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Abstract

From well-established subjects like electronics to modern subjects like quantum technology, every
field dealing with the physics of nanoscale uses the formalism of open quantum systems. The
master equation formalism is one of the most widely used approaches in studying open quantum
systems. In this approach, the dynamics of the reduced density matrix of the system is governed by
an integro-differential equation called the master equation. There are multiple approximations—
Born, Markov and Secular approximations—that go into deriving a master equation. This thesis
aims to provide a thorough analysis of these approximations and improve the understanding of
the regime(s) of validity master equations. We do this by studying a model system using both the
Markovian and the Non-Markovian versions of the master equation within the Born approxima-
tion. We then compare these results with exact results obtained by using the Langevin equation
approach, which is an exact approach.

After understanding the motivation to take up this study in the introduction section, we will briefly
describe our methodology followed in undertaking this study. In chapter 1, we will introduce the
model and understand the reasons behind choosing a Rubin bath for this study. In chapter 2, we
solve our model system using the exact Langevin approach and learn about some physical proper-
ties of the quantum Brownian motion. In the next chapter, we study the same setup using different
master equations. We then compare these two approaches in detail in chapter 4. We also present
some additional studies to understand the conclusions that we obtained from the comparison. In
chapter 5, we provide a prescription to perform the Born-Markov approximation in the Langevin
equation formalism. Finally, we conclude the thesis and discuss the work that we are planning to
do in the future.
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Introduction

Brief Background and Motivation

The natural way of understanding anything has a very similar structure in every discipline. We
start from understanding some overwhelmingly simplified models and then keep building layers
of complexities on the existing knowledge and machinery to model the real world at the end. The
subject of open quantum systems is one such layer to the knowledge of closed system dynamics,
which studies the evolution of a system under its own Hamiltonian. Closed system dynamics is
useful for studying systems that have no interaction with any other system. The subject of open
quantum systems incorporates the effect of other systems lying in the vicinity of the system of our
interest.

We start our description by dividing the universe into two parts: the system and the environment.
We then aim to understand the effect of the environment on the system. We commonly model the
environment as a “bath”, which has a large number of degrees of freedom compared to the system.
The bath is usually taken to be in the equilibrium state at some temperature � and a chemical
potential µ. We generally take a quantum bath, i.e. the particles of the bath are indistinguishable.
The system can be anything that we want to study. Usually, a Boson, a Fermion or a spin (or even
a chain of any of these) serves as a good model system. We learn some exclusive phenomena like
dissipation and decoherence by studying these paradigmatic models of open quantum systems.

The formalism of open quantum systems has found great importance in both theoretical and exper-
imental understanding in various fields like photonics, condensed matter physics and mesoscopic
physics ([21]). It also plays a crucial role in understanding the meaning of quantum measure-
ments. The fields of quantum thermodynamics and quantum optics heavily uses the formalism of
open quantum systems ([24], [6]). The cutting-edge experimental facilities have made it possible
to control and study many quantum systems in various regimes of parameters. Hence, it is very
important to have a tractable and consistent theoretical framework to study open quantum systems.

1



There are multiple formalisms to study the dynamics of open systems, such as the path integral
approach, the Langevin equation approach, the Green’s function approach (NEGF) and the mas-
ter equation approach ([13], [11]). The bath has humongous degrees of freedom, and our system
usually interacts with a much smaller number of degrees of freedom of the bath. It is not practical
(and possible) to keep track of all the degrees of freedom when we study the dynamics. That is the
primary reason why exact approaches like the Langevin and the path integral approach has very
limited applicability. To capture the relevant degrees of freedom and make our analysis tractable,
we perform various approximations. The master equation approach is the most widely used for-
malism, and it does a number of such approximations.

In the master equation formalism, one studies the differential equation governing the dynamics
of the reduced density matrix of the system. If the system-bath coupling is weak, one can do a
“Born approximation”. It is a perturbative approximation and gives the Born Master Equation.
Further, if the bath obeys some nice properties, which we will discuss in chapter 3, we can do a
“Markov approximation”. The Born-Markov Master Equation or the Redfield Equation is local
in time and much simpler to solve. The Lindblad form of dynamics has been studied extensively
in various contexts. A master equation describing an open system, i.e. the Redfield equation can
also be reduced to the Lindblad form if we can perform the “secular approximation” on top of the
Born-Markov approximation. There are a bunch of different types of Lindblad equations like the
local Lindblad, global Lindblad, universal Lindblad ([19], [18]), etc. All these master equations
have their own regimes of applicability.

The Lindblad master equations are proven to always preserve the positivity of a density matrix.
But, recently it has been shown that it can fail to preserve conservation laws ([25], [23]) or can fail
to predict correct thermalisation ([15], [23]). The Redfield equation can overcome this limitations
([22]), but it is known to have violated positivity ([3], [10]). Even we will witness such an instance
in chapter 3. Existence of such limitations arising from the underlying approximation was one of
the motivations behind investigating the approximations in deriving the master equation and reach
a complete understanding of the regime(s) of their validity.

The master equation approach is used in studying a plethora of systems. Once we derive the master
equation, we often hope that it gives some valuable insights even about regimes where it violates
the approximations that went into deriving it. We will witness such an instance in chapter 4. To
investigate and understand such possibilities was another motivation behind taking up this study.
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Outline of the thesis

In this project, the central idea was to apply the master equation approach to a simple model
system and compare the results to exact results obtained by using other methods—particularly, the
Langevin dynamics approach—on the same system. This systematic comparison will clarify the
regimes of applicability of the master equation approach for more complicated systems where the
exact solutions are more difficult to obtain.

Our model system is a Brownian particle connected to a Bosonic bath. This model has served as
the workhorse for many studies that are done using the formalism of open quantum systems. It has
found its application in describing phenomena like transport and magnetism ([2]). Despite being
studied extensively ([16], [17], [9]), there have been limited number of studies on comparing the
master equation approach to the exact approaches. Some of the relevant earlier works are ([4],
[19], [20]).

We have compared the dynamics of moments obtained from the exact Langevin equation, Born and
Born-Markov master equations at all times for various baths, potentials and temperature regimes.
In the process, we will absorb some obvious and some really shocking results. Alongside, we will
rediscover most of the basic features of quantum Brownian motion. One take away that I would
like you all to have is the importance of model systems in physics. It is astonishing that a model
made up of balls and spring yields similar equations of motion as a suspended particle in a fluid,
i.e. a classical Brownian particle.

The plan of the thesis is as follows: we will start by understanding the model and discuss some
features of the bath that will be useful throughout the thesis. We will understand why we particu-
larly chose Rubin bath for our study. We will also understand the features that a bath requires to
serve as a Markovian bath. In chapter 2, we will solve and analyse the problem using the exact
Langevin approach. We will discuss about a discrepancy in the literature that we found during our
review. We will also derive something we call a general sum rule. We hope that it can be useful
in future studies. In that chapter, you must see the beautiful figure 2.3.1; it depicts the behaviour of
a Brownian particle for a finite temperature. It has a simultaneous presence of low temperature and
high temperature behaviour in it. We will conclude that chapter by improving our understanding
of the weak coupling limit and limitations of the Langevin approach.

In chapter 3, we will solve and analyse the problem using different master equations. We will
clearly state and justify the Born and the Markov approximation. Actually, we will perform what
we call a “semi-Markov approximation”, which is slightly different from the traditional Markov
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approximation that we see in textbooks. We will learn about the benefits of semi-Markov approx-
imation over the traditional Markov approximation. We will then discuss the very well-known
divergence problems for an Ohmic bath and how our study suggests that one can avoid this prob-
lem by using a Drude bath with a large cutoff. The results in this chapter are full of surprises.
We will see that a Born semi-Markov approximation works but only a Born approximation does
not work for a certain regime. We will also see how Born semi-Markov approximation can work
even for zero temperatures, where it was not supposed to work. We will discover that as opposed
to the popular belief that the master equation works only for large times, it can work perfectly even
for transients.

In chapter 4, we will try to complete the whole comparison. We will study the bounded Brownian
particle in the “free particle limit” to understand results in previous chapters. The study shown
in the last section of this chapter will serve as the icing on the cake to dismantle our traditional
understanding of these approximations. Here, we show that using Markovian kernels in the
Born-approximated master equation is not equivalent to using Markovian kernels in Born
Markov-approximated master equation. This is surprising because if we use Markovian kenrels,
the Markov approximation is supposed to become an exact statement and two approaches should
have matched.

In chapter 5, we have prescribed the Born and Markov approximation in Langevin equation formal-
ism. This study further clarifies the meaning of these approximations. Finally, we will conclude
the work and discuss about our future plans.
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Methodology

I will first describe the scope of our work. As I have mentioned earlier, we have compared three
different approaches: Langevin approach, Born master equation and the Born semi-Markov master
equation. We have done this comparison for all temperatures, for all times and for two different
external potentials. For the ease of calculations, we will separate the comparison of temperature-
dependent “inhomogeneous parts” of solutions from the temperature-independent “homogeneous
parts”.

For solving the problem using the Langevin approach, we will solve for x(t) of the system from
the Langevin equation, which is an ordinary second order inhomogeneous differential equation.
We will analytically reduce our problem to solving a non-trivial integral. We will do this integral
numerically and get our results in terms of plots. To assist ourselves in understanding these plots,
we will also analyse the integral analytically in various asymptotic limits.

For solving the problem using the master equation approach, we will obtain a system of differ-
ential equations governing the dynamics of moments. These equations become algebraic set of
equations in the Laplace space. We will solve them and then numerically find their inverse Laplace
transforms. We will again do some analytical expansions in the Laplace space to understand the
numerical results better.

We will now list general conventions that are used in this thesis alongside some other relevant
information that has been used repeatedly in the thesis.

• Unless stated otherwise, suffix “S” stands for the system and “B” for the bath. The suffix “I”
will be used for representing the operators in the interaction picture.

• Fourier Transforms: For any function f(t), its Fourier transform is represented by f̂(!):

f̂(!) =

Z 1

�1
dte

i!t
f(t), f(t) =

Z 1

�1

d!

2⇡
d!e

�i!t
f̂(!) (1)
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• Laplace Transforms: For any function f(t), its Laplace transform is represented by f̃(z):

f̃(z) =

Z 1

0

dte
�zt

f(t) (2)

• Numerical Conventions: In all our numerical studies, we have set ~ = kB = M = 1.
We have used certain set of parameters throughout the thesis. We have shown microscopic
parameters like mk and k

0 in all figures. Each set of microscopic parameters corresponds
to macroscopic parameters like � and !p. The table below provides a list of all used micro-
scopic parameters and corresponding macroscopic parameters.

mk k
0

� !p mk k
0

� !p

0.050 5.0 0.112 22.361 0.001 200.0 0.016 6324.555
0.050 20.0 0.112 89.443 0.040 200.0 0.1 1000.0
0.005 5.0 0.035 70.711 400.0 20000.0 10.0 1000.0

Table 1: List of parameters used for numerical study.

We will also list frequently used functions and its Laplace transforms:

f(t) f̃(z) f(t) f̃(z)

e
�ct

1

z + c
tg(t) �

dg̃(z)

dz

dg(t)

dt
zg̃(z)� g(0)

d
2
g(t)

d2t
z
2
g̃(z)� zg(0)� ġ(0)

g ⇤ h(t) =
R

t

0 d⌧g(t� ⌧)h(⌧) g̃(z)h̃(z)
R

t

0 d⌧g(⌧)
g̃(z)

z

sin(at)
a

z2 + a2
cos(at)

z

z2 + a2

�(t)
1

2
e
�ct

g(t) g̃(z + c)

t
n

n!

zn+1
ln(t) �

�E + ln(z)

z

25� 12(�E + ln(t))

288
t
4 ln(z)

z5
(1� �E � ln(t))t

ln(z)

z2

Table 2: Laplace transforms that are used in the thesis.
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Chapter 1

The Model and Bath Properties

In this chapter, we will understand the model system that we have used. We will also analyse
various properties of the bath. The quantities that we define in this chapter will be used repeatedly
in this thesis.

1.1 The Model

A Boson attached to a Bosonic bath with certain types of coupling serves as the model of a quan-
tum Brownian particle. This model yields the same equations of motion as one obtains from the
phenomenological description of Brownian motion. In this section, we will understand the setup
of the problem.

Figure 1.1: Setup of the Problem.

Our system is a particle with mass M , coordinate x and momentum p. It is placed in a potential
V (x). It is coupled to a Rubin bath, as shown in the figure 1.1. A Rubin bath is a one-dimensional
chain with N number of particles of mass m each. Let n label these particles with xn and pn being
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the position and momentum, respectively. Particle 1 is attached to the system with coupling k
0, and

bath particles are attached to each other with strength k. The Hamiltonian of the full system is

H =
p
2

2M
+ V (x) +

NX

n=1

✓
p
2
n

2m
+

k

2
(xn � xn+1)

2

◆
+

k
0

2
(x� x1)

2

where xN+1 = 0. We can break the Hamiltonian into a more convenient form by clubbing all the
system coordinates and calling it a system Hamiltonian HS . The bath Hamiltonian HB comprises
all bath coordinates, and the interaction Hamiltonian ĤI has all terms which have both system and
the bath coordinates:

HS =
p
2

2M
+ V (x) +

k
0

2
x
2; HB =

NX

n=1

p
2
n

2m
+

k

2
(xn � xn+1)

2 +
k
0

2
x
2
1; ĤSB = �k

0
xx1 (1.1)

We will now write the bath Hamiltonian in the diagonalised form by writing it in its normal mode
basis. In the matrix notation, we have HB = pT

m
�1p/2+ xT

�x/2, where x = (x1, x2, ..., xn) and
p = (p1, p2, ..., pn), and � is the force matrix. We then do a linear transformation X = m

1/2
Ux

and P = m
�1/2

Up, where U is an orthogonal transformation which diagonalises force matrix:
U�U

T = m⌦2. ⌦2 = {⌦2
s
} (with s ranging from 1 to N ) is the diagonal matrix with entries being

the square of bath eigenfrequencies.

We know that x = m
�1/2

U
�1X, this implies xi = m

�1/2
UjiXj (summation implied). Using this,

we can write the equation 1.1 in the normal mode coordinates:

HB =
NX

s=1

P
2
s

2
+
⌦2

s
X

2
s

2
=
X

s

~⌦s

✓
b
†
s
bs +

1

2

◆
; bs =

r
⌦s

2~


Xs + i

Ps

⌦s

�

ĤSB = �x

NX

s=1

CsXs ⌘ �xB; Cs = m
�1/2

k
0
Us1; B =

X

s

Cs

r
~

2⌦s

(bs + b
†
s
)

(1.2)

bs is the annihilation operator of the s
th bath mode. It follows the usual bosonic commutation

relation: [bs, b†s0 ] = �ss0 and [bs, bs0 ] = 0 = [b†
s
, b

†
s0 ].

1.2 Spectral Density of the Bath

The spectral density of a bath is a crucial quantity that carries information about the effect of a
bath on the system. It gives information about the strength with which each of the normal modes
of the bath interacts with the system. As we go along, we will see that the spectral density will be
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required to calculate many important quantities. The definition of spectral density is

�(!) ⌘
X

s

⇡C
2
s

2!
[�(! � ⌦s) + �(! + ⌦s)] (1.3)

The above expression can be simplified using the eigenfunctions of the bath. For the Rubin bath,
we can get ([8])

�(!) =

8
<

:

�0!

q
1�m!2

4k

1+!2⌧2
, if !  2

q
k

m

0, otherwise
, �0 =

p

mk, ⌧ =

r
1�

k0

k

�0

k0 (1.4)

Let us now analyse this quantity by taking some limits.

Drude Limit: Let a be the equilibrium distance between two bath oscillators. Then, we can go to
the continuum limit by taking the limits m ! 0 and a ! 0, keeping the mass density � = m/a

constant. We should also take the limit k ! 1, keeping Young’s modulus ka constant. In that
case, the spectral density will become

�(!) = �0!
!
2
p

!2 + !2
p

; �0 =
p

mk, !p =
k
0

�0
(1.5)

Here, !p is the so-called Lorentz-Drude cutoff. This expression of spectral density is exactly the
same as that of a Drude bath.

Ohmic Limit: On top of the Drude limit, go to the limit k0
! 1 ⌘ !p ! 1; the spectral density

becomes:
�(!) = �0!; �0 =

p

mk (1.6)

This spectral density is the same as that of an Ohmic bath. The Drude and the Ohmic bath are very
commonly used in the literature. So, the choice of a Rubin bath also allows us to study these other
baths. We will be working in the Drude limit in our study.

As we shall see in the chapter 3 that the Markovian approximation works best for an Ohmic
bath. But, here, we show that the Ohmic limit corresponds to a large k

0 limit, in fact, k0
!

1. In the introduction, I argued that the Born approximation is a perturbative expansion in
the interaction Hamiltonian. So, the Born approximation seems to require that k0 should be
small, whereas the Markovian approximation seems to require that k0 should be large. So,
will the Born-Markov approximation work for this model? — Spoiler alert — it does. To
find out the reason, you will need to wait till section 2.4.
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1.3 Kernels

In this section, we will define multiple quantities which might look a bit incoherent. As of now,
you can just accept these definitions. We will see these quantities arising naturally in our study
once we start analysing our system. In fact, in the master equation formalism, these kernels are all
that we require from the bath to determine the effect of the bath on the dynamics of the system.
We will define and analyse the dissipation, damping and noise kernels. To define these kernels, we
first need to define the “random force term”, ⌘(t). We define ⌘(t) in terms of B that we had in the
equation 1.2:

⌘(t) = e
iHBt

Be
�iHBt

=
X

s

Cs

r
~

2⌦s

(ei⌦stb
†
s
+ e

�i⌦stbs) =
X

s

Cs

✓
Xs(0) cos(⌦st) +

Ps(0)

⌦s

sin(⌦st)

◆ (1.7)

It is very clear from this definition that h⌘(t)ith = 0 (since hbsith = 0). Now, we can define the
dissipation kernel, ⌃(⌧):

⌃(⌧) =
i

~h[⌘(⌧), ⌘(0)]iB, {Trace is with respect to the initial bath density matrix ⇢B.}

=
X

s,s0

CsCs0
i

2
p
⌦s⌦s0

D
[ei⌦s⌧b

†
s
+ e

�i⌦s⌧bs, b
†
s0 + bs0 ]

E

B

=
X

s,s0

CsCs0
i

2
p
⌦s⌦s0

⇣
e
i⌦s⌧ h[b†

s
, bs0 ]ith + e

�i⌦s⌧ h[bs, b
†
s0 ]ith

⌘

=
X

s

C
2
s

⌦s

sin(⌦s⌧)

(1.8)

where in the third line, ⇢B is taken as ⇢th = e
��HB

Z
, the equilibrium state at temperature �. Simi-

larly, we can also derive an expression for the noise kernel, D1(⌧):

D1(⌧) = h{⌘(⌧), ⌘(0)}ith = ~
X

s

C
2
s

⌦s

cos(⌦s⌧) coth

✓
�~⌦s

2

◆
(1.9)

We can also relate the kernels to the spectral density �(!) (equation 1.3) as

⌃(⌧) =
X

s

C
2
s

⌦s

sin(⌦s⌧) ⌘
2

⇡

Z 1

�1
d!�(!)✓(!) sin(!⌧)

D1(⌧) = ~
X

s

C
2
s

⌦s

cos(⌦s⌧) coth

✓
�~⌦s

2

◆
⌘

2~
⇡

Z 1

�1
d!�(!)✓(!) cos(!⌧) coth

✓
�~!
2

◆

(1.10)
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Finally, let us define the damping kernel �(t) and its relation to the dissipation kernel:

�(⌧) =
X

s

C
2
s

⌦2
s

cos(⌦s⌧) ⌘
2

⇡

Z 1

�1
d!
�(!)

!
✓(!) cos(!⌧); ⌃(t) = �

d�(t)

dt
(1.11)

We will be using these kernels in the Laplace space as well. We will take z as the Laplace parameter
in this thesis. All functions in the Laplace space will have a tilde over it. The relation between
these two kernels in the Laplace space:

⌃(t) = �
d�(t)

dt
=) ⌃̃(z) = �z�̃(z) + �(0) = �z�̃(z) + k

0 (1.12)

where we have used the fact that �(0) = k
0. This has been shown in the appendix 1.A. Let us

evaluate these kernels for baths that we are going to use. We will be using the specified form of
the spectral densities that we defined in the previous section.

1.3.1 Drude Limit: Time-Space

We will use �(!) = �0!
!
2
p

!2+!2
p

, where !p = k
0
/�0. We will derive an expression for ⌃(⌧) and

D1(⌧) for this spectral density. Use equation 1.10 and let ⌧ > 0:

⌃(⌧) =
2

⇡

Z 1

0

d! sin(!⌧)�0!
!
2
p

!2 + !2
p

=
2�0!2

p

⇡

1

2

Z 1

�1
d! sin(!⌧)

!

