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Abstract

The major text of this thesis is studying Poincaré-Hardy and Hardy-Rellich

type inequalities on one of the most discussed Cartan-Hadamard manifold

namely hyperbolic space and studying eigenvalue problems for second-order

elliptic PDEs. The thesis is divided into two parts. In the first part we have

centralized our attention on the following three problems:

• On some strong Poincaré inequalities on Riemannian models and their

improvements.

• On higher order Poincaré inequalities with radial derivatives and Hardy

improvements on the hyperbolic space.

• Hardy-Rellich and second order Poincaré identities on the hyperbolic

space via Bessel pairs.

In the second part we have focused our essence on the following two

problems:

• Generalized principal eigenvalues of convex nonlinear elliptic operators

in RN .

• On ergodic control problem for viscous Hamilton-Jacobi equations for

weakly coupled elliptic systems.
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Part I

Study of Poincaré-Hardy type

inequalities

1





Chapter 1

Poincaré-Hardy type

inequalities

Geometrical inequalities play a significant contribution in the study of func-

tion spaces and related partial differential equations (PDEs). Starting from

the notes of David Hilbert [68] in 1906, the Hardy inequality has become a

very fascinating branch of mathematics, in particular in functional inequality

(see [82] for the prehistory of Hardy inequality). Apart from this, Poincaré

and Rellich inequalities have also been played a crucial role in analysis and

related branches. For many decades these inequalities were studied in great

generality in Euclidean domains but its generalization to the Riemannian

manifolds was provoked after the historical work of Carron [48] and become

a popular area of research. However, in the past few decades, one of the main

goals of nurturing these inequalities is finding the optimal version of the in-

equality and their improvements with positive L2-type remainder terms.

The main contribution in this thesis lies in developing higher order

Poincaré type inequalities and its improvements on the hyperbolic space and

in some cases on model manifolds, under appropriate curvature assumptions.

We also deal with higher order Poincaré inequalities with radial derivatives

3



CHAPTER 1. INTRODUCTION TO PART I

and we study a family of Hardy-Rellich identities involving radial derivative

possibly with optimal constants in many cases. In this introduction, we shall

briefly explain the main questions and results obtained in my doctoral stud-

ies. Moreover, all the details are covered in Chapters 3, 4, and 5 corresponds

to the material obtained in the papers [29], [112], and [30] respectively.

1.1 Known literature based on inequalities

The main goal of this thesis is to study different types of functional in-

equalities and their improvements on the negative sectional curvature sym-

metric manifolds, in particular on the hyperbolic space. Let (M, g) be a

Cartan-Hadamard manifold with dimension N (namely, a manifold which is

complete, simply connected, and has everywhere non-positive sectional cur-

vature). In addition, suppose Cartan-Hadamard manifolds whose sectional

curvatures are bounded above by a strictly negative constant, then M is

known to admit a Poincaré inequality which reads as follows, there exists

Λ > 0 such that

�
M

|∇gu|2 dvg ≥ Λ
�
M

|u|2 dvg for all u ∈ C∞
c (M), (1.1.1)

where ∇g and dvg define the Riemannian gradient and volume element in

(M, g).

Let HN be the N -dimensional hyperbolic space which is one of the most

discussed Cartan-Hadamard manifolds. Indeed it enjoys all the properties

namely it is complete, simply connected, and has constant negative curvature.

Now for the space HN , (1.1.1) holds true and Λ turns out to be
(
N−1

2

)2
and

moreover
(
N−1

2

)2
coincides with the bottom of spectrum of the Laplace-

Beltrami operator on HN . To be precise consider λ1(HN) denote the bottom

4



1.1. Known literature based on inequalities

of the spectrum of ∆HN which is explicitly given by

λ1(HN) = inf
u∈C∞

c (HN )\{0}

�
HN |∇HNu|2 dvHN�

HN u2 dvHN

=
(
N − 1

2

)2
. (1.1.2)

Analogous to (1.1.1), higher-order Poincaré inequality involving higher-

order derivatives also holds in HN . In this context, a worthy reference on

this inequality is [76, Lemma 2.4] where it has been shown that for k and l

be non-negative integers with 0 ≤ l < k there holds
�
HN

|∇k
HNu|2 dvHN ≥

(
N − 1

2

)2(k−l) �
HN

|∇l
HNu|2 dvHN , (1.1.3)

for all u ∈ W k,2(HN), where

∇k
HN :=


∆k/2

HN if k is even integer,

∇HN ∆(k−1)/2
HN if k is odd integer.

Also ∆k
HN denotes the k-th iterated Laplace-Beltrami operator and ∇HN rep-

resents the Riemannian gradient in HN . By constructing a minimizing se-

quence one can show the above constant in (1.1.3) is sharp (see [100]). Also

it is worth to mention that the following infimum is not achieved

inf
u∈W k,2(HN )\{0}

�
HN |∇k

HNu|2 dvHN�
HN |∇l

HNu|2 dvHN

=
(
N − 1

2

)2(k−l)

.

This marks an important step in the development of a comprehensive study

of inequality (1.1.3) related to its improvement. We refer to [2,26,27,93,101]

for more details.

Recently, there has been a constant effort to improve the Poincaré in-

equality in terms of adding possibly optimal Hardy weights, i.e. adding on

the r.h.s. a term of the form
�
M
W u2 dvg with W ≥ 0 “as large as pos-

sible”, see [53] for a general treatment of Hardy weights for second-order

5



CHAPTER 1. INTRODUCTION TO PART I

elliptic operators. Starting from the works of [2] and [27], where a Poincaré-

Hardy inequality was shown with sharp constants, further generalisation to

p-Laplacian and higher-order case have been obtained in [25] and [26], respec-

tively. We also refer to [28] for more general improvements and the study

of extremals. The kind of weights obtained in these papers, which are sin-

gular at a fixed point of M , makes this subject a sort of lateral branch of

that very rich field of research originated from the seminal papers [41, 42],

which dealt with possible improvements (not only of L2 type) of the classical

Hardy inequality on bounded euclidean domains or on curved spaces, see

e.g. [1, 16–18,51,52,59,62,63,77–79,81,94,117,119] and reference therein.

Furthermore, Carron [48] derived the classical Hardy inequality on Rie-

mannian manifolds which open up new directions in the study of Hardy

inequality on non-trivial geometry. The classical Hardy inequality (see [48]

for details) on Riemannian manifolds (M, g) reads as for N ≥ 3, there holds
�
M

|∇gu|2 dvg ≥
(
N − 2

2

)2 �
M

u2

r2 dvg (1.1.4)

for all u ∈ C∞
c (M), where manifolds satisfy a geometric condition ∆gr ≥

(N−1)
r

. Here r = ϱ(x, xo) denotes the geodesic distance between a point x

and a fixed pole xo in M and ∆g denotes the Laplace-Beltrami operator on

the Riemannian manifold (M, g). In recent days, a large part of the works

dealt with an improvement of the above inequality with optimal Hardy type

remainder terms. Among all the recent work in these directions, we are

bringing up only a few of them [39, 40, 51, 77, 78, 90, 95, 98, 119] without a

claim of completeness.

Drawing primary motivation from the above discussion regarding im-

provement of Hardy inequalities with L2 reminder term, now one can talk

about the improvement of (1.1.1) on HN , by means of a Hardy-type improve-

ment. This has been considered in [27, Theorem 2.1] related to improvement

6



1.1. Known literature based on inequalities

of (1.1.3) in the case k = 1 and l = 0 with Hardy-type remainder terms

which says for N ≥ 3 there holds
�
HN

|∇HNu|2 dvHN ≥
(
N − 1

2

)2 �
HN

u2 dvHN

+ 1
4

�
HN

u2

r2 dvHN + (N − 1)(N − 3)
4

�
HN

u2

sinh2 r
dvHN , (1.1.5)

for u ∈ C∞
c (HN \ {xo}). Also note that both constants

(
N−1

2

)2
and 1

4 in

(1.1.5) are sharp in a suitable sense.

In view of the work [102], where a similar question has been recently

posed in the context of Hardy inequalities, one may wonder whether inequal-

ity (1.1.5) still holds if we replace |∇HNu|2 with its radial part |∇r,HNu|2.

Here “∇r,HNu” represents the radial part of the gradient in HN and more

details will be given in subsequent chapter. Since, by Gauss’s lemma one has

|∇HNu|2 ≥ |∇r,HNu|2, and by this we will present our first result regarding

stronger version of Poincaré-Hardy inequality (1.1.5) (see Subsection 1.2.1).

We want to mention that our result is true for model manifold too.

Now, in view of (1.1.3) and for what previously discussed in the first-order

case, it is natural to think about possible extensions of (1.1.3) to the second-

order case i.e., k = 2 and l = 0. In this respect the following inequality

from [102, Theorem 5.2] turns out to be meaningful:
�
HN

(∆HNu)2 dvHN ≥
�
HN

(∆r,HNu)2 dvHN (1.1.6)

for all u ∈ C∞
c (HN) with N ≥ 5, where “∆r,HN ” denotes the radial part of the

Laplace-Beltrami operator ∆HN on HN , see Chapter 2 for details. Clearly,

inequality (1.1.6) suggests a possible stronger version of the second-order case

and which might involve the operator ∆r,HN . We obtain a positive response

to this question and see Subsection 1.2.1 and Chapter 3 for details.

We continue this discussion by mentioning that for the improvement of

second-order Poincaré inequality the following result has been obtained in [27,

7



CHAPTER 1. INTRODUCTION TO PART I

Theorem 3.1]. For all u ∈ C∞
c (HN) with N ≥ 5 there holds�

HN

(∆HNu)2 dvHN ≥
(
N − 1

2

)4 �
HN

u2 dvHN

+ 9
16

�
HN

u2

r4 dvHN + (N − 1)2

8

�
HN

u2

r2 dvHN , (1.1.7)

where the constant (N−1)2

8 was proved to be sharp. There was an open con-

jecture that the constant 9
16 in front of 1

r4 would be a sharp constant. We

derive another improved version of the above inequality (1.1.7) with constant
(N−4)2

16 instead of 9
16 in front of 1

r4 . Eventually, this turns out that the conjec-

ture becomes false for N ≥ 8. Also, we mention that, unfortunately, neither

(1.1.7) nor our version of the inequality solves the problem of sharpness of

the constant in front of 1
r4 which is still open.

All the above discussions mainly focus on sharper version and improve-

ment of (1.1.3), at least for the cases k = 1, l = 0 and k = 2, l = 0 in terms

of the radial derivatives. So naturally one can ask whether an inequality of

type (1.1.3) involving, only higher-order radial derivatives holds true. Indeed

the answer is affirmative and we obtain a similar result like (1.1.3), only in-

volving radial derivatives keeping the sharpness of the constant intact (see

Subsection 1.2.2 and Chapter 4 for details).

It is interesting to discuss the improvement of the higher order Poincaré

inequality (1.1.3). Recently it has been developed in [26, Theorem 2.1] which

reads as for integer k, l with 0 ≤ l < k and N > 2k, then there exist k positive

constants αjk,l = αjk,l(N) such that following inequality holds
�
HN

|∇k
HNu|2 dvHN ≥

(
N − 1

2

)2(k−l) �
HN

|∇l
HNu|2 dvHN + α1

k,l

�
HN

u2

r2 dvHN

+
k−1∑
j=2

αjk,l

�
HN

u2

r2j dvHN + αkk,l

�
HN

u2

r2k dvHN . (1.1.8)

Also, note that α1
k,l and αkk,l signify the coefficient for the leading term as

r → 0 and r → ∞. In the same spirit, we obtain the improvement of higher-

order radial Poincaré inequality in terms of Hardy-type remainder terms.

8



1.1. Known literature based on inequalities

Surely it is not at all a straightforward generalization of the above. We need

to devise all together a new strategy to obtain our desired results.

The next part of our work takes its origin from the following family of

Hardy-Poincaré inequalities recently proved in [28]: for all N − 2 ≤ λ ≤

λ1(HN) and all u ∈ C∞
c (HN \ {xo}) there holds

�
HN

|∇HNu|2 dvHN ≥ λ

�
HN

u2 dvHN + h2
N(λ)

�
HN

u2

r2 dvHN

+
[(
N − 2

2

)2
− h2

N(λ)
] �

HN

u2

sinh2 r
dvHN

+ γN(λ)hN(λ)
�
HN

r coth r − 1
r2 u2 dvHN (1.1.9)

where γN(λ) :=
√

(N − 1)2 − 4λ, and hN(λ) := γN (λ)+1
2 . The interest of

(1.1.9) relies on the fact that it provides in a single inequality, proved by

means of a unified approach, an optimal improvement (in the sense of adding

non-negative terms in the right side of the inequality) of the Poincaré inequal-

ity (1.1.2) and an optimal improvement of the Hardy inequality. Indeed, for

λ = λ1(HN) (γN = 0) inequality (1.1.9) becomes the improved Poincaré in-

equality (1.1.5) and for λ = N−2 (γN = N−3) (1.1.9) becomes the improved

Hardy inequality:
�
HN

|∇HNu|2 dvHN ≥
(
N − 2

2

)2 �
HN

u2

r2 dvHN + (N − 2)
�
HN

u2 dvHN

+ (N − 2)(N − 3)
2

�
HN

r coth r − 1
r2 u2 dvHN , (1.1.10)

for all u ∈ C∞
c (HN \ {xo}) with N ≥ 3. This is the right place to address the

connection between inequalities and the quadratic form of an operator. By

this, we will obtain further directions to study the above inequality (1.1.9).

Let P be a second-order non-negative elliptic operator with real coefficients

which is defined on M and let q be the associated quadratic form defined

on C∞
c (M). A Hardy-type inequality with a weight V ≥ 0 has the form

9



CHAPTER 1. INTRODUCTION TO PART I

P − V ≥ 0, namely for all u ∈ C∞
c (M), there holds

< Pu, u >:= q(u) ≥
�
M

V u2 dvg. (1.1.11)

A non-negative operator P − V is called critical in M , i.e., V is an optimal

Hardy weight for P , if inequality P − V ≥ 0 cannot be improved, i.e., the

above inequality is not true when V is replaced by W ≥ V and W ̸= V .

We are interested to study optimal Hardy weight for the operator P :=

−∆HN − (N−1)2

4 . Due to [27, Theorem 2.1] and (1.1.5), we found that the

operator H := P − 1
4r2 − (N−1)(N−3)

4
1

sinh2 r
is critical in HN \ {xo}. Now one

can ask whether we have a family of optimal Poincaré-Hardy for the operator

Pλ with 0 ≤ λ ≤ (N−1)2

4 where Pλ := −∆HN − λ. Now denoted with Vλ the

positive potential at the r.h.s. of (1.1.9), it has been established in [28] that

the operator −∆HN −Vλ(r) is critical. In other words we found the answer is

affirmative for N −2 ≤ λ ≤ (N−1)2

4 . From (1.1.5) and (1.1.10), it is clear that

Poincaré and Hardy inequalities are well studied for the case λ = λ1(HN).

This has been done using some Criticality theory arguments and Liouville

type estimates (see [7, 28, 107]). Inspired by these, we can ask whether the

above is true for the higher-order cases. Precisely we are interested to study

the family of optimal inequality for the higher-order Rellich type operator

Pλ := ∆2
HN + λ∆HN with 0 ≤ λ ≤ (N−1)2

4 . Unfortunately here we can not

apply Criticality theory or Liouville type estimate for the higher-order cases

and so we need to build a completely new setup for studying these types of

operators.

We notice that (1.1.9) was proved by means of a unified approach based on

criticality theory, well established for second-order operators only (see [53]),

together with the exploitation of a family of explicit radial solutions to the

associated equations. Therefore a similar approach seems not applicable in

the higher-order case. Here, drawing primary motivation from the seminal

10



1.2. Brief description of the obtained results

paper [63], we extend (1.1.9) to the second-order by using the notion of

Bessel pair. This notion has been very recently developed in [60] on Cartan-

Hadamard manifolds to establish several interesting Hardy identities and

inequalities which, in particular, generalize many well-known Hardy inequal-

ities on Cartan-Hadamard manifolds. By combining some ideas from [60,63],

and through delicate computations with spherical harmonics, in the present

book, we develop the method of Bessel pairs to derive general abstract Rellich

inequalities and identities on HN . We get either Poincaré and Hardy-Rellich

identities or improved inequalities, by means of a unified way where the key

ingredient is the clever construction of a family of Bessel pairs (see Chap-

ter 5 for details). Finally, as a few applications of the obtained inequalities,

we derive quantitative versions of the second-order Heisenberg-Pauli-Weyl

uncertainty principle. As far as our known literature, the results provided

represent the first examples of the second-order Heisenberg-Pauli-Weyl un-

certainty principle in the Hyperbolic context.

1.2 Brief description of the obtained results

Here we will discuss the brief description of the problems and obtained results

of the first part of the thesis.

1.2.1 Problem 1

In Chapter 3, we have studied a stronger version of sharp Poincarè-Hardy

inequality on the hyperbolic space. The optimality issue of the constant has

been delicately tackled by constructing minimizing sequence. Additionally,

we find a new improvement of the second-order Rellich-Poincarè inequality

on the hyperbolic space. Also, we presented such inequality holds true for

some model manifolds with suitable curvature assumptions. Indeed, we prove

11
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that the following stronger version of (1.1.5) holds
�
HN

|∇r,HNu|2 dvHN ≥
(
N − 1

2

)2 �
HN

u2 dvHN

+ 1
4

�
HN

u2

r2 dvHN + (N − 1)(N − 3)
4

�
HN

u2

sinh2 r
dvHN , (1.2.1)

for all u ∈ C∞
c (HN) and N ≥ 3. Clearly, (1.2.1) reproves inequality (1.1.5)

but we derive it by using a different technique: here the main tool exploited is

the spherical harmonics decomposition technique, while the proof of (1.1.5)

was based on finding a ground state and on criticality theory, see [27, The-

orem 2.1]. Furthermore, we argue quite differently also in proving the op-

timality of the constants appearing in (1.2.1). Notice that the sharpness of

all constants in (1.2.1) can be derived by combining Gauss’s lemma with

the sharpness of the corresponding constants in (1.1.5). Nevertheless, in this

thesis, we provide an alternative and more direct proof of the sharpness of

the dominating term at infinity of (1.2.1), namely of the constant 1
4 , which

is based on the delicate construction of a suitable minimizing sequence. This

argument may have its own interest in the study of related partial differential

equations, furthermore, it can be carried over to more general Riemannian

models having negative sectional curvatures bounded above (see Chapter 3

for details).

