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Abstract

Covering arrays have been successfully applied in the design of test suites for testing sys-

tems such as software, circuits, and networks, where failures can be caused by the interac-

tion between their parameters. There has been a great deal ofresearch on covering arrays

for last thirty years. Much research has been carried out in developing effective meth-

ods to construct covering arrays and generalizations of covering arrays. Acovering array

t-CA(n,k,g), of sizen, strengtht, degreek, and orderg, is ak×n array ong symbols such

that everyt×n subarray contains everyt×1 column ong symbols at least once. It is de-

sirable in most applications to minimize the sizen. A covering array isoptimalif it has the

minimum number of columns among all covering arrays with thesame degree, strength,

and order. In this dissertation, we give an algebraic construction that can be used to build

strength four covering arrays. The construction given hereyields many new upper bounds

on the size of optimal covering arrays wheng= 3.

For software or hardware testing applications, each row of acovering array corresponds

to a parameter; each column corresponds to a test case, and theg symbols correspond to the

values for each parameter. In most software development environments, we have limited

time, computing, and human resources to perform the testingof a system. To model this

situation, we consider the problem of creating a best possible testing array (covering the

maximum number oft-way parameter-value configurations) within a fixed number of test

cases. If the testing array is a covering array, then configuration coverage is 100%. We

present algebraic constructions for testing arrays with high 3- and 4-way configuration

coverage.

Two vectorsu,v ∈ Z
n
g arequalitatively independentif for each ordered pair(a,b) ∈

Zg×Zg there is a position 1≤ i ≤ n such that
(

u(i),v(i)
)

= (a,b). A strength two covering
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array is an array with the property that every pair of rows arequalitatively independent. A

covering array on a graphis an array with a row for each vertex of the graph with the prop-

erty that any two rows which correspond to adjacent verticesare qualitatively independent.

Given a graphG and a positive integerg, a covering array onG with minimum sizen is

calledoptimal. Our primary focus is with constructions that make optimal covering arrays

on large graphs that are obtained from a product of smaller graphs. We consider four most

extensively studied graph products in the literature and give upper and lower bounds on the

size of an optimal covering array on a product graph. We find families of graphs for which

the size of a covering array on a product graph achieves the lower bound with respect to the

Cartesian product. In addition, we present a polynomial time approximation algorithm for

constructing covering arrays on graphs havingk prime factors with respect to the Cartesian

product.

We consider a generalization of covering arrays on graphs tohigher strength, called

mixed covering arrays on 3-uniform hypergraphs. The addition of a graph or hypergraph

structure to covering arrays makes it possible to use methods from graph and hypergraph

theory to study covering arrays. We introduce four hypergraph operations that allow us to

add new vertices to a hypergraph while preserving the size ofa mixed covering array on

the hypergraph. Using these operations, for the case in which H is a 3-uniformα-acyclic

hypergraph, a 3-uniform interval hypergraph, a 3-uniform conformal hypertree having a

binary tree as host tree, a 2-tree hypergraph, or a 3-uniformloose cycle, we construct an

optimal mixed covering array onH.
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Chapter 1

Introduction

Covering arrays have been the focus of much research for lastthirty years. They are nat-

ural generalizations of the well-known and well-studied orthogonal arrays [49]. Covering

arrays are computationally difficult to find and have been studied for their applications to

software testing, hardware testing, drug screening, and inareas where interactions of mul-

tiple parameters are to be tested [41, 47, 48, 52, 53, 58, 70].To begin, we give a definition

of covering arrays. Acovering array t-CA(n,k,g), of size n, strength t, degree k, andorder

g, is ak×n array ong symbols such that everyt×n subarray contains eacht-tuple from

the set ofg symbols at least once as a column. A covering array isoptimal if it has the

smallest possible numbern of columns. This number is thecovering array number,

t-CAN(k,g) = min
{

n : there exist at-CA(n,k,g)
}

.

It is desirable in most applications to minimize the sizen of covering arrays. For example,

the following array is a covering array fort = 2, g= 2 andk= 4, because whichever two

rows out of the four rows are chosen, all possible pairs 00,01,10 and 11 come up at least

once:
















0 0 1 1 1

0 1 0 1 1

0 1 1 0 1

0 1 1 1 0

















The above covering array with five columns is, in fact, optimal, as set forth by a paper by

Kleitman and Spencer [55]. For the special case of strength two binary covering arrays

1
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(covering arrays witht = 2 andg = 2), the exact sizes of the smallest arrays are known

[54, 55, 80]. Except in this special case fort = 2 andg= 2, it is generally unknown what

are the sizes of optimal covering arrays. A database maintained by Charles Colbourn at

Arizona State University lists the best-known sizes of covering arrays for a broad range of

configurations ranging fromt = 2 to t = 6 [31]. Much of the work on covering arrays has

been done on developing constructions for them. These constructions include the use of fi-

nite field theory [17, 94], group theory [20, 21, 60, 69], combinatorial recursive techniques

[83, 104], coding theory [91], extremal set theory [66] and heuristic search algorithms

[14, 15, 26, 74]. In this dissertation, we consider the following four combinatorial prob-

lems related to covering arrays: An algebraic constructionof strength four covering arrays;

Testing arrays with high coverage measure; Covering arrayson product graphs; Mixed

covering arrays on 3-uniform hypergraphs. In Section 1.4, we describe the problems con-

sidered and a brief outline of the solutions. Covering arrays are closely related to other

designs like Latin squares, orthogonal arrays, and transversal designs. In the following

section, we give an overview of covering arrays and related designs.

1.1 Covering arrays and some related designs

Covering arrays are a relaxation of the well-known and well-studied orthogonal arrays.

In 1949, C.R. Rao [78] introduced orthogonal arrays for designing statistical experiments.

Orthogonal arrays have great significance in the field of design of experiments; in an exper-

iment based on orthogonal array the estimated effect of any factor is statistically indepen-

dent of the estimated effect of any other factor [49]. Orthogonal arrays are closely related

to Latin squares and transversal designs. The results in Section 1.1.1 can be found in [12].

1.1.1 Latin squares

A Latin squareof ordern is identified as ann×n square, then2 cells of which are occupied

by n distinct symbols such that each symbol occurs once in each row and once in each
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column. For example, the square in Figure 1.1 is a Latin square of order 6, the symbols

for the square being 0,1,2,3,4,5. Two Latin squares of ordern, one with symbols A, B,

1 3 0 4 2 5

3 0 2 1 5 4

4 5 3 0 1 2

0 2 4 5 3 1

2 1 5 3 4 0

5 4 1 2 0 3

Figure 1.1: A Latin square of order 6

C, . . ., and one with symbols a, b, c,. . ., areorthogonalif superimposing them leads to a

square array containing alln2 possible pairs (A,a), (A,b),. . ., (B,a), (B,b),. . .. Figure 1.2

shows two orthogonal Latin squares of order 5. In 1779 Euler could not find a pair of

A B C D E

B C D E A

C D E A B

D E A B C

E A B C D

a b c d e

c d e a b

e a b c d

b c d e a

d e a b c

Figure 1.2: Two orthogonal Latin squares of order 5

orthogonal Latin squares of order 6 and he conjectured that there is no pair of orthogonal

Latin squares of order 6, and in fact there is no pair of any order that is twice an odd number.

The Euler Conjecture: Forn≡ 2 (mod 4), there is no pair of orthogonal Latin squares of

ordern.
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In 1900 Tarry managed to list all Latin squares of order 6 and showed that Euler was correct

that there is no pair of orthogonal Latin squares of order 6. The general form of Euler’s

conjecture remained unsolved till 1960 when Bose, Shrikhande, and Parker [13] showed

that the rest of Euler’s conjecture was wrong. In fact, orthogonal Latin squares exist for

orders 10,14,18, and so on. Thus orthogonal Latin squares exist for every ordern except

n= 1,2, and 6.

A set of Latin squares (all of the same order), any two of whichare orthogonal, is said to be

a set of mutually orthogonal Latin squares. It has been proved that there cannot exist a set

of more thann−1 mutually orthogonal Latin squares of ordern. A set ofn−1 mutually

orthogonal Latin squares of ordern is said to be acomplete set of mutually orthogonal

Latin squares. Whenn is a prime power, we have the following theorem.

Theorem 1.1.1.[97] For any prime power n there exists a complete set of mutually orthog-

onal Latin squares of order n.

Example 1.1.1.Let n= 3; then the two mutually orthogonal Latin squares of order 3 are

exhibited in Figure 1.3.

0 1 2

1 2 0

2 0 1

0 1 2

2 0 1

1 2 0

Figure 1.3: Complete set of mutually orthogonal Latin squares of order 3

LetN(n) be the maximum number of mutually orthogonal Latin squares of ordern. Chowla,

Erdos and Straus [25] generalized the method used in [13] to show that limn→∞ N(n) = ∞.

Currently, it is known thatN(2) = 1, N(6) = 1 andN(10) ≥ 2, and for all other values of

n, N(n)≥ 3 [97]. For more information see [33, 88].
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1.1.2 Orthogonal arrays

Orthogonal arrays are combinatorial structures that have been used in the statistical design

of experiments for over 60 years. The results in this sectioncan be found in [37, 49, 89].

Definition 1.1.1. An orthogonal arrayof size n, with k factors, g symbols, strength t, and

indexλ , denotedOA(n,k,g, t), is ak×n array with entries fromZg = {0,1, . . . ,g−1} with

the property that in everyt × n subarray, eacht-tuple fromZg appears preciselyλ = n
gt

times. AnOA(n,k,g, t) is also denoted byOAλ (k,g, t). If t is omitted, it is understood to

be 2. Ifλ is omitted, it is understood to be 1.

It is clear that an orthogonal array of index 1 is a special case of covering array, since

in a covering array eacht-tuples from the set ofg symbols is required to appear at least

once. Thus, an orthogonal array is always an optimal covering array. Orthogonal arrays of

strength 2 and index 1 have been well studied as they are equivalent to mutually orthogonal

Latin squares of orderg.

It is not difficult to construct anOA(k+2,g) from k mutually orthogonal Latin squares

of order g and vice versa [17]. Suppose thesek mutually orthogonal Latin squares of

orderg are namedL1,L2, . . . ,Lk, defined on symbols{0,1, . . . ,g−1}, and having rows and

columns labelled{0,1, . . . ,g−1}. For everyi, j ∈ {0,1, . . . ,g−1}, construct a(k+2)-tuple

(

i, j,L1(i, j),L2(i, j), . . . ,Lk(i, j)
)

.

Then form an arrayA whose columns consists of theseg2 (k+2)-tuples. It is easy to verify

thatA is anOA(k+2,g).

Example 1.1.2.Superimposingk = 2 mutually orthogonal Latin squares of order 3 we

obtain:

0, 0 1, 1 2, 2

1, 2 2, 0 0, 1

2, 1 0, 2 1, 0



6

The highlighted entry corresponds to 4-tuple(1,1,2,0): row label 1, column label 1, entry

(2,0). Continuing in this way we obtainOA(4,3) as shown below:
















0 0 0 1 1 1 2 2 2

0 1 2 0 1 2 0 1 2

0 1 2 1 2 0 2 0 1

0 1 2 2 0 1 1 2 0

















It is well-known that there exists a set ofg−1 mutually orthogonal Latin squares of

orderg if and only if there exists a finite projective plane of orderg. It is also well-known

that a finite projective plane exists when the orderg is a power of a prime, that isg= pm for

m≥ 1. The construction of projective planes of prime order was generalized by Bush [17]

who proved the existence of orthogonal arrayOA(gt,g+1,g, t) wheng is a prime power.

We give a proof of this in Section 2.2.1.

1.1.3 Transversal designs

The orthogonal arrays and transversal designs are equivalent objects. The results in this

section can be found in [96].

Definition 1.1.2. Let k≥ 2 andg≥ 1 be integers. Atransversal design TD(k,g) is a triple

(X ,G,B) such that the following properties are satisfied:

1. X is a set ofkg elements calledvarieties.

2. G is a partition ofX into k subsets of sizeg each. That is,G = {G1,G2, . . . ,Gk}.

The setsGi are calledgroups.

3. B is a set ofk-subsets ofX calledblocks. Each block intersects each group in exactly

one variety.

4. Every pair of varieties from distinct groups is containedin exactly one block.

Example 1.1.3.Let k= 4 andg= 3. Let
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X =
{

(0,0),(0,1),(0,2),(0,3),(1,0),(1,1),(1,2),(1,3),(2,0),(2,1),(2,2),(2,3)
}

be partitioned into groupsG0,G1,G2,G3 where

G0 =
{

(0,0),(1,0),(2,0)
}

G1 =
{

(0,1),(1,1),(2,1)
}

G2 =
{

(0,2),(1,2),(2,2)
}

G3 =
{

(0,3),(1,3),(2,3)
}

.

Then the following blocks form a transversal designTD(4,3):

B0 =
{

(0,0),(0,1),(0,2),(0,3)
}

B1 =
{

(0,0),(1,1),(1,2),(1,3)
}

B2 =
{

(0,0),(2,1),(2,2),(2,3)
}

B3 =
{

(1,0),(0,1),(1,2),(2,3)
}

B4 =
{

(1,0),(1,1),(2,2),(0,3)
}

B5 =
{

(1,0),(2,1),(0,2),(1,3)
}

B6 =
{

(2,0),(0,1),(2,2),(1,3)
}

B7 =
{

(2,0),(1,1),(0,2),(2,3)
}

B8 =
{

(2,0),(2,1),(1,2),(0,3)
}

.

An orthogonal arrayOA(k,g) is equivalent to a transversal designTD(k,g). We show how

to construct aTD(k,g) from an OA(k,g). Let A be an orthogonal arrayOA(k,g) with

symbols fromZg. Label the rows ofA as 0,1, . . . ,k−1 and columns ofA as 0,1, . . . ,g2−1.

Define

X =
{

0,1, . . . ,g−1
}

×
{

0,1, . . . ,k−1
}

.

For 0≤ i ≤ k−1, defineGi =
{

0,1, . . . ,g−1
}

×{i}, and then

G =
{

Gi : 0≤ i ≤ k−1
}

.

For 0≤ j ≤ g2−1, defineB j = {(A(i, j), i) : 0≤ i ≤ k−1}, and then

B =
{

B j : 0≤ j ≤ g2−1
}

.

It is easy to prove that(X ,G,B) is aTD(k,g). The construction can be reversed to obtain

an orthogonal array from a transversal design [33, 97]. The above-mentioned transversal

designTD(4,3) is derived from the orthogonal arrayOA(4,3) given in Example 1.1.2.

The equivalence between above mentioned three designs namely Latin squares, orthogonal

arrays and transversal designs can be stated as follows.
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Theorem 1.1.2.[33, 96]Let k≥ 3 and g≥ 2 be two positive integers. Then the existence

of any one of the following designs implies the existence of the other two designs:

1. k mutually orthogonal Latin squares of order g,

2. an OA(k+2,g),

3. a TD(k+2,g).

One well-known generalization of transversal design is called transversal cover; this

generalization is similar to the relaxation of orthogonal arrays to covering arrays. A transver-

sal coverTC(k,g) is a triple(X ,G,B) with the same properties as that of a transversal

designTD(k,g) except the property that any pair of varieties from distinctgroups occurs

in exactlyone block is relaxed to any pair of varieties from distinct groups occurs inat

leastone block. Note that the number of blocks in a transversal cover TC(k,g) is at least

g2. Thus, a transversal coverTC(k,g) that has exactlyg2 blocks is a transversal design

TD(k,g). Stevens [93], Stevens, Moura and Mendelsohn [95] gave a detailed study of

these designs and bounds on the fewest blocks possible in a transversal cover. Here we

give an example of a transversal cover.

Example 1.1.4.[93] Let X = Z8 be the set of varieties. LetG be a partition ofX into 4

groups of size 2 namely,

G0 = {0,1} G1 = {2,3} G2 = {4,5} G3 = {6,7}

andB be the set of 5 blocks of size 4 as given below:

B0 = {0,2,4,6} B1 = {1,3,5,6} B2 = {1,3,4,7}

B3 = {1,2,5,7} B4 = {0,3,5,7}.

Then(X ,G,B) is a transversal coverTC(4,2).
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1.1.4 Covering arrays

Orthogonal arrays exist only for specific combination of parametersn,k,g, t andλ = n
gt .

In order to widen the use of orthogonal arrays to a larger range of problems, the balance

requirement that everygt tuple to appear preciselyλ = n
gt times was relaxed to the require-

ment that everygt tuple to appear at leastλ = n
gt times; and the resultant structure named a

covering array. In practice, we are most interested in caseswhereλ = 1.

Definition 1.1.3. A covering array t-CA(n,k,g), of size n, strength t, degree k, andorder

g, is ak×n array ong symbols such that everyt×n subarray contains each possiblet-tuple

from the set ofg symbols at least once as a column.

Figure 1.4 shows an example of a covering array of strength three with degree 4 and or-

der 2. We can see that every three rows of this array contain all eight possible 3-tuples

(000,001,010,011,100,101,110,111) at least once.

















0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

0 1 1 0 1 0 0 1

















Figure 1.4: 3-CA(8,4,2)

The number of columnsn in a t-CA(n,k,g) is called thesizeof the covering array. It is

desirable in most applications to use a covering array with the smallest size. The smallest

possible size of a covering array for fixed parameterst,k andg is denoted as

t-CAN(k,g) = min
{

n : ∃ t-CA(n,k,g)
}

.

A covering arrayt-CA(n,k,g) with n = t-CAN(k,g) is said to beoptimal. For a covering

arrayt-CA(n,k,g) it is trivial thatn≥ gt, and thus

t-CAN(k,g)≥ gt .
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This lower bound is of little use as it does not tell us how fastt-CAN(k,g) grows as a

function ofk. The only case where tight lower bounds have been obtained iswheng= t =2.

This result has been discovered by Rényi [80] whenn is even, and independently by Katona

[54], and Kleitman and Spencer [55] for alln. Fork> 1, we have

2-CAN(k,2) = min

{

n :

(

n−1
⌊n

2−1⌋

)

≥ k

}

.

This lower bound is obtained using Sperner’s lemma [92] whenn is even and using Erdos-

Ko-Rado theorem [40] whenn is odd. Stevens [93], Stevens, Moura, and Mendelsohn [95]

have also proved some other lower bounds on the size of covering arrays. Stevens, Moura,

and Mendelsohn [95] established that

2-CAN(k,g)≥ g2+3

when 3≤ g≤ k−3. Many of their results provide useful information on smallparameter

sets.

For strength three, Kleitman and Spencer [55] and Sloane [91] used results from binary

intersecting codes and probability theory to obtain the bounds on the size of binary covering

arrays. It says that fort = 3 and largek, the minimumn satisfies

3.21256< n
logk < 7.56444.

However, for fixed strengtht and orderg, probabilistic methods establish the following

result [44, 54, 55]:

t-CAN(k,g) =Θ(logk).

Research has been done to determine the value of

d(t,g) = lim sup
k→∞

t-CAN(k,g)
log2k

.

The exact value ofd(t,g) is only known whent = 2 andg≥ 2 [43], which is equal tog2. In

general for any strengtht ≥ 2 and a positive integerg, an upper bound ond(t,g) is given

by Godboleet al. [44] as follows:
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d(t,g)≤ t−1
log2

gt

gt−1

.

Much of the research on covering arrays involves developingnew constructions and bounds

on the size of covering arrays [17, 20, 21, 26, 27, 60, 64, 69, 72, 73, 74, 83, 91, 94, 104].

Many algorithms and constructions have been developed for computing covering arrays,

but there is no uniformly best method, in the sense of always computing the smallest pos-

sible covering array. For a good up to date survey on coveringarrays see [47]. Improving

the best-known sizes of covering arrays for fixed strength, degree and order is considered

to be a primary concern in the study of covering arrays.

Just as strength two orthogonal arrays are equivalent to transversal designs, strength two

covering arrays are equivalent to transversal covers. It isnot difficult to construct a 2-CA(n,k,g)

from aTC(k,g) wheren is the number of blocks in the transversal cover. A covering array

is formed by associating the sameg-ary alphabets{0,1, . . . ,g−1} with elements of each

group and then listing the blocks explicitly as the columns of the array. We give an example

to explain the method.

Example 1.1.5.[93] Below is a binary covering array 2-CA(5,4,2)derived from the transver-

sal coverTC(4,2) given in Example 1.1.4. Here varieties 0,2,4,6 are associated with sym-

bol 0 and varieties 1,3,5,7 are associated with symbol 1, and blockBi corresponds to the

ith column in the covering array.
















0 1 1 1 0

0 1 1 0 1

0 1 0 1 1

0 0 1 1 1

















1.2 Generalizations of covering arrays

In this section we consider some generalizations of the problem of constructing covering

arrays with smaller size. Covering arrays have applications in the design of test suites for
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testing systems such as software, circuits, and networks, where failure can be caused by

the interaction between their parameters. These generalizations are motivated by their ap-

plications in software and hardware testing. We look at the rows of a covering array in a

different way which we also use throughout this thesis.

Definition: Let g1≥ g2≥ . . .≥ gt be positive integers. A set oft vectors{x1, . . . ,xt}where

xi ∈Z
n
gi

, 1≤ i ≤ t, is said to bet-qualitatively independentif for everyt-tuple(a1, . . . ,at) ∈

Zg1×·· ·×Zgt , there exists 1≤ j ≤ n such that(x1( j), . . . ,xt( j)) = (a1, . . . ,at).

1.2.1 Mixed covering arrays

Mixed covering arrays are a generalization of covering arrays that allow different values in

different rows. This generalization is typically based on the most practical constraint in a

testing process where different parameters in a system takea different number of values.

Definition 1.2.1.Letn,k,g1, . . . ,gk be positive integers. Amixed covering arrayof strength

t, denoted byt-CA(n,k,∏k
i=1gi), is ak×n arrayC with entries fromZgi in row i, such that

anyt distinct rows ofC aret-qualitatively independent.

The parametern is called the size of the array. The main problem is to construct mixed

covering arrays with minimum sizen for the given values ofk, t andgi ’s. An obvious lower

bound for the size of a mixed covering array is∏t
i=1gi whereg1, . . . ,gt are the largestt

values, in order to guarantee that the correspondingt rows bet-qualitatively independent.

Moura et al. [72] developed a theory for mixed covering arrays and presented a detailed

study of constructing optimal mixed covering arrays with specific parameters fort = 2 and

k≤ 5. This problem is further discussed by Colbournet al. in [34]. The caset = 3 is

studied by Colbournet al. in [35] for k≤ 6.
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1.2.2 Covering arrays on graphs

Another generalization of covering arrays are covering arrays on graphs. This is useful in

testing applications where two specific parameters do not interact. Then it is not necessary

that each possible parameter-value configuration for thesetwo parameters be tested, which

allows reductions in the number of required test cases. We can use a graph structure to

describe which pairs of parameters need to be tested. Acovering array CA(n,G,g) on

a graph Gwith alphabet sizeg is a |V(G)| × n array overZg. Each row in the array

corresponds to a vertex in the graphG. The array has the property that any two rows which

correspond to adjacent vertices inG are qualitatively independent. The size of the smallest

possible covering array on a graphG is called asg-qualitative independence number of G

or g-ary covering array number of G, given by

CAN(G,g) = min
n∈N

{

n : there exists aCA(n,G,g)
}

.

A CA(n,G,g) of sizen = CAN(G,g) is called optimal. A quick observation implies that

a covering array on a complete graph is a covering array. Herealso a classical problem

is to construct covering arrays on graphs with the minimum number of columnsn for a

given graphG and an integerg. Serroussi and Bshouty [90] showed that finding an optimal

covering array on a graph is NP-hard even for the binary case.Stevens gave some basic

results on covering arrays on graphs in his Ph.D thesis [93].Meagher and Stevens [68]

developed further research in this topic and presented several bounds for theg-qualitative

independence number ofG.

1.2.3 Mixed covering arrays on graphs

Mixed covering arrays on graphs are structures that generalize the notion of mixed covering

arrays as well as covering arrays on graphs. The parameters for mixed covering arrays on

graphs are given by a weighted graph. In this context, a weighted graph is a graph with a

positive weight functionw : V(G)→ Z
+. Let G be a weighted graph withk vertices and
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weightsg1 ≤ g2 ≤ ... ≤ gk, and letn be a positive integer. Amixed covering array on G,

denoted byCA(n,G,∏k
i=1gi), is ank×n array with the following properties:

1. row i corresponds to a vertexvi ∈V(G) with weightgi ;

2. the entries in rowi are fromZgi ;

3. pair of rows which correspond to adjacent vertices ofG are qualitatively independent.

Given a weighted graphG with weightsg1,g2, ...,gk, the mixed covering array number on

G, denoted byCAN(G,∏k
i=1gi), is the minimumn for which there exists aCA(n,G,∏k

i=1gi).

In 2007, Meagheret al. [67] and Cheng [24] studied the problem of constructing mixed

covering arrays on graphs. Meagher, Moura, and Zekaoui [67]studied mixed covering

arrays on graphs in detail and gave many powerful results including upper bounds on

the mixed covering array number on all 3-chromatic and on a large number of 4- and

5-chromatic graphs. They built optimal mixed covering arrays on trees and cycles using

some basic graph operations, and using a different technique, they built optimal mixed cov-

ering arrays on bipartite graphs. Cheng [24] mainly focusedon algorithmic constructions

for mixed covering arrays on graphs and on few families of hypergraphs and developed

new techniques to construct optimal mixed covering arrays on bipartite graphs and cycles.

1.2.4 Variable strength covering arrays

In a software system, certain sets of parameters interact; certain sets of parameters are

known not to interact. If prior knowledge of the system undertesting indicates that certain

parameters are known not to interact, it is unnecessary to test all interactions between them.

A set of parameters that jointly affect on of the output values of a software system must be

considered to interact. To model this situation, the notionof abstract simplicial complex

ASC is used. The covering arrays onASCsare calledvariable strength covering arrays

or covering arrays on hypergraphs. The sets of parameters that we want to be tested are

recorded as the facets of anASC. Let ∆ be anASCover {0, ...,k−1} with set of facets
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Λ, and letr = rank(∆). A variable strength covering arrayVCA(n,Λ,g) is ank×n array

overZg with rows 0, ..,k−1 such that if{b0, ..,bt−1} ∈ Λ for t ≤ r, then these rows are

t-qualitatively independent. TheVCAN(Λ,g) is defined to be the smallestn such that a

VCA(n,Λ,g) exists. Cohenet al. [29] used a simulated annealing algorithm to findVCA

over a specific family ofASCsand presented several other related results. Chenget al.

[24] proposed a problem reduction technique involving proper hypergraph colouring and

greedy algorithm to findVCAover arbitraryASC. Mixed variable strength covering arrays

have been systematically studied at length in Raaphorst’s thesis [77]. He gave a complete

solution for the problem of determining the covering array number and constructing optimal

covering arrays on triangulation hypergraphs of the sphere.

1.2.5 Covering arrays with budget constraints

A practical limitation in the area of testing is the budget. Due to limited time, human,

and computing resources, in most software developments, testing is performed with a fixed

number of test cases. To model this situation, we consider the problem of building the best

possible testing array within a fixed number of test cases, that is, fixed number of columns

of the array. To test a software system withk parameters each havingg values, the total

number oft-tuples that needs to be covered fort-way interactions is
(k

t

)

gt . The t-way

configuration coverageof a testing arrayA is defined by

µt(A ) =
Nt(A )
(k

t

)

gt

whereNt(A ) is the number of distinctt-tuples covered in the columns ofA . Given fixed

values oft,k,g andn, the problem is to build a testing arrayA of size at mostn having

high configuration coverage measure. This problem is calledcovering array with budget

constraints. This is one of the five natural generalizations of covering arrays listed in

[48]. A brief discussion of covering arrays with budget constraints problem is available in

[48, 57] and [56, Chapter 7]. Maity [61] studied this problemwhent = 3 and for specific

values ofg.
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1.2.6 Covering arrays with forbidden configurations

For a set oft parameters, aparameter-value configurationis an ordered tuple oft valid

values, one for each of the parameters. The generalization considered here applies to the

situation in which some parameter-value configurations areinvalid, a requirement quite

common in software and hardware testing. If a system is susceptible to failure due to

a single parameter-value configuration of two parameters, at least one of the tests given

by a covering array is guaranteed to fail. These forbidden parameter-value configurations

are modeled using ak-partite graph over∑k
i=1gi vertices while testing a system withk

parameters and parameteri having gi values for 1≤ i ≤ k. These are calledcovering

arrays with forbidden configurationsand are studied by Danziger, Mendelsohn, Moura,

and Stevens [36].

1.2.7 Covering arrays with column limit

Covering arrays with column limit, CACLs, are another generalization of covering arrays.

A t-CACL(n,k,g,w) is a k×n array with some empty cells. A parameter is represented

by a row and takes values fromZg. In each column, there are exactlyw non-empty cells,

that is, there arew parameters that have values fromZg. The parameterw is called the

column limit. Moreover, everyt×n subarray contains eacht-tuples fromZg at least once.

Covering arrays with column limit is useful in pharmacologywhere one has to limit the

number of drugs administered to an individual at a time. Herea drug corresponds to a

row and an individual corresponds to a column, andw is the number of drugs that can be

administered to an individual at a time. Covering arrays with column limit are studied in

[41]. TheCACLshave close relation withGroup Divisible Covering Designs[42].
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1.3 Applications of covering arrays

Testing is an important but expensive part of software and hardware development process.

Typically, more than 50% of the total development cost goes to software testing and veri-

fication. Software nonperformance and failure are expensive. There are many examples of

the catastrophic impact of software and hardware failures.For example, a software failure

interrupted the New York Mercantile Exchange and telephoneservice to several East Coast

cities in February 1998 (Washington Technology, 1998) [79]. An example of hardware bug

is the popular Pentium floating point division bug (1993) [39]. Because of this bug, the

processor could return incorrect decimal results when dividing a number. This happened

due to a flaw in the look up table employed in the division circuits and led to a loss of $475

million. A study by NIST shows that software errors cost U.S.economy $59.5 billion an-

nually. The study also found that, although all errors cannot be removed, more than a third

of these costs, or an estimated $22.2 billion, could be eliminated by an improved testing

infrastructure [18]. Hence search for improved testing techniques has been a very active

research area. We give some examples of testing problems to motivate the use of covering

arrays. Covering arrays are useful in multiple applications, for example in software testing

[1, 2, 52, 53, 56, 58], in hardware testing [47], and in drug screening [41, 48].

Software testing: Smartphones have become immensely popular because they combine

communication capability with powerful graphical displays, internet browsing, and pro-

cessing capability. A Huge number of smartphone applications, or“apps” are developed

annually. An application, for example, Android apps, must operate across a variety of

hardware and software platforms since not all products support the same options. For ex-

ample, some smart phones may have three Keyboard options like CrossTap, FlickKey

andQWERTY. The table below shows the names of five parameters for an application and

values for each parameter.
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Parameters Values

Keyboard CrossTap (0), FlickKey (1), QWERTY (2)

Navigation DPAD (0), Trackball (1), Wheel (2)

Orientation Landscape (0), Portrait (1), Square (2)

Screenlayout size Large (0), Small (1), Normal (2)

Touchscreen Finger (0), Notouch (1), Stylus (2)

An exhaustive test suite will include 35 = 243 test configurations. However, only 11 test

configurations are needed to cover all 2-way combinations ofvalues. These 11 test cases

are obtained using a 2-CA(11,5,3) [75].

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 Case 10 Case 11

CrossTap CrossTap CrossTap FlickKey QWERTY FlickKey QWERTY FlickKey QWERTY FlickKey QWERTY

DPAD Trackball Wheel DPAD DPAD Wheel Trackball Trackball Wheel Trackball Wheel

Landscape Portrait Square Portrait Square Landscape Landscape Portrait Square Square Portrait

Large Normal Small Small Normal Normal Small Large Large Normal Small

Finger Notouch Stylus Notouch Stylus Notouch Stylus Stylus Notouch Finger Finger

Using covering arrays, one can produce test suites that cover t-way combinations of

values. For many applications, 2-way or 3-way testing may beappropriate, and either of

these will require less than 1% of the total test cases required to cover all possible test

configurations. Consider a system with 7 parameters having 4values each. An exhaustive

test suite will require 47 = 16384 test cases. Table 1.1 shows the number of test cases

required fort-way coverage at several values oft. This illustrates the power of covering

arrays for combinatorial testing.

Some examples of case studies where covering arrays have been used efficiently are the

following. Firstly, in Rich web application (RWA) [65], 2-way or pair-wise test found all

but one fault found by exhaustive testing. It uses only 13% ofthe total test cases required

for exhaustive testing. Secondly, in MP3 web application [106], most faults are detected by

2-way testing, except one fault that is caused by 4-way interaction. Finally, in web browser
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DOM modules [71], all faults are detected using 4-way testing. It requires less than 5% of

the total test cases required for exhaustive testing.