!2 + !2
p

=
2�0!2

p

⇡

1

4i

Z 1

�1
d!


e
i!⌧

!

(! � i!p)(! + i!p)
�

e
�i!⌧

!

(! � i!p)(! + i!p)

�

=
2�0!2

p

⇡

1

4i


(2⇡i)e�!p⌧ (i!p)

2i!p

�
(�2⇡i)e�!p⌧ (�i!p)

�2i!p

�

= �0!
2
p
e
�!p⌧ ; Similarly, for ⌧ < 0 : ⌃(⌧) = ��0!

2
p
e
!p⌧

(1.13)

In the second line, we have changed the integration limit from {0 ! 1} to {�1 ! 1} as the
integrand is an even function. The integration is done using Cauchy’s residue theorem. Finally:

⌃(⌧) = sign(⌧)�0!2
p
e
�!p|⌧ | (1.14)

Similarly, we can evaluate:

�(⌧) = 2

Z 1

0

d! cos(!⌧)
�0

⇡

!
2
p

!2 + !2
p

= �0!pe
�!p|⌧ | (1.15)
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Now, let us move towards the noise kernel. We will need:

coth

✓
~!

2kBT

◆
=

2kBT

~!

1X

n=�1

1

1 + (⌫n/!)2
; ⌫n =

2⇡nkBT

~ (1.16)

⌫n are called Matsubara frequencies. Use equation 1.10 and assume ⌧ > 0:

D1(⌧) = 2~
Z 1

0

d! cos(!⌧)
�0

⇡
!

!
2
p

!2 + !2
p

coth

✓
~!

2kBT

◆

=
4�0kBT!2

p

⇡

1X

n=�1

1

2

Z 1

�1
d! cos(!⌧)

1

!2 + !2
p

!
2

!2 + ⌫2
n

=
4�0kBT!2

p

⇡

1X

n=�1

1

4

Z 1

�1
d!


e
i!⌧

!
2

(!2 + !2
p
)(!2 + ⌫2

n
)
+

e
�i!⌧

!
2

(!2 + !2
p
)(!2 + ⌫2

n
)

�

=
2�0kBT!2

p

⇡

1X

n=�1

Z 1

�1
d!

e
i!⌧

!
2

(! + i!p)(! � i!p)(! � i⌫n)(! + i⌫n)

=
2�0kBT!2

p

⇡

 
0X

n=�1
(2⇡i)


e
�!p⌧ (�!

2
p
)

(2i!p)(⌫2
n
� !2

p
)
+

e
⌫n⌧ (�⌫

2
n
)

(�2i⌫n)(!2
p
� ⌫2

n
)

�

+
1X

n=0

(2⇡i)


e
�!p⌧ (�!

2
p
)

(2i!p)(⌫2
n
� !2

p
)
+

e
�⌫n⌧ (�⌫

2
n
)

(2i⌫n)(!2
p
� ⌫2

n
)

�!

= 2�0kBT!
2
p

1X

n=�1

!pe
�!p⌧ � |⌫n|e

�|⌫n|⌧

!2
p
� ⌫2

n

; Similarly, for ⌧ < 0 :

D1(⌧) = 2�0kBT!
2
p

1X

n=�1

!pe
!p⌧ � |⌫n|e

|⌫n|⌧

!2
p
� ⌫2

n

(1.17)

To obtain the fourth step from the third, we do a variable change ! ! �! in the second part of
the integrand, and we will see it equal to the first part of the integrand, and hence we can merge
them absorbing a factor of 2. It is again Cauchy’s residue theorem in the fifth step. For n > 0 and
n < 0, we encounter different poles, and so the sum is split. Finally:

D1(⌧) = 2�0kBT!
2
p

1X

n=�1

!pe
�!p|⌧ | � |⌫n|e

�|⌫n||⌧ |

!2
p
� ⌫2

n

; ⌫n =
2⇡nkBT

~ (1.18)

We will now look at this kernel for various temperature limits.

High Temperature Limit: kBT >> ~!p. This implies that ⌫n >> !p for n > 0. Hence, we will

12



split the n = 0 part of the sum:

D1(⌧) = 2�0kBT!pe
�!p|⌧ | + 4�0kBT!

2
p

1X

n=1

!pe
�!p|⌧ | � |⌫n|e

�|⌫n||⌧ |

!2
p
� ⌫2

n

⇡ 2�0kBT!pe
�!p|⌧ | � 4�0kBT!

2
p

1X

n=1

!pe
�!p|⌧ |

⌫2
n

= 2�0kBT!pe
�!p|⌧ |

 
1�

1

3

✓
~!p

2kBT

◆2
!

⇡ 2�0kBT!pe
�!p|⌧ | ⌘ D

1
1 (⌧)

where we have used the fact that
P1

n=1
1
n2 = ⇡

2

6 .

We can get the same form of D1(⌧) even if we put coth(~�!/2) ⇡ 2/(�~!) in the equation 1.10
and then perform the integral.

D
1
1 (⌧) =

2~
⇡

Z 1

0

d!
�0!

2
p
!

!2 + !2
p

cos(!⌧)
2

�~!

=
4�0!2

p
kBT

⇡

Z 1

0

d!
cos(!⌧)

!2 + !2
p

= 2�0kBT!pe
�!p|⌧ |

(1.19)

This calculation can be taken as a heuristic to approximate coth(~�!/2) ⇡ 2/(�~!) in the limit
kBT >> ~!p in our future analysis. For numerical studies, we will take T = 10000 whenever we
want to work in this limit.

Zero Temperature Limit: We can also write the sum (1.18) in the form

D1(⌧) = 2�0kBT!pe
�!p|⌧ | +

2~�0!2
p

⇡

1X

n=1

hf(nh); f(x) =
!pe

�!p|⌧ | � xe
�x|⌧ |

!2
p
� x2

, h =
2⇡kBT

~
(1.20)

For small h (i.e. small T ), we know that
P

N

n=1 hf(a + nh) is bounded between
R

b

a
dxf(x) andR

b+h

a+h
dxf(x) with b = a + Nh. For our case, a = 0 and b = 1. In the limit h ! 0, all three

definitions converge to the same value. So, for the zero temperature case (h = 0):

D1(⌧) =
2~�0!2

p

⇡

Z 1

0

dx
!pe

�!p|⌧ | � xe
�x|⌧ |

!2
p
� x2

=
2~�0!2

p

⇡
[sinh(!p⌧)Shi(!p⌧)� cosh(!p⌧)Chi(!p⌧)] ⌘ D

0
1(⌧)

(1.21)

We call it D0
1(⌧)

1.

1Chi(t) = �E + ln(t) +
R
t

0 dx
(cosh(x)�1)

x
, �E being the Euler’s constant and Shi(t) =

R
t

0 dx
sinh(x)

x
.

13



1.3.2 Drude Limit: Laplace Space

⌃(t) and �(t) are trivial to write in the Laplace space using basic Laplace transforms. We will do
Laplace transform of equations 1.14 and 1.15 using table 2:

⌃̃(z) =
�0!

2
p

z + !p

, �̃(z) =
�0!p

z + !p

(1.22)

The noise kernel is not so trivial. But, interestingly using the basic definition (equation 1.10) of
the noise kernel, we can easily perform the Laplace transform:

D̃1(z) = 2~
Z 1

0

d!
z

z2 + !2

�0!

⇡

!
2
p

!2 + !2
p

coth

✓
~!

2kBT

◆

=
2~z�0!2

p

⇡

Z 1

0

d!
!

(z2 + !2)(!2 + !2
p
)
coth

✓
~!

2kBT

◆ (1.23)

In the high temperature limit, kBT >> ~!p, we again put coth(~�!/2) ⇡ 2/(�~!). For zero
temperatures, we will use limT!0 ! coth

⇣
~!

2kBT

⌘
= |!| to simplify the above equation:

D̃
1
1 (z) =

2~z�0!2
p

⇡

Z 1

0

d!
!

(z2 + !2)(!2 + !2
p
)

2kBT

~! =
2�0kBT!p

!p + z
, and

D̃
0
1(z) =

2~z�0!2
p

⇡

Z 1

0

d!
|!|

(z2 + !2)(!2 + !2
p
)
=

2~�0!2
p

⇡
z
ln(!p)� ln(z)

!2
p
� z2

(1.24)

For arbitrary temperature (use the expansion of coth as given in equation 1.16):

D̃1(z) =
2~z�0!2

p

⇡

Z 1

0

d!
!

(z2 + !2)(!2 + !2
p
)

2kBT

~

1X

n=�1

!

!2 + ⌫2
n

=
2�0kBT!p

!p + z
+

8kBTz�0!2
p

⇡

1X

n=1

Z 1

0

d!
!
2

(z2 + !2)(!2 + !2
p
)(!2 + ⌫2

n
)

= D̃
1
1 (z) +

4kBTz�0!2
p

!p + z

1X

n=1

1

(z + ⌫n)(⌫n + !p)

= D̃
1
1 (z) +

2~�0!2
p

⇡

z

!2
p
� z2


 

✓
1 +

~!p

2⇡kBT

◆
� 

✓
1 +

~z
2⇡kBT

◆�

= D̃
1
1 (z) +

D̃
0
1(z)

ln(!p)� ln(z)


 

✓
1 +

~!p

2⇡kBT

◆
� 

✓
1 +

~z
2⇡kBT

◆�

(1.25)

 (x) is the DiGamma function. It correctly reduces to the D̃
1
1 (z) and D̃

0
1(z) in the limit T ! 1

and T ! 0, respectively since  (1 + x) ! �E as x ! 0 (or large T ) and  (1 + x) ! ln(x) as
x ! 1 (or zero T ).
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1.3.3 Ohmic Limit

Here, we have �(!) = �0!. We will again use equation 1.10 to get the dissipation kernel:

⌃(⌧) =
2

⇡

Z 1

0

d! sin(!⌧)�0! =
2�0
⇡

Z 1

0

d! ! sin(!⌧) = �2�0
d

d⌧
�(⌧)

=) ⌃̃(z) = ��0z + 2�0�(0)

(1.26)

Damping kernel �(⌧)2:

�(⌧) =
2�0
⇡

Z 1

0

d! cos(!⌧) = 2�0�(⌧) =) �̃(z) = �0 (1.27)

Noise kernel:

D1(⌧) =
2~
⇡

Z 1

0

d! cos(!⌧)�0! coth

✓
~!

2kBT

◆
(1.28)

High Temperature Limit: The limit in which we can approximate coth(~�!/2) ⇡ 2/(�~!) is
worth giving a consideration. For the Ohmic case, the temperature-dependent energy scale should
be higher than all the frequencies that we are integrating over, i.e. kBT >> ~! 2 {0,1}. This is,
of course, a regime of theoretical interest. But, this approximation has been used quite commonly
in the literature where the bath has an Ohmic type of spectral density for a large chunk of its normal
modes. The most practical thing to do for avoiding this problem is to introduce a hard cut-off !d,
such that �(!) = 0 for ! > !d.

However, Only in this limit, i.e. kBT >> ~! 2 {0,1}. D1(⌧) ⇡ 4�0kBT �(⌧). So, when we
consider this “high temperature” limit and an Ohmic bath, we obtain both damping and noise ker-
nels as delta functions. As we shall see, when both these kernels are delta functions, the evolution
of the system at some time t will solely depend on the state of the system at time t (and not on
what it was at some time t0 < t). This is what is called as the “Markovian limit”. In this Markovian
limit, equations of a quantum Brownian particle reduce to that of a classical Brownian particle
subjected to white noise ([5], [1]).

2For any function f(x), we have
Z 1

0
f(x)�(x)dx =

Z 1

0

f(x) + f(�x)

2
�(x)dx+

Z 1

0

f(x)� f(�x)

2
�(x)dx

=
1

2

Z 1

�1

f(x) + f(�x)

2
�(x)dx+ 0 =

f(0)

2

The first part is an even function and hence, we get a factor of 1/2 by changing the limit from {0 to 1} to {�1 to 1}.
The second part is an odd function and an odd function is zero at x = 0. Also, �(x) = 0 for x 6= 0. So, the integrand
and hence the integration is zero. This justifies L(�(t)) = 1

2 .

15



In Laplace space, D̃1
1 (z) = 2�0kBT . For zero temperature:

D
0
1(⌧) =

2~�0
⇡

Z 1

0

d! cos(!⌧)!

=) D̃
0
1(z) =

2~�0z
⇡

Z 1

0

d!
!

z2 + !2
= lim

!p!1

2~�0z
⇡

[ln(!p)� ln(z)]
(1.29)

Time Translational Symmetry of Kernels

Observe the following:

h⌘(t� t
0)⌘(0)ith =

1

Z
tr
n
e
iHB(t�t

0)
Be

�iHB(t�t
0)
Be

��HB

o

=
1

Z
tr
n
e
iHBt

Be
�iHBt

e
iHBt

0
Be

��HBe
�iHBt

0
o

=
1

Z
tr
n
e
iHBt

Be
�iHBt

e
iHBt

0
Be

�iHBt
0
e
��HB

o

= h⌘(t)⌘(t0)ith

(1.30)

where I have used the cyclic property of trace in line 2. This equation helps us in proving that

⌃(t� t
0) =

i

~h[⌘(t� t
0), ⌘(0)]ith =

i

~h[⌘(t), ⌘(t
0)]ith

D1(t� t
0) = h{⌘(t� t

0), ⌘(0)}ith = h{⌘(t), ⌘(t0)}ith

(1.31)

This is, of course, a very well-known result for the equilibrium states. I have shown it here for the
sack of completeness.
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Appendix

1.A Simplifying �(0)

We have �(0) =
P

s

C
2
s

⌦2
s

(from equation 1.11). From equation 1.2, we have Cs = m
�1/2

k
0
Us1 and

m⌦2 = U�U
T . So:

X

s

C
2
s

⌦2
s

= k
02
X

s

Us1Us1

m⌦2
s

= k
02
X

s

U
T

1s(m⌦
2)�1

ss
Us1 = k

02[UT (m⌦2)�1
U ]11 = k

02[��1]11 (1.32)

Now, let us observe �, we wrote xT�x
2 = k

0

2 x
2
1+

k

2x
2
N
+ k

2

P
N�1
n=1 (xn�xn+1)2 and x = {x1, x2, ...xn}.

So, we have a N ⇥N matrix with �ij =
@
2

@xi@xj

⇣
xT�x
2

⌘
:

� =

0

BBBBBB@

k + k
0

�k 0 ... 0

�k 2k �k ... 0

0 �k 2k ... 0

. . . ... .

0 0 0 ... 2k

1

CCCCCCA

N⇥N

, adjoint(�11) =

������������

2k �k 0 ... 0

�k 2k �k ... 0

0 �k 2k ... 0

. . . ... .

0 0 0 ... 2k

������������
(N�1)⇥(N�1)

(1.33)
Now, we are interested in [��1]11.

Calculating [��1]11:

We will focus on finding the determinant of � = |�|. Let DN = |�N⇥N |. It is easy to see that
D1 = k + k

0, D2 = 2kD1 � k
2, D3 = 2kD2 � k

2
D1 and so on. In general, it is easy to see that

DN = 2kDN�1 � k
2
DN�2. This is also means that D0 = 1. Now, let us try to play with this
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recursion relation:

DN = k(2DN�1 � kDN�2) = k
2(3DN�2 � 2kDN�3) = k

3(4DN�3 � 3kDN�4) =

... = k
N�1(ND1 � (N � 1)kD0)

= k
N�1(k +Nk

0)

(1.34)

Now, [��1]11 = adjoint(�11)
DN

. Adjoint(�11) is determinant of a matrix that can be obtained from a
(N �1)⇥ (N �1)-� matrix with k

0 = k (see equation 1.33). So, its determinant is just DN�1 with
k = k

0 and so, adjoint(�11) = Nk
N�1 and hence [��1]11 =

N

k+Nk0 .

In the limit N ! 1, we get [��1]11 !
1
k0 and hence �(0) =

P
s

C
2
s

⌦2
s

= k
0.
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Chapter 2

Langevin Equation Approach

In this chapter, we will study the dynamics of the system that we described in the previous chapter
using the Langevin equation approach. We will learn to derive the Langevin equation, ways to
solve it and then try to understand why its applicability is limited to very simple systems. This is
an exact approach with very reasonable approximations.

One of the approximation that we do is that the initial state of the entire setup is in a product
state, i.e. ⇢(0) = ⇢S(0) ⌦ ⇢B(0). This is something that is totally in our control when we do an
experiment, and it is possible to prepare this initial state experimentally. It is possible to carry out
this study even without this approximation ([12]), but it will complicate the study without bringing
much of new insights. So, we will accept this approximation and try to see what we can learn
about the system.

Another assumption is to take the number of bath particles N ! 1. It is essential if we want
our system to thermalise. It avoids the Poincare recurrences in the dynamics of the system. In
numerical studies, we often see this recurrence due to the finite size of the bath. But, the theoretical
results that we predict agree with the numerical results till the time up to which the finite-size
effects are not relevant. Increasing the bath size often leads to agreement of these theoretical
results for larger times. So, there will exist some time t

⇤, after which we can’t trust the results
predicted by this approximation. For most practical purposes, t⇤ is insanely large, and we can
safely take this approximation.

In this chapter, the study is done in the Heisenberg picture. We will not have any suffix for it for
the clarity of notations.
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2.1 Deriving the Langevin Equation

We start by writing the Heisenberg equation of motion for the system and the bath coordinates
and momenta. We will use the Hamiltonian that we defined in equations 1.1 and 1.2. For system
operators:

ẋ(t) =
i

~ [H,x(t)] =
i

~ [HS , x(t)] =
p(t)

M

ṗ(t) =
i

~ [H, p(t)] =
i

~ [HS + ĤI , p(t)] =
i

~ [V (x), p(t)] +
i

~ [ĤI , p(t)] = �V
0
c (x(t)) +

X

s

CsXs(t)

(2.1)
Here, Vc(x) = V (x) + k

0

2 x
2. Similarly, for the bath:

Ẋs(t) =
i

~ [H,Xs(t)] =
i

~ [HB, Xs(t)] = Ps(t)

Ṗs(t) =
i

~ [H,Ps(t)] =
i

~ [HB + ĤI , Ps(t)] =
i

~ [VB(x), Ps(t)] +
i

~ [ĤI , Ps(t)] = �⌦2
sXs(t) + Csx(t)

(2.2)

Here, VB(x) =
P

s

⌦2
sX

2
s

2 . It is straightforward to evaluate ẍ(t) and Ẍs(t) using equations 2.1 and
2.2:

Mẍ(t) + V
0
c
(x(t))�

X

s

CsXs(t) = 0, Ẍs(t) + ⌦
2
s
Xs(t)� Csx(t) = 0. (2.3)

The next step is to solve the bath equation of motion treating Csx(t) as an inhomogenoeus term.
The bath equation can be solved exactly (refer to appendix 2.A):

Xs(t) =

r
~

2⌦s

(ei⌦stb
†
s
+ e

�i⌦stbs) +
Cs

⌦s

Z
t

0

dt1x(t1) sin[⌦s(t� t1)]

= Xs(0) cos(⌦st) +
Ps(0)

⌦s

sin(⌦st) +
Cs

⌦s

Z
t

0

dt1x(t1) sin[⌦s(t� t1)]

(2.4)

Substitute it into the first equation of 2.3 to get the Langevin equation:

Mẍ(t) + V
0
c
(x(t))�

Z
t

0

dt1x(t1)⌃(t� t1) = ⌘(t) (2.5)

where,

⌘(t) =
X

s

Cs

✓
Xs(0) cos(⌦st) +

Ps(0)

⌦s

sin(⌦st)

◆
, ⌃(t) =

X

s

C
2
s

⌦s

sin(⌦s⌧) (2.6)

These expressions are precisely the same as how we defined them in equations 1.7 and 1.10 in the
previous chapter. Also, by comparing equations 2.3 and 2.5, it is clear that

Z
t

0

dt1x(t1)⌃(t� t1) + ⌘(t) =
X

s

CsXs(t) = B(t) (2.7)

20



where we have used the definition of B(t) from the Hamiltonian 1.2.

2.1.1 Resolving a Discrepancy in the Literature

At this point, I would like to point out one discrepancy that I have observed in the literature
and its resolution. Many authors simplify equation 2.5 further and write it in terms of �(t)
(defined in equation 1.11). There are two ways of doing it:

1. Use Leibniz rule (as done in [5]).

2. Use integration by parts (as done in [7]).

We want to point out that for the case of an Ohmic bath, upon solving the obtained differen-
tial equation, the Leibniz route will give the incorrect answer. In contrast, the by-parts route
will provide the correct answer (we compare it against the solution obtained directly by
solving equation 2.5). This mistake has been seen even in texts like [5]. For smoother baths,
both approaches give the same result. The solutions are shown in detail in the appendix 2.B.

