0.906)| 2485




Table 3.11: Vectowv with good coverage far= 4 andg = 5 (continued).

k | Vectorvwith good coverage Our Results | Best known
N (La) n(ps=1)[31]
35 | (12030033080001323331603202000322D | 2105 (0.906)| 2485
36 | (1202203203230023223220001010202230 | 2165 (0.912)| 2485
Table 3.12: Vectov with good coverage far= 4 andg = 6.
k | Vectorv with good coverage Our Results | Best known
N (Ua) n(us=1)[31]
25 | (00040301400303340432Q ) 3006 (0.811)| 6325
26 | (000040021404010013010011444 3126 (0.819)| 6456
27 | (43300001000020000302B30000000040%0) 3246 (0.826)| 6606
28 | (4023031100232206R 10002020020 3366 (0.829)| 6714
29 | (00040023103301343401230334400 3486 (0.834)| 6852
30 | (100000042004040004010400030340000300 3606 (0.836)| 6966
31| (44122002200002020203%42044001) 3726 (0.838)| 7092
32 | (4444134%42400800040004410103400 3846 (0.846) 7200
33 | (03303440023213310031300008021303») 3966 (0.855) 7320
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Chapter 4

Covering Arrays on Product Graphs

Covering arrays are used to design test suites for softwat@ardware testing. In such an
application, each row of the array corresponds to a parariretbe system, each column
corresponds to a test case and the symbols correspond talties wf the parameters. Such
a test suite covers each possible parameter-value cortfufar any pair of parameters.
In software testing, we may know in advance that two specdrameters do not interact.
Then it is not necessary that each possible parameter-calufgguration for these two
parameters be covered. We can use a graph structure tolaeatrich pairs of parameters
need to be covered.

A covering array on a grapfs with alphabet sizeg, denoted byCA(n,G,qg), is a
IV(G)| x n array onZg with the property that any two rows which correspond to adja-
cent vertices irG are qualitatively independent. Given a grapland a positive integeg,

a covering array o with minimum size is called optimal. There have been soméiassu

of covering arrays on graphs. Seroussi and Bshouty [90]gutélvat the problem of find-
ing the smallest binary covering array on a graph is NP-hasipm. Covering arrays on
graphs have been introduced in the conclusion of Stevehd3. Ehesis [93]. Meagher and
Stevens studied covering arrays on graphs in detail in [68].

Our primary concern in this chapter is with constructiorest tinake optimal covering
arrays on large graphs that are obtained from product oflengtaphs. See also [3]. In
Section 4.1, we recall some basic definitions and results fgoaph theory which will
be used in this chapter and Chapter 5. We review in Sectiosagh& known results on

covering arrays on graphs. In Section 4.3, we consider famst extensively studied graph
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products in the literature. In Section 4.4 and Section 4é&gwe upper and lower bounds
on the size of an optimal covering array on a product grapBeltion 4.6, we find families
of graphs for which the size of a covering array on a produsgplyachieves the lower bound
with respect to the Cartesian product. Finally, in Section, &ve present a polynomial
time approximation algorithm with approximation ratio ((3%) for constructing covering

arrays on graphs havirigprime factors with respect to the Cartesian product.

4.1 Graph Theory

In this section, we recall some definitions and relevantltesugraph theory from [103].
A graph Gis a pairG = (V,E) whereV is a set olverticesandE is a set of unordered pairs
of vertices. The elements & are callededges We writeV (G) for the set of vertices and
E(G) for the set of edges of a grajgh A loopis an edgesv for somev € V(G). A graph
G is simpleif it has no loops andE(G) is not a multi-set. A graph iBnite if its vertex set
is finite. Throughout this chapter, we will only consider fnsimple graphs. Two vertices

u andv areadjacentin G, if uve E(G).

4.1.1 Walks, Paths and Cycles

A walkin a simple graplt is a sequence of verticeg, vy, . .., Vk, wherevivi1 1 € E(G). A
walk is apathif all v; are distinct. If for such a path witk> 2, vov is also an edge ifs,
thenvg,va,...,Vk, Vo is acycle Thelengthof a path, cycle or walk is the number of edges
in it. We denote the path of lengkhby B and the cycle of lengtk by Cy. A graph having
no cycle isacyclic

A graph isconnectedvhen there is a path between every pair of vertices. A gragih th
is not connected idisconnectedIn a disconnected grapB, a connected componers a
maximal connected subgraph Gf A spanning subgrapls a subgraph that contains all

the vertices of the original graph.



80

4.1.2 Trees

A treeis a connected acyclic graph. rAoted treeis a tree with a designated vertex called
theroot. In a rooted tree, thkevel of a vertexv is the length of the unique path from the
root tov. Thus root has level 0. If verteximmediately precedes vertexon the path from
the root tow, thenv is theparentof w, andw is achild of v. Theheightof a rooted tree is
the length of the longest path from the root. In a rooted @deafis any vertex having no

children and armnternal vertexis any vertex that has at least one child.

Definition 4.1.1. A binary treeis a rooted tree in which every vertex has at most two

children.

Example 4.1.1.Figure 4.1 shows a binary tree of height 3. The root of thisyiriree is

Vo.

level 1

level 2

Figure 4.1: A binary tred .

4.1.3 Graph homomorphism and isomorphism

We now recall the definitions of graph homomorphism and ismiism used here; for

more information see [50].

Definition 4.1.2. A homomorphisfromGtoH isamapp : V(G) — V(H) that preserves
adjacency: ifuvis an edge irG, then¢ (u)¢ (v) is an edge irH.

We sayG — H if there is a homomorphism fro@ toH, andG=H if G— H andH — G.
A weak homomorphisfrom GtoH isamapg : V(G) — V(H) such thatifuvis an edge
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in G, then eithewp (u)¢ (v) is an edge iH, or ¢ (u) = ¢(v). Clearly every homomorphism

is automatically a weak homomorphism.

Definition 4.1.3. Two graphsG andH are said to besomorphicif there is a bijection
mapping¢ from the vertex se¥ (G) to the vertex se¥ (H) such thauve E(G) if and only
if p(u)p(v) € E(H). The mappingp is called an isomorphism. An isomorphism preserves

adjacency as well as non-adjacency of vertices.

A homomorphism from a grap@ to itself is anendomorphismAn isomorphism from a
graphG to itself is anautomorphism The set of all automorphisms of a gra@forms a

group, denotedut(G), theautomorphism group of G

4.1.4 Colourings and Cliques

A complete graplis a graph in which each pair of vertices is adjacent. A cobegleaph

onn vertices is denoted bi,.

Definition 4.1.4. A proper colouringon a graph is an assignment of colours to each vertex
such that adjacent vertices receive a different colour. chinematic numbeof a graphG,
X(G), is defined to be the size of the smallest set of colours suathetiproper colouring

exists with that set.

In terms of graph homomorphism, a proper colouring of a g@p¥ith n colours is equiv-
alent to a homomorphism froi@ to K,,. The chromatic numbey(G) of a graphG is the

smallesin such thaG — K.

Definition 4.1.5. A maximum cliquen a graphG is a maximum set of pairwise adjacent
vertices. Themaximum clique numbeasf a graphG, denotedw(G), is defined to be the

size of a maximum clique.

If G has a clique of size, then there is a homomorphisi, — G and the maximum
cligue number ofG is the largesn for which K, — G. For graphsG andH, if there is
a homomorphisnG — H then x(G) < x(H) and w(G) < w(H). Also, the chromatic

number of a graph is always greater than or equal to its clgumeber.
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4.1.5 Bipartite graphs and Matchings

Definition 4.1.6. A bipartite graphis a graph whose vertices can be divided into two dis-

joint setsVy andV, such that every edge connects a verte;ino one inVs.

Every bipartite graph admits a homomorphisrKto Hence bipartite graphs are 2-colourable.
Trees are examples of bipartite graphsc@mplete bipartite grapls a special kind of bi-
partite graph where every vertex\éfis adjacent to every vertex o$. A complete bipartite

graph with|Vq| = mand|V>| = nis denoted{m.

Definition 4.1.7. A matching Min a graphG is a family of pairwise disjoint edges. A

perfect matchingr 1-factoris a matching that saturates every vertex.

We now state some known results about matchings in bipgrigehs, which we rely on in
the coming sections. The maximum degree of a g@hdenoted\(G). If M andM’ are

two matchings of5, then thesymmetric difference

MAM' = (M —M")U (M’ —M).
Proposition 4.1.1. Every component of the symmetric difference of two matchirgya
path or an even cycle.

Proposition 4.1.2. A bipartite graphG with maximum degreé\(G) is union of A(G)

matchings.

4.2 Covering arrays on graphs

Meagher and Stevens introduce and study covering arraysaphgin [68, 66]. We recall

some of their results here.

Definition 4.2.1. A covering array on a graph Gvith alphabet sizgy andk = |V(G)| is
akxnarray onZg. Each row in the array corresponds to a vertex in the g@pfThe
array has the property that any two rows which correspondljacant vertices irc are

qualitatively independent.
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A covering array on a grapl will be denoted byCA(n,G,g). The smallest possible

covering array on a grap@ will be denoted

CAN(G,g) =min{n : there exists £A(n,G,g) }

neN

Given a grapl and a positive integey, a covering array ofs with minimum size is called

optimal

Example 4.2.1.An optimal binary covering array on a gra@with x (G) =4 andw(G) =

2 is shown in Figure 4.2.

vwloo11 1]
v 01011
v | 00111
va |0 1 10 1
vs |0 10 1 1
Ve |01 10 1
v7| 0 110 1
v |0 0 1 1 1
Vo [0 110 1
vio| 0 1 0 1 1
ul01110

Figure 4.2: A graptG and an optimal covering arrdyA(5, G, 2).

Let g andn be two positive integers whemre> g?. A qualitatively independent graph
QI(n,g) is a graph where the vertices are all lengthectors ovefZg, in which each alpha-
bet occurs at leagf times, and the vectors have 0 in their first position. Twoigeg are

adjacent if their corresponding vectors are qualitativetiependent.

Meagher and Stevens [68] proved that given a gi@@nd non-negative integegsandn,
there exists £A(n, G, g) if and only if there exists a graph homomorphi&n- QI (n,g).
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Consider the grap® and the covering array 0@, C = CA(5, G, 2) in Figure 4.2. We now
prove thatC is an optimal covering array da. For the sake of contradiction, suppose there
exists a covering array 08 of size 4. There exists@A(4, G, 2) if and only if there exists
a graph homomorphism

G — Ql(4,2).

QI(4,2) is shown in Figure 4.3. AQI(4,2) is isomorphic tKs, we get
G—QI(4,2) - Ks.

Thisimpliesy (G) < 3, whichis a contradiction to the fact thatG) = 4. ThusCAN(G, 2) =
5.

0110

0011 0101

Figure 4.3: The qualitatively independent graph{4, 2).

A detailed study oRI(n,g) especially forg = 2 is given in [66]. The lemma, given below

will be used in Theorem 4.4.2.

Lemma 4.2.1.[68] Let G and H be graphs. If G> H then CANG,g) < CAN(H,g).

4.3 Graph products

In this section, we give several definitions of graph prodgdicim [46] that we use in this
chapter. A graph product is a binary operation on the setldfréle graphs. However,
among all possible associative graph products, the moshsixely studied in the litera-
ture are the Cartesian product, the direct product, the@gtpooduct and the lexicographic

product.
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Definition 4.3.1. TheCartesian producof graphsG andH, denoted byGH, is the graph
with

V(GOH) ={(g,h)|geV(G) andheV(H)},
E(GoH) ={(g,h)(d,h)|jg=d,hi € E(H), orgd € E(G),h=H}.

The graphs$s andH are called théactorsof the productGoH.

In general, given graph&i,Gs,,...,Gy, thenG10GO---OGy, is the graph with vertex
setV(Gy) xV(Gy) x --- x V(Gy), and two verticeguy, Uy, ..., Ux) and(vy, Vo, ..., V) are
adjacent if and only itijv; € E(Gj) for exactly one index X i < k andu; = v; for each

indexj # 1.

Example 4.3.1.Let G= P, andH = Ps. Then their Cartesian produtCPs is the graph

shown in Figure 4.4.

@ WA
W
o —awW—
W)
® B —&
P2 P3 PzDPg

Figure 4.4: The Cartesian product®fandps.

Definition 4.3.2. Thedirect productof graphsGs, G, ..., Gk, denoted byG; x G x - -+ x
G, is the graph with vertex s&f(G;) x V(Gy) x --- x V(Gy), and for which vertices

(ug, Uz, ..., Ux) and(vy, Vo, ..., Vk) are adjacent precisely ifv; € E(G;) for each index.

Example 4.3.2.The direct product of graph® andP; is shown in Figure 4.5.
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Ny
iy

Figure 4.5: The direct product & andPs.

Definition 4.3.3. The strong producbf graphsGs, G, ..., Gk, denoted by XIG, X - - - K
Gy, is the graph with vertex set(G1) xV (Gp) x - - - xV (Gk), and distinct verticeguy, Uy, . . .,
ux) and (vi,Vo,...,Vk) are adjacent if and only if eithesv; € E(G;) or u; = v; for each

1 <i < k. We note that in gener@l(XX_,Gi) # E(0K_,Gj) UE(xK_;Gi), unlessk = 2.

Example 4.3.3.The strong product of graplis andPs is shown in Figure 4.6.

© @ A, Awy 1
)
@y 7 2
W)
X 8y €Y 8w @
P P3 P, X P3

Figure 4.6: The strong product Bf andPs.