Table 1.1: Number of test cases required is a fraction of an exhaustive test suite.

t Number of Test Cases [31] % of Exhaustive

2 21 0.12

3 88 0.53

4 412 2.51

5 1536 9.37

6 4096 25.00

Hardware testing: Interaction testing is used for testing circuits and networks [98]. Con-

sider a circuit withk inputs, each of one bit. Within the circuit, the input signals interact

through arithmetic and logical operations to determine an output vector. This circuit can

be exhaustively tested using 2k tests. Like software, we expect errors to be revealed by a

fraction of test configurations. Tanget al. [98], Borodaiet al. [11] performed circuit test-

ing in this environment using test configurations that covert-way combinations of values.

Seroussi and Bshouty gave a comprehensive study in [90]. In each case, a binary covering

array of strengtht is used to generate the test configurations.

Multiple-Drug-Therapy and Drug screening: In some cases, multiple drugs are taken

simultaneously to treat a single disease. In such cases, interactions between drugs oc-

cur and cumulative effect of multiple drugs need to be studied before administering them.

Another application of interaction testing is in drug screening [99]. Drug screening is a

cost-effective method to quickly review all samples. Covering arrays help in establishing a

rapid and effective method for drug screening.

Other applications of covering arrays include authentication [102], data compression [93],
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intersecting code [28], and universal hashing [19].

1.4 Thesis contributions

In this thesis, we consider the following four combinatorial problems related to covering

arrays: An algebraic construction of strength four covering arrays; Testing arrays with high

coverage measure; Covering arrays on product graphs; Mixedcovering arrays on 3-uniform

hypergraphs. We give below, chapter-wise, the problems considered and a brief outline of

the solutions.

1. An Algebraic Construction of Strength Four Covering Arrays

This chapter focuses on constructing new strength four covering arrays and establishing

improved bounds on the covering array numbers 4-CAN(k,3). See also [8]. A strength

four covering array 4-CA(n,k,g), of sizen, degreek, and orderg, is a k× n array ong

symbols such that every 4×n sub-array contains every 4×1 column ong symbols at least

once. It is desirable in most applications to minimize the size n of covering arrays. The

covering array number 4-CAN(k,g) is the smallestn for which a 4-CA(n,k,g) exists. There

is no uniformly best algorithm for computing the smallest possible covering array for a

particular problem. The method proposed here improves someof the best known upper

bounds on the size of strength four covering arrays withg= 3.

Let X = GF(g− 1)∪ {∞} be the set ofg symbols on which we are to construct a

4-CA(n,k,g). We chooseg so thatg−1 is a prime or prime power. Our construction called

PGL construction, involves selecting a groupG and finding vectorsu= (u0,u1, . . . ,uk−1),

v= (v0,v1, . . . ,vk−1)∈Xk, called starter vectors. We use the vectors to form ak×2k matrix
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M as follows:

M =























u0 uk−1 . . . u1 v0 vk−1 . . . v1

u1 u0 . . . u2 v1 v0 . . . v2
...

...
...

...
...

...

uk−2 uk−3 . . . uk−1 vk−2 vk−3 . . . vk−1

uk−1 uk−2 . . . u0 vk−1 vk−2 . . . v0























.

Let G = PGL(2,g− 1). For eachσ ∈ PGL(2,g− 1), let Mσ be the matrix formed by

the action ofσ on the elements ofM. The matrix obtained by developingM by G is the

k×2k|G| matrixMG = [Mσ : σ ∈G]. LetC be thek×g matrix that has a constant column

with each entry equal tox, for eachx∈X. Vectorsu,v∈Xk are said to bestarter vectorsfor

a 4-CA(n,k,g) if any 4×2k subarray of the matrixM has at least one representative from

each non-constant orbit ofPGL(2,g−1) acting on 4-tuples fromX. If starter vectorsu,v

exist inXk (with respect to the groupG) then[MG,C] is a 4-CA(2kg(g−1)(g−2)+g,k,g).

If we do not find vectorsu andv, we look for vectors that produce an array with high 4-

way configuration coverage. In order to complete the covering conditions, we add a small

matrixC1. In this case,[MG,C,C1] forms a covering array. For some values ofk, only one

starter vectoru and aC1 matrix are enough to build a covering array. We use computer

search to find starter vector(s) and matrixC1.

We examine two methods, calledextending a solution[69] andrandomized post opti-

mization[73], to obtain small improvements on the computational results obtained.

In the range of degrees considered in this chapter, the best known results previously

come from [30]; in that paper, covering arrays are also foundby using a group action on

the symbols (the affine or Frobenius group), but no group action on the rows is employed.

While for g= 3 the group that we employ on the symbols coincides with the affine group,

we accelerate and improve the search by also exploiting a group action on the rows as

in [21, 69], and develop a search method that can be applied effectively wheneverg≥ 3

andg−1 is a prime power. PGL construction is an extension of the construction method

developed in [21, 69]. The construction given in this chapter improves many of the current
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best known upper bounds on 4-CAN(k,g) with g= 3 and 19≤ k≤ 74.

2. Testing Arrays with High Coverage Measure

Using strengtht covering arrays, one can generate test cases that covert-way combinations

of values. For most applications, 2-way (pair-wise) or 3-way testing may be effective [26,

61, 63] and either of these will require less than one percentof the time required to cover

all possible test configurations. A major concern in the areaof testing is the budget. Due to

straightly limited time, human, and computing resources, in most software developments,

testing is performed with a fixed number of test cases which may be significantly less than

the number of test cases required even for 2-way or 3-way testing. To model this situation,

we consider the problem of building the best possible testing array within a fixed number

of test cases, that is, fixed number of columns of the array. Totest a software system with

k parameters each havingg values, the total number oft-tuples that needs to be covered

for t-way interactions is
(k

t

)

gt . The t-way configuration coverage of a testing arrayA is

defined by

µt(A ) =
Nt(A )
(k

t

)

gt

whereNt(A ) is the number of distinctt-tuples covered in the columns ofA . Given fixed

values oft,k,gandn, our objective is to build a testing arrayA of size at mostnhaving high

t-way configuration coverage. This is one of the five natural generalizations of covering

arrays listed in [48]. This chapter presents algebraic constructions for testing arrays with

high 3- or 4-way configuration coverage measure. See also [7,6].

Given fixed values ofk,n andg, so thatg−2 is a prime power, we are to construct a

testing arrayA with high 3-way configuration coverage measure. LetX = {Fq,∞1,∞2}

be the set ofg symbols (values) on which we are to construct a testing arrayhaving good

configuration coverageµ3(A ). Clearly, |X| = g = q+2; we chooseg so thatg−2 is a

prime or prime power. Our construction requires selecting agroupG and finding a vector

v ∈ Xk, called a vector with good configuration coverage measure. We use the vector

v= (v0,v1, . . . ,vk−1) to form ak×k circulant matrixM. The group acting on the matrixM
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produces several matrices which are concatenated to form a testing array with high 3-way

configuration coverage. The construction for a testing array with high 4-way configuration

coverage is similar to the PGL construction described in Chapter 2.

The construction given here is an extension of the method developed by Meagher and

Stevens in [69]. Their construction involves selecting a group G < Symg and finding a

vectorv ∈ Z
k
g, called a starter vector, to construct a strength two covering array of size

k|G|+g and numerous improved upper bounds were obtained forCAN(2,k,g). Maity [61]

generalizes this method to construct testing arrays with high 3-way configuration coverage

measure forg = pm or pm+1 wherep is a prime. This method produces several testing

arrays with high 3-way configuration coverage measure about95% to 99% for different

values ofg andk. In [61], a comparison of this method with tools like AETG [26] and

IPOG [59] shows that this construction produces significantly smaller test suites.

Test coverage is one of the most important topics in softwaretesting. Users would like

to have some quantitative measure to judge the risk while using a product. Consider testing

a software system with 40 parameters each having three values. Our construction for testing

array with high 4-way configuration coverage generates a test suite with 243 test cases that

ensure with probability 0.988 that the software cannot fail due to interactions of 2, 3 or 4

parameters whereas the best known covering array in [31] requires 465 test cases for full

coverage. The results show that the proposed method could reduce the number of test cases

significantly while compromising only slightly on the configuration coverage measure.

3. Covering Arrays on Product Graphs

The objects considered in this chapter are covering arrays on graphs and our primary con-

cern is with constructions that make optimal covering arrays on large graphs that are ob-

tained from a product of smaller graphs. See also [3]. A graphproduct is a binary operation

on the set of all finite graphs. However, among all possible associative graph products, the

most extensively studied in the literature are the Cartesian product, the direct product, the

strong product and the lexicographic product. Here we recall the definition of Cartesian
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product only.

Definition : TheCartesian productof graphsG andH, denoted byG2H, is the graph with

V(G2H) = {(g,h)|g∈V(G) andh∈V(H)},

E(G2H) = {(g,h)(g′,h′)|g= g′,hh′ ∈ E(H), or gg′ ∈ E(G),h= h′}.

The graphsG andH are called thefactorsof the productG2H.

In [68], the definition of a covering array has been extended to include a graph structure.

This has been applied in the context of software testing by observing that we only need to

test interactions between parameters that jointly affect one of the output values.

Two vectorsx,y in Z
n
g arequalitatively independentif for all pairs (a,b) ∈ Zg×Zg, there

existsi ∈ {1,2, . . . ,n} such that(x(i),y(i))= (a,b). A covering array on a graphG, denoted

by CA(n,G,g), is a |V(G)| × n array onZg with the property that any two rows which

correspond to adjacent vertices inG are qualitatively independent.

The smallest possible covering array on a graphG is denoted

CAN(G,g) = min
n∈N

{

n : there exists aCA(n,G,g)
}

.

Given a graphG and a positive integerg, a covering array onG with minimum size is

calledoptimal. We start with a review of some definitions and results from product graphs

in Section 4.3. In Section 4.5, we show that for all graphsG1 andG2,

max
i=1,2

{

CAN(Gi,g)
}

≤CAN(G12G2,g)≤CAN
(

max
i=1,2
{χ(Gi)},g

)

whereχ(Gi) is the chromatic number ofGi . We look for graphsG1 andG2 where the

lower bound onCAN(G12G2,g) is achieved. LetH be a finite group andS be a subset

of H r {id} such thatS= −S (i.e., S is closed under inverse). The Cayley graph ofH

generated byS, denotedCay(H,S), is the undirected graphG = (V,E) whereV = H and

E = {(x,sx) | x∈H,s∈S}. In Section 4.6, we obtain families of Cayley graphs that achieve

the lower bound on the covering array number on product graph. We list below two related
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theorems:

Theorem 4.6.2: Let H be a finite group andSbe a generating set forH such that

1. S=−Sandid /∈ S

2. SS= S

3. there exists1 ands2 in Ssuch thats1 6= s2 ands1s2 ∈ S

then forG1 =Cay(H,S) and any three colourable graphG2, we have

CAN(G12G2,g) =CAN(G1,g).

Theorem 4.6.3: Let H be a finite group andSbe a generating set forH such that

1. S=−Sandid /∈ S

2. SS= S

3. there exists1 ands2 in Ssuch thats1 6= s2 ands1s2,s1s−1
2 ∈ S

then forG1 =Cay(H,S) and any four colourable graphG2, we have

CAN(G12G2,g) =CAN(G1,g).

In Section 4.7, we present a polynomial time approximation algorithm with approximation

ratio
⌈

log
(

|V|
2k−1

)⌉

for constructing covering arrays on graphsG= (V,E) having more than

one prime factor with respect to the Cartesian product.

4. Mixed covering arrays on 3-uniform hypergraphs

Covering arrays have applications in many areas. Covering arrays are particularly useful

in the design of test suites [26, 27, 47, 61, 62, 63]. The testing application is based on the

following translation. Consider a software system that hask parameters, each parameter

can takeg values. Exhaustive testing would requiregk test cases for detecting software

failure, but if k or g are reasonably large, this may be infeasible. We wish to build a test
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suite that tests all 3-way interactions of parameters with the minimum number of test cases.

Covering arrays of strength 3 provide compact test suites that guarantee 3-way coverage of

parameters.

To address different requirements of the software and hardware testing applications,

many generalizations of covering arrays have been introduced (see [32, 48]).Mixed cov-

ering arraysare a generalization of covering arrays that allow different values for different

rows. This fulfills the need that different parameters in thesystem take a different number

of possible values. Some techniques to construct mixed covering arrays are presented in

[34, 72]. Maegher and Stevens introduce and study covering array on graph in [68]. This is

useful in testing applications where we may know in advance that two specific parameters

do not interact. Then it is not necessary that each possible parameter-value configuration

for these two parameters be tested, which allows reductionsin the number of required test

cases. We can use a graph structure to describe which pairs ofparameters need to be tested.

Serroussi and Bshouty [90] showed that finding an optimal covering array on a graph is

NP-hard even for the binary case. Meagher, Moura, and Zekaoui [67] studied mixed cov-

ering arrays on graphs in details and gave many powerful results. Mixed variable strength

covering arrays have been introduced and systematically studied at length in Raaphorst’s

thesis [77] and also dealt in [23].

The objects considered here generalize mixed covering arrays on graphs introduced

in [67] but are a special case of mixed variable strength covering arrays introduced in

[77], focusing on hypergraphs that are 3-uniform, rather than general hypergraphs. See

also [5]. The motivation for this work is to improve applications of covering arrays to

software, circuit and network systems. This also gives us new ways to study covering

arrays construction.

Let n,k be positive integers withk ≥ 3. Three vectorsx ∈ Z
n
g1

, y ∈ Z
n
g2

, z∈ Z
n
g3

are3-

qualitatively independentif for any triplet(a,b,c)∈Zg1 × Zg2 × Zg3, there exists an index

j ∈ {1,2, ...,n} such that(x( j),y( j),z( j)) = (a,b,c). Let H be a 3-uniform hypergraph

with k verticesv1,v2, . . . ,vk with respective vertex weightsg1,g2, . . . ,gk. A mixed covering
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array onH, denoted byCA(n,H,∏k
i=1gi), is ak×n array such that rowi corresponds to

vertexvi , entries in rowi are fromZgi ; and if{vx,vy,vz} is a hyperedge inH, then the rows

x,y,zare 3-qualitatively independent. The parametern is called the size of the array. Given

a weighted 3-uniform hypergraphH, a mixed covering array onH with minimum size is

called optimal.

In Section 5.1, we outline the necessary background in the theory of hypergraphs. In Sec-

tion 5.2, we recall the definition of mixed covering arrays onhypergraphs and related re-

sults. In Section 5.3, we give results related to balanced and pairwise balanced vectors

which are required for basic hypergraph operations.

Definition: A length-n vector with alphabet sizeg is balancedif each symbol occurs

⌊n/g⌋ or ⌈n/g⌉ times.

Definition: Two length-n vectorsx1 andx2 with alphabet sizeg1 andg2 are pairwise

balancedif both vectors are balanced and each pair of symbols(a,b) ∈ Zg1×Zg2 occurs

⌊n/g1g2⌋ or ⌈n/g1g2⌉ times in(x1,x2), so forn≥ g1g2 pairwise balanced vectors are al-

ways 2-qualitatively independent.

Definition: Let H be a weighted hypergraph. Abalanced covering arrayon H is a cov-

ering array onH in which every row is balanced and the rows correspond to vertices in a

hyperedge are pairwise balanced.

In this section, we prove two important theorems related to the construction of optimal

mixed covering arrays on some specific class of 3-uniform hypergraphs. Theorem 5.3.2

proves Conjecture 3.4.27 posted by Raaphorst in [77].

Theorem 5.3.1: Let x1 ∈ Z
n
g1

andx2 ∈ Z
n
g2

be two balanced vectors. Then for any positive

integerh, there exists a balanced vectory∈Zn
h such thatx1 andy are pairwise balanced and
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x2 andy are pairwise balanced.

Theorem 5.3.2: Let x1 ∈ Z
n
g1

andx2 ∈ Z
n
g2

be two pairwise balanced vectors. Then for

anyh such thatg1g2h≤ n, there exists a balanced vectory∈ Z
n
h such thatx1, x2 andy are

3-qualitatively independent andx1 andy are pairwise balanced andx2 andy are pairwise

balanced.

In Section 5.4, we introduce four basic hypergraph operations:

1. Single-vertex edge hooking I

2. Single-vertex edge hooking II

3. Two-vertex hyperedge hooking

4. Single-vertex hyperedge hooking

Using these operations, we construct optimal mixed covering arrays onα-acyclic 3-uniform

hypergraphs, 3-uniform interval hypergraphs, conformal 3-uniform hypertrees having a bi-

nary tree as host tree, 2-tree hypergraphs, and 3-uniform loose cycles. In this section, we

give a solution to Conjecture 3.4.28 posted by Raaphorst in [77].



Chapter 2

An Algebraic Construction of Strength Four

Covering Arrays

Covering arrays are useful in multiple applications, for example in software testing [1, 2,

47, 52, 53, 56, 58, 70], in experimental designs [49, 82, 97] and in drug screening [41, 48].

Pair-wise (2-way) interaction testing requires that for a given number of input parameters

to the system, each possible combination of values for any pair of parameters be covered

by at least one test case. 2-way and 3-way interaction testing are known to be effective

for different types of software testing [26, 61, 63]. In the real world, there may be 4, 5

or even more, parameters involved in failures, so our test suite covering 2-way and 3-way

interactions might not detect them. Depending on the budgetand the software, two-way

through five-way or six-way interaction testing may be appropriate [58]. Here we consider

the problem of constructing strength four covering arrays.Each column of a strength four

covering array is a test case for the problem of 4-way interaction testing of parameters.

In this chapter, we present an algebraic construction that improves many of the best

known upper bounds onn for covering arrays 4-CA(n,k,g) with g = 3. See also [8]. In

Section 2.1, we summarize the results from group theory thatwe use in our construction.

In Section 2.2, we describe two known constructions for covering arrays. In Section 2.3,

we give a new construction that can be used to build covering arrays 4-CA(n,k,g) for

g = pm+ 1, p is prime. This construction is an extension of the construction method

developed in [21, 69]. The construction given in this chapter improves many of the current

best known upper bounds on 4-CAN(k,g) with g = 3 and 19≤ k ≤ 74. Colbourn [31]

29
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maintains a repository of the best known upper bounds for covering array sizes. In Section

2.4, we examine two methods to obtain small improvements on the computational results

obtained. In Section 2.5, we present the computational results.

2.1 Transitive action of groups

In this section, we summarize the results from group theory that we use. All the definitions

and results mentioned in this section are standard and referred from [81]. Apermutation

of a non-empty setX is a bijectionπ : X→ X. The set of all permutations ofX, denoted

by Sym X, forms a group with respect to functional composition. The set Sym Xof all

permutations ofX is called thesymmetric group. If X is a non-empty set, a subgroupG of

the symmetric groupSym Xis called apermutation group. Thedegreeof a permutation

group is the cardinality ofX.

Two elementsx andy of X are said to beequivalentunderG if there exists a permutation

π in G that mapsx to y. This relation is an equivalence relation onX and the equivalence

classes are calledorbitsunderG. More formally, for eachx∈ X, let

orbitG(x) = {xπ | π ∈G}.

The set orbitG(x) is a subset ofX called the orbit ofx underG. For eachx∈ X, let

stabG(x) = {π ∈G | xπ = x}.

We call the set stabG(x) thestabilizer of x in G. The permutation groupG is calledtransi-

tive if, given any pair of elementsx andy of X, there exists a permutationπ in G which maps

x to y. ThusG is transitive if and only if there is exactly one orbit underG, which isX itself.

Let the cardinality ofX ben andG be a permutation group onX. For 1≤ k≤ n, we denote

X[k] for the set of all orderedk-tuples of distinct elements(x1,x2, . . . ,xk). The permutation
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groupG exhibits natural action component wise onX[k], that is, ifπ ∈G,

(x1,x2, . . . ,xk)π → (x1π ,x2π , . . . ,xkπ).

Definition 2.1.1. A permutation groupG on X is said to bek-transitive on Xif for any

two orderedk-tuples of distinct elements(x1,x2, . . . ,xk) and(y1,y2, . . . ,yk) in X[k] there is

a π ∈G such thatxiπ = yi for 1≤ i ≤ k.

Definition 2.1.2. A permutation groupG on X is said to besharply k-transitive on Xif

given two tuples inX[k], there exists a unique permutation inG mapping onek-tuple to the

other.

Theorem 2.1.1. 1. The symmetric group Sn is sharply n-transitive.

2. If n> 2, the alternating group An is sharply(n−2)-transitive.

There are certain examples of sharply 2-transitive and 3-transitive permutation groups that

are not of alternating or symmetric type. Some examples are fractional linear groupL(q)

or projective general linear groupPGL(2,q) and its subgroup called affine linear group

AGL(1,q).

2.1.1 Fractional linear group

Let Fq be a Galois fieldGF(q) whereq = pm and p is a prime. We now adjoin a new

element, which we denote by∞, to Fq to obtain a setX = Fq∪{∞}. One may think of the

resulting setX = Fq∪{∞} as the projective line consisting ofq+1 points. Define

L(q) =

{

σ : X→ X | xσ =
ax+b
cx+d

, wherea,b,c,d ∈ Fq andad−bc 6= 0

}

with standard convention about∞, for example,x+∞ = ∞, x×∞ = ∞, ∞
∞ = 1, x

0 = ∞ for

x 6= 0, anda∞+c
b∞+c =

a
b.
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It is easy to verify thatL(q) is a group with respect to functional composition, calledfrac-

tional linear group. In fact, L(q) is isomorphic with theprojective general linear group

PGL(2,q). Note that

|L(q)|= |PGL(2,q)|=
(q2−1)(q2−q)

q−1
= (q+1)q(q−1).

We now define

H(q) =
{

α : X→ X | xα = ax+b wherea,b∈ Fq anda 6= 0
}

.

Note thatH(q) is the stabilizer of∞ in L(q) and hence a subgroup ofL(q). The groupH(q)

is isomorphic to affine general linear groupAGL(1,q) and|H(q)|= q(q−1).

Theorem 2.1.2.The group H(q) is sharply 2-transitive on GF(q) with degree q. The group

L(q) is sharply 3-transitive on GF(q)∪{∞} with degree q+1.

For the undefined terms and more details see [81, Chapter 7].

2.2 Some known constructions

There are several known methods for constructing covering arrays. In this section, we

review two constructions: the finite field construction (Bush 1952) [17, 47] and algebraic

constructions [21, 60, 69].

2.2.1 The finite field construction

It is well-known that there exists a set ofg−1 mutually orthogonal Latin squares of order

g if and only if there exists a finite projective plane of orderg. It is also well-known that

a finite projective plane exists when the orderg is a power of a prime, that isg = pm for

m≥ 1. The construction of projective planes of prime order was generalized by Bush [17].

Theorem 2.2.1 ensures existence of orthogonal arrayOA(gt,g+1,g, t) wheng is a prime

power, which are alsot-CA(gt,g+1,g).



33

Theorem 2.2.1.[17] Let g= pm be a prime power withg> t. Thent-CAN(g+1,g) = gt .

Proof. The proof given here is similar to that given in [47]. LetF = {0,1, . . .} be the finite

field of orderg, with 0 being the zero element of the field. We construct ag+1×gt array

A whose rows are indexed by members ofF ∪ {∞} and whose columns are indexed by

t-tuples(α0,α1, . . . ,αt−1) ∈ F t . The entry in this array in the row indexedx ( 6= 0) and

column indexed(α0,α1, . . . ,αt−1) is defined to be∑t−1
j=0 α jx j . The entry in this array in the

row ∞ (resp. 0) and column indexed(α0,α1, . . . ,αt−1) is defined to beα0 (resp. αt−1).

Now considerT = ( f1, f2, . . . , ft−1) an arbitraryt-tuples ofF t . Let A′ be a submatrix ofA

induced by an arbitrary choice oft rows(x1,x2, . . . ,xt). To complete the proof we need to

show thatT is a column ofA′. To verify this we first consider the case whenxi 6= 0,∞ for

1≤ i ≤ t. We solve the following system oft equations fort unknown quantitiesα j , which

index the columnT:
t−1

∑
j=0

α jx
j
i = fi with 1≤ i ≤ t.

Note that the system of equations has a unique solution as thecoefficient matrix has the

form of a Vandermonde matrix, which is invertible. Secondly, suppose that the submatrix

A′ contains either row 0 or∞ or both, then we have a system oft−1 or t−2 equations that

also have a Vandermonde coefficient matrix, and thus has a unique solution.

Example 2.2.1.Below is an example of a 2-CA(25,6,5) obtained using the construction

given in Theorem 2.2.1.

00 01 02 03 04 10 11 12 13 14 20 21 22 23 24 30 31 32 33 34 40 41 42 43 44

0 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

1 0 1 2 3 4 1 2 3 4 0 2 3 4 0 1 3 4 0 1 2 4 0 1 2 3

2 0 2 4 1 3 1 3 0 2 4 2 4 1 3 0 3 0 2 4 1 4 1 3 0 2

3 0 3 1 4 2 1 4 2 0 3 2 0 3 1 4 3 1 4 2 0 4 2 0 3 1

4 0 4 3 2 1 1 0 4 3 2 2 1 0 4 3 3 2 1 0 4 4 3 2 1 0

∞ 0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4
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2.2.2 Algebraic constructions

Chateauneuf, Colbourn and Kreher [20] introduced an algebraic method to construct cover-

ing arrays of strength three. The idea is to construct a covering array starting from a small

array, astarter array M, and a groupG. The goal is to choose the matrixM and group

G so that the group acting on the arrayM produces several arrays which are concatenated

to form a covering array. In some cases, a small array will be appended to complete the

covering condition. For example, whenG= Sym{0,1,2} and

M =

















0 1 0 0

0 0 1 1

1 0 2 0

2 1 2 1

















,

we get a covering array 3-CA(27,4,3) as shown below:
















0 1 0 0 0 2 0 0 2 1 2 2 1 0 1 1 1 2 1 1 2 0 2 2

0 0 1 1 0 0 2 2 2 2 1 1 1 1 0 0 1 1 2 2 2 2 0 0

1 0 2 0 2 0 1 0 1 2 0 2 0 1 2 1 2 1 0 1 0 2 1 2

2 1 2 1 1 2 1 2 0 1 0 1 2 0 2 0 0 2 0 2 1 0 1 0

















An array is a starter array fort = 3 if on each set of three rows there is a representative

from each non-constant orbit ofG acting on 3-tuples from the set of symbolsX. They used

one factorization of complete graphs, combinatorial designs like near resolvable design and

pairs of disjoint Steiner triple systems in order to construct starter arrayM.

Meagher and Stevens [69] extended the idea of Chateauneuf, Colbourn and Kreher

and proposed a strategy for construction of covering arraysof strength two, and several

improved upper bounds were obtained forCAN(k,g). A key advantage of their method is

that they search for a small vector, calledstarter vector, that is used to construct a starter

array, and hence a covering array. This construction involves selecting a subgroup of the

symmetric group ong elements,G< Symg, and finding a starter vectorv∈ Z
k
g. The starter
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vector depends on the groupG. They usedG = 〈(1,2, . . . ,g− 1)〉 < Symg. Note thatG

employs action ong−1 symbols and fixes one symbol 0. The vectorv is used to form a

circulant arrayM. The vectorv is selected such thatM is a starter array, that is, on each set

of two rows there is a representative from each non-constantorbit of G acting on 2-tuples

from Zg. The groupG acting onM produces several matrices which are concatenated to

for a covering array. Often, it is needed to add a small matrix, to complete the covering

conditions. Using this construction, if a starter vector exists inZk
g with respect toG, then

there exists aCA(k(g−1)+1,k,g).

Finally, Lobb, Colbourn, Danziger, Stevens and Torres-Jimenez [60] extended the idea

of Meagher and Stevens by permitting the action of the group on the symbols to fixf

symbols, wheref is any non-negative integer and by allowing the group to be anarbitrary

group of orderg− f . When the number of fixed symbols can take any non-negative value

f , it suffices to use a group of orderg− f , thereby requiring onlyg− f matrices to be con-

catenated to construct a covering array. This constructiondemonstrated improvements in

upper bounds for numerous covering array numbers of strength two using heuristic search.

2.3 PGL construction

The construction given in this section is new and improves many of the upper bounds on

the size of strength four covering arrays. LetX = GF(g−1)∪{∞} be the set ofg symbols

on which we are to construct a 4-CA(n,k,g). We chooseg so thatg−1 is a prime or prime

power.
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2.3.1 Case 1: Two starter vectors

Our construction involves selecting a groupG and finding vectorsu,v∈ Xk, called starter

vectors. We use the vectors to form ak×2k matrixM.

M =























u0 uk−1 . . . u1 v0 vk−1 . . . v1

u1 u0 . . . u2 v1 v0 . . . v2
...

...
...

...
...

...

uk−2 uk−3 . . . uk−1 vk−2 vk−3 . . . vk−1

uk−1 uk−2 . . . u0 vk−1 vk−2 . . . v0























.

Let G = PGL(2,g− 1). For eachσ ∈ PGL(2,g− 1), let Mσ be the matrix formed by

the action ofσ on the elements ofM. The matrix obtained by developingM by G is the

k×2k|G|matrixMG = [Mσ : σ ∈G]. LetC be thek×g matrix that has a constant column

with each entry equal tox, for eachx∈ X. Vectorsu,v∈ Xk are said to bestarter vectors

for a 4-CA(n,k,g) if any 4×2k subarray of the matrixM has at least one representative

from each non-constant orbit ofPGL(2,g−1) acting on 4-tuples fromX. Under this group

action, there are preciselyg+11 orbits of 4-tuples. Theseg+11 orbits are determined by

the pattern of entries in their 4-tuples:

1. {(a,a,a,a)T : a∈ X}

2. {(a,a,a,b)T : a,b∈ X,a 6= b}

3. {(a,a,b,a)T : a,b∈ X,a 6= b}

4. {(a,b,a,a)T : a,b∈ X,a 6= b}

5. {(b,a,a,a)T : a,b∈ X,a 6= b}

6. {(a,a,b,b)T : a,b∈ X,a 6= b}

7. {(a,b,a,b)T : a,b∈ X,a 6= b}
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8. {(a,b,b,a)T : a,b∈ X,a 6= b}

9. {(a,a,b,c)T : a,b,c∈ X,a 6= b 6= c}

10. {(b,a,a,c)T : a,b,c∈ X,a 6= b 6= c}

11. {(a,b,a,c)T : a,b,c∈ X,a 6= b 6= c}

12. {(b,a,c,a)T : a,b,c∈ X,a 6= b 6= c}

13. {(a,b,c,a)T : a,b,c∈ X,a 6= b 6= c}

14. {(b,c,a,a)T : a,b,c∈ X,a 6= b 6= c}

15. g− 3 orbits of patterns with four distinct entries. The reason is this. There are

g(g− 1)(g− 2)(g− 3) 4-tuples with four distinct entries and each orbit contains

g(g−1)(g−2) 4-tuples as|PGL(2,g−1)|= g(g−1)(g−2).

If starter vectorsu,vexist inXk (with respect to the groupG) then there exists a 4-CA(2kg(g−

1)(g−2)+g,k,g). We give an example to explain the method.

Example 2.3.1.Let g= 3, k= 30,X = GF(2)∪{∞} andG= PGL(2,2). The action ofG

on 4-tuples fromX has 14 orbits:

Orb 1:{(0,0,0,0)T ,(∞,∞,∞,∞)T ,(1,1,1,1)T}

Orb 2:{(0,0,0,1)T ,(0,0,0,∞)T ,(∞,∞,∞,0)T ,(∞,∞,∞,1)T ,(1,1,1,0)T ,(1,1,1,∞)T}

Orb 3:{(1,∞,∞,∞)T ,(1,0,0,0)T ,(0,1,1,1)T ,(∞,0,0,0)T ,(0,∞,∞,∞)T ,(∞,1,1,1)T}

Orb 4:{(0,1,0,0)T ,(∞,0,∞,∞)T ,(0,∞,0,0)T ,(∞,1,∞,∞)T ,(1,0,1,1)T ,(1,∞,1,1)T}

Orb 5:{(1,1,∞,1)T ,(∞,∞,1,∞)T ,(0,0,1,0)T,(1,1,0,1)T ,(0,0,∞,0)T ,(∞,∞,0,∞)T}

Orb 6:{(1,1,∞,∞)T ,(∞,∞,1,1)T ,(0,0,1,1)T ,(1,1,0,0)T ,(0,0,∞,∞)T ,(∞,∞,0,0)T}

Orb 7:{(∞,0,∞,0)T ,(0,1,0,1)T ,(∞,1,∞,1)T ,(0,∞,0,∞)T ,(1,0,1,0)T ,(1,∞,1,∞)T}
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Orb 8:{(∞,1,1,∞)T ,(1,∞,∞,1)T ,(1,0,0,1)T ,(0,1,1,0)T ,(∞,0,0,∞)T ,(0,∞,∞,0)T}

Orb 9:{(1,1,∞,0)T ,(∞,∞,1,0)T ,(0,0,1,∞)T ,(1,1,0,∞)T ,(0,0,∞,1)T ,(∞,∞,0,1)T}

Orb 10:{(∞,0,∞,1)T ,(0,1,0,∞)T ,(∞,1,∞,0)T ,(0,∞,0,1)T ,(1,0,1,∞)T ,(1,∞,1,0)T}

Orb 11:{(1,∞,0,1)T ,(0,∞,1,0)T ,(∞,1,0,∞)T ,(0,1,∞,0)T ,(∞,0,1,∞)T ,(1,0,∞,1)T}

Orb 12:{(1,∞,0,∞)T ,(0,∞,1,∞)T ,(∞,1,0,1)T ,(0,1,∞,1)T ,(∞,0,1,0)T ,(1,0,∞,0)T}

Orb 13:{(1,∞,0,0)T ,(0,∞,1,1)T ,(∞,1,0,0)T ,(0,1,∞,∞)T ,(∞,0,1,1)T ,(1,0,∞,∞)T}

Orb 14:{(1,∞,∞,0)T ,(1,0,0,∞)T ,(0,1,1,∞)T ,(∞,0,0,1)T ,(0,∞,∞,1)T ,(∞,1,1,0)T}

The following are starter vectors to construct[MG,C], a 4-CA(363,30,3):

u= (011∞11∞∞∞001∞∞∞1∞10∞∞0∞1100∞01)

v= (11∞∞01101000∞101∞1∞0∞000010∞∞∞).