2.2 Solving the Langevin Equation

Let us try to solve the Langevin equation 2.5. We will work with two potentials: Quadratic potential
(V (x) = 1

2M!
2
0x

2) and a free particle (V (x) = 0).

2.2.1 Quadratic Potential

For V (x) = 1
2M!

2
0x

2, the Langevin equation 2.5 becomes:

ẍ(t) +
k
0

M
x(t) + !

2
0x(t)�

1

M

Z
t

0

dt1x(t1)⌃(t� t1) =
1

M
⌘(t) (2.8)

Let us first solve the homogeneous part of it (putting ⌘(t) = 0): Let g1(t) and g2(t) are two of its
fundamental solutions such that g1(0) = 1, ġ1(0) = 0 and g2(0) = 0 and ġ2(0) = 11.

1Let y1(t) and y2(t) are two solutions of a second order differential equation. Since any linear combination of
them is also a solution, define g1(t) = g11y1(t) + g12y2(t) and g2(t) = g21y1(t) + g22y2(t) such that g11 = ẏ2(0)

⇤ ,
g12 = �

ẏ1(0)
⇤ , g21 = �

y2(0)
⇤ , g22 = y1(0)

⇤ , where ⇤ = y1(0)ẏ2(0)� y2(0)ẏ1(0).
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Taking the Laplace transform of the equation 2.8:

z
2
x̃(z)� zx1(0)� ẋ1(0) +

✓
!
2
0 +

k
0

M

◆
x̃1(z)�

x̃1(z)⌃̃(z)

M
= 0 (2.9)

This gives (depending on initial conditions):

g̃1(z) =
z

z2 + !
2
0 +

z

M
�̃(z)

, g̃2(z) =
1

z2 + !
2
0 +

z

M
�̃(z)

(2.10)

where we have used ⌃̃(z) = �z�̃(z) + k
0 (see equation 1.12). Since g2(0) = 0, we can also

conclude that g̃1(z) = zg̃2(z)� g2(0) =) ġ2(t) = g1(t). Let us call g2(t) ⌘ g(t). Because of the
nature of g1(t) and g2(t), the homogeneous solution will be x

h(t) = ġ(t)x(0) + g(t)ẋ(0). Let c(t)
be a specific solution of the inhomogeneous equation. It satisfies

c̈(t) +
k
0

M
c(t) + !

2
0c(t)�

1

M

Z
t

0

dt1c(t1)⌃(t� t1) =
1

M
⌘(t); c(0) = 0, ċ(0) = 0

Take the Laplace transform, and we obtain

c̃(z) =
⌘̃(z)g̃(z)

M
=) c(t) =

1

M

Z
t

0

dt1g(t� t1)⌘(t1)

where we have used the convolution property of the inverse Laplace transforms. Finally, the solu-
tion of Langevin equation is:

x(t) = ġ(t)x(0) + g(t)ẋ(0) +
1

M

Z
t

0

dt1g(t� t1)⌘(t1) with g̃(z) =
1

z2 + !
2
0 +

z

M
�̃(z)

So, now we need to find this g(t) for various parameters and temperatures.

Finding g(t)

For the Drude bath, we have �̃(z) = �0!p

z+!p

(section 1.3). So,

g̃(z) =
z + !p

z3 + !pz
2 + (!2

0 + 2�!p) z + !
2
0!p

; � =
�0

2M
(2.11)

It is trivial to analytically find the inverse Laplace transform of g̃(z) if we can find the roots of its
denominator. It is not very insightful if we do it for arbitrary values of parameters. So, let us find
the inverse Laplace transform in various limits of our interest.

1. In the limit � << !0 << !p, roots of the denominator are z = �� ± i!r (!r =
p

!
2
0 � �2)

and z = �!p. That gives g̃(z) = 1
!
2
0+(z+�)2

⇡
1

z2+!
2
0+2z�

.
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2. In the limit !0 << � << !p, roots of the denominator are z = �
!
2
0

2� , z = �2� and z = �!p.
That gives g̃(z) = 2�

(z+2�)(!2
0+2�z)

.

Finding the inverse Laplace transform:

g(t) = e
��t

sin(!rt)

!r

, in the limit � << !0 << !p

g(t) =
2�
⇣
e
�2�t

� e
�(!2

0/2�)t
⌘

!
2
0 � (2�)2

, in the limit !0 << � << !p

(2.12)

For the Ohmic bath, �̃(z) = �0. So, we obtain

g̃(z) =
1

z2 + !
2
0 + 2z�

=) g(t) = e
��t

sin(!rt)

!r

, assuming !0 > � (2.13)

Hence, g(t) for an Ohmic bath and a Drude bath with a large cutoff are the same.

2.2.2 Free Particle

Solving for V (x) = 0 is equivalent to putting !0 = 0 in the above analysis. The solution will still
be of the form

x(t) = ġ(t)x(0) + g(t)ẋ(0) +
1

M

Z
t

0

dt1g(t� t1)⌘(t1) with g̃(z) =
1

z2 + z

M
�̃(z)

For the Drude bath, we use �̃(z) = �0!p

z+!p

and then finding the inverse Laplace transform using
partial fractions of the resultant function, we get:

g(t) =
1

2�
+ e

�!pt

2

"✓
1�

!p

4�

◆
sinh

�
!
r

p
t/2
�

!r
p
/2

�
1

2�
cosh

�
!
r

p
t/2
�
#
; !

r

p
=
q

!2
p
� 8�!p

(2.14)

Similarly for the Ohmic bath, we obtain:

x(t) = ġ(t)x(0) + g(t)ẋ(0) +
1

M

Z
t

0

dt1g(t� t1)⌘(t1), g(t) =
1� e

�2�t

2�
(2.15)

We obtain the equation 2.15 even if we take � << !p limit of equation 2.14. So, again a Drude
bath with a large cutoff yields the same g(t) as an Ohmic bath.
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2.2.3 A General Sum Rule!

We have seen that the general solution of the Langevin equation is of the form:

x(t) = ġ(t)x(0) +
g(t)

M
p(0) +

1

M

Z
t

0

dt1g(t� t1)⌘(t1)

p(t) = Mg̈(t)x(0) + ġ(t)p(0) +

Z
t

0

dt1ġ(t� t1)⌘(t1)

Using this, we can investigate h[x(t), p(t)]i:

h[x(t), p(t)]i = (ġ2(t)� g(t)g̈(t))h[x(0), p(0)]i+
1

M

Z
t

0

Z
t

0

dsds
0
g(t� s)ġ(t� s

0)h[⌘(s), ⌘(s0)]i

(2.16)
Now, for any time t, we should get h[x(t), p(t)]i = i~. At t = 0, it is obviously true since ġ(0) = 1

and g(0) = 0. We can also see it in the limit t ! 1. In this limit, the first term of equation 2.16
will always go to zero (for free particle g(t) might be non-zero, but ġ(t) and g̈(t) will always be
zero). To evaluate the second term, we will need to use:

h[⌘(s), ⌘(s0)]i = �i~⌃(s� s
0) = �

2i~
⇡

Z 1

0

d!�(!) sin(!(s� s
0)) = �

~
⇡

Z 1

�1
d!�(!)ei!(s�s

0)

where we have used the fact that �(!) is an odd function2. Define g
r(t) = g(t)✓(t). This also

implies ġr(t) = ġ(t)✓(t) (since g(0) = 0). Now, equation 2.16 in t ! 1 limit becomes:

h[x, p]i1 = �
~

M⇡

Z 1

�1
d!�(!)

Z 1

0

Z 1

0

dsds
0
g(t� s)ġ(t� s

0)ei!(s�s
0)

= �
~

M⇡

Z 1

�1
d!�(!)

Z 1

�1
dsg

r(t� s)e�i!(t�s)

Z 1

�1
ds

0
ġ
r(t� s

0)ei!(t�s
0)

= �
~

M⇡

Z 1

�1
d!�(!)ĝr(�!)[�i!ĝ

r(!)]

=
i~
M⇡

Z 1

�1
d!�(!)ĝr(�!)!ĝr(!) = (i~)

Z 1

�1

d!

M⇡
!ĝ

r(!)�(!)ĝr(�!) = i~

(2.17)

where, ĝr(!) is the Fourier transform of gr(t). In the last line, we have used the sum rule ([14]):

2

M

Z 1

�1

d!

2⇡
!ĝ

r(!)�(!)ĝr(�!) = 1

The commutation (equation 2.16) must be true even at arbitrary times, which gives us a general
sum rule:

1 = ġ
2(t)� g(t)g̈(t)�

1

M

Z
t

0

Z
t

0

d⌧d⌧
0
g(⌧)ġ(⌧ 0)⌃(⌧ 0 � ⌧) (2.18)

2It is clear from the definition in equation 1.3.
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2.3 Analysing the Solutions

To compare the solutions with multiple approaches, we will study the first and second moments of
the system. From the general form of x(t) that we have obtained in the previous section, it is easy
to write general expressions for all the first and second moments:

hxit = ġ(t)hxi0 +
g(t)

M
hpi0 +

1

M

Z
t

0

dsg(t� s)h⌘(s)i

hpit = Mg̈(t)hxi0 + ġ(t)hpi0 +

Z
t

0

dsġ(t� s)h⌘(s)i

hx
2
it = ġ

2(t)hx2
i0 +

g
2(t)

M2
hp

2
i0 +

ġ(t)g(t)

M
hxp+ pxi0

+
1

2M2

Z
t

0

Z
t

0

dsds
0
g(t� s)g(t� s

0)h{⌘(s), ⌘(s0)}i

hp
2
it = M

2
g̈
2(t)hx2

i0 + ġ
2(t)hp2i0 +Mg̈(t)ġ(t)hxp+ pxi0

+

Z
t

0

Z
t

0

dsds
0
ġ(t� s)ġ(t� s

0)
h{⌘(s), ⌘(s0)}i

2

hxp+ pxit = 2Mġ(t)g̈(t)hx2
i0 +

2g(t)ġ(t)

M
hp

2
i0 + (ġ(t)ġ(t) + g(t)g̈(t))hxp+ pxi0

+
1

M

Z
t

0

Z
t

0

dsds
0
g(t� s)ġ(t� s

0)h{⌘(s), ⌘(s0)}i

(2.19)

Here, hASit = tr{AS(t) ⌦ IB(t) ⇢(0)} = trS{AS(t)⇢S(0)}, where we have used the fact that the
initial state of system and bath was uncorrelated.

In the above expressions, we will call the integral terms (last term in each expression) as
the inhomogeneous part of the moment. The rest of the terms are called the homogeneous
parts. So, once we know g(t), we can fully determine the homogeneous parts. It is crucial
to note that all the temperature dependence lies in the inhomogeneous parts (through the
noise kernel). We have made this distinction to make the comparison and analysis easy.
Additionally, note that the first moments are fully homogeneous (since h⌘(t)i = 0).

The homogeneous parts are easy to obtain since we have already obtained g(t), and we will directly
compare them against the results from the master equation results in the section 4.1. However, we
can make a quick and intuitive interpretation about the homogeneous parts: for a free particle,
observe that g2(t) ⇠ t

2 and ġ
2(t) ⇠ 1 for small times (refer to the equation 2.45). This gives

the initial ballistic growth in hx
2
i ⇠

hp2i0t2
M2 . This is expected since it roughly means that the

distribution is growing with speed roughly ⇠ hpi0/M . This is what the system would have done
in the absence of a bath. Since the effect of the bath would be negligible at such small times, we
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get these closed system dynamics. In fact, we will see in the next section that the inhomogeneous
part grows as ⇠ t

4 in this limit, which is subleading for small times. Slowly, the inhomogeneous
parts of the solutions will take over, and this homogeneous part will dampen out.

We will now analyse the inhomogeneous parts of the second moments. We will only focus on hx
2
it

for our comparisons. Analysis of other moments can be done in a similar fashion.

2.3.1 Inhomogeneous Part of hx2it for a Free Particle

We will use a Drude bath. Recall from equation 2.19 that the inhomogeneous part of hx2
it is:

hx
2
it =

1

2M2

Z
t

0

Z
t

0

d⌧d⌧
0
g(⌧)g(⌧ 0)D1(⌧ � ⌧

0)

=
2~

2M2⇡

Z 1

0

d!�(!) coth

✓
~�!
2

◆Z
t

0

Z
t

0

d⌧d⌧
0
g(⌧)g(⌧ 0) cos(!(⌧ � ⌧

0))

=
�0~!2

p

⇡M2

Z 1

0

d!
!

!2 + !2
p

coth

✓
~�!
2

◆
f(!, t)

(2.20)

where we have used the definition of noise kernel from equation 1.10 and the explicit form of the
spectral density for a Drude bath from equation 1.5. We have also defined the function f(!, t):

f(!, t) =

Z
t

0

Z
t

0

d⌧d⌧
0
g(⌧)g(⌧ 0) cos(!(⌧ � ⌧

0)) (2.21)

In principle, equation 2.20 is all that we need to evaluate numerically to get the behaviour of hx2
it

at any time. We have shown these plots in this chapter. However, if we want to know the behaviour
in terms of the microscopic parameters of our model, then we need to do further analytical study.

Let us put M = 1. We will do our analysis in the limit � << !p (reason will be clarified later).
We need to use g(t) = 1�e

��0t

�0
(equation 2.15) in equation 2.21 to get:

f(!, t) =
2�2

0(1� cos(!t))� 2!�0 sin(!t)(1� e
��0t) + !

2(1� e
��0t)2

�
2
0!

2(!2 + �
2
0)

(2.22)

26



High Temperature Limit

In the limit kBT >> ~!p, we put coth(~�!/2) ⇡ 2/(~�!) in the integral 2.20. This integral can
performed exactly to obtain:

hx
2
it =

2�3
0(1� e

�!pt)� !
2
p
�0(1� e

��0t)2 + 2!p�
2
0(1� �0t� e

��0t � e
�!pt + e

�(!p+�0)t)

�!p�
2
0(!

2
p
� �

2
0)

�
!
3
p
(3� 2�0t+ e

�2�0t � 4e��0t)

�!p�
2
0(!

2
p
� �

2
0)

(2.23)

We can expand this expression in time to get (we put back M by dimensional analysis):

Long time limit : hx
2
it = 2

kBT

�0
t�

kBT (3!2
p
+ 8!p� + 8�2)

4M!p�
2(!p + 2�)

! 2
kBT

�0
t�

3kBT

4M�2
as !p >> �

Short time limit : hx2
it = k

0 kBT

4M2
t
4 +O(t5)

(2.24)
Let us understand these results. At large times, a free particle behaves as ⇠ 2Dt, where D = kBT

�0
.

This is the well-known diffusive behaviour of a Brownian particle, and D is called the Stokes-
Einstein coefficient. If we investigate hp

2
i, it would be MkBT , which suggests the equipartition

theorem. We can study all the different features of a Brownian particle through this model. The
constant

⇣
3kBT

4M�2

⌘
seems to depend very complexly on bath properties.

At small times, we see a t
4 behaviour with a coefficient of k0 kBT

4M2 . As we discussed earlier, the
homogeneous contribution ⇠ t

2 will be dominant in this regime. t
4 behaviour is bath-specific

behaviour. For an Ohmic bath, we get ⇠ t
3 ([5]). One way to understand this is to realise write

k
0 kBT

4M2 = 1
4
k
0

M

kBT

M
t
4. k

0

M
is a natural frequency scale since the system is coupled to the bath with the

coupling k
0. kBT

M
is coming from the bath as an estimation of hv2i.

Heuristic Argument: This behaviour stems from the noise term in the Langevin equation. Let us
justify it for the free particle. Recall the Langevin equation for a free particle:

Mẍ(t) + k
0
x(t)�

Z
t

0

dt1x(t1)⌃(t� t1) = ⌘(t) (2.25)

We can write this equation in terms of the damping kernel �(t) using equation 2.48:

Mẍ(t) +

Z
t

0

dt1ẋ(t1)�(t� t1) = ⌘(t)� �(t)x(0) (2.26)

We will take the limit t ! 0 of the above equation. Recall that �(t) = �0!pe
�!p|t| for a Drude
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bath. Hence, in the limit t ! 0, we can approximate �(t) ⇡ �0!p = k
0. So, in the limit t ! 0:

Mẍ(t) = ⌘(t)� k
0
x(0) =) ẋ(t) =

1

M

Z
t

0

dt1⌘(t1)�
k
0
x(0)t

M
(2.27)

Let us now find the hx
2
it:

hx
2
it =

Z
t

0

Z
t

0

dt1dt2hẋ(t1)ẋ(t2)i

=
1

M2

Z
t

0

Z
t

0

dt1dt2

Z
t1

0

dt3

Z
t2

0

dt4h⌘(t3)⌘(t4)i+
k
02
x
2(0)

M2

Z
t

0

Z
t

0

dt1dt2t1t2

(2.28)

For a Drude bath, we know that h⌘(t1)⌘(t2)i ⇠ �0!pe
�!p(t1�t2). For small t, both t1 and t2 will be

small and hence h⌘(t1)⌘(t2)i ⇠ �0!p = k
0. Putting this, we easily get a t

4. For an Ohmic bath,
h⌘(t1)⌘(t2)i ⇠ �(t1 � t2). Hence, we get a t

3 from this heuristic.

Zero Temperature Limit

Here, we will use ! coth(~�!/2) ! |!| in simplifying the integral 2.20. Unlike the high temper-
ature case, this integral is now difficult to do exactly. However, the integral can be performed in
asymptotic limits. Let us start with the long time limit (we put e��0t ! 0 in the expression 2.22):

hx
2
it ⇡

~!2
p

⇡�0

Z 1

0

d!
!
2
� 2!�0 sin(!t) + 2�2

0(1� cos(!t))

!(!2 + !2
p
)(!2 + �

2
0)

=
~!2

p

⇡�0

✓
I1(t)� 2�0I2(t) +

2�2
0

!2
p
� �

2
0

I3(t)

◆ (2.29)

where we have defined

I1(t) =

Z 1

0

d!
!

(!2 + !2
p
)(!2 + �

2
0)

=
ln (!p/�0)

!2
p
� �

2
0

I2(t) =

Z 1

0

d!
sin(!t)

(!2 + !2
p
)(!2 + �

2
0)

I3(t) = (!2
p
� �

2
0)

Z 1

0

d!
1� cos(!t)

!(!2 + !2
p
)(!2 + �

2
0)

=

Z 1

0

d!
1� cos(!t)

!

✓
1

!2 + �
2
0

�
1

!2 + !2
p

◆

(2.30)
I2(t) and I3(t) can be done analytically. Please note that these are not simple contour integrals,
and doing them for more complicated systems can be highly tedious. For our setup, it has a
complicated expression in terms of exponential integrals, Ei. Anyway, we are only interested in
asymptotic behaviour:

I2(t ! 1) =
1

!2
p
�
2
0t

! 0, I3(t ! 1) =


�E + ln(�0t)

�
2
0

�
�E + ln(!pt)

!2
p

�
(2.31)
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Putting this, we get
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(2.32)

On the other hand, for very small times, we will replace

1� e
��0t ⇡ �0t�
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to get (from equation 2.20):
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where we have used the small time limit results of I2(t) and I3(t):
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Summarising equations 2.32 and 2.33 (we have incorporated M back):

Long time limit : hx
2
it =

2~
⇡�0

 
ln

 r
k0

M
t

!
+ �E

!
, in the limit �0 << !p

Short time limit : hx2
it =

~!2
p
�0t

4

16⇡M2
[7� 4�E � 4 ln(!pt)] , in the limit �0 << !p

(2.35)

All these predictions have been verified against the exact numerical data for various parameters.
Let us understand these results. At large times, it is the subdiffusive behaviour ⇠ ln(t). This
originates from the zero-point fluctuations of the bath ([5]). Since the temperature of the bath is
zero, only zero-point modes of the bath interact with the system. The constant is

p
k0/M . Since

the system is connected to the bath with the coupling k
0,
p
k0/M is a natural frequency scale

of the system. For small times, we again have a sub-dominant t4 behaviour (compared to the
homogeneous part).
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Intermediate Temperatures

At any arbitrary temperature, the initial dynamics is exactly same as the zero temperature dynam-
ics. After some time, we see a crossover to the behaviour as ⇠ 2kBT

�0
t + constant3, which is akin

to what we obtain for high temperature limit. The crossover time t
⇤ must be a complicated func-

tion of different parameters. However, it definitely increases as we increase �. You can see this
phenomena in figure 2.3.1.