Definition 4.3.4. The lexicographic produciof graphsG;,Go,...,Gy, denoted byG; o
Gy o---0Gy, is the graph with vertex s&(G1) x V(Gy) x --- x V(Gk), and two vertices
(ug,Up,...,ux) and(vy, Vo, ..., V) are adjacent if and only if for some indgx {1,2,...,k}

we haveujvj € E(G;j) andu; = v; for each index Ki < j.
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Example 4.3.4.The lexicographic product of grapRs andPs is shown in Figure 4.7.

Figure 4.7: The lexicographic product Bf andPs.

A graph isprimewith respect to a given graph product if it is nontrivial arashnot be rep-
resented as the product of two non-trivial graphs. For th@eSin product, it means that
a non-trivial graphG is prime if G = G10G; implies that eitheG; or G; is K1. Similar
observation is true for other three products. The uniqueotthe prime factor decomposi-
tion of connected graphs with respect to the Cartesian ptadas first shown by Subidussi
(1960 [85], and independently by Vizingl963) [100]. Prime factorization is not unique
for the Cartesian product in the class of possibly discotaiesimple graphs [46]. It is
known that any connected graph factors uniquely into primaplgs with respect to the

Cartesian product.

Theorem 4.3.1.[85, 100]Every connected graph has a unique representation as a ptodu
of prime graphs with respect to the Cartesian product, ustmiorphism and the order of

the factors. The number of prime factors is at mogp |V|.

For any connected gragh = (V,E), the prime factors o6 with respect to the Cartesian
product can be computed @(|E|log|V|) times andO(|E|) space. For more details see
[46, Chapter 23].
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4.4  Upper bounds onCAN(G; x Gp)

Let x represent either the Cartesian, the direct, the strongheoteixicographic product
operation. Given covering arrag®A(ni, G1,g9) andCA(ny, G2, g), one can construct cov-
ering array onG; x G, as follows: the row corresponds to the ver{exv) is obtained by
horizontally concatenating the row corresponds to theexartin CA(n;, G1,9) with the
row corresponds to the vertaxin CA(np, G2,g). Hence an obvious upper bound for the

covering array number is given by
CAN(G1 % Gp,9) < CAN(G1,09) + CAN(G2,0)

We now propose some improvements of this bound. A column oivaring array iscon-
stantif, for some symbob, every entry in the column ig. In astandardized Cf,G, Q)
the first column is constant. Because symbols within eachcawbe permuted indepen-

dently, if aCA(n, G, g) exists, then a standardiz€d\(n, G, g) exists.

Theorem 4.4.1.Let G= G X G, and g> 2 be a positive integer. Suppose for each
1 <i < 2there exists a Chy, Gi, g), then there exists a GA, G,g) where n=n; +ny — 2.
Hence, CANG,g) < CAN(G1,g) +CAN(Gg,g) — 2.

Proof. Without loss of generality, we assume that for eack iL.< 2, the first column
of CA(n;, Gj,g) is a constant column on symbiol 1. LetC; be the array obtained from
CA(ni, Gj,g) by removing the first column. Form an arrAywith |V (G1)| x [V(G2)| rows
andny + nz — 2 columns, indexing rows &sl,v) for 1 <u < |V(Gy)| and 1< v < [V(Gy)|.
Row (u,V) is obtained by horizontally concatenating the rawf C; with the rowv of
C,. Consider two rows oA that correspond to two adjacent vertides,v1) and (up, Vo)
of G. Two distinct verticequy,v1) and (U, Vo) are adjacent irG if and only if either
uuz € E(Gy) andvy = vo or up = up andvivp € E(Gy) orugup € E(Gy) andvaivs € E(Gy).
Without loss of generality, supposgu, € E(G1). These two rowsus, v1) and(up, o) of A
cover all pairs except probably the péix 0) in the firstn; — 1 columns whemiu, € E(Gy).

Whenv; = v; or viva € E(Gy) the pair(0,0) is covered in the last; — 1 columns. O
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Corollary 4.4.1. Let G=G1 X Gy X --- K Gy, k> 2 and g be a positive integer. Suppose
for eachl <i < k there exists a Cfvj, Gi,g), then there exists a GA, G,g) where n=
k k
Y ni —2k+2. Hence, CANG,g) < 5 CAN(Gj,g) —2k+2.
i=1 i=1

Proof. Since the strong product of graphs is an associative biragyation,
G=((--((G1XG) WG3) K- --) K Gy).

K
A covering array orG of size ¥ CAN(Gj,g) —2(k— 1) is derived by iterating Theorem
i=1
4.4.1k— 1 times. O

Using the definition of strong product of graphs, we have tieving result as a corollary.

Corollary 4.4.2. Let G= Gy xGyx---x Gk, K> 2 and g be a positive integer, whexec
k
{0, x}. Then, CANG,g) < S CAN(Gi,g) — 2k+ 2.
i=1

Theorem 4.4.2.Let G=G1 x Gy x - - X Gk, k> 2 and g be a positive integer. Suppose for
eachl <i <k there exists a Cnj, Gj,g). Then there exists a GA G, g) where n= minn;.
|
Hence, CANG, g) < min CAN(G;, ).
|

Proof. Without loss of generality assume thmat= minn. It is known thatG; x Gy x - - - x
|
Gk — Gi. Using Lemma 4.2.1, we ha¥@AN(G, g) < CAN(G1,0). O

All the above-mentioned bounds are based on recursivercatisns of covering arrays on
product graphs using covering arrays on factor graphs. Weuse graph homomorphism
to find bounds oiCAN(G, g).

Since there are homomorphisms between the following graphs
Kw(G) —-G— KX(G)’

we can find bound on the size of a covering array on a graph frengtaph’s chromatic

number and cligue number. For all grapghs

CAN(Ky(G),9) < CAN(G,g) < CAN(Ky(G),9)-
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We have the following results on proper colouring of prodyreiphs [84]

X(G10Gz) = max{ x(G1), X (G2)}

For other graph products there are no explicit formulae fiwomatic number but following

bounds are mentioned in [46].

X(G1x G2) <min{x(G1),X(G2)}

X(G1XGz) < X(G10G2) < X(G1)X(Ga).

A proper colouring ofG; x G, with x (G x Gy) colours is equivalent to a homomorphism

from Gy + G2 to Ky (G,«c,) for anyx € {0, x,X, o}. Hence
CAN(G10G2,9) < CAN(Kmaxx(G1),x(G2)}9)

CAN(G1 x G2,9) < CAN(Kpmin{x(Gy) x(Go)}-9)

CAN(G]. X 627 g) S CAN( KX(G:L)X(Gz) ) g)

CAN(G10 Gz, g) < CAN(Ky(G,)x(Gy):9)-

4.5 Lower bounds onCAN(G; x Gy)

Note thatG; — G; x Gy andGy — Gy x G, for x € {00, X, o} give:
max{CAN(G1,0),CAN(Gz,09)} < CAN(G1 x G2, Q) (4.1)

We now describe colouring construction of covering arrag@phG. If Gis ak-colourable
graph then build a covering arr&@A(n, k, g) and without loss of generality associate row
of CA(n,k,g) with colouri for 1 <i <k. In order to construd€A(n, G, g), we assign row

of CA(n,k, g) to all the vertices having colouin G.

Recall that ifg is prime or power of prime, then one can consti@&{g+ 1,g). The set of

rows in an orthogonal arra@A(k, g) is a set ok pairwise qualitatively independent vectors
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from ZSZ. Forg =2, by Theorem 2.2.1, there are three qualitatively indepahdectors

4
from Z3.

Here we give some examples of graphs where the lower boungluatien 4.1 is achieved.

Example 4.5.1.1f G; andG; are bicolourable graphs, theriG10G,) = 2. Letx; andx;
be two qualitatively independent vector%&2 for g > 2. Assign vectok; to all the vertices

of G10G; having colouii for i = 1,2 to get a covering array witBAN(G;0G,,g) = ¢°.
Example 4.5.2.1f G; andG;, are complete graphs, then
CAN(G10Gg,g) = max{CAN(G1,9),CAN(G2,9)}.

Example 4.5.3.1f G is bicolourable ands;, is a complete graph ok > 2 vertices, then
CAN(G10G2,9) = CAN(G2,g). In general, ifY (G1) < x(G2) andG, is a complete graph,
thenCAN(G10Gg,9) = CAN(Gy,9).

Example 4.5.4.Let By, denote the path of lengtim andC,, denote the cycle of length.
Then x (PnOCr) = 3 whenn is odd. Using Theorem 2.2.1, we get a set of three pairwise
gualitatively independent vectors Eﬁz for g > 2. Then the colouring construction of

covering arrays gives us a covering arrayRymCp with CAN(PnOChn, g) = ¢°.

Let x represent either the Cartesian, the direct, or the stravdyat of graphs, and consider

a productGy x Gy ... x Gk. For any index, 1 <i <k, aprojection mags defined as:
Pi © G1xGox...x Gy — Gy wherep;(Xg, X2, ..., Xk) = X;.

By the definition of the Cartesian, the direct, and the stqorogluct of graphs, eagh is a
weak homomorphism. We now recall the following result fret6][to give another lower
bound onCAN(G; X Gy, ).

Lemma4.5.1.Let G and G be graphs and Q be a cliqgue 0f& G,. Then Q= p1(Q) X
p2(Q), where p(Q) and p(Q) are cliques of G and &, respectively.
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Hence a maximum size clique G X G, is product of maximum size cliques fro@y and
Gy. Thatis,w(G1 X Gy) = w(G1)w(Gz). Using the graph homomorphism, this results into

another lower bound on covering array number:
CAN(Kgy(G)a(Gy):9) < CAN(G1 X G2, 0).
Following are some examples where this lower bound can hesh

Example 4.5.5.1f G; andG; are nontrivial bicolourable graphs thenG; X Gy) = x(G1 X
G2) which is 4. Henc€AN(G1 XIG;, g) = CAN(K4,9), which is of optimal size.

Example 4.5.6.If G; andG; are complete graphs, thé X G, is again a complete graph.
HenceCAN(G1 X G, g) = CAN(K¢y6,x6,). 9)-

Example 4.5.7.1f G1 is a bicolourable graph ar@, is a complete graph dn> 2 vertices,
thenw(G; X Gy) = x(G1XG;) = 2k. HenceCAN(G; X Gy, g) = CAN(Ky,g).

4.6 Optimal size covering arrays over the Cartesian prod-
uct of graphs

Recall that the set of all automorphisms of a gr&forms a group, denoteflut(G), the

automorphism group d&.

Theorem 4.6.1.Let G, be a graph having the property that A@;) contains a fixed point
free automorphism which maps every vertex to its neighbdlen for any bicolourable
graph &,

CAN(G10Ggp,g) = CAN(G1,0).

Proof. Consider the sdt = {@ € Aut(G1) | ¢(u) € N(u) \ {u} for allu € V(Gy1)} where
N(u) denotes the set of neighbourswfFrom the assumptiof, is not empty. Consider a

2-colouring ofG, with colours 0 and 1. Define

Wo = {(u,v) € V(G1Gy) | colour(v) = 0}
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and

Wi = {(u,v) € V(G1Gy) | colour(v) = 1}.

Note thatWp andW; partitionV (G10G;) into two parts. Let the rows of covering ar-
ray CA(G1,9) be indexed byup,up, ..., ux. Form an arrayC with |V (G10G;)| rows and
CAN(Gy1,g) columns, indexing rows aQ1,v) for 1 <u < [V(Gy)|, 1 <v < V(G| If
(u,v) € Wp, row (u,v) is row u of CA(Gy,9); otherwise if(u,v) € Wy, row (u,v) is row
@(u) of CA(G1,9). We now verify thaC is aCA(G10Gy,g). Consider two adjacent ver-
tices(uy,v1) and(uz, Vo) of G10OGs.

(i) Let (ug,v1) and (up,v2) belong toW, i = 0,1. Then(ug,v1)(up,v2) € E(G1OGy) if
and only ifuiup € E(Gy) andvy = vo. When (ug,v1) and (up,v2) belong toW, rows
(uz,v1) and(up,Vv2) are rowsu; andu, of CA(G1, g) respectively. Asiup € E(Gy), rows
u; andup are qualitatively independent @A(G1,g). When (uy,vq) and (up,v2) belong
to Wy, rows (ug, Vi) and(up,vz) are rowsg(u;) and @(uz) of CA(Gy,g) respectively. As
@(u1)@(up) € E(Gy), rows @(u1) and @(up) are qualitatively independent @A(G1,9).
Therefore, rowgus, vi) and(up, v2) are qualitatively independent @

(i) Let (ug,v1) € Wp and(uz,V2) € W4. In this case(us,v1)(Uz,V2) is an edge irG10G;

if and only if uy = up; andvyvp € E(G). Letu; = up = u. Rows(u,vp) and(u,vy) are
rows u and @(u) of CA(G1,0). As @ is a fixed point free automorphism that maps every
vertex to its neighboum and ¢(u) are adjacent if5;. Therefore, the rows indexed hy
and ¢(u) are qualitatively independent DA(G1,Q); therefore, rowgus,v1) and (uz, v2)

are qualitatively independent O

Definition 4.6.1. Let H be a finite group an& be a subset dfl \ {id} such thatS= —S
(i.e.,Sis closed under inverse). Ti@ayley graphof H generated b, denotedCay(H, S),
is the undirected grap® = (V,E) whereV = H andE = {(x,sX) | xe H,s€ S}. The

Cayley graph is connected if and onlySigeneratesi.

Throughout this chapter bl3= —Swe meanSis closed under inverse for a given group

operation.
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Definition 4.6.2. A circulant graph Gn, S) is a Cayley graph ofi,. That is, it is a graph
whose vertices are labelldd®, 1,...,n— 1}, with two vertices labelled and j adjacent if
and only ifi — j (modn) € S whereSC Z,, with S= —Sand 0¢ S.

Corollary 4.6.1. Let G = G(n,S) be a circulant graph and &be a bicolorable graph,
then CANG(n,S)0Gz,9) = CAN(G(n,S), ).