We used computer search to findu andv. One can check that on each set of 4 rows ofM

there is a representative from each orbit 2-14. Thus, 4-CAN(30,3)≤ 363.

2.3.2 Choice of starter vectorsu and v

The problem is to find two vectorsu,v ∈ Xk such that on each set of 4 rows ofM there

is a representative from each orbit 2-15. To determine whichvectors work as starters, we

define the setsd[x,y,z] for positive integersx,y andz as follows:

d[x,y,z] =
{

(ui,ui+x,ui+x+y,ui+x+y+z) : 0≤ i ≤ k−1
}

⋃

{

(vi ,vi+x,vi+x+y,vi+x+y+z) : 0≤ i ≤ k−1
}

where the subscripts are taken modulok. For computational convenience, we partition the

collection of
(k

4

)

choices of four distinct rows fromk rows into disjoint equivalence classes.

Formally, letSbe the set of all
(k

4

)

4-combinations of the set{0,1, ...,k−1}. Define a

binary relationR onSby putting
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{s1,s2,s3,s4} R{s′1,s
′
2,s
′
3,s
′
4} iff

{s1+d,s2+d,s3+d,s4+d}= {s′1,s
′
2,s
′
3,s
′
4} for somed ∈ N

where all of the addition is modulok. BecauseR is an equivalence relation onS, S

can be partitioned into disjoint equivalence classes. The equivalence class determined by

{s1,s2,s3,s4} ∈ S is given by

[{s1,s2,s3,s4}] =
{

{s1+d,s2+d,s3+d,s4+d}|0≤ d≤ k−1
}

.

Without loss of generality, we may assume that 0= s1 < s2 < s3 < s4 for each equiva-

lence class representative[{s1,s2,s3,s4}]. As an illustration, whenX = {0,1,2, ...,7}. S is

partitioned into 10 disjoint equivalence classes:

[{0,1,2,3}] [{0,1,2,4}] [{0,1,2,5}] [{0,1,2,6}] [{0,1,3,4}]

[{0,1,3,5}] [{0,1,3,6}] [{0,1,4,5}] [{0,1,4,6}] [{0,2,4,6}]

A distance vector(x,y,z,w) is associated with every equivalence class[{s1,s2,s3,s4}]where

x= s2−s1, y= s3−s2, z= s4−s3, w= s1−s4 modk. The fourth distance is redundant be-

causex+y+z+w= k. We rewrite the equivalence class of 4-combinations[{s1,s2,s3,s4}]

as

[x,y,z] =
{

{i, i +x, i +x+y, i +x+y+z}|i = 0,1,2, ...,k−1
}

.

For k= 8, [1,1,1] = [{0,1,2,3}], [1,1,2] = [{0,1,2,4}], [1,1,3] = [{0,1,2,5}], [1,1,4] =

[{0,1,2,6}], [1,2,1] = [{0,1,3,4}], [1,2,2] = [{0,1,3,5}], [1,2,3] = [{0,1,3,6}], [1,3,1] =

[{0,1,4,5}], [1,3,2] = [{0,1,4,6}], [2,2,2] = [{0,2,4,6}].

Lemma 2.3.1.Let S be the set of all4-combinations of{0,1, . . . ,k−1}. Then S can be

partitioned into disjoint equivalence classes

[x,y,z] =
{

{i, i +x, i +x+y, i +x+y+z}|i = 0,1,2, ...,k−1
}

where x= 1,2, ...,⌊k
4⌋, y= x,x+1, ...,k−1 and z= x,x+1, ...,k−1 such that
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(i) 2x+y+z< k when z> x.

(ii) x ≤ y≤ ⌊k−2x
2 ⌋ when z= x.

There are no further classes distinct from these.

Before proving the result, we give an example. WhenS is the set of all 4-combinations of

{0,1,2,3,4,5,6,7}, Scan be partitioned into 10 disjoint classes:[1,1,1], [1,1,2], [1,1,3],

[1,1,4], [1,2,1], [1,2,2], [1,2,3], [1,3,1], [1,3,2] and[2,2,2].

Proof. Let (x,y,z,w) be the distance vector corresponding to equivalence class

[{s1,s2,s3,s4}] wherex= s2−s1, y= s3−s2, z= s4−s3, w= s1−s4 (modk). Then,

[{s1,s2,s3,s4}] = [x,y,z] = [y,z,w] = [z,w,x] = [w,x,y]. (2.1)

Without loss of generality, we choose[x,y,z] as class representative ifx≤ y, x≤ z and

x≤ w. Thus 1≤ x≤ k
4, y = x,x+1, ...,k−1 andz= x,x+1, ...,k−1. We consider two

cases.

Case (i)z> x andx≤ y≤ k−1. Here we prove thatw has to be strictly greater thanx. If

w= x andy> x, then Equation 2.1 gives[x,y,z] = [x,x,y]. But classes of the form[a,a,b]

are also generated whenx= y. If w= x andy= x, then Equation 2.1 gives[x,x,z] = [x,x,x].

But the classes of the form[a,a,a] are also generated under Case (ii). Therefore, in order

to avoid repetition,w has to be strictly greater thanx. That is,w= k−x−y−z> x which

implies 2x+y+z< k.

Case (ii):z= x andx≤ y≤ k−1. If z= x, then Equation 2.1 gives[x,y,x] = [x,w,x]; they

are obtained from the distance vector(x,y,x,w) wherey+w = k−2x. Thus it suffices to

consider the classes of the form[x,y,x] for y≤ ⌊k−2x
2 ⌋ only. Hence the lemma follows.

At this stage, we make a few remarks about the size of equivalence classes defined by above

choices ofx,y andz.

1. If k is an odd integer, each class contains exactlyk distinct choices from the collection

of
(k

4

)

choices and hence there arel = (k−1)(k−2)(k−3)
24 distinct classes of sizek.
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2. If k is an even integer,k2 can be written as sum of two positive integersa andb where

a≤ b in
⌊

k
4

⌋

different ways.

Case 1: If k 6≡ 0 (mod 4), a class of the form[a,b,a] contains onlyk
2 distinct choices.

There are total
⌊

k
4

⌋

equivalence classes of the form[a,b,a] with size k
2 and the re-

maining classes are of sizek.

Case 2: If k≡ 0 (mod 4), a class of the form[a,b,a] contains onlyk
2 distinct choices

and a class of the form[a,a,a] wherea = k
4 contains onlyk

4 distinct choices. Here

we get totalk4−1 equivalence classes of sizek
2, exactly one class of sizek4 and the

remaining classes are of sizek.

For k = 8, there are 10 equivalence classes. The classes[1,3,1] and [2,2,2] are of size 4

and 2 respectively and the remaining 8 classes are of size 8 each. Thus 8×8+4+2=
(8

4

)

.

Algorithm 1 will generate all the equivalence classes without repetition.

Theorem 2.3.1.Let X= GF(g−1)∪{∞} and G= PGL(2,g−1). If there exists a pair of

vectors u,v∈ Xk such that each d[x,y,z] has a representative from each of the orbits 2-15,

then there exists a4-CA(2kg(g−1)(g−2)+g,k,g) covering array.

Proof. Let u,v ∈ Xk be vectors such that eachd[x,y,z] has a representation from each of

the orbits 2-15. Usingu,v, we create the matrix[MG,C]. Let{s1,s2,s3,s4} be a member in

S. By Lemma 1, there exists three positive integersx0, y0 andz0 such that{s1,s2,s3,s4} ∈

[x0,y0,z0]. It is given thatd[x0,y0,z0] has a representative from each of the orbits 2-15. In

other words, if we look at the rowss1, s2, s3, s4 of M, we see a representative from each

of the orbits 2-15. Consequently, becausePGL(2,g−1) is 3-transitive onX, [MG, C] is a

4-CA(2kg(g−1)(g−2)+g,k,g).



42

Algorithm 1 Equivalence-Classes(k,4)
Input: k

Output: All [x,y,z] classes.

for x← 1 to k
4 do

for y← x to k−1 do

if y> k−2x
2 then

for z← x+1 to k−2x−y−1 do

add [x,y,z]

end for

else

if y== k−2x
2 and x== k−2x

2 then

add
[

k
4,

k
4,

k
4

]

else

for z← x to k−2x−y−1 do

add [x,y,z]

end for

end if

end if

end for

end for
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2.3.3 Case 2: Two vectorsu,v and a matrix C1

If we do not find vectorsu andv such that eachd[x,y,z] contains a representative from

each of the orbits 2-15, we look for vectors that produce an array with maximum possible

coverage. In order to complete the covering conditions, we add a small matrixC1. We give

an example below to illustrate the technique.

Example 2.3.2.Let k = 21 andg = 3. Here we are unable to find vectorsu andv such

that eachd[x,y,z] contains a representative from each of the orbits 2-15. Fork= 21, there

are 285[x,y,z] classes. All classes[x,y,z] are obtained by the algorithm EQUIVALENCE-

CLASSES(k,4). One can check that for the vectors

u= (00001010∞1∞∞10∞∞001∞1)

v= (0000100∞00∞10001∞111∞)

there is a representative from each orbit 2-15 on 276 of thed[x,y,z] classes. Table 2.1 shows

nine classes which do not have representative from all the orbits:

Table 2.1: List of classes not having representative from all the orbits fork= 21 andg= 3

Class Missing orbits

d[1,2,2] 10

d[1,5,6] 2

d[1,6,12] 5

d[1,13,5] 9

d[2,3,8] 6

d[2,7,3] 10

d[2,12,3] 13

d[3,6,8] 6

d[3,7,7] 10
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In order to complete the covering conditions, we add a small matrixC1.

C1 =

















































∞ ∞ 0 0 1 ∞ ∞ 0 0 1 ∞ ∞ 0 0 0 ∞ ∞ 1 0 0 ∞

0 1 1 ∞ 0 0 ∞ 1 0 0 ∞ 1 1 ∞ 0 0 1 1 ∞ ∞ 0

1 1 ∞ 0 0 0 ∞ ∞ 1 0 ∞ ∞ 1 1 0 0 0 1 ∞ ∞ 0

1 ∞ 1 0 0 ∞ 1 1 0 0 ∞ 1 0 0 ∞ 1 0 1 0 ∞ 1

0 0 1 1 0 0 0 ∞ 1 1 0 0 ∞ ∞ 1 ∞ 0 0 1 ∞ ∞

∞ 0 0 0 ∞ ∞ 0 0 0 ∞ 0 1 1 ∞ ∞ 0 1 0 0 ∞ 0

∞ 0 1 0 1 ∞ 0 1 0 1 1 ∞ ∞ 0 1 0 1 1 1 1 ∞

∞ 1 ∞ 0 ∞ ∞ 1 1 0 ∞ ∞ ∞ 1 0 0 0 1 0 ∞ 0 ∞

1 0 0 0 0 1 0 0 0 0 0 ∞ 0 0 0 ∞ 0 0 1 0 1

















































T

We use computer search to find matrixC1. This matrix has the property that every choice

of four rows in[1,2,2], [2,7,3] and[3,7,7] contains at least one representative from orbit

10; every choice of four rows in[2,3,8] and [3,6,8] contains at least one representative

from orbit 6; each choice of four rows in[1,5,6], [1,6,12], [1,13,5] and[2,12,3] contains

at least one representative from orbit 2, 5, 9 and 13 respectively. We also need to use the

following matrix

C=

















0 1 ∞

0 1 ∞
...

...
...

0 1 ∞

















to ensure the coverage of all identical 4-tuples. Therefore, [MG, CG
1 , C] is a 4-CA(309,21,3).

2.3.4 Case 3: One vectoru and a matrix C1

Fork= 37 to 58, it is enough to use one vectoru and aC1 matrix of orderk× ℓ with ℓ < k.

For vectoru = (u0,u1, . . . ,uk−1), we define the setsd[x,y,z] for positive integersx,y,z as

follows:

d[x,y,z] =
{

(ui,ui+x,ui+x+y,ui+x+y+z) : 0≤ i ≤ k−1
}
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where the subscripts are taken modulok. Vectoru= (u0,u1, . . . ,uk−1) is said to be a vector

with good 4-way configuration coverage, if eachd[x,y,z] class has a representative from

most of the orbits 2-15. We use the vector to form ak×k matrix

M =























u0 uk−1 . . . u1

u1 u0 . . . u2
...

...
...

uk−2 uk−3 . . . uk−1

uk−1 uk−2 . . . u0























.

In order to complete the covering conditions, we add a small matrixC1. Therefore,[MG,CG
1 ,C]

is a strength four covering array.

Example 2.3.3.Let k= 39 andg= 3. Here we are unable to find a vectoru such that each

d[x,y,z] contains a representative from each of the orbits 2-15. Fork = 39, there are 2109

[x,y,z] classes. The vector

u= (001∞∞11∞11∞0001∞11∞101∞∞∞1∞0∞0010∞00∞∞0)

is a vector with high 4-way configuration coverage measure, that is eachd[x,y,z] class

corresponds tou has a representative from most of the orbits 2-15. In order tocomplete

the covering conditions, we use computer search to find a 39×34 matrixC1. To ensure the

coverage of all identical 4-tuples we concatenate the matrix C. Therefore,[MG, CG
1 , C] is

a 4-CA(441,39,3).

2.4 Improving the solutions

We examine two methods to obtain small improvements on the computational results ob-

tained.
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2.4.1 Extending a solution

Until this point, covering arrays have been developed by applying a cyclic rotation of the

starter vectors in addition to the action ofPGL on the symbols. As in [69], one can also

consider fixing one row, and developing the remainingk−1 cyclically. This can be viewed

as first finding a solution of the type already described onk− 1 rows, but requiring an

additional property. For the 4-subsets of{0, . . . ,k−2}, equivalence classes are defined as

before, with arithmetic modulok−1:

[{s1,s2,s3,s4}] =
{

{s1+d,s2+d,s3+d,s4+d} | 0≤ d≤ k−2
}

.

For 3-subsets{t1, t2, t3} of {0, . . . ,k−2} we define further equivalence classes as

[{t1, t2, t3,k−1}] =
{

{t1+d, t2+d, t3+d,k−1} | 0≤ d≤ k−2
}

.

If we can place an entry in positionk− 1 to extend the length of each starter vector so

that every one of the (old and new) equivalence classes represents each of the orbits 2-15,

we obtain a strength four covering array of degreek. We show an example to explain the

method.

Example 2.4.1.This example explains how a covering array of degreek = 35 can be ex-

tended to one of degreek = 36 without increasing the size of the covering array. For the

4-subsets of{0, . . . ,34}, there are total 1496 equivalence classes obtained from algorithm

Equivalence-Classes(k,4). Two length-35 starter vectors are shown below:

u= (01∞0∞∞1000∞01∞∞0∞1∞111∞∞∞01∞01000∞1)

v= (0∞00111∞0∞110∞11∞110∞010010000∞1∞∞0)

Each new equivalence class[{t1, t2, t3,35}] corresponds to a 3-subset{t1, t2, t3} of {0, . . . ,34}

represents each of the orbits 2-14 whenu35 = ∞ andv35 = ∞. We form a 36×70 starter

matrixM for k= 36 as follows:
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M1 =





























u0 uk−1 . . . u1 v0 vk−1 . . . v1

u1 u0 . . . u2 v1 v0 . . . v2
...

...
...

...
...

...

uk−2 uk−3 . . . uk−1 vk−2 vk−3 . . . vk−1

uk−1 uk−2 . . . u0 vk−1 vk−2 . . . v0

∞ ∞ . . . ∞ ∞ ∞ . . . ∞





























.

Now [MG, C] is a 4-CA(423,36,3) obtained by extending 4-CA(423,35,3).

The potential advantage of this approach is that a solution for degreek−1 can sometimes

be extended to one of degreek without increasing the size of the covering array produced.

Indeed we found that the solutions fork−1∈ {32,34,35} do ensure that the new equiv-

alence classes also represent each of the orbits 2-15. Hencewe obtain the following im-

provements. Old indicates the bound obtained by applying our methods tok; Improved

gives the bound by applying the method tok− 1 and ensuring that the new equivalence

classes represent all orbits:

Table 2.2: Improved bounds on 4-CAN(k,3) obtained by extending a solution.

k Old Improved k Old Improved k Old Improved

33 399 387 35 423 411 36 435 423

2.4.2 Randomized Post-optimization

Nayeri, Colbourn, and Konjevod [73] describe a post-optimization strategy which, when

applied to a covering array, exploits the flexibility of symbols in an attempt to reduce its

size. We applied their method to the arrays provided here, and to arrays obtained by remov-

ing one or more rows. Because the method is described in detail in [73], we simply report

improvements for eight values ofk. Basic gives the bound from starter vectors, Improved
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gives the bound on 4-CAN(k,3) after post-optimization:

Table 2.3: Improved bounds on 4-CAN(k,3) obtained by randomized post-optimization.

k Basic Improved k Basic Improved

19 309 300 20 309 303

21 309 305 22 309 307

27 351 345 28 363 360

34 411 410 37 435 433

2.5 Results

Tables 2.4, 2.5, 2.6 and 2.7 give a list of starter vectors andmatrix C1 that improves the

best known bounds. The old bounds are from [30]. When the new bound is marked with

an asterisk, post-optimization has been applied (see Section 2.4).
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Table 2.4: Improved strength four covering arrays forg= 3.

k Starter vectors and matrixC1 New Old

bound bound [30]

21

u= (00001010∞1∞∞10∞∞001∞1)

v= (0000100∞00∞10001∞111∞)

C1 =

















































∞ ∞ 0 0 1 ∞ ∞ 0 0 1 ∞ ∞ 0 0 0 ∞ ∞ 1 0 0 ∞

0 1 1 ∞ 0 0 ∞ 1 0 0 ∞ 1 1 ∞ 0 0 1 1∞ ∞ 0

1 1 ∞ 0 0 0 ∞ ∞ 1 0 ∞ ∞ 1 1 0 0 0 1∞ ∞ 0

1 ∞ 1 0 0 ∞ 1 1 0 0∞ 1 0 0 ∞ 1 0 1 0∞ 1

0 0 1 1 0 0 0∞ 1 1 0 0∞ ∞ 1 ∞ 0 0 1 ∞ ∞

∞ 0 0 0 ∞ ∞ 0 0 0∞ 0 1 1 ∞ ∞ 0 1 0 0∞ 0

∞ 0 1 0 1∞ 0 1 0 1 1∞ ∞ 0 1 0 1 1 1 1∞

∞ 1 ∞ 0 ∞ ∞ 1 1 0∞ ∞ ∞ 1 0 0 0 1 0∞ 0 ∞

1 0 0 0 0 1 0 0 0 0 0∞ 0 0 0 ∞ 0 0 1 0 1

















































T

305* 315

22

u= (0000011∞0∞0110∞1∞∞∞01∞)

v= (00010010∞1∞∞0∞01∞10∞∞1)

C1 =



































0 ∞ ∞ 0 0 0 ∞ ∞ ∞ 0 0 0 ∞ ∞ 0 0 0 ∞ ∞ ∞ 0 0

∞ ∞ 0 0 0 ∞ ∞ ∞ 0 0 ∞ ∞ ∞ 0 0 0∞ ∞ ∞ 0 0 ∞

1 ∞ 1 ∞ 0 ∞ 0 1 ∞ 1 ∞ 1 ∞ 1 ∞ 0 0 0 1∞ 1 0

0 1 1 1 0 0 1 1∞ 0 ∞ 1 1 0 0 1 1 0 0∞ 1 ∞

∞ 0 0 ∞ ∞ 1 0 1 ∞ 0 0 ∞ ∞ ∞ 0 0 1 ∞ 0 0 1 ∞

∞ 0 ∞ 1 1 1 0 1∞ 1 ∞ 0 0 1 1 1 0 0 1 1∞ 0

0 0 0 ∞ ∞ 1 0 0 ∞ ∞ ∞ 0 ∞ 0 1 0 1 0 0 0 1∞



































T

307* 315
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Table 2.5: Improved strength four covering arrays forg= 3 (continued).

k Starter vectors and matrixC1 New Old

bound bound [30]

27

u= (1101011∞∞∞0∞00∞∞1∞011∞0100∞)

v= (11∞0∞1011∞∞∞0∞0∞01∞00001∞∞∞)

C1 =

















0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1

0 ∞ 0 ∞ 0 ∞ 0 ∞ 0 ∞ 0 ∞ 0 ∞ 0 ∞ 0 ∞ 0 ∞ 0 ∞ 0 ∞ ∞ 0 ∞

0 ∞ 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0∞ 0 0

















T

345* 378

28

u= (1∞∞00∞∞1∞01101111∞0∞0101∞∞∞1)

v= (∞1011∞110∞000∞1∞∞10∞∞0∞00∞01)

C1 =













∞ 0 ∞ 0 0 ∞ 0 0 ∞ 0∞ ∞ 0 ∞ ∞ 0 ∞ 0 0 ∞ 0 0 ∞ 0 ∞ ∞ 0∞
∞ 0 0 1 0 1∞ 0 ∞ 1 0 ∞ ∞ 0 1 0 0∞ 0 ∞ 1 0 1∞ 0 1 1 0

1 0 ∞ 0 ∞ ∞ 0 ∞ ∞ 1∞ 1 0 0 0 1∞ 1 0 ∞ 1∞ 1 0 ∞ 0 1 1

0 ∞ 0 ∞ 0 0 0 0∞ 0 1 0 1 0∞ 0 1 0∞ 0 0 1 0 0 0 0 0 0













T

360* 383

30
u= (011∞11∞∞∞001∞∞∞1∞10∞∞0∞1100∞01)

v= (11∞∞01101000∞101∞1∞0∞000010∞∞∞)
363 393

32
u= (∞1100010∞111∞1∞010∞∞0100∞∞0∞∞010)

v= (∞000∞1∞∞0∞000110∞∞100∞0∞11∞11111)
387 409

33 Obtained fromCA(387,32,3) 387 417

34
u= (00∞101∞∞∞1001∞010∞∞0∞0∞01∞∞0∞11111)

v= (1100∞1∞01∞10110∞∞0∞∞011∞101001∞000)
410* 423

35 Obtained fromCA(411,34,3) 411 429
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Table 2.6: Improved strength four covering arrays forg= 3 (continued).

k Starter vectors and matrixC1 New Old

bound bound [30]

35
u= (01∞0∞∞1000∞01∞∞0∞1∞111∞∞∞01∞01000∞1)

v= (0∞00111∞0∞110∞11∞110∞010010000∞1∞∞0)
423 429

36 Obtained fromCA(423,35,3) 423 441

37
u= (001∞10∞1∞01000∞1100∞101111∞001∞∞∞∞00∞)

C1: 37×35 matrix
433* 441

39
u= (001∞∞11∞11∞0001∞11∞101∞∞∞1∞0∞0010∞00∞∞0)

C1: 39×34 matrix
441 453

41
u= (∞001∞010∞∞0∞0101111∞∞011∞∞10000∞0∞∞10∞0∞1)

C1: 41×34 matrix
453 465

42
u= (∞0111∞1∞∞100∞101∞01000∞011∞1010011∞00∞1∞∞∞)

C1: 42×35 matrix
465 471

46
u= (∞00000∞1100010∞101∞∞1∞01∞00110∞∞∞∞11∞1101∞101∞)

C1: 46×33 matrix
477 483

47
u= (∞0011∞1101∞1∞000∞1∞01∞00∞111010∞00∞∞∞10∞∞1∞∞1∞∞)

C1: 47×33 matrix
483 489

48
u= (01∞∞∞11∞01∞1010111∞∞001∞∞∞0∞110010∞0∞∞000100∞00∞)

C1: 48×33 matrix
489 495

51

u= (∞0∞∞101011∞000∞∞11∞1∞1001∞∞∞∞∞11

∞0∞1∞01111001001∞00)

C1: 51×32 matrix

501 507
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Table 2.7: Improved strength four covering arrays forg= 3 (continued).

k Starter vectors and matrixC1 New Old

bound bound [30]

55

u= (1∞∞1∞1∞0∞111∞∞1∞0010∞00∞0011011∞1∞0

00∞11∞∞0101∞001110∞∞)

C1: 55×30 matrix

513 519

57

u= (∞10∞∞∞0011∞01∞10∞11001∞1∞∞0011∞∞110

110111010∞∞1∞0∞0000∞01)

C1: 57×29 matrix

519 531

58

u= (∞0∞∞00101∞0010∞0∞1∞1000∞0∞11001∞00010∞111

∞∞∞11011011∞∞0∞0∞)

C1: 58×29 matrix

525 531

63

u= (1101∞10∞100∞∞∞00101∞∞0∞0∞∞1∞010∞11∞∞∞01

10∞10110001∞0∞11∞∞0∞0∞11)

C1: 63×26

537 549

67

u= (010101∞1100∞100∞11∞∞∞∞0110∞01111∞∞1011∞0∞

1101∞0∞∞0∞101∞∞1∞∞10000∞00)

C1: 67×25

555 561

70

u= (1∞001∞11∞1∞∞∞0∞11∞0∞0∞1∞00011∞0∞∞∞∞111

∞0101001∞010011∞∞010000∞10∞∞1100)

C1: 70×24

567 573

72

u= (∞∞000∞1010∞∞∞∞∞010111000∞11011∞011101∞0∞∞1∞00

∞1∞1∞∞010∞101100∞01∞∞∞1∞∞0∞)

C1: 72×24

573 579

74

u= (1∞0010∞∞01∞∞∞111∞∞1∞∞0100∞∞∞∞10∞1011011∞

001100001∞∞0∞0∞0∞∞101100∞1∞01∞111∞)

C1: 74×24

585 591
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Figure 2.1: Scatter plot for improved bounds on 4-CAN(k,3)



Chapter 3

Testing Arrays with High Coverage Mea-

sure

In most software development environments, time, computing and human resources needed

to perform the testing of a component is strictly limited. Given the different input parame-

ters with multiple possible values for each parameter, performing exhaustive testing which

tests all possible test cases is practically impossible. When testing a software system with

k parameters, each of which must be tested withg values, the total number of possible test

cases isgk. For instance, if there are 20 parameters and three values for each parameter

then the number of input combinations or test cases of this system is 320 = 3486784401.

A fundamental problem with software testing is that testingunder all combinations of in-

puts is not feasible, even with a simple product [53, 58]. Budgets assigned for software

testings are generally limited. Software developers cannot test everything, but they can use

combinatorial test design to identify a small number of testcases with high configuration

coverage. The goal of the most combinatorial testing research is to create test suites that

find a large percentage of errors of a system while having a small number of tests required.

To model this situation, we consider the problem of determining a testing array with high

configuration coverage measure within a fixed number of test cases. More formally, given

fixed values oft,k,g andn our objective is to build a testing arrayA of size at mostn

having hight-way configuration coverage measure. This chapter presentsalgebraic con-

structions for testing arrays with high 3- and 4-way configuration coverage measure. See

also [7, 6]. In Section 3.1, we recall the definitions of combinatorial coverage and config-

54
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uration coverage from [48, 56]. In Section 3.2, we present analgebraic construction for

testing arrays with high 3-way configuration coverage measure. In Section 3.3, we present

another algebraic construction for testing arrays with high 4-way configuration coverage

measure. In Section 3.4, we present the computational results.

3.1 Preliminary

Let n,k andg be positive integers. Atesting arrayA is ak×n array in which entries are

from a finite set ofg symbols. Each row of the testing array corresponds to a parameter,

each column corresponds to a test case, and theg symbols correspond to the values for each

parameter.

Example 3.1.1.Here is an example of a testing arrayA for a system with four parameters

A,B,C, andD each of which having two values or symbols.

A a0 a1 a1 a0 a1 a0 a0 a1

B b0 b1 b1 b0 b0 b1 b1 b0

C c0 c1 c0 c1 c0 c0 c1 c1

D d0 d1 d0 d1 d1 d1 d0 d1

Definition 3.1.1. For a set oft parameters, at-way parameter-value configurationis an

ordered tuple oft valid values, one for each of the parameters.

For t = 3, (b1,c0,d0) and(b1,c1,d0) are two different parameter-value configurations for

parametersB,C, andD. We now recall two types of coverage measure from [48, 56] and

refer these articles for motivation.

Definition 3.1.2. For a given set ofk parameters,simple t-way combination coverageis the

proportion oft-way combinations ofk parameters for which all parameter-value configura-

tions are fully covered.



56

In Example 3.1.1, out of four 3-way combinationsABC, ABD, ACD, andBCD, only ABC

has all eight 3-way parameter-value configurations covered, so the simple 3-way combina-

tion coverage for the test arrayA is 1
4 = 25%.

Whent parameters withg values each are considered, there aregt t-way parameter-value

configurations. So fork parameters withg values each, there are
(k

t

)

gt possiblet-way

parameter-value configurations to be covered in a strengtht covering array. We now recall

a measure with respect to the number of parameter-value configurations covered.

Definition 3.1.3. Thet-way configuration coverageµt(A ) of a testing arrayA is defined

by the ratio between the number oft-way parameter-value configurations contained in the

column vectors ofA and the total number oft-way parameter-value configurations given

by
(k

t

)

gt .

If the testing array is a covering array, then both the simplecombination coverage and

configuration coverage measure are 100%. In Example 3.1.1, there are
(4

3

)

= 4 possible

parameter combinations and
(4

3

)

23 = 32 possible 3-way parameter-value configurations.

Among these 32 3-way parameter-value configurations, 29 3-way parameter-value config-

urations are covered and missing ones are(b0,c1,d0), (a1,b0,d0), and(a1,c1,d0). Thus

we haveµ3(A ) = 29
32 = 90.6% for 3-way configuration coverage measure. Our objective is

to construct a testing arrayA of size at mostn having hight-way configuration coverage

measure, given fixed values oft,k,g andn. This problem is also calledcovering arrays

with budget constraints.

3.2 Construction of testing arrays with high µ3(A )

Given fixed values ofk,n andg, so thatg−2 is a prime power, we are to construct a testing

arrayA with high 3-way configuration coverage measure. Letq be a prime power andFq

be the finite field withq elements. LetX = {Fq,∞1,∞2} be the set ofg symbols (values)
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on which we are to construct a testing array having good 3-wayconfiguration coverage

measure. Clearly,|X| = g = q+2; we chooseg so thatg−2 is a prime or prime power.

Our construction requires selecting a groupG and finding a vectorv∈ Xk, called a vector

with good configuration coverage. We use the vectorv= (v0,v1, . . . ,vk−1) to form ak×k

circulant matrix

M =

















v0 vk−1 . . . v1

v1 v0 . . . v2
...

...
...

vk−1 vk−2 . . . v0

















.

Let G= AGL(1,q) =

{

α : Fq→ Fq | xα = ax+b;a 6= 0 anda,b∈ Fq

}

be the set of all

linear transformations. Note thatG is a group with respect to functional composition and

|G| = q(q−1). By Theorem 2.1.2, the group is sharply 2-transitive onFq. Consider the

stabilizer stabG(x) for eachx∈ Fq. If stabG(x) is nontrivial for eachx∈ Fq, we defineH to

be a non-empty subset ofG such that

1. H = q andH does not contain the identity transformation ofG

2. |H ∩stabG(x)|= 1 for everyx∈ Fq.