Motivated by this, we prove the following improved Poincarè type in-

equality:
�
HN

(∆r,HNu)2 dvHN ≥
(
N − 1

2

)2 �
HN

|∇r,HNu|2 dvHN

+ 1
4

�
HN

|∇r,HNu|2

r2 dvHN + (N2 − 1)
4

�
HN

|∇r,HNu|2

sinh2 r
dvHN , (1.2.2)

for all u ∈ C∞
c (HN) with N ≥ 3. We notice that (1.2.2) looks like the proper

second-order analogue of (1.2.1). On the other hand, clever exploitation of

(1.2.2), jointly with the spherical harmonics decomposition technique, yields
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the following improved version of (1.1.3) with k = 2 and l = 1:
�
HN

(∆HNu)2 dvHN ≥
(
N − 1

2

)2 �
HN

|∇HNu|2 dvHN

+ 1
4

�
HN

|∇HNu|2

r2 dvHN + (N2 − 1)
4

�
HN

|∇HNu|2

sinh2 r
dvHN . (1.2.3)

for all u ∈ C∞
c (HN) with N ≥ 5. It is worth mentioning that our obtained re-

sults above are true on general model manifolds satisfying suitable curvature

bounds and having HN as a remarkable particular case.

1.2.2 Problem 2

Chapter 4 deals with establishing the higher-order Poincaré inequality only

in terms of radial derivatives involving the Riemannian gradient and Laplace-

Beltrami operator on the hyperbolic space HN . Indeed we obtain for non-

negative integers k and l with 0 ≤ l < k, there holds
�
HN

|∇k
r,HNu|2 dvHN ≥

(
N − 1

2

)2(k−l) �
HN

|∇l
r,HNu|2 dvHN (1.2.4)

for all u ∈ W k,2(HN). Moreover, the constant
(
N−1

2

)2(k−l)
is sharp which

is intercepted by the delicate use of integral representation of the volume of

a ball in hyperbolic space HN and by using some clever estimates derived

in [100].

At the end of this chapter, we discuss the Hardy-type improvements of

(1.2.4) by finding a detailed description of a coefficient related to asymp-

totic Hardy-type remainder terms. Broadly speaking here we derive for non-

negative integer k and l with 0 ≤ l < k for N > 2k there exist k positive

constants Cj
k,l such that

�
HN

|∇k
r,HNu|2 dvHN ≥

(
N − 1

2

)2(k−l) �
HN

|∇l
r,HNu|2 dvHN

+
k∑
j=1

Cj
k,l

�
HN

u2

r2j dvHN . (1.2.5)
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In a similar fashion, like in [26], here also we calculate the explicit expression

of C1
k,l and Ck

k,l related to dominating term for r → 0 and r → ∞ respectively.

It is worthy to note that we achieve another version of (1.2.5) with dimension

restriction N ≥ 4k − 1 but with a better constants in front of the leading

order Hardy term.

1.2.3 Problem 3

In Chapter 5, we are concerned to prove a family of Hardy-Rellich and

Poincaré identities and inequalities on the hyperbolic space having, as par-

ticular cases, improved Hardy-Rellich, Rellich, and second-order Poincaré

inequalities. All remainder terms provided considerably improve those al-

ready known in the literature, and all identities hold with same constants for

radial operators also. The main result in Chapter 5 we obtain the following

abstract Rellich identity: Let (rN−1V, rN−1W ) be a Bessel pair on (0,∞)

with positive solution f on (0,∞). Then for all u ∈ C∞
c (HN \ {xo}) there

holds
�
HN

V (r)|∆r,HNu|2 dvHN =
�
HN

W (r)|∇r,HNu|2 dvHN

+ (N − 1)
�
HN

(
V (r)

sinh2 r
− Vr(r) cosh r

sinh r

)
|∇r,HNu|2 dvHN

− (N − 1)
�
HN

V (r)f
′

f

(
coth r − 1

r

)
|∇r,HNu|2 dvHN

+
�
HN

V (r)(f(r))2
∣∣∣∣∣∇r,HN

(
ur
f(r)

)∣∣∣∣∣
2

dvHN

Moreover, under some added assumption we prove the above results hold

true for non-radial function also and that time we obtain the inequality in-

stead of identity. After building this identity, now by choosing the Bessel

pair delicately we obtain the second-order analogue of the result (1.1.9). Fi-

nally, as by-product of our previous result we deduce the following version of

Heisenberg-Pauli-Weyl principle in HN : Let N ≥ 5. For all 0 ≤ λ ≤ λ1(HN)

14
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and all u ∈ C∞
c (HN \ {xo}) there holds(�

HN

(
|∆HNu|2 − λ|∇HNu|2

)
dvHN

)(�
HN

r2|∇HNu|2dvHN

)

≥h2
N(λ)

(�
HN

|∇HNu|2dvHN

)2

.

————— ◦ —————
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Chapter 2

Geometrical preliminaries

This chapter is devoted to the study of basic aspects of Riemannian geometry.

We will revisit some basic tools regarding curvature on Riemannian mani-

folds. In the later part, we will see some special types of the Riemannian

manifold namely the Riemannian model manifold. It is worth mentioning

that hyperbolic space admits model manifold structure and we will discuss

some necessary geometric tools on this space. For a more detailed study,

we refer to [89, 105,110]. Next, we will discuss some basic facts on spherical

harmonics. This is a certain type of decomposition and one of the key in-

gredients which will be useful for most of the proofs. More details regarding

spherical harmonics can be found in [114, Chapter 4] and [96].

2.1 Riemannian manifolds

An N -dimensional differential topological manifold M is a space that locally

looks like some N -dimensional euclidean space RN .

Definition 2.1.1. Let M be a Hausdorff, second countable topological space.

Suppose that there exist a collection of open subsets {Uα : α ∈ I} of M ,

where I is the index set, satisfy the following properties:

17



CHAPTER 2. GEOMETRICAL PRELIMINARIES

(i) ∪αUα = M .

(ii) There exists homeomorphisms ϕα : Uα → ϕα(Uα)(open subset of RN).

(iii) There holds the following compatibility conditions: ϕα(Uα∩Uβ) is

open for all α, β and there exists k ∈ N ∪ {∞} such that the following

map (transition map),

ϕα ◦ ϕ−1
β : ϕα(Uα ∩ Uβ) → ϕβ(Uα ∩ Uβ) is Ck for all α, β ∈ I

whenever Uα ∩ Uβ is non-empty.

Then (M, {(Uα, ϕα) : α ∈ I}) is called a Ck-manifold of dimension N . The

collection {(Uα, ϕα) : α ∈ I} is called a Ck-atlas on M and the members of

the atlas are called charts for M . The coordinates of a point p ∈ M , related

to ϕ, are the coordinates of the point ϕ(p) ∈ RN .

We call M is a smooth manifold if it is C∞-manifold. Now onwards we

will only work with smooth manifolds. For example, let U be any open

subset of RN . Then (U , {(U , id)}) is a smooth N -dimensional manifold.

Let M be a smooth manifold and p be a point on M . Let C∞(p) be the

set of all real valued smooth functions defined in neighbourhood of p. Hence,

if f ∈ C∞(p), then there exists Uf (neighbourhood of p depends on f) such

that f is defined on Uf and smooth.

Definition 2.1.2. A tangent vector v at p is a real valued function defined

on C∞(p) and for f, g ∈ C∞(p) it satisfy the following properties:

(i) v(f) = v(g) if f = g on Uf ∩ Ug.

(ii) R-linear property: v(λf + µg) = λv(f) + µv(g) for λ, µ ∈ R.

(iii) Leibniz rule: v(fg) = f(p)v(g) + v(f)g(p).

18



2.1. Riemannian manifolds

We denote the R-vector space TpM be the tangent space at the point

p and this is the collections of all tangent vectors at p. If {xi}Ni=1 is a set

of local coordinates of p, then the basis of the vector space TpM is {∂i}Ni=1

where ∂i = ∂
∂xi |p. Also cotangent space is the dual of the tangent space and

denoted by T ∗
pM . In the above local coordinate, the basis of cotangent space

T ∗
pM will be {dxi}Ni=1 where dxi(∂j) = δij, the celebrated Kronecker delta

function.

Also note that tangent bundle TM = ⊔p∈MTpM and cotangent bundle

T ∗M = ⊔p∈MT
∗
pM are the vector bundle over M having the tangent space

TpM and cotangent space T ∗
pM as fibre at the point p on M . A vector field

X on M is an assignment p 7→ Xp ∈ TpM . We may consider it as on each

point p it gives a direction Xp. For a local chart (U , xi) around p, if the

map p 7→ Xp(xi) for each 1 ≤ i ≤ N , is smooth then we say that the vector

field X is smooth. In this chapter, we always consider a smooth vector field.

Sometimes a section of the tangent bundle is called a vector field over M ,

while a section of the cotangent bundle is called a differential form. Let

X (M) be the collection of all smooth vector fields on M and one can check

that X (M) forms a vector space structure over R and it is a module over

the ring C∞(M).

For a general finite dimensional vector space V , we define a tensor of

type (α, β) by a multilinear map T : ∏α
i=1(V ∗) ×∏β

j=1(V ) → R, where V ∗ is

the dual space of V .

Definition 2.1.3. An N-dimensional Riemannian manifold is a pair (M, g)

where M is a smooth N-dimensional manifold and g(p) = gp gives an inner

product on TpM for each p ∈ M . Also assume gp varies smoothly. This is

interpreted as for any two fixed X, Y ∈ X (M), the map p 7→ gp(Xp, Yp) is a

smooth function.

Suppose M is a smooth manifold, then one can always give a Riemann
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structure on it by the help of partition of unity. Let (M, g) be an N -

dimensional Riemannian manifold. Then gp is a (0, 2) symmetric tensor on

TpM . For a local coordinate {xi}Ni=1 around p we can write the metric gp in

terms of the basis {dxi ⊗ dxj}. The expression of the metric tensor is given

by

g = gijdx
i ⊗ dxj,

where gij = gp(∂i, ∂j) and we used all the evaluation at the point p. Also

note that in the above standard Einstein summation convention is used and

same will be used in the later part of the chapter.

Example 2.1.1. The Euclidean space RN admits Riemannian manifold

structure by letting gp(u, v) = < u, v > be the canonical Euclidean inner

product at each tangent space TpRN ∼= RN . Finally, the metric tensor will

look like g = δijdx
i ⊗ dxj.

Example 2.1.2. Suppose (M, gM) be a Riemannian manifold and N ⊂ M be

a smooth submanifold. Then (N, gN) admits Riemannian manifold structure

by denoting gN(u, v) = gM(u, v).

Example 2.1.3. Let (M, gM) be a Riemannian manifold and ψ : N → M

be an immersion. Then we can give a Riemannian manifold structure on N

by pulled back map Dψ via ψ. Precisely, we define the metric by gN(u, v)p =

gM(Dψp(u), Dψp(v))ψ(p). Let SN−1 = {x ∈ RN : ||x||2 = 1} be the unit

sphere on RN . Then via stereographic projection we can see (SN−1, gSN−1)

becomes a Riemannian manifold.

Example 2.1.4. In R2 \ {(0, x) : x > 0} we can give polar coordinate struc-

ture by x = r cos θ and y = r sin θ. In this case the polar coordinate metric

will look like g = dr ⊗ dr + r2dθ ⊗ dθ.
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2.2 Musical Isomorphisms

Suppose (M, g) be a Riemannian manifold then by the help of the metric g

we can define an isomorphism between tangent bundle TM and cotangent

bundle T ∗M . The map from TM to T ∗M is called the flat operator. Let

X be a vector on TM then flat operator sends it to X♭ ∈ T ∗M , where

X♭(Y ) := g(X, Y ). In terms of local coordinate representation we have

X♭(·) = g(X i∂i, ·) = gijX
idxj, where X = X i∂i. We can also write as

X♭ = Xjdx
j where Xj = gijX

i. This is why sometimes, we say that flat is

obtained by lowering a index.

It is easy to notice that the matrix of the flat operator is itself the matrix

of the Riemannian metric g and hence the flat operator is invertible. We call

the inverse a sharp operator from T ∗M to TM . Let the inverse of the matrix

(gij) be (gij) and therefore this satisfy the relation gijgjk = δik. Now let w be

an element of T ∗M then sharp operator send it to w♯ ∈ TM and it satisfies

(w♯)♭ = w. In terms of local coordinate representation if we have w = wjdxj,

then one can check that w♯ = wi∂i where wi = gijwj. This is why one says

the sharp operator is obtained by raising an index.

The above flat(♭) and sharp(♯) operators are inverse of each other and the

related isomorphism is called musical isomorphism between TM and T ∗M .

The most useful application of the sharp operator is obtaining the classical

Riemannian gradient operator. Let f be a real valued smooth function on

M . Then the differential operator of f is defined by df and in terms of basis

it can be written as df = ∂ifdx
i. Then the gradient of f is denoted as ∇f

and it is defined by (df)♯. Hence ∇f is characterized by

df(Y ) = g(∇f, Y ) for all Y ∈ TM,

and in terms of local coordinate representation it is written by

∇f = gij∂if∂j.
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2.3 Levi-Civita Connection

Lie bracket is an very interesting algebraic operation on X (M). Let X, Y ∈

X (M), then Lie bracket [X, Y ] ∈ X (M) and it is defined as follows:

[X, Y ](p)(f) := Xp(Y f) − Yp(Xf) for all p ∈ M and f ∈ C∞(M).

In the above we need to make sure that Xf of Y f is smooth function on M .

This can be easily checked by noting that (Xf)(q) = Xq(f) and (Y f)(q) =

Yq(f) for all q ∈ M . Let fix X ∈ X (M) and by the help of the above Lie

bracket we can define a linear map LX : X (M) → X (M) by LX(Y ) :=

[X, Y ] for all Y ∈ X (M). This quantity LX(Y ) is called Lie derivative of

X in the direction of Y .

Now we will state the fundamental theorem of Riemannian geometry and

for details refer [105, Chapter 2].

Theorem 2.3.1. Let (M, g) be a Riemannian manifold. Then there exist a

unique affine connection D : X (M) × X (M) → X (M) and for X, Y, Z ∈

X (M) and f ∈ C∞(M) it satisfies the following conditions:

(1) DX(Y + Z) = DXY +DXZ

(2) DX+YZ = DXZ +DYZ

(3) DfXY = fDXY

(4) DXfY = fDXY +X(f)Y

(5) DXY −DYX = [X, Y ]

(6) X(g(Y, Z)) = g(DXY, Z) + g(Y,DXZ)

The above connection is called Levi-Civita connection and it is uniquely

defined. It is worth to mention that the uniqueness of of connection is estab-
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lished by the following relation:

g(DZX, Y ) = 1
2

(
Z(g(X, Y )) − Y (g(Z,X)) +X(g(Y, Z))

)
(2.3.1)

We can think DXY as covariant derivative of Y in the direction of X.

Now if we have X = ∑
i fi∂i and Y = ∑

j hj∂i, then using the conditions of

connections and D∂i
∂j one can easily calculate DXY . In the literature we

write D∂i
∂j = ∑N

k=1 Γkij∂k, where Γkij are uniquely defined smooth functions

and named the Christoffel symbols. One can easily compute Γkij from the

relation (2.3.1) in respect of the metric g. We also want to mention that in

terms of Christoffel symbols we have

DXY =
∑
k

{
X(hk) +

∑
i,j

Γkijfihj
}
∂k.

2.4 Curvature

After having the connection on the Riemannian manifold, it is natural to

study the more geometric term and curvature tensor is the immediate thing

to study.

Definition 2.4.1. Let (M, g) be a Riemannian manifold and D be the Levi-

Civita connection on M . Then the following relation

R(X, Y )Z = DXDYZ −DYDXZ −D[X,Y ]Z,

for X, Y, Z ∈ X (M), defines a function R : X (M) × X (M) × X (M) →

X (M) and called the Riemannian curvature of M .

For the properties of the curvature R refer [105, Proposition 4, Chapter

2]. The Riemannian curvature R is (1, 3) tensor and it can be seen as (0, 4)

tensor as follows:

R(X, Y, Z,W ) := g(R(X, Y )Z,W ) for all X, Y, Z,W ∈ X (M).
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Example 2.4.1. For Euclidean space RN with standard metric, one can

check that curvature tensor R ≡ 0 and this can be verified using D∂i
∂j = 0

Metrics for which this type of phenomenon holds is called flat.

From curvature tensor, we can define several type of curvature. Before

going further first we want to define the curvature operator on the space

Λ2
pM , which is the space of bi-vectors defined on the vector space TpM , for

some p ∈ M . First note that inner product on Λ2
pM is defined as follows:

g(x ∧ y, v ∧ w) = g(x, v)g(y, w) − g(x,w)g(y, v) for all x ∧ y, v ∧ w ∈ Λ2
pM.

Next exploiting the curvature tensor one can define a symmetric bilinear

map R : Λ2M × Λ2M → R as follows:

R(X ∧ Y, V ∧W ) := R(X, Y,W, V ) for all X ∧ Y, V ∧W ∈ Λ2M.

We are now ready to define the curvature operator. It is a self-adjoint oper-

ator R : Λ2M → Λ2M , satisfies the following relation

g(R(X ∧ Y ), V ∧W ) = R(X ∧ Y, V ∧W ).