We will now try to understand why the small-time behaviour is the same as the zero temperature
case. Take the integral 2.20. Let us convert the integral into a dimensionless parameter z = !t.

=
�0~!2

p

⇡M2

Z 1

0

dz
z

z2 + !2
p
t2

coth

✓
~�z
2t

◆
f(z, t) (2.36)

For small times, we can approximate coth
�~�z

2t

�
⇠ 1, which as same as taking � ! 0. So

mathematically speaking, both the limits have the same effect on the integral, and hence the results
are the same.
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Figure 2.3.1: Inhomogeneous part of hx2it vs t for different temperatures in the limit � << !p.

In the figure 2.3.2, we have plotted hx
2
it for different temperatures with other parameters fixed.

Two figures represent a linear and log-linear plot of the same. In the figure 2.3.3, you can see a
log-log plot of it. From these three plots, we can identify four distinct behaviours and regions:

• Initial ⇠ t
4 (from 0 to ⇠

1
!p

).

3the constant is not �kBT (3!2
p+4!p�0+2�2

0)

!p�
2
0(!p+�0)

. See figure 2.3.1. The constant terms are positive. On the other hand,

�
kBT (3!2

p+4!p�0+2�2
0)

!p�
2
0(!p+�0)

is negative
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Figure 2.3.2: Comparison of inhomogeneous part of hx2it for different temperatures in the limit � << !p.

• Polynomial (clear from figure 2.3.3, from ⇠
1
!p

to ⇠
1
�

).

• Logarithmic (from ⇠
1
�

to ⇠
1

kBT
).

• Linear (from ⇠
1

kBT
to 1).

The transition time between behaviour is not exactly the inverse of the various characteristic time
scales, but they are of the same order of magnitude. Also, the transitions are very smooth and not
abrupt. We have ensured this order of timescales since the underlying regime that we are working
with is !p >> �. The polynomial behaviour is usually t

2 ([19]). But, it needs a further analytical
study.

Let us understand this more: As T ! 0, we don’t see the linear behaviour at all, and the subdif-
fusive logarithmic behaviour prevails till t ! 1. On the contrary, as T ! 1, we see the linear
behaviour straightaway. However, practically we can only have some finite temperature, and hence
we will always see the initial t4 behaviour. This kind of division of various behaviour depending
on various time scales of the system requires further work in different regimes.

Figures 2.3.1 and 2.3.2 compare the behaviour at different temperatures for a fixed set of param-
eters. We can also study the behaviour for different parameters at a fixed temperature. So, figure
2.3.4 shows the behaviour for hx2

it for a fixed zero temperature but for different parameters.

From figures 2.3.1 and 2.3.2, it is clear that as temperature increases, the crossover time decreases.
From the figure 2.3.4, we learn that the system equilibrates much slower as we decrease mk ⇠ �.
We will use this fact in the section 2.4.
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2.3.2 Inhomogeneous Part of hx2it for a Bounded Particle

Let us now do the same exercise for a bounded particle. We will use a Drude bath. Recall the
equation 2.20:

hx
2
it =

�0~!2
p

⇡M2

Z 1

0

d!
!

!2 + !2
p

coth

✓
~�!
2

◆
f(!, t) (2.37)

For bounded particle, we will do our analysis in the limit � << !0 << !p. So, we will use
g(t) = e

��t sin(!rt)
!r

and get:

f(!, t) =
2!2

r
+ e

�2�t[!2
0 + !

2 + (!2
0 � 2�2

� !
2) cos(2!rt) + 2�!r sin(2!rt)]
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r
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2
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4
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2e��t[!r cos(!rt) cos(!t) + sin(!rt)(� cos(!t) + ! sin(!t))]

!r(!4 + 2!2(2�2 � !
2
0) + !

4
0)

(2.38)

We will again divide our studies into three cases based on the temperature.

High Temperature Limit

In the limit kBT >> ~!p, we again put coth(~�!/2) ⇡ 2/(~�!). We will just be studying the
asymptotic behaviour. To obtain long time behaviour, we put the exponential terms in f(!, t) to
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zero. Then, equation 2.37 becomes:
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If we further use the fact that !0 >> �, we can easily find the roots of the denominator. Roots of
the equation !

4 + 2!2(2�2
� !

2
0) + !

4
0 in the limit !0 >> � are ±!0 ± i�. We can then perform

the integral to get:

Long time limit : hx
2
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kBT!p(!p + 2�)

M (�2 + !
2
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�
(� + !p)

2 + !
2
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� !
kBT

M!
2
0

, as !p >> !0 >> �

(2.39)
The value saturates at kBT

M!
2
0
, which is the same as that of an independent oscillator equilibrated at

temperature T .

For short time, an analysis similar to equation 2.33 can be done. However, we can plot the numer-
ical data for very small times and fit it. See figure 2.3.5, for very small times, the fit is A1t

4. The
parameters we have used are mk = 0.05, k0 = 5, !0 = 1.5, M = 1. For this set of parameters, we
can find the following quantity:

k
0 kBT

4M2
= 12500 ⇠ A1

This is roughly same as the fit parameter A1 (figure 2.3.5) and hence, we can conclude that:

Short time limit : hx2
it = k

0 kBT

4M2
t
4 +O(t5) (2.40)

This behaviour is precisely similar to that of a free particle. This could happen because, at very
small times, the trap would not have shown its impact. For instance, the behaviour of the free
particle and the bounded particle would have been the same even if the bath was not there.

Zero Temperature Limit

We use ! coth(~�!/2) = |!|. For long-time limit, we do the same thing of putting the exponen-
tials in f(!, t) to zero and then equation 2.37 becomes:

hx
2
it =

2~�!2
p

⇡M
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d!
!

(!2 + !2
p
)(!4 + 2!2(2�2 � !

2
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4
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Figure 2.3.5: Fitting the inhomogeneous part of hx2it vs t at small times for a bounded particle in the

limits ~� << ~!0 << ~!p << kBT and kBT << ~� << ~!0 << ~!p.

Again the use of inequality !0 >> � makes the evaluation of the integral easy, and we get:
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(2.41)

which is again the same behaviour as an isolated oscillator.

For short time, an analysis similar to equation 2.33 can be done. However, we can plot the nu-
merical data for very small times and fit it. See figure 2.3.5, for very small times, the fit is
[A0 + B0 ln(t)]t4. The parameters we have used are mk = 0.05, k0 = 5, !0 = 1.5, M = 1.
For this parameters, the following quantities are:

~!2
p
�0[7� 4(�E + ln(!p))]

16⇡M2
= �17.212 = A0,

~!2
p
�0

4⇡M2
= 8.897 = B0

These numbers are exactly same as the fit parameters (figure 2.3.5) and hence, we can conclude
that:

Short time limit :
~!2

p
�0t

4

16⇡M2
[7� 4�E � 4 ln(!pt)] (2.42)

This is once again similar to the result of a free particle.
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Intermediate Temperature

For arbitrary temperature, we have plotted the numerical results in figure 2.3.2. For large times,
we can easily see from the fit that it saturates to ⇠

~
2M!0

coth
⇣

~!0
2kBT

⌘
. This is same as the result of

an independent equilibrated oscillator. Let me clarify it a bit: Say ZS(�) is the canonical partition
function corresponding to the system Hamiltonian HS . Now, if we find hx

2
i using the partition

function ZS(�) then it would be same as ~
2M!0

coth
⇣

~!0
2kBT

⌘
.

Initially, it coincides with zero temperature behaviour (same as what we saw for the free particle
case). The crossover time t

⇤ again seems to depend complexly on all the parameters. However,
it certainly increases with �. The figure 2.3.7 shows plots for different temperatures with other
parameters fixed. We also observe oscillations in the transients (see figure 2.3.7). It is because of
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Figure 2.3.6: Inhomogeneous part of hx2it vs t for

a bounded particle in the limit � << !0 << !p.
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the sin(2!rt) and cos(2!rt) in f(!, t) (equation 2.38). If we observe the frequency of oscillations,
it is nearly ⇡/!r.
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2.4 A Discussion on the Weak Coupling Limit

Let us decode why we chose !p >> !0 >> � for the bounded particle and !p >> � for the free
particle case. From all the results, it is clear that the results in this limit are similar to that of an
independent oscillator or a free particle thermalised at temperature �4. This motivates us to believe
that !p >> !0 >> � is weak coupling limit. Now, let us re-write this in terms of the microscopic
parameters: !p >> � is equivalent to 2Mk

0
>> mk (see equation 1.5). So, the weak coupling

limit is not a small k0 limit! This is surprising since the interaction is ⇠ k
0

2 x
2.

We can observe one more thing: As we decrease � ⇠
p
mk, the system relaxes slower (refer to

figure 2.3.1). So, � has the information of coupling strength (the larger the coupling, the faster it
equilibrates). This information is rooted in the spectral density (see equation 1.5): �(!) / �0 ⇠ �.
In conclusion, we can’t naively guess the weak coupling limit just by gazing at the interaction
Hamiltonian. We need to look carefully at the spectral density to make sense of the weak coupling
limit in the study of open quantum systems.

But, the weak coupling limit must somehow be related to the interaction Hamiltonian, right? -
it definitely is. Look at the interaction Hamiltonian in the normal mode coordinates of the bath
(equation 1.2). It has Cs, which is related to the spectral density �(!) (equation 1.3), which in turn
is related to �0. So, �0 controls the strength with which normal modes interact with the system.

We are interested in the weak coupling limit since it is a well-known fact that the master equation
approach works best in the weak-coupling limit—the approach that we are going to test.

This discussion also answers one of the questions that we wanted to answer at the beginning
of this project. If the Ohmic limit is the infinite k0 limit (equation 1.5), which naively looked
like a very strong coupling limit, then will the Born-Markov master equation approach fail
or work? (since it is well-known that the Born-Markov master equation works best in the
weak coupling limit and for the Ohmic bath [5]). The answer is clear - Large k

0 does not
necessarily mean the strong coupling limit and the master equation approach work. But does
it work flawlessly? - let us find out in the following chapters.

Typically, the term determining the strength of the interaction, say �, only appears in the interaction
Hamiltonian. In that case, the same term also appears in the spectral density, i.e. �(!) ⇠ �. So,

4The momentum modes for the free particle case gives hp2i = MkBT , which is the same as that of an independent
free particle thermalised at the temperature T. However, for the case of a Brownian particle, hx2

i will not equilibrate
to 0 as it does for an independent free particle. This is obvious since the particle is coupled to a bath.
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weak coupling has a very clear meaning. However, for this particular model, the k
0-term enters

the bath as well as the system Hamiltonian (see equation 1.1). As a consequence, the spectral
density depends very non-trivially on k

0 (through !p in equation 1.5). So, this entire discussion
may turn out to be very model-specific, and further study needs to be done to understand more in
this direction.

2.5 Limitations of the Langevin Equation Approach

After this exercise, we might also be able to appreciate the limited applicability of the exact
Langevin approach. Analytically, we could only get only the asymptotic results, that too only
in very special regimes. Even in this very simple setup, it is hard to find an exact analytical expres-
sion of hx2

it for arbitrary t at an arbitrary temperature. Finding f(!, t) is also a non-trivial task
outside the weak coupling regime. So, you can imagine that for a more complicated problem, an
exact analytical approach will not take us much far.

Numerically, we were able to do this problem quite comfortably. But, it becomes harder if you
try to switch to other regimes than the weak coupling limit (though a completely doable problem).
The numerical simulation will become harder as we try to model a more realistic setup, say with
a non-trivial V (x), or with multiple particles with some interaction in the system or with a more
realistic bath. For a non-quadratic V (x), the very first step of getting a closed-form of g(t) while
solving the Langevin equation (equation 2.5) will be a non-trivial task. Even if you get them,
finding its inverse Laplace transform will be even more challenging.

There is one more approach called the steady-state Langevin equation approach ([7]) to obtain the
exact equilibrium properties of any system. It is applicable to many more problems. But, it will
tell only about the equilibrium properties (not even about how it approaches equilibrium!). On the
other hand, master equation approaches have much wider applicability, and we will learn about
them in the next chapter.
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Appendix

2.A Solving the Bath Equations

We want to solve the equation of motion for the bath: Ẍs(t) + ⌦2
s
Xs(t) = Csx(t). The corre-

sponding homogenoeus equation Ẍs(t) + ⌦2
s
Xs(t) = 0 has a very well-known solution: Xh

s
(t) =

Xs(0) cos(⌦st) +
Ps(0)
⌦s

sin(⌦st). We now need to find a specific solution of the inhomogeneous
equation. Let the full solution be Xs(t) = X

h

s
(t) +X

I

s
(t). Then, we need to solve the equation:

Ẍ
I

s
(t) + ⌦2

s
X

I

s
(t) = Csx(t); X

I

s
(0) = 0, ẊI

s
= 0

The equation is trivial to solve in the Laplace space:

X̃
I

s
(z) =

Csx̃(z)

z2 + ⌦2
s

=) X
I

s
(t) =

Cs

⌦s

Z
t

0

dt1 sin (⌦s(t� t1)) x(t1)

where we use properties from table 2 to perform the inverse Laplace transform. Xs(t) = X
h

s
(t) +

X
I

s
(t) is same as equation 2.4.

2.B Leibniz Route vs Integration by Parts Route

We will use free particle (i.e. V (x) = 0) for simplicity. Equation 2.5 for free particle:

Mẍ(t) + k
0
x(t)�

Z
t

0

dt1x(t1)⌃(t� t1) = ⌘(t) (2.43)
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2.B.1 Ohmic Bath

Leibniz Route

What is generally done is to write ⌃(t� t1) = �
@�(t�t1)

@t

5. We can then use the following simplifi-
cation6:

�

Z
t

0

dt1⌃(t� t1)x(t1) =

Z
t

0

dt1x(t1)
@

@t
�(t� t1) =

d

dt

✓Z
t

0

dt1x(t1)�(t� t1)

◆
� �(0)x(t)

(2.44)
Using it, equation 2.43 becomes:

Mẍ(t) +
d

dt

Z
t

0

dt1x(t1)�(t� t1) = ⌘(t) =) ẍ(t) + 2�ẋ(t) =
1

M
⌘(t); � ⌘

�0

2M
(2.45)

where we have used �(t) = 2�0�(t)7 and �(0) = k
0 (see appendix 1.A). In order to solve it,

let us first solve the homogeneous equation (with ⌘(t) = 0). Let g1(t) and g2(t) are two of the
fundamental solutions of homogeneous equation such that g1(0) = 1, ġ1(0) = 0 and g2(0) = 0,
ġ2(0) = 1. We take the Laplace transform of homogeneous equation:

z
2
g̃1(z)� zg1(0)� ġ1(0) + 2�(zg̃1(z)� g1(0)) = 0 =) g̃1(z) =

z + 2�

z2 + 2z�
=

1

z
.

And similarly, g̃2(z) =
1

z2 + 2z�
.

(2.46)

The full solution will be x(t) = g1(t)x(0) + g2(t)ẋ(0) + c(t), where c(t) is a specific solution of
the inhomogeneous equation. c(t) can be obtained easily (it is the exactly same procedure as we
have done in appendix 2.A) and the solution is:

x(t) = x(0) +
1� e

�2�t

2�
ẋ(0) +

Z
t

0

dt1
1� e

�2�(t�t1)

2M�
⌘(t1) (2.47)

This solution is different from equation 2.15 that we obtained by solving equation 2.5. We have
checked that this problem persists for a bounded particle (i.e. V (x) = 1

2M!
2
0x

2) as well.

5If you write ⌃(t� t1) =
P

s

C
2
s

⌦s
sin(⌦s(t� t1)) and �(t� t1) =

P
s

C
2
s

⌦2
s
cos(⌦s(t� t1)), it is clear.

6using Leibniz rule: d

dt

⇣R
b(t)
a(t) f(t, s)ds

⌘
= f(t, b(t)) d

dt
b(t)� f(t, a(t)) d

dt
a(t) +

R
b(t)
a(t)

@

@t
f(t, s)ds

7Please do not confuse between the damping kernel �(t) and the constant � = �0

2M . We will always use an argument
whenever we refer to the damping kernel.
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By Parts Route

In equation 2.43, we can do integration by parts and simplify the ⌃ term like this:

�

Z
t

0

dt1⌃(t� t1)x(t1) = �

Z
t

0

d⌧⌃(⌧)x(t� ⌧) =

Z
t

0

d⌧ �̇(⌧)x(t� ⌧)

= �(t)x(0)� �(0)x(t)�

Z
t

0

d⌧
dx(t� ⌧)

d⌧
�(⌧)

= �(t)x(0)� �(0)x(t) +

Z
t

0

dt1ẋ(t1)�(t� t1)

(2.48)
We can again use �(t) = 2�0�(t) and �(0) = k

0 to get:

ẍ(t) + 2�ẋ(t) =
⌘(t)� 2�0�(t)x(0)

M

The homogeneous part of this differential equation is exactly same as equation 2.45 and hence
g1(t) and g2(t) will be same. So, the full solution is:

x(t) = x(0) +
1� e

�2�t

2�
ẋ(0) +

1

M

Z
t

0

dt1g2(t� t1) (⌘(t1)� 2�0�(t1))

= e
�2�t

x(0) +
1� e

�2�t

2�
ẋ(0) +

Z
t

0

dt1
1� e

�2�(t�t1)

2M�
⌘(t1)

This solution is the same as equation 2.15 that we obtained by solving equation 2.5.

2.B.2 Free Particle: Drude Bath

Since the integration by parts is fine, let us check the Leibniz route for a smoother bath, i.e. a
Drude bath.

Leibniz Route

We will now use �(t) = �0!pe
�!pt in equation 2.45. Let again g1(t) and g2(t) are two of the

fundamental solutions of homogeneous equation. We take Laplace transform of homogeneous
equation (use �̃(z) = �0!p

z+!p

):

z
2
g̃1(z)� zg̃1(0)� ġ1(0) +

z

M
(�̃(z)g̃1(z))� lim

t!0

1

M

Z
t

0

dt1x(t1)�(t� t1) = 0

=) g̃1(z) =
1

z + 2�!p

z+!p

, And similarly, g̃2(z) =
1

z2 + 2�!pz

z+!p

.

(2.49)
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The full solution will be x(t) = g1(t)x(0) + g2(t)ẋ(0) +
1
M

R
t

0 dt1g2(t� t1)⌘(t1) with

g1(t) = e
�!pt

2

"
cosh

�
!
r

p
t/2
�
+

!p

2

sinh
�
!
r

p
t/2
�

!r
p
/2

#
; !

r

p
=
q
!2
p
� 8�!p

g2(t) =
1

2�
+ e

�!pt

2

"✓
1�

!p

4�

◆
sinh

�
!
r

p
t/2
�

!r
p
/2

�
1

2�
cosh

�
!
r

p
t/2
�
# (2.50)

This is the same as what we obtained in equation 2.14 that we obtained by solving equation 2.5.
We have also done this case with the by-part route, and obviously, it matches the equation 2.14.
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Chapter 3

Master Equation Approach

In this chapter, we will learn the quantum master equation approach by solving our problem using
this approach. Starting from the Hamiltonian, we will derive a master equation while understand-
ing all the approximations along the way. We will analyse both the Markovian and non-Markovian
master equations. Here too, we will assume that the initial state is the product state and the number
of bath sites is infinite.

The starting point is to move to the interaction picture. We will put a suffix “I” to everything that
is in the interaction picture. Unless stated otherwise, suffixes “S” and “B” will be used for system
and bath operators, respectively. Let ⇢I(t) be the full density matrix of the system and the bath in
the interaction picture. If HI is the interaction part of the Hamiltonian in the interaction picture,
then we can write the von-Neumann equation (since the evolution of system + bath is unitary):

d

dt
⇢I(t) = �

i

~ [HI(t), ⇢I(t)]; HI(t) = e
iH0tĤIe

�iH0t (3.1)

A formal solution to the above equation is

⇢I(t) = ⇢I(0)�
i

~

Z
t

0

dt1[HI(t1), ⇢I(t1)] (3.2)

If we substitute equation 3.2 into equation 3.1 and then take a partial trace over the bath, we get
the crudest form of the master equation:

d

dt
⇢SI(t) = �

i

~ trB[HI(t), ⇢I(0)]�
1

~2

Z
t

0

dt1 trB[HI(t), [HI(t1), ⇢I(t1)]] (3.3)

where ⇢SI(t) = trB(⇢I(t)) is the reduced system density matrix in the interaction picture. From
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equation 1.2, note that ĤI = �x⌦ B. So, let us write the explicit form of HI(t):

HI(t) = �e
iH0t[x⌦B]e�iH0t = �xI(t)⌦BI(t); xI(t) = e

iHStxe
�iHSt, BI(t) = e

iHBt
Be

�iHBt

(3.4)
Equation 1.7 tells us that BI(t) = ⌘(t). Let us analyse the first term of equation 3.3:

�trB[HI(t), ⇢I(0)] = trB[xI(t)⌦ ⌘(t), ⇢SI(0)⌦ ⇢BI(0)]

= trB[xI(t)⌦ ⌘(t), ⇢SI(0)⌦ ⇢th]

= [xI(t), ⇢SI(0)]h⌘(t)ith

= 0.