If stabG(x) is trivial for somex, thenH is empty. We define an action ofG on the set

{∞1,∞2} as follows:

∞iα =











∞ j , if α ∈ H wherei 6= j

∞i , otherwise

If H is non-empty then the action is transitive on{∞1,∞2}. This action together with

natural action ofG on Fq exhibits an action ofG on X. This action ofG on 3-tuples from

X has the following orbits:

(1) {(a,a,a)T : a∈ Fq}

(2) {(∞1,∞1,∞1)
T ,(∞2,∞2,∞2)

T}
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(3) {(∞1,∞1,∞2)
T ,(∞2,∞2,∞1)

T}

(4) {(∞1,∞2,∞1)
T ,(∞2,∞1,∞2)

T}

(5) {(∞2,∞1,∞1)
T ,(∞1,∞2,∞2)

T}

(6) {(a,a,∞i)
T : a∈ Fq}

(7) {(a,∞i,a)T : a∈ Fq}

(8) {(∞i,a,a)T : a∈ Fq}

(9) {(a,∞i,∞i)
T : a∈ Fq}

(10) {(∞i,a,∞i)
T : a∈ Fq}

(11) {(∞i,∞i ,a)T : a∈ Fq}

(12) {(a,∞i,∞ j)
T : a∈ Fq, i 6= j}

(13) {(∞i,a,∞ j)
T : a∈ Fq, i 6= j}

(14) {(∞i,∞ j ,a)T : a∈ Fq, i 6= j}

(15) {(a,b,∞i)
T : a,b∈ Fq,a 6= b}

(16) {(a,∞i,b)T : a,b∈ Fq,a 6= b}

(17) {(∞i,a,b)T : a,b∈ Fq,a 6= b}

(18) {(a,a,b)T : a,b∈ Fq,a 6= b}

(19) {(a,b,a)T : a,b∈ Fq,a 6= b}

(20) {(b,a,a)T : a,b∈ Fq,a 6= b}

(21) q−2 orbits of the form{(a,b,c)T : a,b,c∈ Fq,a 6= b 6= c}.
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Depending on the value ofg there could be more than one orbit of the form 6-17. Forv

to be a starter vector, any three rows in the matrixM must have at least one representative

from each of the orbits 6-21. If starter vector is not found, we look for a vectorv with

good configuration coverage measure. Vectorv = (v0,v1, . . . ,vk−1) is said to be a vector

with good 3-way configuration coverage, if every 3×k subarray ofM has a representative

from most of the orbits 6-21. We also need to useC1 = 3-CA(n′,k,2), a minimum size

covering array with entries from{∞1,∞2} to ensure the coverage of all triples in the orbits

2-5. LetC be thek×q matrix that has a constant column with each entry equal tox, for each

x∈ Fq. We useC to ensure the coverage of all triples in orbit 1. The groupAGL(1,g−2)

acting on the matrixM produces several matrices that are concatenated withC1 andC to

form a testing array of sizek(g−2)(g−3)+n′+g−2 having good 3-way configuration

coverage. More formally, ifα ∈ AGL(1,g− 2), thenMα is thek× k matrix where the

[i, j]th entry isM[i, j]α , the image ofM[i, j] underα. The matrix obtained by developing

M by AGL(1,g−2) is thek×k(g−2)(g−3) matrix

MAGL(1,g−2) = [Mα : α ∈ AGL(1,g−2)].

Thus, ifk(g−2)(g−3)+n′+g−2≤ n, then
[

MAGL(1,g−2),C1,C
]

is a testing array of size

less than or equal ton having high 3-way configuration coverage. We give two examples

to illustrate the method.

Example 3.2.1.Let g = 5, k = 32, X = GF(3)∪{∞1,∞2} andG = AGL(1,3). The ele-

ments ofG areα1,α2,α3,α4,α5 andα6 where

xα1 = x xα2 = x+1 xα3 = x+2

xα4 = 2x xα5 = 2x+1 xα6 = 2x+2

for all x ∈ GF(3). The stabilizers of elements fromGF(3) are stabG(0) = {α1,α4},

stabG(1) = {α1,α6} and stabG(2) = {α1,α5}. As α1 is the identity ofAGL(1,3), we set

H = {α4,α5,α6}. Thus the action ofG on{∞1,∞2} is given by

∞1α1 = ∞1,∞1α2 = ∞1,∞1α3 = ∞1,∞1α4 = ∞2,∞1α5 = ∞2,∞1α6 = ∞2

∞2α1 = ∞2,∞2α2 = ∞2,∞2α3 = ∞2,∞2α4 = ∞1,∞2α5 = ∞1,∞2α6 = ∞1.
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The action ofG on 3-tuples fromX has 24 orbits:

Orb 1:{(0,0,0)T ,(1,1,1)T ,(2,2,2)T}

Orb 2:{(∞1,∞1,∞1)
T ,(∞2,∞2,∞2)

T}

Orb 3:{(∞1,∞1,∞2)
T ,(∞2,∞2,∞1)

T}

Orb 4:{(∞1,∞2,∞1)
T ,(∞2,∞1,∞2)

T}

Orb 5:{(∞1,∞2,∞2)
T ,(∞2,∞1,∞1)

T}

Orb 6:{(0,0,∞1)
T ,(1,1,∞1)

T ,(2,2,∞1)
T ,(0,0,∞2)

T ,(1,1,∞2)
T ,(2,2,∞2)

T}

Orb 7:{(0,∞1,0)T ,(1,∞1,1)T ,(2,∞1,2)T ,(0,∞2,0)T ,(1,∞2,1)T ,(2,∞2,2)T}

Orb 8:{(∞1,0,0)T ,(∞1,1,1)T ,(∞1,2,2)T ,(∞2,0,0)T ,(∞2,1,1)T ,(∞2,2,2)T}

Orb 9:{(0,∞1,∞1)
T ,(1,∞1,∞1)

T ,(2,∞1,∞1)
T ,(0,∞2,∞2)

T ,(1,∞2,∞2)
T ,(2,∞2,∞2)

T}

Orb 10:{(∞1,0,∞1)
T ,(∞1,1,∞1)

T ,(∞1,2,∞1)
T ,(∞2,0,∞2)

T ,(∞2,1,∞2)
T ,(∞2,2,∞2)

T}

Orb 11:{(∞1,∞1,0)T ,(∞1,∞1,1)T ,(∞1,∞1,2)T ,(∞2,∞2,0)T ,(∞2,∞2,1)T ,(∞2,∞2,2)T}

Orb 12:{(0,∞1,∞2)
T ,(1,∞1,∞2)

T ,(2,∞1,∞2)
T ,(0,∞2,∞1)

T ,(1,∞2,∞1)
T ,(2,∞2,∞1)

T}

Orb 13:{(∞1,0,∞2)
T ,(∞1,1,∞2)

T ,(∞1,2,∞2)
T ,(∞2,0,∞1)

T ,(∞2,1,∞1)
T ,(∞2,2,∞1)

T}

Orb 14:{(∞1,∞2,0)T ,(∞1,∞2,1)T ,(∞1,∞2,2)T ,(∞2,∞1,0)T ,(∞2,∞1,1)T ,(∞2,∞1,2)T}

Orb 15 I:{(0,1,∞1)
T ,(1,2,∞1)

T ,(2,0,∞1)
T ,(0,2,∞2)

T ,(1,0,∞2)
T ,(2,1,∞2)

T}

Orb 15 II:{(0,1,∞2)
T ,(1,2,∞2)

T ,(2,0,∞2)
T ,(0,2,∞1)

T ,(1,0,∞1)
T ,(2,1,∞1)

T}

Orb 16 I:{(0,∞1,1)T ,(1,∞1,2)T ,(2,∞1,0)T ,(0,∞2,2)T ,(1,∞2,0)T ,(2,∞2,1)T}

Orb 16 II:{(0,∞2,1)T ,(1,∞2,2)T ,(2,∞2,0)T ,(0,∞1,2)T ,(1,∞1,0)T ,(2,∞1,1)T}

Orb 17 I:{(∞1,0,1)T ,(∞1,1,2)T ,(∞1,2,0)T ,(∞2,0,2)T ,(∞2,1,0)T ,(∞2,2,1)T}

Orb 17 II:{(∞2,0,1)T ,(∞2,1,2)T ,(∞2,2,0)T ,(∞1,0,2)T ,(∞1,1,0)T ,(∞1,2,1)T}
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Orb 18:{(0,0,1)T ,(1,1,2)T ,(2,2,0)T ,(0,0,2)T ,(1,1,0)T ,(2,2,1)T}

Orb 19:{(0,1,0)T ,(1,2,1)T ,(2,0,2)T ,(0,2,0)T ,(1,0,1)T ,(2,1,2)T}

Orb 20:{(0,1,1)T ,(1,2,2)T ,(2,0,0)T ,(0,2,2)T ,(1,0,0)T ,(2,1,1)T}

Orb 21:{(0,1,2)T ,(1,2,0)T ,(2,0,1)T ,(0,2,1)T ,(1,0,2)T ,(2,1,0)T}

We use computer search to find a vectorvwith good 3-way configuration coverage measure,

that is, each 3×k sub-matrix ofM has a representative from most of the orbits 6-21:

v= (∞2∞1220∞1210∞11∞12∞1110111∞20002∞21∞1∞12∞1∞2).

Build the 32×32 matrixM from v. The action ofG = {x,x+1,x+2,2x,2x+1,2x+2}

on M produces six matrices which are concatenated to getMG. A small covering array

C1 = 3-CA(24,32,2) on symbols{∞1,∞2} and a 32×3 arrayC as shown below needs to

be concatenated to cover interactions in orbits 1-5:

C=

















0 1 2

0 1 2
...

...
...

0 1 2

















.

The matrixA = [MG,C1,C] is a 32×219 testing array with 3-way configuration coverage

measureµ3(A ) = 0.905.

Example 3.2.2.Let g = 4, k = 50, X = GF(2)∪{∞1,∞2} andG = AGL(1,2). The ele-

ments ofG areα1,α2 where

xα1 = x and xα2 = x+1

for all x ∈ GF(2). The stabilizers of elements fromGF(2) are stabG(0) = {α1} and

stabG(1) = {α1}. As α1 is the identity ofAGL(1,2), we setH = ∅. Thus the action

of G on{∞1,∞2} is given by



62

∞1α1 = ∞1,∞1α2 = ∞1,∞2α1 = ∞2,∞2α2 = ∞2.

The action ofG on 3-tuples fromX has 36 orbits:

Orb 1:{(0,0,0)T ,(1,1,1)T}

Orb 2 I:{(∞1,∞1,∞1)
T}

Orb 2 II: {(∞2,∞2,∞2)
T}

Orb 3 I:{(∞1,∞1,∞2)
T}

Orb 3 II: {(∞2,∞2,∞1)
T}

Orb 4 I:{(∞1,∞2,∞1)
T}

Orb 4 II: {(∞2,∞1,∞2)
T}

Orb 5 I:{(∞1,∞2,∞2)
T}

Orb 5 II: {(∞2,∞1,∞1)
T}

Orb 6 I:{(0,0,∞1)
T ,(1,1,∞1)

T}

Orb 6 II: {(0,0,∞2)
T ,(1,1,∞2)

T}

Orb 7 I:{(0,∞1,0)T ,(1,∞1,1)T}

Orb 7 II: {(0,∞2,0)T ,(1,∞2,1)T}

Orb 8 I:{(∞1,0,0)T ,(∞1,1,1)T}

Orb 8 II: {(∞2,0,0)T ,(∞2,1,1)T}

Orb 9 I:{(0,∞1,∞1)
T ,(1,∞1,∞1)

T}

Orb 9 II: {(0,∞2,∞2)
T ,(1,∞2,∞2)

T}

Orb 10 I:{(∞1,0,∞1)
T ,(∞1,1,∞1)

T}

Orb 10 II:{(∞2,0,∞2)
T ,(∞2,1,∞2)

T}

Orb 11 I:{(∞1,∞1,0)T ,(∞1,∞1,1)T}

Orb 11 II:{(∞2,∞2,0)T ,(∞2,∞2,1)T}

Orb 12 I:{(0,∞1,∞2)
T ,(1,∞1,∞2)

T}

Orb 12 II:{(0,∞2,∞1)
T ,(1,∞2,∞1)

T}

Orb 13 I:{(∞1,0,∞2)
T ,(∞1,1,∞2)

T}

Orb 13 II:{(∞2,0,∞1)
T ,(∞2,1,∞1)

T}

Orb 14 I:{(∞1,∞2,0)T ,(∞1,∞2,1)T}

Orb 14 II:{(∞2,∞1,0)T ,(∞2,∞1,1)T}

Orb 15 I:{(0,1,∞1)
T ,(1,0,∞1)

T}

Orb 15 II:{(0,1,∞2)
T ,(1,0,∞2)

T}

Orb 16 I:{(0,∞1,1)T ,(1,∞1,0)T}

Orb 16 II:{(0,∞2,1)T ,(1,∞2,0)T}

Orb 17 I:{(∞1,0,1)T ,(∞1,1,0)T}

Orb 17 II:{(∞2,0,1)T ,(∞2,1,0)T}

Orb 18:{(0,0,1)T ,(1,1,0)T}

Orb 19:{(0,1,0)T ,(1,0,1)T}

Orb 20:{(0,1,1)T ,(1,0,0)T}

We use computer search to find a vectorvwith good 3-way configuration coverage measure,

that is, each 3×k sub-matrix ofM has a representative from most of the orbits 6 I-20:

v=(∞111∞2∞2∞20∞1011011∞1∞1∞21∞21∞2∞20∞1∞21000∞2001∞110∞2∞11101∞1∞2∞1∞10∞1∞11).

Build the 50×50 matrixM from v. The action ofG= {x,x+1} on M produces two ma-

trices which are concatenated to getMG. A small covering arrayC1 = 3-CA(28,50,2) on
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symbols{∞1,∞2} and a 50×2 arrayC as shown below needs to be concatenated to cover

interactions in orbits 1-5 II:

C=

















0 1

0 1
...

...

0 1

















.

The matrixA = [MG,C1,C] is a 50×130 testing array with 3-way configuration coverage

measureµ3(A ) = 0.90202.

3.2.1 Choice of vectorv

The problem is to find a vectorv∈ Xk with good 3-way configuration coverage measure,

that is, each 3× k submatrix ofM has a representative from most of the orbits 6-21. To

determine which vector works as a vector with good 3-way configuration coverage, we

define the setsd[x,y] for positive integersx andy as follows:

d[x,y] =
{

(vi ,vi+x,vi+x+y) : 0≤ i ≤ k−1
}

where the subscripts are taken modulok. For computational convenience, we partition

the collection of
(k

3

)

choices of three distinct rows fromk rows into disjoint equivalence

classes. Formally, letS be the set of all
(k

3

)

3-combinations of the set{0,1, ...,k− 1}.

Define a binary relationRon Sby putting

{s1,s2,s3} R{s′1,s
′
2,s
′
3} iff

{s1+d,s2+d,s3+d}= {s′1,s
′
2,s
′
3} for somed ∈ N

where the addition is modulok. BecauseR is an equivalence relation onS, Scan be parti-

tioned into disjoint equivalence classes. The equivalenceclass determined by{s1,s2,s3} ∈

S is given by

[{s1,s2,s3}] =
{

{s1+d,s2+d,s3+d} | 0≤ d≤ k−1
}

.
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Without loss of generality, we may assume that 0= s1 < s2 < s3 for each equivalence class

representative[{s1,s2,s3}]. As an illustration, whenk= 6,Sis partitioned into four disjoint

equivalence classes:

[{0,1,2}] [{0,1,3}] [{0,1,4}] [{0,2,4}]

A distance vector(x,y,z) is associated with every equivalence class[{s1,s2,s3}] wherex=

s2−s1, y= s3−s2, z= s1−s3 modk. The third distance is redundant becausex+y+z= k.

We rewrite the equivalence class of 3-combinations[{s1,s2,s3}] as

[x,y] =
{

{i, i +x, i +x+y} | i = 0,1,2, ...,k−1
}

.

Fork= 6, [1,1] = [{0,1,2}], [1,2] = [{0,1,3}], [1,3] = [{0,1,4}] and[2,2] = [{0,2,4}].

Lemma 3.2.1.Let S be the set of all3-combinations of{0,1,2, ...,k−1}. Then S can be

partitioned into disjoint equivalence classes

[x,y] =
{

{i, i +x, i +x+y} | i = 0,1,2, ...,k−1
}

where x= 1,2, ...,⌊k
3⌋ and y= x,x+1, ...,k−1 such that

(i) 2x+y< k

(ii) when k≡ 0 (mod3), apart from above mentioned classes consider one more class

[ k
3,

k
3], that is, x= y= z= k

3.

There are no further classes distinct from these.

Before proving the result, we give an example. WhenS is the set of all 3-combinations

of {0,1,2,3,4,5}, S can be partitioned into four disjoint classes:[1,1], [1,2], [1,3] and

[2,2].

Proof. Let (x,y,z) be the distance vector corresponding to equivalence class[{s1,s2,s3}].

Classes[{s1,s2,s3}], [x,y], [y,z] and [z,x] are the same. Without loss of generality, we

choose[x,y] as class representative ifx ≤ y andx ≤ z. Thus 1≤ x≤ k
3 and y = x,x+
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1, ...,k−1. It is enough to considerz> x. If z= x, then the classes[x,y] and[x,x] obtained

from distance vector(x,y,x) are the same equivalence class. The classes of the form[x,x]

are generated wheny = x. In order to avoid repetition,z has to be strictly greater than

x. That is,z= k− x− y > x which implies 2x+ y < k. Whenk≡ 0 (mod 3), the class

[ k
3,

k
3] is not considered under the inequality 2x+y< k. To include this class, we consider

x= y= z= k
3 as well. Hence the lemma follows.

We present the following algorithm that generates all the equivalence classes without rep-

etition.

Algorithm 2 Equivalence-Classes(k,3)
Input: k

Output: All [x,y] classes.

for x← 1 to k
3 do

for y← x to k−2x−1 do

add [x,y]

end for

end for

if k≡ 0(mod 3) then

add [ k
3,

k
3]

end if

At this stage, we make a few remarks about the size of equivalence classes defined by

above choices ofx andy.

1. k 6≡ 0 (mod 3):

If k is not a multiple of 3, then each class contains exactlyk distinct choices from the

collection of
(k

3

)

choices. Hence there arel = (k−1)(k−2)
6 distinct classes of sizek.
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2. k≡ 0 (mod 3):

If k is a multiple of 3, then a class of the form[a,a,a] wherea= k
3 contains onlyk

3

distinct choices. Here we get exactly one class of sizek
3 and the remaining classes

are of sizek.

3.2.2 Configuration coverage measureµ3(A )

Given a lengthk vectorv, we define the setsD[x,y] correspond to each equivalence class

[x,y] generated by Algorithm 3.2.1 as follows:

D[x,y] =
⋃

α∈G

{

(vα
i ,v

α
i+x,v

α
i+x+y) : 0≤ i ≤ k−1

}

where the subscripts are taken modulok andvα
i stands for the image ofvi underα that is,

vα
i = viα. For computational convenience, we formulate the 3-way configuration coverage

in terms of equivalence classes[x,y] from Lemma 3.2.1 andD[x,y] as follows:

µ3(A)=
∑
x,y
|[x,y]|×number of distinct 3-tuples of the form 6-21 covered inD[x,y]+

(k
3

)

(23+g−2)

(k
3

)

g3

The second term in the numerator represents the coverage of triples of the form 1-5 by the

matricesC1 andC. Thus,

µ3(A) =
∑
x,y
|[x,y]|×number of distinct 3-tuples of the form 6-21 covered inD[x,y]

(k
3

)

g3
+

g+6
g3 .

3.3 Construction of testing arrays with high µ4(A )

In this section, we build several testing arrays with high 4-way configuration coverage

measure forg≥ 3. Given fixed values ofk,n, andg, so thatg−1 is a prime or prime power,

we are to construct a testing arrayA with high 4-way configuration coverage measure. Let

X = GF(g−1)∪{∞} be the set ofg symbols on which we are to construct a testing array.
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Our construction requires selecting a groupG and finding a vectorv∈ Xk, called a vector

with good configuration coverage. We use the vectorv= (v0,v1, . . . ,vk−1) to form ak×k

circulant matrix

M =

















v0 vk−1 . . . v1

v1 v0 . . . v2
...

...
...

vk−1 vk−2 . . . v0

















.

Let G=PGL(2,g−1). The action ofG on 4-tuples fromX hasg+11 orbits. Refer Section

2.3 of Chapter 2 for the list of orbits. Vectorv= (v0,v1, . . . ,vk−1) is said to be a vector with

good 4-way configuration coverage, if every 4×k subarray ofM has a representative from

most of the orbits 2-15. LetC =
[

xJ : x∈ X
]

be thek×g array whose columns are all-x

vectorsxJ where

J = (1,1, . . . ,1)T .

The groupPGL(2,g− 1) acting onM producesg(g− 1)(g− 2) matrices that are con-

catenated withC to form a testing array of sizekg(g− 1)(g− 2)+ g having high 4-way

configuration coverage. Ifkg(g−1)(g−2)+g≤ n, then

[

MPGL(2,g−1),C
]

is a testing array of size at mostn having high 4-way configuration coverage.

3.3.1 Choice of vectorv

Given a lengthk vectorv, we define the setsD[x,y,z] for positive integersx,y andz as

follows:

D[x,y,z] =
⋃

σ∈G

{

(vσ
i ,v

σ
i+x,v

σ
i+x+y,v

σ
i+x+y+z) : 0≤ i ≤ k−1

}

where the subscripts are taken modulok andvσ
i stands for the image ofvi underσ . For

computational convenience, we formulate the 4-way configuration coverage in terms of
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equivalence classes[x,y,z] from Lemma 2.3.1 andD[x,y,z], as follows:

µ4(A ) =

∑
x,y,z
|[x,y,z]|×number of distinct 4-tuples of the form 2-15 covered inD[x,y,z] +

(k
4

)

g

(k
4

)

g4
.

The second term in the numerator represents the coverage of 4-tuples of the form

{

(a,a,a,a)T : a∈ X
}

by matrixC. Here all the equivalence classes[x,y,z] are obtained from Algorithm 1.

3.4 Results

We search by computer to find vectorsv that produce testing arrays with high configuration

coverage measure. Tables 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10, 3.11, and 3.12

show vectors with high configuration coverage, the number oftest cases(n) generated by

our technique, and the best known size with full coverage [31]. A comparison of our con-

structions with the best known covering array sizes shows that our constructions produce

significantly smaller testing arraysA with high configuration coverage. Test configuration

coverage is one of the most important topics in software testing. Users would like to have

some quantitative measure to judge the risk while using a product. Consider testing a soft-

ware system with 40 parameters each having three values. Ourconstruction generates a test

suite with 243 test cases that ensure with probability 0.988 that software cannot fail due to

interactions of 2, 3 or 4 parameters whereas the best known covering array in [31] requires

465 test cases for full coverage. The results show that the proposed methods could reduce

the number of test cases significantly while compromising only slightly on the coverage.
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Table 3.1: Vectorv with good coverage fort = 3 andg= 4.

k Vectorv with good coverage Our Results Best known

n (µ3) n (µ3 = 1) [31]

35
(0∞2∞2∞201∞1∞2∞1∞1∞211∞111∞11∞2000∞2011∞100

1∞1∞2∞101)
96 (0.812667) 152

36
(0∞2∞11∞110∞21∞2∞2∞200∞2∞1001001∞21∞1∞1∞100

∞20∞111∞11)
98 (0.815966) 152

37
(1011101∞1∞2∞2∞21∞110∞200∞2∞10∞1110∞1∞2∞111

∞1∞20∞1∞1∞21)
100 (0.824554) 152

38
(∞1001∞11∞100∞1∞20∞1∞1∞1111∞21∞2∞201001∞110

∞2∞1∞2∞2011∞2)
103 (0.833474) 152

39
(∞1∞10∞2∞20∞11∞1∞2101001∞2000∞1∞1∞20∞21∞101

01∞210∞21∞1∞1∞2)
105 (0.839705) 188

40
(∞20∞211∞2∞21∞1000∞2∞11∞1∞1∞20∞1∞20001∞2∞21

0∞11∞101010∞1∞11)
107 (0.847166) 191

41
(10∞10∞200∞1101∞10101∞2000∞2001∞2∞1∞1∞2∞11∞20∞111

∞10∞1∞2∞2∞2)
109 (0.85613) 191

42
(0∞2∞1∞21∞1∞21∞2∞2∞1101∞1000001∞110∞2∞10∞110∞2011

∞21∞1∞1∞2∞110)
111(0.86074) 191

43
(∞2∞1∞110∞20∞1∞2∞2∞2011∞1∞110∞1∞200∞10∞1∞11000∞2

1∞2∞110∞21∞21011)
113 (0.86748) 191

44
(∞1∞2101∞1∞2∞20∞21∞1∞1∞10∞1∞10∞211∞2∞101111∞2001

∞2∞21∞2∞11000∞100)
115 (0.87209) 191

45
(000∞1∞101∞2∞20∞1∞2000∞21∞21∞1∞211∞10∞2∞2∞11∞1∞1

∞2∞10010∞10∞20∞2011)
118(0.87741) 191
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Table 3.2: Vectorv with good coverage fort = 3 andg= 4 (continued).

k Vectorv with good coverage Our Results Best known

n (µ3) n (µ3 = 1) [31]

46
(1∞110∞2∞2∞101∞11∞2∞21∞2∞111∞2∞1∞10∞10∞11100∞2∞2

1000∞1∞21∞2∞11∞20110)
120 (0.88304) 192

47
(0110∞2∞2∞201∞1∞100∞11∞10∞11∞11∞2∞110∞21∞210000∞1

∞2∞201∞210∞2∞1∞10∞1∞2)
123 (0.88813) 193

48
(∞1∞1111∞20∞21∞2∞210∞10∞2100∞211∞2∞−1∞1∞210∞110

∞100001∞1∞2∞110∞10∞1∞2∞20)
125 (0.89254) 193

49
(∞110111∞2∞1∞2∞100∞1∞2∞1∞1∞1∞1∞211010∞2∞10∞2∞210

∞2100∞210∞11∞1∞21∞2∞10011)
127 (0.89744) 194

50
(∞111∞2∞2∞20∞1011011∞1∞1∞21∞21∞2∞20∞1∞21000∞2001

∞110∞2∞11101∞1∞2∞1∞10∞1∞11)
130 (0.90202) 194

51
(∞2∞10011∞2∞11100∞1∞20000∞1010∞20∞2∞1∞2∞21∞1∞11∞1

∞1∞10∞21∞210∞2∞11∞2010∞110)
132 (0.90778) 212

52
(∞1∞1∞2∞21∞20110∞111011∞2∞10∞10100∞2∞10∞20∞2111∞1

00∞1∞1∞2101∞21∞2∞2∞1∞1∞10∞21)
134 (0.91014) 212

53
(0∞210∞111000∞2∞201∞2000∞2∞110∞20∞2∞2∞111∞1∞2∞100

0∞1∞10∞211010∞1∞2∞1∞2∞1∞1∞101)
137 (0.91395) 212

54
(∞10110∞2∞1∞1∞2∞2∞1∞11∞211∞210∞10∞1∞200∞1∞1∞2∞1∞1

0000∞11∞21∞2∞2010101∞20∞1011∞21)
139 (0.91788) 212

55
(∞2∞21∞111∞1101∞2∞1∞2∞10∞201∞211∞2∞200∞2∞101∞2∞1

∞2∞110111∞11001∞10001∞20∞11∞1∞1∞1)
141 (0.92079) 240

56
(1000∞2∞1∞1∞2∞2∞2∞1∞2∞100∞200∞211∞1∞2∞2∞10110∞1∞2

∞1∞210∞10∞110∞1∞1011∞21110∞211∞110)
144 (0.92430) 240
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Table 3.3: Vectorv with good coverage fort = 3 andg= 4 (continued).

k Vectorv with good coverage Our Results Best known

n (µ3) n (µ3 = 1) [31]

57
(∞20∞1∞11∞210∞2∞1∞10∞110∞10∞2∞201101∞2000∞1∞100∞2

∞11∞200∞10∞21∞21∞21∞211001∞1∞2∞1∞1∞2)
146 (0.92901) 240

58
(∞1∞2∞1∞201101∞20∞2∞1∞2∞10∞20110010101∞2∞1∞2110∞10

∞2∞20∞1∞200∞2∞111111∞1∞2∞1∞111∞1∞11)
149 (0.93203) 240

59
(0∞21110∞2∞2∞10∞110000∞20∞1∞11∞10∞20∞111∞1∞2∞2∞11

∞2∞20101∞11∞2∞2∞1∞20∞2∞1∞1∞2011∞101001)
151 (0.93387) 240

60
(00∞2∞1010∞2∞2∞2∞111∞1∞1∞100∞1∞2∞21∞10∞101∞200∞21

1∞201∞1∞2∞1∞2110∞210∞21101∞1∞1∞1∞21∞1110)
153 (0.93512) 240

Table 3.4: Vectorv with good coverage fort = 3 andg= 5.

k Vectorv with good coverage Our Results Best known

n (µ3) n (µ3 = 1) [31]

15 (∞2∞21∞20021∞11∞22∞112) 110 (0.68035) 245

16 (011∞2∞2021∞112∞2∞12∞20) 116 (0.70102) 245

17 (0∞2∞21∞1021∞1010∞2∞1220) 123 (0.72640) 245

18 (0221∞2∞1101∞22∞1∞10∞1∞120) 129 (0.73917) 245

19 (∞1∞11∞11001211∞22∞1∞1∞2220) 135 (0.76094) 245

20 (∞2∞22∞12012∞101111∞12∞1∞220) 141 (0.77431) 245
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Table 3.5: Vectorv with good coverage fort = 3 andg= 5 (continued).

k Vectorv with good coverage Our Results Best known

n (µ3) n (µ3 = 1) [31]

21 (∞21210∞12∞100002∞1∞12∞2∞1010) 148 (0.79082) 245

22 (∞2∞10∞2221∞20011∞121∞2∞2∞22020) 154 (0.80731) 245

23 (1∞2211∞212120∞2∞20022∞11∞2∞10∞1) 161 (0.82233) 245

24 (∞2222∞2∞2∞1∞21∞1012∞201∞101∞21200) 168 (0.83266) 245

25 (∞2∞12∞2∞2201∞1∞20∞20∞121210∞211122) 174 (0.84556) 249

26 (1∞1∞11∞22∞1∞1∞2212220∞111∞1∞201002∞1) 181 (0.85408) 249

27 (∞221∞1∞1∞12010∞10220∞1111∞10∞21∞1∞221) 188 (0.86619) 249

28 (∞22∞2∞10∞210∞1∞1121000∞2∞212∞212221∞20) 194 (0.87241) 249

29 (∞221∞12022∞21∞1011∞1∞1∞1000211∞22∞1∞212) 200 (0.88190) 249

30 (02∞10∞101∞2∞11∞22210∞2∞1∞11∞2∞220222∞2200) 206 (0.88969) 249

31 (∞2∞2∞10∞10∞12121∞1∞21∞2∞22001∞2110211∞1010) 213 (0.89605) 249

32 (∞2∞1220∞1210∞11∞12∞1110111∞20002∞21∞1∞12∞1∞2) 219 (0.90523) 349

33 (1∞101∞2∞10∞202∞22∞2100∞2∞2∞1∞1∞1202∞22211∞1012) 225 (0.91406) 365

34 (∞2∞22∞2∞22∞11∞11∞2∞101211∞1∞21∞222002021∞1∞2021) 231 (0.91981) 365
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Table 3.6: Vectorv with good coverage fort = 3 andg= 5 (continued).

k Vectorv with good coverage Our Results Best known

n (µ3) n (µ3 = 1) [31]

35
(01121∞122∞21000∞1∞2002∞10∞101∞112∞2∞20∞11

∞2∞1∞10)
237 (0.92222) 365

36
(∞22111∞20122∞12∞2∞202∞220021∞10∞1∞2∞211∞1∞2

∞10∞200)
243 (0.92755) 365

37
(122101∞2∞210∞21∞2∞2∞12∞2222∞2∞1∞112∞20∞221

∞12∞11000)
249 (0.93782) 365

38
(1∞2∞10220011∞12∞12121∞2∞2∞1202∞1∞222∞10∞2

20∞1011∞2∞1)
255 (0.94118) 365

39
(2∞1∞2∞12120∞2102∞2∞2∞2020∞20220111∞212∞20

∞11∞1∞200∞21)
262 (0.94264) 365

40
(20∞11∞2∞20∞1∞220∞22∞2∞2∞121∞1∞11121000

∞11∞12010∞10∞1102)
268 (0.94694) 365

Table 3.7: Vectorv with good coverage fort = 4 andg= 3.

k Vectorv with good coverage Our Results Best known

n (µ4) n (µ4 = 1) [31]

16 (00001001∞∞011∞1∞) 99 (0.828) 237

17 (0000010∞∞101∞01∞1) 105 (0.851) 282

18 (00010∞0∞1001∞111∞∞) 111 (0.864 ) 293

19 (000010010∞01∞0∞111∞) 117 (0.883) 305
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Table 3.8: Vectorv with good coverage fort = 4 andg= 3 (continued).

k Vectorv with good coverage Our Results Best known

n (µ4) n (µ4 = 1) [31]