Let us assume p ∈ M and v, w ∈ TpM . Then consider the parallelogram

Π = {tv + sw : 0 ≤ t, s ≤ 1}. Now the following quantity

sec(v, w) = g(R(v ∧ w), v ∧ w)
(area(Π))2

is defined as sectional curvature of (v, w). A Riemannian manifold (M, g) is

said to have constant curvature if its sectional curvature is constant for each

plane on each points. By rescaling the metric one can show that the only

possible constant value of sectional curvature is −1, or 0, or 1.

Example 2.4.2. The unit sphere (SN−1, gSN−1) has constant sectional cur-

vature 1.
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Example 2.4.3. The Euclidean space RN with standard metric gRN has con-

stant sectional curvature 0.

Example 2.4.4. Consider the Lorentz inner product < ·, · >1 on RN+1 as

follows: for x = (x1, · · · , xN+1) and y = (y1, · · · , yN+1) we define

< x, y >1= −x1y1 +
N+1∑
i=2

xiyi.

Now consider the space

HN = {x = (x1, · · · , xN+1) ∈ RN+1 : < x, x >1= −1, x1 > 0} ⊂ RN+1.

On HN , one can check that < ·, · >1 works as Riemannian metric and it

is simply denoted as N-dimensional hyperbolic space HN . This space has

constant sectional curvature −1.

Now for a point p ∈ M consider the vector v, w ∈ TpM . Then define the

map Rw
v : TpM → TMp by Rw

v (x) := R(x, v)w, where R is the Riemannian

curvature tensor of (M, g). Next we define the Ricci curvature as follows:

Ric(v, w) := trace of Rw
v =

N∑
i=1

g(Rw
v (ei), ei),

where {e1, · · · , eN} forms an orthonormal basis of TpM . Finally we want to

define another map Ric : TpM → TpM by Ric(v) = ∑N
i=1 R(v, ei)ei. Then we

define the scalar curvature at each point p ∈ M by

Scal(p) := trace of Ric =
N∑
i=1

g(Ric(ei), ei) = 2 ∗ (trace of R) = 2
∑
i<j

sec(ei, ej).

2.5 Distance function and Geodesics

In this section we will see special type of function called distance function.

Let U ⊂ (M, g) be an open set. Then function r : U → R is called distance

function if g(∇r,∇r) ≡ 1.

25



CHAPTER 2. GEOMETRICAL PRELIMINARIES

We say a parametrized curve γ : [a, b] → M is geodesic if Dγ′(t)γ
′(t) = 0,

where D is the Levi-Civita connection on (M, g). Now for any curve γ, its

length L(γ) is given by

L(γ) :=
� b

a

[g(γ′(t), γ′(t))]1/2 dt.

Sometimes we need to consider a geodesic with the maximum possible

domain. Let us first define maximal geodesic:

Definition 2.5.1. Let p ∈ M and v ∈ TpM . Then γp,v, defined on an interval

I(containing 0) is called a maximal geodesic if the following properties holds:

(i) γ(0) = p and γ′(0) = v.

(ii) If σ : J → M is a geodesic with σ(0) = p and σ′(0) = v then J ⊂ I.

By the help of ODE theory and domain of solution one can show that

maximal geodesic exists uniquely on a manifold M . Then we can define the

exponential map expp : TpM → M by expp(v) := γp,v(1) whenever 1 belongs

to the domain of γp,v.

Finally we say a Riemannian manifold (M, g) is geodesically complete if

the domain of every maximal geodesic is entire real line R. Also we define

the distance between two points p, q on M by

d(p, q) := inf
γ
L(γ),

where infimum is considered over curves joining the points p and q. The defi-

nition of completeness using geodesic and as metric (M,d) both are equivalent

due the Hopf-Rinow theorem (see [105, Chapter 8, Theorem 16]).

2.6 Riemannian model manifolds

Lets start with a fixed point p ∈ M and in the last section we have seen

the exponential map expp. If we define polar coordinate on N -dimensional
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manifold TpM(∼= RN) then, by the Gauss Lemma (see [83, Lemma 7.13]) we

can see, the coordinates of TpM will turn out as a polar coordinate on M

around p by the map expp. This is called geodesic polar coordinate on M . In

polar coordinate r denote the distance of a point and a fixed pole o and there

are (N − 1) coordinates {θi}N−1
i=1 , which are orthogonal to r. In particular we

can write the Riemannian metric as follows

g = dr ⊗ dr +
N−1∑
i,j=1

G2
ij(r, θ1, . . . , θN−1) dθi ⊗ dθj.

Definition 2.6.1. An N-dimensional Riemannian manifold (M, g) is called

Riemannian model manifold if it satisfies the following two conditions:

(1) There exists a chart of M which covers entire M and its image in

RN is a r◦ radius ball Br◦ = {x ∈ RN : ||x|| < r◦}, where r◦ ∈ [0,∞]

and if r◦ = ∞ then Br◦ is entire RN .

(2) The polar coordinate (r, θ) representation of g in terms of above

chart has the form

g = dr ⊗ dr + ψ2(r) gSN−1 , (2.6.1)

where ψ is a C∞ non-negative function on [0, r◦), positive on (0, r◦)

such that ψ′(0) = 1 and ψ(2k)(0) = 0 for all k ≥ 0 .

In the above definition, r◦ is called the radius of the Riemannian model

manifold. These conditions on ψ ensure that the manifold is smooth and

the metric at the pole o is given by the Euclidean metric [105, Chapter 1,

3.4]. The coordinate r, by construction, represents the Riemannian distance

from the pole o, see e.g. [65, 66, 105] for further details. In particular, all

the assumptions above are satisfied by ψ(r) = r and by ψ(r) = sinh(r) with

r◦ = ∞: in the first case M coincides with the Euclidean space RN , in the

latter with the hyperbolic space HN .
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It is known that there exist an orthonormal frame {Fj}Nj=1 on (M, g)

where FN corresponds to the radial coordinate, and F1, . . . , FN−1 to the

spherical coordinates, for which Fi ∧ Fj diagonalize the curvature operator

R :

R(Fi ∧ FN) = −ψ′′

ψ
Fi ∧ FN , i < N,

R(Fi ∧ Fj) = −(ψ′)2 − 1
ψ2 Fi ∧ Fj, i, j < N.

The quantities

Krad
π,r := −ψ′′

ψ
and H tan

π,r := −(ψ′)2 − 1
ψ2 (2.6.2)

then coincide with the sectional curvatures w.r.t. planes containing the radial

direction and, respectively, orthogonal to it.

Sometimes we need to assume that

Krad
π,r ≤ −1 in (0,+∞). (2.6.3)

Since, by the Sturm-Comparison Theorem, the above condition also implies

that H tan
π,r ≤ −1. We basically require the boundedness from above of both

sectional curvatures. Let us recall the following useful lemma that can be

easily derived from the Sturm-Comparison theorem, see [106, Lemma 2.1]

and that we will repeatedly exploit in our proofs.

Lemma 2.6.1. Let (M, g) be an N-dimensional Riemannian model manifold

with metric g as given in (2.6.1) with smooth function ψ. If (2.6.3) holds,

then

ψ′(r)
ψ(r) ≥ coth r and ψ(r) ≥ sinh r ∀ r > 0 . (2.6.4)

2.7 Laplace-Beltrami operator on manifolds

Now we will define the notion of volume element on Riemannian manifold

and for the detail motivation refer [84]. Let (M, g) be a N -dimensional
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Riemannian manifold and (U, {xi}Ni=1) be a chart around p on M . Then

volume element is defined by dvg =
√
Gdx1 ⊗ . . .⊗ dxN , where G = det(gij).

If f is a smooth function with support within U then we define the integral�
U
f(x)dvg, where the integral is Riemann integral. One can check that this

definition is well-defined and using partition of unity we can extend this

definition on entire M for a compactly supported function. Finally, when M

is compact then we define vol(M) :=
�
M

1 dvg.

Next we will define divergence of a smooth vector field X ∈ X (M). It

is a unique smooth real valued function on M denoted as “div X” and it is

described by the following property
�
M

(divX)u dvg = −
�
M

g(X,∇u) dvg for all u ∈ C∞
c (M). (2.7.1)

The existence is followed by considering a local coordinate chart around

some point and then patching those charts we can extend it for entire M

and finally uniqueness is established by using some simple measure theoretic

property. By exploiting the relation (2.7.1), we can check that for a smooth

vector field X = X i∂i, the expression of divX will be

divX = 1√
G
∂i(X i

√
G).

Finally consider a smooth function f on Riemannian manifold M . Then

Laplace Beltrami operator is a smooth function on M and it is defined by

∆f := div(∇f). The local coordinate representation of Laplacian will be

∆f = 1√
G

N∑
i=1

∂i
(√

G
N∑
j=1

gij∂jf
)
.

For the Riemannian model manifold (M, g) with the metric g = dr⊗dr+

ψ2(r) gSN−1 , in terms of polar coordinate (r, θ) the volume form becomes

dvg = ψ(r)N−1dr ⊗ dθ,
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where dθ denotes the (N − 1) volume form on SN−1. Next, we note that the

Riemannian Laplacian of a scalar function u on M is given by

∆gu(r, θ1, . . . , θN−1) = 1
ψ2

∂

∂r

[
(ψ(r))N−1∂u

∂r
(r, θ1, . . . , θN−1)

]

+ 1
ψ2 ∆SN−1u(r, θ1, . . . , θN−1), (2.7.2)

where ∆SN−1 is the Riemannian Laplacian on the unit sphere SN−1. In partic-

ular, for radial functions, namely functions depending only on r, ∆gu reads

∆r,gu(r) = 1
(ψ(r))N−1

∂

∂r

[
(ψ(r))N−1∂u

∂r
(r)
]

= u′′(r) + (N − 1)ψ
′(r)
ψ(r) u

′(r), (2.7.3)

where from now on a prime will denote, for radial functions, derivative w.r.t

the radial component r. Also, let us recall the Gradient in terms of the polar

coordinate decomposition is given by

∇gu(r, θ1, . . . , θN−1) =
(
∂u

∂r
(r, θ1, . . . , θN−1),

1
ψ(r)∇SN−1u(r, θ1, . . . , θN−1)

)
,

(2.7.4)

where ∇SN−1 denotes the Gradient on the unit sphere SN−1. Again, the radial

contribution of the Gradient, ∇r,gu, is defined as

∇r,gu =
(
∂u

∂r
, 0
)

=
(
u′(r), 0

)
. (2.7.5)

2.8 Spherical Harmonics

We want to point out that Spherical decomposition will be a key method in

most of the proofs of the first part of the thesis. Over the years this method

has become a remarkable tool in functional inequality and for the extensive

study refer [114, Chapter 4, Lemma 2.18] and [96]. Let u(x) = u(r, σ) ∈

C∞
c (M), r ∈ [0,∞) and θ ∈ SN−1, we can write

u(x) := u(r, θ) =
∞∑
n=0

dn(r)Pn(θ)
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in the Hilbert space L2(M), where {Pn} is an orthonormal system of spherical

harmonics in the space L2(SN−1) and

dn(r) =
�
SN−1

u(r, θ)Pn(θ) dθ .

A spherical harmonic Pn of order n is the restriction to SN−1 of a homo-

geneous harmonic polynomial of degree n. Moreover, it satisfies

−∆SN−1Pn = λnPn

for all n ∈ N0 where λn = (n2 + (N − 2)n) are the eigenvalues of Laplace

Beltrami operator −∆SN−1 on SN−1 with corresponding eigenspace dimension

cn. We note that λn ≥ 0, λ0 = 0, c0 = 1, c1 = N and

cn =
(
N + n− 1

n

)
−
(
N + n− 3
n− 2

)

for n ≥ 2.

————— ◦ —————
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Chapter 3

On some strong Poincaré

inequalities on Riemannian

models and their improvements

In this chapter, we will study second and fourth-order improved Poincaré

type inequalities on the hyperbolic space involving Hardy-type remainder

terms. Since theirs l.h.s. only involve the radial operator, so they can be

seen as stronger versions of the classical Poincaré inequality. We will also

show that such inequalities hold true on model manifolds as well, under

suitable curvature assumptions, and the sharpness of some constants will be

also discussed. The content of this chapter corresponds to the article [29].

3.1 Statement of results

We have already seen the structure of N -dimensional Riemannian model

manifold (M, g) and assume the corresponding smooth function is ψ. A

crucial quantity in our statements will be

Λrad
π,r := −2Krad

π,r − (N − 3)H tan
π,r , (3.1.1)
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The quantity Λrad
π,r is related to the bottom of the spectrum of the Laplacian,

see inequality (3.1.2) below; in particular, when ψ(r) = sinh(r), then Λrad
π,r =

(N − 1) hence (N−1)
4 Λrad

π,r coincides with the bottom of the spectrum of the

Laplacian in HN . We will broadly see the results on this underlying space.

This section is devoted to state the main results. Here is the first result in

below:

Theorem 3.1.1. Let (M, g) be an N-dimensional Riemannian model with

N ≥ 3 and with metric g as given in (2.6.1). Then, for all u ∈ C∞
c (M \{xo})

there holds
�
M

(
∂u

∂r

)2

dvg ≥ (N − 1)
4

�
M

Λrad
π,r u

2 dvg + 1
4

�
M

u2

r2 dvg

+ (N − 1)(N − 3)
4

�
M

u2

ψ2 dvg , (3.1.2)

with Λrad
π,r as defined in (3.1.1). Moreover, if condition (2.6.3) holds and

furthermore
ψ′

ψ
∼ C ra as r → +∞ (3.1.3)

for some C > 0 and a ≥ 0, then the constant 1
4 in (3.1.2) is sharp, i.e.

1
4 = infW 1,2(M)\{0}

�
M

(
∂u
∂r

)2
dvg − (N−1)

4

�
M

Λrad
π,r u

2 dvg�
M

u2

r2 dvg
. (3.1.4)

Remark 3.1.1. A couple of remarks are in order about the further conditions

required in the second part of the statement of Theorem 3.1.1. Condition

(2.6.3) seems by no means technical as suggested by the following simple

example. Consider the euclidean space, then ψ(r) = r and (2.6.3) clearly

fails. On the other hand, in this case, Λrad
π,r ≡ 0 and inequality (3.1.2) becomes

the (strong) Hardy inequality:
�
RN

(
∂u

∂r

)2

dvRN ≥ (N − 2)2

4

�
RN

u2

r2 dvRN ,

hence 1/4 is no more the sharp constant in front of the term u2

r2 . As concerns

condition (3.1.3), it is needed to show that the quotient (3.1.4) is finite for
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our minimizing sequence, see Section 3.2. Nevertheless, we notice that this

condition is not “too restrictive”, in the sense that it allows unbounded curva-

tures from below as it happens, for instance, if ψ(r) = r er
2 for which (3.1.3)

holds with C = 2 and a = 1, see Section 3.2 for a more detailed discussion

and further examples.

We point out that when (2.6.3) holds inequality (3.1.2) implies the fol-

lowing more explicit inequality:

Corollary 3.1.1. Let (M, g) be an N-dimensional Riemannian model with

N ≥ 3 and with metric g as given in (2.6.1) and (2.6.3) holds. Then, for all

u ∈ C∞
c (M), there holds

�
M

(
∂u

∂r

)2

dvg ≥
(
N − 1

2

)2 �
M

u2 dvg + 1
4

�
M

u2

r2 dvg

+ (N − 1)(N − 3)
4

�
M

u2

ψ2 dvg . (3.1.5)

A remarkable particular case to which Theorem 3.1.1 applies is when

M = HN , i.e. ψ(r) = sinh(r). In this case all constants in (3.1.2) are proved

to be sharp.

Corollary 3.1.2. Let M = HN , the Hyperbolic space with N ≥ 3. Then, for

all u ∈ C∞
c (HN) there holds

�
HN

(
∂u

∂r

)2

dvHN ≥
(
N − 1

2

)2 �
HN

u2 dvHN + 1
4

�
HN

u2

r2 dvHN

+ (N − 1)(N − 3)
4

�
HN

u2

(sinh r)2 dvHN (3.1.6)

with all constants sharp. More precisely, the Poincaré constant
(
N−1

2

)2
is

sharp in the sense that no inequality of the form

�
HN

(
∂u

∂r

)2

dvHN ≥ c

�
HN

u2 dvHN
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holds, for u ∈ C∞
c (HN), when c >

(
N−1

2

)2
. The constant 1

4 is sharp in the

sense explained in Theorem 3.1.1 while the constant (N−1)(N−3)
4 is sharp in

the sense that no inequality of the form
�
HN

(
∂u

∂r

)2

dvHN ≥
(
N − 1

2

)2 �
HN

u2 dvHN + 1
4

�
HN

u2

r2 dvHN

+ c

�
HN

u2

(sinh r)2 dvHN

holds, for u ∈ C∞
c (HN), when c > (N−1)(N−3)

4 .

By combining spherical harmonics decomposition technique with Theo-

rem 3.1.1 we derive the following second order analogue of Theorem 3.1.1

Theorem 3.1.2. Let (M, g) be an N-dimensional Riemannian model with

N ≥ 3 and with metric g as given in (2.6.1). Then, for all u ∈ C∞
c (M), there

holds�
M

(∆r,gu)2 dvg − (N − 1)
4

�
M

[
Λrad
π,r + 4(Krad

π,r −H tan
π,r )

] (∂u
∂r

)2

dvg (3.1.7)

≥ 1
4

�
M

1
r2

(
∂u

∂r

)2

dvg + (N2 − 1)
4

�
M

1
ψ2

(
∂u

∂r

)2

dvg ,

with Λrad
π,r as defined in (3.1.1).

Under suitable curvature bounds inequality (3.1.7) implies the following

more explicit inequality:

Corollary 3.1.3. Let (M, g) be an N-dimensional Riemannian model with

N ≥ 3 and with metric g as given in (2.6.1) and (2.6.3) holds. If furthermore

Krad
π,r ≥ H tan

π,r in (0,+∞) , (3.1.8)

then there holds�
M

(∆r,gu)2 dvg ≥
(
N − 1

2

)2 �
M

(
∂u

∂r

)2

dvg + 1
4

�
M

1
r2

(
∂u

∂r

)2

dvg

+ (N2 − 1)
4

�
M

1
ψ2

(
∂u

∂r

)2

dvg , (3.1.9)

for all u ∈ C∞
c (M).
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Remark 3.1.2. Condition (3.1.8) holds with the equality if M = HN ; ex-

amples of models satisfying (2.6.3) and for which the strict inequality holds

in (3.1.8) can be given by taking ψ(r) = rebr
a+1 for r large, with b > 0 and

a > −1, see the proof of Corollary 3.2.2 in Section 3.2.