(3.5)

Here, we have used the fact that the initial state of the system + bath is in a product state. We have
also used the fact that the bath is in the thermal state (the initial state is the same in any picture).

Since we will only be dealing with a harmonic trap and free particle case, let us write the Hamilto-
nian explicitly for the trap case:

HS =
p
2

2M
+

1

2
(M!

2
0 + k

0)x2 =
1

2
M!

2
n
x
2; HB =

NX

s=1

P
2
s

2
+
⌦2

s
X

2
s

2
=
X

s

~⌦s

✓
b
†
s
bs +

1

2

◆

ĤSB = �x

NX

s=1

CsXs ⌘ �xB; Cs = m
�1/2

k
0
Us1; B =

X

s

Cs

r
~

2⌦s

(bs + b
†
s
)

(3.6)
Using this, now we can explicitly write the equation 3.4:

xI(t) = e
iHStxe

�iHSt = x(0) cos(!nt) +
p(0)

M

sin(!nt)

!n

⌘(t) = e
iHBt

Be
�iHBt =

X

s

Cs

r
~

2⌦s

(ei⌦stb
†
s
+ e

�i⌦stbs)
(3.7)

Finally, let us also recall what we need to do to find the expectation value of any operator A in the
interaction picture:

dhAit

dt
= tr{ȦI(t)⇢SI(t)}+ tr{AI(t)⇢̇SI(t)} (3.8)

Exact Master Equation

We can try to obtain moments from the von-Neumann equation 3.1 itself. It will match with the
exact Langevin results. It is just obtaining the Heisenberg equation for moments starting from the
interaction picture (instead of the Heisenberg picture in the Langevin method).
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3.1 Born Master Equation (BME)

In this section, we will understand the Born approximation. It is a perturbative approximation, i.e.
we truncate the master equation to a certain order with respect to certain parameters.

Statement: Put ⇢I(t) ⇡ ⇢SI(t)⌦ ⇢BI(t) = ⇢SI(t)⌦ ⇢th for all times t in the master equation 3.3.

Justification: We have assumed that ⇢I(0) = ⇢SI(0) ⌦ ⇢BI(0). If the interaction between the
system and the bath was not present, ⇢I would have always remained in the product state. The
interaction will develop correlations between them and so in the weak system-bath coupling, as a
perturbative expansion, one can write ([6]): ⇢I(t) ⇡ ⇢SI(t) ⌦ ⇢BI(t) + O(ĤI). Here, ⇢SI(t) =

e
iHSt⇢SI(0)e�iHSt and ⇢BI(t) = e

iHBt
⇢BI(0)e�iHBt are the evolved reduced density matrices in

the interaction picture of the system and the bath, respectively1.

We want to truncate the master equation to the second order in ĤI . Now, the right hand side of the
master equation 3.3 already have two ĤI making it O(Ĥ2

I
). So, we will truncate the ⇢I term to the

zeroth order in ĤI and hence, ⇢I(t) ⇡ ⇢SI(t)⌦ ⇢BI(t).

Since HB and ⇢th commute, we can conclude that

⇢BI(t) = e
iHBt

⇢BI(0)e
�iHBt = e

iHBt
⇢the

�iHBt = ⇢th

If you find this entire Born approximation hard to digest, I would recommend section 9.1 of ref-
erence [5], where a very neat derivation of this approximation is given using something called as
the projection operators method. Incorporating this approximation and equation 3.5, let us re-write
and simplify the master equation 3.3:

d

dt
⇢SI(t) = �

1

~2

Z
t

0

dt1 trB[HI(t), [HI(t1), ⇢SI(t1)⌦ ⇢th]]

= �
1

~2

Z
t

0

dt1

✓
h⌘(t)⌘(t1)ith[xI(t)xI(t1)⇢SI(t1)� xI(t1)⇢SI(t1)xI(t)]

� h⌘(t1)⌘(t)ith[xI(t)⇢SI(t1)xI(t1)� ⇢SI(t1)xI(t1)xI(t)]

◆

= �
1

~2

Z
t

0

dt1

✓
h⌘(t)⌘(t1)� ⌘(t1)⌘(t)ith

2
[xI(t), {xI(t1), ⇢SI(t1)}]

+
h⌘(t)⌘(t1) + ⌘(t1)⌘(t)ith

2
[xI(t), [xI(t1), ⇢SI(t1)]]

◆

(3.9)

1In general, it might be possible that eiHSt
⇢SI(0)e�iHSt

6= trB(⇢I(t)) and e
iHBt

⇢BI(0)e�iHBt
6= trS(⇢I(t)).

However, it can be shown to be equal in the leading order in the weak interaction limit.
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The best way to justify the last line of the manipulation is to expand the expression in the last line,
and we can easily see that it gives the expression in the second line.

Finally, the Born master equation (BME):

d⇢SI(t)

dt
=

Z
t

0

dt1

 
i

2~⌃(t� t1) [xI(t), {xI(t1), ⇢SI(t1)}]

�
1

2~2D1(t� t1) [xI(t), [xI(t1), ⇢SI(t1)]]

! (3.10)

To simplify further, we will need to substitute xI(t) in terms of xI(t1) and pI(t1), which we can do
using equation 3.7:

xI(t) = xI(t1) cos(!n(t� t1)) +
pI(t1)

M

sin(!n(t� t1))

!n

pI(t) = pI(t1) cos(!n(t� t1))�M!nxI(t1) sin(!n(t� t1))

(3.11)

These expressions are not strictly to order 0 in ĤI since it contains arbitrary orders of k0 through
cos(!nt) and sin(!nt)

⇣
remember !n =

p
!
2
0 + (k0/M)

⌘
. Putting this into equation 3.10 will

make it to have arbitrary orders of ĤI . So, we need to truncate equation 3.11 to zeroth order2:

xI(t) ⇡ xI(t1) cos(!0(t� t1)) +
pI(t1)

M

sin(!0(t� t1))

!0

pI(t) ⇡ pI(t1) cos(!0(t� t1))�M!0xI(t1) sin(!0(t� t1))

(3.12)

We will now write the differential equation for hAit where A is any system operator. We will need
to use equation 3.8 and get:

dhAit

dt
=

i

~h[H0, A]it +

Z
t

0

dt1

 
i

2~⌃(t� t1)trS ({[AI(t), xI(t)], xI(t1)}⇢SI(t1))

�
1

2~2D1(t� t1)trS ([[AI(t), xI(t)], xI(t1)]⇢SI(t1))

!

(3.13)
Let us do all the moments. First moments are easiest and we get (refer to appendix 3.A.1 for
explanation):

hẋit =
hpit

M
, hṗit = �M!

2
n
hxit +

Z
t

0

dt1hxit1⌃(t� t1) (3.14)

2Most texts does not justify this step very properly. So, I am not sure if there is any better justification to do this
approximation. If we analyse equation 3.10 using 3.11, we get very absurd results. For example, we will find a free
particle behaving as a particle bounded in a trap frequency

p
k0/M .
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This system of differential equations is the same as what we would obtain from the exact Langevin
approach (see equation 5.3). This can also be easily generalised to any other potential V (x) and
so:

The dynamics of the first moments is totally unaffected by the Born approximation.

The reason behind it could be that the system-bath correlations that we approximated to be negli-
gible while doing the approximation do not play any role in the dynamics of the first moments.

Let us now look at the second moments (refer to appendix 3.A.1 for details):

dhx
2
it

dt
=

hxp+ pxit

M
,

dhp
2
it

dt
= �M!

2
nhxp+ pxit +

Z
t

0
dt1
⇥
C(t� t1)hxp+ pxit1 � 2M!

2
0S(t� t1)hx

2
it1

⇤
+ h(t),

dhxp+ pxit

dt
=

2hp2it
M

� 2M!
2
nhx

2
it +

Z
t

0
dt1


2C(t� t1)hx

2
it1 + S(t� t1)

hxp+ pxit1

M

�
+

f(t)

M

(3.15)

with
C(t) = ⌃(t) cos(!0t), S(t) = ⌃(t)

sin(!0t)

!0

h(t) =

Z
t

0

d⌧ cos(!0⌧)D1(⌧), f(t) =

Z
t

0

d⌧
sin(!0⌧)

!0
D1(⌧)

(3.16)

These definitions of C(t), S(t), h(t) and f(t) will be used repeatedly in this thesis.

3.1.1 Solving BME for a Bounded Particle

We will now solve the differential equations 3.15. For that, we need to write them in the Laplace
space:

zhx̃
2
i(z)� hx

2
i0 =

h ˜xp+ pxi(z)

M

zhp̃
2
i(z)� hp

2
i0 = �(M!

2
n � C̃(z))h ˜xp+ pxi(z)� 2M!

2
0S̃(z)hx̃

2
i(z) + h̃(z)

zh ˜xp+ pxi(z)� hxp+ pxi0 =
2hp̃2i(z)

M
� 2(M!

2
n � C̃(z))hx̃2i(z) +

S̃(z)h ˜xp+ pxi(z)

M
+

f̃(z)

M
(3.17)

Now, this a system of algebraic equations and it can be solved easily. We will once again focus
only on hx

2
i:

hx̃
2
i(z) =

2h̃(z) + zf̃(z) + 2hp2i0 +Mzhxp+ pxi0 +M [z(Mz � S̃(z)) + 2(M!
2
n � C̃(z))]hx2i0

4M!
2
0S̃(z) +Mz2(Mz � S̃(z)) + 4Mz(M!2

n � C̃(z))
(3.18)
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with (we use Drude bath, refer to section 1.3):

C̃(z) =
⌃̃(z � i!0) + ⌃̃(z + i!0)

2
, S̃(z) =

⌃̃(z � i!0)� ⌃̃(z + i!0)

2i!0
, ⌃̃(z) =

�0!
2
p

z + !p

h̃(z) =
D̃1(z � i!0) + D̃1(z + i!0)

2z
, f̃(z) =

D̃1(z � i!0)� D̃1(z + i!0)

2iz!0
,

D̃1(z) =
2~�0!2

p

⇡

z ln(z/!p)

z2 � !2
p

; for zero temperature, D̃1(z) =
2kBT�0!p

z + !p

; for kBT >> ~!p

(3.19)
We have just done the Laplace transforms of expressions in equation 3.36 using the table 2. Please
note that in the master equation approach, we have not yet separated the homogeneous and inhomo-
geneous parts of the solutions. This is relatively easy to do now. All the temperature-dependent part
is inhomogeneous, and the rest is homogeneous. We know that temperature enters only through
the noise kernel D1. So:

hx̃
2
i

homo(z) =
2hp2i0 +Mzhxp+ pxi0 +M [z(Mz � S̃(z)) + 2(M!

2
n
� C̃(z))]hx2

i0

4M!
2
0S̃(z) +Mz2(Mz � S̃(z)) + 4Mz(M!2

n
� C̃(z))

hx̃
2
i

inhomo(z) =
2h̃(z) + zf̃(z)

4M!
2
0S̃(z) +Mz2(Mz � S̃(z)) + 4Mz(M!2

n
� C̃(z))

(3.20)

We will analyse the inhomogeneous part in this section, and we will do the homogeneous part in the
section 4.1. We performed the inverse Laplace transforms numerically, and the results are plotted
in figures 3.1.1 and 3.1.2. The figreff6 shows the result for the zero temperature case, whereas the
figure 3.1.2 shows it for the case of very high temperatures: T = 10000 (where kBT >> ~!p can
be assumed).

Let us try to find the asymptotic results:

1. kBT >> ~!p and z ! 0:

hx̃
2
i(z) !

kBT

M!
2
0z

=) hx
2
it!1 =

kBT

M!
2
0

2. kBT >> ~!p and z ! 1:

hx̃
2
i(z) ! k

0 6kBT

M2z5
=) hx

2
it!0 = k

0 kBT

4M2
t
4

3. kBT = 0 and z ! 0:

hx̃
2
i(z) !

~
2M!0z

=) hx
2
it!1 =

~
2M!0
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4. kBT = 0 and z ! 1:

hx̃
2
i(z) !

2~!2
p
�0

⇡M2z5
[3 ln(z/!p)� 1] =) hx

2
it!0 =

~!2
p
�0t

4

16⇡M2
[7� 4�E � 4 ln(!pt)]

Let’s compare this against the corresponding results that we obtained using the exact Langevin
approach in the section 2.3.2; we find that the asymptotic results from both the approaches are
exactly the same. In fact, figures 3.1.1 and 3.1.2 suggests that Born approximation is exact for all
times for inhomogeneous parts in the weak coupling regime.

We must remember that all this is happening in the limit � << !0 << !p. In fact, figure 3.1.1
clearly tells us the story. In the second figure, the inequality is less stricter as compared to the first
figure. We can observe that curves get closer as we make the inequality stricter. The reason for
this is pretty clear if we see the asymptotic expression for hx2

it from the exact Langevin approach
(equations 2.39 and 2.41). They have sub-leading contributions which disappears only when the
inequality � << !0 << !p grows infinitely stricter.

3.1.2 Solving BME for a Free Particle

We will just replace !0 by 0 (now, M!
2
n
= k

0) in equation 3.18:

hx̃
2
i(z) =

2h̃(z) + zf̃(z) + 2hp2i0 +Mzhxp+ pxi0 +M [z(Mz � S̃(z)) + 2(M!
2
n � C̃(z))]hx2i0

Mz2(Mz � S̃(z)) + 4Mz(M!2
n � C̃(z))

(3.21)

with

C̃(z) = ⌃̃(z), S̃(z) = �
d⌃̃(z)

dz
, ⌃̃(z) =

�0!
2
p

z + !p

, h̃(z) =
D̃1(z)

z
, f̃(z) = �

1

z

dD̃1(z)

dz
,

D̃1(z) =
2~�0!2

p

⇡

z ln(z/!p)

z2 � !2
p

; for zero temperature, D̃1(z) =
2kBT�0!p

z + !p

; for kBT >> ~!p

(3.22)
Again, we numerically perform the inverse Laplace transform of the inhomogeneous part, and it is
plotted in the figure 3.1.3. Let us try to find the asymptotic results for the inhomogeneous part:

1. kBT >> ~!p and z ! 0:

hx̃
2
i(z) !

4kBT

3Mz3
=) hx

2
it!1 =

2kBT

3M
t
2

2. kBT >> ~!p and z ! 1:

hx̃
2
i(z) ! k

0 6kBT

M2z5
=) hx

2
it!0 = k

0 kBT

4M2
t
4
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3. kBT = 0 and z ! 0:

hx̃
2
i(z) !

2~
3M⇡z2

[1� ln(z/!p)] =) hx
2
it!1 =

2~t
3⇡M

[�E + ln(!pt)]

4. kBT = 0 and z ! 1:

hx̃
2
i(z) !

2~!2
p
�0

⇡M2z5
[3 ln(z/!p)� 1] =) hx

2
it!0 =

~!2
p
�0t

4

16⇡M2
[7� 4�E � 4 ln(!pt)]

For small times, the results match with what we obtained using the Langevin equations (section
2.3.1). But, at large times, the results are horribly wrong for any temperature!

For a free particle, BME works well just for very small times and not for large times. This
is contrary to a popular belief that master equations can give correct results for large times

and not for small times.

In the weak coupling limit, the Born approximation fails for a free particle (apart
from very small times), whereas it works perfectly for a bounded particle (for all

times).

We will discuss more on this in the section 4.2. The one-line answer is that for the free particle case,
the inequality � << !0 << !p is violated. Satisfying this inequality is the necessary condition for
the Born approximation to work.
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Figure 3.1.1: Comparison of three approaches for a bounded particle at T = 0, but with different param-

eters in the limit � << !0 << !p.
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KBT .

3.2 Born semi-Markov Master Equation (BSMME)

The Born semi-Markov master equation is obtained by doing a semi-Markov approximation on
top of the Born approximation. In this section we will understand the so-called “semi-Markov”
approximation. Let us recall the Born master equation 3.10:

d⇢SI(t)

dt
=

Z
t

0
dt1

✓
i

2~⌃(t� t1) [xI(t), {xI(t1), ⇢SI(t1)}]�
1

2~2D1(t� t1) [xI(t), [xI(t1), ⇢SI(t1)]]

◆

(3.23)

semi-Markov approximation: Do ⇢SI(t1) ! ⇢SI(t) in equation 3.23 in the following two steps:

d⇢SI(t)

dt
⇡

Z
t

0
dt1

✓
i

2~⌃(t� t1) [xI(t), {xI(t1), ⇢SI(t)}]�
1

2~2D1(t� t1) [xI(t), [xI(t1), ⇢SI(t1)]]

◆

(3.24a)

⇡

Z
t

0
dt1

✓
i

2~⌃(t� t1) [xI(t), {xI(t1), ⇢SI(t)}]�
1

2~2D1(t� t1) [xI(t), [xI(t1), ⇢SI(t)]]

◆

(3.24b)

The condition to transit from equation 3.23 to equation 3.24a is � << !p and conditions to transit
from equation 3.24a to equation 3.24b is � << min{!p, ⌫1}, where ⌫1 = 2⇡kBT

~ is the first Mat-
subara frequency. Note that we are not changing other t1-dependent variables to t (like xI(t1)).
We will justify this as well.

The Born semi-Markov master equation:
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Figure 3.1.3: Comparison of three approaches for a free particle in the limit ~� << ~!p << kBT and

kBT << ~� << ~!p.

d⇢SI(t)

dt
=

Z
t

0

dt1

✓
i

2~⌃(t� t1) [xI(t), {xI(t1), ⇢SI(t)}]

�
1

2~2D1(t� t1) [xI(t), [xI(t1), ⇢SI(t)]]

◆ (3.25)

3.2.1 Justifying the semi-Markov Approximation

Physical Justification

Recall section 1.3 and equations 1.14 and 1.16, in particular. The dissipation kernel ⌃(t) goes as
!
2
p
e
�!pt. As we increase !p, this function is going to get steeper at t = 0. So, in the equation

3.23, the first term will have a contribution only from t = t1 as !p grows larger. Hence, replacing
⇢SI(t1) ! ⇢SI(t) is not really an approximation unless ⇢SI itself evolve with !p. This is not the
case since the density matrix decays with a time-scale 1/�. We can say this because we have seen
that the moments decay with a time-scale of 1/� (see any g(t) that we obtained in the section 2.2).
Hence, until we ensure � << !p, the first step of the approximation is justified.

We need to do a similar analysis for D1(t) ⇠ !pe
�!pt + |⌫n|e

�|⌫n|t. For n = 0, we just have to
worry about the first exponential which has !p. For n 6= 0, the slowest frequency scale among ⌫n

is ⌫1. So, if the slowest of ⌫1 and !p decays faster compared to �, the second step is also good and
hence, � << min{!p, ⌫1} is required for the second step.
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Let us now discuss why we did not put xI(t1) to xI(t). Note that xI evolves with a timescale of
!
�1
0 , which is faster than �

�1. In this approximation, we do the change only to the slowest evolving
term.

This now justifies why we always focused on the limit � << !0 << !p while doing the Langevin
analysis. It satisfies conditions for both the Born as well as the semi-Markov approximation.

Mathematical Justification

[4] We will try to justify the transition from equation 3.23 to equation 3.24a and further to equation
3.24b. Let us see a typical term in equation 3.23. It is of the form xI(t)I(t) with:

I(t) =

Z
t

0

dt1K0(t, t1)⇢SI(t1)

where K0(t, t1) can be ⌃(t� t1) xI(t1) (call it K⌃
0 ) or D1(t� t1) xI(t1) (call it KD

0 ). Let us define
a new quantity K1(t, t1) such that

K1 (t, t1) =

Z
t1

0

dt2K0 (t, t2) =) K0 (t, t1) =
@

@t1
K1 (t, t1) ; K1(t, 0) = 0 (3.26)

Re-writing I(t) in terms of K1(t, t1) and then doing integration by parts, we get:

I(t) =

Z
t

0

dt1

✓
@

@t1
K1 (t, t1)

◆
⇢SI(t1) = K1(t, t)⇢SI(t)�

Z
t

0

dt1K1 (t, t1)
d⇢SI(t1)

dt1
(3.27)

We will repeat this process. After one more iteration, we will get:

K2 (t, t1) =

Z
t1

0

dt2K1 (t, t2) =) K1 (t, t1) =
d

dt1
K2 (t, t1) ; K2(t, 0) = 0 (3.28)

I(t) = K1(t, t)⇢SI(t)�K2(t, t)
d⇢SI(t)

dt
+

Z
t

0

dt1K2 (t, t1)
d
2
⇢SI(t1)

dt
2
1

(3.29)

Upon multiple iterations, we get:

I(t) = K1(t, t)⇢SI(t)�K2(t, t)
d⇢SI(t)

dt
+K3(t, t)

d
2
⇢SI(t)

dt2
+ · · · (3.30)

with

K1(t, t) =

Z
t

0

dt1K0 (t, t1)

K2(t, t) =

Z
t

0

dt1

Z
t1

0

dt2K0 (t, t2)

K3(t, t) =

Z
t

0

dt1

Z
t1

0

dt2

Z
t2

0

dt3K0 (t, t3)

... =
...