Proof. Leti andj be two adjacent vertices (@;. We define a mapping@ from Z, to Z, as
follows:

@(V) =v+j—i (modn).

It is easy to verify that this function is bijective. To shgws an automorphism, consider a
pair of distinct vertices; andv, in G(n,S). By definition,v1v» is an edge irG(n, S) if and

only if vi —v2 (modn) € S Note that,

@(v1) — @(V2) = v1 — Vo (modn).

Thus, ifvav, is an edge irG(n, S) theng(vi) @(v2) is an edge irG(n, S). Thereforep is an
automorphism o6(n,S). Itis easy to verify that@(v) is always an edge. Spsends every

vertexv to its neighbourp(v). Thus@ € I' and the result follows from Theorem 4.6.10]
For a groupH andS C H, we denote conjugation &by elements of itself as
S ={sd¢s!|sdcS.

Corollary 4.6.2. Let H be a finite group and S H ~. {id} be a generating set for H such
that S= —S and §=S. Then for G= Cay(H, S) and any bicolorable graph &

CAN(G10G3,g) = CAN(G1,9).

Proof. We will show that there exists @ € Aut(G;) such thatp is stabilizer free. Define
@:H — H asg@(h) =shfor somese S It is easy to check thap is bijective and being,
s+ id it is stabilizer free. Now to prove is a graph homomorphism we need to show it is

an adjacency preserving map. It is sufficient to prove thettossh ands’h are adjacent in
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G implies verticesshandssh are adjacent i, for somes € S. As ssh = s$s 1shand
sds~! € S we haveshandsgh are adjacent i5;. Henceg € I and Theorem 4.6.1 implies

the result. O

Example 4.6.1.LetH be an abelian group ar®iC H \ {id} be a generating set fét such
thatS= —S. Then we always g&°=S.

Example 4.6.2.ForH = Qg = {£1,+i,+j,+k} andS= {#i,+j}, we haveS® = Sand
S=-S

Example 4.6.3.For H = Dg = (a,bja? = 1 = b* aba= b®) andS= {ab,ba}, we have
S°=SandS=-S

Example 4.6.4.ForH = S, andS= set of all even cycles, we ha® = SandS= —S.
Theorem 4.6.2.Let H be a finite group and S be a generating set for H such that
1. S=-Sandid¢ S
2. $=5
3. there existsand 2 in S suchthats# s and s, € S
then for G = Cay(H, S) and any three colourable graph twe have
CAN(G10G3,g9) = CAN(G1,0).

Proof. Define three distinct automorphisms®f{, g; : H — H, fori =0,1,2, asop(u) = u,
01(u) = 51U, 02(uU) = s, *u. Consider a three colouring & using the colours @ and 2.
Let

W = {(u,v) € V(G10Gy) | colour(v) =i} fori=0,1,2.

Note thatWp, Wi, andW, partitionV (G;0Gy) into three parts. Let the rows of cover-
ing arrayCA(G1,g) be indexed byus,uy,...,u. UsingCA(G1,Q), form an arrayC with
IV (G10G2)| rows andCAN(G1,g) columns, indexing rows a8, v) for 1 <u < [V(Gy)],
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1<v< | V(Gy)|. If (u,v) € W, row (u,V) is row g (u) of CA(Gy,g). Consider two adjacent
vertices(us, v1) and(uz, v2) of G1OGy.

(i) Let (u,vq) and(uz, Vo) belong toM, i =0,1,2. In this case(us,v1)(up, v2) € E(G10G2)

if and only if uyup € E(G1) andvy = vo. When (ug,vi) and (up,v2) belong toWp, rows
(ug,v1) and (up,Vv2) are rowsu; andup of CA(G1,g). As uiup € E(Gy), the rowsu; and
up are qualitatively independent ©A(G1,9). Let (u1,vq) and(uz, Vo) belong tow (res.
W5). Similarly, ass;u; ands;u, are adjacent iis; (res. s, T ands, Ly are adjacent in
G,) the rows indexed bg,u; ands;u, (res.sglul andsgluz) are qualitatively independent
in CA(G1,9). Hence the rows correspond to verti¢es, v1) and (uy,v2) are qualitatively
independent ilC.

(i) Let (ug,vi) € W and (up,v2) € W; for 0 <i # j < 2. In this case(u,vq)(U2,V2) €
E(G10Gy) if and only if ug = up andviv, € E(Gp). Letuy = up = u.

Let (u,v1) € Wp and (u,v2) € Wy. Then rows(u,v1) and (u,v,) are rowsu and s;u of
CA(Gy,Q) respectively. Ass andsiu are adjacent i1, the rows indexed byu,vs) and
(u,v2) are qualitatively independent @

Let (u,v1) € Wp and (u,v2) € Wo. Then rows(u,v;) and (u,V,) are rowsu ands, *u of
CA(Gy,9) respectively. Asiands, lu are adjacent ifB1, the rows indexed byu,v;) and
(u,v2) are qualitatively independent @

Let (u,v1) € Wy and (u,V2) € Wa. Then rows(u,v;) and (u,v2) are rowss;u ands, ‘u of
CA(Gy,9) respectively. AU = $15S, luands;s, € S, verticess;u ands, luare adjacent

in G1. Hence the rows indexed lgy, v1) and(u, v») are qualitatively independent@ [
Theorem 4.6.3.Let H be a finite group and S be a generating set for H such that

1. S=—-Sandid¢ S

2. $=5S

3. there existsand $ in S such thats# s, and qu,slsgl €S

then for G = Cay(H, S) and any four colourable graph £5we have
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CAN(G10Gy,9) = CAN(Gy,9).

Proof. Define four distinct automorphisms &f;, g, : H — H, i =0,1,2,3 asgp(u) = u,
01(U) = s1U, 02(U) = U and o3(u) = s5u. Consider a four colouring dB; using the

colours 01,2 and 3. Let
W = {(u,v) € V(G1JGy) | colour(v) =i} fori=0,1,2,3.

Let the rows of covering arra@A(G1, Q) be indexed by, uy, ..., ux. Form an arrafC with
IV (G10G2)| rows andCAN(G1,g) columns, indexing rows a8, v) for 1 <u < [V(Gy)],
1<v<|V(Gy)|. If (u,v) e W, row (u,Vv) is row g; (u) of CA(G1,9). Consider two adjacent
vertices(us, v1) and(uy, v2) of C.

(i) Let (u1,v1) and(ug,v2) belong toW, i = 0,1,2,3. It is easy to verify that the rows
correspond to the verticésy,v1) and(up, Vo) are qualitatively independent.

(ii) Let (ug,v1) € W and (up,v2) € Wj for 0 <i # j < 3. In this case(us,v1)(Up,V2) €
E(G10Gy) if and only if u; = up andviv, € E(Gy). Letus = up = ul.

Let (u,v1) € Wp and(u,v2) € W fori = 1,2,3, then row(u,v;) and(u,v,) are rowsu and
0i(u) of CA(Gg, g) respectively. Then asando;(u) are adjacent il the rows correspond
to the verticegu,v1) and(u,v») are qualitatively independent.

Let (u,v1) € Wy and (u,v2) € Wo. Then rows(u,v1) and (u,vz) are rowss;u andsyu of
CA(G1,09). As siu= slsglsgu and slsgl € S verticess;u and su are adjacent irG;.
Hence the rows correspond to the verti¢as/) € Wy and (u,v2) € W, are qualitatively
independent.

Let (u,v1) € Wy and(u,v2) € W5. Then rows(u,v;) and(u,Vv2) are rowss;u ands;s;u of
CA(G1,0). Assiu= 1S, sy lsisu andsgs; 'yt € SbeingS® = S, verticess;u ands;s;u
are adjacent is;. Hence the rows correspond to the verticey) € Wy and(u, v2) € W
are qualitatively independent.

Let (u,v1) € W, and (u,v2) € Ws. Then rows(u,v;) and (u,v,) are rowssp,u and $3Spu
of CA(G1,0). Asspu= sl‘lsiszu and 31_1 € S, verticesspu ands;Spu are adjacent irG;.
Hence the rows correspond to the verti¢ass;) € Wo and (u,v2) € W5 are qualitatively

independent. O
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Example 4.6.5.Let G = Qg andS= {+i,+],+k}. Heres; =i ands, = .

Example 4.6.6.Let G = Qg andS= {—1,+i,+]j}. Heres; = —1 ands; =1i.

Figure 4.8:Cay(Qs, {—1,+i,£]})0K3

4.7 Approximation algorithm for covering array on graph

In this section, we present an approximation algorithm fawstruction of a covering ar-
ray on a given grapié = (V,E) with k > 1 prime factors with respect to the Cartesian
product. In 1988, G. Seroussi and N H. Bshouty proved thatdi¢fogsion problem whether
there exists a binary covering array of strenggth 2 and size 2on a givert-uniform hy-

pergraph is NP-complete [90]. Also, construction of an mjali size covering array on a
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graph is at least as hard as finding its optimal size. We dpvatoapproximation algo-
rithm to construct covering arrays on graphs with approfiomeratio O(logs |V|), where

s can be obtained from the number of symbols correspondingab eertex. For graphs
which are not prime with respect to the Cartesian productatgorithm improves the best
known bounds ol€AN(G, g). The following result by Bush is used in our approximation

algorithm.

Theorem 4.7.1.[16] Let g be a positive integer. If g is written in standard form:

9=py'py ...

where p, p2, ..., p are distinct primes, and if

r= min(p217 p227'~'7p|nl)7

then one can construct @8 g) where s= 1+ max(2,r).

We are given a wighted connected gradk-= (V, E) with each vertex having the same
weightg. In our approximation algorithm, we use a technique from f46 prime factor-
ization of G with respect to the Cartesian product. This can be doi@ j&|log|V|) time.
For details see [46]. After obtaining prime factors@fwe construct strength two cover-
ing arrayC; on the maximum size prime factor. Then using the row§Qfwe produce a

covering array oI6.
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Algorithm 3 APPROXCA(G,9)
Input: A weighted connected grapgh = (V,E) with k > 1 prime factors with respect to

the Cartesian product. Each vertex has wegglgt= pj*py*... ;" wherepy, pz, ..., p are
primes.

Output: CA(u¢?, G, 9).

Step 1: Computes= 1+ max{2,r} wherer = min(p}*, p52,..., p/").

Step 2: FactorizeG into k prime factors with respect to the Cartesian product; Gay
0K ,Gi whereG; = (V;, E) is a prime factor.

Step 3: SupposéVi| > Vo] > ... > ||. For prime factoiG; = (V1,E;) do
1. Find the smallest positive integesuch thas" > |V3|. That is,u = [logg|V1]].

2. Let OA(s,g) be an orthogonal array and denoteittsrow by R, fori =1,2,...,s.
Total s* many row vector§R;;,R;,,...R;,), each of lengthug?, are formed by hori-

zontally concatenatingrowsR;,, R, ..., R, where 1<iq,... iy <s.

3. Form an|Vy| x ug? arrayC; by choosing anyV;| rows out ofs’ concatenated row
vectors. Let the rows of; be indexed by QL,..., V1| — 1. Each row in the array

corresponds to a vertex in the gra@h.

Step 4: Form an arrayC with |V | rows andug? columns, indexing rows as/, Vs, .. ., )
forO<v; <|Vi|—1,i=1,2,....k. Row (V1,Va,...,Vk) IS TOWV] + Vo + - - - +V (mod V1)

of C;. ReturnC.

Theorem 4.7.2.Algorithm APPROX C£G, g) is a polynomial-timeo(|V|) approximation

algorithm for covering array on graph problem, where
Vv
(V) < [log, 125

Proof. Correctness: The verification thaC is aCA(ug?, G, ) is straightforward. First,
we show thaC; is a covering array of strength two withf;| parameters. Pick any two

distinct rows ofC; and consider the submatrix induced by these two rows. Inthe s
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matrix, there must be a colun{iR,R;)" wherei # j. Hence each ordered pair of values
appears at least once. Now we show tBas$ a covering array ofs. Letu = (uy,...,Uy)
andv = (vi,...,V) be two adjacent vertices iB. It suffices to show that the rows cor-
respond tau andv are qualitatively independent. We knawandv are adjacent irG if
and only if (U, vi) € E(Gj) for exactly one index X i <k anduj = vj for j #i. Hence
Up+Ux+...+ U #Vi+Vo+...+ W (Mmod|Vy|) and in Step 4, two distinct rows froy
are assigned to the verticegandv.

Complexity : The time to findsin Step 1i90(Ing). The time to factorize grapB = (V,E)

in Step 2 isO(|E|log|V|). In Step 3(1), the smallest positive integeican be found
in O(logg/V4|) time. In Step 3(2), forming one row vector requirgdog,|V:| assign-
ments; hence, forminfy;| row vectors requir€®(g?|V1|log|V1|) time. Thus the total run-
ning time of APPROXCA(G, g) is O(|E|log|V| 4 g?|V1|logs|V1| +Ing). Observing that,
g?M1logs|V1| < g%V |logs|V|, and in practice, Ig < |E|log|V|, we can restate the running
time of APPROXCA(G, g) asO(|E|log|V |+ g?|V|logg|V]).

Approximation ratio: We show that APPROXCA(G, g) returns a covering array that is
at mostp(|V|) times the size of an optimal covering array @n We know the smallest
for which aCA(n, G, g) may exist isg?, that is,CAN(G,g) > g®. The algorithm returns a

covering array oG of sizeug? where

u= [logs|V1]].