When M = HN (3.1.7) clearly coincides with (3.1.9) but we also have the

optimality of the constant
(
N−1

2

)2
. For the sake of clarity we give the precise

statement here below:

Corollary 3.1.4. Let M = HN , the Hyperbolic space with N ≥ 3. Then, for

all u ∈ C∞
c (HN) there holds

�
HN

(∆r,gu)2 dvHN ≥
(
N − 1

2

)2 �
HN

(
∂u

∂r

)2

dvHN + 1
4

�
HN

1
r2

(
∂u

∂r

)2

dvHN

+ (N2 − 1)
4

�
HN

1
(sinh r)2

(
∂u

∂r

)2

dvHN (3.1.10)

for all u ∈ C∞
c (HN). Furthermore the constant

(
N−1

2

)2
in the above inequality

turns out to be sharp in the sense that no inequality of the form
�
HN

(∆r,gu)2 dvHN ≥ c

�
HN

(
∂u

∂r

)2

dvHN

holds, for u ∈ C∞
c (HN) when c >

(
N−1

2

)2
.

Next we state a Rellich type improvement for the second order Poincaré

inequality (5.1.1) with ℓ = 0 but on more general model manifolds. The

proof comes by exploiting either inequality (1.1.6) on Riemannian models

(see Lemma 3.5.1 in the following) and inequality (3.1.7), the first brought

the restriction N ≥ 5 and the latter yields the curvature conditions (2.6.3)

and (3.1.8) below.

Theorem 3.1.3. Let (M, g) be an N-dimensional Riemannian model with

N ≥ 5 and with metric g as given in (2.6.1) with ψ satisfying (2.6.3), and

(3.1.8). Then for all u ∈ C∞
c (M) there holds
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�
M

(∆gu)2 dvg ≥
(
N − 1

2

)4 �
M

u2 dvg + (N − 4)2

16

�
M

u2

r4 dvg

+ (N − 1)2

16

�
M

u2

r2 dvg . (3.1.11)

Remark 3.1.3. As already explained in the Introduction, inequality (3.1.11)

with M = HN must be compared with inequality (1.1.7). In particular, it

gives rise to the interesting fact that the constant appearing in front of the

Rellich term u2

r4 can be larger than 9
16 .

We conclude by stating a Hardy-type improvement of the second order

Poincaré inequality (5.1.1) with ℓ = 1 on model manifolds. Here the main

tools exploited in the proofs are spherical harmonics decomposition and re-

duction of dimension technique. The latter yields the restriction N ≥ 5,

while conditions (2.6.3) and (3.1.8) come again from inequality (3.1.7) that

we apply for each component of the decomposition.

Theorem 3.1.4. Let (M, g) be an N-dimensional Riemannian model with

N ≥ 5 and with metric g as given in (2.6.1) with ψ satisfying (2.6.3) and

(3.1.8). Then for all u ∈ C∞
c (M) there holds

�
M

(∆gu)2 dvg ≥
(
N − 1

2

)2 �
M

|∇gu|2 dvg + 1
4

�
M

|∇gu|2

r2 dvg

+ (N2 − 1)
4

�
M

|∇gu|2

ψ2 dvg . (3.1.12)

3.2 Some prototype model manifolds

In this section we discuss our first order results onN -dimensional Riemannian

models (M, g) with N ≥ 3 and with metric g as given in (2.6.1) with ψ

satisfying the further condition for large r:

ψ(r) = Aebr
a+1 for r ≥ R >> 1 (3.2.1)
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or

ψ(r) = Arebr
a+1 for r ≥ R >> 1 (3.2.2)

for some R,A, b > 0 and a ≥ −1. The case (3.2.1) includes HN (for a = 0),

while the case (3.2.2) includes RN (for a = −1). In both cases the sectional

curvatures satisfy

Krad
π,r ∼ −b2(a+ 1)2r2a and Hrad

π,r ∼ −b2(a+ 1)2r2a as r → +∞ .

Hence, for a ≥ 0 unbounded curvatures from below are allowed. We refer

to [67, Section 2.3] for further possible choices of ψ and their geometric

interpretation.

In case (3.2.1) from Theorem 3.1.1 we derive the following improved

Poincaré inequality for functions supported outside BR(xo):

Corollary 3.2.1. Let (M, g) be an N-dimensional Riemannian model with

N ≥ 3 and with metric g as given in (2.6.1) with ψ satisfying condition

(3.2.1) for some R,A, b > 0 and a ≥ 0. Then, for all u ∈ C∞
c (M \ BR(xo)),

there holds

�
M

(
∂u

∂r

)2

dvg ≥
(
N − 1

2

)2
(a+ 1)2b2

�
M

r2a u2 dvg + 1
4

�
M

u2

r2 dvg

+ 2ba(a+ 1)(N − 1)
4

�
M

ra−1u2 dvg. (3.2.3)

Notice that (3.2.3) can be seen as an improved Poincaré inequality since�
M
r2a u2 dvg ≥

�
M
u2 dvg for a ≥ 0 and u ∈ C∞

c (M \ BR(xo)) with R ≥ 1.

In particular, for a = 0 and b = 1 we recover the sharp Poincaré constant in

HN , i.e.
(
N−1

2

)2
.

Proof. For r ≥ R we compute:

Krad
π,r = −b2(a+1)2r2a−b(a+1)(a+2)ra−1 , H tan

π,r = −b2(a+1)2r2a+ 1
A2e2bra+1
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and

Λrad
π,r = 2ba(a+ 1)ra−1 + b2(a+ 1)2(N − 1)r2a − N − 3

A2e2bra+1 .

Then, the desired inequality comes by inserting the above term into (3.1.2),

summing up and rearranging all terms.

In case (3.2.2) from Theorem 3.1.1 we derive an improved Hardy inequal-

ity for functions supported outside BR(xo):

Corollary 3.2.2. Let (M, g) be an N-dimensional Riemannian model with

N ≥ 3 and with metric g as given in (2.6.1) with ψ satisfying condition

(3.2.2) for some R,A, b > 0 and a ≥ −1. Then, for all u ∈ C∞
c (M \BR(xo)),

there holds

�
M

(
∂u

∂r

)2

dvg ≥ (N − 2)2

4

�
M

u2

r2 dvg + (a+ 1)2b2(N − 1)2

4

�
M

r2a u2 dvg

+ b(a+ 1)(N − 1)(N − 1 + a)
2

�
M

ra−1u2 dvg. (3.2.4)

When a = −1 the decay of the manifold is of euclidean type and (3.2.4)

reduces to the standard Hardy inequality. On the other hand, when a ≥ 0,

since
�
M
r2a u2 dvg ≥

�
M
u2 dvg for all u ∈ C∞

c (M \ BR(xo)) with R ≥ 1,

(3.2.4) reads as an improved Hardy-Poincaré inequality.

Proof. For r ≥ R we compute:

Krad
π,r = −b2(a+ 1)2r2a − ba(a+ 1)ra−1 ,

H tan
π,r = −b2(a+ 1)2r2a − 1

r2 − 2b(a+ 1)ra−1 + 1
A2r2e2bra+1 ,

and

Λrad
π,r = 2b(N − 1 + a)ra−1 + b2(a+ 1)2(N − 1)r2a + N − 3

r2 − N − 3
A2r2e2bra+1 .

Then, the (3.2.4) comes by inserting the above term into (3.1.2), summing

up and rearranging all terms.
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A further remarkable consequence of Theorem 3.1.1 is the following im-

proved Hardy inequality:

Corollary 3.2.3. Let (M, g) be an N-dimensional Riemannian model with

N ≥ 3 and with metric g as given in (2.6.1) with ψ(r) = rer
2m for some

positive integer m. Then, for all u ∈ C∞
c (M \ {xo}) there holds

�
M

(
∂u

∂r

)2

dvg ≥ (N − 2)2

4

�
M

u2

r2 dvg +m2(N − 1)2
�
M

r4m−2 u2 dvg

+m(N − 1)(N − 2 + 2m)
�
M

r2m−2 u2 dvg , (3.2.5)

where the constant (N−2)2

4 is sharp.

Remark 3.2.1. It’s worth noticing that, under the assumption of Corollary

3.2.3, we have
(N − 1)

4 Λrad
π,r = −

(N − 1)Krad
π,r

4 +(N − 1)(N − 3)
4

1
r2 − (N − 1)(N − 3)

4
1

ψ2(r) .

Once this observed, we readily infer that, if condition (2.6.3) holds, then the

constant in front of the term 1
r2 on the right hand side of (3.1.2) cannot

be larger than 1
4 otherwise we would contradict the sharpness of the Hardy

constant (N−2)2

4 .

Proof. It is readily seen that the function ψ(r) = rer
2m satisfies condition of

being a model manifold, hence Theorem 3.1.1 applies. On the other hand,

some computations yield:

Krad
π,r = −(2m)2r4m−2 − 2m(2m+ 1)r2m−2 ,

H tan
π,r = −(2m)2r4m−2 − 1

r2 − 4mr2m−2 + 1
r2e2r2m ,

and

Λrad
π,r = (2n)2(N − 1)r4m−2 + 4m(N − 2 + 2m)r2m−2 + (N − 3)

r2 − (N − 3)
r2e2r2m .

Finally, inequality (3.2.3) comes by inserting the above term into (3.1.2),

summing up and rearranging all terms. As for the sharpness of the constant
(N−2)2

4 , it comes from [48].
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3.3 Proof of Theorem 3.1.1

This section is devoted to the proof of Theorem 3.1.1. The proof is divided

into two steps.

Step 1. Let u ∈ C∞
c (M \ {xo}), where o denotes the pole, and define

the transformation

v(x) = ψ(r)
(N−1)

2 u(x) where r = ρ(x, o) and x = (r, σ) ∈ (0,∞) × SN−1 .

Then clearly v ∈ C∞
c (M \ {xo}).

An easy calculation gives

∂v

∂r
= ∂

∂r

(
ψ(r)

(N−1)
2 u

)
= ψ(r)

(N−1)
2

∂u

∂r
+ (N − 1)

2
ψ′(r)
ψ(r) v .

By arranging the terms we obtain:

∂u

∂r
= 1
ψ(r)

(N−1)
2

[
∂v

∂r
− (N − 1)

2
ψ′(r)
ψ(r) v

]
. (3.3.1)

Step 2. Now, expanding v in terms of spherical harmonics:

v(x) = v(r, σ) =
∞∑
n=0

dn(r)Pn(σ) ,

we find
∂v

∂r
=

∞∑
n=0

d′
n(r)Pn(σ) .

Furthermore, from (3.3.1) we observe that

�
M

(
∂u

∂r

)2

dvg =
�
M

1
ψ(N−1)

(
∂v

∂r

)2

dvg − (N − 1)
�
M

1
ψ(N−1)

∂v

∂r

ψ′

ψ
v dvg

+ (N − 1)2

4

�
M

1
ψ(N−1)

ψ′2

ψ2 v
2 dvg . (3.3.2)

We will evaluate each term of (3.3.2) separately. Using the integration by

parts formula and the orthonormal properties of {Pn} i.e
�
SN−1 PnPm dσ =

δnm, we find
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�
M

1
ψ(N−1)

(
∂v

∂r

)2

dvg =
∞∑
n=0

� ∞

0
(d′
n)2 dr (3.3.3)

�
M

1
ψ(N−1)

∂v

∂r

ψ′

ψ
v dvg = −1

2

∞∑
n=0

� ∞

0
d2
n

ψψ′′ − ψ′2

ψ2 dr (3.3.4)

�
M

1
ψ(N−1)

ψ′2

ψ2 v
2 dvg =

∞∑
n=0

� ∞

0
d2
n

ψ′2

ψ2 dr . (3.3.5)

By substituting (3.3.3), (3.3.4) and (3.3.5) into (3.3.2) and after simplifying,

we obtain
�
M

(
∂u

∂r

)2

dvg =
∞∑
n=0

� ∞

0
(d′
n)2 dr + (N − 1)

2

∞∑
n=0

� ∞

0
d2
n

ψψ′′ − ψ′2

ψ2 dr

+ (N − 1)2

4

∞∑
n=0

� ∞

0
d2
n

ψ′2

ψ2 dr

=
∞∑
n=0

� ∞

0
(d′
n)2 dr

− (N − 1)
4

∞∑
n=0

� ∞

0

[
2Krad

π,r + (N − 3)H tan
π,r

]
d2
n dr

+ (N − 1)(N − 3)
4

∞∑
n=0

� ∞

0

d2
n

ψ2 dr . (3.3.6)

Next, by using the 1-dimensional Hardy inequality:
� ∞

0
(d′
n)2 dr ≥ 1

4

� ∞

0

d2
n

r2 dr

into (3.3.6) we get
�
M

(
∂u

∂r

)2

dvg ≥ 1
4

∞∑
n=0

� ∞

0

d2
n

r2 dr

− (N − 1)
4

∞∑
n=0

� ∞

0

[
2Krad

π,r + (N − 3)H tan
π,r

]
d2
n dr

+ (N − 1)(N − 3)
4

∞∑
n=0

� ∞

0

d2
n

ψ2 dr . (3.3.7)
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Finally, inserting the equalities:�
M

[
2Krad

π,r + (N − 3)H tan
π,r

]
u2 dvg =

∞∑
n=0

� ∞

0

[
2Krad

π,r + (N − 3)H tan
π,r

]
d2
n dr ,

�
M

u2

r2 dvg =
∞∑
n=0

� ∞

0

d2
n

r2 dr and
�
M

u2

ψ2 dvg =
∞∑
n=0

� ∞

0

d2
n

ψ2 dr

into (3.3.7) and recalling (3.1.1) we obtain the desired inequality (3.1.2) with

u ∈ C∞
c (M \ {xo}).

Remark 3.3.1. If (2.6.3) holds inequality (3.1.2) can be extended to func-

tions belonging to C∞
c (M) by density arguments. Indeed, in this case M is a

Cartan-Hadamard manifold with strictly negative curvatures and, since, for

N > 2, the set {xo} is compact and has zero capacity, the following inclu-

sion holds: C∞
c (M)∥∇·∥2 ⊂ C∞

c (M \ {xo})∥∇·∥2 (see [51, Proposition A.1 and

Theorem 6.5]). Then, by using Gauss Lemma |∂u
∂r

| ≤ |∇u|, one deduces the

validity of (3.1.2) for all C∞
c (M).

3.3.1 Optimality of the constant: sequential approach

We set

CM := infW 1,2(M)\{0}

�
M

(∂u
∂r

)2 dvg − (N−1)
4

�
M

Λrad
π,r u

2 dvg�
M

u2

r2 dvg
. (3.3.8)

If (2.6.3) holds, then Λrad
π,r > 0 and, by combining density arguments with

Fatou’s Lemma, we infer that (3.1.2) holds in W 1,2(M) and, in turn, that

CM ≥ 1
4 . So it remains to show that CM ≤ 1

4 and this will be done by giving

a proper minimizing sequence. Again we divide the proof in some steps.

Step 1. Let us define the sequence {ϕn} for n ∈ N as follows

ϕn(r) =



0 0 < r ≤ 1

n−α(r − 1) 1 ≤ r ≤ 2

n−α 2 ≤ r ≤ n

r−α n ≤ r

(3.3.9)
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where α > 1+a and a ≥ 0 is as given in (3.1.3). Clearly, ϕn ∈ L1
loc(0,+∞)

and its weak derivative writes

ϕ′
n(r) =



0 0 < r ≤ 1

n−α 1 ≤ r ≤ 2

0 2 ≤ r ≤ n

−αr−α−1 n ≤ r .

(3.3.10)

Next we recall that, from the proof of Proposition 4.1 in [27], the function

u0(r) := r
1
2

ψ
N−1

2
satisfies:

−∆r,g u0 − (N − 1)
4 Λrad

π,r u0 = 1
4
u0

r2 + (N − 1)(N − 3)
4

u0

ψ2 for r > 0 .

(3.3.11)

Using polar coordinates and by exploiting (3.1.3), it follows that u0ϕn and

u0ϕ
2
n both belong to W 1,2(M) for all n ≥ 3 and for α > 1 + a. In particular,

(3.1.3) assures (u0ϕn)′, (u0ϕ
2
n)′ ∈ L2(M). Indeed, for r ≥ n, we have that

((u0ϕn)′)2ψN−1 ∼ 1
r2α−1

[ (
α− 1

2

)2 1
r2 + (N − 1)2

4 C2 r2a

+ (2α− 1)(N − 1)
2 C ra−1

]
(3.3.12)

and this term turns out to be integrable at infinity for α > 1+a, if ψ satisfies

the above condition; the term (u0ϕ
2
n)′ can be treated similarly.

Step 2. Let R > n, by multiplying the equation (3.3.11) by u0ϕ
2
n and

integrating by parts, we obtain
�

BR(xo)

(
∂u0

∂r

)(
∂(u0ϕ

2
n)

∂r

)
dvg −

�
∂BR(xo)

(
∂u0

∂r

)
u0ϕ

2
n dSg

− (N − 1)
4

�
BR(xo)

Λrad
π,r (u0ϕn)2 dvg

= 1
4

�
BR(xo)

(u0ϕn)2

r2 dvg + (N − 1)(N − 3)
4

�
BR(xo)

(u0ϕn)2

ψ2 dvg , (3.3.13)
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where we have exploited the fact that ϕn is supported outside B1(xo), hence

no problem of integrability arises at r = 0.

Next we note that
�
∂BR(xo)

(
∂u0

∂r

)
u0ϕ

2
n dSg =

�
∂BR(xo0)

u′
0(R)u0(R)ϕ2

n(R) dSg

= 1
2

(
1 − (N − 1)Rψ

′(R)
ψ(R)

)
1
Rα

= o(1) asR → +∞

where in the above we have exploited the fact that |∂BR(xo)| = ωN ψ
N−1(R).