(3.31)
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Let us consider a specific case of a Drude bath. We have K
⌃
0 (t, t1) / ⌃(t � t1) ⇠ !

2
p
e
�!pt and

K
D

0 (t, t1) / D1(t � t1) ⇠ !pe
�!pt + |⌫n|e

�|⌫n|t. Following the definition of K1, we observe
K

⌃
1 ⇠ !pe

�!pt ⇠
1
!p

K
⌃
0 (t, t1). Similarly, KD

1 (t, t1) ⇠ e
�!pt + e

�|⌫n|t

So, higher orders of K gets divided by the bath frequency. As we justified in the previous section
all moments and hence ⇢SI approximately relaxes as e��t. So, d

n
⇢SI(t)
dtn

brings a factor of �n. This
tells us that the equation 3.30 is nothing but a series in �/bath frequency.

For the first term of equation 3.23, the relevant bath frequency is !p and hence if � << !p, we can
neglect the higher-order terms in equation 3.23:

I(t) =

Z
t

0

dt1K
⌃
0 (t, t1) ⇢SI(t1) ⇡ ⇢SI(t)K

⌃
1 (t, t) = ⇢SI(t)

Z
t

0

dt1⌃(t� t1)xI(t1) (3.32)

which justifies going from equation 3.23 to equation 3.24a. To justify the transition from equation
3.24a to equation 3.24b, we can give a similar argument. The only difference would be that now
the relevant frequencies are !p and all ⌫n (n 6= 0). Since this lies in the denominator, we want the
smallest of them to be much larger than �. Hence, � << min{!p, ⌫1} justifies that step.

Dynamics of Moments

From the Born semi-Markov master equation 3.24b, we can obtain the equation of motion for
expectation of any system operator A using equation 3.8:

dhAit

dt
=

i

~h[H0, A]it +

Z
t

0

dt1

 
i

2~⌃(t� t1)trS ({[AI(t), xI(t)], xI(t1)}⇢SI(t))

�
1

2~2D1(t� t1)trS ([[AI(t), xI(t)], xI(t1)]⇢SI(t))

! (3.33)

We now want to write xI(t1) in terms of xI(t) and pI(t). For that, we will use the following
relations which can be obtained by inverting equation 3.12:

xI(t1) ⇡ xI(t) cos(!0(t� t1))�
pI(t)

M

sin(!0(t� t1))

!0

pI(t1) ⇡ pI(t) cos(!0(t� t1)) +M!0xI(t) sin(!0(t� t1))

(3.34)

Using this equations into equation 3.33. First moments:

dhxit

dt
=

hpit

M
,

dhpit

dt
= �M!

2
n
hxit +

Z
t

0

dt1⌃(t� t1)tr{xI(t1)⇢SI(t)}

= �M!
2
n
hxit + hxit

Z
t

0

dt1C(t� t1)�
hpit

M

Z
t

0

dt1S(t� t1)

(3.35)
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The first line follows in an exactly similar fashion, as shown in the appendix 3.A.2. In fact, the
only difference is we will have ⇢SI(t) instead of ⇢SI(t1) throughout that calculation. We have just
used equation 3.34 in the second line.

Second moments (refer to appendix 3.A.2):

dhx
2
it

dt
=

hxp+ pxit

M
,

dhp
2
it

dt
= �M!

2
n
hxp+ pxit �

2hp2it
M

Z
t

0

d⌧S(⌧) + hxp+ pxit

Z
t

0

d⌧C(⌧) + h(t)

dhxp+ pxit

dt
=

2hp2it
M

� 2M!
2
n
hx

2
it �

hxp+ pxit

M

Z
t

0

d⌧S(⌧) + 2hx2
it

Z
t

0

d⌧C(⌧) +
f(t)

M

(3.36)

Let us now try to simplify this further. For that, we will put the explicit form of C(t) and S(t) (see
equation 3.16) and stare at the integrals in above equations. For a Drude bath:
Z

t

0

d⌧C(⌧) = �0!
2
p

Z
t

0

d⌧e
�!p⌧ cos(!0⌧) =

�0!
2
p
(!p + e

�!pt (!0 sin(!0t)� !p cos(!0t)))

!
2
0 + !2

p

(putting !0 = 0): = �0!p(1� e
�!pt) = �(0)� �(t)

Z
t

0

d⌧S(⌧) =
�0!

2
p

!0

Z
t

0

d⌧e
�!p⌧ sin(!0⌧) =

�0!
2
p
(!0 � e

�!pt (!0 cos(!0t) + !p sin(!0t)))

!0(!2
0 + !2

p
)

(putting !0 = 0): = �0

⇥
1� e

�!pt (1 + !pt)
⇤

(3.37)
For an Ohmic bath (put !p = 1 in the above equations and use lim!p!1 !pe

�!pt = �(t)):
Z

t

0

d⌧C(⌧) = �0!p(1� e
�!pt) = �(0)� �(t)

Z
t

0

d⌧S(⌧) = �0

(3.38)

So, in the system of equations 3.36, the coefficients are time-dependent for the case of a Drude bath.
It will be a bit tedious to simplify them with these coefficients. So, we will make a mathematical
approximation to make our lives simpler:

Assumption: In the limit !p >> !0 >> �, we can safely use equations 3.38 instead of equations
3.37 for a Drude bath.

Motivation: In the section 2.2, we show that the form of g(t) was exactly same for an Ohmic bath
and for a Drude bath in the limit !p >> !0 >> �. For example, compare equations 2.12 and 2.13.
We will put a question mark over this assumption if our analysis gives some very absurd results.
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In equation 3.36, we will do a further an approximation of replacing �(t)hAit by �(t)hAi0 in the
limit of large !p. The motivation is that �(t) behaves almost like a delta function in this limit.
Again, we will come back to this if our analysis gives us absurd results.

Using these approximations in equation 3.36:

dhx
2
it

dt
=

hxp+ pxit

M
,

dhp
2
it

dt
= �M!

2
0hxp+ pxit �

2�0hp2it
M

� �(t)hxp+ pxi0 + h(t)

dhxp+ pxit

dt
=

2hp2it
M

� 2M!
2
0hx

2
it �

�0hxp+ pxit

M
� 2�(t)hx2

i0 +
f(t)

M

(3.39)

3.2.2 Solving BSMME for a Bounded Particle

We now directly write equation 3.39 in the Laplace space:

zhx̃
2
i(z)� hx

2
i0 =

h ˜xp+ pxi(z)

M

zhp̃
2
i(z)� hp

2
i0 = �M!

2
0h

˜xp+ pxi(z)�
2�0hp̃2i(z)

M
� �̃(z)hxp+ pxi0 + h̃(z)

zh ˜xp+ pxi(z)� hxp+ pxi0 =
2hp̃2i(z)

M
� 2M!

2
0hx̃

2
i(z)�

�0h ˜xp+ pxi(z)

M
� 2�̃(z)hx2i0 +

f̃(z)

M
(3.40)

It gives:

hx̃
2
i(z) =

2Mh̃(z) + (Mz + 2�0)f̃(z) +M [2M2
!
2
0 + (Mz + 2�0)(Mz + �0 � 2�̃(z))]hx2

i0

(Mz + �0)(4M2!2
0 +Mz(Mz + 2�0))

+
M(2hp2i0 + [Mz + 2�0 � 2�̃(z)]hxp+ pxi0)

(Mz + �0)(4M2!2
0 +Mz(Mz + 2�0))

(3.41)
with

h̃(z) =
D̃1(z � i!0) + D̃1(z + i!0)

2z
, f̃(z) =

D̃1(z � i!0)� D̃1(z + i!0)

2iz!0
,

D̃1(z) =
2~�0!2

p

⇡

z ln(z/!p)

z2 � !2
p

; for zero temperature, D̃1(z) =
2kBT�0!p

z + !p

; for kBT >> ~!p

Once again, we can separate the homogeneous and inhomogeneous parts as we did earlier. We did
the inverse Laplace transform for the inhomogeneous part numerically and plotted them in figures
3.1.1 and 3.1.2. Let us analyse the asymptotic limits of the inhomogeneous part:
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1. kBT >> ~!p and z ! 0:

hx̃
2
i(z) !

kBT!p(M!p + �0)

M2!2
0(!

2
0 + !2

p
)z

=) hx
2
it!1 =

kBT!p(M!p + �0)

M2!2
0(!

2
0 + !2

p
)

!
kBT

M!
2
0

.

where we have used !p >> !0 >> � in the last line.

2. kBT >> ~!p and z ! 1:

hx̃
2
i(z) ! k

0 6kBT

M2z5
=) hx

2
it = k

0 kBT

4M2
t
4 as t ! 0

3. kBT = 0 and z ! 0:

hx̃
2
i(z) !

~!2
p

h
M⇡!0 + 2�0 ln

⇣
!0
!p

⌘i

2⇡M2!2
0(!

2
0 + !2

p
)z

=) hx
2
it!1 =

~!2
p

h
M⇡!0 + 2�0 ln

⇣
!0
!p

⌘i

2⇡M2!2
0(!

2
0 + !2

p
)

!
~

2M!0

where we have used !p >> !0 >> � in the last line.

4. kBT = 0 and z ! 1:

hx̃
2
i(z) !

2~!2
p
�0

⇡M2z5
[3 ln(z/!p)� 1] =) hx

2
it!0 =

~!2
p
�0t

4

16⇡M2
[7� 4�E � 4 ln(!pt)]

All these asymptotic results match exactly with what we obtained using the exact Langevin ap-
proach in the section 2.3.2. In fact, figure 3.1.1 and 3.1.2 suggests that Born semi-Markov ap-
proximation is exact for all temperatures and all times for inhomogeneous parts in the weak
coupling regime. This is a very surprising result since the Born semi-Markov approximation is
not supposed to work for zero temperature. Remember in section 3.2.1, we justified that we need
� << min{!p, ⌫1}. For zero temperature case, ⌫1 = 0 and the inequality is totally ruined. We will
learn the reason behind this in the section 5.2.1. In one line, we can say that as far as the second
moments are concerned, ⌫1 time-scale is nearly irrelevant for making a semi-Markov approxima-
tion.

For a bounded particle, the Born semi-Markov approximation is exact in the limit
� << !0 << !p, i.e. it predicts correct results for all time and for all temperatures.

This also justifies that our assumption of using equation 3.38 instead of equation 3.37 and replacing
�(t)hAit by �(t)hAi0 was harmless.
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3.2.3 A Word of Caution about the Ohmic Bath

You might ask that if the goal was to simplify the system of equations 3.36 easy, then why
didn’t we use the Ohmic bath only? Why did we bother to do all those approximations for
the Drude approach?
The answer is that the Ohmic bath is pathological. Look at the asymptotic form of hx2

it!1

for zero temperatures (bulletin 3): The subleading term is ��0 ln(!p)/!2
0 . For the Drude

case, as the inequality � << !0 << !p grows stricter, this term becomes insignificant.
However, for the Ohmic case, this term is diverging logarithmically and is no longer sub-
leading. Also, This divergence happens to �1 (also reported in [4]). This is very unphysical
as hx

2
i is a positive operator. Obviously, this is a limitation of the Born semi-Markov ap-

proximation. The exact results don’t give such divergence to �1 even for an Ohmic bath
(it has a term � ln(!p)/!2

p
, see equation 2.32). This also means that the subleading terms

predicted by the Born semi-Markov approximation are incorrect. Hence, the approximation
is valid only when the weak coupling inequality is very strict.
Divergence to 1 is nothing new for Ohmic baths. Even from exact results, we will see that
hp

2
it!1 diverges to 1 for any kind of trap ([5]). This divergence stems from the zero-point

energy of the high-energy modes of an Ohmic bath. To escape such pathological problems,
we use a Drude bath with a large cutoff which can act as a Markovian bath but is free of
pathologies.

3.2.4 Solving BSMME for a Free Particle

We just need to replace !0 by 0 (now, M!
2
n
= k

0) in equation 3.41:

hx̃
2
i(z) =

2Mh̃(z) + (Mz + 2�0)f̃(z)

Mz(Mz + �0)(Mz + 2�0)
+

2hp2i0 + [Mz + 2�0 � 2�̃(z)]hxp+ pxi0 + [(Mz + 2�0)(Mz + �0 � 2�̃(z))]hx2
i0

z(Mz + �0)(Mz + 2�0)
(3.42)

with

h̃(z) =
D̃1(z)

z
, f̃(z) = �

1

z

dD̃1(z)

dz
, D̃1(z) =

2~�0!2
p

⇡

z ln(z/!p)

z2 � !2
p

; for zero temperature

D̃1(z) =
2kBT�0!p

z + !p

; for kBT >> ~!p

We did the inverse Laplace transforms of the inhomogeneous part numerically and plotted in the
figure 3.1.3 for zero temperature and T = 10000 (where kBT >> ~!p is valid). Let us find the
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asymptotic results of the inhomogeneous part:

1. kBT >> ~!p and z ! 0:

hx̃
2
i(z) !

2(�0 +M!p)kBT

M!p�0z
2

�
kBT (3M2

!
2
p
+ 4M!p�0 + 4�2

0)

M!2
p
�
2
0z

=)

hx
2
it!1 =

2(�0 +M!p)kBT

M!p�0
t�

kBT (3M2
!
2
p
+ 4M!p�0 + 4�2

0)

M!2
p
�
2
0

!
2kBT

�0
t�

3kBT

4M�2

where we have used the inequality !p >> !0 >> � in the last line.

2. kBT >> ~!p and z ! 1:

hx̃
2
i(z) ! k

0 6kBT

M2z5
=) hx

2
it!0 = k

0 kBT

4M2
t
4

3. kBT = 0 and z ! 0:

hx̃
2
i(z) !

2~
M⇡z2

[1 + ln(z/!p)] =) hx
2
it!1 =

2~t
M⇡

[2� �E � ln(!pt)]

4. kBT = 0 and z ! 1:

hx̃
2
i(z) !

2~!2
p
�0

⇡M2z5
[3 ln(z/!p)� 1] =) hx

2
it!0 =

~!2
p
�0t

4

16⇡M2
[7� 4�E � 4 ln(!pt)]

For the limit kBT >> ~!p, the leading term and even the subleading term are the same as the exact
Langevin results (equation 2.24). In fact, the figure 3.1.3 suggests that this is true for all times.
Now, this is very surprising as the BME gave horribly wrong results, but doing a semi-Markov
approximation on top of it made it give correct answers. We will discuss more about it in the next
chapter.

For the zero temperature case, it agrees with the Langevin results for small times (see equation
2.35). But, for large times, it goes horribly wrong. It predicts �t indicating the violation of
positive semi-definiteness.

For a free particle, the BME predicts correct behaviour only for very small times in the
limit � << !p (irrespective of the temperature).

The BSMME (which is one approximation on top of BME) is exact in the limit
~� << ~!p << kBT , i.e. it predicts correct results for all times (not just small times).

However, for the zero temperature case, BSMME predicts the correct answer only for very
small times. For long times, it violates the positivity deviating from both the exact results

as well as the BME results.
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3.3 Born Markov Master Equation (BMME)

Markov Approximation: On top of the semi-Markov approximation we did, we also put the upper
limit of integrals to infinity, i.e. in equation 3.24b, make the upper limit of integral t ! 1. This
gives us the Born-Markov master equation:

d⇢SI(t)

dt
=

Z 1

0

dt1

✓
i

2~⌃(t� t1) [xI(t), {xI(t1), ⇢SI(t)}]

�
1

2~2D1(t� t1) [xI(t), [xI(t1), ⇢SI(t)]]

◆ (3.43)

This is what we see in the literature as a Markovian approximation3.

Justification: Since the kernels ⌃(t� t1) is dirac-delta type in the limit � << !0 << !p, the only
significant contribution in the integral is from t = t1 and the additional integral from t to 1 will
not have any significant contribution.

Let us try to solve our problem using this approach and try to seek the reason why we proposed
the semi-Markov approximation. Dynamics of second moments will still be governed by equation
3.36 with a slight change:

dhx
2
it

dt
=

hxp+ pxit

M
,

dhp
2
it

dt
= �M!

2
n
hxp+ pxit �

2hp2it
M

Z 1

0

d⌧S(⌧) + hxp+ pxit

Z 1

0

d⌧C(⌧) + h(t)

dhxp+ pxit

dt
=

2hp2it
M

� 2M!
2
n
hx

2
it �

hxp+ pxit

M

Z 1

0

d⌧S(⌧) + 2hx2
it

Z 1

0

d⌧C(⌧) +
f(t)

M

(3.44)
Now, the simplification of the integrals will also be simpler (put t ! 1 in equation 3.37):

Z 1

0

d⌧C(⌧) = �0!
2
p

Z 1

0

d⌧e
�!p⌧ cos(!0⌧) =

�0!
3
p

!
2
0 + !2

p

(putting !0 = 0): = �0!p = �(0)
Z 1

0

d⌧S(⌧) =
�0!

2
p

!
2
0

Z 1

0

d⌧e
�!p⌧ sin(!0⌧) =

�0!
2
p

(!2
0 + !2

p
)

(putting !0 = 0): = �0

(3.45)

3It is usually done to bring it closer to the Lindblad form of the master equation. If you don’t perform t ! 1,
the master equation will not follow something called the property of “dynamical semigroup”, which is a must for the
Lindblad master equation.
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We got the time-independent coefficients straightaway for a Drude bath. But, compare equation
3.45 to equation 3.38, which we used in the case of the semi-Markov approximation. We see that
equation 3.45 don’t have ��(t) term in

R
d⌧C(⌧). So, now which one is correct? - We will show

that the semi-Markov scheme we proposed here is more appropriate than the traditional Markov
approximation.

3.3.1 semi-Markov vs Markov Approximation

Let us compare equations governing dynamics of first moments from exact Langevin, BMME and
BSMME approaches. For this illustration, we will stick to a very simple Ohmic bath.

Exact Langevin Approach

We need to recall the Langevin equation for a bounded particle (equation 2.8). If we take trace of
that equation with respect to the initial system state, we get:

hẋit =
hpit

M
, hṗit = �M!

2
n
hxit +

Z
t

0

dt1hxit1⌃(t� t1)

= �M!
2
n
hxit �

Z
t

0

d⌧hxit�⌧ �̇(⌧)

= �M!
2
n
hxit �

✓
�(⌧)hxit�⌧ |

t

0 + 2�0

Z
t

0

d⌧hẋit�⌧�(⌧)

◆

= �M!
2
0hxit � 2�0�(t)hxi0 �

�0hpit

M

(3.46)

where we have used �(⌧) = 2�0�(⌧) for the Ohmic bath.

BSMME Approach

Refer to equation 3.35 and use results for Ohmic bath (equation 3.38):

dhxit

dt
=

hpit

M
,

dhpit

dt
= �M!

2
0hxit � 2�0�(t)hxi0 �

�0hpit

M
(3.47)

This is exactly the same as what we obtained from the Langevin approach. This is expected since
we are in the limit � << !0 << !p, where BSMME is exact.
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BMME Approach

We still need to use equation 3.35, but with the upper limit of integral being 1:

dhxit

dt
=

hpit

M
,

dhpit

dt
= �M!

2
n
hxit + hxit

Z 1

0

d⌧C(⌧)�
hpit

M

Z 1

0

d⌧S(⌧)

= �M!
2
0hxit �

�0hpit

M

(3.48)

So, BMME misses the boundary terms proportional to �(t). This leads to incorrect predictions
of the homogeneous parts in transients. As we have seen earlier, this problem is persistent even
for higher moments. The Born semi-Markov theme formulated here fixes this problem for all the
moments.

Problem: What is the problem with the Markov approximation, and what about the justification
that we gave earlier in favour of the Markov approximation?