20 (0000110101∞0∞10∞∞11∞) 123 (0.892) 314

21 (00001010∞1∞∞10∞∞001∞1) 129 (0.906) 315

22 (0000011∞0∞0110∞1∞∞∞01∞) 135 (0.913) 315

23 (0000001∞∞0101∞10∞10∞∞∞1) 141 (0.923) 315

24 (00000001∞∞0101∞10∞101∞∞1) 147 (0.924) 315

25 (0000000011∞0∞011∞01∞0∞11∞) 153 (0.930) 363

28 (1∞∞00∞∞1∞01101111∞0∞0101∞∞∞1) 171 (0.957) 383

29 (010∞00∞1∞0∞∞∞101∞00∞000111∞10) 177 (0.961) 392

30 (011∞11∞∞∞001∞∞∞1∞10∞∞0∞1100∞01) 163 (0.969) 393

35 (01∞0∞∞1000∞01∞∞0∞1∞111∞∞∞01∞01000∞1) 213 (0.979) 429

36 (11∞0110∞∞00∞111101011∞001∞∞∞∞∞100∞0∞) 219 (0.981) 441

38 (1∞1∞111∞∞010∞10∞∞00010∞∞0∞∞∞1101∞∞100∞) 231 (0.985) 447

39 (001∞∞11∞11∞0001∞11∞101∞∞∞1∞0∞0010∞00∞∞0) 237 (0.986) 453

40 (100∞∞00001∞∞1∞10∞000∞∞∞0∞10∞∞1∞1∞0111∞01) 243 (0.988) 465
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Table 3.9: Vectorv with good coverage fort = 4 andg= 4.

k Vectorv with good coverage Our Results Best known

n (µ4) n (µ4 = 1) [31]

18 (00010021∞∞∞21020∞2) 436 (0.851) 760

19 (0000121011∞01∞0∞221) 460 (0.866) 760

20 (0000112101202∞0221∞2) 484 (0.878) 760

21 (0000011021010∞2∞0221∞) 508 (0.887) 1012

22 (0000001102∞02021∞∞01∞1) 532 (0.894) 1012

23 (00000001210210∞∞20112∞1) 556 (0.898) 1012

24 (00000000121∞011∞02∞0∞112) 580 (0.899) 1012

25 (000000000121220∞011∞2012∞) 604 (0.901) 1012

26 (00100∞2221110102∞0022∞020∞2) 628 (0.921) 1012

27 (0100∞2221110102∞0022∞020∞2) 652 (0.928) 1012

28 (01110∞0102∞021110022001∞1001) 676 (0.933) 1012

29 (0∞∞122101∞000220200221220∞02) 702 (0.937) 1012

30 (10∞20∞020∞2∞2∞01∞2222∞022002∞1) 726 (0.943) 1012



76

Table 3.10: Vectorv with good coverage fort = 4 andg= 5.

k Vectorv with good coverage Our Results Best known

n (µ4) n (µ4 = 1) [31]

21 (110131300∞30010∞∞3203) 1265 (0.834) 1865

22 (3∞32011200∞∞00∞0∞10010) 1325 (0.842) 1865

23 (0002∞03100∞203021332320) 1385 (0.854) 1865

24 (003∞21022212300032302310) 1445 (0.860) 1865

25 (∞200∞0∞∞31020∞300303∞∞33) 1505 (0.869) 2485

26 (202002211000∞0121031∞∞2300) 1565 (0.873) 2485

27 (∞∞03002030∞000∞11∞0031301∞3) 1625 (0.880) 2485

28 (013333130320∞1∞1003200310300) 1685 (0.883) 2485

29 (00012212∞010∞3110031020031010) 1745 (0.891) 2485

30 (33001∞0∞000330∞∞010012∞1313001) 1805 (0.894) 2485

31 (033∞21333010313∞303320030012020) 1865 (0.895) 2485

32 (310031000∞330130321∞∞03031111310) 1925 (0.897) 2485

33 (∞0010∞∞3∞0∞2∞01∞00∞12222∞∞03∞020∞) 1985 (0.904) 2485

34 (∞∞3∞00101001∞0∞001∞002∞01110231112) 2045 (0.906) 2485
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Table 3.11: Vectorv with good coverage fort = 4 andg= 5 (continued).

k Vectorv with good coverage Our Results Best known

n (µ4) n (µ4 = 1) [31]

35 (1203003303∞0∞013233310∞032020003220) 2105 (0.906) 2485

36 (12022∞3203230023223220001010200∞2230) 2165 (0.912) 2485

Table 3.12: Vectorv with good coverage fort = 4 andg= 6.

k Vectorv with good coverage Our Results Best known

n (µ4) n (µ4 = 1) [31]

25 (000403014003033404320∞1∞∞) 3006 (0.811) 6325

26 (∞0∞40021404010013010011444) 3126 (0.819) 6456

27 (433∞∞01∞∞20∞03020∞∞0∞00401∞) 3246 (0.826) 6606

28 (4023031100232200∞21∞∞2020020) 3366 (0.829) 6714

29 (00∞40023103301343401230334400) 3486 (0.834) 6852

30 (1∞∞∞42∞4040004∞104∞03034∞∞0300) 3606 (0.836) 6966

31 (44122002∞2000020202031∞42044001) 3726 (0.838) 7092

32 (44441341∞424000∞∞040004410103400) 3846 (0.846) 7200

33 (0330344∞0232133100313000030∞4303∞) 3966 (0.855) 7320



Chapter 4

Covering Arrays on Product Graphs

Covering arrays are used to design test suites for software and hardware testing. In such an

application, each row of the array corresponds to a parameter in the system, each column

corresponds to a test case and the symbols correspond to the values of the parameters. Such

a test suite covers each possible parameter-value configuration for any pair of parameters.

In software testing, we may know in advance that two specific parameters do not interact.

Then it is not necessary that each possible parameter-valueconfiguration for these two

parameters be covered. We can use a graph structure to describe which pairs of parameters

need to be covered.

A covering array on a graphG with alphabet sizeg, denoted byCA(n,G,g), is a

|V(G)| × n array onZg with the property that any two rows which correspond to adja-

cent vertices inG are qualitatively independent. Given a graphG and a positive integerg,

a covering array onG with minimum size is called optimal. There have been some studies

of covering arrays on graphs. Seroussi and Bshouty [90] proved that the problem of find-

ing the smallest binary covering array on a graph is NP-hard problem. Covering arrays on

graphs have been introduced in the conclusion of Stevens’s Ph.D. thesis [93]. Meagher and

Stevens studied covering arrays on graphs in detail in [68].

Our primary concern in this chapter is with constructions that make optimal covering

arrays on large graphs that are obtained from product of smaller graphs. See also [3]. In

Section 4.1, we recall some basic definitions and results from graph theory which will

be used in this chapter and Chapter 5. We review in Section 4.2some known results on

covering arrays on graphs. In Section 4.3, we consider four most extensively studied graph
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products in the literature. In Section 4.4 and Section 4.5, we give upper and lower bounds

on the size of an optimal covering array on a product graph. InSection 4.6, we find families

of graphs for which the size of a covering array on a product graph achieves the lower bound

with respect to the Cartesian product. Finally, in Section 4.7, we present a polynomial

time approximation algorithm with approximation ratio log( |V|
2k−1) for constructing covering

arrays on graphs havingk prime factors with respect to the Cartesian product.

4.1 Graph Theory

In this section, we recall some definitions and relevant results in graph theory from [103].

A graph Gis a pairG= (V,E) whereV is a set ofverticesandE is a set of unordered pairs

of vertices. The elements ofE are callededges. We writeV(G) for the set of vertices and

E(G) for the set of edges of a graphG. A loop is an edgevv for somev∈V(G). A graph

G is simpleif it has no loops andE(G) is not a multi-set. A graph isfinite if its vertex set

is finite. Throughout this chapter, we will only consider finite simple graphs. Two vertices

u andv areadjacentin G, if uv∈ E(G).

4.1.1 Walks, Paths and Cycles

A walk in a simple graphG is a sequence of verticesv0,v1, . . . ,vk, wherevivi+1 ∈ E(G). A

walk is apath if all vi are distinct. If for such a path withk≥ 2, v0vk is also an edge inG,

thenv0,v1, . . . ,vk,v0 is acycle. Thelengthof a path, cycle or walk is the number of edges

in it. We denote the path of lengthk by Pk and the cycle of lengthk by Ck. A graph having

no cycle isacyclic.

A graph isconnectedwhen there is a path between every pair of vertices. A graph that

is not connected isdisconnected. In a disconnected graphG, a connected componentis a

maximal connected subgraph ofG. A spanning subgraphis a subgraph that contains all

the vertices of the original graph.
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4.1.2 Trees

A tree is a connected acyclic graph. Arooted treeis a tree with a designated vertex called

the root. In a rooted tree, thelevelof a vertexv is the length of the unique path from the

root tov. Thus root has level 0. If vertexv immediately precedes vertexw on the path from

the root tow, thenv is theparentof w, andw is achild of v. Theheightof a rooted tree is

the length of the longest path from the root. In a rooted tree,a leaf is any vertex having no

children and aninternal vertexis any vertex that has at least one child.

Definition 4.1.1. A binary tree is a rooted tree in which every vertex has at most two

children.

Example 4.1.1.Figure 4.1 shows a binary tree of height 3. The root of this binary tree is

v0.

level 1

level 2

level 3

v0

v1 v2

v3 v5 v6

v7 v8

Figure 4.1: A binary treeT.

4.1.3 Graph homomorphism and isomorphism

We now recall the definitions of graph homomorphism and isomorphism used here; for

more information see [50].

Definition 4.1.2. A homomorphismfrom G to H is a mapϕ : V(G)→V(H) that preserves

adjacency: ifuv is an edge inG, thenϕ(u)ϕ(v) is an edge inH.

We sayG→H if there is a homomorphism fromG to H, andG≡H if G→H andH→G.

A weak homomorphismfrom G to H is a mapϕ : V(G)→V(H) such that ifuv is an edge
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in G, then eitherϕ(u)ϕ(v) is an edge inH, or ϕ(u) = ϕ(v). Clearly every homomorphism

is automatically a weak homomorphism.

Definition 4.1.3. Two graphsG andH are said to beisomorphicif there is a bijection

mappingϕ from the vertex setV(G) to the vertex setV(H) such thatuv∈E(G) if and only

if ϕ(u)ϕ(v)∈ E(H). The mappingϕ is called an isomorphism. An isomorphism preserves

adjacency as well as non-adjacency of vertices.

A homomorphism from a graphG to itself is anendomorphism. An isomorphism from a

graphG to itself is anautomorphism. The set of all automorphisms of a graphG forms a

group, denotedAut(G), theautomorphism group of G.

4.1.4 Colourings and Cliques

A complete graphis a graph in which each pair of vertices is adjacent. A complete graph

on n vertices is denoted byKn.

Definition 4.1.4. A proper colouringon a graph is an assignment of colours to each vertex

such that adjacent vertices receive a different colour. Thechromatic numberof a graphG,

χ(G), is defined to be the size of the smallest set of colours such that a proper colouring

exists with that set.

In terms of graph homomorphism, a proper colouring of a graphG with n colours is equiv-

alent to a homomorphism fromG to Kn. The chromatic numberχ(G) of a graphG is the

smallestn such thatG→ Kn.

Definition 4.1.5. A maximum cliquein a graphG is a maximum set of pairwise adjacent

vertices. Themaximum clique numberof a graphG, denotedω(G), is defined to be the

size of a maximum clique.

If G has a clique of sizen, then there is a homomorphismKn→ G and the maximum

clique number ofG is the largestn for which Kn→ G. For graphsG andH, if there is

a homomorphismG→ H then χ(G) ≤ χ(H) and ω(G) ≤ ω(H). Also, the chromatic

number of a graph is always greater than or equal to its cliquenumber.
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4.1.5 Bipartite graphs and Matchings

Definition 4.1.6. A bipartite graphis a graph whose vertices can be divided into two dis-

joint setsV1 andV2 such that every edge connects a vertex inV1 to one inV2.

Every bipartite graph admits a homomorphism toK2. Hence bipartite graphs are 2-colourable.

Trees are examples of bipartite graphs. Acomplete bipartite graphis a special kind of bi-

partite graph where every vertex ofV1 is adjacent to every vertex ofV2. A complete bipartite

graph with|V1|= m and|V2|= n is denotedKm,n.

Definition 4.1.7. A matching Min a graphG is a family of pairwise disjoint edges. A

perfect matchingor 1-factor is a matching that saturates every vertex.

We now state some known results about matchings in bipartitegraphs, which we rely on in

the coming sections. The maximum degree of a graphG is denoted∆(G). If M andM′ are

two matchings ofG, then thesymmetric difference

M∆M′ = (M−M′)∪ (M′−M).

Proposition 4.1.1. Every component of the symmetric difference of two matchings is a

path or an even cycle.

Proposition 4.1.2. A bipartite graphG with maximum degree∆(G) is union of ∆(G)

matchings.

4.2 Covering arrays on graphs

Meagher and Stevens introduce and study covering arrays on graphs in [68, 66]. We recall

some of their results here.

Definition 4.2.1. A covering array on a graph Gwith alphabet sizeg andk = |V(G)| is

a k×n array onZg. Each row in the array corresponds to a vertex in the graphG. The

array has the property that any two rows which correspond to adjacent vertices inG are

qualitatively independent.
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A covering array on a graphG will be denoted byCA(n,G,g). The smallest possible

covering array on a graphG will be denoted

CAN(G,g) = min
n∈N

{

n : there exists aCA(n,G,g)
}

Given a graphG and a positive integerg, a covering array onG with minimum size is called

optimal.

Example 4.2.1.An optimal binary covering array on a graphG with χ(G) = 4 andω(G) =

2 is shown in Figure 4.2.
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0 1 0 1 1

0 0 1 1 1

0 1 1 0 1

0 1 0 1 1

0 1 1 0 1

0 1 1 0 1

0 0 1 1 1

0 1 1 0 1

0 1 0 1 1

0 1 1 1 0





























































Figure 4.2: A graphG and an optimal covering arrayCA(5,G,2).

Let g and n be two positive integers wheren≥ g2. A qualitatively independent graph

QI(n,g) is a graph where the vertices are all lengthn vectors overZg, in which each alpha-

bet occurs at leastg times, and the vectors have 0 in their first position. Two vertices are

adjacent if their corresponding vectors are qualitativelyindependent.

Meagher and Stevens [68] proved that given a graphG and non-negative integersg andn,

there exists aCA(n,G,g) if and only if there exists a graph homomorphismG→ QI(n,g).
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Consider the graphG and the covering array onG, C=CA(5,G,2) in Figure 4.2. We now

prove thatC is an optimal covering array onG. For the sake of contradiction, suppose there

exists a covering array onG of size 4. There exists aCA(4,G,2) if and only if there exists

a graph homomorphism

G→QI(4,2).

QI(4,2) is shown in Figure 4.3. AsQI(4,2) is isomorphic toK3, we get

G→QI(4,2)→ K3.

This impliesχ(G)≤3, which is a contradiction to the fact thatχ(G)=4. ThusCAN(G,2)=

5.

0011 0101

0110

Figure 4.3: The qualitatively independent graphQI(4,2).

A detailed study ofQI(n,g) especially forg= 2 is given in [66]. The lemma, given below

will be used in Theorem 4.4.2.

Lemma 4.2.1. [68] Let G and H be graphs. If G→ H then CAN(G,g)≤CAN(H,g).

4.3 Graph products

In this section, we give several definitions of graph products from [46] that we use in this

chapter. A graph product is a binary operation on the set of all finite graphs. However,

among all possible associative graph products, the most extensively studied in the litera-

ture are the Cartesian product, the direct product, the strong product and the lexicographic

product.
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Definition 4.3.1. TheCartesian productof graphsG andH, denoted byG2H, is the graph

with

V(G2H) = {(g,h)|g∈V(G) andh∈V(H)},

E(G2H) = {(g,h)(g′,h′)|g= g′,hh′ ∈ E(H), or gg′ ∈ E(G),h= h′}.

The graphsG andH are called thefactorsof the productG2H.

In general, given graphsG1,G2, ...,Gk, thenG12G22 · · ·2Gk, is the graph with vertex

setV(G1)×V(G2)×·· ·×V(Gk), and two vertices(u1,u2, . . . ,uk) and(v1,v2, . . . ,vk) are

adjacent if and only ifuivi ∈ E(Gi) for exactly one index 1≤ i ≤ k andu j = v j for each

index j 6= i.

Example 4.3.1.Let G= P2 andH = P3. Then their Cartesian productP22P3 is the graph

shown in Figure 4.4.

1

2

3

P2

u

v

w

x

P3

3u 3v 3w 3x

2u 2v 2w 2x

1u 1v 1w 1x

P22P3

Figure 4.4: The Cartesian product ofP2 andP3.

Definition 4.3.2. Thedirect productof graphsG1,G2, ...,Gk, denoted byG1×G2×·· ·×

Gk, is the graph with vertex setV(G1)×V(G2)× ·· · ×V(Gk), and for which vertices

(u1,u2, ...,uk) and(v1,v2, ...,vk) are adjacent precisely ifuivi ∈ E(Gi) for each indexi.

Example 4.3.2.The direct product of graphsP2 andP3 is shown in Figure 4.5.
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1

2

3

P2

u

v

w

x

P3

3u 3v 3w 3x

2u 2v 2w 2x

1u 1v 1w 1x

P2×P3

Figure 4.5: The direct product ofP2 andP3.

Definition 4.3.3. Thestrong productof graphsG1,G2, ...,Gk, denoted byG1⊠G2⊠ · · ·⊠

Gk, is the graph with vertex setV(G1)×V(G2)×·· ·×V(Gk), and distinct vertices(u1,u2, . . . ,

uk) and (v1,v2, . . . ,vk) are adjacent if and only if eitheruivi ∈ E(Gi) or ui = vi for each

1≤ i ≤ k. We note that in generalE(⊠k
i=1Gi) 6= E(2k

i=1Gi)∪E(×k
i=1Gi), unlessk= 2.

Example 4.3.3.The strong product of graphsP2 andP3 is shown in Figure 4.6.

1

2

3

P2

u

v

w

x

P3

3u 3v 3w 3x

2u 2v 2w 2x

1u 1v 1w 1x

P2⊠P3

Figure 4.6: The strong product ofP2 andP3.

Definition 4.3.4. The lexicographic productof graphsG1,G2, ...,Gk, denoted byG1 ◦

G2 ◦ · · · ◦Gk, is the graph with vertex setV(G1)×V(G2)×·· ·×V(Gk), and two vertices

(u1,u2, ...,uk) and(v1,v2, ...,vk) are adjacent if and only if for some indexj ∈ {1,2, ...,k}

we haveu jv j ∈ E(G j) andui = vi for each index 1≤ i < j.
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Example 4.3.4.The lexicographic product of graphsP2 andP3 is shown in Figure 4.7.

1

2

3

P2

u

v

w

x

P3

3u 3v 3w 3x

2u 2v 2w 2x

1u 1v 1w 1x

P2◦P3

Figure 4.7: The lexicographic product ofP2 andP3.

A graph isprimewith respect to a given graph product if it is nontrivial and cannot be rep-

resented as the product of two non-trivial graphs. For the Cartesian product, it means that

a non-trivial graphG is prime if G = G12G2 implies that eitherG1 or G2 is K1. Similar

observation is true for other three products. The uniqueness of the prime factor decomposi-

tion of connected graphs with respect to the Cartesian product was first shown by Subidussi

(1960) [85], and independently by Vizing(1963) [100]. Prime factorization is not unique

for the Cartesian product in the class of possibly disconnected simple graphs [46]. It is

known that any connected graph factors uniquely into prime graphs with respect to the

Cartesian product.

Theorem 4.3.1.[85, 100]Every connected graph has a unique representation as a product

of prime graphs with respect to the Cartesian product, up to isomorphism and the order of

the factors. The number of prime factors is at mostlog2 |V|.

For any connected graphG= (V,E), the prime factors ofG with respect to the Cartesian

product can be computed inO(|E| log|V|) times andO(|E|) space. For more details see

[46, Chapter 23].
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4.4 Upper bounds onCAN(G1∗G2)

Let ∗ represent either the Cartesian, the direct, the strong, or the lexicographic product

operation. Given covering arraysCA(n1,G1,g) andCA(n2,G2,g), one can construct cov-

ering array onG1 ∗G2 as follows: the row corresponds to the vertex(u,v) is obtained by

horizontally concatenating the row corresponds to the vertex u in CA(n1,G1,g) with the

row corresponds to the vertexv in CA(n2,G2,g). Hence an obvious upper bound for the

covering array number is given by

CAN(G1∗G2,g)≤CAN(G1,g)+CAN(G2,g)

We now propose some improvements of this bound. A column of a covering array iscon-

stantif, for some symbolν, every entry in the column isν. In astandardized CA(n,G,g)

the first column is constant. Because symbols within each rowcan be permuted indepen-

dently, if aCA(n,G,g) exists, then a standardizedCA(n,G,g) exists.

Theorem 4.4.1.Let G= G1 ⊠ G2, and g≥ 2 be a positive integer. Suppose for each

1≤ i ≤ 2 there exists a CA(ni,Gi ,g), then there exists a CA(n,G,g) where n= n1+n2−2.

Hence, CAN(G,g)≤CAN(G1,g)+CAN(G2,g)−2.

Proof. Without loss of generality, we assume that for each 1≤ i ≤ 2, the first column

of CA(ni,Gi,g) is a constant column on symboli−1. LetCi be the array obtained from

CA(ni,Gi ,g) by removing the first column. Form an arrayA with |V(G1)|× |V(G2)| rows

andn1+n2−2 columns, indexing rows as(u,v) for 1≤ u≤ |V(G1)| and 1≤ v≤ |V(G2)|.

Row (u,v) is obtained by horizontally concatenating the rowu of C1 with the rowv of

C2. Consider two rows ofA that correspond to two adjacent vertices(u1,v1) and(u2,v2)

of G. Two distinct vertices(u1,v1) and (u2,v2) are adjacent inG if and only if either

u1u2∈ E(G1) andv1 = v2 or u1 = u2 andv1v2 ∈E(G2) or u1u2∈E(G1) andv1v2∈E(G2).

Without loss of generality, supposeu1u2∈E(G1). These two rows(u1,v1) and(u2,v2) of A

cover all pairs except probably the pair(0,0) in the firstn1−1 columns whenu1u2∈E(G1).

Whenv1 = v2 or v1v2 ∈ E(G2) the pair(0,0) is covered in the lastn2−1 columns.
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Corollary 4.4.1. Let G= G1⊠G2⊠ · · ·⊠Gk, k≥ 2 and g be a positive integer. Suppose

for each1≤ i ≤ k there exists a CA(ni,Gi,g), then there exists a CA(n,G,g) where n=
k
∑

i=1
ni−2k+2. Hence, CAN(G,g)≤

k
∑

i=1
CAN(Gi,g)−2k+2.

Proof. Since the strong product of graphs is an associative binary operation,

G= ((· · ·((G1⊠G2)⊠G3)⊠ · · ·)⊠Gk).

A covering array onG of size
k
∑

i=1
CAN(Gi,g)−2(k− 1) is derived by iterating Theorem

4.4.1k−1 times.

Using the definition of strong product of graphs, we have the following result as a corollary.

Corollary 4.4.2. Let G= G1 ∗G2∗ · · · ∗Gk, k≥ 2 and g be a positive integer, where∗ ∈

{2,×}. Then, CAN(G,g)≤
k
∑

i=1
CAN(Gi,g)−2k+2.

Theorem 4.4.2.Let G= G1×G2×·· ·×Gk, k≥ 2 and g be a positive integer. Suppose for

each1≤ i ≤ k there exists a CA(ni,Gi ,g). Then there exists a CA(n,G,g) where n= min
i

ni.

Hence, CAN(G,g)≤min
i

CAN(Gi,g).

Proof. Without loss of generality assume thatn1 = min
i

ni . It is known thatG1×G2×·· ·×

Gk→G1. Using Lemma 4.2.1, we haveCAN(G,g)≤CAN(G1,g).

All the above-mentioned bounds are based on recursive constructions of covering arrays on

product graphs using covering arrays on factor graphs. We now use graph homomorphism

to find bounds onCAN(G,g).

Since there are homomorphisms between the following graphs

Kω(G)→G→ Kχ(G),

we can find bound on the size of a covering array on a graph from the graph’s chromatic

number and clique number. For all graphsG,

CAN(Kω(G),g)≤CAN(G,g)≤CAN(Kχ(G),g).
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We have the following results on proper colouring of productgraphs [84]

χ(G12G2) = max{χ(G1),χ(G2)}.

For other graph products there are no explicit formulae for chromatic number but following

bounds are mentioned in [46].

χ(G1×G2)≤min{χ(G1),χ(G2)}

χ(G1⊠G2)≤ χ(G1◦G2)≤ χ(G1)χ(G2).

A proper colouring ofG1 ∗G2 with χ(G1 ∗G2) colours is equivalent to a homomorphism

from G1∗G2 to Kχ(G1∗G2) for any∗ ∈ {2,×,⊠,◦}. Hence

CAN(G12G2,g)≤CAN(Kmax{χ(G1),χ(G2)},g)

CAN(G1×G2,g)≤CAN(Kmin{χ(G1),χ(G2)},g)

CAN(G1⊠G2,g)≤CAN(Kχ(G1)χ(G2),g)

CAN(G1◦G2,g)≤CAN(Kχ(G1)χ(G2),g).

4.5 Lower bounds onCAN(G1∗G2)

Note thatG1→G1∗G2 andG2→G1∗G2 for ∗ ∈ {2,⊠,◦} give:

max{CAN(G1,g),CAN(G2,g)} ≤CAN(G1∗G2,g) (4.1)

We now describe colouring construction of covering array ongraphG. If G is ak-colourable

graph then build a covering arrayCA(n,k,g) and without loss of generality associate rowi

of CA(n,k,g) with colour i for 1≤ i ≤ k. In order to constructCA(n,G,g), we assign rowi

of CA(n,k,g) to all the vertices having colouri in G.

Recall that ifg is prime or power of prime, then one can constructOA(g+1,g). The set of

rows in an orthogonal arrayOA(k,g) is a set ofk pairwise qualitatively independent vectors
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from Z
g2

g . For g = 2, by Theorem 2.2.1, there are three qualitatively independent vectors

from Z
4
2.

Here we give some examples of graphs where the lower bound in Equation 4.1 is achieved.

Example 4.5.1.If G1 andG2 are bicolourable graphs, thenχ(G12G2) = 2. Letx1 andx2

be two qualitatively independent vectors inZg2

g for g≥ 2. Assign vectorxi to all the vertices

of G12G2 having colouri for i = 1,2 to get a covering array withCAN(G12G2,g) = g2.

Example 4.5.2.If G1 andG2 are complete graphs, then

CAN(G12G2,g) = max{CAN(G1,g),CAN(G2,g)}.

Example 4.5.3.If G1 is bicolourable andG2 is a complete graph onk≥ 2 vertices, then

CAN(G12G2,g) =CAN(G2,g). In general, ifχ(G1)≤ χ(G2) andG2 is a complete graph,

thenCAN(G12G2,g) =CAN(G2,g).

Example 4.5.4.Let Pm denote the path of lengthm andCn denote the cycle of lengthn.

Thenχ(Pm2Cn) = 3 whenn is odd. Using Theorem 2.2.1, we get a set of three pairwise

qualitatively independent vectors inZg2

g for g ≥ 2. Then the colouring construction of

covering arrays gives us a covering array onPm2Cn with CAN(Pm2Cn,g) = g2.

Let ∗ represent either the Cartesian, the direct, or the strong product of graphs, and consider

a productG1∗G2∗ . . .∗Gk. For any indexi, 1≤ i ≤ k, aprojection mapis defined as:

pi : G1∗G2∗ . . .∗Gk→Gi wherepi(x1,x2, . . . ,xk) = xi .

By the definition of the Cartesian, the direct, and the strongproduct of graphs, eachpi is a

weak homomorphism. We now recall the following result from [46] to give another lower

bound onCAN(G1⊠G2,g).

Lemma 4.5.1.Let G1 and G2 be graphs and Q be a clique of G1⊠G2. Then Q= p1(Q)⊠

p2(Q), where p1(Q) and p2(Q) are cliques of G1 and G2, respectively.
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Hence a maximum size clique ofG1⊠G2 is product of maximum size cliques fromG1 and

G2. That is,ω(G1⊠G2) =ω(G1)ω(G2). Using the graph homomorphism, this results into

another lower bound on covering array number:

CAN(Kω(G1)ω(G2),g)≤CAN(G1⊠G2,g).

Following are some examples where this lower bound can be achieved.

Example 4.5.5.If G1 andG2 are nontrivial bicolourable graphs thenω(G1⊠G2)= χ(G1⊠

G2) which is 4. HenceCAN(G1⊠G2,g) =CAN(K4,g), which is of optimal size.

Example 4.5.6.If G1 andG2 are complete graphs, thenG1⊠G2 is again a complete graph.

HenceCAN(G1⊠G2,g) =CAN(Kω(G1⊠G2),g).

Example 4.5.7.If G1 is a bicolourable graph andG2 is a complete graph onk≥ 2 vertices,

thenω(G1⊠G2) = χ(G1⊠G2) = 2k. HenceCAN(G1⊠G2,g) =CAN(K2k,g).

4.6 Optimal size covering arrays over the Cartesian prod-

uct of graphs

Recall that the set of all automorphisms of a graphG forms a group, denotedAut(G), the

automorphism group ofG.

Theorem 4.6.1.Let G1 be a graph having the property that Aut(G1) contains a fixed point

free automorphism which maps every vertex to its neighbour.Then for any bicolourable

graph G2,

CAN(G1�G2,g) =CAN(G1,g).

Proof. Consider the setΓ = {φ ∈ Aut(G1) | φ(u) ∈ N(u)r{u} for all u∈V(G1)} where

N(u) denotes the set of neighbours ofu. From the assumption,Γ is not empty. Consider a

2-colouring ofG2 with colours 0 and 1. Define

W0 = {(u,v) ∈V(G1�G2) | colour(v) = 0}
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and

W1 = {(u,v) ∈V(G1�G2) | colour(v) = 1}.

Note thatW0 andW1 partition V(G1�G2) into two parts. Let the rows of covering ar-

ray CA(G1,g) be indexed byu1,u2, . . . ,uk. Form an arrayC with |V(G12G2)| rows and

CAN(G1,g) columns, indexing rows as(u,v) for 1≤ u≤ |V(G1)|, 1≤ v≤ |V(G2)|. If

(u,v) ∈W0, row (u,v) is row u of CA(G1,g); otherwise if(u,v) ∈W1, row (u,v) is row

φ(u) of CA(G1,g). We now verify thatC is aCA(G12G2,g). Consider two adjacent ver-

tices(u1,v1) and(u2,v2) of G12G2.

(i) Let (u1,v1) and (u2,v2) belong toWi , i = 0,1. Then(u1,v1)(u2,v2) ∈ E(G12G2) if

and only if u1u2 ∈ E(G1) and v1 = v2. When (u1,v1) and (u2,v2) belong toW0, rows

(u1,v1) and(u2,v2) are rowsu1 andu2 of CA(G1,g) respectively. Asu1u2 ∈ E(G1), rows

u1 andu2 are qualitatively independent inCA(G1,g). When(u1,v1) and (u2,v2) belong

to W1, rows(u1,v1) and(u2,v2) are rowsφ(u1) andφ(u2) of CA(G1,g) respectively. As

φ(u1)φ(u2) ∈ E(G1), rows φ(u1) and φ(u2) are qualitatively independent inCA(G1,g).

Therefore, rows(u1,v1) and(u2,v2) are qualitatively independent inC.

(ii) Let (u1,v1) ∈W0 and(u2,v2) ∈W1. In this case,(u1,v1)(u2,v2) is an edge inG12G2

if and only if u1 = u2 andv1v2 ∈ E(G2). Let u1 = u2 = u. Rows(u,v1) and(u,v2) are

rows u andφ(u) of CA(G1,g). As φ is a fixed point free automorphism that maps every

vertex to its neighbour,u andφ(u) are adjacent inG1. Therefore, the rows indexed byu

andφ(u) are qualitatively independent inCA(G1,g); therefore, rows(u1,v1) and(u2,v2)

are qualitatively independent inC.

Definition 4.6.1. Let H be a finite group andSbe a subset ofH r{id} such thatS= −S

(i.e.,S is closed under inverse). TheCayley graphof H generated byS, denotedCay(H,S),

is the undirected graphG = (V,E) whereV = H andE = {(x,sx) | x ∈ H,s∈ S}. The

Cayley graph is connected if and only ifSgeneratesH.

Throughout this chapter byS= −Swe mean,S is closed under inverse for a given group

operation.
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Definition 4.6.2. A circulant graph G(n,S) is a Cayley graph onZn. That is, it is a graph

whose vertices are labelled{0,1, . . . ,n−1}, with two vertices labelledi and j adjacent if

and only if i− j (modn) ∈ S, whereS⊆ Zn with S=−Sand 0/∈ S.

Corollary 4.6.1. Let G1 = G(n,S) be a circulant graph and G2 be a bicolorable graph,

then CAN(G(n,S)2G2,g) =CAN(G(n,S),g).

Proof. Let i and j be two adjacent vertices inG1. We define a mappingφ fromZn toZn as

follows:

φ(v) = v+ j− i (modn).

It is easy to verify that this function is bijective. To showφ is an automorphism, consider a

pair of distinct verticesv1 andv2 in G(n,S). By definition,v1v2 is an edge inG(n,S) if and

only if v1−v2 (modn) ∈ S. Note that,

φ(v1)−φ(v2) = v1−v2 (modn).