On the other hand, for r > n, we have that∣∣∣(∂u0

∂r

)(
∂(u0ϕ

2
n)

∂r

)∣∣∣ =
∣∣∣(u′

0)2ϕ2
n + 2u0u

′
0ϕnϕ

′
n

∣∣∣
=
∣∣∣∣∣ 1
r2α−1

(
1
4

1
r2 + (N − 1)2

4

(
ψ′

ψ

)2

+
(
α− N − 1

2

)
ψ′

ψ

1
r

− α
1
r2

)
1

ψN−1

∣∣∣∣∣
≤ 1
r2α−1

(
1
4

1
r2 + (N − 1)2

4 C2 r2a +
(
α + N − 1

2

)
C ra−1 + α

1
r2

)
1

ψN−1[
as r → +∞ (using (3.1.3))

]
,

(u0ϕn)2

r2 = 1
r2α+1

1
ψN−1 ,

(u0ϕn)2

ψ2 ≤ 1
r2α+1

1
ψN−1 (using (2.6.3) and (2.6.4)).

As for the terms involving the curvatures, we first note that, if (2.6.3)

holds then Λrad
π,r > 0 (see the proof of Corollary 3.1.1 below) and, by density

arguments, (3.1.2) yields

(N − 1)
4

�
M

Λrad
π,r u

2 dvg ≤
�
M

(
∂u

∂r

)2

dvg for all u ∈ H1(M) .

Hence, since u0ϕn ∈ W 1,2(M), we deduce that

(N − 1)
4

�
M

Λrad
π,r (u0ϕn)2 dvg ≤

�
M

(
∂(u0ϕn)
∂r

)2

dvg
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where the boundedness of the latter term and, in turn, of the first, follows

by (3.3.12).

Since for all terms listed above we have integrability at infinity whenever

α > 1 + a, by Lebesgue Theorem, we can pass to the limit in (3.3.13) as

R → +∞ and we conclude that
�
M

(
∂u0

∂r

)(
∂(u0ϕ

2
n)

∂r

)
dvg − (N − 1)

4

�
M

Λrad
π,r (u0ϕn)2 dvg

= 1
4

�
M

(u0ϕn)2

r2 dvg + (N − 1)(N − 3)
4

�
M

(u0ϕn)2

ψ2 dvg . (3.3.14)

Step 3. Next we observe that
�
M

(
∂u0

∂r

)(
∂(u0ϕ

2
n)

∂r

)
dvg =

�
M

(
∂(u0ϕn)
∂r

)2

dvg −
�
M

u2
0

(
∂ϕn
∂r

)2

dvg .

Note that, by the above discussion, the first two terms are well defined.

Furthermore, for r ≥ n, we have that

u2
0

(
∂ϕn
∂r

)2

ψN−1 = α2

r2α+1

which is in fact integrable for α > 0.

By using this into (3.3.14) we have
�
M

(
∂(u0ϕn)
∂r

)2

dvg − (N − 1)
4

�
M

Λrad
π,r (u0ϕn)2 dvg

= 1
4

�
M

(u0ϕn)2

r2 dvg + (N − 1)(N − 3)
4

�
M

(u0ϕn)2

ψ2 dvg

+
�
M

u2
0

(
∂ϕn
∂r

)2

dvg (3.3.15)

and by considering the quotient in (3.3.8) with u = u0ϕn, we obtain
�
M
u2

0

(
∂(u0ϕn)
∂r

)2
dvg dvg − (N−1)

4

�
M

Λrad
π,r (u0ϕn)2 dvg�

M
(u0ϕn)2

r2 dvg

= 1
4 + (N − 1)(N − 3)

4

�
M

(u0ϕn)2

ψ2 dvg�
M

(u0ϕn)2

r2 dvg
+

�
M
u2

0

(
∂ϕn

∂r

)2
dvg�

M
(u0ϕn)2

r2 dvg
.
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Then, from definition of CM and the above, we infer

CM ≤ 1
4 + (N − 1)(N − 3)

4

�
M

(u0ϕn)2

ψ2 dvg�
M

(u0ϕn)2

r2 dvg
+

�
M
u2

0

(
∂ϕn

∂r

)2
dvg�

M
(u0ϕn)2

r2 dvg
. (3.3.16)

Step 4. We estimate each term of the r.h.s. of (3.3.16). Note that ωN
denotes the N dimensional measure of unit sphere, hence a finite number.

First we estimate the denominator

�
M

(u0ϕn)2

r2 dvg = ωN

� ∞

0

(u0ϕn)2

r2 (ψ(r))(N−1) dr = ωN

� ∞

0

ϕ2
n

r
dr

≥ ωN

� n

2

ϕ2
n

r
dr + ωN

� ∞

n

ϕ2
n

r
dr

= ωN n
−2α

[
log(n2 ) + 1

2α

]
. (3.3.17)

Now we consider

�
M

u2
0

(
∂ϕn
∂r

)2

dvg = ωN

� ∞

0
u2

0(ϕ′
n)2(ψ(r))(N−1) dr = ωN

� ∞

0
r(ϕ′

n)2 dr

= ωN

� 2

1
r(ϕ′

n)2 dr + ωN

� ∞

n

r(ϕ′
n)2 dr

= ωN n
−2α

[
3
2 + α

2

]
. (3.3.18)

Finally, using integration by parts, α > 1, (2.6.4) and sinh r ≥ r, we
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obtain
�
M

(u0ϕn)2

ψ2 dvg

= ωN

� ∞

0

(u0ϕn)2

ψ2(r) (ψ(r))(N−1) dr

= ωN

� ∞

0

r(ϕn)2

ψ2(r) dr

= ωN

� 2

1

r(ϕn)2

ψ2(r) dr + ωN

� n

2

r(ϕn)2

ψ2(r) dr + ωN

� ∞

n

r(ϕn)2

ψ2(r) dr

≤ ωN

� 2

1

r n−2α(r − 1)2

sinh2 r
dr + ωN

� n

2

r n−2α

sinh2 r
dr + ωN

� ∞

n

r1−2α

sinh2 r
dr

≤ ωN n
−2α

sinh2 1

� 2

1
r(r − 1)2 dr + ωN n

−2α
� n

2
(csch r) dr + ωN

� ∞

n

r−1−2α dr

= ωN n
−2α

[
7

12 (sinh2 1)
+ log

∣∣∣∣∣exp(−n) − 1
exp(−n) + 1

∣∣∣∣∣− log
∣∣∣∣∣exp(−2) − 1
exp(−2) + 1

∣∣∣∣∣+ 1
α

]
.

(3.3.19)

Step 5. We are now in the final stage. Using (3.3.19) and (3.3.17) we

have for n → ∞,

�
M

(u0ϕn)2

ψ2 dvg�
M

(u0ϕn)2

r2 dvg
≤

7
12 (sinh2 1) + log

∣∣∣∣∣ exp(−n)−1
exp(−n)+1

∣∣∣∣∣− log
∣∣∣∣∣ exp(−2)−1

exp(−2)+1

∣∣∣∣∣+ 1
2α

log(n2 ) + 1
2α

→ 0

and, using (3.3.18) and (3.3.17), we deduce that

�
M
u2

0

(
∂ϕn

∂r

)2
dvg�

M
(u0ϕn)2

r2 dvg
≤

3
2 + α

2
log(n2 ) + 1

2α
→ 0 for n → ∞.

Finally, combining these two and (3.3.16), we can say that,

CM ≤ 1
4 + (N − 1)(N − 3)

4

�
M

(u0ϕn)2

ψ2 dvg�
M

(u0ϕn)2

r2 dvg
+

�
M
u2

0

(
∂ϕn

∂r

)2
dvg�

M
(u0ϕn)2

r2 dvg
= 1

4 + o(1) .

Hence, {u0ϕn} is the required minimizing sequence and, in turn, CM = 1
4 .
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Proof of Corollary 3.1.1. Recalling (3.1.2), we know that
�
M

(
∂u

∂r

)2

dvg ≥ N − 1
4

�
M

Λrad
π,r u

2 dvg + 1
4

�
M

u2

r2 dvg

+ (N − 1)(N − 3)
4

�
M

u2

ψ2 dvg,

for all u ∈ C∞
c (M). Therefore, to prove the statement, it is enough to show

that Λrad
π,r ≥ (N − 1) for all r > 0. This follows by using (2.6.3) and (2.6.4),

by which we deduce that

Λrad
π,r (r) =

[
2ψ

′′(r)
ψ(r) + (N − 3)((ψ′(r))2 − 1)

ψ2(r)

]
≥ (2 + (N − 3)) = N − 1

for all r > 0.

Proof of Corollary 3.1.2. Let M = HN , the statement of Corollary

3.1.2 comes from Theorem 3.1.2 by taking ψ(r) = sinh(r), once proved the

sharpness of the constants
(
N−1

2

)2
and (N−1)(N−3)

4 . This issue readily follows

from the sharpness of the same constants in inequality (1.1.5) otherwise, by

Gauss’s Lemma, we would get a contradiction.

3.4 Proof of Theorem 3.1.2

In this section we will prove the Theorem 3.1.2. For any u ∈ C∞
c (M) we have

∆r,gu = ∂2u

∂r2 + (N − 1)ψ
′

ψ

∂u

∂r
.

Exploiting the spherical harmonic decomposition, we write

u(x) := u(r, σ) =
∞∑
n=0

an(r)Pn(σ)

and we obtain

(∆r,gu)2 =
( ∞∑
n=0

(
a′′
n + (N − 1)ψ

′

ψ
a′
n

)
Pn

)2

and
(
∂u

∂r

)2

=
( ∞∑
n=0

a′
nPn

)2

.

50



3.4. Proof of Theorem 3.1.2

Recalling that {Pn} is orthonormal and by using polar coordinates and

integrating by parts, we get

�
M

(∆r,gu)2 dvg − (N − 1)
4

�
M

Λrad
π,r

(
∂u

∂r

)2

dvg

= ωN
∞∑
n=0

� ∞

0

[
(a′′
n)2 − (N − 1)(a′

n)2
(
ψ′

ψ

)′

− (N − 1)
4 Λrad

π,r (a′
n)2
]
ψN−1 dr .

Now, exploiting Theorem 3.1.1 for each a′
n, we get

� ∞

0
(a′′
n)2 ψN−1 dr ≥ (N − 1)

4

� ∞

0
Λrad
π,r (a′

n)2 ψN−1 dr

+ 1
4

� ∞

0

(a′
n)2

r2 ψN−1 dr + (N − 1)(N − 3)
4

� ∞

0

(a′
n)2

ψ2 ψN−1 dr

and, in turn, we infer

�
M

(∆r,gu)2 dvg − (N − 1)
4

�
M

Λrad
π,r

(
∂u

∂r

)2

dvg ≥ 1
4

�
M

1
r2

(
∂u

∂r

)2

dvg

+ (N2 − 1)
4

�
M

1
ψ2

(
∂u

∂r

)2

dvg + (N − 1)
�
M

[
Krad
π,r −H tan

π,r

](∂u
∂r

)2

dvg .

By rearranging we obtain the desired result.

Proof of Corollary 3.1.3. The desired inequality follows at once by

(3.1.7) simply noting that, when (2.6.3) and (3.1.8) holds, then

Λrad
π,r + 4(Krad

π,r −H tan
π,r ) ≥ N − 1 for all r > 0 .

See also the proof of Corollary 3.1.1.

Proof of Corollary 3.1.4. When M = HN all assumptions of Theorem

3.1.2 are satisfied and since Krad
π,r = H tan

π,r = −1, the desired inequality follows

at once. Concerning the sharpness of the constant
(
N−1

2

)2
, it follows by

combining (5.1.1) with (1.1.6) and Gauss’s lemma.
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For future purposes, we conclude the section by stating a further inequal-

ity that follows directly by combining Theorem 3.1.2 and Corollary 3.1.1:

Corollary 3.4.1. Let N ≥ 5 and M as given in (2.6.1) satisfying (2.6.3)

and (3.1.8). Then, for all u ∈ C∞
c (M) there holds

�
M

(∆r,gu)2 dvg ≥
(
N − 1

2

)4 �
M

u2 dvg + (N − 1)2

16

�
M

u2

r2 dvg

+ (N − 1)3(N − 3)
16

�
M

u2

ψ2 dvg

+ 1
4

�
M

1
r2

(
∂u

∂r

)2

dvg + (N2 − 1)
4

�
M

1
ψ2

(
∂u

∂r

)2

dvg .

(3.4.1)

3.5 Proof of Theorem 3.1.3

A key ingredient in the proof of Theorem 3.1.3 will be Lemma 3.5.1 be-

low which is proved buying the lines of [102, Theorem 5.2] where the same

inequality is given in HN . Here we extend its statement to more general

manifolds using Sturm Comparison Principle, i.e. our Lemma 2.6.1.

Lemma 3.5.1. Let (M, g) be an N-dimensional Riemannian model with

metric g as given in (2.6.1) with ψ satisfying (2.6.3). Then, for 0 ≤ β <

N − 4, there holds
�
M

(∆gu)2r−β dvg ≥
�
M

(∆r,gu)2r−β dvg for all u ∈ C∞
c (M). (3.5.1)

Moreover, the equality holds when u is a radial function.

Proof. Consider any u ∈ C∞
c (M), then

∆r,gu = ∂2u

∂r2 + (N − 1)ψ
′

ψ

∂u

∂r
and ∆gu = ∂2u

∂r2 + (N − 1)ψ
′

ψ

∂u

∂r
+ 1
ψ2 ∆SN−1 .
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3.5. Proof of Theorem 3.1.3

Now, by decomposing into spherical harmonics the above expressions, see

the proof of Theorem 3.1.2 for more details, we write

u(x) := u(r, σ) =
∞∑
n=0

an(r)Pn(σ) .

From this decomposition of u we have

∆r,gu =
∞∑
n=0

∆gan(r)Pn(σ)

and

∆gu =
∞∑
n=0

(
∆gan(r) − λn

an(r)
ψ(r)2

)
Pn(σ) .

Hence, to prove (3.5.1) it is enough to show that

λn

�
M

a2
n

rβψ4 dvg − 2
�
M

an(∆gan)
rβψ2 dvg ≥ 0 for all n ≥ 1.

Since we have that 2an(∆gan) = ∆g(a2
n) − 2|∇gan|2, using by parts for-

mula, the above inequality is equivalent to

λn

�
M

a2
n

rβψ4 dvg −
�
M

a2
n∆g

(
1

rβψ2

)
dvg + 2

�
M

|∇gan|2

rβψ2 dvg ≥ 0 for all n ≥ 1.

(3.5.2)

Set κ(r) := 1
rβψ2 , by exploiting (2.6.3), we have

−∆gκ(r) = κ(r)
(

2ψ
′′

ψ
+ 2(N − 4)ψ

′2

ψ2 − β(β + 1)
r2 + β(N − 5) ψ

′

rψ

)

≥ κ(r)
(

2 + 2(N − 4)ψ
′2

ψ2 − β(β + 1)
r2 + β(N − 5) ψ

′

rψ

)
. (3.5.3)

We claim that for f ∈ C∞
c (M) radial there holds

�
M

|∇gf |2

rβψ2 dvg ≥ (N − β − 4)2

4

�
M

f 2

rβψ4 dvg (3.5.4)

which, in polar coordinate, is equivalent to

� ∞

0
f ′2r−βψN−3 dr ≥ (N − β − 4)2

4

� ∞

0
f 2r−βψN−5 dr . (3.5.5)
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Integrating by parts we have the following

−
� ∞

0
ff ′rN−β−4

(ψ
r

)N−5
dr = (N − β − 4)

2

� ∞

0
f 2r−βψN−5 dr

+ (N − 5)
2

� ∞

0
f 2r−βψN−4

(
ψ′r − ψ

ψ2

)
dr .

(3.5.6)

On the other hand, using Young’s inequality and Lemma 2.6.1 by which
r
ψ

≤ 1 for all r > 0, we have

−
� ∞

0
ff ′ rN−β−4

(ψ
r

)N−5
dr = −

� ∞

0
(fr−β/2ψ(N−5)/2)(f ′r−β/2ψ(N−3)/2 r

ψ
) dr

≤ (N − β − 4)
4

� ∞

0
f 2r−βψN−5 dr + 1

(N − β − 4)

� ∞

0
f ′2r−βψN−3 dr

and, by combining the above inequality with (3.5.6) and recalling that by

Lemma 2.6.1 there holds
(
ψ′r−ψ
ψ2

)
≥ 0 for all r > 0, we obtain (3.5.5).

With the help of (3.5.3) and (3.5.4) into (3.5.2), it is enough to prove

�
M

a2
n

rβψ4

[
λn + (N − β − 4)2

2 + 2ψ2 + 2(N − 4)ψ′2

− β(β + 1)ψ
2

r2 + β(N − 5)ψ
′ψ

r

]
dvg ≥ 0

for all n ≥ 1, which, in our assumptions, follows by showing that

λn + (N − β − 4)2

2 + 2ψ2 + 2(N − 4)ψ′2 − β(β + 1)ψ
2

r2 + β(N − 5)ψ
′ψ

r
≥ 0

for all r > 0. Indeed, by (2.6.4) and (coth r) ≥ 1
r
, we can estimate the above

term by below as follows

λn + (N − β − 4)2

2 + 2ψ2 +
[
2(N − 4) − β(β + 1) + β(N − 5)

]
ψ2

r2 .
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Finally, the conclusion comes by noticing that

2(N − 4) − β(β + 1) + β(N − 5) ≥ 0

for all 0 ≤ β < N − 4.

Proof of Theorem 3.1.3. Let u ∈ C∞
c (M), by combining Corollary

3.4.1 and Lemma 3.5.1, we obtain�
M

(∆gu)2 dvg ≥
(
N − 1

2

)4 �
M

u2 dvg + (N − 1)2

16

�
M

u2

r2 dvg

+ (N − 1)3(N − 3)
16

�
M

u2

ψ2 dvg

+ 1
4

�
M

1
r2

(
∂u

∂r

)2

dvg + (N2 − 1)
4

�
M

1
ψ2

(
∂u

∂r

)2

dvg .