As G hask prime factors, the maximum number of vertices in a factorloa V,|1, that is,

Va| < 2'%‘1 Hence
V]
u=[logs|V1|] < [Iogsﬁ .
By relating to the size of the covering array returned to thgnoal size, we obtain our

approximation ratio

p(VI) = [logs s |



Chapter 5

Mixed Covering Arrays on 3-Uniform Hy-
pergraphs

Several generalizations of covering arrays have been peapim order to address differ-
ent requirements of the testing applications (see Sect@®n Mixed covering arrays are
a generalization of covering arrays that allows differealiues for different parameters.
Covering arrays on graphs are a generalization of covermays; in particular, a covering
array on a complete graph is a covering array. Meagher, MaadhZekaoui studied mixed
covering arrays on graphs in detail in [67]. Mixed variabi@sgth covering arrays have
been systematically studied in Raaphorst’'s Ph.D. theZisqid also in [23, 24] by Cheng
et al.

In this chapter, we consider mixed covering arrays on 3eumifhypergraphs which
generalize mixed covering arrays on graphs introduced 7h ipait are a special case of
mixed variable strength covering arrays introduced in [28, See also [5]. The mo-
tivation for this work is to widen applications of coveringays to software, hardware,
and network testing. In Section 5.1, we outline the necgdsackground in the theory of
hypergraphs. In Section 5.2, we recall the definition of rdigevering arrays on hyper-
graphs and a lower bound on its minimum size. In Section 5e3present results related
to balanced and pairwise balanced vectors which are retjfdarebasic hypergraph opera-
tions. In this section, we prove Conjecture 3.4.27 posteRagphorst in [77]. In Section
5.4, we introduce four basic hypergraph operations. Usiegd operations, we construct

optimal mixed covering arrays oa-acyclic 3-uniform hypergraphs, 3-uniform Interval
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hypergraphs, conformal 3-uniform hypertrees having argitr@e as host tree, 2-tree hy-
pergraphs, and 3-uniform loose cycles. We also give a soltti Conjecture 3.4.28 posted

by Raaphorstin [77].

5.1 Hypergraph Theory

In this section, we recall some definitions and relevantlteso hypergraph theory from

[10, 101].

Definition 5.1.1. A hypergraph His a pairH = (V,E) whereV = {vi,v,..., W} is a set
of elements called nodes or vertices, &e {ej,e,...,en} is a set of non-empty subsets

of V, called hyperedges, such that

A simple hypergrapls a hypergrapli such thag C gj =i = .

Example 5.1.1.An example of a simple hypergraph is shown in Figure 5.1, witiee set
of vertices isV = {vi,V2,V3,V4,Vv5} and the set of edges 5= {e;,e,e3,€4,65}, where
€1 = {V1,V2,Va}, € = {V2,V3,Va}, €3 = {V1,V3,Va}, €4 = {V1,V2,V5}, &5 = {V1,V3,Vs5} and

€ = {V4,Vs5}.

A
5

NN

Figure 5.1: A simple hypergragh.
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Thedegree ¢ (v) of a vertexv € V(H) is the number of hyperedges which contairThe
maximum degreever all of the vertices i is denoted by

A(H) = maxdy (v).

veV

A hypergraph igegular if all vertices have the same degree. If cardinality of evayy
peredge oH is equal tor thenH is calledr-uniform hypergraph. Acomplete funiform
hypergraph containing vertices, denoted b}, is a hypergraph having everysubset of
set of vertices as hyperedge. A partial hypergraph is a lgyaph with some hyperedges
removed. More formally, for a sétcC {1,2,...,m}, thepartial hypergraphgenerated by

is the hypergrapkV’, {g | i € J}) whereV' = iLGJJei. A subhypergraph is a hypergraph with
some vertices removed. Formally, for a et V, thesubhypergraph I induced byA is

defined as

Ha = (A,{aﬂA\ 1§i§m,amA;£0}>.

Example 5.1.2.Consider the hypergragh shown in Figure 5.1. Lel = {2,4,6}. Then
the partial hypergraph generated.blias hyperedges, e4 andeg as shown in Figure 5.2.

Figure 5.2: A partial hypergraph (J).

Example 5.1.3.Consider the hypergrapgh shown in Figure 5.1. Le® = {v1,V2,V4,Vs}.
Then the subhypergrapty induced byA has hyperedges/y, va}, {Vo,Va}, {v1,Va}, {V1,V2,V5},

{v1,V5}, and{vs, vs} as shown in Figure 5.3.
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V4

Vg Vi

Figure 5.3: A subhypergragHa.

5.1.1 Paths and cycles in hypergraphs

In a hypergraph, an alternating sequence

V1,€1,V2,€2, ..., Vk, €, Vk+1

of k distinct hyperedges;, e, ..., e andk+ 1 distinct verticess, Vo, . . ., Vi1 such that for
each 1< i <k, g containsv; andv;; is called apath or Berge pathconnecting vertices
v andvi,1 or a(vi, Vke1)-path It is called acycleif v; = v, 1. The valuek is called the

lengthof the path/cycle respectively. We provide an example ofjBgrath in Figure 5.4.
—_—
Figure 5.4: A Berge path of length 4 in a 3-uniform hypergraph

Definition 5.1.2. [87] A loose cyclan a hypergraph is a sequence of distinct hyperedges
e1,e, ..., suchthatfor Ki <k eneg, 1 ={vi} whereg. 1 = e; and ally; are distinct;

and non-consecutive hyperedges are disjoint. Similadgpae pathin a hypergraph is a
sequence of distinct hyperedgesey,...,e such that for I<i <k—1,enNne; 1 ={vi}

where allv; are distinct; and non-consecutive hyperedges are disjoint
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B 6 &

Figure 5.5: A loose path in a 3-uniform hypergraph.

Definition 5.1.3. A tight cyclein at-uniform hypergraph is a sequenceaferticesvg, v, . . .,
Vk_1 such that{vi,vi11,...,Vi;t—1} is a hyperedge for eadh wherei is taken moduld.

Similarly, atight pathcan also be defined.

Figure 5.6: A tight path in a 3-uniform hypergraph.

5.1.2 Conformal hypergraphs

The2-sectiorof a simple hypergrapH without any loop is the simple gragH |, with the
same vertices of the hypergraph and edges between all gaigstwes contained in the

same hyperedge.

Example 5.1.4.Consider the hypergragtin Figure 5.1. Itis easy to verify théitl], = Ks,

a complete graph on five vertices.

Definition 5.1.4. A hypergraptH is conformalif all the maximal cliques of the graghi]»

are hyperedges oi.

Example 5.1.5.Consider the hypergrapH(J) in Figure 5.2. The edges i (J)], are
{vi,va},{v1,V5},{v2,V5},{V2,v3},{V3,va},{V2,v4}, and{va,Vs}. The maximal cliques of
[H(J)]2 are{vy,vo,v5}, {v2,Vv3,v4}, and{vs, vs}. All these maximal cliques are hyperedges

in H(J). ThusH(J) is a conformal hypergraph. Next, consider the hypergtdghown
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in Figure 5.1. Note thaH|, is a complete graph on five vertices; so the maximal clique
size in[H]; is 5. The hypergraphl does not have any hyperedge containing five vertices.

HenceH is not a conformal hypergraph.

5.1.3 Hypertrees

A host graphfor a hypergrapiH = (V,E) is a connected graph on the same verteX/set
such that every hyperedge induces a connected subgrapb bbsh graph. A host graph

which is a tree is calletost treeof hypergrapiH.

Definition 5.1.5. A hypergraptH = (V,E) is called ahypertreef there exists a host tree
T=(V, E/) such that each hyperedgec E induces a subtree df.

Example 5.1.6.Let H; andH» be two hypergraphs as shown in Figure 5.7. We use dotted
lines to show the edges of host graphs. Note thadoes not have any host tree, hence itis

not a hypertree. On the other hand host graphois a tree, hencel; is a hypertree.

Figure 5.7: A hypergraphl; that is not a hypertree and a hyperttée

5.1.4 Hypergraph colourings

There are many generalizations of hypergraph colouringse e mention two of the well

known generalizations.
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Definition 5.1.6. Let H = (V, E) be a hypergraph arki> 2 be an integer. A-colouring
or weak k-colouringof the vertices is a partitiofS;, S, ..., &) of the set of vertices into
k classes such that every hyperedge which is not a loop mektasattwo classes of the

partition. In other words, there must be no monochromatpehgdge with cardinality 2.

If there exists &-colouring of vertices theHhl is said to bek-colourable For a hypergraph

H its chromatic numbej (H) is the smallest integéefor which H admits ak-colouring.

Definition 5.1.7. For a hypergraptd = (V,E), a strong k-colouringof the vertices is a
k-partition (S1, S, ..., ) of V such that no colour appears more than once in the same

hyperedge.

The strong chromatic numbeof a hypergraph, denoted byy(H), is the smallest integer
k for which H admits a strondg-colouring. A strong colouring is always a colouring and

hencex(H) < y(H).

Example 5.1.7.Consider the hypergragty, shown in Figure 5.7. Partitio§ = {v;} and
S = {vo,Vv3,v4, s} admits a weak 2-colouring ¢f,; and partitionS; = {vq }, S = {vo,v4}
and 3 = {vs3,Vv5} admits a strong 3-colouring dfl,. We also see thax(H2) = 2 and

y(Hz) = 3.

5.2 Mixed covering arrays on hypergraphs

A weighted hypergrapts a hypergraph with a positive weight assigned to each xeve

now recall the definition of mixed covering array on hypepr&om [77].

Definition 5.2.1. Let H be a weighted hypergraph wikhvertices and weightg; < g» <
... <0k and letn be a positive integer. A covering array Bhdenoted by A(n,H, |‘|ikzlgi )y

is ank x n array with the following properties:
1. rowi corresponds to a vertax € V(H) with weightg;;

2. the entries in roware fromZg;
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3. if e={vy,v,....,vt} € E(H), the rows correspond to vertices,vo,...,\, aret-

qualitatively independent.

In this chapter we focus on hypergraphs that are 3-unifoather than general hyper-
graphs. Given a weighted hypergragtwith weightswy (vi) = gi,i = 1,2, ...k, themixed
covering array number on Hdenoted byCAN(H, ﬂ!‘zlgi), is the minimumn for which

there exists £A(n,H, ¥, gi), that is,

CAN(H,_ﬁgi) :g;il\rll{n : 3 aCA(n,H,_ﬁgi)}.
Note that )
CAN(H,_HWH (Vi) > max{ [Twh(v): e€ E(H)} (5.1)

viee
A CA(nH, |‘|=‘:1 gi) of sizen=CAN(H, |‘|ikzlgi) is calledoptimal A mixed covering array
of strength three is €A(n, KE, |‘|!‘:1 gi)s WhereKlf is the complete 3-uniform hypergraph

onk vertices with weightgj;, for 1 <i <Kk.

Example 5.2.1.Consider the hypergragh shown in Figure 5.1. Consider a weight func-
tionw:V — N asw(vy) = 3,w(vz) = 2,w(v3) = 2,w(V4) = 2 andw(vs) = 2. An optimal

mixed covering array ohl of size 12 is given below.

vy |[00001111°2
V2 |001101100
v3 |0 10100110
vy |001110010
vs |1 001010011

O B O B N
= = = S N O

o O +»r O DN

CA(12,H,3-2%

A hypergraph ig)-partite if the vertex sé¥ can be partitioned intq sets so that each hy-
peredge intersects each set at exactly one vertex. Chehghawed that, for aj-partite

hypergraprH with maximum degree < q, if an OA(q, g,t) exists, therCAN(H,g) = d".
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Chenget al. [23] proved that ifH is a hypertree then one can construct optimal mixed
covering array oH. However, the hypertrees considered here in Section 5.ditieeent
from that of in [23]. Raaphorst [77] solved the problem of sacting optimal mixed cov-
ering arrays over triangulation hypergraphs of the spheesalso considered the problem
of building mixed covering arrays over 2-trees and gave gecbure regarding the nature

of an optimal construction.

5.3 Balanced and Pairwise Balanced Vectors

In this section, we give several results related to balamcebpairwise balanced vectors

which are required for basic hypergraph operations defin¢lda next section.

Definition 5.3.1. A vectorx € Za is balancedif for every symbola € Zgy, the number of

indicesi such thai(i) = ais equal to eithefn/g] or [n/g].

Definition 5.3.2. Two vectorsx; € Zgl andxp € Zgz arepairwise balancedf both vectors
are balanced and for every pair of symb@sb) € Zg, x Zg,, the number of indicessuch

thatx; (i) = aandxy(i) = bis equal to eithetn/g192] or [n/g192].

Remark 5.3.1. Forn > gi10», pairwise balanced vectoxs andx, are always qualitatively

independent.

In order to prove Theorem 5.3.1, we need the following grdq@otetic result. LeG be

a graph. Adecompositiorof a graph is a list of subgraphs such that each edge appears in
exactly one subgraph in the list. Here by multigraph we megraph without loops and
multiple edges between vertices are permitted.

Notation: For any positive integar, the notatioril, n is used to denote the st, 2, ..., n}.

Lemma 5.3.1.Let G be a bipartite multigraph. Assume that the degrees efvidrtices
in each part differ by no more than 1. Then for any positiveget h< A(G), there is a

decomposition of the edges in G into h edge-disjoint subdggapgach with eithet@J
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or @ edges. Moreover, the subgraphs can be chosen so that theedegeach vertex
vis elther{ é )J or [dﬁg )W

Proof. We split each vertex € V(G) into { é )J vertices of degreé and, if necessary,
one vertex of degredg(v) —h LdG—éV)J This is done by randomly assigning the edges
incident tov among these new vertices of degree at nogdenote this resultant bipartite
multigraph byH with maximum degre&(H) = h. We know that a bipartite gragh with
maximum degrea is the union oh matchings. Thu&(H) is union ofh matchingsy, F1,

., Fh_1. Suppose we have two matchingsandF; that differ by size more than 1, say
Fo smaller and; larger. Every component of the symmetric differefrgAF; could be an
alternating even cycle or an alternating path. Note thatusthcontain a path, otherwise
their sizes are equal. We can find a path componeriifr; that contains more edges from
F, thanFy. Swap thd=; edges with thé edges in this path component. Then the resultant
graph hag increased in size by 1 edge, aRddecreased in size by 1 edge. Continue this
process orfy, Fy, ..., 1 until the sizes are eithe[r@J or {@W Now identify
those vertices oH which correspond to the same vertex@fthenky, F1, ..., 1 are
mapped onto certain edge disjoint subgraghs, ..., _; of G. Thus each subgragkl
contains elthert‘E(h )‘J or {@W edges.