Resolution: We think that making the upper limit of integral in equation 3.24b is not appropriate.
If we look at the master equation 3.24b, we find that the argument t is present in the integrand as
well. In the Markov approximation, we partially replace t to 1. If we also replace t inside the
integrand with 1, we will get an equation for the steady-state.

The problem with justification is that in the limit � << !p, the dissipation kernel behaves like
a delta function, but it is not exactly a delta function. Actually, it is ⇠

d

dt
�(t). So, if we do

integration by parts and write ⌃ kernel in terms of the damping kernel �(t) (which ⇠ �(t) in the
limit � << !p), we will get a crucial boundary term. The Markov approximation misses this term.
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Appendix

3.A Detailed Calculations

3.A.1 Born Master Equation

In this appendix, we will justify equations 3.14 and 3.15 given equation 3.13. Let us re-write
equation 3.13:

dhAit

dt
=

i

~h[H0, A]it +

Z
t

0

dt1

 
i

2~⌃(t� t1)trS ({[AI(t), xI(t)], xI(t1)}⇢SI(t1))

�
1

2~2D1(t� t1)trS ([[AI(t), xI(t)], xI(t1)]⇢SI(t1))

!

(3.49)
Recall H0 =

p
2

2M + 1
2M!

2
n
x
2. To proceed, We will need all the basic commutation relations:

[p, x] = �i~, {x, p} = 2xp� i~, [p2, x] = �2i~p, [x2
, p] = 2i~x, [xp+ px, x] = �2i~x

[x2
, p

2] = 2i~(xp+ px), [x2
, xp+ px] = 4i~x2

, [p2, xp+ px] = �4i~p2
(3.50)

Now, we just have to plug various operators in equation 3.49 and use equation 3.50. For first
moments:

dhxit

dt
=

i

~h[H0, x]it =
hpit

M

dhpit

dt
=

i

~h[H0, p]it +

Z
t

0

dt1

 
i

2~⌃(t� t1)trS ({[pI(t), xI(t)], xI(t1)}⇢SI(t1))

�
1

2~2D1(t� t1)trS ([[pI(t), xI(t)], xI(t1)]⇢SI(t1))

!

= �M!
2
n
hxit +

Z
t

0

dt1⌃(t� t1)hxit1

(3.51)
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The dissipative part does not contribute for x(t) since [x, x] = 0. Using the same logic:

dhx
2
it

dt
=

i

~h[H0, x
2]it =

hxp+ pxit

M
(3.52)

Among hp
2
it and hxp+ pxit, we will only do hp

2
it. The other is exactly similar.

dhp
2
it

dt
=

i

~h[H0, p
2]it +

Z
t

0

dt1

 
i

2~⌃(t� t1)trS
�
{[p2

I
(t), xI(t)], xI(t1)}⇢SI(t1)

�

�
1

2~2D1(t� t1)trS
�
[[p2

I
(t), xI(t)], xI(t1)]⇢SI(t1)

�
!

= �M!
2
n
hxp+ pxit +

Z
t

0

dt1

 
⌃(t� t1)trS ({pI(t), xI(t1)}⇢SI(t1))

+
i

~D1(t� t1)trS ([pI(t), xI(t1)]⇢SI(t1))

!

(3.53)
At this point, we need to write xI(t) in terms of operators at time t1 using equation 3.12:

xI(t) ⇡ xI(t1) cos(!0(t� t1)) +
pI(t1)

M

sin(!0(t� t1))

!0

pI(t) ⇡ pI(t1) cos(!0(t� t1))�M!0xI(t1) sin(!0(t� t1))

(3.54)

Using them:

dhp
2
it

dt
=

Z
t

0

dt1⌃(t� t1)

✓
cos(!0(t� t1))hxp+ pxit1 � 2M!

2
0

sin(!0(t� t1))

!0
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2
it1

◆

+

Z
t

0

dt1 [D1(t� t1) cos(!0(t� t1))]�M!
2
n
hxp+ pxit

= �M!
2
n
hxp+ pxit +

Z
t

0

dt1

⇥
C(t� t1)hxp+ pxit1 � 2M!

2
0S(t� t1)hx

2
it1

⇤
+ h(t)

(3.55)
This is what we were looking for. Let us briefly discuss about deriving equation 5.20, which is an
expression to find dhp3it

dt
using the BME. We will now need the following commutation relation:

[p3, x] = �3i~p2, [x2
, p

3] = 2i~(xp2 + pxp+ p
2
x) = 3i~(p2x+ xp

2) (3.56)

Doing a similar exercise starting from equation 3.49 as we did above, we obtain:

dhp
3
it

dt
= �

3M!
2
n

2
hxp

2 + p
2
xit +

3

2

Z
t

0

dt1

 
⌃(t� t1)trS

�
{p

2
I
(t), xI(t1)}⇢SI(t1)

�

+
i

~D1(t� t1)trS
�
[p2

I
(t), xI(t1)]⇢SI(t1)

�
!

(3.57)
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We now need to use

p
2
I
(t) ⇡ p

2
I
(t1) cos

2(!0(t� t1)) +M
2
!
2
0x

2
I
(t1) sin

2(!0(t� t1))

�M!0 sin(!0(t� t1)) cos(!0(t� t1))[pIxI + xIpI ](t1)
(3.58)

Using this and simplifying all commutations, we finally get equation 5.20.

3.A.2 Born semi-Markov Master Equation

We will try to get equation 3.36 using equations 3.33 and 3.34. The derivations is along the exact
similar lines as the previous appendix. Nothing changes for dhx2it

dt
and it has same expression. It

will change for hp2it and hxp + pxit. Here, we will just show it for hp2it, the other has a very
similar derivation.

We will start from equation 3.53 with ⇢SI(t1) replaced by ⇢SI(t):

dhp
2
it

dt
= �M!

2
n
hxp+ pxit +

Z
t

0

dt1

 
⌃(t� t1)trS ({pI(t), xI(t1)}⇢SI(t))

+
i

~D1(t� t1)trS ([pI(t), xI(t1)]⇢SI(t))

!

(3.59)
Instead of using equation 3.12, we will here use equation 3.34 to write operators at time t1 in terms
of operators at time t. In particular:

xI(t1) ⇡ xI(t) cos(!0(t� t1))�
pI(t)

M

sin(!0(t� t1))

!0

pI(t1) ⇡ pI(t) cos(!0(t� t1)) +M!0xI(t) sin(!0(t� t1))

(3.60)

Using this:

dhp
2
it

dt
= hxp+ pxit

Z
t

0

dt1⌃(t� t1) cos(!0(t� t1))�
2hp2it
M

Z
t

0

dt1⌃(t� t1)
sin(!0(t� t1))

!0

+

Z
t

0

dt1 [cos(!0(t� t1))D1(t� t1)]�M!
2
n
hxp+ pxit

(3.61)
This is same as equation 3.36. Let us try to look at the expression of dhp3it

dt
using this scheme. If we

do the entire exercise for p3, we will get an equation similar to equation 3.57 with ⇢SI(t) instead
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of ⇢SI(t1):

dhp
3
it

dt
= �

3M!
2
n

2
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2 + p
2
xit +
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2
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t
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dt1
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(3.62)
We just need to write operators at time t1 in terms of operators at time t using same equations 3.12
and simplify to get:

dhp
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it

dt
= �

3M!
2
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2
h{p

2
, x}it + 3hpith(t)

+
3h{p2, x}it
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Z
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0

dt1C(t� t1)�
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M

Z
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0
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(3.63)
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Chapter 4

Comparisons between Both Approaches

In this chapter, we will try to compare the analysis that we did in the previous two chapters. The
comparison of homogeneous parts is due, and we will do that in this chapter. The comparison of
inhomogeneous parts and their conclusions are mostly presented in the previous chapter. However,
we will do some more calculations to understand them and summarise them. So, let us first start
by comparing homogeneous parts.

4.1 Comparing the Homogeneous Parts

We will again observe hx
2
it for comparisons. Let us recall the homogeneous part of hx2

it that we
separated out from all three approaches. The homogeneous parts of hx2

it (recall equations 2.19,
3.20 and 3.41):

Langevin : hx
2
it = ġ

2(t)hx2
i0 +

g
2(t)

M2
hp

2
i0 +

ġ(t)g(t)

M
hxp+ pxi0

BME : hx̃
2
i(z) =

2hp2i0 +Mzhxp+ pxi0 +M [z(Mz � S̃(z)) + 2(M!
2
n
� C̃(z))]hx2

i0

4M!
2
0S̃(z) +Mz2(Mz � S̃(z)) + 4Mz(M!2

n
� C̃(z))

BSMME : hx̃
2
i(z) =

2hp2i0 + [Mz + 2�0 � 2�̃(z)]hxp+ pxi0

(Mz + �0)(4M!
2
0 + z(Mz + 2�0))

+
[2M2

!
2
0 + (Mz + 2�0)(Mz + �0 � 2�̃(z))]hx2

i0

(Mz + �0)(4M!
2
0 + z(Mz + 2�0))

(4.1)
We will take some arbitrary initial conditions. For the master equation case, we again will do
the inverse Laplace transforms numerically. For the Langevin case, we just need corresponding
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g(t). We have plotted all of them in figure 4.1.1 for a bounded particle. Figures 4.1.2 and 4.1.3
shows corresponding figures for a free particle with different parameters. Let us summarise the
conclusions:

• All three approaches agree for all times for the case of a bounded particle.

• For the case of a free particle, exact results and BME results disagree heavily. But, BSMME
results, which we obtained by doing a semi-Markov approximation on top of BME, agree
with the exact results. This behaviour is the same as what we saw even for the inhomoge-
neous part in the previous chapter.

• Let us say that t⇤ is the time at which Born results start deviating from exact results. We
wanted to check if t⇤ increases upon making the inequality � << !p stricter. So, we studied
the free particle case for a different set of parameters in figures 4.1.2 and 4.1.3.

• It seems like t
⇤ doesn’t depend on the strictness of the inequality. For example, increasing

k
0 while keeping other parameters constant doesn’t change t⇤ (figures 4.1.2 and 4.1.3). If we

change �0, then t
⇤ will change since we are changing the relaxation rate. But, it has nothing

to do with the strictness of inequality.
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Figure 4.1.1: Comparison of homogeneous part of

hx
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it from different approaches for a bounded parti-

cle in the limit � << !0 << !p.
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Figure 4.1.2: Comparison of homogeneous part of hx2it from different approaches for a free particle in the

limit � << !p.

There are two puzzles that we are carrying from the previous chapter:

67



0 5 10 15 20 25 30
t

0

25

50

75

100

125

150

175

200

h
x
2
i
t

hx
2
i0 = 1.0, hxp + pxi0 = 2.0, hp2i0 = 3.0

mk= 0.05, k’ = 20, Homogeneous Part

BSMME

Exact Results

BME

0 10 20 30 40 50 60
t

0

100

200

300

400

500

600

h
x
2
i
t

hx
2
i0 = 1.0, hxp + pxi0 = 2.0, hp2i0 = 3.0

mk= 0.005, k’ = 5, Homogeneous Part

BSMME

BME

Exact Results

Figure 4.1.3: Comparison of homogeneous part of hx2it from different approaches for a free particle with

different parameters in the limit � << !0 << !p.

1. Why does BME work fine for a Bounded particle but doesn’t work for a free particle?

2. Why does BSMME work for a free particle but BME doesn’t, given that BSMME has one
extra approximation on top of BME? This kind of “correction” is seen only in the kBT >>

~!p limit. For the zero temperature case, all three approaches deviate. Why?

Answering the second question above will also explain our conclusions about homogeneous parts.

4.2 Free Particle Limit of a Bounded Particle

One answer to the first question above is that a free particle case violates the inequality � <<

!0 << !p. And so, the hypothesis is that the BME works only if the inequality � << !0 << !p is
satisfied. Let us test this hypothesis by studying a bounded particle in the limit !0 << � << !p.
We call it a “free particle limit” since the trap frequency !0 is the smallest energy scale. Putting
!0 = 0 will actually give us the free particle.

4.2.1 Langevin Equation Approach

Equation 2.37 will still be our starting point:

hx
2
it =

2�~!2
p

⇡M

Z 1

0

d!
!

!2 + !2
p

coth

✓
~�!
2

◆
f(!, t) (4.2)
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We will now use the g(t) corresponding to this limit. We found it in the equation 2.12:

g(t) =
2�
⇣
e
�2�t

� e
�(!2

0/2�)t
⌘

!
2
0 � (2�)2

Using this g(t) will yield some complicated f(!, t). Using this f(!, t), we can find exact numerical
results. These results are plotted in figures 4.2.1 and 4.2.2. Let us try to see the long-time results
analytically. We will write f(!, t) in this limit:

f(!, t ! 1) ⇡
4�2(!4

0 � 8�2
!
2
0 + 16�4)

(!2
0 � 4�2)2(!2 + 4�2)(!4

0 + 4�2!2)
(4.3)

Putting this into the equation 4.2 and doing the integral:

1. hx
2
i !

kBT

M!
2
0

(same as weak coupling) for kBT >> ~!p.

2. hx
2
i !

~
M⇡�

ln
⇣

2�
!0

⌘
(not same as weak coupling) for kBT = 0.

The figure 4.2.3 shows the numerical behaviour for small times. It is compared against the results
obtained using the master equation approach.

0 50 100 150 200 250 300 350 400
t

0

2500

5000

7500

10000

12500

15000

17500

h
x
2
i
t

mk=400, k’ = 20000, !0 = 1, T = 10000

Exact Langevin

BME

BSMME

0 20 40 60 80 100 120 140
t

0

2000

4000

6000

8000

10000

h
x
2
i
t

mk=400, k’ = 20000, !0 = 1, T = 10000

Exact Langevin

BSMME

Figure 4.2.1: Comparison of inhomogeneous part of hx2it from different approaches for a bounded particle

in the limit ~!0 << ~� << ~!p << kBT .

4.2.2 Master Equation Approach

In the master equation approach, the results remain the same. We still need to find the inverse
Laplace transform of equations 3.18 and 3.41, but with parameters that satisfy the inequality
!0 << � << !p. These are plotted in figures 4.2.1, 4.2.2 and 4.2.3.
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Let us list down our observations from these comparisons:

1. For the limit kBT >> ~!p, BSMME and exact approaches match for all times (figure 4.2.1).
They might seem a bit different at large times. But, as we increase !p, they will grow closer.

2. Since the BSMME at small times still goes as k0 kBT

4 t
4, we can conclude that even Langevin

results goes as k0 kBT

4 t
4 for small times (see figure 4.2.3).

3. BME agrees to the other two only for very small (figure 4.2.3) and very large times. Inter-
mediary transients from BME are significantly different (figure 4.2.1). In the limit !0 ! 0,
the oscillations from BME will not saturate to KBT

M!
2
0

and hence for the free particle case, it
can only correctly predict small-time results.

4. For zero temperature, three approaches just disagree for all times. For very small times
(figure 4.2.3), BME and BSMME agree (expected), but it is different from the exact results
(it is still of the form [a+ b ln(t)]t4). Saturation results are different in all three approaches,
and BSMME again seems to violate positive semi-definiteness.

• The BME is highly sensitive to the inequality � << !0, so much so that it fails for the
free particle case (where !0 = 0).

• The BSSME is not sensitive to the inequality � << !0 if the inequality ~!p << kBT

is ensured. Otherwise, it will agree to exact results only in the limit � << !0.
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Figure 4.2.3: Comparison of inhomogeneous part of hx2it from different approaches for a bounded particle

as t ! 0 in the limit kBT << ~!0 << ~� << ~!p and ~!0 << ~� << ~!p << kBT .

Let us also compare the homogeneous parts in this limit. We still need to use equation 4.1 to find
the homogeneous parts using various approaches. We use parameters and g(t) corresponding to
this limit. The results are shown in the figure 4.2.4. The comparison shows that all three approaches
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Figure 4.2.4: Comparison of homogeneous part of hx2it from different approaches for a bounded particle

in the limit ~!0 << ~� << ~!p.

disagree for transients. However, it will dampen out to zero for all approaches since it is a trap.
So, at very large time, all of them will agree. But, this will not happen for a free particle. The
other figure shows the behaviour at very small times. Here, BSMME agrees with Langevin for
very small times. However, BME disagrees with both BSMME and exact Langevin at small times.
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4.3 Comparing BME and BSMME using the Ohmic Bath

Let us do an interesting study. When justifying the Markov approximation, i.e. going from equa-
tion 3.23 to equation 3.24b, we argued that since the kernels peak around t = t1 and hence replac-
ing ⇢SI(t1) with ⇢SI(t) is not really an approximation. Now, we know that for an Ohmic bath and
the high-temperature limit, both the kernels ⌃(t) and D1(t) are fully Markovian (see section 1.3.3)
and hence going from equation 3.23 to 3.24a should have no approximation involved. In this limit,
we expect results from BME and BSMME to be exactly the same, right? - Let us check.

4.3.1 BME using the Ohmic bath

After doing the Born approximation, we obtained the following system of equations (equation
3.15):

dhx
2
it

dt
=

hxp+ pxit

M

dhp
2
it

dt
= �M!

2
nhxp+ pxit +

Z
t

0
dt1
⇥
C(t� t1)hxp+ pxit1 � 2M!

2
0S(t� t1)hx

2
it1

⇤

| {z }
I(t)
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� 2M!
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2
it +
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0
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2
it1 + S(t� t1)
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M

�
+

f(t)

M

(4.4)

Let us now simplify this for an Ohmic bath. We will put ⌃(t) = �
d�(t)
dt

= �2�0
d�(t)
dt

directly here.
Let us focus only on terms that depend on ⌃(t). For instance, the term denoted by I(t) above. We
write C(t) and S(t) in terms of ⌃(t) and do a variable change ⌧ = t� t1:
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Z
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0
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(4.5)

72



Substituting this I(t) back in second eqaution of 4.4, we get:

dhp
2
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dt
= �M!
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
2M!
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2
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�
+ h(t)

(4.6)
Similarly, we can simplify the third equation of 4.4:
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� 2M!
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M
(4.7)

Plugging equation 4.7 into equation 4.6, we get the final set of differential equations:
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(4.8)

4.3.2 BSMME using the Ohmic Bath

We had equations 3.36 after doing the Born semi-Markov approximation. Let us use equations
3.38 to simplify them:

dhx
2
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dt
=

hxp+ pxit

M
,

dhp
2
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dt
= �M!

2
0hxp+ pxit �
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(4.9)

Recall that f(t) ⇠
R

t

0 dt1 sin(!0t1)D1(t1). For high temperature and the Ohmic bath, D1(t) ⇠ �(t)

and hence f(t) = 0 in this limit.

When substitute it in equations 4.8 and 4.9 and then compare them, they do not match! For a
bounded particle, we may even assume that !0 >>

�0

M
(weak coupling) and put �

2
0

M2 � !
2
0 ⇠ �!

2
0 .

After doing this, two set of differential equations still differ by a boundary term.

In the case of a free particle, the difference is much more stark as we can’t employ !0 >>
�0

M
.

This extra term brings a very non-trivial difference in results predicted by BME and BSMME.
This analysis suggests further that the results predicted by BME and BSMME can be significantly
different for the case of a free particle.
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Employing Markovian kernels (Ohmic bath and high temperatures) to the BME is
not equivalent to the BSMME.
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Chapter 5

Born-Markov Approximations in the
Langevin Approach

In this chapter, we will formulate a prescription to perform the Born and semi-Markov approxima-
tion in the Langevin formalism. This will help us understand the nature of these approximations
better. In particular, we will get the answer to why the Born semi-Markov approximation worked
at zero temperatures.

For complicated systems, it is very hard to study the dynamics of the exact different-time corre-
lation functions of the system. We often use the Markovian master equation to study them using
something called as the “quantum regression theorem”. Now, the quantum regression theorem has
its own set of difficulties in its application. For example, we can’t apply it to non-Markovian mas-
ter equations. A formulation of Born and Markov approximation in the Langevin formalism can
help study these correlations easily.