(3.5.7)

Now, from [102, Theorem 3.1], we know that for all u ∈ C∞
c (M) with

N ≥ 5 there holds�
M

1
r2

(
∂u

∂r

)2

dvg ≥ (N − 4)2

4

�
M

u2

r4 dvg

which, substituted into (3.5.7), gives�
M

(∆gu)2 dvg ≥
(
N − 1

2

)4 �
M

u2 dvg + (N − 4)2

16

�
HN

u2

r4 dvg

+ (N − 1)2

16

�
M

u2

r2 dvg + (N − 1)3(N − 3)
16

�
M

u2

ψ2 dvg

+ (N2 − 1)
4

�
M

1
ψ2

(
∂u

∂r

)2

dvg

and the non-negativity of last two terms immediately gives (3.1.11). This

concludes the proof.

3.6 Proof of Theorem 3.1.4

Let u ∈ C∞
c (M), by spherical harmonics decomposition we have

u(x) := u(r, σ) =
∞∑
n=0

an(r)Pn(σ) ,
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see again the proof of Theorem 3.1.2 for more details. Then,

|∇gu|2 =
∞∑
n=0

(a′
n)2P 2

n + a2
n

ψ2 |∇SN−1Pn|2

and

(∆gu)2 =
∞∑
n=0

(
a′′
n + (N − 1)ψ

′

ψ
a′
n

)2

P 2
n +

∞∑
n=0

a2
n

ψ4 (∆SN−1Pn)2

+ 2
∞∑
n=0

(
a′′
n + (N − 1)ψ

′

ψ
a′
n

)
an
ψ2 (∆SN−1Pn)Pn.

Let us compute the r.h.s. of (3.1.12) in terms of an and Pn. Using the

fact that
�
SN−1 PnPm dσ = δnm, we obtain

1
4

�
M

|∇gu|2

r2 dvg + (N2 − 1)
4

�
M

|∇gu|2

ψ2 dvg

= ωN
4

∞∑
n=0

[ � ∞

0

(a′
n)2

r2 ψN−1 dr + λn

� ∞

0

a2
n

r2ψ2ψ
N−1 dr

+ (N2 − 1)
� ∞

0

(a′
n)2

ψ2 ψN−1 dr + (N2 − 1)λn
� ∞

0

a2
n

ψ4ψ
N−1 dr

]
. (3.6.1)

Next we consider the l.h.s. of (3.1.12), we have
�
M

(∆gu)2 dvg −
(
N − 1

2

)2 �
M

|∇gu|2 dvg

= ωN
∞∑
n=0

� ∞

0

(a′′
n + (N − 1)ψ

′

ψ
a′
n

)2
ψN−1 dr

+ ωN

�
SN−1

� ∞

0

( ∞∑
n=0

a2
n

ψ4 (∆SN−1Pn)2
)
ψN−1 drdσ

+ 2ωN
�
SN−1

� ∞

0

( ∞∑
n=0

(
a′′
n + (N − 1)ψ

′

ψ
a′
n

)
an
ψ2 (∆SN−1Pn)Pn

)
ψN−1 drdσ

− ωN

(
N − 1

2

)2 � ∞

0

( ∞∑
n=0

(a′
n)2
)
ψN−1 dr

− ωN

(
N − 1

2

)2 � ∞

0

( ∞∑
n=0

λn
a2
n

ψ2

)
ψN−1 dr. (3.6.2)

We consider each term of the r.h.s. of (3.6.2) separately. First we use
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(3.1.7) for each an(r) and we get

∞∑
n=0

� ∞

0

(
a′′
n + (N − 1)ψ

′

ψ
a′
n

)2

ψN−1 dr ≥
(
N − 1

2

)2 ∞∑
n=0

� ∞

0
(a′
n)2ψN−1 dr

+ 1
4

∞∑
n=0

� ∞

0

(a′
n)2

r2 ψN−1 dr + (N2 − 1)
4

∞∑
n=0

� ∞

0

(a′
n)2

ψ2 ψN−1 dr . (3.6.3)

Then, we exploit the equation −∆SN−1Pn = λnPn, the orthonormal prop-

erties of the {Pn} and by parts formula to obtain

�
SN−1

� ∞

0

∞∑
n=0

a2
n

ψ4 (∆SN−1Pn)2ψN−1 drdσ = ωN
∞∑
n=0

λ2
n

� ∞

0

a2
n

ψ4ψ
N−1 dr

(3.6.4)

and

2
�
SN−1

� ∞

0

∞∑
n=0

(
a′′
n + (N − 1)ψ

′

ψ
a′
n

)
an
ψ2 (∆SN−1Pn)PnψN−1 drdσ

= −2 ωN
∞∑
n=0

λn

� ∞

0

(
a′′
n + (N − 1)ψ

′

ψ
a′
n

)
an
ψ2ψ

N−1 dr

= −2 ωN
∞∑
n=0

λn

� ∞

0
a′′
n anψ

N−3 dr − ωN(N − 1)
∞∑
n=0

λn

� ∞

0
(a2
n)′ ψ

′

ψ
ψN−3 dr

= 2 ωN
∞∑
n=0

λn

� ∞

0
(a′
n)2ψN−3 dr − 2 ωN

∞∑
n=0

λn

� ∞

0
(a2
n)′ ψ

′

ψ
ψN−3 dr

= 2 ωN
∞∑
n=0

λn

� ∞

0
(a′
n)2ψN−3 dr + 2 ωN

∞∑
n=0

λn

� ∞

0
a2
n

(
ψ′′

ψ
− (ψ′)2

ψ2

)
ψN−3 dr

+ 2(N − 3) ωN
∞∑
n=0

λn

� ∞

0
a2
n

(
ψ′

ψ

)2

ψN−3 dr

= 2 ωN
∞∑
n=0

λn

� ∞

0
(a′
n)2ψN−3 dr + 2 ωN

∞∑
n=0

λn

� ∞

0
a2
n

ψ′′

ψ
ψN−3 dr

+ 2(N − 4) ωN
∞∑
n=0

λn

� ∞

0
a2
n

(
ψ′

ψ

)2

ψN−3 dr . (3.6.5)

Now we estimate the first term of (3.6.5) by using (3.1.5) for “N − 2”

dimension. Notice that, to this aim, we need N − 2 ≥ 3, i.e. N ≥ 5. For the

remaining two terms we use (2.6.4), (2.6.3), (coth r)2 = 1 + 1
(sinh r)2 ≥ 1 + 1

ψ2
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and 1
r2 ≥ 1

ψ2 for r > 0, to obtain

2
�
SN−1

� ∞

0

∞∑
n=0

(
a′′
n + (N − 1)ψ

′

ψ
a′
n

)
an
ψ2 (∆SN−1Pn)PnψN−1 drdσ

≥ 2 ωN
(N − 3)2

4

∞∑
n=0

λn

� ∞

0
a2
nψ

N−3 dr + 2 ωN
1
4

∞∑
n=0

λn

� ∞

0

a2
n

r2 ψ
N−3 dr

+ 2 ωN
(N − 3)(N − 5)

4

∞∑
n=0

λn

� ∞

0

a2
n

ψ2ψ
N−3 dr

+ 2 ωN(N − 3)
∞∑
n=0

λn

� ∞

0
a2
nψ

N−3dr + 2(N − 4) ωN
∞∑
n=0

λn

� ∞

0

a2
n

ψ2ψ
N−3 dr

= ωN
(N − 3)(N + 1)

2

∞∑
n=0

λn

� ∞

0

a2
n

ψ2ψ
N−1 dr + ωN

4

∞∑
n=0

λn

� ∞

0

a2
n

r2ψ2ψ
N−1 dr

+ ωN
(2N2 − 8N − 1)

4

∞∑
n=0

λn

� ∞

0

a2
n

ψ4ψ
N−1 dr. (3.6.6)

Therefore, taking into account (3.6.3), (3.6.4), (3.6.6) and using the fact

that λn ≥ (N − 1) = λ1 into (3.6.2), we infer that�
M

(∆gu)2 dvg −
(
N − 1

2

)2 �
M

|∇gu|2 dvg ≥ ωN
4

∞∑
n=0

� ∞

0

(a′
n)2

r2 ψN−1 dr

+ ωN
4

∞∑
n=0

λn

� ∞

0

a2
n

r2ψ2ψ
N−1 dr + ωN

(N2 − 1)
4

∞∑
n=0

� ∞

0

(a′
n)2

ψ2 ψN−1 dr

+ ωN
(2N2 − 4N − 5)

4

∞∑
n=0

λn

� ∞

0

a2
n

ψ4ψ
N−1 dr

+ ωN

[
(N − 3)(N + 1)

2 −
(
N − 1

2

)2 ] ∞∑
n=0

λn

� ∞

0

a2
n

ψ2ψ
N−1 dr.

Hence, by noticing that
[

(N−3)(N+1)
2 −

(
N−1

2

)2 ]
≥ 0 and (2N2−4N−5)

4 ≥
(N2−1)

4 for N ≥ 5, and by combining the above inequality with (3.6.1), we

conclude that�
M

(∆gu)2 dvg ≥
(
N − 1

2

)2 �
M

|∇gu|2 dvg + 1
4

�
M

|∇gu|2

r2 dvg

+ (N2 − 1)
4

�
M

|∇gu|2

ψ2 dvg ,

which completes the chapter of the thesis.

————— ◦ —————
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Chapter 4

On Higher order Poincaré

Inequalities with radial

derivatives and Hardy

improvements on the

hyperbolic space

In this chapter, we will prove higher-order Poincaré inequalities involving

only radial derivatives. Then we will see the sharpness of the constant and

in the end, we will see the improvement of these inequalities with Hardy-type

remainder terms. The content of this chapter describes the paper [112].

4.1 Statement of main results

The N -dimensional hyperbolic space HN admits Riemannian Model mani-

fold structure (see Section 2.6) whose metric g is represented in spherical

coordinates as (2.6.1) with ψ(r) = sinh r. Let us first recall from (2.7.3) and
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(2.7.5), the following two quantities. For u ∈ C∞
c (HN) we write

∆r,HNu := ∂2u

∂r2 + (N − 1) coth r∂u
∂r

and ∇r,HNu :=
(∂u
∂r
, 0
)
.

These two quantities are so called radial contribution of the Laplace-Beltrami

operator and Riemannian gradient in HN respectively.

For notational economy we will always use ∆r,HN = ∆r, ∇r,HN = ∇r

and finally for any non-negative integer k we denote ∇k
r,HN = ∇k

r , which is

described as

∇k
r,HN :=


∆k/2
r,HN if k is even integer,

∇r,HN ∆(k−1)/2
r,HN if k is odd integer.

Before stating the main outcome we want to verify one useful tool in

Partial Differential Equation namely, integration by parts formula.

Lemma 4.1.1. Let f and g ∈ C∞
c (HN). Then it holds

�
HN

(∆rf) g dvHN = −
�
HN

(∇rf) · (∇rg) dvHN =
�
HN

f (∆rg) dvHN .

Proof. Exploiting polar coordinate transformation and by parts formula on

first variable i.e., in radial coordinate we deduce
�
HN

(∆rf) g dvHN =
�
SN−1

� ∞

0

(
∂2f

∂r2 + (N − 1)ψ
′

ψ

∂f

∂r

)
ψ(N−1) g dr dσ

= −
�
SN−1

� ∞

0

∂f

∂r

∂g

∂r
ψ(N−1) dr dσ = −

�
HN

(∇rf) · (∇rg) dvHN

=
�
SN−1

� ∞

0
f
∂2g

∂r2ψ
(N−1) dr dσ + (N − 1)

�
SN−1

� ∞

0
f
ψ′

ψ

∂g

∂r
ψ(N−1) dr dσ

=
�
HN

f (∆rg) dvHN .

We are now ready to state one of our main result.
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Theorem 4.1.1. For all non-negative integers l and k with 0 ≤ l < k and

for all N ≥ 3 there holds

�
HN

|∇k
ru|2 dvHN ≥

(
N − 1

2

)2(k−l) �
HN

|∇l
ru|2 dvHN for all u ∈ W k,2(HN).

(4.1.1)

Also the constant
(
N−1

2

)2(k−l)
is optimal in a sense that no inequality of the

form �
HN

|∇k
ru|2 dvHN ≥ Λ

�
HN

|∇l
ru|2 dvHN

holds, for u ∈ W k,2(HN), when Λ >
(
N−1

2

)2(k−l)
.

4.2 Proof of Theorem 4.1.1

We divide the proof into three steps. In the first step, we show the existence

of the inequality (4.1.1) and in the rest of the two steps, we will tackle the

optimality issues.

Step 1. Beginning with u ∈ C∞
c (HN), for the case k = 1 and l = 0, we

already have from (3.1.6)
�
HN

|∇ru|2 dvHN ≥
(
N − 1

2

)2 �
HN

u2 dvHN . (4.2.1)

Now we will arrive to the higher order Poincaré inequality in terms of

radial derivatives by using Lemma 4.1.1 and Hölder inequality step by step.
�
HN

|∇ru|2 dvHN =
�
HN

(∇ru) · (∇ru) dvHN

= −
�
HN

(∆ru) u dvHN = −
�
HN

(∇2
ru) u dvHN

≤
( �

HN

|∇2
ru|2 dvHN

) 1
2
(�

HN

u2 dvHN

) 1
2

≤ 2
(N − 1)

( �
HN

|∇2
ru|2 dvHN

) 1
2
(�

HN

|∇ru|2 dvHN

) 1
2

.
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By arranging these we deduce the case k = 2 and l = 1, which reads as
�
HN

|∇2
ru|2 dvHN ≥

(
N − 1

2

)2 �
HN

|∇ru|2 dvHN . (4.2.2)

Now we are ready to prove the higher order Poincaré inequality in terms

of radial derivatives using induction. Suppose k be an even integer with

k ≥ 2, then using (4.2.1) we get
�
HN

|∇k
ru|2 dvHN =

�
HN

|∆k/2
r u|2 dvHN

≤
(
N − 1

2

)−2 �
HN

|∇r∆k/2
r u|2 dvHN =

(
N − 1

2

)−2 �
HN

|∇k+1
r u|2 dvHN .

Assume k be an odd integer with k ≥ 3, then exploiting (4.2.2) we have
�
HN

|∇k
ru|2 dvHN =

�
HN

|∇r∆
k−1

2
r u|2 dvHN

≤
(
N − 1

2

)−2 �
HN

|∇2
r∆

k−1
2

r u|2 dvHN =
(
N − 1

2

)−2 �
HN

|∇k+1
r u|2 dvHN .

Finally use of (4.2.1) and (4.2.2) over and over yields the general case
�
HN

u2 dvHN ≤
(
N − 1

2

)−2 �
HN

|∇ru|2 dvHN ≤
(
N − 1

2

)−4 �
HN

|∇2
ru|2 dvHN

≤
(
N − 1

2

)−6 �
HN

|∇3
ru|2 dvHN ≤ · · · ≤

(
N − 1

2

)−2k �
HN

|∇k
ru|2 dvHN .

Now if we commence with any non-negative integer k and l with k > l,

then beginning with
�
HN |∇l

ru|2 dvHN and repeatedly exploiting (4.2.1) and

(4.2.2), we will get to
�
HN |∇k

ru|2 dvHN with appropriate constant. At the end

density arguments establish the result (4.1.1).

Step 2. In the rest of the section we discuss the optimality issues. The

argument runs similar like the proof of sharpness of constant in [100]. Radial
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behaviour of the operator on a radial function is crucially used here. Let us

write the integral representation of the volume of a ball in hyperbolic space

HN as follows

G(r) := NωN

� r

0
(sinh s)N−1 ds, (4.2.3)

where ωN denotes the surface measure of unit sphere SN−1 in the un-

derlying N -dimensional Euclidean space RN . Observe that this function

G(r) : [0,∞) → [0,∞) defines the hyperbolic volume of the ball with center

at fixed pole xo and radius r = ϱ(x, xo) i.e. G(r) := Vol(B(xo ; ϱ(x, xo))).

Note that G(r) is clearly continuous and strictly increasing function. Next

choose F (r) as inverse of G(r) and it’s clear that F (r) will be continuous,

strictly increasing function and satisfying

r = NωN

� F (r)

0
(sinh s)N−1 ds for r ≥ 0. (4.2.4)

In the above (4.2.4) using (sinh s) ≤ (cosh s) and exploiting L’Hospital’s

rule we deduce for any non-negative real number there hold

(N − 1)r ≤ NωN(sinhF (r))N−1 and lim
r→∞

NωN(sinhF (r))N−1

(N − 1)r = 1.

So by the definition of limit we can say that for any ϵ > 0 there exist real

number R0 such that whenever r ≥ R0 there holds

(N − 1)r ≤ NωN(sinhF (r))N−1 ≤ (1 + ϵ)(N − 1)r. (4.2.5)

Now for R > R0, let us define the radial function fR : [0,∞) → [0,∞) as

follows

fR(r) :=



R
− 1

2
0 if r ∈ [0, R0),

r− 1
2 if r ∈ [R0, R),

R− 1
2
(
2 − r

R

)
if r ∈ [R, 2R),

0 if r ∈ [2R,∞).
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Along with this function we define two more sequences of radial functions

{vR,i}i≥0 and {gR,i}i≥1 for i ≥ 0 in below :

(i) first define vR,0(r) := fR(r);

(ii) next construct the maximal function gR,i+1 := 1
r

� r
0 vR,i(t) dt;

(iii) finally we set vR,i+1 :=
� ∞
r

t gR,i+1(t)
(NωN (sinhF (t))N−1)2 dt.

These two non-increasing functions vR.i and gR,i can be computed explic-

itly. We are skipping the details here. Without giving the proof, we are

mentioning a key lemma which will crucially play an important role here.

For details refer to [100, Proposition 2.1].