Thus, ifv1v2 is an edge inG(n,S) thenφ(v1)φ(v2) is an edge inG(n,S). Thereforeφ is an

automorphism ofG(n,S). It is easy to verify thatvφ(v) is always an edge. Soφ sends every

vertexv to its neighbourφ(v). Thusφ ∈ Γ and the result follows from Theorem 4.6.1.

For a groupH andS⊆ H, we denote conjugation ofSby elements of itself as

SS= {ss′s−1| s,s′ ∈ S}.

Corollary 4.6.2. Let H be a finite group and S⊆ H r{id} be a generating set for H such

that S=−S and SS= S. Then for G1 =Cay(H,S) and any bicolorable graph G2,

CAN(G12G2,g) =CAN(G1,g).

Proof. We will show that there exists aφ ∈ Aut(G1) such thatφ is stabilizer free. Define

φ : H → H asφ(h) = sh for somes∈ S. It is easy to check thatφ is bijective and being,

s 6= id it is stabilizer free. Now to proveφ is a graph homomorphism we need to show it is

an adjacency preserving map. It is sufficient to prove that verticesh ands′h are adjacent in
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G1 implies verticesshandss′h are adjacent inG1 for somes′ ∈ S. As ss′h= ss′s−1shand

ss′s−1∈S, we haveshandss′h are adjacent inG1. Henceφ ∈ Γ and Theorem 4.6.1 implies

the result.

Example 4.6.1.Let H be an abelian group andS⊆Hr{id} be a generating set forH such

thatS=−S. Then we always getSS= S.

Example 4.6.2.For H = Q8 = {±1,±i,± j,±k} andS= {±i,± j}, we haveSS= S and

S=−S.

Example 4.6.3.For H = D8 = 〈a,b|a2 = 1 = b4,aba= b3〉 andS= {ab,ba}, we have

SS= SandS=−S.

Example 4.6.4.ForH = Sn andS= set of all even cycles, we haveSS= SandS=−S.

Theorem 4.6.2.Let H be a finite group and S be a generating set for H such that

1. S=−S and id/∈ S

2. SS= S

3. there exist s1 and s2 in S such that s1 6= s2 and s1s2 ∈ S

then for G1 =Cay(H,S) and any three colourable graph G2, we have

CAN(G12G2,g) =CAN(G1,g).

Proof. Define three distinct automorphisms ofG1, σi : H→H, for i = 0,1,2, asσ0(u) = u,

σ1(u) = s1u, σ2(u) = s−1
2 u. Consider a three colouring ofG2 using the colours 0,1 and 2.

Let

Wi =
{

(u,v) ∈V(G1�G2) | colour(v) = i
}

for i = 0,1,2.

Note thatW0, W1, andW2 partitionV(G1�G2) into three parts. Let the rows of cover-

ing arrayCA(G1,g) be indexed byu1,u2, . . . ,uk. UsingCA(G1,g), form an arrayC with

|V(G12G2)| rows andCAN(G1,g) columns, indexing rows as(u,v) for 1≤ u≤ |V(G1)|,



96

1≤ v≤ |V(G2)|. If (u,v)∈Wi , row (u,v) is rowσi(u) of CA(G1,g). Consider two adjacent

vertices(u1,v1) and(u2,v2) of G12G2.

(i) Let (u1,v1) and(u2,v2) belong toWi , i =0,1,2. In this case,(u1,v1)(u2,v2)∈E(G12G2)

if and only if u1u2 ∈ E(G1) andv1 = v2. When(u1,v1) and(u2,v2) belong toW0, rows

(u1,v1) and(u2,v2) are rowsu1 andu2 of CA(G1,g). As u1u2 ∈ E(G1), the rowsu1 and

u2 are qualitatively independent inCA(G1,g). Let (u1,v1) and(u2,v2) belong toW1 (res.

W2). Similarly, ass1u1 ands1u2 are adjacent inG1 (res. s−1
2 u1 ands−1

2 u1 are adjacent in

G1) the rows indexed bys1u1 ands1u2 (res.s−1
2 u1 ands−1

2 u2) are qualitatively independent

in CA(G1,g). Hence the rows correspond to vertices(u1,v1) and(u2,v2) are qualitatively

independent inC.

(ii) Let (u1,v1) ∈Wi and (u2,v2) ∈Wj for 0≤ i 6= j ≤ 2. In this case,(u1,v1)(u2,v2) ∈

E(G12G2) if and only if u1 = u2 andv1v2 ∈ E(G2). Let u1 = u2 = u.

Let (u,v1) ∈W0 and (u,v2) ∈W1. Then rows(u,v1) and (u,v2) are rowsu and s1u of

CA(G1,g) respectively. Asu ands1u are adjacent inG1, the rows indexed by(u,v1) and

(u,v2) are qualitatively independent inC.

Let (u,v1) ∈W0 and (u,v2) ∈W2. Then rows(u,v1) and (u,v2) are rowsu ands−1
2 u of

CA(G1,g) respectively. Asu ands−1
2 u are adjacent inG1, the rows indexed by(u,v1) and

(u,v2) are qualitatively independent inC.

Let (u,v1) ∈W1 and(u,v2) ∈W2. Then rows(u,v1) and(u,v2) are rowss1u ands−1
2 u of

CA(G1,g) respectively. Ass1u= s1s2s−1
2 u ands1s2 ∈ S, verticess1u ands−1

2 u are adjacent

in G1. Hence the rows indexed by(u,v1) and(u,v2) are qualitatively independent inC.

Theorem 4.6.3.Let H be a finite group and S be a generating set for H such that

1. S=−S and id/∈ S

2. SS= S

3. there exist s1 and s2 in S such that s1 6= s2 and s1s2,s1s−1
2 ∈ S

then for G1 =Cay(H,S) and any four colourable graph G2, we have
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CAN(G12G2,g) =CAN(G1,g).

Proof. Define four distinct automorphisms ofG1, σi : H → H, i = 0,1,2,3 asσ0(u) = u,

σ1(u) = s1u, σ2(u) = s2u andσ3(u) = s1s2u. Consider a four colouring ofG2 using the

colours 0,1,2 and 3. Let

Wi = {(u,v) ∈V(G1�G2) | colour(v) = i} for i = 0,1,2,3.

Let the rows of covering arrayCA(G1,g) be indexed byu1,u2, . . . ,uk. Form an arrayC with

|V(G12G2)| rows andCAN(G1,g) columns, indexing rows as(u,v) for 1≤ u≤ |V(G1)|,

1≤ v≤ |V(G2)|. If (u,v)∈Wi, row (u,v) is rowσi(u) of CA(G1,g). Consider two adjacent

vertices(u1,v1) and(u2,v2) of C.

(i) Let (u1,v1) and (u2,v2) belong toWi , i = 0,1,2,3. It is easy to verify that the rows

correspond to the vertices(u1,v1) and(u2,v2) are qualitatively independent.

(ii) Let (u1,v1) ∈Wi and(u2,v2) ∈Wj for 0≤ i 6= j ≤ 3. In this case,(u1,v1)(u2,v2) ∈

E(G12G2) if and only if u1 = u2 andv1v2 ∈ E(G2). Let u1 = u2 = u.

Let (u,v1) ∈W0 and(u,v2) ∈Wi for i = 1,2,3, then row(u,v1) and(u,v2) are rowsu and

σi(u) of CA(G1,g) respectively. Then asu andσi(u) are adjacent inG1 the rows correspond

to the vertices(u,v1) and(u,v2) are qualitatively independent.

Let (u,v1) ∈W1 and(u,v2) ∈W2. Then rows(u,v1) and(u,v2) are rowss1u ands2u of

CA(G1,g). As s1u = s1s−1
2 s2u and s1s−1

2 ∈ S, verticess1u and s2u are adjacent inG1.

Hence the rows correspond to the vertices(u,v1) ∈W1 and(u,v2) ∈W2 are qualitatively

independent.

Let (u,v1) ∈W1 and(u,v2) ∈W3. Then rows(u,v1) and(u,v2) are rowss1u ands1s2u of

CA(G1,g). As s1u= s1s−1
2 s−1

1 s1s2u ands1s−1
2 s−1

1 ∈ SbeingSS= S, verticess1u ands1s2u

are adjacent inG1. Hence the rows correspond to the vertices(u,v1) ∈W1 and(u,v2) ∈W3

are qualitatively independent.

Let (u,v1) ∈W2 and (u,v2) ∈W3. Then rows(u,v1) and (u,v2) are rowss2u ands1s2u

of CA(G1,g). As s2u = s−1
1 s1s2u ands−1

1 ∈ S, verticess2u ands1s2u are adjacent inG1.

Hence the rows correspond to the vertices(u,v1) ∈W2 and(u,v2) ∈W3 are qualitatively

independent.
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Example 4.6.5.Let G= Q8 andS= {±i,± j,±k}. Heres1 = i ands2 = j.

Example 4.6.6.Let G= Q8 andS= {−1,±i,± j}. Heres1 =−1 ands2 = i.

Figure 4.8:Cay(Q8,{−1,±i,± j})2K3

4.7 Approximation algorithm for covering array on graph

In this section, we present an approximation algorithm for construction of a covering ar-

ray on a given graphG = (V,E) with k > 1 prime factors with respect to the Cartesian

product. In 1988, G. Seroussi and N H. Bshouty proved that thedecision problem whether

there exists a binary covering array of strengtht ≥ 2 and size 2t on a givent-uniform hy-

pergraph is NP-complete [90]. Also, construction of an optimal size covering array on a
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graph is at least as hard as finding its optimal size. We develop an approximation algo-

rithm to construct covering arrays on graphs with approximation ratioO(logs |V|), where

s can be obtained from the number of symbols corresponding to each vertex. For graphs

which are not prime with respect to the Cartesian product, our algorithm improves the best

known bounds onCAN(G,g). The following result by Bush is used in our approximation

algorithm.

Theorem 4.7.1.[16] Let g be a positive integer. If g is written in standard form:

g= pn1
1 pn2

2 . . . pnl
l

where p1, p2, . . . , pl are distinct primes, and if

r = min(pn1
1 , pn2

2 , . . . , pnl
l ),

then one can construct OA(s,g) where s= 1+max(2, r).

We are given a wighted connected graphG= (V,E) with each vertex having the same

weightg. In our approximation algorithm, we use a technique from [46] for prime factor-

ization ofG with respect to the Cartesian product. This can be done inO(|E| log|V|) time.

For details see [46]. After obtaining prime factors ofG, we construct strength two cover-

ing arrayC1 on the maximum size prime factor. Then using the rows ofC1, we produce a

covering array onG.
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Algorithm 3 APPROXCA(G,g)
Input: A weighted connected graphG = (V,E) with k > 1 prime factors with respect to

the Cartesian product. Each vertex has weightg; g= pn1
1 pn2

2 . . . pnl
l wherep1, p2, . . . , pl are

primes.

Output: CA(ug2,G,g).

Step 1: Computes= 1+max{2, r} wherer = min(pn1
1 , pn2

2 , . . . , pnl
l ).

Step 2: FactorizeG into k prime factors with respect to the Cartesian product; sayG =

2
k
i=1Gi whereGi = (Vi ,Ei) is a prime factor.

Step 3: Suppose|V1| ≥ |V2| ≥ . . .≥ |Vk|. For prime factorG1 = (V1,E1) do

1. Find the smallest positive integeru such thatsu≥ |V1|. That is,u= ⌈logs|V1|⌉.

2. Let OA(s,g) be an orthogonal array and denote itsith row by Ri for i = 1,2, . . . ,s.

Total su many row vectors(Ri1,Ri2, . . .Riu), each of lengthug2, are formed by hori-

zontally concatenatingu rowsRi1, Ri2, . . . , Riu where 1≤ i1, . . . , iu≤ s.

3. Form an|V1| ×ug2 arrayC1 by choosing any|V1| rows out ofsu concatenated row

vectors. Let the rows ofC1 be indexed by 0,1, . . . , |V1| −1. Each row in the array

corresponds to a vertex in the graphG1.

Step 4: Form an arrayC with |V| rows andug2 columns, indexing rows as(v1,v2, . . . ,vk)

for 0≤ vi ≤ |Vi|−1, i = 1,2, . . . ,k. Row(v1,v2, . . . ,vk) is rowv1+v2+ · · ·+vk (mod|V1|)

of C1. ReturnC.

Theorem 4.7.2.Algorithm APPROX CA(G,g) is a polynomial-timeρ(|V|) approximation

algorithm for covering array on graph problem, where

ρ(|V|)≤
⌈

logs
|V|

2k−1

⌉

.

Proof. Correctness: The verification thatC is aCA(ug2,G,g) is straightforward. First,

we show thatC1 is a covering array of strength two with|V1| parameters. Pick any two

distinct rows ofC1 and consider the submatrix induced by these two rows. In the sub-
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matrix, there must be a column(Ri,Rj)
T wherei 6= j. Hence each ordered pair of values

appears at least once. Now we show thatC is a covering array onG. Let u= (u1, . . . ,uk)

andv = (v1, . . . ,vk) be two adjacent vertices inG. It suffices to show that the rows cor-

respond tou andv are qualitatively independent. We knowu andv are adjacent inG if

and only if (ui,vi) ∈ E(Gi) for exactly one index 1≤ i ≤ k andu j = v j for j 6= i. Hence

u1+u2+ . . .+uk 6= v1+v2+ . . .+vk (mod|V1|) and in Step 4, two distinct rows fromC1

are assigned to the verticesu andv.

Complexity : The time to finds in Step 1 isO(lng). The time to factorize graphG= (V,E)

in Step 2 isO(|E| log|V|). In Step 3(1), the smallest positive integeru can be found

in O(logs|V1|) time. In Step 3(2), forming one row vector requiresg2logs|V1| assign-

ments; hence, forming|V1| row vectors requireO(g2|V1|log|V1|) time. Thus the total run-

ning time of APPROXCA(G,g) is O(|E| log|V|+g2|V1|logs|V1|+ lng). Observing that,

g2|V1|logs|V1| ≤ g2|V| logs|V|, and in practice, lng≤ |E| log|V|, we can restate the running

time of APPROXCA(G,g) asO(|E| log|V|+g2|V| logs|V|).

Approximation ratio: We show that APPROXCA(G,g) returns a covering array that is

at mostρ(|V|) times the size of an optimal covering array onG. We know the smallestn

for which aCA(n,G,g) may exist isg2, that is,CAN(G,g) ≥ g2. The algorithm returns a

covering array onG of sizeug2 where

u= ⌈logs|V1|⌉.

As G hask prime factors, the maximum number of vertices in a factor canbe |V|
2k−1 , that is,

|V1| ≤
|V|

2k−1 . Hence

u= ⌈logs|V1|⌉ ≤

⌈

logs
|V|

2k−1

⌉

.

By relating to the size of the covering array returned to the optimal size, we obtain our

approximation ratio

ρ(|V|)≤
⌈

logs
|V|

2k−1

⌉

.



Chapter 5

Mixed Covering Arrays on 3-Uniform Hy-

pergraphs

Several generalizations of covering arrays have been proposed in order to address differ-

ent requirements of the testing applications (see Section 1.2). Mixed covering arrays are

a generalization of covering arrays that allows different values for different parameters.

Covering arrays on graphs are a generalization of covering arrays; in particular, a covering

array on a complete graph is a covering array. Meagher, Moura, and Zekaoui studied mixed

covering arrays on graphs in detail in [67]. Mixed variable strength covering arrays have

been systematically studied in Raaphorst’s Ph.D. thesis [77] and also in [23, 24] by Cheng

et al.

In this chapter, we consider mixed covering arrays on 3-uniform hypergraphs which

generalize mixed covering arrays on graphs introduced in [67] but are a special case of

mixed variable strength covering arrays introduced in [23,77]. See also [5]. The mo-

tivation for this work is to widen applications of covering arrays to software, hardware,

and network testing. In Section 5.1, we outline the necessary background in the theory of

hypergraphs. In Section 5.2, we recall the definition of mixed covering arrays on hyper-

graphs and a lower bound on its minimum size. In Section 5.3, we present results related

to balanced and pairwise balanced vectors which are required for basic hypergraph opera-

tions. In this section, we prove Conjecture 3.4.27 posted byRaaphorst in [77]. In Section

5.4, we introduce four basic hypergraph operations. Using these operations, we construct

optimal mixed covering arrays onα-acyclic 3-uniform hypergraphs, 3-uniform Interval
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hypergraphs, conformal 3-uniform hypertrees having a binary tree as host tree, 2-tree hy-

pergraphs, and 3-uniform loose cycles. We also give a solution to Conjecture 3.4.28 posted

by Raaphorst in [77].

5.1 Hypergraph Theory

In this section, we recall some definitions and relevant results in hypergraph theory from

[10, 101].

Definition 5.1.1. A hypergraph His a pairH = (V,E) whereV = {v1,v2, . . . ,vk} is a set

of elements called nodes or vertices, andE = {e1,e2, . . . ,em} is a set of non-empty subsets

of V, called hyperedges, such that
m
⋃

i=1

ei =V.

A simple hypergraphis a hypergraphH such thatei ⊂ ej ⇒ i = j.

Example 5.1.1.An example of a simple hypergraph is shown in Figure 5.1, where the set

of vertices isV = {v1,v2,v3,v4,v5} and the set of edges isE = {e1,e2,e3,e4,e5}, where

e1 = {v1,v2,v3}, e2 = {v2,v3,v4}, e3 = {v1,v3,v4}, e4 = {v1,v2,v5}, e5 = {v1,v3,v5} and

e6 = {v4,v5}.

v5

v1

v3

v2

v4

Figure 5.1: A simple hypergraphH.
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Thedegree dH(v) of a vertexv∈V(H) is the number of hyperedges which containv. The

maximum degreeover all of the vertices inH is denoted by

∆(H) = max
v∈V

dH(v).

A hypergraph isregular if all vertices have the same degree. If cardinality of everyhy-

peredge ofH is equal tor thenH is calledr-uniform hypergraph. Acomplete r-uniform

hypergraph containingk vertices, denoted byKr
k, is a hypergraph having everyr-subset of

set of vertices as hyperedge. A partial hypergraph is a hypergraph with some hyperedges

removed. More formally, for a setJ⊂ {1,2, ...,m}, thepartial hypergraphgenerated byJ

is the hypergraph(V ′,{ei | i ∈ J}) whereV ′ = ∪
i∈J

ei . A subhypergraph is a hypergraph with

some vertices removed. Formally, for a setA⊂V, thesubhypergraph HA induced byA is

defined as

HA =
(

A,{ei ∩A | 1≤ i ≤m,ei ∩A 6= /0}
)

.

Example 5.1.2.Consider the hypergraphH shown in Figure 5.1. LetJ = {2,4,6}. Then

the partial hypergraph generated byJ has hyperedgese2, e4 ande6 as shown in Figure 5.2.

v5
v1

v3

v2

v4

Figure 5.2: A partial hypergraphH(J).

Example 5.1.3.Consider the hypergraphH shown in Figure 5.1. LetA= {v1,v2,v4,v5}.

Then the subhypergraphHA induced byAhas hyperedges{v1,v2}, {v2,v4}, {v1,v4}, {v1,v2,v5},

{v1,v5}, and{v4,v5} as shown in Figure 5.3.
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v5
v1

v2

v4

Figure 5.3: A subhypergraphHA.

5.1.1 Paths and cycles in hypergraphs

In a hypergraph, an alternating sequence

v1,e1,v2,e2, . . . ,vk,ek,vk+1

of k distinct hyperedgese1,e2, . . . ,ek andk+1 distinct verticesv1,v2, . . . ,vk+1 such that for

each 1≤ i ≤ k, ei containsvi andvi+1 is called apathor Berge pathconnecting vertices

v1 andvk+1 or a(v1,vk+1)-path. It is called acycleif v1 = vk+1. The valuek is called the

lengthof the path/cycle respectively. We provide an example of Berge path in Figure 5.4.

v1 v2 v3 v4 v5

u1 u2

Figure 5.4: A Berge path of length 4 in a 3-uniform hypergraph.

Definition 5.1.2. [87] A loose cyclein a hypergraph is a sequence of distinct hyperedges

e1,e2, . . . ,ek such that for 1≤ i ≤ k, ei ∩ei+1 = {vi} whereek+1 = e1 and allvi are distinct;

and non-consecutive hyperedges are disjoint. Similarly, aloose pathin a hypergraph is a

sequence of distinct hyperedgese1,e2, . . . ,ek such that for 1≤ i ≤ k−1, ei ∩ei+1 = {vi}

where allvi are distinct; and non-consecutive hyperedges are disjoint.
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u1 v1 v2 v3 u6

u2 u3 u4 u5

Figure 5.5: A loose path in a 3-uniform hypergraph.

Definition 5.1.3.A tight cyclein at-uniform hypergraph is a sequence ofk verticesv0,v1, . . . ,

vk−1 such that{vi ,vi+1, . . . ,vi+t−1} is a hyperedge for eachi, wherei is taken modulok.

Similarly, atight pathcan also be defined.

v0 v1 v2 v3 v4

Figure 5.6: A tight path in a 3-uniform hypergraph.

5.1.2 Conformal hypergraphs

The2-sectionof a simple hypergraphH without any loop is the simple graph[H]2 with the

same vertices of the hypergraph and edges between all pairs of vertices contained in the

same hyperedge.

Example 5.1.4.Consider the hypergraphH in Figure 5.1. It is easy to verify that[H]2=K5,

a complete graph on five vertices.

Definition 5.1.4. A hypergraphH is conformalif all the maximal cliques of the graph[H]2

are hyperedges ofH.

Example 5.1.5.Consider the hypergraphH(J) in Figure 5.2. The edges of[H(J)]2 are

{v1,v2},{v1,v5},{v2,v5},{v2,v3},{v3,v4},{v2,v4}, and{v4,v5}. The maximal cliques of

[H(J)]2 are{v1,v2,v5},{v2,v3,v4}, and{v4,v5}. All these maximal cliques are hyperedges

in H(J). ThusH(J) is a conformal hypergraph. Next, consider the hypergraphH shown
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in Figure 5.1. Note that[H]2 is a complete graph on five vertices; so the maximal clique

size in[H]2 is 5. The hypergraphH does not have any hyperedge containing five vertices.

HenceH is not a conformal hypergraph.

5.1.3 Hypertrees

A host graphfor a hypergraphH = (V,E) is a connected graph on the same vertex setV,

such that every hyperedge induces a connected subgraph of the host graph. A host graph

which is a tree is calledhost treeof hypergraphH.

Definition 5.1.5. A hypergraphH = (V,E) is called ahypertreeif there exists a host tree

T = (V,E
′
) such that each hyperedgeei ∈ E induces a subtree ofT.

Example 5.1.6.Let H1 andH2 be two hypergraphs as shown in Figure 5.7. We use dotted

lines to show the edges of host graphs. Note thatH1 does not have any host tree, hence it is

not a hypertree. On the other hand host graph forH2 is a tree, henceH2 is a hypertree.

v1
v2 v4

v3

v5

H1

v1
v2 v4

v3

v5

H2

Figure 5.7: A hypergraphH1 that is not a hypertree and a hypertreeH2.

5.1.4 Hypergraph colourings

There are many generalizations of hypergraph colourings. Here we mention two of the well

known generalizations.
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Definition 5.1.6. Let H = (V,E) be a hypergraph andk≥ 2 be an integer. Ak-colouring

or weak k-colouringof the vertices is a partition(S1,S2, ...,Sk) of the set of vertices into

k classes such that every hyperedge which is not a loop meets atleast two classes of the

partition. In other words, there must be no monochromatic hyperedge with cardinality≥ 2.

If there exists ak-colouring of vertices thenH is said to bek-colourable. For a hypergraph

H its chromatic numberχ(H) is the smallest integerk for which H admits ak-colouring.

Definition 5.1.7. For a hypergraphH = (V,E), a strong k-colouringof the vertices is a

k-partition (S1,S2, ...,Sk) of V such that no colour appears more than once in the same

hyperedge.

Thestrong chromatic numberof a hypergraphH, denoted byγ(H), is the smallest integer

k for which H admits a strongk-colouring. A strong colouring is always a colouring and

henceχ(H)≤ γ(H).

Example 5.1.7.Consider the hypergraphH2 shown in Figure 5.7. PartitionS1 = {v1} and

S2 = {v2,v3,v4,v5} admits a weak 2-colouring ofH2; and partitionS1 = {v1},S2 = {v2,v4}

and S3 = {v3,v5} admits a strong 3-colouring ofH2. We also see thatχ(H2) = 2 and

γ(H2) = 3.

5.2 Mixed covering arrays on hypergraphs

A weighted hypergraphis a hypergraph with a positive weight assigned to each vertex. We

now recall the definition of mixed covering array on hypergraph from [77].

Definition 5.2.1. Let H be a weighted hypergraph withk vertices and weightsg1 ≤ g2 ≤

...≤gk, and letnbe a positive integer. A covering array onH, denoted byCA(n,H,∏k
i=1gi),

is ank×n array with the following properties:

1. row i corresponds to a vertexvi ∈V(H) with weightgi ;

2. the entries in rowi are fromZgi ;
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3. if e = {v1,v2, . . . ,vt} ∈ E(H), the rows correspond to verticesv1,v2, . . . ,vt are t-

qualitatively independent.

In this chapter we focus on hypergraphs that are 3-uniform, rather than general hyper-

graphs. Given a weighted hypergraphH with weightswH(vi) = gi , i = 1,2, . . . ,k, themixed

covering array number on H, denoted byCAN(H,∏k
i=1gi), is the minimumn for which

there exists aCA(n,H,∏k
i=1gi), that is,

CAN
(

H,
k

∏
i=1

gi
)

= min
n∈N

{

n : ∃ aCA
(

n,H,
k

∏
i=1

gi
)

}

.

Note that

CAN
(

H,
k

∏
i=1

wH(vi)
)

≥max

{

∏
vi∈e

wH(vi) : e∈ E(H)

}

(5.1)

A CA(n,H,∏k
i=1gi) of sizen = CAN(H,∏k

i=1gi) is calledoptimal. A mixed covering array

of strength three is aCA(n,K3
k ,∏

k
i=1gi), whereK3

k is the complete 3-uniform hypergraph

on k vertices with weightsgi , for 1≤ i ≤ k.

Example 5.2.1.Consider the hypergraphH shown in Figure 5.1. Consider a weight func-

tion w : V → N asw(v1) = 3,w(v2) = 2,w(v3) = 2,w(v4) = 2 andw(v5) = 2. An optimal

mixed covering array onH of size 12 is given below.

v1

v2

v3

v4

v5























0 0 0 0 1 1 1 1 2 2 2 2

0 0 1 1 0 1 1 0 0 0 1 1

0 1 0 1 0 0 1 1 0 1 0 1

0 0 1 1 1 0 0 1 0 0 1 1

1 0 0 1 0 1 0 1 1 0 0 1























CA(12,H,3 ·24)

A hypergraph isq-partite if the vertex setV can be partitioned intoq sets so that each hy-

peredge intersects each set at exactly one vertex. Cheng [24] showed that, for aq-partite

hypergraphH with maximum degreet ≤ q, if an OA(q,g, t) exists, thenCAN(H,g) = gt .
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Chenget al. [23] proved that ifH is a hypertree then one can construct optimal mixed

covering array onH. However, the hypertrees considered here in Section 5.4 aredifferent

from that of in [23]. Raaphorst [77] solved the problem of constructing optimal mixed cov-

ering arrays over triangulation hypergraphs of the sphere.He also considered the problem

of building mixed covering arrays over 2-trees and gave a conjecture regarding the nature

of an optimal construction.

5.3 Balanced and Pairwise Balanced Vectors

In this section, we give several results related to balancedand pairwise balanced vectors

which are required for basic hypergraph operations defined in the next section.

Definition 5.3.1. A vectorx∈ Z
n
g is balancedif for every symbola∈ Zg, the number of

indicesi such thatx(i) = a is equal to either⌊n/g⌋ or ⌈n/g⌉.

Definition 5.3.2. Two vectorsx1 ∈ Z
n
g1

andx2 ∈ Z
n
g2

arepairwise balancedif both vectors

are balanced and for every pair of symbols(a,b) ∈ Zg1×Zg2, the number of indicesi such

thatx1(i) = a andx2(i) = b is equal to either⌊n/g1g2⌋ or ⌈n/g1g2⌉.

Remark 5.3.1. Forn≥ g1g2, pairwise balanced vectorsx1 andx2 are always qualitatively

independent.

In order to prove Theorem 5.3.1, we need the following graph theoretic result. LetG be

a graph. Adecompositionof a graph is a list of subgraphs such that each edge appears in

exactly one subgraph in the list. Here by multigraph we mean agraph without loops and

multiple edges between vertices are permitted.

Notation: For any positive integern, the notation[1,n] is used to denote the set{1,2, ....,n}.

Lemma 5.3.1. Let G be a bipartite multigraph. Assume that the degrees of the vertices

in each part differ by no more than 1. Then for any positive integer h≤ ∆(G), there is a

decomposition of the edges in G into h edge-disjoint subgraphs, each with either
⌊

|E(G)|
h

⌋
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or
⌈

|E(G)|
h

⌉

edges. Moreover, the subgraphs can be chosen so that the degree of each vertex

v is either
⌊

dG(v)
h

⌋

or
⌈

dG(v)
h

⌉

.

Proof. We split each vertexv ∈ V(G) into
⌊

dG(v)
h

⌋

vertices of degreeh and, if necessary,

one vertex of degreedG(v)− h
⌊

dG(v)
h

⌋

. This is done by randomly assigning the edges

incident tov among these new vertices of degree at mosth. Denote this resultant bipartite

multigraph byH with maximum degree∆(H) = h. We know that a bipartite graphH with

maximum degreeh is the union ofh matchings. ThusE(H) is union ofh matchingsF0, F1,

. . . , Fh−1. Suppose we have two matchingsF0 andF1 that differ by size more than 1, say

F0 smaller andF1 larger. Every component of the symmetric differenceF0∆F1 could be an

alternating even cycle or an alternating path. Note that it must contain a path, otherwise

their sizes are equal. We can find a path component inF0∆F1 that contains more edges from

F1 thanF0. Swap theF1 edges with theF0 edges in this path component. Then the resultant

graph hasF0 increased in size by 1 edge, andF1 decreased in size by 1 edge. Continue this

process onF0, F1, . . . , Fh−1 until the sizes are either
⌊

|E(G)|
h

⌋

or
⌈

|E(G)|
h

⌉

. Now identify

those vertices ofH which correspond to the same vertex ofG, thenF0, F1, . . . , Fh−1 are

mapped onto certain edge disjoint subgraphsF ′0, F ′1, . . . ,F ′h−1 of G. Thus each subgraphF ′i

contains either
⌊

|E(G)|
h

⌋

or
⌈

|E(G)|
h

⌉

edges.

Next, we prove that in each subgraphF ′i , the degrees of the vertices in each part differ

by no more than 1. SinceFi is a matching, there is at most oneFi-edge incident with any of

the
⌈

dG(v)
h

⌉

vertices ofH correspond tov∈V. Hence

dF ′i
(v)≤

⌈

dG(v)
h

⌉

.

On the other hand, there are
⌊

dG(v)
h

⌋

vertices ofH correspond tov which have degreeh.

There must be anFi-edge starting from each of these, whence

dF ′i
(v)≥

⌊

dG(v)
h

⌋

.

Thus we have
⌊

dG(v)
h

⌋

≤ dF ′i
(v) ≤

⌈

dG(v)
h

⌉

for i = 0,1, . . . ,h−1. This proves that in each

subgraphF ′i , the degrees of the vertices in each part differ by no more than 1.
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Theorem 5.3.1.Let x1 ∈ Z
n
g1

and x2 ∈ Z
n
g2

be two balanced vectors. Then for any positive

integer h≤max
{⌈

n
g1

⌉

,
⌈

n
g2

⌉}

, there exists a balanced vector y∈Zn
h such that x1 and y are

pairwise balanced and x2 and y are pairwise balanced.

Proof. Construct a bipartite multigraphG that corresponds tox1 andx2 as follows:G has

g1 vertices in the first partP⊆ V(G) andg2 vertices in the second partQ⊆ V(G). Let

Pa = {i | x1(i) = a} for a= 0,1, . . . ,g1−1, be the vertices ofP, while Qb = {i | x2(i) = b}

for b= 0,1, . . . ,g2−1, be the vertices ofQ. We have that
⌊

n
g1

⌋

≤ |Pa| ≤
⌈

n
g1

⌉

and
⌊

n
g2

⌋

≤

|Qb| ≤
⌈

n
g2

⌉

, asx1 andx2 are balanced vectors. For eachi = 1,2, . . . ,n there exists exactly

onePa ∈ P with i ∈ Pa and exactly oneQb ∈ Q with i ∈ Qb. For each suchi, add an edge

between vertices corresponding toPa andQb and label iti. HencedG(Pa) =
⌊

n
g1

⌋

or
⌈

n
g1

⌉

anddG(Qb) =
⌊

n
g2

⌋

or
⌈

n
g2

⌉

. Note that∆(G) = max
{⌈

n
g1

⌉

,
⌈

n
g2

⌉}

.