Next, we prove that in each subgragh the degrees of the vertices in each part differ
by no more than 1. Sindg is a matching, there is at most oReedge incident with any of

the { s )W vertices ofH correspond to € V. Hence

w541

On the other hand, there a@%J vertices ofH correspond tor which have degrea.

There must be aR;-edge starting from each of these, whence

der (V) > {dG—rEV)J :

Thus we have[ s )J < de ( V) < {dG—éVW fori=0,1,...,h— 1. This proves that in each

subgraphF/, the degrees of the vertices in each part differ by no mone tha O
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Theorem 5.3.1.Let x € Zgl and » € Zgz be two balanced vectors. Then for any positive
integer h< max{ {g—ﬂ , [g—ﬂ } there exists a balanced vectoeyZ; such that x and y are

pairwise balanced andyand y are pairwise balanced.

Proof. Construct a bipartite multigrap® that corresponds tg andx, as follows: G has
01 Vertices in the first pa® C V(G) andg, vertices in the second pa@@ C V(G). Let
Pa={i|xi(i)=a} fora=0,1,...,01 — 1, be the vertices d?, while Q, = {i | x2(i) = b}
forb=0,1,...,02— 1, be the vertices dp. We have tha{ﬂj <P < { W andt J

|Qp| < { W asx; andxp are balanced vectors. For edch 1,2,...,nthere exists exactly
oneP, € P with i € P, and exactly on&), € Q with i € Q,. For each such add an edge
between vertices correspondingRpandQ, and label iti. Hencedg(P,) = {g J or {QJ
anddg(Qp) = L J or [ w Note thatA(G) = max{ {gﬂ [g—ﬂ }

By Lemma 5.3.1, for any positive integhr< A(G), there is a decomposition of the
edges inG into h edge-disjoint subgraph&j,F/,...,F,_;, each with either| | or [}]
edges. Thesh edge-disjoint subgraptg), F{, ..., R, of G form a partition ofE(G) =
[1,n] which we use to build a balanced vectoe Zp. Each edge disjoint subgraph cor-
responds to a symbol ifi, and each edge corresponds to an index fig@m|. Suppose
edge disjoint subgrapR/ corresponds to symbal € Zy. For each edgein F/, define
y(i) = c. As each subgrapF contains eithef 7 | or [{1] edges, each symbol i, occurs
either| 1| or [{] times iny. Hencey is a balanced vector. From Lemma 5.3.1, we have
{nghJ < dr(Py) < [@W forc=0,1,...,h—1. This means that there em%J or {g h]
edged € [1,n] such thak; (i) = aandy(i) = ¢. So,x; andy are pairwise balanced vectors.

Similarly, we can show thatandx, are pairwise balanced vectors. O

The following corollary is an easy consequence of Theoreri5.

Corollary 5.3.1. Let xe Zg be a balanced vector. Then for any positive integet ﬁgw ,

there exists a balanced vectosyZ; such that x and y are pairwise balanced.

Proof. This follows from Theorem 5.3.1. St = x andx, = X. O
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Next, we give a solution to Conjecture 3.4.27 posted by Raigpim [77]. In order to prove

Theorem 5.3.2, we need the following graph theoretic result

Lemma5.3.2.Let G= (U UV, E) be a complete bipartite multigraph. Letd {up, u, ...,
Ug,—1} and V= {vo,v1,...,Vg,—1}. Assume that the degrees of the vertices in each part
differ by no more than 1 and the number of edges between eaargfovertices y € U

andy eV is eitheerJ or {mw . Then, for any h such that hge < |E(G)|, there is

0192 0192
a decomposition of edges in G into h edge-disjoint compligi@rtite spanning subgraphs,

each with eithert@J or {@W edges. Moreover, these subgraphs can be chosen so

that the degree of each vertex v is eitkt@@J or {dG—rM .

01 01
U%—S”J or {‘Eé—fﬂ forb=0,1,...,0o— 1. We construct a bipartite multigrapt from
ds(Ua)

Proof. It is given thatdg(us) = UE(G)‘J or PE(G)W fora=0,1,...,91 — 1 anddg(w,) =

G as follows: We split each vertexy € U in G into | =2~ | vertices of degreé and, if
necessary, one vertex of degikguy) — h {&hUa)J inH. Asg, < L%J , U splitinto at

leastg vertices inH from the split operation. Label themo, Ua, ..., Ua(g,—1), Uag, - - - (92
onwards are extra). Similarly, we split each verigx V into {&h"bw vertices of degree
h and, if necessary, one vertex of degtkgvy) — h {&h"bw in H. Thus,w, split into at
leastgy vertices inH from the split operation. Label thempo, Vi, ..., Vg —1), Vb - - -
(g1 onwards are extra). We have at leagidges between every pair of vertiagsandwy;
consider anyh edges between, andv,. Theseh edges become theedges betweenyy,
andvpg in H. We add the remaining edges betweagnand vy, arbitrarily toH amongst
the extra vertices, provided we maintaihas a bipartite graph with maximum degree
This results in a graph (possibly multigraph) where evenyexehas maximum degrde
We know that a bipartite graph with maximum deghas the union ot matchings. Thus
E(H) is the union ot matchings, Fy, ..., F,_1. Now identify those vertices dfl which
correspond to the same vertex®f thenky, F1, ..., /,_1 are mapped onto certain edge
disjoint spanning subgraplig, F/, ..., F_; of G. We claim each of the spanning sub-
graphsF/ is a complete bipartite multigraph. For every Zg,, b € Zg,, there aréh edges

betweeru,, andvyg in H, and they will all appear in different matchingg, F1, ..., Fn_1.
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This ensures that the spanning subgraphs contain at leasidye betweeun, andv, for
everya € Zg,, b € Zg,. This proves that each of the spanning subgrdglis a complete

bipartite multigraph.

Sincek is a matching, there is at most oReedge incident with any of th dG&”aW vertices

of H correspond ta; € U. Hence

dg(u
dFi/(Ua) S ’V Gg\ a>—‘ .
On the other hand, there atgﬁJ vertices ofH correspond tai; which have degreb.

There must be aR;-edge starting from each of these, whence

e (U) > {deﬁua)J .

Thus we havet&h”a)J < dp/(Ug) < (Kh”ﬂ fori=0,1,...,h—1. Similarly, we can show

that the degrees of the vertices\indiffer by no more than one. Next, we need to show

each spanning subgrapfi contains eithert‘E(hG)‘J or PE(hG” edges. In other words, this

corresponds to each matchifgcontains eithe{@J or {@W edges. The proof of

this part is the same as that of Lemma 5.3.1. O

Theorem 5.3.2.Let x4 € Zgl and » € ZSZ be two pairwise balanced vectors. Then for
any h such that ggoh < n, there exists a balanced vectoceyZﬂ such that x, xo and y are
3-qualitatively independent and and y are pairwise balanced and &nd y are pairwise

balanced.

Proof. Construct a complete bipartite multigragh= (PUQ,E) that corresponds t&
and x, as defined in the proof of Theorem 5.3.1. Cleady(P.) = Lg—”lJ or {g—ﬂ for
a=0,1,...,01— 1 anddg(Qp) = L&J or {g—ﬂ forb=0,1,...,0, — 1. We have that the
vectorsx; andx; are pairwise balanced, that is, for each paijb) € Zg, x Zg,, the number

0192 0192
integerh such thagig2h < n, there is a decomposition of edgesGiinto h edge-disjoint

of edges betweeR, and Qy, is LLJ or {LW From Lemma 5.3.2, for any positive
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Figure 5.8: An illustration of graphs andH in the proof of Lemma 5.3.2 witg; = 2,0, =
3,|[E(G)| =19 andh = 2.

complete bipartite spanning subgrapjsF;, ..., F;,_;, each with eithet { | or [7}] edges;
moreover, these subgraphs can be chosen so that the defthesvertices in each part
differ by no more than 1. Thedeedge-disjoint spanning subgragfs F/, ..., R, of G
form a partition of£(G) = [1, n] which we use to build a balanced vecyar Z}. Each edge-
disjoint spanning subgraph corresponds to a symbdlimnd each edge corresponds to
an index from[1,n]. Suppose edge-disjoint spanning subgrgplorresponds to symbol
c € Zn. For each edgeéin F/, definey(i) = c. We need to show that;, xp, y are 3-
qualitatively independent. For amye Zg,, b € Zg,, € € Zp, in the spanning subgragt]
there is an edgeincident toP,; € P andQp, € Q asF/! is a complete bipartite multigraph.
This means that for argre Zg,, b € Zg,, ¢ € Zn, there exists ane [1,n] such thak (i) = a,
x2(i) = b, andy(i) = c. So,x, X2 andy are 3-qualitatively independent. Next, we prove
thatx; andy are pairwise balanced, axgd andy are pairwise balanced. Since we have
{iJ <dps(Pa) < {nghw forc=0,1,...,h—1. This means that there exi%J or {iw

gih gih
edged € [1,n] such thak (i) = aandy(i) = c. So,x; andy are pairwise balanced vectors.
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Similarly, we can show thatandx, are pairwise balanced vectors. Next, we need to show
thaty is balanced. This corresponds to each spanning subgtapbntains eithefL%J or
[7] edges. O

5.4 Optimal mixed covering arrays on hypergraphs

Let H be a weighted 3-uniform hypergraph wittvertices. Label the verticag,v», ...,

and for each vertey, denote its associated weight i (v;).

Definition 5.4.1. The product weightof a wighted hypergraphl, denoted®W(H) is de-

fined to be

viee

PW(H) = max{ |_| WH (Vi) © ee€ E(H)}.

Note thatCAN(H, [1X_, wn (vi)) > PW(H). Hence a mixed covering array on a hypergraph
with sizePW(H) is an optimal covering array. If there is no ambiguity abbettypergraph

H, we denotevy (v) by w(v).

Definition 5.4.2. Let H be a weighted hypergraph. Balanced covering array on kbt a
covering array o in which each row is balanced and the rows correspond tocesrtn

a hyperedge are pairwise balanced.

5.4.1 Basic hypergraph operations

We introduce four hypergraph operations which will be useadnstruct optimal size

mixed covering arrays on different families of 3-uniformpeygraphs.
1. Single-vertex edge hooking |
2. Single-vertex edge hooking I
3. Two-vertex hyperedge hooking

4. Single-vertex hyperedge hooking
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Figure 5.9: Basic Hypergraph Operations

A single-vertex edge hookingr a hypergrapi is the operation that inserts a new edge
{u,v} in whichu is a new vertex and is in V(H). A single-vertex edge hooking il a
hypergrapH is the operation that inserts two new edgasv} and{u,w} in whichuis a
new vertex andr andw are inV(H). A two-vertex hyperedge hookimga hypergraptd

is the operation that insert a new hyperedges, w} in which u andv are new vertices and
wisinV(H). A single-vertex hyperedge hookirig a hypergrapi is the operation that

replaces an edgpr,w} by a hyperedgéu,v,w} whereu is a new vertex.

Proposition 5.4.1.Let H be a weighted hypergraph with k vertices aricbe the weighted
hypergraph obtained from H by single-vertex edge hookirsingle-vertex edge hooking
Il or single-vertex hyperedge hooking operation with u a®e/wertex with u) such that
PW(H) = PW(H’). Then, there exists a balanced @®H, 1K, gi) if and only if there
exists a balanced QA H',w(u) [1X_, 9)).

Proof. If there exists a balance@dA(n,H’,w(u) [1¥_, gi) then by deleting the row corre-
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sponding to the new vertaxwe can obtain £A(n,H, |'|ik:19i). Conversely, leCy be a
balancedCA(n,H, |‘|!‘:1 gi)- The balanced covering arr&@y can be used to constructy,

a balance@A(n,H',w(u) [1%_, gi). We consider the following cases:

Case 1. LeH’ be obtained fromH by a single vertex edge hooking | of a new vertex
with a new edg€{u,v}, andw(u) such thatw(u)w(v) < PW(H’) = PW(H) < n. Using
Corollary 5.3.1, we can build a balanced lengthectoru overZ,,, corresponds to vertex
u such thau is pairwise balanced with the lengthvectorv corresponds to vertex The
arrayCyy is built by appending row to Cy.

Case 2: LeH’ be obtained froni by a single vertex edge hooking Il of a new vertexith
two new edgegu,v} and{u,w}, andw(u) such thaw(u)w(v) < PW(H’) = PW(H) <n
andw(u)w(w) < PW(H’) = PW(H) < n. Using Theorem 5.3.1, we can build a balanced
lengthn vectoru corresponds to vertaxsuch thau is pairwise balanced with the lengih-
vectorsv andw correspond to verticesandw respectively. The arra@y: is built by ap-
pending rowu to Cy.