Lemma 4.2.1. For any ϵ > 0 and i ≥ 1. there exist radial functions hR,i
and wR,i such that the following holds

(i) vR,i = hR,i + wR,i;

(ii) there exist positive real number C independent of R,

such that
� ∞

0 |wR,i|2 ds ≤ C;

(iii) and 1
(1+ϵ)2i

(
2

N−1

)2i
fR ≤ hR,i ≤

(
2

N−1

)2i
fR.

Step 3. Let us define the radial function in terms of fR,

uR(x) := fR(Vol(B(xo ; ϱ(x, xo)))).

Now we will compute
�
HN |uR|2 dvHN and

�
HN |∇ruR|2 dvHN separately and

finiteness of those quantities will confirm, uR ∈ W 1,2(HN). Shifting into

polar coordinate and by exploiting change of variable it follows,

�
HN

|uR(x)|2 dvHN =
� ∞

0

�
SN−1

|uR(r, σ)|2(sinh r)N−1 dσ dr

= NωN

� ∞

0
(fR(G(r)))2(sinh r)N−1dr =

� ∞

0
(fR(t))2 dt = ln

(
R

R0

)
+ 4

3 .
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Use of (4.2.5) yields
�
HN

|∇ruR(x)|2 dvHN =
� ∞

0

�
SN−1

∣∣∣ ∂
∂r
uR(r, σ)

∣∣∣2(sinh r)N−1 dσ dr

= NωN

� ∞

0
(f ′
R(G(r))G′(r))2(sinh r)N−1 dr

= (NωN)3
� ∞

0
(f ′
R(G(r)))2(sinh r)3(N−1) dr

= (NωN)2
� ∞

0
(f ′
R(t))2(sinhF (t))2(N−1) dt

≤ (1 + ϵ)2(N − 1)2
� ∞

0
(f ′
R(t))2t2 dt

= (N − 1)2

4 (1 + ϵ)2
[

ln
(
R

R0

)
+ 28

3

]
.

Next considering the ratios of these two quantities we deduce

inf
u∈W 1,2(HN )\{0}

�
HN |∇ru|2 dvHN�
HN |u|2 dvHN

≤ lim inf
R→∞

�
HN |∇ruR|2 dvHN�
HN |uR|2 dvHN

≤
(
N − 1

2

)2

(1 + ϵ)2.

So from the existence inequality (4.1.1), for the case k = 1, l = 0 and

letting ϵ towards zero we can conclude
(
N−1

2

)2
is optimal constant. It’s

worth noticing that, by the help of Gauss’s Lemma one can quickly infer

that
(
N−1

2

)2
is the best constant whenever k = 1 and l = 0 but this method

will help us to comment about the optimality of the other higher index cases.

Next we will deal with the case k = 2 and l = 0. In this context we define

uR(x) := vR,1(Vol(B(xo ; ϱ(x, xo)))).

Due to the radial behaviour of uR(x) and by the definition of vR,1 we can

write

−∆ruR = −∆HNuR = fR(Vol(B(xo ; ϱ(x, xo)))).

Now like earlier we have that
�
HN

|∆ruR|2 dvHN =
�
HN

|fR(Vol(B(xo ; ϱ(x, xo))))|2 dvHN = ln
(
R

R0

)
+ 4

3 .
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By the help of the Lemma 4.2.1, polar coordinate transformation and

change of variable we deduce

(�
HN

|uR(x)|2 dvHN

) 1
2 =

( � ∞

0
|vR,1(r)|2dr

) 1
2

≥
( � ∞

0
|hR,1(r)|2dr

) 1
2 −

( � ∞

0
|wR,1(r)|2dr

) 1
2

≥ 4
(1 + ϵ)2(N − 1)2

[
ln
(
R

R0

)
+ 4

3

] 1
2

− C.

Again this implies

inf
u∈W 2,2(HN )\{0}

�
HN |∆ru|2 dvHN�
HN |u|2 dvHN

≤ lim inf
R→∞

�
HN |∆ruR|2 dvHN�
HN |uR|2 dvHN

≤
(
N − 1

2

)4

(1 + ϵ)4.

So the inequality (4.1.1) and letting ϵ towards zero we obtain
(
N−1

2

)4
is the

best constant for the case k = 2 and l = 0. Recall that, exploiting [29, Lemma

6.1] we can tackle the optimality issue but once again this method will help

to speak about the other sharpness cases.

Now consider the case k = 2m, l = 0 and we define

uR(x) := vR,m(Vol(B(xo ; ϱ(x, xo)))).

Again due to the radial nature of the function it is easy to see that

(−∆r)muR(x) = (−∆HN )muR(x) = fR(Vol(B(xo ; ϱ(x, xo)))).

Exploiting Lemma 4.2.1 for the case i = m and running similar argument

like earlier we deduce the constant
(
N−1

2

)4m
is best possible.

Now consider the case k = 2m + 1, l = 0 and if possible assume there

exist a constant Θ such that for u ∈ C∞
c (HN) there holds

Θ
�
HN

|u|2 dvHN ≤
�
HN

|∇r(∆m
r u)|2 dvHN .
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But from earlier evaluation, we know the constant is sharp for the case k =

2m + 2, l = 0. So using this and inequality (4.1.1) for the case k = 2, l = 1

we can write

Θ
�
HN

|u|2 dvHN ≤
�
HN

|∇r(∆m
r u)|2 dvHN ≤

(
N − 1

2

)−2 �
HN

|∆m+1
r u|2 dvHN .

This implies

Θ
(
N − 1

2

)2

≤
(
N − 1

2

)2m+4

=⇒ Θ ≤
(
N − 1

2

)2m+2

.

This and density argument proves that, for the case k = 2m + 1 and l = 0,

whenever u ∈ W 2m+1,2(HN), the constant
(
N−1

2

)2m+2
is optimum. Hence by

the same technique we can prove that, constant
(
N−1

2

)2(k−l)
is sharp for any

non-negative integer k and l with k > l, whenever u ∈ W k,2(HN).

Remark 4.2.1. From the result in Theorem 4.1.1, we can write

inf
u∈W k,2(HN )\{0}

�
HN |∇k

ru|2 dvHN�
HN |∇l

ru|2 dvHN

=
(
N − 1

2

)2(k−l)

and for this reason, always strict inequality holds in (4.1.1), except u = 0. So

this observation opens the account for improvement of (4.1.1) and to support

this we proceed to the subsequent sections.

4.3 Preparatory results for improvement

In this section, we will mainly focus on some useful lemmas which will help

to construct improvement of (4.1.1). We want to point out that Spherical

decomposition (see Section 2.8) is the key method here. The first application

of this method will be the establishment of weighted Hardy inequality in

terms of radial derivatives. For a similar type of result, one can refer to [28,

Theorem 5.1].
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Theorem 4.3.1. Assume that 0 ≤ 2α < (N+3). For all u ∈ C∞
c (HN \{xo}),

there holds

�
HN

|∇ru|2

rα
dvHN ≥ (N − 2 − α)2

4

�
HN

u2

rα+2 dvHN

+ (N − 1)
2

�
HN

u2

rα
dvHN + (N − 1)(N − 3 − 2α)

4

�
HN

g(r)u
2

rα
dvHN , (4.3.1)

where g(r) = r coth r−1
r2 is a positive function. Moreover, the constant (N−2−α)2

4

is optimal in the obvious sense.

Proof. Start with u ∈ C∞
c (HN \ {xo}) and we define

v(x) = (sinh r)(N−1)/2u(x)r−α/2 where x = (r, σ) ∈ (0,∞) × SN−1.

An easy calculation gives

1
rα/2

∂u

∂r
= 1

(sinh r)
(N−1)

2

[
∂v

∂r
− (N − 1)

2 (coth r) v + α

2
v

r

]
.

After squaring the above term, we observe

�
HN

|∇ru|2

rα
dvHN

=
�
HN

1
(sinh r)(N−1)

(
∂v

∂r

)2

dvHN + (N − 1)2

4

�
HN

(coth r)2

(sinh r)(N−1) v
2 dvHN

+ α2

4

�
HN

1
(sinh r)(N−1)

v2

r2 dvHN − (N − 1)
�
HN

(coth r)
(sinh r)(N−1)

∂v

∂r
v dvHN

+ α

�
M

1
(sinh r)(N−1)

∂v

∂r

v

r
dvHN − α(N − 1)

2

�
M

(coth r)
(sinh r)(N−1)

v2

r
dvHN .

Now expanding v in spherical harmonics v(x) := v(r, σ) = ∑∞
n=0 dn(r)Pn(σ),
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we obtain
�
HN

|∇ru|2

rα
dvHN =

∞∑
n=0

[ � ∞

0
d′
n

2 dr + (N − 1)2

4

� ∞

0
(coth r)2 d2

n dr

+ α2

4

� ∞

0

d2
n

r2 dr − (N − 1)
� ∞

0
(coth r) d′

ndn dr

+ α

� ∞

0

d′
ndn
r

dr − α(N − 1)
2

� ∞

0
(coth r)d

2
n

r
dr
]

=
∞∑
n=0

[ � ∞

0
d′
n

2 dr + (N − 1)2

4

� ∞

0
(coth r)2 d2

n dr + α2

4

� ∞

0

d2
n

r2 dr

− (N − 1)
2

� ∞

0

d2
n

(sinh r)2 dr + α

2

� ∞

0

d2
n

r2 dr − α(N − 1)
2

� ∞

0
(coth r)d

2
n

r
dr
]
.

Observing that

(N − 1)2

4

� ∞

0
(coth r)2 d2

n dr − (N − 1)
2

� ∞

0

d2
n

(sinh r)2 dr

= (N − 1)2

4

� ∞

0
d2
n dr + (N − 1)(N − 3)

4

� ∞

0

d2
n

(sinh r)2 dr,

and using 1-dimensional Hardy inequality and (coth r) ≥ 1/r, we infer
�
HN

|∇ru|2

rα
dvHN ≥

∞∑
n=0

[
(α + 1)2

4

� ∞

0

d2
n

r2 dr + (N − 1)2

4

� ∞

0
d2
n dr

+ (N − 1)(N − 3)
4

� ∞

0

d2
n

(sinh r)2 dr − α(N − 1)
2

� ∞

0
(coth r)d

2
n

r
dr
]

=
∞∑
n=0

[
(α + 1)2

4

� ∞

0

d2
n

r2 dr +
[

(N − 1)2

4 − (N − 1)(N − 3)
4

] � ∞

0
d2
n dr

+ (N − 1)(N − 3)
4

� ∞

0
(coth r)2d2

n dr − α(N − 1)
2

� ∞

0
(coth r)d

2
n

r
dr
]

≥
∞∑
n=0

[
(α + 1)2

4

� ∞

0

d2
n

r2 dr + (N − 1)
2

� ∞

0
d2
n dr

+
[

(N − 1)(N − 3)
4 − α(N − 1)

2

] � ∞

0
(coth r)d

2
n

r
dr
]

=
∞∑
n=0

[
(N − 2 − α)2

4

� ∞

0

d2
n

r2 dr + (N − 1)
2

� ∞

0
d2
n dr

+ (N − 1)(N − 3 − 2α)
4

� ∞

0
g(r) d2

n dr
]
.
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Finally writing all the above terms w.r.t. u we establish our desired

Theorem 4.3.1. Optimality of the constant (N−2−α)2

4 was already established

in [102, Theorem 3.1].

Remark 4.3.1. The coefficient in front of the last term in (4.3.1) is negative

whenever N − 3 < 2α. Note that g(r) ≤ 1/3 for every r > 0, we deduce
(N − 1)

2 + (N − 1)(N − 3 − 2α)
12 = (N − 1)(N + 3 − 2α)

12 > 0

for N + 3 > 2α. Hence, the initial restriction of dimension in (4.3.1) is

justified. Also note that exploiting Gauss’s Lemma in (4.3.1) we can obtain

different version of weighted Hardy inequality. Another implication of (4.3.1)

is an immediate improvement of [102, Theorem 3.1] for the case p = 2.

By granting, N − 3 ≥ 2α in (4.3.1), one has the following corollary:

Corollary 4.3.1. Let 0 ≤ 2α ≤ N − 3. Then, for all u ∈ C∞
c (HN \ {xo}),

there holds�
HN

|∇ru|2

rα
dvHN ≥ (N − 2 − α)2

4

�
HN

u2

rα+2 dvHN + (N − 1)
2

�
HN

u2

rα
dvHN .

(4.3.2)

Furthermore, the constant (N−2−α)2

4 is sharp in the obvious sense.

Now we will develop weighted Rellich type inequality with Hardy type

remainder terms which is an analogous result of [28, Theorem 5.2]. Before

going into detail first recall another important lemma.

Lemma 4.3.1. For all u ∈ C∞
c (HN), there holds ∆r(u2) = 2u(∆ru) +

2|∇ru|2.

Proof. This follows from it’s own definition and by simple calculation

∆r(u2) = ∂2u2

∂r2 + (N − 1)(coth r)∂u
2

∂r
= 2 ∂

∂r

(
u
∂u

∂r

)
+ 2(N − 1)(coth r)∂u

∂r
u

= 2u∂
2u

∂r2 + 2
(∂u
∂r

)2
+ 2u(N − 1)(coth r)∂u

∂r
= 2u(∆ru) + 2|∇ru|2.
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4.3. Preparatory results for improvement

Exploiting Lemma 4.3.1 and Theorem 4.3.1, we state a weighted Rellich

inequality.

Theorem 4.3.2. Let α be a positive number and N > max{α + 2, 2α − 3}.

For all u ∈ C∞
c (HN \ {xo}), there holds

�
HN

|∆ru|2

rα−2 dvHN ≥ (N − 2 − α)2(N − 2 + α)2

16

�
HN

u2

rα+2 dvHN

+ (N − 2 − α)(N − 2 + α)(N − 1)
4

�
HN

u2

rα
dvHN

+ (N − 1)(N − 3 − 2α)(N − 2 − α)(N − 2 + α)
8

�
HN

g(r)u
2

rα
dvHN , (4.3.3)

where g(r) is as defined in (4.3.1). Moreover, the constant (N−2−α)2(N−2+α)2

16

is sharp in the obvious sense.

Proof. This proof mainly relies on the inequality (4.3.1). Notice that, when-

ever α > 0, there holds

−∆r
1
rα

= −∆HN

1
rα

≥ α(N − 2 − α)
rα+2 for r > 0.

First we multiply above by u2 and after that performing by parts formula,

Lemma 4.3.1 and Young’s inequality with ϵ > 0, we deduce
�
HN

|∆ru|2

rα−2 dvHN ≥ 2ϵ
�
HN

|∇ru|2

rα
dvHN +

[
ϵα(N − 2 − α) − ϵ2

] �
HN

u2

rα+2 dvHN

≥
[
ϵα(N − 2 − α) − ϵ2 + ϵ

(N − 2 − α)2

2
] �

HN

u2

rα+2 dvHN

+ ϵ(N − 1)
�
HN

u2

rα
dvHN + ϵ

(N − 1)(N − 3 − 2α)
2

�
HN

g(r)u
2

rα
dvHN .

Now the coefficient in front of
�
HN u

2/rα+2 dvHN will be maximum when

ϵ = (N−2−α)(N−2+α)
4 and substituting this we obtain our required result. Op-

timality issue of the constant (N−2−α)2(N−2+α)2

16 was already tackled in [102,

Theorem 4.3].

Remark 4.3.2. Exploiting [29, Lemma 6.1] in (4.3.3) we can deduce another

version of weighted Rellich inequality with Hardy type remainder terms. Also
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it is important to notice that, (4.3.2) gives one more version of immediate

improvement of [102, Theorem 4.3] for the case p = 2.

Collecting the conditions in Theorem 4.3.2 and 2α ≤ N − 3, one has the

following corollary:

Corollary 4.3.2. Let 0 ≤ 2α ≤ N − 3. Then for all u ∈ C∞
c (HN \ {xo}),

there holds
�
HN

|∆ru|2

rα−2 dvHN ≥ (N − 2 − α)2(N − 2 + α)2

16

�
HN

u2

rα+2 dvHN

+ (N − 2 − α)(N − 2 + α)(N − 1)
4

�
HN

u2

rα
dvHN . (4.3.4)

Moreover, the constant (N−2−α)2(N−2+α)2

16 is sharp in the obvious sense.

In the rest of the part, we will construct more weighted Hardy and Rellich

type inequalities in terms of radial derivatives. Most of the ideas are taken

from [119]. It is worth mentioning that, here we will only discuss the results

for the case p = 2 but one can verify that, same things hold true in the case

of Lp Hardy inequality on HN , with p ≥ 2. First, we describe an important

lemma below.

Lemma 4.3.2. Let N ≥ 3. For all u ∈ C∞
c (HN \ {xo}), there holds

�
HN

r2−N |u|2 dvHN ≤ 4
�
HN

r2−N |∇ru|2 dvHN . (4.3.5)

Proof. First observe that

[r2−N(sinh r)N−1]′

[r2−N(sinh r)N−1] = 1
r

+ (N − 1)
[

coth r − 1
r

]
≥ 1.

Indeed, the above inequality holds true. It is easy to see the above in-

equality is equivalent to the following

(N − 1)(r coth r − 1) ≥ (r − 1).
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First consider the case, r ≥ 1, then the above holds true follows from the fact

that N ≥ 3 and coth r > 1, r > 0. In the remaining case, i.e., for 0 < r < 1,

inequality holds true follows from the fact that [coth r − 1
r
] ≥ 0 and 1

r
> 1.

Then, exploiting by parts formula and Hölder inequality into above, we derive
�
HN

r2−N |u|2 dvHN =
�
SN−1

� ∞

0
r2−N(sinh r)N−1|u|2 dr dσ

≤
�
SN−1

� ∞

0
[r2−N(sinh r)N−1]′ |u|2 dr dσ

= −2
�
SN−1

� ∞

0
r2−N(sinh r)N−1u

∂u

∂r
dr dσ

≤ 2
(�

SN−1

� ∞

0
r2−N(sinh r)N−1|u|2 dr dσ

)1/2

×
(�

SN−1

� ∞

0
r2−N(sinh r)N−1|∇ru|2 dr dσ

)1/2

.