By Lemma 5.3.1, for any positive integerh≤ ∆(G), there is a decomposition of the

edges inG into h edge-disjoint subgraphsF ′0,F
′
1, . . . ,F

′
h−1, each with either

⌊

n
h

⌋

or
⌈

n
h

⌉

edges. Theseh edge-disjoint subgraphsF ′0, F ′1, . . . , F ′h−1 of G form a partition ofE(G) =

[1,n] which we use to build a balanced vectory ∈ Z
n
h. Each edge disjoint subgraph cor-

responds to a symbol inZh and each edge corresponds to an index from[1,n]. Suppose

edge disjoint subgraphF ′c corresponds to symbolc ∈ Zh. For each edgei in F ′c, define

y(i) = c. As each subgraphF ′c contains either
⌊

n
h

⌋

or
⌈

n
h

⌉

edges, each symbol inZh occurs

either
⌊n

h

⌋

or
⌈n

h

⌉

times iny. Hencey is a balanced vector. From Lemma 5.3.1, we have
⌊

n
g1h

⌋

≤ dF ′c(Pa)≤
⌈

n
g1h

⌉

for c= 0,1, . . . ,h−1. This means that there exist
⌊

n
g1h

⌋

or
⌈

n
g1h

⌉

edgesi ∈ [1,n] such thatx1(i) = a andy(i) = c. So,x1 andy are pairwise balanced vectors.

Similarly, we can show thaty andx2 are pairwise balanced vectors.

The following corollary is an easy consequence of Theorem 5.3.1.

Corollary 5.3.1. Let x∈ Z
n
g be a balanced vector. Then for any positive integer h≤

⌈

n
g

⌉

,

there exists a balanced vector y∈ Z
n
h such that x and y are pairwise balanced.

Proof. This follows from Theorem 5.3.1. Setx1 = x andx2 = x.
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Next, we give a solution to Conjecture 3.4.27 posted by Raaphorst in [77]. In order to prove

Theorem 5.3.2, we need the following graph theoretic result.

Lemma 5.3.2.Let G= (U ∪V,E) be a complete bipartite multigraph. Let U= {u0,u1, . . . ,

ug1−1} and V= {v0,v1, . . . ,vg2−1}. Assume that the degrees of the vertices in each part

differ by no more than 1 and the number of edges between every pair of vertices ua ∈U

and vb∈V is either
⌊

|E(G)|
g1g2

⌋

or
⌈

|E(G)|
g1g2

⌉

. Then, for any h such that hg1g2≤ |E(G)|, there is

a decomposition of edges in G into h edge-disjoint complete bipartite spanning subgraphs,

each with either
⌊

|E(G)|
h

⌋

or
⌈

|E(G)|
h

⌉

edges. Moreover, these subgraphs can be chosen so

that the degree of each vertex v is either
⌊

dG(v)
h

⌋

or
⌈

dG(v)
h

⌉

.

Proof. It is given thatdG(ua) =
⌊

|E(G)|
g1

⌋

or
⌈

|E(G)|
g1

⌉

for a= 0,1, . . . ,g1−1 anddG(vb) =
⌊

|E(G)|
g2

⌋

or
⌈

|E(G)|
g2

⌉

for b = 0,1, . . . ,g2−1. We construct a bipartite multigraphH from

G as follows: We split each vertexua ∈U in G into
⌊

dG(ua)
h

⌋

vertices of degreeh and, if

necessary, one vertex of degreedG(ua)−h
⌊

dG(ua)
h

⌋

in H. As g2≤
⌊

|E(G)|
hg1

⌋

, ua split into at

leastg2 vertices inH from the split operation. Label themua0, ua1, ...,ua(g2−1), uag2 . . . (g2

onwards are extra). Similarly, we split each vertexvb ∈V into
⌊

dG(vb)
h

⌋

vertices of degree

h and, if necessary, one vertex of degreedG(vb)−h
⌊

dG(vb)
h

⌋

in H. Thus,vb split into at

leastg1 vertices inH from the split operation. Label themvb0, vb1, ..., vb(g1−1), vbg1 . . .

(g1 onwards are extra). We have at leasth edges between every pair of verticesua andvb;

consider anyh edges betweenua andvb. Theseh edges become theh edges betweenuab

andvba in H. We add the remaining edges betweenua andvb arbitrarily to H amongst

the extra vertices, provided we maintainH as a bipartite graph with maximum degreeh.

This results in a graph (possibly multigraph) where every vertex has maximum degreeh.

We know that a bipartite graph with maximum degreeh is the union ofh matchings. Thus

E(H) is the union ofh matchingsF0,F1, . . . ,Fh−1. Now identify those vertices ofH which

correspond to the same vertex ofG, thenF0, F1, . . . , Fh−1 are mapped onto certain edge

disjoint spanning subgraphsF ′0, F ′1, . . . , F ′h−1 of G. We claim each of the spanning sub-

graphsF ′i is a complete bipartite multigraph. For everya∈ Zg1, b∈ Zg2, there areh edges

betweenuab andvba in H, and they will all appear in different matchingsF0, F1, . . . ,Fh−1.
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This ensures that the spanning subgraphs contain at least one edge betweenua andvb for

everya∈ Zg1, b∈ Zg2. This proves that each of the spanning subgraphsF ′i is a complete

bipartite multigraph.

SinceFi is a matching, there is at most oneFi-edge incident with any of the
⌈

dG(ua)
h

⌉

vertices

of H correspond toua ∈U . Hence

dF ′i
(ua)≤

⌈

dG(ua)

h

⌉

.

On the other hand, there are
⌊

dG(ua)
h

⌋

vertices ofH correspond toua which have degreeh.

There must be anFi-edge starting from each of these, whence

dF ′i
(ua)≥

⌊

dG(ua)

h

⌋

.

Thus we have
⌊

dG(ua)
h

⌋

≤ dFi
′(ua)≤

⌈

dG(ua)
h

⌉

for i = 0,1, . . . ,h−1. Similarly, we can show

that the degrees of the vertices inV differ by no more than one. Next, we need to show

each spanning subgraphF ′i contains either
⌊

|E(G)|
h

⌋

or
⌈

|E(G)|
h

⌉

edges. In other words, this

corresponds to each matchingFi contains either
⌊

|E(G)|
h

⌋

or
⌈

|E(G)|
h

⌉

edges. The proof of

this part is the same as that of Lemma 5.3.1.

Theorem 5.3.2.Let x1 ∈ Z
n
g1

and x2 ∈ Z
n
g2

be two pairwise balanced vectors. Then for

any h such that g1g2h≤ n, there exists a balanced vector y∈ Z
n
h such that x1, x2 and y are

3-qualitatively independent and x1 and y are pairwise balanced and x2 and y are pairwise

balanced.

Proof. Construct a complete bipartite multigraphG = (P∪Q,E) that corresponds tox1

and x2 as defined in the proof of Theorem 5.3.1. Clearly,dG(Pa) =
⌊

n
g1

⌋

or
⌈

n
g1

⌉

for

a = 0,1, . . . ,g1−1 anddG(Qb) =
⌊

n
g2

⌋

or
⌈

n
g2

⌉

for b = 0,1, . . . ,g2−1. We have that the

vectorsx1 andx2 are pairwise balanced, that is, for each pair(a,b)∈Zg1×Zg2, the number

of edges betweenPa and Qb is
⌊

n
g1g2

⌋

or
⌈

n
g1g2

⌉

. From Lemma 5.3.2, for any positive

integerh such thatg1g2h≤ n, there is a decomposition of edges inG into h edge-disjoint
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Figure 5.8: An illustration of graphsG andH in the proof of Lemma 5.3.2 withg1= 2,g2=

3, |E(G)|= 19 andh= 2.

complete bipartite spanning subgraphsF ′0,F
′
1, . . . ,F

′
h−1, each with either

⌊

n
h

⌋

or
⌈

n
h

⌉

edges;

moreover, these subgraphs can be chosen so that the degrees of the vertices in each part

differ by no more than 1. Theseh edge-disjoint spanning subgraphsF ′0, F ′1, . . . ,F ′h−1 of G

form a partition ofE(G)= [1,n]which we use to build a balanced vectory∈Zn
h. Each edge-

disjoint spanning subgraph corresponds to a symbol inZh and each edge corresponds to

an index from[1,n]. Suppose edge-disjoint spanning subgraphF ′c corresponds to symbol

c ∈ Zh. For each edgei in F ′c, definey(i) = c. We need to show thatx1, x2, y are 3-

qualitatively independent. For anya∈ Zg1, b∈ Zg2, c∈ Zh, in the spanning subgraphF ′c

there is an edgei incident toPa ∈ P andQb ∈ Q asF ′c is a complete bipartite multigraph.

This means that for anya∈Zg1, b∈Zg2, c∈Zh, there exists ani ∈ [1,n] such thatx1(i)= a,

x2(i) = b, andy(i) = c. So,x1, x2 andy are 3-qualitatively independent. Next, we prove

that x1 andy are pairwise balanced, andx2 andy are pairwise balanced. Since we have
⌊

n
g1h

⌋

≤ dFc
′(Pa)≤

⌈

n
g1h

⌉

for c= 0,1, . . . ,h−1. This means that there exist
⌊

n
g1h

⌋

or
⌈

n
g1h

⌉

edgesi ∈ [1,n] such thatx1(i) = a andy(i) = c. So,x1 andy are pairwise balanced vectors.
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Similarly, we can show thaty andx2 are pairwise balanced vectors. Next, we need to show

thaty is balanced. This corresponds to each spanning subgraphF ′c contains either
⌊

n
h

⌋

or
⌈n

h

⌉

edges.

5.4 Optimal mixed covering arrays on hypergraphs

Let H be a weighted 3-uniform hypergraph withk vertices. Label the verticesv1,v2, ...,vk

and for each vertexvi denote its associated weight bywH(vi).

Definition 5.4.1. Theproduct weightof a wighted hypergraphH, denotedPW(H) is de-

fined to be

PW(H) = max

{

∏
vi∈e

wH(vi) : e∈ E(H)

}

.

Note thatCAN(H,∏k
i=1wH(vi))≥PW(H). Hence a mixed covering array on a hypergraph

with sizePW(H) is an optimal covering array. If there is no ambiguity about the hypergraph

H, we denotewH(v) by w(v).

Definition 5.4.2. Let H be a weighted hypergraph. Abalanced covering array on His a

covering array onH in which each row is balanced and the rows correspond to vertices in

a hyperedge are pairwise balanced.

5.4.1 Basic hypergraph operations

We introduce four hypergraph operations which will be used to construct optimal size

mixed covering arrays on different families of 3-uniform hypergraphs.

1. Single-vertex edge hooking I

2. Single-vertex edge hooking II

3. Two-vertex hyperedge hooking

4. Single-vertex hyperedge hooking
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v v u
=⇒

Single-vertex edge hooking I

v

w

v

w

u=⇒

Single-vertex edge hooking II

w

u v

w

=⇒

Two-vertex hyperedge hooking

v

w

v u

w

=⇒

Single-vertex hyperedge hooking

Figure 5.9: Basic Hypergraph Operations

A single-vertex edge hooking Iin a hypergraphH is the operation that inserts a new edge

{u,v} in which u is a new vertex andv is in V(H). A single-vertex edge hooking IIin a

hypergraphH is the operation that inserts two new edges{u,v} and{u,w} in which u is a

new vertex andv andw are inV(H). A two-vertex hyperedge hookingin a hypergraphH

is the operation that insert a new hyperedge{u,v,w} in whichu andv are new vertices and

w is in V(H). A single-vertex hyperedge hookingin a hypergraphH is the operation that

replaces an edge{v,w} by a hyperedge{u,v,w} whereu is a new vertex.

Proposition 5.4.1.Let H be a weighted hypergraph with k vertices and H′ be the weighted

hypergraph obtained from H by single-vertex edge hooking I,single-vertex edge hooking

II or single-vertex hyperedge hooking operation with u as a new vertex with w(u) such that

PW(H) = PW(H ′). Then, there exists a balanced CA(n,H,∏k
i=1gi) if and only if there

exists a balanced CA(n,H
′
,w(u)∏k

i=1gi).

Proof. If there exists a balancedCA(n,H ′,w(u)∏k
i=1gi) then by deleting the row corre-
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sponding to the new vertexu we can obtain aCA(n,H,∏k
i=1gi). Conversely, letCH be a

balancedCA(n,H,∏k
i=1gi). The balanced covering arrayCH can be used to constructCH ′,

a balancedCA(n,H
′
,w(u)∏k

i=1gi). We consider the following cases:

Case 1: LetH ′ be obtained fromH by a single vertex edge hooking I of a new vertexu

with a new edge{u,v}, andw(u) such thatw(u)w(v) ≤ PW(H ′) = PW(H) ≤ n. Using

Corollary 5.3.1, we can build a balanced length-n vectoru overZw(u) corresponds to vertex

u such thatu is pairwise balanced with the length-n vectorv corresponds to vertexv. The

arrayCH ′ is built by appending rowu to CH .

Case 2: LetH ′ be obtained fromH by a single vertex edge hooking II of a new vertexu with

two new edges{u,v} and{u,w}, andw(u) such thatw(u)w(v) ≤ PW(H ′) = PW(H) ≤ n

andw(u)w(w) ≤ PW(H ′) = PW(H) ≤ n. Using Theorem 5.3.1, we can build a balanced

length-n vectoru corresponds to vertexu such thatu is pairwise balanced with the length-n

vectorsv andw correspond to verticesv andw respectively. The arrayCH ′ is built by ap-

pending rowu toCH .

Case 3: LetH ′ be the graph obtained fromH by replacing an edge{v,w} ∈ E(H) by a

new hyperedge{u,v,w} in which u is a new vertex, andw(u) such thatw(u)w(v)w(w) ≤

PW(H ′) = PW(H) ≤ n. Using Theorem 5.3.2, we can build a balanced lengthn vectoru

corresponds to vertexu such thatu is 3-qualitatively independent with two length-n pair-

wise balanced vectorsv andw correspond to verticesv andw respectively inH. The array

CH ′ is built by appending rowu toCH .

Proposition 5.4.2.Let H be a weighted hypergraph with k vertices and H′ be the weighted

hypergraph obtained from H by two-vertex hyperedge hookingoperation with u and v as

new vertices with w(u) and w(v) such that PW(H)=PW(H ′). Then, there exists a balanced

CA(n,H,∏k
i=1gi) if and only if there exists a balanced CA(n,H

′
,w(u)w(v)∏k

i=1gi).

Proof. If there exists a balancedCA(n,H ′,w(u)∏k
i=1gi) then by deleting the rows corre-

sponding to the new verticesu andv we can obtain aCA(n,H,∏k
i=1gi). Conversely, let

CH be a balancedCA(n,H,∏k
i=1gi). HypergraphH ′ is obtained fromH by a two-vertex

hyperedge hooking of two new verticesu andv with a new hyperedge{u,v,w}, andw(u),
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w(v) such thatw(u)w(v)w(w) ≤ PW(H ′) = PW(H) ≤ n. Using Corollary 5.3.1, we can

build a balanced length-n vectoru corresponds to vertexu such thatu is pairwise balanced

with the length-n vectorw corresponds to vertexw. Then using Theorem 5.3.2, we can

build a balanced lengthn vectorv corresponds to vertexv such thatv is 3-qualitatively

independent with two length-n pairwise balanced vectorsw andu correspond to verticesw

andu respectively inH. The arrayCH ′ is built by appending rowsu andv to CH .

Theorem 5.4.1.Let H be a weighted hypergraph and H
′
be a weighted 3-uniform hyper-

graph obtained from H via a sequence of single-vertex edge hooking I, single-vertex edge

hooking II, two-vertex hyperedge hooking, single-vertex hyperedge hooking operations. Let

vk+1,vk+2, ...,vl be the vertices in V(H
′
)rV(H) with weights gk+1,gk+2, ...,gl respectively

so that PW(H) = PW(H ′). If there exists a balanced covering array CA(n,H,∏k
i=1gi),

then there exists a balanced CA(n,H
′
,∏l

i=1gi).

Proof. The result is derived by iterating the different cases of Proposition 5.4.1 and Propo-

sition 5.4.2.

5.4.2 α-acyclic 3-uniform hypergraphs

There are many generalizations of the notion of graph acyclicity in hypergraphs. Gra-

ham [45], and independently, Yu and Ozsoyoglu [105], definedα-acyclic property for hy-

pergraphs via a transformation now known as theGYO reduction. Given a hypergraph

H = (V,E), the GYO reduction applies the following operations repeatedly toH until none

of the operations can be applied:

1. If a vertexv∈V(H) has degree one, then deletev from the hyperedge containing it.

2. If e1,e2 ∈ E(H) are distinct hyperedges such thate1⊆ e2, then deletee1 from E(H).

3. If e∈ E(H) is empty, that ise= /0, then deletee from E(H).

Definition 5.4.3. A hypergraphH is α-acyclic if the GYO reduction onH results in an

empty hypergraph.
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Example 5.4.1.Consider the hypergraphsH1= (V1,E1) andH2= (V2,E2) shown in Figure

5.10, whereV1 = {v1,v2,v3,v4,v5,v6,v7,v8},V2 = {v1,v2,v3,v4,v5,v6},

E1 =
{

{v1,v2,v3},{v1,v3,v4},{v1,v2,v5},{v2,v3,v6},{v4,v7,v8}
}

and

E2 =
{

{v1,v2,v3},{v1,v3,v4},{v2,v4,v5},{v4,v5,v6}
}

.

It is easy to see thatH1 is α-acyclic butH2 is notα-acyclic.

v1

v2

v3

v4

v5 v6

v8 v7

H1 H2

v1

v2

v3

v4

v5

v6

Figure 5.10: Anα-acyclic hypergraphH1 and a nonα-acyclic hypergraphH2.

Theorem 5.4.2.Let H be a weightedα-acyclic3-uniform hypergraph with l vertices. Then

there exists a balanced mixed CA(n,H,∏l
i=1gi) with n= PW(H).

Proof. Apply the GYO reduction onH to record the order in which the hyperedges are

deleted. Lete1,e2, . . . ,em be an ordering in whichm hyperedges ofH are deleted by

the GYO reduction. While constructing covering array onH, consider the hyperedges

in reverse order of their deletions. LetH1 be the hypergraph with the single hyperedge

em = {v1,v2,v3} wherew(v1) = g1,w(v2) = g2 andw(v3) = g3. If g1g2g3 = n, construct

the 3×n arrayA with columns consisting of all triples fromZg1×Zg2×Zg3. Clearly,A is a

balanced covering array onH1. Otherwise, ifg1g2g3≤ n, we construct a balanced covering
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array of sizen on H1 as follows: begin with a balanced vectorv1 ∈ Z
n
g1

corresponds to

vertexv1. From Proposition 5.4.2 (using two-vertex hyperedge hooking operation), we get

a balanced covering arrayCA(n,H1,∏3
i=1gi). Let H2 be the hypergraph obtained fromH1

by adding hyperedgeem−1. Using single-vertex hyperedge hooking or two-vertex hyper-

edge hooking operation, there exists a covering array of size n on H2. For i = 2,3, . . . ,m,

let Hi = Hi−1∪em+1−i . Note thatHm = H. As PW(Hi) ≤ PW(H) for all i = 2,3, . . . ,m,

using single-vertex hyperedge hooking or two-vertex hyperedge hooking operation, there

exists a balanced covering array onHi of size n. In particular, there exists a balanced

CA(n,H,∏l
i=1gi).

5.4.3 3-uniform interval hypergraphs

A family of hypergraphs called interval hypergraphs is defined in [101]. Here we construct

optimal mixed covering arrays on 3-uniform interval hypergraphs.

Definition 5.4.4. A hypergraphH = (V,E) is called aninterval hypergraphif there exists

a linear ordering of the verticesv1,v2, ...,vn such that every hyperedge ofH induces an

interval in this ordering. In other words, the vertices inV can be placed on the real line

such that every hyperedge is an interval.

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

Figure 5.11: A 3-uniform interval hypergraph

Theorem 5.4.3.Let H be a weighted 3-uniform interval hypergraph with l vertices. Then

there exists a balanced mixed CA(n,H,∏l
i=1gi) where n= PW(H).

Proof. The result follows immediately from the proof of Theorem 5.4.2 since every interval

hypergraph isα-acyclic.
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Corollary 5.4.1. Let H be a weighted 3-uniform loose path or tight path with l vertices.

Then there exists a balanced mixed CA(n,H,∏l
i=1gi) where n= PW(H).

Proof. Since every loose path or tight path is an interval hypergraph, the result is an imme-

diate consequence of Theorem 5.4.3.

5.4.4 3-uniform hypertrees

In this subsection, we give a construction for optimal mixedcovering arrays on some spe-

cific conformal 3-uniform hypertrees.

Theorem 5.4.4.Let H be a weighted conformal 3-uniform hypertree with l vertices, having

a binary tree as a host tree. Then there exists a balanced mixed CA(n,H,∏l
i=1gi) with

n= PW(H).

Figure 5.12: A conformal 3-uniform hypertree with a binary host tree

Proof. It suffices to show thatH is α-acyclic hypergraph. LetT be a binary host tree of

H and let the height ofT be h. SinceH is a conformal 3-uniform hypergraph, we have

ω([H]2) = 3. Consider the hypergraphF shown in Figure 5.13.F is not conformal since

the maximal clique{v1,v2,v3,v4} of its 2-section is not a hyperedge. ThusH contains no
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partial hypergraph isomorphic toF . If F is a partial hypergraph ofH then 4= ω([F]2) ≤

ω([H]2) = 3, a contradiction.

F [F]2

v1

v2
v3 v4

v1

v2
v3 v4

Figure 5.13: A non conformal hypergraphF and its 2-section.

Let u be an internal vertex inT at levelh−1. Let v andw be its two children at the last

level h andp be its parent. Note that at least one ofv andw would be of degree 1 inH. If

dH(v) > 1 anddH(w)> 1 then the partial hypergraph with hyperedges{p,u,v}, {p,u,w},

and{u,v,w} is isomorphic to hypergraphF which is a contradiction to conformal property

of H. Figure 5.14 shows all possible configurations (up to isomorphism) for the hyperedges

in H that containu. The green coloured hyperedges may or may not be present inH.

u

p

v
(i)

u

p

v w
(ii)

u

p

v w
(iii)

u

p

v w
level h

level h−1

level h−2

(iv)

Figure 5.14: All possible configurations for hyperedges that containu at levelh−1 in a

conformal 3-uniform hypertree with a binary host tree of heighth.

Next, we show that one complete iteration of the GYO reduction onH starting at a level

h vertexv with dH(v) = 1 results in a conformal 3-uniform partial hypertree with a binary

host tree. The GYO reduction on different configurations areshown in Figure 5.15 to

Figure 5.18.
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p

u

v

=⇒
(1)

p

u =⇒
(2), (3)

p

u

Figure 5.15: One iteration of the GYO reduction on Configuration (i).
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v w

=⇒
(1)

p

u

w

=⇒
(1)

p

u =⇒
(2), (3)
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u

Figure 5.16: One iteration of the GYO reduction on Configuration (ii).
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(1)

p
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w
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(2), (3)

p
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w

Figure 5.17: One iteration of the GYO reduction on Configuration (iii).

p

u

v w

=⇒
(1)

p
u

w
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(2), (3)

p

u
w

Figure 5.18: One iteration of the GYO reduction on Configuration (iv).

It may be noted that the resultant hypergraph in each case is aconformal 3-uniform hy-

pertree having a binary tree as host tree. SinceH has finite number of vertices and hyper-
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edges, a finite number of iterations of the GYO reduction onH result in an empty hypertree.

Therefore,H is anα-acyclic hypergraph. Now the proof follows directly from the proof of

Theorem 5.4.2.

5.4.5 2-tree hypergraphs

In this subsection we consider a family of graphs calledk-trees, which are generalizations

of trees. The following definitions are from [50, 77].

Definition 5.4.5. [50] A graph is ak-treeif it can be obtained fromKk by a sequences of

vertex additions, where each new vertex is adjacent to a clique of sizek in the previously

generated graph.

Note that a 1-tree is just a tree. For ak-treeG with |V(G)|> k, we can associate a hyper-

graph withG by replacing eachKk+1 by a hyperedge of sizek+1.

Definition 5.4.6. [77] A k-tree hypergraphis a hypergraphH constructed as follows:

1. Initially setH to contain precisely the vertices 0,1, . . . ,k and hyperedge{0,1, . . . ,k}.

2. For each new vertexv, select a hyperedgee in H. Pick any vertexu ∈ e and set

e′ = (er{u})∪{v}. Then addv ande′ to H.

Example 5.4.2.Consider the hypergraphH shown in Figure 5.19, with 7 verticesv1, v2,

v3, v4, v5, v6, v7 and 5 hyperedgese1 = {v1,v2,v3}, e2 = {v1,v3,v4}, e3 = {v1,v2,v5},

e4 = {v2,v3,v6}, ande5 = {v1,v4,v7}. H is a 2-tree hypergraph as it can be constructed by

starting withe1 and then adding the verticesv4,v5,v6 andv7 in it using the above described

method. It is important to note that there does not exist any acyclic host graph forH, thusH

is not a hypertree. On the other hand, the hypergraphH2 shown in Figure 5.7 is a hypertree

but not a 2-tree hypergarph.
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v1

v2

v3

v4

v5

v6

v7

G

v1

v2

v3

v4

v5 v6

v7

H

Figure 5.19: A 2-tree graphG and its associated 2-tree hypergraphH.

If H is a k-tree hypergraph, then[H]2 is a k-tree. From Example 5.4.2 it is clear that the

hypergraphs considered in this section are different from hypertrees. It is known that, ifH

is ak-tree hypergraph, then its strong chromatic numberγ(H) = k+1 [77]. The problem

of finding a construction for optimal covering arrays over arbitrary, strongly 3-colourable

hypergraphs seems to be more difficult problem. The 2-tree hypergraphs are strongly 3-

colourable hypergraphs, and given their iterative construction, building optimal arrays over

them appears to be considerably more simple. We now considercovering arrays on 2-tree

hypergraphs and give a solution to Conjecture 3.4.28 postedby Raaphorst in [77].

Theorem 5.4.5.Let H be a weighted 2-tree hypergraph with l vertices, and letg1,g2, . . . ,gl

≥ 1. Denote

n= PW(H) = max{gxgygz : {x,y,z} ∈ E(H)}.

Then there exist a balanced mixed CA(n,H,∏l
i=1gi).

Proof. Begin with a hyperedge{x,y,z} ∈ E(H) such thatgxgygz = n. Let H1 be the hy-

pergraph with the single hyperedge{x,y,z}. Construct the 3× n array A with columns

consisting of all tuples fromZgx×Zgy×Zgz. Clearly,A is a balanced covering array on

H1. Let H2 be a hypergraph obtained fromH1 after inserting a new hyperedge{x,y,u} in

whichu is a new vertex, that is,H2 =H1∪{x,y,u}. Letx andy be the rows inA correspond

to verticesx andy respectively. Using single-vertex hyperedge hooking operation, we can

find a balanced row vectoru ∈ Z
n
gu

correspond to vertexu such thatu andx are pairwise
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balanced,u andy are pairwise balanced andx,y,u are 3-qualitatively independent. Thus,

a balanced covering array onH2 of sizen is build by appending rowu to A. Following the

iterative construction for 2-tree hypergraphH, the full l ×n array created in this way is an

optimal covering array onH.

5.4.6 3-uniform loose cycles

The cyclic structure is very rich in hypergraphs as comparedto that in graphs [9]. It seems

difficult to construct optimal size mixed covering arrays oncycle hypergraphs. There is a

special types of 3-uniform cycles for which we are able to construct an optimal size mixed

covering arrays.

Theorem 5.4.6.Let H be a weighted 3-uniform loose cycle e1,e2, . . . ,ek of length k on2k

vertices{v1,u1,v2,u2, . . . ,vk,uk} such that

1. ei ∩ei+1 = {vi} for i = 1, ...,k and ek+1 = e1;

2. dH(ui) = 1 for each ui ∈ ei .

Let gi and fi denote the weights of vertices vi and ui respectively. Then there exists a

balanced CA(n,H,∏k
j=1g j f j) with n= PW(H).

v4
v3

v2

v1v5

v6

u5 u2

u4 u3

u1u6

e5

e4

e6

e2

e3

e1

Figure 5.20: A 3-uniform loose cycle of length 6.
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Proof. Let {v1,u2,v2} be a hyperedge inH with n = PW(H) = g1 f2g2. Let H1 be the

hypergraph with the single hyperedge{v1,u2,v2}. Construct the 3×n array with columns

consisting of all triples fromZg1×Z f2×Zg2. Clearly,A is a balanced covering array on

H1. For i = 2,3, . . . ,k−2, letHi be the hypergraph obtained fromHi−1 after inserting a new

edge{vi ,vi+1} in whichvi+1 is a new vertex, that is,Hi = Hi−1∪{vi ,vi+1}. Using Proposi-

tion 5.4.1 (single-vertex edge hooking I operation), for all i = 2,3, . . . ,k−2, asgigi+1≤ n,

there exists a balancedCA(n,Hi, f2 ∏i+1
j=1g j). LetHk−1 =Hk−2∪{{vk−1,vk},{vk,v1}}. Us-

ing single vertex edge hooking II operation, asgk−1gk≤ n andg1gk≤ n, we get a balanced

covering arrayCA(n,Hk−1, f2 ∏k
j=1g j). Finally, using sequence of single-vertex hyperedge

hooking operations onHk−1, replace the edge{vi ,vi+1} by the hyperedge{vi ,ui+1,vi+1}

for i = 2,3, . . . ,k−1; also replace the edge{vk,v1} by the hyperedge{vk,u1,v1}. Since

gi fi+1gi+1 ≤ n for all i = 2,3, . . . ,k− 1 andgk f1g1 ≤ n, from Proposition 5.4.1 (using

single-vertex hyperedge hooking), there exists a balancedCA(n,H,∏k
j=1g j f j).



Chapter 6

Concluding Remarks and Open Problems

We now give, chapter-wise, the major contributions of the thesis and then list the open

problems that arose from this work.

In Chapter 2, we present a construction method for strength four covering arrays, that

combines an algebraic technique with the computer search. This construction is an ex-

tension of the construction methods developed in [21, 69]. The method proposed here

improves many of the best known upper bounds on the sizes of strength four covering ar-

rays forg= 3 and 19≤ k≤ 74. In the range ofk considered here forg= 3, the best known

results previously come from [30]. In that paper, covering arrays are also found by using a

group action on the symbols, but no group action on the rows isemployed. Here we expe-

dite and improve the search by also performing a group actionon the rows as in [21, 69].

A key advantage of this technique is that we search for eitherone or two vectors which are

used to construct a covering array, rather than searching anentire array. We perform either

an exhaustive search or heuristic search to find starter vectors. Is it possible to develop an

algorithm that finds the starter vectors directly [66]? Another area to explore is to check

other group actions in order to get good covering arrays. We now list the following two

questions:

Question 6.1. In Section 2.3, the PGL construction for strength four covering arrays is

described. Can this technique be extended to build improvedcovering arrays of strength

five and six?

Question 6.2.Is it possible to modify the PGL construction to get a better upper bound on

129
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4-CAN(n,g) for g> 3?

In Chapter 3, an algebraic construction for testing arrays with high 3-way configuration

coverage forg= q+2 is developed, whereq is a prime power. We also present another al-

gebraic construction for testing arrays with high 4-way configuration coverage forg= q+1

whereq is a prime power. These are useful to create test suites that find a large percentage

of errors involving 3- and 4-way interaction of parameters of a system while having a small

number of test cases required. A comparison of our constructions with the best known

covering array sizes shows that the proposed methods can reduce the number of test cases

significantly while compromising only slightly on the coverage. In this chapter, we focus

mainly on creating testing arrays with maximum configuration coverage. Depending on

software developers requirement, optimization can be withrespect to various parameters

like simplet-way combination coverage and tuple density. By optimization here we mean

maximizing the parameter. Recall from Definition 3.1.2, fora given set ofk parameters,

simplet-way combination coverage is the proportion oft-way combinations ofk param-

eters for which all parameter-value configurations are fully covered. Tuple densityof a

testing arrayA with 100%t-way configuration coverage is the sum oft and the percentage

of the covered(t +1)-tuples out of all possible(t + 1)-tuples [22]. The testing array in

Example 3.1.1 provides 100% 2-way configuration coverage and 90.625% 3-way configu-

ration coverage; so the tuple density of this testing array is 2.90625. We know a strengtht

covering array, which by definition covers 100% oft-way parameter-value configurations

and has 100% simplet-way combination coverage. One important application of these

coverage measures is to get a better understanding of how effective a test suite may be if it

is not designed as a covering array. We conclude this sectionwith a question:

Question 6.3. In Section 3.2 and 3.3, two algebraic constructions for testing arrays with

high configuration coverage are described. Can these constructions be generalized or ex-

tended to build testing arrays with high simplet-way combination coverage fort ≥ 2 or

tuple density?