Case 3: LeH’ be the graph obtained froid by replacing an edgév,w} € E(H) by a
new hyperedg€u,v,w} in which u is a new vertex, and/(u) such thatv(u)w(v)w(w) <
PW(H') = PW(H) < n. Using Theorem 5.3.2, we can build a balanced lemgtkctoru
corresponds to vertex such thatu is 3-qualitatively independent with two lengthpair-
wise balanced vectorssandw correspond to verticesandw respectively irH. The array

Cy is built by appending row to Cy. O

Proposition 5.4.2.Let H be a weighted hypergraph with k vertices aricbe the weighted
hypergraph obtained from H by two-vertex hyperedge hookpeyation with u and v as
new vertices with ) and w(v) such that PWH) = PW(H’). Then, there exists a balanced
CA(n,H, K, ) if and only if there exists a balanced QAH,w(u)w(v) [T, gi).

Proof. If there exists a balance@A(n, H’,w(u) [1*_, gi) then by deleting the rows corre-
sponding to the new verticasandv we can obtain £A(n,H, ﬂ!‘zlgi). Conversely, let
Cq be a balance@A(n,H, ﬂ!‘zlgi). HypergraphH’ is obtained fronH by a two-vertex

hyperedge hooking of two new verticagndv with a new hyperedgéu, v,w}, andw(u),
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w(v) such thatw(u)w(v)w(w) < PW(H’) = PW(H) < n. Using Corollary 5.3.1, we can
build a balanced lengthvectoru corresponds to vertaxsuch thau is pairwise balanced
with the lengthn vectorw corresponds to vertew. Then using Theorem 5.3.2, we can
build a balanced length vectorv corresponds to vertex such thatv is 3-qualitatively
independent with two length-pairwise balanced vectovsandu correspond to vertices

andu respectively irH. The arrayCy; is built by appending rows andv to Cy. O

Theorem 5.4.1.Let H be a weighted hypergraph and be a weighted 3-uniform hyper-
graph obtained from H via a sequence of single-vertex edg&ihg I, single-vertex edge
hooking Il, two-vertex hyperedge hooking, single-verigpenedge hooking operations. Let
Vi1, Vki2,---,V| be the vertices in \(/H/) ~V(H) with weights @. 1,0k 2, -.., g respectively
so that PWH) = PW(H’). If there exists a balanced covering array GAH, 1%, i),
then there exists a balanced GAH', [11_, gi).

Proof. The result is derived by iterating the different cases opBsition 5.4.1 and Propo-
sition 5.4.2. 0

5.4.2 a-acyclic 3-uniform hypergraphs

There are many generalizations of the notion of graph adyglin hypergraphs. Gra-
ham [45], and independently, Yu and Ozsoyoglu [105], defimeatyclic property for hy-
pergraphs via a transformation now known as @¥O reduction Given a hypergraph
H = (V,E), the GYO reduction applies the following operations repdittoH until none

of the operations can be applied:
1. Ifavertexv € V(H) has degree one, then deletfom the hyperedge containing it.
2. If e, € E(H) are distinct hyperedges such tleaiC e, then deletes; from E(H).
3. Ifec E(H) is empty, that i = 0, then delete from E(H).

Definition 5.4.3. A hypergraphH is a-acyclicif the GYO reduction orH results in an
empty hypergraph.
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Example 5.4.1.Consider the hypergrapkl = (V1, E;) andH, = (Va, E2) shown in Figure

5.10, wheré/y = {v1,V2,V3,Va, Vs, Vg, V7,Vg}, Vo = {V1,V2,V3,V4, V5, V6 },
E1 = {{v1,vo,vs},{Vv1,V3,Va}, {V1,V2,V5}, {V2, V3, V6 }, {Va, V7, Vg} } and

Eo = {{v1,V2,va},{V1,V3,Va},{V2,V4,V5},{Va, V5,V } } .

It is easy to see thad; is a-acyclic butH, is nota-acyclic.

Figure 5.10: Ana-acyclic hypergrapli; and a nora-acyclic hypergraplio.

Theorem 5.4.2.Let H be a weighted-acyclic3-uniform hypergraph with | vertices. Then

there exists a balanced mixed @AH, 11_; gi) with n= PW(H).

Proof. Apply the GYO reduction orH to record the order in which the hyperedges are
deleted. Letej,ey,...,en be an ordering in whichm hyperedges oH are deleted by
the GYO reduction. While constructing covering array lén consider the hyperedges
in reverse order of their deletions. LEf be the hypergraph with the single hyperedge
en = {V1,V2,Vv3} wherew(v1) = g1,W(v2) = g2 andw(vs) = g3. If 919293 = n, construct
the 3x narrayA with columns consisting of all triples frofy, x Zg, x Zg,. Clearly,Ais a

balanced covering array d¢ty. Otherwise, ifg10203 < n, we construct a balanced covering
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array of sizen on H; as follows: begin with a balanced vector € Zgl corresponds to
vertexvy. From Proposition 5.4.2 (using two-vertex hyperedge hogkiperation), we get
a balanced covering arr&A(n,Hy, 13, gi). Let H, be the hypergraph obtained frafy

by adding hyperedge,_1. Using single-vertex hyperedge hooking or two-vertex mype
edge hooking operation, there exists a covering array efrsan H,. Fori =2,3,...,m,

let H; = Hi_1 Uem.1_;. Note thatHn=H. As PW(H;) < PW(H) forall i =2,3,....m,
using single-vertex hyperedge hooking or two-vertex hggge hooking operation, there
exists a balanced covering array bk of sizen. In particular, there exists a balanced
CANH,M_19). O

5.4.3 3-uniform interval hypergraphs

A family of hypergraphs called interval hypergraphs is dediim [101]. Here we construct

optimal mixed covering arrays on 3-uniform interval hypeyghs.

Definition 5.4.4. A hypergraptH = (V, E) is called aninterval hypergraphif there exists
a linear ordering of the verticeg,v», ..., v, such that every hyperedge Bif induces an
interval in this ordering. In other words, the verticesvircan be placed on the real line

such that every hyperedge is an interval.

aEmcYaIoEb oAb I

Vi W

Figure 5.11: A 3-uniform interval hypergraph

Theorem 5.4.3.Let H be a weighted 3-uniform interval hypergraph with | vezs. Then
there exists a balanced mixed G2AH, [1'_; gi) where n= PW(H).

Proof. The result follows immediately from the proof of Theorem.2.4dince every interval

hypergraph isr-acyclic. O
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Corollary 5.4.1. Let H be a weighted 3-uniform loose path or tight path with iitices.
Then there exists a balanced mixed@Ad, [1l_, gi) where n= PW(H).

Proof. Since every loose path or tight path is an interval hypeifgrtge result is an imme-

diate consequence of Theorem 5.4.3. O

5.4.4 3-uniform hypertrees

In this subsection, we give a construction for optimal migegering arrays on some spe-

cific conformal 3-uniform hypertrees.

Theorem 5.4.4.Let H be a weighted conformal 3-uniform hypertree with | &g, having
a binary tree as a host tree. Then there exists a balancedd@&n, H, |‘|=:1 gi) with

n=PW(H).

Figure 5.12: A conformal 3-uniform hypertree with a binapshtree

Proof. It suffices to show thaitl is a-acyclic hypergraph. Let be a binary host tree of
H and let the height of be h. SinceH is a conformal 3-uniform hypergraph, we have
w([H]2) = 3. Consider the hypergragh shown in Figure 5.13F is not conformal since

the maximal clique{vy, v2,Vv3,v4} oOf its 2-section is not a hyperedge. Thdscontains no
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partial hypergraph isomorphic to. If F is a partial hypergraph dfl then 4= w([F];) <

w([H]2) = 3, a contradiction.

A

F [Fl2

Vi

Figure 5.13: A non conformal hypergraphand its 2-section.

Let u be an internal vertex it at levelh—1. Letv andw be its two children at the last
levelh and p be its parent. Note that at least onevandw would be of degree 1 il. If
dy (v) > 1 anddy (w) > 1 then the partial hypergraph with hyperedgesu, v}, {p,u,w},
and{u,v,w} is isomorphic to hypergraph which is a contradiction to conformal property
of H. Figure 5.14 shows all possible configurations (up to isqhism) for the hyperedges

in H that contairu. The green coloured hyperedges may or may not be preséht in

p p
\ levelh—2
‘ levelh—1
level h

0) (iiil)
Figure 5.14: All possible configurations for hyperedges ttuatainu at levelh— 1 in a

conformal 3-uniform hypertree with a binary host tree ofgieh.

Next, we show that one complete iteration of the GYO reductinH starting at a level
h vertexv with dy (v) = 1 results in a conformal 3-uniform partial hypertree withiaay
host tree. The GYO reduction on different configurations slvewn in Figure 5.15 to

Figure 5.18.
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Figure 5.16: One iteration of the GYO reduction on Configorafii).

Y Y p
(1) (2). (3)
— —
v w w W

Figure 5.17: One iteration of the GYO reduction on Configorafiii).

D p
(1) 2), (3)
— —
\ \W W \\}

Figure 5.18: One iteration of the GYO reduction on Configorafiv).

It may be noted that the resultant hypergraph in each caseasfarmal 3-uniform hy-

pertree having a binary tree as host tree. SiHdeas finite number of vertices and hyper-
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edges, a finite number of iterations of the GYO reductiohlaesult in an empty hypertree.
ThereforeH is ana-acyclic hypergraph. Now the proof follows directly frometproof of
Theorem 5.4.2. O

5.4.5 2-tree hypergraphs

In this subsection we consider a family of graphs cakdtkes, which are generalizations

of trees. The following definitions are from [50, 77].

Definition 5.4.5. [50] A graph is ak-treeif it can be obtained fronkKy by a sequences of
vertex additions, where each new vertex is adjacent to aelaf sizek in the previously

generated graph.

Note that a 1-tree is just a tree. Fok@reeG with [V (G)| > k, we can associate a hyper-

graph withG by replacing eacKy. 1 by a hyperedge of side+ 1.
Definition 5.4.6. [77] A k-tree hypergraplis a hypergraptd constructed as follows:
1. Initially setH to contain precisely the verticesD.. .,k and hyperedg¢0, 1,.. ., k}.

2. For each new vertey, select a hyperedgein H. Pick any vertexu € e and set
€ = (e~ {u})U{v}. Then addr and€ to H.

Example 5.4.2.Consider the hypergrapgh shown in Figure 5.19, with 7 verticas, Vo,

V3, V4, V5, Vg, V7 and 5 hyperedges, = {v1,V2,V3}, €& = {v1,V3,V4}, €3 = {V1,Vo,V5},

eq = {V2,Vv3,Vg}, andes = {v1,Vv4,v7}. H is a 2-tree hypergraph as it can be constructed by
starting withe; and then adding the verticgg, vs, Vg andvy in it using the above described
method. Itis important to note that there does not exist agglec host graph foH, thusH

is not a hypertree. On the other hand, the hypergkpshown in Figure 5.7 is a hypertree
but not a 2-tree hypergarph.
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V2
Vs
Ve
Vp V3
V7 V4
G H

Figure 5.19: A 2-tree grapB and its associated 2-tree hypergrdph

If H is ak-tree hypergraph, theji], is ak-tree. From Example 5.4.2 it is clear that the
hypergraphs considered in this section are different frgpertrees. It is known that, H

is ak-tree hypergraph, then its strong chromatic numiet) = k+ 1 [77]. The problem
of finding a construction for optimal covering arrays overi@ary, strongly 3-colourable
hypergraphs seems to be more difficult problem. The 2-trgefgyaphs are strongly 3-
colourable hypergraphs, and given their iterative corsin, building optimal arrays over
them appears to be considerably more simple. We now considering arrays on 2-tree

hypergraphs and give a solution to Conjecture 3.4.28 pdsté&tbhaphorst in [77].

Theorem 5.4.5.Let H be a weighted 2-tree hypergraph with | vertices, andiet, . .., g
> 1. Denote
n=PW(H) = max{g:gyg.: {x.y,z} € E(H)}.

Then there exist a balanced mixed @A, [11_, gi).

Proof. Begin with a hyperedgéx,y,z} € E(H) such thatggyg, = n. Let H; be the hy-
pergraph with the single hyperedgg y,z}. Construct the X n array A with columns
consisting of all tuples fronZg, x Zg, x Zg,. Clearly, A is a balanced covering array on
Hi. LetH, be a hypergraph obtained froky after inserting a new hypereddg,y,u} in
whichuis a new vertex, that isi, = H1 U{X,y,u}. Letx andy be the rows irA correspond
to verticesx andy respectively. Using single-vertex hyperedge hooking afi@n, we can

find a balanced row vectar € Zg, correspond to verter such thatu andx are pairwise
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balancedu andy are pairwise balanced amxdy, u are 3-qualitatively independent. Thus,
a balanced covering array ¢ty of sizen is build by appending row to A. Following the
iterative construction for 2-tree hypergragdhthe fulll x n array created in this way is an

optimal covering array oHl. O

5.4.6 3-uniform loose cycles

The cyclic structure is very rich in hypergraphs as comp#wdbat in graphs [9]. It seems
difficult to construct optimal size mixed covering arraysaycle hypergraphs. There is a
special types of 3-uniform cycles for which we are able tostarct an optimal size mixed

covering arrays.

Theorem 5.4.6.Let H be a weighted 3-uniform loose cyclee, ..., e of length k or2k

vertices{vy, Uy, Vo, Uy, ..., V, Uc} such that
1. enegip={vi}fori=1,.. kand g 1=e;
2. 4(y)=1lforeachuycg.

Let g and f denote the weights of vertices and y respectively. Then there exists a
balanced CAn,H, 1%_; g; fj) with n=PW(H).