We start by recalling the Langevin equation 2.5 for the case of a bounded particle (use equation
2.7):

Mẍ(t) +M!
2
n
x(t) =

Z
t

0

dt1x(t1)⌃(t� t1) + ⌘(t) = B(t) (5.1)

where

⌃(t) =
X

s

C
2
s

⌦s

sin(⌦st), ⌘(t) =
X

s

Cs

r
~

2⌦s

(ei⌦stb
†
s
+ e

�i⌦stbs) (5.2)

We can multiply ⇢S(0) above and then take the trace over the system to obtain:

Mhẋit = hpit, hṗit +M!
2
n
hxit �

Z
t

0

dt1⌃(t� t1)hxit1 = 0 (5.3)
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Remember that we just wrote Heisenberg’s equation of motion to obtain the Langevin equation.
In the same spirit, let us write the Heisenberg’s equation for second moments (recall Hamiltonian
1.2):

ẋ
2(t) =

i

~ [H(t), x2(t)] =
i

~ [HS(t), x
2(t)] =

x(t)p(t) + p(t)x(t)

M
,
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2~ [M!
2
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i
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n
x
2(t) + (x(t)B(t) + B(t)x(t))

(5.4)
Here, B(t) is defined in equation 5.1. We have also used the fact that [x(t), B(t)] = 0 =

[p(t), B(t)]. This is very easy to prove using the following argument: At t = 0, [x(0), Xs(0)] = 0

(they lie in different Hilbert spaces). Now evolve this commutator using the full propagator
U = e

�iHt to immediately see [x(t), Xs(t)] = 0 =) [x(t), B(t)] = 0, where we have used
the fact that B(t) =

P
s
CsXs(t) (equation 2.7). But, if we explicitly write Xs(t) using equation

2.4, it becomes a non-trivial statement:

[x(t), Xs(t)] = 0 =)

Z
t

0

dt1[x(t), x(t1)] sin[⌦s(t� t1)] = 0, 8s (5.5)

This is a non-trivial identity that can be used in the future.

5.1 Born Approximation

Let us now formulate the Born approximation. Equations 5.4 are the exact differential equations
from the Langevin approach. We will apply the Born approximation to it. We will start by solving
for x(t) order by order in k

0 from the exact QLE (equation 5.1):
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2
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0
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0
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Please note from the definition of ⌘(t) and ⌃(t) (equation 1.10) that we can write B(t) = B
(1)(t)+

B
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B
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Keeping this in mind, the Langevin equation to different orders:

Mẍ
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2
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Solving them is easy. The first equation is the standard equation of motion for an oscillator, and
hence the solutions are

x
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The second and third equations are inhomogeneous differential equations. Now, we know the fact
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So, the solutions to next order differential equation are:
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(5.12)

We will now use these expressions of x(t) and p(t) to truncate equations 5.4 to the second order
in the system-bath coupling. We will also make sure that we don’t kill any system-system corre-
lations. Remember that we only killed the system-bath correlations even in the master equation
formalism.

So, let us try the first moments (equation 5.1): it has B(t), which is just bath term and has no
system bath correlations and so we will keep it as it is. First moments:

hẋit =
hpit

M
, hṗit = �M!

2
n
hxit +

Z
t

0

dt1hxit1⌃(t� t1) (5.13)

We can check that this matches with the BME result that we obtained in the equation 3.14. Let us
now turn to the second moments.
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Note that B(2)(t) is not strictly up to the second order. It has x(t), which has terms of all the orders.
Ideally, we should write x

(0)(t) instead of x(t). But, as we shall see that doing this will end up
killing higher-order system-system correlations.

For the second moments we will do the following truncation:

x(t)B(t) ⇡ [x(0)(t) + x
(1)(t)]B(1)(t) + x

(0)
B

(2)(t)

p(t)B(t) ⇡ [p(0)(t) + p
(1)(t)]B(1)(t) + p

(0)
B

(2)(t)
(5.14)

Note that if we had truncated x(t) inside B(t), it would have also killed the higher-order x�x and
x� p correlations in the above equations.

Since we finally want to work with moments, let us take the expectation of x(t)B(t) + B(t)x(t)

and p(t)B(t) + B(t)p(t) and truncate it as prescribed above (see appendix 5.A.1):
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Using this, finally equation 5.4 becomes:
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(5.16)

with

C(t) = ⌃(t) cos(!0t), S(t) = ⌃(t)
sin(!0t)

!0

h(t) =

Z
t

0

d⌧ cos(!0⌧)D1(⌧), f(t) =

Z
t

0

d⌧
sin(!0⌧)

!0
D1(⌧)

This is exactly the same as the equation 3.15 which we obtained from the Born ME approach.
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5.2 semi-Markov Approximation

This approximation is exactly the same as what we did in the master equation approach. The only
difference would be that in the master equation approach, we did it on the master equation. Here,
we will do it on the differential equation governing the dynamics of various moments.

Let hAit is the expectation value of any system operator. Then, it can be written as hAit =

tr(AI(t1)⇢SI(t1)) in the interaction picture.

semi-Markov approximation: tr(AI(t1)⇢SI(t1)) ! tr(AI(t1)⇢SI(t)) for any system operator A.

Intuitively, we might think that this has to work since it is exactly same as what we do in the master
equation approach. But, let us show it explicitly for the first and second moments. We will need
the following transformation (equation 3.34):

xI(t1) = xI(t) cos(!0(t� t1))�
pI(t)

M

sin(!0(t� t1))

!0
,

pI(t1) = pI(t) cos(!0(t� t1)) +M!0xI(t) sin(!0(t� t1))

(5.17)

First Moments: Do tr(AI(t1)⇢SI(t1)) ! tr(AI(t1)⇢SI(t)) on the RHS of equation 5.13 (which
we obtained after doing the Born approximation) and then use equation 5.17 to finally get (refer to
appendix 5.A.2):
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Second Moments: Do tr(AI(t1)⇢SI(t1)) ! tr(AI(t1)⇢SI(t)) on the RHS of equation 5.16 and
then use equation 5.17 to finally get (refer to appendix 5.A.2):
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(5.19)
Both first and second moments are exactly similar to what we obtained from the BSMME (see
equations 3.35 and 3.36).
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5.2.1 Why BSMME Worked for Zero Temperatures?

To understand it, we will need to seek a justification of changing ⇢SI(t1) ! ⇢SI(t). The
argument is along the same lines as we did in the master equation case in the section 3.2.1.
If we closely look at equations on which we performed the semi-Markov approximation, i.e.
equation 5.16, we find that typical terms on which we did the semi-Markov approximation
are of the form: Z

t

0

dt1C(t� t1)hAit1 and
Z

t

0

dt1S(t� t1)hAit1

Both C(t) and S(t) has only the dissipation kernel ⌃(t), which has a frequency scale of
!p associated with it. So, justifying the approximation in a way similar to section 3.2.1
will require us to ensure � << !p. We will not be required to ensure the other condition
� << ⌫1, which we needed while doing this approximation on the master equation. ⌫1

was the temperature-dependent timescale that we required in the comparison. This explains
why BSMME could explain the correct dynamics of the second moments even for zero
temperature for the case of a bounded particle.

Temperature-dependent timescale is not relevant for the first two moments. However, we will be
required to satisfy that inequality (� << ⌫1) for higher moments. For example, we will check
hp

3
it.

From BME: Use the equation 3.13 to obtain (see appendix 3.A.1):
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(5.20)
Now, there are also terms which have moments convoluted with the noise kernel, D1(t). So, while
doing tr(AI(t1)⇢SI(t1)) ! tr(AI(t1)⇢SI(t)) here, we will also be needed to ensure � << ⌫1

alongside � << !p. Doing the approximation and simplifying, we get (the procedure is same as
given in appendix 5.A.2):
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3M!
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(5.21)
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We can obtain this moment from BSMME, i.e. using the equation 3.33 (refer to appendix 3.A.2).
That (equation 3.63) is exactly the same as equation 5.21. This gives us confidence that our for-
mulation of Born and semi-Markov approximation is also valid for higher moments‘.

5.3 Summary Table

Let us summarise our understanding of this chapter. Let the bath correlation timescale ⌧B =

max{ 1
!p

,
1
⌫1
} and the system relaxation timescale ⌧R = 1

�
. For equations that governs the dynamics

of moments:

Match
Born LE

5.13, 5.16
Born ME

3.14, 3.15, 5.20

O(k02) truncation

Exact LE
5.1, 5.4

Match
(exact moment equations

from different pictures)

Exact ME
5.1, 5.4

⇢(t) ⇡ ⇢S(t)⌦ ⇢B(t)

⇢(t) ⇡ ⇢S(t)⌦ ⇢B(t)

⇢SI(t1) ! ⇢SI(t)

(can be done if ⌧B << ⌧R)

⇢SI(t1) ! ⇢SI(t)

(can be done if ⌧B << ⌧R
1).

Born semi-Markov LE
5.18, 5.19, 5.21

Match
Born semi-Markov ME

3.35, 3.36, 5.21

1up to second order, thermal time scale in ⌧B is irrelevant
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Appendix

5.A Detailed Calculations

5.A.1 Truncating the Moment Equations

We want to arrive at the equation 5.15 from the equation 5.14 using equations 5.7, 5.9 and 5.12.
Let us rewrite these equations here:

B
(1)(t) = ⌘(t), B

(2)(t) =

Z
t

0

dt1x(t1)⌃(t� t1) (5.22)

x
(0)(t) = x(0) cos(!0t)+

p(0)

M

sin(!0t)

!0
, x

(1)(t) =
1

M!0

Z
t

0

dt1 sin(!0(t�t1))[⌘(t1)�k
0
x
(0)(t1)]

(5.23)
We want to simplify hxB +Bxit using x(t)B(t) ⇡ [x(0)(t) + x

(1)(t)]B(1)(t) + x
(0)
B

(2)(t). Let us
do it term by term:

hx
(0)
B

(1) +B
(1)
x
(0)
it = 2hx(0)

ith⌘it = 0

hx
(1)
B

(1) +B
(1)
x
(1)
it =

1

M!0

Z
t

0

dt1 sin(!0(t� t1))[h{⌘(t1), ⌘(t)}i � 2k0
hx

(0)
it1h⌘it]

=
1

M!0

Z
t

0

dt1 sin(!0(t� t1))D1(t� t1)

hx
(0)
B

(2) +B
(2)
x
(0)
it =

Z
t

0

dt1⌃(t� t1)hx(t1)x
(0)(t) + x

(0)(t)x(t1)i

=

Z
t

0

dt1⌃(t� t1)


2hx2

it1 cos(!0(t� t1)) +
hxp+ pxit1 sin(!0(t� t1))

M!0

�

(5.24)
where in the last line, I have used x

(0)(t) = x(t1) cos(!0(t� t1)) +
p(t1)
M

sin(!0(t�t1))
!0

, which follows
directly from equation 5.9. We have also used the fact that h⌘it = 0. Adding three contributions,
we get equation 5.15. Truncation of hpB + Bpit is exactly similar and hence we will not show it
here.
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5.A.2 Born semi-Markov: Langevin Approach

We will get equations 5.18 and 5.19. Let us start with first moments. Changing ⇢SI(t1) to ⇢SI(t)

in equation 5.13 and then using equation 5.17:

hṗit = �M!
2
n
hxit +

Z
t

0

dt1trS (xI(t1)⇢SI(t))⌃(t� t1)

hṗit = �M!
2
n
hxit + hxit

Z
t

0

dt1⌃(t� t1) cos(!0(t� t1))�
hpit

M

Z
t

0

dt1⌃(t� t1)
sin(!0(t� t1))

!0

= �M!
2
n
hxit + hxit

Z
t

0

dt1C(t� t1)�
hpit

M

Z
t

0

dt1S(t� t1)

(5.25)
hẋit has no t1 and hence we are done with first moments. Similarly, the expression for hẋ2

i too
won’t change. For the rest of second moments, we will need the following equations which can be
easily obtained from equation 5.17:

x
2
I(t1) = x

2
I(t) cos

2(!0(t� t1)) + p
2
I(t)

sin2(!0(t� t1))

(M!0)2
� [xp+ px]I(t)

sin(2!0(t� t1))

2M!0

p
2
I(t1) = p

2
I(t) cos

2(!0(t� t1)) + x
2
I(t)(M!0 sin(!0(t� t1)))

2 + [xp+ px]I(t)
M!0 sin(2!0(t� t1))

2

[xp+ px]I(t1) = [xp+ px]I(t) cos(2!0(t� t1)) +M!0x
2
I(t) sin(2!0(t� t1))� p

2
I(t)

sin(2!0(t� t1))

M!0
(5.26)

We will demonstrate the calculation only for hp2it. Corresponding calculation for hxp + pxit is
very similar. Changing ⇢SI(t1) to ⇢SI(t) in equation 5.16, we get:

dhp
2
it

dt
= �M!

2
n
hxp+ pxit + h(t)

+

Z
t

0

dt1


C(t� t1)tr ([xp+ px]I(t1)⇢SI(t))� 2M!

2
0S(t� t1)tr

�
x
2
I
(t1)⇢SI(t)

�
| {z }

�

(5.27)

For the ease of calculations, let us develop the following short-hand notations:

cos(!0(t� t1)) ⌘ c, sin(!0(t� t1)) ⌘ s, ⌃(t� t1) ⌘ ⌃ (5.28)

where A is any operator. Let us just focus on the underbraced part in the equation 5.27 (use
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equation 5.26):

LHS = tr ([xp+ px]I(t1)⇢SI(t))⌃c� 2M!0tr
�
x
2
I
(t1)⇢SI(t)

�
⌃s

= ⌃c

✓
hxp+ pxit(c

2
� s

2) + 2M!0schx
2
it � hp

2
it

2sc

M!0

◆

� 2M!0⌃s

✓
hx

2
itc

2 + hp
2
it

s
2

(M!0)2
� hxp+ pxit

sc

M!0

◆

= hxp+ pxit

�
⌃c(c2 � s

2) + 2⌃s2c
�
+ hx

2
it

�
2M!0⌃sc

2
� 2M!0⌃sc

2
�

� hp
2
it

✓
2⌃sc2

M!0
+

2⌃s3

M!0

◆

= hxp+ pxit (⌃c)�
2hp2it
M

✓
⌃s

!0

◆

⌘ hxp+ pxitC(t� t1)�
2hp2it
M

S(t� t1)

(5.29)

Putting this back into equation 5.27:

dhp
2
it

dt
= �M!

2
n
hxp+ pxit + hxp+ pxit

Z
t

0

d⌧C(⌧)�
2hp2it
M

Z
t

0

d⌧S(⌧) + h(t) (5.30)

which is exactly the same as equation 5.19.
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Conclusions and Future Plans

In this thesis, we studied a quantum Brownian particle attached to a Rubin bath using various
formalisms of open quantum systems, namely the quantum Langevin approach, the Born master
equation and the Born-Markov master equation. We compared three approaches and understood
the regimes of validity of both master equations. The regimes that we define are in terms of various
frequency scales involved in the problem. Let us list them down:

1. � =
p
mk

2M . m is the mass of bath oscillators, and k is the inter-bath coupling. M is the mass
of the system oscillator (see figure 1.1). The system reaches equilibrium with a timescale
1/�.

2. !0: The trap frequency, i.e. the external potential on the system is 1
2M!

2
0x

2.

3. !p = k
0

p
mk

: Drude cutoff in the Drude spectral density (equation 1.5). It determines the
timescale with which bath correlation functions decay.

4. kBT : The temperature of the bath. It also determines a time scale with which bath correlation
functions decay.

A list of important conclusions:

• A Langevin equation is typically written in terms of a dissipation kernel. One needs to be
careful about an algebraic subtlety involved while writing the same equation in terms of a
damping kernel, as discussed in the section 2.1.1.

• If there is no external potential, then we observe four distinct behaviours in hx
2
it of the

system in the following order (increasing in time): 1. An initial t4 growth, 2. A polynomial
growth ⇠ t

2 (ballistic), 3. A subdiffusive logarithmic growth ⇠ ln(t), and finally 4. A
diffusive growth ⇠ t. The times at which such crossover occurs seem to depend on various
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frequency scales involved in the system. However, further investigation needs to be done in
order to establish a concrete mathematical statement.

• Behaviour of hx2
it at any finite temperature matches to the zero temperature behaviour up

to some crossover time t
⇤.

• In the formalism of open quantum systems, one should define the weak coupling limit by
studying the spectral density and not by merely looking at the interaction Hamiltonian.

• In the literature, the Markovian approximation is done in two steps: 1. Replacing ⇢SI(t1)

to ⇢SI(t) in the Born master equation 3.23, and 2. Making the upper limit of the integral
t ! 1 in the same equation. We find that doing only the first step suffices the Markovian
approximation. In fact, doing the second step leads to the incorrect prediction of transients
even in the limits where the Markovian approximation is supposed to work. Hence, we
have only done the first step in our study and called it a “semi-Markov approximation” to
distinguish it from the traditional Markovian approximation.

• Using an Ohmic bath as a Markovian bath can be pathological, i.e. it can lead to ultraviolet
divergences. Our study suggests that a Drude bath with a large cutoff can be safely used as
a Markovian bath.

We will now summarise our conclusions from the comparisons.

• The dynamics of the first moments is totally unaffected by the Born approximation. Discus-
sions in the upcoming bulletin points will be about the second moments, particularly hx

2
it.

• Both the BME and BSMME works exactly for all temperature and all times for a bounded
particle in the weak coupling limit � << !0 << !p. As discussed in the section 5.2.1, the
BSMME can work for zero temperature given we satisfy the inequality � << !0 << !p.

• Irrespective of the temperature, the BME works only for very small times for a free particle
even in the weak coupling limit � << !p. On the contrary, the BSMME—which is obtained
by doing an extra approximation on the BME—works for all times for a free particle if we
satisfy ~� << ~!p << KBT . However, if the temperature decreases, the BSMME works
only for very small times.

• To understand the free particle results, we study the bounded particle in the limit !0 <<

� << !p. This suggests that the inequality � << !0 << !p is a must for the BME to work.
However, BSMME can work even if we satisfy the inequality kBT >> ~!p even if violate
the inequality � << !0.
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• Employing Markovian kernels (Ohmic bath and high temperatures) to the BME is not equiv-
alent to the BSMME.

• It is possible to formulate the Born and Markov approximations in the Langevin equation
formalism as shown in the chapter 5. This helped us identify that the BSMME can work
for second moments even for the zero-temperature limit if we ensure an inequality � <<

!0 << !p.

We will summarise all our comparisons in the form of a table.

Bounded Particle: � << !0 << !p

Time
BME BSMME

Inhomogeneous Part Homogeneous Inhomogeneous Part Homogeneous
T ! 0 T ! 1 Part T ! 0 T ! 1 Part

t ! 0 X X X X X X
Finite t X X X X X X
t ! 1 X X X X X X

Bounded Particle: !0 << � << !p

Time
BME BSMME

Inhomogeneous Part Homogeneous Inhomogeneous Part Homogeneous
T ! 0 T ! 1 Part T ! 0 T ! 1 Part

t ! 0 5 X 5 6 X X
Finite t 5 5 5 6 X 6

t ! 1 5 X X 6 X X
Free Particle: � << !p

Time
BME BSMME

Inhomogeneous Part Homogeneous Inhomogeneous Part Homogeneous
T ! 0 T ! 1 Part T ! 0 T ! 1 Part

t ! 0 X X X X X X
Finite t 5 5 5 6 X X
t ! 1 5 5 5 6 X X

Table 5.1.1: Summary of our results. The comparison is based on the behaviour of second moments. In

particular, hx2it.

These are the conventions to understand the table:

1. A tick ‘X’ means that the result agrees with the exact Langevin approach.
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2. A tick ‘5’ means that the result does not agree with the exact Langevin approach.

3. A tick ‘6’ will only be in the BSMME section. It means that the BSMME result disagrees
with both exact Langevin and BME. If both BME and BSMME have a ‘5’ , then both are
the same but disagree with the exact approach.

Future Directions

In this project, there are a couple of results that we have not adequately understood. For example,
why does doing a semi-Markov on top of the Born approximation make the BME to work for the
high-temperature limit? We need to do further work to understand these puzzles. We also want to
study different systems in a similar fashion to see the generalisability of our results. Currently, we
are working on verifying our results on a different system. I will briefly describe the system in this
section.

We take an empty open-ended tight-binding chain of NS sites of Bosons/Fermions as a system.
ai is the annihilation operator of ith site. We connect the m

th site of this chain to the first site of
a semi-infinite tight-binding chain equilibrated temperature � and chemical potential µ. bi is the
annihilation operators of ith bath site. The Hamiltonian setup is

HS = g

NS�1X

i=1

⇣
a
†
i
ai+1 + a

†
i+1ai

⌘
, HB = tB

1X

i=1

⇣
b
†
i
bi+1 + b

†
i+1bi

⌘
, ĤI = ✏�1

⇣
a
†
m
b1 + b

†
1am

⌘

(5.31)
We try to study the dynamics of injection of particles, i.e. N(t) =

P
i
ha

†
i
aiit with time. We also

study the spread of the density profile (plots of ni = ha
†
i
aiit with site index i) with time t. We are

doing this study using the following different approaches:

1. Exact Numerics.

2. Steady-state Langevin equation approach.

3. The Born Master Equation.

4. The Born semi-Markov Master Equation.

5. The Lindblad Master Equation.

Finally, we will compare the results obtained from all these approaches. Hopefully, this will enrich
our understanding of the regimes of validity of master equations further.
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