In Chapter 4, our main contributions are constructions thatmake optimal covering ar-
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rays on large graphs from smaller ones. Large graphs are obtained by considering either

the Cartesian, the direct, the strong, or the Lexicographicproduct of small graphs. One

motivation for introducing a graph structure was to optimize covering arrays for their use

in testing software and networks based on internal structure. Using graph homomorphisms,

we have

max
i=1,2
{CAN(Gi,g)} ≤CAN(G12G2,g)≤CAN(max

i=1,2
{χ(Gi)},g) (6.1)

We give several classes of Cayley graphs where the lower bound on covering array number

CAN(G12G2,g) in Equation 6.1 is achievable. It is an interesting problem to find out other

classes of graphs for which the lower bound on covering arraynumberCAN(G12G2,g)

can be achieved. Clearly, another area to explore is to consider in detail the other graph

products, that is, the direct, the strong, and the Lexicographic product. We give an approx-

imation algorithm for construction of covering arrays on graphs havingk≥ 1 factors with

respect to the Cartesian product. For graphs having more than one factor, our algorithm

improves the present best known bound for the covering arraynumber.

Question 6.4.SupposeG is a prime graph with respect to the Cartesian product but it is

factorizable with respect to the strong product. Is it possible to develop a better approxima-

tion algorithm to build a covering array onG using graph factorization ofG with respect to

the strong product?

Question 6.5.There is an algorithm to factorize 3-uniform hypergraphs with respect to

the Cartesian product of hypergraphs. Thus we propose the following problem. Is there a

polynomial timeρ(|V|)-approximation algorithm to construct covering arrays on weighted

3-uniform hypergraphs where each vertex has weightg andρ(|V|) = O
(

(logs|V|)
2
)

, s is

obtained fromg?

In Chapter 5, we consider the problem of constructing optimal mixed covering arrays

on 3-uniform hypergraphs. Here we extend the results for mixed covering arrays on graphs

found in [67]. We introduce four hypergraph operations: single-vertex edge hooking I,

single-vertex edge hooking II, two-vertex hyperedge hooking, and single-vertex hyperedge
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hooking. These operations allow us to add new vertices to a hypergraph, while preserving

the size of a balanced covering array on the hypergraph. For the case in whichH is a

3-uniformα-acyclic hypergraph, a 3-uniform interval hypergraph, a 3-uniform conformal

hypertree with a binary tree as a host tree, a 2-tree hypergraph or a 3-uniform loose cycle,

we prove its mixed covering array number isPW(H). We conclude with a list of questions:

Question 6.6.The 2-tree hypergraphs are strongly 3-colourable hypergraphs, and given

their iterative construction, we build optimal covering arrays over them in Section 5.4.5.

The problem of constructing optimal covering arrays over arbitrary strongly 3-colourable

hypergraphs, seems to be more difficult. Identify other families of strongly 3-chromatic

hypergraphsH = (V,E), |V|= k, such that

CAN
(

H,
k

∏
i=1

gi
)

= PW(H).

This question is also raised in [77].

Question 6.7.Find a strongly 3-colourable hypergraphH = (V,E), |V|= k, such that

CAN
(

H,
k

∏
i=1

gi
)

> PW(H).

Otherwise, show that no such hypergraph exists [77].

Question 6.8.Let H be a weighted 3-uniform tight cycle. Does there exist a covering array

CA(n,H,∏k
i=1gi) with n= PW(H)?

Question 6.9.Let x1 ∈ Z
n
g1

, x2 ∈ Z
n
g2

andx3 ∈ Z
n
g3

be mutually pairwise balanced and 3-

qualitatively independent vectors. Leth be a positive integer so thath≤ min
{

n
g1g2

, n
g3

}

.

Find a balanced vectory ∈ Zn
h such that{x1,x2,y} are 3-qualitatively independent and,y is

pairwise balanced with eachxi for i = 1,2,3. The existence of such a vectory along with

single vertex hyperedge hooking operation will enable us toconstruct an optimal covering

array on the cycle hypergraphH shown in Figure 6.1. Note thatH is different from the

cycles considered in Section 5.4.6.
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x3

x2

x1y1

y2

Figure 6.1: A 3-uniform cycleH.

Question 6.10.Let x1 ∈ Z
n
g1

, x2 ∈ Z
n
g2

andx3 ∈ Z
n
g3

be mutually pairwise balanced and 3-

qualitatively independent vectors. Leth be a positive integer so thath≤min
{

n
g1g2

, n
g2g3

}

.

Find a balanced vectory ∈ Z
n
h such that{x1,x2,y} and{x2,x3,y} are 3-qualitatively in-

dependent, andy is pairwise balanced with eachxi for i = 1,2,3. The existence of such a

vectory will enable us to construct an optimal covering array on the hypergraphF shown

in Figure 5.13. Thus the conformal condition can be relaxed in Theorem 5.4.4.
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Sample Programs for strength four covering arrays with
g= 3

Case 1: Two starter vectors

Program to find the first vector (u)

#include <iostream >

#include <math.h>

using namespace std;

int h;float m, M;

/* function that counts the number of orbits that are represented

in each dxy class*/

float rep(int *V,int *n,float m,int k,int x, int y, int z)

{int T[4];

int A[14];

for (int i=0;i<k;i++)

A[i]=0;

for (int i=0;i<k;i++)

{ T[0]=V[i];

T[1]=V[(i+x)%k];

T[2]=V[(i+x+y)%k];

T[3]=V[(i+x+y+z)%k];

134
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if((T[0]==T[1])&&(T[1]==T[2]) &&(T[3]==T[2]))

A[0]=1;

else if((T[0]==T[1])&&(T[1]==T[2]) && (T[3]!=T[2]))

A[1]=1;

else if((T[0]!=T[1])&&(T[1]==T[2]) && (T[3]==T[2]))

A[2]=1;

else if((T[0]!=T[1])&&(T[0]==T[2]) && (T[0]==T[3]))

A[3]=1;

else if((T[0]==T[1])&&(T[1]!=T[2]) && (T[3]==T[1]))

A[4]=1;

else if((T[0]==T[1])&&(T[2]==T[3]) && (T[1]!=T[2]))

A[5]=1;

else if((T[0]==T[2])&&(T[1]==T[3]) && (T[1]!=T[2]))

A[6]=1;

else if((T[0]==T[3])&&(T[2]==T[1]) && (T[1]!=T[0]))

A[7]=1;

else if((T[0]==T[1])&&(T[2]!=T[3]) && (T[1]!=T[2]) && (T

[0]!=T[3]))

A[8]=1;

else if((T[0]==T[2])&&(T[2]!=T[3]) && (T[1]!=T[3]) && (T

[1]!=T[2]))

A[9]=1;

else if((T[0]==T[3])&&(T[0]!=T[1]) && (T[2]!=T[3]) && (T

[1]!=T[2]))

A[10]=1;

else if((T[1]==T[3])&&(T[2]!=T[3]) && (T[1]!=T[0]) && (T

[0]!=T[2]))

A[11]=1;

else if((T[2]==T[3])&&(T[2]!=T[1]) && (T[2]!=T[0]) && (T

[0]!=T[1]))

A[12]=1;

else if((T[2]==T[1])&&(T[1]!=T[0]) && (T[2]!=T[3]) && (T

[0]!=T[3]))

A[13]=1;
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}

int c=0;

for (int i=0;i <14;i++)

{ if(A[i]!=1)

c=c+n[i];

}

if(x==z && y==(k-x-y-z))

{m=m+(k/2)*(pow(3,4)-c);}

else if(x==y && y==z && z== (k-x-y-z))

{m=m+(k/4)*(pow(3,4)-c);}

else

m=m+k*(pow(3,4)-c);

return(m);

}

/* function that generates dxyz classes*/

float cov(int *V,int *Vm,int n[14], int k)

{

int c,r=0;

float m;

m=0;c=0;

for (int x=1;x<(k/4 +1);x++)

{for (int y=x;y<k;y++)

{if(y>(k-2*x)/2.0)

for(int z=x+1;z<k-2*x-y;z++)

{m=rep(V,n,m,k,x,y,z);r++;}

else

for(int z=x;z<k-2*x-y;z++)

{m=rep(V,n,m,k,x,y,z); r++;}

}

}
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if(k%4==0)

{m=rep(V,n,m,k,k/4,k/4,k/4);r++;}

m=m/(((k*(k-1)*(k -2)*(k-3))/24.0)*pow(3,4));

return(m);

return (0);

}

/*function that generates vectors*/

int num(int *V,int *Vm ,int n[15],int l,int k,int v)

{if(m<0 || m>1)

m=0;

if(m!=1)

{int r,s;

l++;

for(int i=0;i<v;i++)

{V[l]=i;

if(l==k)

{l++;

m=cov(V,Vm ,n,k);

if(m>M)

{M=m;

cout <<"M="<<M<<" ";

for(int j=0;j<k;j++)

Vm[j]=V[j];

for(int j=0;j<k;j++)

cout <<Vm[j];cout <<"\n"<<flush;

}

}
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if(l<k)

r=num(V,Vm,n,l,k,v);

}

}

else if(m==1)

return (0);

return (0);

}

int main()

{int k,r,t;

t=4;

h=2;

cout <<"Enter k: ";

cin >>k;

int *V,*Vm;

V = new int[k];

Vm = new int[k];

for(int i=0;i<k;i++)

{V[i]=0;Vm[i]=0;}

int n[14];

n[0]=0;

for(int i=1;i <14;i++)

n[i]=6;

r=num(V,Vm ,n,-1,k ,3);

return (0);

}
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Program that takes the output of the previous program saved in the file conditions.txt and
finds the second vector(v)

/*Program that takes the output of the previous program saved in

the file conditions.txt and finds the second vector(v)*/

#include <iostream >

#include <math.h>

#include <fstream >

#include <sstream >

#include <string>

using namespace std;int w;

/*function that checks whether the passed vector covers all the

conditions which vector u does not cover*/

int cov(int *V,int *Vm ,int *T,int &z,int k)

{z=0;int c;int dx ,dy,dz;

ifstream f;

f.open("conditions.txt");

string line;int n;

while( getline(f,line))

{istringstream ss(line);

ss >>dx;ss >>dy;ss >>dz;

while(ss >>n)

{c=1;

for (int i=0;i<k;i++)

{T[0]=V[i];

T[1]=V[(i+dx)%k];

T[2]=V[(i+dx+dy)%k];

T[3]=V[(i+dx+dy+dz)%k];

switch(n)

{case 0:if (c==0) break; else c=0;break;

case 1:if (c==0) break; else {if((T[0]==T[1])&&(T[1]==T[2])
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&& (T[3]!=T[2])) c=0; else c=1;}break;

case 2:if (c==0) break; else {if((T[0]!=T[1])&&(T[1]==T[2])

&& (T[3]==T[2])) c=0; else c=1;}break;

case 3:if (c==0) break; else {if((T[0]!=T[1])&&(T[0]==T[2])

&& (T[0]==T[3])) c=0; else c=1;}break;

case 4:if (c==0) break; else {if((T[0]==T[1])&&(T[1]!=T[2])

&& (T[3]==T[1])) c=0; else c=1;}break;

case 5:if (c==0) break; else {if((T[0]==T[1])&&(T[2]==T[3])

&& (T[1]!=T[2])) c=0; else c=1;}break;

case 6:if (c==0) break; else {if((T[0]==T[2])&&(T[1]==T[3])

&& (T[1]!=T[2])) c=0; else c=1;}break;

case 7:if (c==0) break; else {if((T[0]==T[3])&&(T[2]==T[1])

&& (T[1]!=T[0])) c=0; else c=1;}break;

case 8:if (c==0) break; else {if((T[0]==T[1])&&(T[2]!=T[3])

&& (T[1]!=T[2]) && (T[0]!=T[3])) c=0; else c=1;}break;

case 9:if (c==0) break; else {if((T[0]==T[2])&&(T[2]!=T[3])

&& (T[1]!=T[3]) && (T[1]!=T[2])) c=0; else c=1;}break;

case 10:if (c==0) break; else {if((T[0]==T[3])&&(T[0]!=T[1])

&& (T[2]!=T[3]) && (T[1]!=T[2])) c=0; else c=1;}break;

case 11:if (c==0) break; else {if((T[1]==T[3])&&(T[2]!=T[3])

&& (T[1]!=T[0]) && (T[0]!=T[2])) c=0; else c=1;}break;

case 12:if (c==0) break; else {if((T[2]==T[3])&&(T[2]!=T[1])

&& (T[2]!=T[0]) && (T[0]!=T[1])) c=0; else c=1;}break;

case 13:if (c==0) break; else {if((T[2]==T[1])&&(T[1]!=T[0])

&& (T[2]!=T[3]) && (T[0]!=T[3])) c=0; else c=1;}break;

}

}

if(c==1)

z++;

}

}

return(z);

}
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/*function that generates candidate vectors*/

int num(int *V,int *Vm ,int *T,int &z,int &Z,int l,int k,int v)

{if(Z==0)

return (0);

else

{int r,s;

l++;

for(int i=0;i<v;i++)

{V[l]=i;

if(l==k)

{l++;

z=cov(V,Vm ,T,z,k);

if(z<Z)

{Z=z;

cout <<"Z="<<Z<<" ";

for(int j=0;j<k;j++)

Vm[j]=V[j];

for(int j=0;j<k;j++)

cout <<Vm[j];cout <<"\n"<<flush;

}

}

if(l<k)

r=num(V,Vm,T,z,Z,l,k,v);

}

}

return (0);

}

int main()

{int k,r,t;t=4;

int z=20000 ,Z =20000;
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int T[4];

for(int i=0;i <4;i++)

T[i]=0;

cout <<"Enter k: ";

cin >>k;

int *V,*Vm;

V = new int[k];

Vm = new int[k];

for(int i=0;i<k;i++)

{V[i]=0;Vm[i]=0;}

r=num(V,Vm ,T,z,Z,-1,k,3);

return (0);

}
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Case 2: Two vectors u, v and a matrixC1 and

Case 3: One vector u and a matrixC1

Program to find the matrixC1

#include <iostream >

#include <math.h>

#include <fstream >

#include <sstream >

#include <string>

#include <time.h>

#include <stdlib.h>

using namespace std;

int cov(int *V[60],int *Vm[60], int *T,int &z,int k,int &s)

{z=0;int c;int x1 ,x2,x3,x4,x5;

ifstream f;

f.open("input.txt");

string line;int n;

while( getline(f,line))

{istringstream ss(line);

ss >>x1;ss >>x2;ss >>x3;ss >>x4;ss >>x5;

c=2;

for(int j=0;j<=s;j++)

{

T[0]=V[(x1)%k][j];

T[1]=V[(x2)%k][j];

T[2]=V[(x3)%k][j];

T[3]=V[(x4)%k][j];

switch(x5)
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{case 0:if (c==0) break; else {if((T[0]==T[1])&&(T[1]==T[2])

&& (T[3]==T[2]) && (T[3]==T[1])) c=0; else c=1;} break;

case 1:if (c==0) break; else {if((T[0]==T[1])&&(T[1]==T[2])

&& (T[3]!=T[2])) c=0; else c=1;}break;

case 2:if (c==0) break; else {if((T[0]!=T[1])&&(T[1]==T[2])

&& (T[3]==T[2])) c=0; else c=1;}break;

case 3:if (c==0) break; else {if((T[0]!=T[1])&&(T[0]==T[2])

&& (T[0]==T[3])) c=0; else c=1;}break;

case 4:if (c==0) break; else {if((T[0]==T[1])&&(T[1]!=T[2])

&& (T[3]==T[1])) c=0; else c=1;}break;

case 5:if (c==0) break; else {if((T[0]==T[1])&&(T[2]==T[3])

&& (T[1]!=T[2])) c=0; else c=1;}break;

case 6:if (c==0) break; else {if((T[0]==T[2])&&(T[1]==T[3])

&& (T[1]!=T[2])) c=0; else c=1;}break;

case 7:if (c==0) break; else {if((T[0]==T[3])&&(T[2]==T[1])

&& (T[1]!=T[0])) c=0; else c=1;}break;

case 8:if (c==0) break; else {if((T[0]==T[1])&&(T[2]!=T[3])

&& (T[1]!=T[2]) && (T[0]!=T[3])) c=0; else c=1;}break;

case 9:if (c==0) break; else {if((T[0]==T[2])&&(T[2]!=T[3])

&& (T[1]!=T[3]) && (T[1]!=T[2])) c=0; else c=1;}break;

case 60:if (c==0) break; else {if((T[0]==T[3])&&(T[0]!=T[1])

&& (T[2]!=T[3]) && (T[1]!=T[2])) c=0; else c=1;}break;

case 11:if (c==0) break; else {if((T[1]==T[3])&&(T[2]!=T[3])

&& (T[1]!=T[0]) && (T[0]!=T[2])) c=0; else c=1;}break;

case 12:if (c==0) break; else {if((T[2]==T[3])&&(T[2]!=T[1])

&& (T[2]!=T[0]) && (T[0]!=T[1])) c=0; else c=1;}break;

case 13:if (c==0) break; else {if((T[2]==T[1])&&(T[1]!=T[0])

&& (T[2]!=T[3]) && (T[0]!=T[3])) c=0; else c=1;}break;

}

if(c==0)

{

break;}

}

if(c==1)
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z++;

}

f.close();

return(z);

}

int rand(int *V[60], int *Vm[60], int *T, int k, int &z, int &Z,

int &s)

{int c;int f;if(Z==0)

return (0);

else

{int r1,r2,r3 ,p;int n;int zz; string line;

srand(time(NULL));

do{p=0;

for(int j=0;j<k;j++)

for(int i=0;i<60;i++)

V[j][i]=0;

while(Z!=0 && p< 60000)

{p++;f=1;

z=cov(V,Vm ,T,z,k,s);

if(z<Z)

{Z=z;

cout <<"Z="<<Z<<"\n";

for(int j=0;j<k;j++)

for(int i=0;i<60;i++)

Vm[j][i]=V[j][i];

for(int j=0;j<k;j++)

{for(int i=0;i<60;i++)

cout <<Vm[j][i]<<" ";

cout <<"\n";

}

remove("output.txt");

ofstream fo("output.txt");ifstream f;int c,x1,x2 ,x3 ,x4 ,x5;

f.open("input.txt");
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zz=0;

while(getline(f,line))

{istringstream ss(line);

ss >>x1;ss >>x2;ss >>x3;ss >>x4;ss >>x5;

c=2;

for(int j=0;j<=s;j++)

{

T[0]=V[(x1)%k][j];

T[1]=V[(x2)%k][j];

T[2]=V[(x3)%k][j];

T[3]=V[(x4)%k][j];

switch(x5)

{case 0:if (c==0) break; else {if((T[0]==T[1])&&(T[1]==T[2])

&& (T[3]==T[2]) &&(T[3]==T[1]) ) c=0; else c=1;} break;

case 1:if (c==0) break; else {if((T[0]==T[1])&&(T[1]==T[2])

&& (T[3]!=T[2])) c=0; else c=1;}break;

case 2:if (c==0) break; else {if((T[0]!=T[1])&&(T[1]==T[2])

&& (T[3]==T[2])) c=0; else c=1;}break;

case 3:if (c==0) break; else {if((T[0]!=T[1])&&(T[0]==T[2])

&& (T[0]==T[3])) c=0; else c=1;}break;

case 4:if (c==0) break; else {if((T[0]==T[1])&&(T[1]!=T[2])

&& (T[3]==T[1])) c=0; else c=1;}break;

case 5:if (c==0) break; else {if((T[0]==T[1])&&(T[2]==T[3])

&& (T[1]!=T[2])) c=0; else c=1;}break;

case 6:if (c==0) break; else {if((T[0]==T[2])&&(T[1]==T[3])

&& (T[1]!=T[2])) c=0; else c=1;}break;

case 7:if (c==0) break; else {if((T[0]==T[3])&&(T[2]==T[1])

&& (T[1]!=T[0])) c=0; else c=1;}break;

case 8:if (c==0) break; else {if((T[0]==T[1])&&(T[2]!=T[3])

&& (T[1]!=T[2]) && (T[0]!=T[3])) c=0; else c=1;}break;

case 9:if (c==0) break; else {if((T[0]==T[2])&&(T[2]!=T[3])

&& (T[1]!=T[3]) && (T[1]!=T[2])) c=0; else c=1;}break;

case 60:if (c==0) break; else {if((T[0]==T[3])&&(T[0]!=T[1])
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&& (T[2]!=T[3]) && (T[1]!=T[2])) c=0; else c=1;}break;

case 11:if (c==0) break; else {if((T[1]==T[3])&&(T[2]!=T[3])

&& (T[1]!=T[0]) && (T[0]!=T[2])) c=0; else c=1;}break;

case 12:if (c==0) break; else {if((T[2]==T[3])&&(T[2]!=T[1])

&& (T[2]!=T[0]) && (T[0]!=T[1])) c=0; else c=1;}break;

case 13:if (c==0) break; else {if((T[2]==T[1])&&(T[1]!=T[0])

&& (T[2]!=T[3]) && (T[0]!=T[3])) c=0; else c=1;}break;

}

if(c==0)

{break ;}

}

if(c==1)

{zz++;

fo <<(x1)%k<<" " <<(x2)%k<<" " <<(x3)%k<<" "<<x4<<" "<<x5<<" "

<<endl;

}

}f.close ();fo.close ();

}

else

{for(int j=0;j<k;j++)

for(int i=0;i<60;i++)

V[j][i]=Vm[j][i];

}

for(int i=0;i<6;i++)

V[rand()%k][s]=rand()%3;

if(p == 60000)

{for(int j=0;j<k;j++)

for(int i=0;i<60;i++)

V[j][i]=Vm[j][i];

}

}
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}while(f==1);

}

return (0);

}

int main()

{int k;

int r;

int z,Z; z =20000;Z=20000;

cout <<"Enter k:";cin >>k;

int T[4];

for(int i=0;i <4;i++)

T[i]=0;

int **V=new int *[60];

int **Vm=new int*[60];

for(int i=0;i <60; ++i)

{V[i] = new int[k];

}

for(int i=0;i<k;i++)

for(int j=0;j<60;j++)

{V[i][j]=0;Vm[i][j]=0;}

for(int s=0;s <60;s++)

{r=rand(V,Vm ,T,k,z,Z,s);

remove("input.txt");

ifstream fi("output.txt");

ofstream fo("input.txt");

string l;int x1 ,x2 ,x3,x4,x5;

while( getline(fi ,l))

{istringstream ss(l);

ss >>x1;ss >>x2;ss >>x3;ss >>x4;ss >>x5;
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fo <<x1<<" "<<x2 <<" "<<x3<<" "<<x4<<" "<<x5 <<endl;

}

fi.close ();

fo.close ();

}

return (0);

}



Bibliography

[1] B. Agarwal, S. Tayal, and M. Gupta.Softrware Engineering and Testing: An Intro-

duction. Jones and Bartlett, Sudbury, Massachusetts, 2010.

[2] B. S. Ahmed and K. Z. Zamli. A review of covering arrays andtheir application to

software testing.Journal of Computer Science, 7(9):1375–1385, 2011.

[3] Y. Akhtar and S. Maity. Covering arrays on product graphs. In 47th Southeastern

International Conference on Combinatorics, Graph theory and Computing. Boca

Raton, FL. March 2016.

[4] Y. Akhtar and S. Maity. Mixed covering arrays on hypergraphs. InICECCS, Com-

munications in Computer and Information Science, pages 327–338. Springer Berlin

Heidelberg, 2012.

[5] Y. Akhtar and S. Maity. Mixed covering arrays on 3-uniform hypergraphs.Preprint,

2016.

[6] Y. Akhtar, S. Maity, and R. C. Chandrasekharan. Coveringarrays of strength four

and software testing. InMathematics and Computing: ICMC, Springer Proceedings

in Mathematics and Statistics, pages 391–398. Springer India, 2015.

[7] Y. Akhtar, S. Maity, and R. C. Chandrasekharan. Test suites with high 3-way con-

figuration coverage.Preprint, 2016.

[8] Y. Akhtar, S. Maity, R. C. Chandrasekharan, and C. J. Colbourn. Improved strength

four covering arrays with three symbols.Preprint, 2016.

150



151

[9] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the desirability of acyclic

database schemes.J. ACM, 30(3):479–513, 1983.

[10] C. Berge.Hypergraphs-Combinatorics of Finite Sets. Elsevier Science, 1989.

[11] S. Y. Borodai and I. S. Grunskii. Recursive generation of locally complete tests.

Cybernetics and Systems Analysis, 28(4):504–508, 1992.

[12] R. C. Bose and B. Manvel.Introduction to Combinatorial Theory. John Wiley &

Sons, Inc., New York, NY, USA, 1984.

[13] R. C. Bose, S. S. Shrikhande, and E. T. Parker. Further results on the construction

of mutually orthogonal Latin squares and the falsity of Euler’s conjecture.Canad.

J. Math., 12:189–203, 1960.

[14] R. C. Bryce and C. J. Colbourn. The density algorithm forpairwise interaction

testing.Software Testing, Verification and Reliability, 17(3):159–182, 2007.

[15] R. C. Bryce and C. J. Colbourn. A density-based greedy algorithm for higher

strength covering arrays.Software Testing, Verification and Reliability, 19(1):37–

53, 2009.

[16] K. A. Bush. A generalization of a theorem due to MacNeish. Ann. Math. Statist.,

23(2):293–295, 1952.

[17] K. A. Bush. Orthogonal arrays of index unity.The Annals of Mathematical Statistics,

23(3):426–434, 1952.

[18] C. T. Carroll. The cost of poor testing: A U.S. government study (part 1).EDPACS,

31(1):1–17, 2003.

[19] J. Carter and M. N. Wegman. Universal classes of hash functions.Journal of Com-

puter and System Sciences, 18(2):143 – 154, 1979.



152

[20] M. Chateauneuf and D. L. Kreher. On the state of strengththree covering arrays.

Journal of Combinatorial Designs, 10(4):217–238, 2002.

[21] M. A. Chateauneuf, C. J. Colbourn, and D. L. Kreher. Covering arrays of strength

three.Designs, Codes and Cryptography, 16(3):235–242, 1999.

[22] B. Chen and J. Zhang. Tuple density: A new metric for combinatorial test suites

(nier track). InProceedings of the 33rd International Conference on Software Engi-

neering, pages 876–879, Waikiki, Honolulu, HI, USA, 2011. ACM.

[23] C. Cheng, A. Dumitrescu, and P. Schroeder. Generating small combinatorial test

suites to cover input-output relationships. InProceedings of the Third International

Conference on Quality Software, pages 76–82, Washington, DC, USA, 2003. IEEE

Computer Society.

[24] C. T. Cheng. The test suite generation problem: Optimalinstances and their impli-

cations.Discrete Applied Mathematics, 155(15):1943–1957, 2007.

[25] S. Chowla, P. Erd̋os, and E. G. Straus. On the maximal number of pairwise orthog-

onal Latin squares of a given order.Canad. J. Math., 12:204–208, 1960.

[26] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton. The AETG system: an

approach to testing based on combinatorial design.IEEE Transactions on Software

Engineering, 23(7):437–444, 1997.

[27] D. M. Cohen, S. R. Dalal, J. Parelius, and G. C. Patton. The combinatorial design

approach to automatic test generation.IEEE Softw., 13(5):83–88, Sept. 1996.

[28] G. D. Cohen and G. Zémor. Intersecting codes and independent families. IEEE

Trans. Information Theory, 40(6):1872–1881, 1994.

[29] M. B. Cohen, P. B. Gibbons, W. B. Mugridge, C. J. Colbourn, and J. S. Collofello.

Variable strength interaction testing of components. InProceedings of the 27th An-



153

nual International Conference on Computer Software and Applications, COMPSAC,

pages 413–418, Washington, DC, USA, 2003. IEEE Computer Society.

[30] C. Colbourn. Conditional expectation algorithms for covering arrays.Journal of

Combinatorial Mathematics and Combinatorial Computing, 90:97–115, 2014.

[31] C. J. Colbourn. Covering array tables for t=2,3,4,5,6 available at

http://www.public.asu.edu/ ccolbou/src/tabby/catable.html.

[32] C. J. Colbourn. Combinatorial aspects of covering arrays. Le Matematiche, 59:125–

172, 2004.

[33] C. J. Colbourn and J. H. Dinitz.Handbook of Combinatorial Design. CRC Press,

1996.

[34] C. J. Colbourn, S. S. Martirosyan, G. L. Mullen, D. Shasha, G. B. Sherwood, J. L.

Yucas, and S. S. Martirosyan. Products of mixed covering arrays of strength two.

Journal of Combinatorial Designs, 14:124–138, 2006.

[35] C. J. Colbourn, C. Shi, C. Wang, and J. Yan. Mixed covering arrays of strength three

with few factors.Journal of Statistical Planning and Inference, 141(11):3640–3647,

2011.

[36] P. Danziger, E. Mendelsohn, L. Moura, and B. Stevens. Covering arrays avoiding

forbidden edges.Theor. Comput. Sci., 410(52):5403–5414, Dec. 2009.

[37] A. Dey and R. Mukherjee.Fractional Factorial Plans. John Wiley and Sons, New

York, 1999.

[38] T. Dutta and B. K. Roy. Construction of symmetric balanced squares.Ars Combi-

natoria, 47:49–64, 1997.

[39] A. Edelman. The mathematics of the Pentium division bug. SIAM Review, 39:54–67,

1997.



154

[40] P. Erdös, C. Ko, and R. Rado. Intersection theorems for systems of finite sets.Quart.

J. Math. Oxford, 12(2):313–320, 1961.

[41] N. Francetíc. Covering arrays with row limit. PhD thesis, University of Toronto,

2012.

[42] N. Francetíc, P. Danziger, and E. Mendelsohn. Group divisible coveringdesigns

with block size 4: A type of covering array with row limit.Journal of Combinatorial

Designs, 21(8):311–341, 2013.

[43] L. Gargano, J. Körner, and U. Vaccaro. Sperner capacities. Graphs and Combina-

torics, 9(1):31–46, 1993.

[44] A. P. Godbole, D. E. Skipper, and R. A. Sunley. t-covering arrays: Upper bounds

and Poisson approximations.Combinatorics, Probability and Computing, 5:105–

117, 1996.

[45] M. Graham. On the universal relation. Report, University of Toronto, Toronto,

Ontario, Canada, 1979.

[46] R. Hammack, W. Imrich, and S. Klavžar.Handbook of Product Graphs. CRC Press,

2011.

[47] A. Hartman. Software and hardware testing using combinatorial covering suites.

In Graph Theory, Combinatorics and Algorithms: Interdisciplinary Applications,

pages 237–266, Boston, MA, 2005. Springer US.

[48] A. Hartman and L. Raskin. Problems and algorithms for covering arrays.Discrete

Mathematics, 284:149–156, 2004.

[49] A. Hedayat, N. Sloane, and J. Stufken.Orthogonal Arrays: Theory and Applica-

tions. Springer series in statistics. Springer-Verlag New York Inc., 1999.



155
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stabL(q)(∞), H(q), 32

graph, 13

chromatic numberχ(G), 81

clique, 81

clique numberω(G), 81

colouring, 81

vertex, 13

weighted graph, 13

graph homomorphism, 80
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endomorphism, 81

weak homomorphism, 80

graph isomorphism, 81

automorphism, 81

graph product, 84

factors, 85

prime, 87

GYO reduction, 119

host graph, 107

host tree, 107, 122

hypergraph, 103

chromatic number,χ(H), 108

conformal, 106, 122

hyperedge, 103

partial hypergraph, 104

regular, 104

simple hypergraph, 103

subhypergraph, 104

uniform, 104

hypertree, 107, 122

interval hypergraph, 121

Latin square, 2

orthogonal Latin squares, 3

set of mutually orthogonal Latin squares,

4

lexicographic product, 86

loose cycle, 105, 127

loose path, 105, 122

mixed covering array, 12

mixed covering array on graph, 13

mixed covering array on hypergraph, 108

mixed covering arrays on graphs

mixed covering array number onG, 14

orbit, orbitG(x), 30

orthogonal array, 5, 33, 90, 99

pairwise balanced vectors, 110, 112

parameter-value configuration, 55

parameter-value configuration coverage

µ3(A ), 66

µ4(A ), 68

permutation, 30

permutation group, 30

degree, 30

product weight, 116

qualitatively independent graph, 83

simplet-way combination coverage, 55

single-vertex edge hooking I, 117

single-vertex edge hooking II, 117

single-vertex hyperedge hooking , 117

stabilizer, stabG(x), 30

starter array, 34

starter vectors, 36

strong chromatic number,γ(H), 108
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strong colouring, 108

strong product, 86

symmetric group,Sym X, 30

testing array, 55

tight cycle, 106

tight path, 106, 122

transitive, 30

k-transitive, 31

sharplyk-transitive, 31

transversal cover, 8

transversal design, 6

tree, 80

binary tree, 80, 122

two-vertex hyperedge hooking, 117

variable strength covering array, 14

weak colouring or colouring, 108