Figure 5.20: A 3-uniform loose cycle of length 6.
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Proof. Let {v1,up,v2} be a hyperedge ikl with n = PW(H) = g1 fogo. Let Hp be the
hypergraph with the single hyperedfe, uz,v2}. Construct the X n array with columns
consisting of all triples fronZgy, x Z¢, x Zg,. Clearly,Ais a balanced covering array on
Hi. Fori=2,3,...,k—2, letH; be the hypergraph obtained frdt#_, after inserting a new
edge{vj,vi1} in whichvi 1 is a new vertex, that i$j = H;_1 U {vi, Vi1 1}. Using Proposi-
tion 5.4.1 (single-vertex edge hooking | operation), foriat 2,3,...,k— 2, asgigi+1 < n,
there exists a balanc&@hA(n, H;, f2 |‘|ij+:11 0j). LetHc_1 =Hi_2U{{Vi—1, %}, {Vk,v1}}. Us-
ing single vertex edge hooking Il operation,gas1gx < nandgigx < n, we get a balanced
covering arrafCA(n, Hyx_1, f2 ﬂ'j‘zlgj). Finally, using sequence of single-vertex hyperedge
hooking operations ohl,_;, replace the edgévi,vi. 1} by the hyperedgévi,u;1,Vii1}
fori=2,3,...,k—1; also replace the eddey,v1} by the hyperedgévy,us,v1}. Since
gifit1Gi+1 < nforalli=23,...,k—1 andgkfi91 < n, from Proposition 5.4.1 (using

single-vertex hyperedge hooking), there exists a balaGe&éd,H, |‘|'j‘:1 g; fj)- O
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Concluding Remarks and Open Problems

We now give, chapter-wise, the major contributions of thestk and then list the open
problems that arose from this work.

In Chapter 2, we present a construction method for strerggthdovering arrays, that
combines an algebraic technique with the computer seartiis cbnstruction is an ex-
tension of the construction methods developed in [21, 69e Tethod proposed here
improves many of the best known upper bounds on the sizesevfgih four covering ar-
rays forg= 3 and 1< k < 74. In the range dk considered here fay= 3, the best known
results previously come from [30]. In that paper, coverimgys are also found by using a
group action on the symbols, but no group action on the rowmigloyed. Here we expe-
dite and improve the search by also performing a group actiothe rows as in [21, 69].
A key advantage of this technique is that we search for egheror two vectors which are
used to construct a covering array, rather than searchiegine array. We perform either
an exhaustive search or heuristic search to find starteongeds it possible to develop an
algorithm that finds the starter vectors directly [66]? Aratarea to explore is to check
other group actions in order to get good covering arrays. e Iist the following two

guestions:

Question 6.1.In Section 2.3, the PGL construction for strength four cowgearrays is
described. Can this technique be extended to build improeedring arrays of strength
five and six?

Question 6.2.1s it possible to modify the PGL construction to get a betfgrer bound on

129
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4-CAN(n,g) for g > 37?

In Chapter 3, an algebraic construction for testing arrats lngh 3-way configuration
coverage fog = q+ 2 is developed, whergis a prime power. We also present another al-
gebraic construction for testing arrays with high 4-wayfauration coverage fay=q+1
whereq is a prime power. These are useful to create test suites tloba flarge percentage
of errors involving 3- and 4-way interaction of parametdra system while having a small
number of test cases required. A comparison of our congngivith the best known
covering array sizes shows that the proposed methods caoadde number of test cases
significantly while compromising only slightly on the coage. In this chapter, we focus
mainly on creating testing arrays with maximum configurattoverage. Depending on
software developers requirement, optimization can be ve#ipect to various parameters
like simplet-way combination coverage and tuple density. By optimiatiere we mean
maximizing the parameter. Recall from Definition 3.1.2, dogiven set ok parameters,
simplet-way combination coverage is the proportionteflay combinations ok param-
eters for which all parameter-value configurations areyfativered. Tuple densityof a
testing arrayey with 100%t-way configuration coverage is the sunt @ind the percentage
of the coveredt + 1)-tuples out of all possibl¢t + 1)-tuples [22]. The testing array in
Example 3.1.1 provides 100% 2-way configuration coverage9&625% 3-way configu-
ration coverage; so the tuple density of this testing ars8390625. We know a strength
covering array, which by definition covers 100%teiay parameter-value configurations
and has 100% simpleway combination coverage. One important application esth
coverage measures is to get a better understanding of heetie#f a test suite may be if it

is not designed as a covering array. We conclude this seeitbra question:

Question 6.3.In Section 3.2 and 3.3, two algebraic constructions folirigsarrays with
high configuration coverage are described. Can these catistts be generalized or ex-
tended to build testing arrays with high simpigvay combination coverage faor> 2 or

tuple density?

In Chapter 4, our main contributions are constructions iihake optimal covering ar-
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rays on large graphs from smaller ones. Large graphs arenebthy considering either
the Cartesian, the direct, the strong, or the Lexicographaduct of small graphs. One
motivation for introducing a graph structure was to optieniovering arrays for their use
in testing software and networks based on internal stractusing graph homomorphisms,
we have

max{CAN(Gi,9)} < CAN(G10Gz,g) < CAN(max(x(Gi)},9) (6.1)

We give several classes of Cayley graphs where the lowerdooiigovering array number
CAN(G10Gy,g) in Equation 6.1 is achievable. It is an interesting probleffirtd out other
classes of graphs for which the lower bound on covering antapberCAN(G10Gy, 9)
can be achieved. Clearly, another area to explore is to dengi detail the other graph
products, that is, the direct, the strong, and the Lexiqagaproduct. We give an approx-
imation algorithm for construction of covering arrays oagns havindg > 1 factors with
respect to the Cartesian product. For graphs having moredha factor, our algorithm

improves the present best known bound for the covering amayber.

Question 6.4. Supposes is a prime graph with respect to the Cartesian product bst it i
factorizable with respect to the strong product. Is it plolesio develop a better approxima-
tion algorithm to build a covering array @gausing graph factorization @ with respect to

the strong product?

Question 6.5. There is an algorithm to factorize 3-uniform hypergraphthwespect to
the Cartesian product of hypergraphs. Thus we propose Hlog/ing problem. Is there a
polynomial timep(|V|)-approximation algorithm to construct covering arrays @ighted
3-uniform hypergraphs where each vertex has weigitdp(|V|) = O ((logs|V|)?), sis
obtained frong?

In Chapter 5, we consider the problem of constructing odtimaed covering arrays
on 3-uniform hypergraphs. Here we extend the results foethoovering arrays on graphs
found in [67]. We introduce four hypergraph operations:g&rvertex edge hooking I,

single-vertex edge hooking Il, two-vertex hyperedge hongkand single-vertex hyperedge
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hooking. These operations allow us to add new vertices tgargyaph, while preserving
the size of a balanced covering array on the hypergraph. Heocase in whictH is a
3-uniform a-acyclic hypergraph, a 3-uniform interval hypergraph, an&orm conformal
hypertree with a binary tree as a host tree, a 2-tree hygargraa 3-uniform loose cycle,

we prove its mixed covering array numbeP¥/(H). We conclude with a list of questions:

Question 6.6. The 2-tree hypergraphs are strongly 3-colourable hypphgraand given
their iterative construction, we build optimal coveringaas over them in Section 5.4.5.
The problem of constructing optimal covering arrays ovéiteary strongly 3-colourable
hypergraphs, seems to be more difficult. Identify other f@siof strongly 3-chromatic

hypergraph#i = (V,E), |[V| =k, such that

k
CAN(H, r!g‘) =PW(H).
i=
This question is also raised in [77].

Question 6.7.Find a strongly 3-colourable hypergraph= (V,E), |[V| =k, such that

CAN(H,ﬁgi) > PW(H).

Otherwise, show that no such hypergraph exists [77].

Question 6.8.Let H be a weighted 3-uniform tight cycle. Does there exist a dagearray

CA(n,H, MK, gi) with n= PW(H)?

Question 6.9.Let x; € Zal, Xo € ZSZ andxs € Zas be mutually pairwise balanced and 3-

gualitatively independent vectors. Lietbe a positive integer so that< min{gl—”gz, g—”s}
Find a balanced vectgre Zp such thaf{x,,x,y} are 3-qualitatively independent aryds
pairwise balanced with eact fori = 1,2,3. The existence of such a vecipalong with
single vertex hyperedge hooking operation will enable usottstruct an optimal covering
array on the cycle hypergrapt shown in Figure 6.1. Note th&i is different from the

cycles considered in Section 5.4.6.
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(Y

Figure 6.1: A 3-uniform cyclé.

Question 6.10.Letx; € Zg,, Xz € Zg, andx3 € Zg, be mutually pairwise balanced and 3-

gualitatively independent vectors. Liebe a positive integer so that< min{gl—réz, 92—233}
Find a balanced vector € Zp such that{x1,X2,y} and{x2,xs,y} are 3-qualitatively in-
dependent, ang is pairwise balanced with eactfor i = 1,2, 3. The existence of such a
vectory will enable us to construct an optimal covering array on tyeengraphF shown

in Figure 5.13. Thus the conformal condition can be relaretheorem 5.4.4.



Appendix

Sample Programs for strength four covering arrays with
g=3

Case 1: Two starter vectors

Program to find the first vector (u)

#include<iostream>

#include<math.h>
using namespace std;

int h;float m, M;
/*function that counts the number of orbits that are represented
in each dzy class*/
float rep(int *V,int #*n,float m,int k,int x, int y, int z)
{int TI[4];
int A[14];
for (int i=0;i<k;i++)

Alil=0;

for (int i=0;i<k;i++)

{ TI[01=V[il;
TL11=V[(i+x)%k];
T[2]1=V[(i+x+y)%k];
T[3]1=V[(i+x+y+z)%k];

134
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if ((T[0]==T[1]1)&&(T[1]1==T[2]) &&(T[3]==T[2]))

Af0l=1;

else 1if ((T[0]==T[1])&&(T[1]1==T[2]) && (T[3]1!'=T[2]))

Af1]=1;

else if ((T[0]1!'=T[1]1)&&(T[1]1==T[2]) && (T[3]1==T[2]))

A[2]=1;

else if ((T[0]!=T[1])&&(T[0]==T[2]) && (T[0]1==T[3]1))

A[3]=1;

else if ((T[0]==T[1])&&(T[11'=T[2]) && (T[3]1==T[1]))

Al4]=1;

else 1if ((T[0]==T[1])&&(T[2]==T[3]) && (T[1]1'=T[2]))

A[5]=1;

else 1if((T[0]==T[2])&&(T[1]1==T[3]) && (T[1]1'=T[2]))

Al6]=1;

else if ((T[0]==T[3])&&(T[2]1==T[1]) && (T[1]1'!'=T[0]))

A[71=1;

else if ((T[0]==T[1])&&(T[2]1'=T[3]) && (T[1]1'=T[2]) && (T
[0]1!'=T[3]1))

A[8]=1;

else if ((T[0]==T[2])&&(T[2]1'=T[3]) && (T[1]1'=T[3]) && (T
[1]1'=T[2]1))

A[9]=1;

else if ((T[0]==T[3])&&(T[0]1'=T[1]) && (T[2]'=T[3]) && (T
[1]1'=T[2]1))

A[10]=1;

else if ((T[1]==T[3])&&(T[2]1'=T[3]) && (T[1]'=T[0]) && (T
[01'=T[21))

Af11]=1;

else if ((T[2]==T[3])&&(T[2]1'=T[1]) && (T[2]'=T[0]) && (T
[01'=T[11))

A[12]=1;

else if ((T[2]==T[1])&&(T[11'=T[0]) && (T[2]'=T[3]) && (T
[01'=T[31))

A[13]=1;
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}

int c¢=0;

for (int i=0;i<14;i++)
{ if(A[il'=1)
c=c+nl[il;
}
if(x==z && y==(k-x-y-z))
{m=m+(k/2)*(pow(3,4)-c) ;7
else if(x==y && y==z && z== (k-x-y-2))
{m=m+(k/4)*(pow(3,4)-c);}
else
m=m+k*(pow(3,4)-c);

return (m) ;

}
/*function that generates dzyz classes*/
float cov(int *V,int *Vm,int n[14],int k)
{

int c,r=0;

float m;

m=0;c=0;

for (int x=1;x<(k/4 +1);x++)
{for (int y=x;y<k;y++)
{if (y>(k-2%x)/2.0)
for(int z=x+1;z<k-2*x-y;z++)
{m=rep(V,n,m,k,x,y,z);r++;}
else
for(int z=x;z<k-2*x-y;z++)

{m=rep(V,n,m,k,x,y,z); r++;}
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if(k%4==0)
{m=rep(V,n,m,k,k/4,k/4,k/4);r++;}

m=m/ (( Ckx (k-1) % (k-2) % (k-3)) /24.0) ¥pow (3,4)) ;
return(m) ;

return (0) ;

/*function that generates wvectors*/
int num(int *V,int *Vm,int n[15],int 1,int k,int v)
{if (m<0 || m>1)

m=0;

if(m!=1)

{int r,s;

1++;

for(int i=0;i<v;i++)

{Vv[1]l=i;
if (1==k)
{1++;

m=cov(V,Vm,n, k) ;
if (m>M)
{M=m;
cout <<"M="<<M<<" "y
for(int j=0;j<k;j++)
Vm[j1=V[jl;
for(int j=0;3<k;j++)

cout<<Vm[j];cout<<"\n"<<flush;
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if (1<k)
r=num(V,Vm,n,l,k,v);
}
}
else if (m==1)
return (0) ;

return (0) ;

int main()

{int k,r,t;

t=4;

h=2;

cout<<"Enter k: ";

cin>>k;

int *V,*xVm;
V = new intl[k];

Vm = new intl[k];

for(int i=0;i<k;i++)

{v[il=0;Vm[i]=0;1}

int n[14];
n[0]=0;
for(int i=1;i<14;i++)

nli]l=6;

r=num(V,Vm,n,-1,k,3);
return (0) ;

}
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Program that takes the output of the previous program sawvéteifile conditions.txt and
finds the second vector(v)

/*Program that takes the output of the previous program saved in

the file conditions.txzt and finds the second wvector(v)*/

#include<iostream>
#include<math.h>
#include<fstream>
#include<sstream>

#include<string>

using namespace std;int w;
/*function that checks whether the passed wvector covers all the
condttions which vector u does not cover*/
int cov(int *V,int *Vm,int *T,int &z,int k)
{z=0;int c;int dx,dy,dz;
ifstream f£f;
f.open("conditions.txt");
string line;int n;
while(getline(f,line))
{istringstream ss(line);
ss>>dx;ss>>dy;ss>>dz;
while (ss>>n)
{c=1;
for (int i=0;i<k;i++)
{T[0]=V[il;
T[11=V[(i+dx)%k];
T[2]=V[(i+dx+dy)%k];
T[3]=V[(i+dx+dy+dz)%k];

switch(n)
{case 0:if (c==0) break; else c=0;break;

case 1:if (c==0) break; else {if ((T[0]==T[1])&&(T[1]1==T[2])
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}
}

&& (T[3]'=T[2])) c=0; else c=1;}break;

case 2:if (c==0) break; else {if ((T[0]'!'=T[1])&&(T[1]1==T[2])
&& (T[3]1==T[2])) c=0; else c=1;}break;

case 3:if (c==0) break; else {if ((T[0]'!'=T[1])&&(T[0]==T[2])
&% (T[0]==T[3])) c=0; else c=1;}break;

case 4:if (c==0) break; else {if ((T[0]==T[1]1)&&(T[1]'=T[2])
&& (T[3]1==T[1])) c=0; else c=1;}break;

case 5:if (c==0) break; else {if ((T[0]1==T[1])&&(T[2]1==T[3])
&& (T[1]1'=T[2])) c=0; else c=1;}break;

case 6:if (c==0) break; else {if ((T[0]==T[2])&&(T[1]1==T[3])
&& (T[1]'=T[2])) c=0; else c=1;}break;

case 7:if (c==0) break; else {if ((T[0]==T[3])&&(T[2]==T[1])
&& (T[1]'=T[0])) c=0; else c=1;}break;

case 8:if (c==0) break; else {if ((T[0]==T[1])&&(T[2]'=T[3])
&& (T[11'=T[2]) && (T[0]!=T[3])) c=0; else c=1;}break;

case 9:if (c==0) break; else {if ((T[0]==T[2])&&(T[2]!=T[3])
&& (T[1]1!=T[3]) && (T[1]1!=T[2])) c=0; else c=1;}break;

case 10:if (c==0) break; else {if ((T[0]==TI[3])&&(T[0]'=T[1])
&& (T[2]1'=T[3]) && (T[1]1!=T[2])) c=0; else c=1;}break;

case 11:if (c==0) break; else {if ((T[1]1==T[3]1)&&(T[2]!'=T[3])
&& (T[1]1!=T[0]) && (T[0]!=T[2])) c=0; else c=1;}break;

case 12:if (c==0) break; else {if ((T[2]1==T[3]1)&&(T[2]!'=T[1])
&& (T[2]1'=T[0]) && (T[0]!=T[1])) c=0; else c=1;}break;

case 13:if (c==0) break; else {if ((T[2]==T[1]1)&&(T[1]1'=T[0])
&& (T[2]!'=T[3]) && (T[0]!=T[3])) c=0; else c=1;}break;

if (c==1)

Z++;

}
}

B

return(z) ;

}
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/*function that generates candidate vectors*/
int num(int *V,int *Vm,int *T,int &=z,int &Z,int 1,int k,int v)
{if (Z==0)

return (0) ;

else

{int r,s;

1++;

for(int i=0;i<v;i++)

{VvI1l=i;
if (1==k)
{1++;

z=cov(V,Vm,T,z,k);
if (z<Z)

{Z=z;
cout<<"Z="<<Z<" 1y
for(int j=0;j<k;j++)

Vm[j1=V[jl;
for(int j=0;3<k;j++)

cout<<Vm[j];cout<<"\n"<<flush;

}
if (1<k)
r=nun(V,Vm,T,z,Z,1,k,v);
}
}

return (0) ;

int main ()
{int k,r,t;t=4;
int z=20000,Z=20000;
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int T[4];

for(int i=0;i<4;i++)
T[i]l=0;
cout<<"Enter k: ";

cin>>k;
int *V,*xVm;
V = new int[k];

Vm = new intl[k];

for(int i=0;i<k;i++)

{v[il=0;Vm[i]=0;2}

r=num(V,Vm,T,z,Z,-1,k,3);

return (0) ;
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Case 2: Two vectors u, v and a matrixC, and
Case 3: One vector u and a matrixCy

Program to find the matri&;

#include<iostream>
#include<math.h>
#include<fstream>
#include<sstream>
#include<string>
#include<time.h>

#include<stdlib.h>

using namespace std;

int cov(int *V[60],int *Vm[60],int *T,int &=z,int k,int &s)
{z=0;int c;int x1,x2,x3,x4,x5;

ifstream f;

f.open("input.txt");

string line;int n;

while(getline(f,line))

{istringstream ss(line);

ss>>x1;ss>>x2;8s>>x3;ss>>x4;s8s>>x5;

c=2;

for(int j=0;j<=s;j++)
{
TLO1=VI(x1)%k][j];
T[11=VI[(x2)%k][j];
T[2]1=VI(x3)%k1[j];
TI31=VI(x4)%k1[jl;

switch (x5)
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{

b
i

{

b
if

case 0:if (c==0) break; else {if ((T[0]==T[1])&&(T[1]==T[2])
&& (T[3]1==TI[2]) && (T[3]1==T[1])) c=0; else c=1;}break;

case 1:if (c==0) break; else {if ((T[0]==T[1])&&(T[1]==T[2])
&% (T[3]1!'=T[2])) c=0; else c=1;}break;

case 2:if (c==0) break; else {if ((T[0]'!'=T[1])&&(T[1]1==T[2])
&& (T[3]1==T[2])) c=0; else c=1;}break;

case 3:if (c==0) break; else {if ((T[0]!'=T[1])&&(T[0]==T[2])
&% (T[0]==T[3])) c=0; else c=1;}break;

case 4:if (c==0) break; else {if ((T[0]==T[1])&&(T[1]1!=T[2])
&& (T[3]1==T[1])) c=0; else c=1;}break;

case 5:if (c==0) break; else {if ((T[0]==T[1])&&(T[2]==T[3])
&& (T[1]1'=T[2])) c=0; else c=1;}break;

case 6:if (c==0) break; else {if ((T[0]==T[2])&&(T[1]==T[3])
&& (T[1]1'=T[2])) c=0; else c=1;}break;

case 7:if (c==0) break; else {if ((T[0]==T[3])&&(T[2]==T[1])
&% (T[1]1!'=T[0])) c=0; else c=1;}break;

case 8:if (c==0) break; else {if ((T[0]==T[1])&&(T[2]!=T[3])
&& (T[1]1!=T[2]) && (T[0]!=T[3])) c=0; else c=1;}break;

case 9:if (c==0) break; else {if ((T[0]==T[2])&&(T[2]!=T[3])
&% (T[1]1!'=T[3]) && (T[1]1'!'=T[2])) c=0; else c=1;}break;

case 60:if (c==0) break; else {if ((T[0]==T[3])&&(T[0]'=TI[1])
&% (T[2]!'=T[3]) && (T[1]1!'=T[2])) c=0; else c=1;}break;

case 11:if (c==0) break; else {if ((T[1]1==T[3]1)&&(T[2]!'=T[3])
&& (T[1]1!=T[0]) && (T[0]!=T[2])) c=0; else c=1;}break;

case 12:if (c==0) break; else {if ((T[2]==T[3])&&(T[2]'=T[1])
&% (T[2]!'=T[0]) && (T[0]!=T[1])) c=0; else c=1;}break;

case 13:if (c==0) break; else {if ((T[2]1==T[1]1)&&(T[1]1!'=T[0])
&& (T[2]!'=T[3]) && (T[0]!=T[3])) c=0; else c=1;}break;

f(c==0)

break;}

(c==1)



z++

}
f.close();
return(z) ;

}

int rand(int *V[60], int *Vm[60], int *T, int k,

int &s)
{int c;int f;if (Z==0)
return (0) ;
else
{int r1,r2,r3,p;int n;int zz; string line;
srand (time (NULL)) ;
do{p=0;
for(int j=0;j<k;j++)
for(int i=0;i<60;i++)
VIj1[i1=0;

while (Z!=0 && p< 60000)

{p++;£=1;
z=cov(V,Vm,T,z,k,s);

if (z<2Z)

{Z=z;
cout<<'"Z="<<Z<<"\n";
for(int j=0;j<k;j++)

for(int i=0;i<60;i++)
Vm[j10il=V[jI[il;
for(int j=0;j<k;j++)
{for(int i=0;i<60;i++)
cout<<Vm[jl[il<<" "
cout<<"\n";

}

remove ("output.txt");

int &z,
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int &Z,

ofstream fo("output.txt");ifstream f;int c,x1,x2,x3,x4,x5;

f.open("input.txt");
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zz=0;
while(getline(f,line))
{istringstream ss(line);
ss>>x1;88>>x2;8s8>>x3;88>>x4;88>>x5;
c=2;
for(int j=0;j<=s;j++)
{
TLO1=VI(x1)%k1[j];
TL11=VI[(x2)%k]1[j];
T[21=VI(x3)%k1[j]1;
T[31=VI(x4)%k1[j];

switch(x5)
{case 0:if (c==0) break; else {if ((T[0]==T[1])&&(T[1]==T[2])
&& (T[3]1==TI[2]) &&(T[3]==T[1]) ) c=0; else c=1;}break;
case 1:if (c==0) break; else {if ((T[0]==T[1])&&(T[1]1==T[2])
&& (T[3]1'=T[2])) c=0; else c=1;}break;

case 2:if (c==0) break; else {if ((T[0]!'=T[1])&&(T[1]==T[2])
&% (T[3]==T[2])) c=0; else c=1;}break;

case 3:if (c==0) break; else {if ((T[0]'!'=T[1])&&(T[0]==T[2])
&& (T[0]==T[3])) c=0; else c=1;}break;

case 4:if (c==0) break; else {if ((T[0]==T[1])&&(T[1]1!=T[2])
&% (T[3]==T[1])) c=0; else c=1;}break;

case 5:if (c==0) break; else {if ((T[0]==T[1])&&(T[2]==T[3])
&& (T[1]1'=T[2])) c=0; else c=1;}break;

case 6:if (c==0) break; else {if ((T[0]1==T[2])&&(T[1]1==T[3])
&& (T[1]1'=T[2])) c=0; else c=1;}break;

case 7:if (c==0) break; else {if ((T[0]==T[3])&&(T[2]==T[1])
&% (T[1]1!'=T[0])) c=0; else c=1;}break;

case 8:1if (c==0) break; else {if ((T[0]==T[1])&&(T[2]!=T[3])
&& (T[1]1'=T[2]) && (T[0]1!'=T[3])) c=0; else c=1;}break;

case 9:if (c==0) break; else {if ((T[0]==T[2])&&(T[2]!=T[3])
&% (T[1]1!'=T[3]) && (T[1]1!'=T[2])) c=0; else c=1;}break;

case 60:if (c==0) break; else {if ((T[0]1==T[3]1)&&(T[0]!'=T[1])
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&& (T[2]1'=T[3]) && (T[1]!=T[2])) c=0; else c=1;}break;
case 11:if (c==0) break; else {if ((T[1]1==T[3]1)&&(T[2]!'=T[3])
&% (T[1]1!=T[0]) && (T[0]'!'=T[2])) c=0; else c=1;}break;
case 12:if (c==0) break; else {if ((T[2]==T[3]1)&&(T[2]!'=T[1])
&& (T[2]'=T[0]) && (T[0]!=T[1])) c=0; else c=1;}break;
case 13:if (c==0) break; else {if ((T[2]==T[1]1)&&(T[1]1'=T[0])
&% (T[2]1!=T[3]) && (T[0]'!'=T[3])) c=0; else c=1;}break;

if (c==0)
{break;}

}

if (c==1)
{zz++;

f0<<(X1)%k<<” ”<<(X2)%k<<” ”<<(X3)%k<<” ”<<X4<<” ||<<X5<<|| n

<<endl;

}f.close();fo.close();

}

else

{for(int j=0;j<k;j++)
for(int i=0;i<60;i++)
VIj1[il=Vvm[j1[i];

}

for(int i=0;i<6;i++)

VIrand () %k] [s]=rand () %3;

if(p == 60000)
{for(int j=0;j<k;j++)
for(int i=0;i<60;i++)

VIjI[il=Vm[j1[i];
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}while(f==1);
}

return (0) ;

int main ()
{int k;
int r;
int z,Z; z=20000;Z=20000;

cout<<"Enter k:";cin>>k;

int TI[4];
for(int i=0;i<4;i++)

T[il=0;

int **V=new int *[60];

int **Vm=new int*[60];

for(int i1i=0;i<60; ++1i)

{V[i] = new intl[k];

}

for(int i=0;i<k;i++)
for(int j=0;j<60;j++)
{v[il[j1=0;Vm[i]1[j]=0;}

for(int s=0;s<60;s++)
{r=rand(V,Vm,T,k,z,Z,s);

remove ("input.txt");

ifstream fi("output.txt");

ofstream fo("input.txt");

string l;int x1,x2,x3,x4,x5;
while(getline(£fi,1))
{istringstream ss(1l);

ss>>x1;88>>x2;8s8>>x3;88>>x4;s88>>x5;



fo<<xl1<" "2 "Tx3<<"

¥
fi.close();
fo.close();

}

return (0) ;

<<x4 <"

"<<xb<<endl;
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