Finally shifting in the original coordinate we get the desired result.

Let us define the quantity

µr(HN) = inf
u∈C∞

c (HN \{xo})\{0}

�
HN r

2−N |∇ru|2 dvHN�
HN r2−N |u|2 dvHN

.

In turn of Lemma 4.3.2, we deduce µr(HN) ≥ 1/4. In fact better estimate

of µr(HN) holds true.

Lemma 4.3.3. Let N ≥ 3. Then there holds µr(HN) ≥ N−1
4 .

Proof. Start with the function u =
(
2 cosh2(r/2))(1−N)/2v. After going along

with the exactly same estimate in [119, Theorem 5.2], we will deduce the

result. Taking the advantage of radial function ζ(r) =
(
2 cosh2(r/2))(1−N)/2

and exploiting Lemma 4.1.1, we will arrive at the same conclusion.

Now we are ready to establish the analogous version of [119, Theorem 4.2]

and due to Gauss’s Lemma, the following theorem comes out as a stronger

version of it.
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Theorem 4.3.3. Let 0 ≤ α < N − 2 with N ≥ 3. Then for all u ∈

C∞
c (HN \ {xo}), there holds
�
HN

|∇ru|2

rα
dvHN ≥ (N − 2 − α)2

4

�
HN

u2

rα+2 dvHN + (N − 1)
4

�
HN

u2

rα
dvHN ,

(4.3.6)

where the constant (N−2−α)2

4 is sharp in the obvious sense.

Proof. Start with the substitution u = r(2+α−N)/2v and from a simple calcu-

lation, we have that

|∇ru|2 =
(

2 + α−N

2

)2(
u

r

)2

+ r2+α−N |∇rv|2 + 2
(

2 + α−N

2

)
r1+α−Nv

∂v

∂r
.

Before performing integration, first multiply above by 1/rα and we obtain
�
HN

|∇ru|2

rα
dvHN =

(
N − 2 − α

2

)2 �
HN

u2

rα+2 dvHN +
�
HN

r2−N |∇rv|2 dvHN

− (N − α− 2)
�
HN

r1−Nv
∂v

∂r
dvHN .

Transferring into polar coordinate and using by parts rule, we deduce

− (N − α− 2)
�
HN

r1−Nv
∂v

∂r
dvHN

= (N − α− 2)(N − 1)
2

�
HN

r1−Nv2
[

coth r − 1
r

]
dvHN .

Exploiting Taylor series expansion of cosh r and sinh r near origin, for

0 < r ≤ 1, we deduce

(coth r − 1
r

) = 1
r sinh r

(
r cosh r − sinh r

)
= 1
r sinh r

(
r

∞∑
n=0

r2n

(2n)! −
∞∑
n=0

r2n+1

(2n+ 1)!

)

≥ 1
r sinh r · r

3

3
≥ r

3 sinh 1 .
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The last inequality follows from the fact that, the function g(r) := r sinh 1 −

sinh r is in C2([0, 1]) and concave in [0, 1] with zero on the boundary and

hence g(r) ≥ 0 whenever 0 < r ≤ 1. By the above estimate along with the

Lemma 4.3.3 and getting back into the form of u, we derive

�
HN

|∇ru|2

rα
dvHN ≥

(
N − 2 − α

2

)2 �
HN

u2

rα+2 dvHN

+ (N − 1)
4

�
HN

u2

rα
dvHN + (N − α− 2)(N − 1)

6 sinh 1

�
B(o;1)

u2

rα
dvHN .

In the end, non-negativity of the last term immediately gives (4.3.3).

Taking Theorem 4.3.3 as weighted Hardy inequality and adopting the

similar technique exploited in Theorem 4.3.2, one has the following version

of weighted Rellich inequality.

Corollary 4.3.3. Let 0 ≤ α < N − 2 with N ≥ 3. Then for all u ∈

C∞
c (HN \ {xo}) there holds

�
HN

|∆ru|2

rα−2 dvHN ≥ (N − 2 − α)2(N − 2 + α)2

16

�
HN

u2

rα+2 dvHN

+ (N − 2 − α)(N − 2 + α)(N − 1)
8

�
HN

u2

rα
dvHN . (4.3.7)

Moreover, the constant (N−2−α)2(N−2+α)2

16 is sharp in the obvious sense.

Observing into both the weighted Rellich inequalities (4.3.4) and (4.3.7),

one can wonder, whether more better improvement possible near ori-

gin, precisely can we add one more Hardy type remainder term namely,�
HN u

2/rα−2 dvHN . To give affirmative answer of this question, first we de-

velop the following lemma.

Lemma 4.3.4. Let −2 ≤ α < N − 4 and u ∈ C∞
c (HN \ {xo}). Then there

75



CHAPTER 4. ON HIGHER ORDER POINCARÉ INEQUALITIES WITH RADIAL
DERIVATIVES AND HARDY IMPROVEMENTS ON THE HYPERBOLIC SPACE

holds �
HN

r−α|∆ru+ (N + α)(N − α− 4)
4

u

r2 |2 dvHN

≤
�
HN

|∆ru|2

rα
dvHN − (N + α)(N − α− 4)

2

�
HN

|∇ru|2

rα+2 dvHN

+ (N + α)(N − 3α− 8)(N − α− 4)2

16

�
HN

u2

rα+4 dvHN .

Proof. Exploiting (coth r) ≥ 1/r, we deduce

∆r(r−α−2) ≤ (α + 2)(α + 4 −N)r−α−4.

Applying by parts formula and Lemma 4.3.1, in the above inequality, we

infer�
HN

u∆ru

rα+2 dvHN ≤ −(α + 2)(N − α− 4)
2

�
HN

u2

rα+4 dvHN −
�
HN

|∇ru|2

rα+2 dvHN .

(4.3.8)

Finally, the conclusion comes by noting that�
HN

r−α|∆ru+ (N + α)(N − α− 4)
4

u

r2 |2 dvHN

=
�
HN

|∆ru|2

rα
dvHN + (N + α)2(N − α− 4)2

16

�
HN

u2

rα+4 dvHN

+ (N + α)(N − α− 4)
2

�
HN

u∆ru

rα+2 dvHN .

Now using Lemma 4.3.4 and weighted Hardy inequality (4.3.6), we obtain

the following weighted Rellich type inequality. Also note that, exploiting [29,

Lemma 6.1], this version will become stronger than [119, Theorem 4.4] and

will give a quick improvement of [102, Theorem 4.3], for the case p = 2.

Theorem 4.3.4. Let 0 ≤ α < N −4. Then for all u ∈ C∞
c (HN \{xo}), there

holds�
HN

|∆ru|2

rα
dvHN ≥ (N + α)2(N − 4 − α)2

16

�
HN

u2

rα+4 dvHN (4.3.9)

+ (N − 1)(N − 2 − α)(N − 2 + α)
8

�
HN

u2

rα+2 dvHN + (N − 1)2

16

�
HN

u2

rα
dvHN .
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Moreover, the constant (N+α)2(N−4−α)2

16 is sharp in the obvious sense.

Proof. Replacing the index α by α−2 in (4.3.8) and then substituting (4.3.6)

into it, we deduce

(α + 1)
�
HN

u2

rα+2 dvHN + (N − 1)
4

�
HN

u2

rα
dvHN

≤
�
HN

u

rα

[
− ∆ru− (N + α)(N − α− 4)

4
u

r2

]
dvHN .

Now we estimate the last term by Young’s inequality with ϵ > 0 and

taking a =
∣∣∣ u
rα/2

∣∣∣ and b =
∣∣∣r−α/2

[
− ∆ru− (N+α)(N−α−4)

4
u
r2

]∣∣∣, we obtain

2ϵ(α + 1)
�
HN

u2

rα+2 dvHN + ϵ(N − 1 − 2ϵ)
2

�
HN

u2

rα
dvHN

≤
�
HN

r−α|∆ru+ (N + α)(N − α− 4)
4

u

r2 |2 dvHN .

Next we exploit the information that, function f(ϵ) = ϵ(N − 1 − 2ϵ)/2

attains maximum when ϵ = (N − 1)/4. Finally, applying Lemma 4.3.4 and

Theorem 4.3.3, in the form of changed index α by α + 2, we achieve our

desired result.

We establish Theorem 4.3.4, using Theorem 4.3.3 and Lemma 4.3.4. On

the other hand, in a similar way, we can deduce Corollary 4.3.4 using Corol-

lary 4.3.1 instead of Theorem 4.3.3 in the proof of Theorem 4.3.4.

Corollary 4.3.4. Let 0 ≤ 2α ≤ N − 7. Then for all u ∈ C∞
c (HN \ {xo}),

there holds
�
HN

|∆ru|2

rα
dvHN ≥ (N + α)2(N − 4 − α)2

16

�
HN

u2

rα+4 dvHN (4.3.10)

+ (N − 1)(N − 2 − α)(N − 2 + α)
4

�
HN

u2

rα+2 dvHN + (N − 1)2

4

�
HN

u2

rα
dvHN .

Moreover, the constant (N+α)2(N−4−α)2

16 is sharp in the obvious sense.

Remark 4.3.3. If we compare both the weighted Hardy inequalities in Corol-

lary 4.3.1 and Theorem 4.3.3, one can observe that coefficient in front of
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HN u

2/rα dvHN in the equation (4.3.2) is better than (4.3.6). But it’s also

important to notice that, (4.3.2) demands larger dimension restriction than

(4.3.6). Analogous observation also holds true for the case of weighted Rel-

lich inequalities in Corollary 4.3.4 and Theorem 4.3.4. Moreover, for both

the cases we are getting one instance, where µr(HN) > (N − 1)/4 is possible.

Iterating inequality (4.3.9), we obtain the following improved weighted

Rellich inequality on higher order radial derivation on HN and this result

will be used many times in the last part of the chapter.

Lemma 4.3.5. Let β be a positive integer, which satisfy 0 ≤ α < N − 4β.

Then there exist positive constants Ξj
α,β, for j = 0 to 2β, such that for all

u ∈ C∞
c (HN \ {xo}), there holds

�
HN

(∆β
ru)2

rα
dvHN ≥

2β∑
j=0

Ξj
α,β

�
HN

u2

rα+4β−2j dvHN . (4.3.11)

Moreover, the coefficient corresponding to the leading terms namely Ξ0
α,β and

Ξ2β
α,β, for r → 0 and r → ∞ respectively, can be explicitly given by as follows

Ξ0
α,β =

β−1∏
j=0

(N + (α + 4j))2(N − (α + 4j) − 4)2

16

and

Ξ2β
α,β =

(
N − 1

4

)2β

for β ≥ 1 and α ≥ 0.

Finally after iterating (4.3.10), we deduce the following result but with a

different initial condition.

Lemma 4.3.6. Let β be a positive integer, which satisfy 0 ≤ 2α ≤ N−8β+1.

Then there exist positive constants ζjα,β, for j = 0 to 2β, such that for all

u ∈ C∞
c (HN \ {xo}), there holds

�
HN

(∆β
ru)2

rα
dvHN ≥

2β∑
j=0

ζjα,β

�
HN

u2

rα+4β−2j dvHN , (4.3.12)

where ζ0
α,β = Ξ0

α,β and ζ2β
α,β = 4β Ξ2β

α,β, for β ≥ 1 and α ≥ 0.
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In the rest of the chapter for notational convention we will be assuming

Ξ0
n,0 = 1 and ζ0

n,0 = 1, for every integer n. Also we will assume ∑n
j=m = 0

and ∏n
j=m = 1, whenever integers satisfy n < m.

4.4 Improvement of Higher order radial

Poincaré inequalities

This section is devoted to the proof of (1.2.5). In the same spirit to explore

further in l.h.s. of (3.1.10), exploiting (4.3.6) for the case of α = 2 into

it, we deduce with a different constant than [26, Theorem 2.1] that, for all

u ∈ C∞
c (HN \ {xo}) and N ≥ 5, there holds,

�
HN

|∆ru|2 dvHN ≥
(
N − 1

2

)2 �
HN

|∇ru|2 dvHN

+ (N − 4)2

16

�
HN

u2

r4 dvHN + (N − 1)
16

�
HN

u2

r2 dvHN . (4.4.1)

Furthermore, using (3.1.6) in (4.4.1), we obtain for all u ∈ C∞
c (HN \{xo})

with N ≥ 5 there holds
�
HN

|∆ru|2 dvHN ≥
(
N − 1

2

)4 �
HN

u2 dvHN

+ (N − 4)2

16

�
HN

u2

r4 dvHN + N(N − 1)
16

�
HN

u2

r2 dvHN .

(4.4.2)

Indeed, all these lower order improvements can be lifted into the general

higher order indices scenario. In particular, applying these lower order indices

results and induction we will approach towards the development of the result

(1.2.5). In the coming part, we will mainly rely on the Lemma 4.3.5 and

Lemma 4.3.6. We divide this section into a couple of subsections to cover

up all the possible higher order indices k, l and side by side we will explicitly

calculate the coefficients corresponding to the asymptotic terms r → 0 and

r → ∞ also.
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General integer k and l = 0. This part is divided into two steps based

on the situation k is odd or even. First we state the results and after that

we will give the details of the proof.

Theorem 4.4.1. Let k be a positive integer and N > 2k. Then there exist

k positive constants Ci
k,0 such that the following inequality holds

�
HN

|∇k
ru|2 dvHN −

(
N − 1

2

)2k �
HN

u2 dvHN ≥
k∑
i=1

Ci
k,0

�
HN

u2

r2i dvHN , (4.4.3)

for all u ∈ C∞
c (HN \ {xo}). Moreover, the leading terms are explicitly given

by

Ck
k,0 =



(
N − 4
22m

)2 m−1∏
j=1

(N + 4j)2(N − 4j − 4)2 if k = 2m,

1
24m+2

m∏
j=1

(N + 4j − 2)2(N − 4j − 2)2 if k = 2m+ 1,

and

C1
k,0 =



N(N − 1)
24m

m∑
j=1

(N − 1)4m−2j−2 if k = 2m,

N(N − 1)
24m+2

m∑
j=1

(N − 1)2m+2j−2 + (N − 1)2m

24m+2 if k = 2m+ 1.

Proof. Suppose k = 2m even, we will apply induction m. For the basic step

we already have the result in (4.4.2). Now assume it holds true for the case

k = 2m− 2 ≥ 2, which describes that for N > 4m− 4, there holds
�
HN

(∆m−1
r u)2 dvHN −

(
N − 1

2

)4m−4 �
HN

u2 dvHN

≥ N(N − 1)
24m−4

m−1∑
j=1

(N − 1)4m−2j−6
�
HN

u2

r2 dvHN +
2m−3∑
i=2

Ci
2m−2,0

�
HN

u2

r2i dvHN

+
(
N − 4
22m−2

)2 m−2∏
j=1

(N + 4j)2(N − 4j − 4)2
�
HN

u2

r4m−4 dvHN .

Next we will establish the inductive step and so starting with N > 4m,
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exploiting induction hypothesis above, (4.4.2) and (4.3.11), we deduce
�
HN

|∆m
r u|2 dvHN =

�
HN

|∆m−1
r (∆ru)|2 dvHN

≥
(
N − 1

2

)4m−4 �
HN

(∆ru)2 dvHN +
2m−3∑
i=2

Ci
2m−2,0

�
HN

(∆ru)2

r2i dvHN

+ N(N − 1)
24m−4

m−1∑
j=1

(N − 1)4m−2j−6
�
HN

(∆ru)2

r2 dvHN

+
(
N − 4
22m−2

)2 m−2∏
j=1

(N + 4j)2(N − 4j − 4)2
�
HN

(∆ru)2

r4m−4 dvHN

≥
(
N − 1

2

)4m−4[ (
N − 1

2

)4 �
HN

u2 dvHN + (N − 4)2

16

�
HN

u2

r4 dvHN

+ N(N − 1)
16

�
HN

u2

r2 dvHN

]
+

2m−3∑
i=2

Ci
2m−2,0

�
HN

(∆ru)2

r2i dvHN

+ N(N − 1)
24m−4

m−1∑
j=1

(N − 1)4m−2j−6
[ 2∑
γ=0

Ξγ
2,1

�
HN

u2

r6−2γ dvHN

]

+
(
N − 4
22m−2

)2 m−2∏
j=1

(N + 4j)2(N − 4j − 4)2
[ 2∑
γ=0

Ξγ
4m−4,1

�
HN

u2

r4m−2γ dvHN

]

=
(
N − 1

2

)4m �
HN

u2 dvHN +
2m∑
i=1

Ci
2m,0

�
HN

u2

r2i dvHN .

Substituting the value of Ξ2
2,1 and in the end changing index from j to

j − 1, we obtain

C1
2m,0 = N(N − 1)

16

(
N − 1

2

)4m−4

+ N(N − 1)
24m−4

m−1∑
j=1

(N − 1)4m−2j−6 Ξ2
2,1

= N(N − 1)
24m

m−1∑
j=0

(N − 1)4m−2j−4 = N(N − 1)
24m

m∑
j=1

(N − 1)4m−2j−2

and finally arranging the terms after plugging in the value of Ξ0
4m−4,1, we

deduce

C2m
2m,0 =

(
N − 4
22m−2

)2 m−2∏
j=1

(N + 4j)2(N − 4j − 4)2 Ξ0
4m−4,1

=
(
N − 4
22m

)2 m−1∏
j=1

(N + 4j)2(N − 4j − 4)2.
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This gives that inequality holds for k = 2m and completes the induction.

Next we turn to the case k = 2m + 1 odd with the same idea to argue

by induction on m. Notice, if m = 0, (4.4.3) follows directly from (3.1.6)

with C1
1,0 = 1/4. Next in a similar manner, assuming result is true for

k = 2m−1 ≥ 1, we can extend it for the case k = 2m+1, by applying Lemma

4.3.5 and (4.4.2) suitably. For the brevity we are skipping the details.

Remark 4.4.1. Using Corollary 4.3.1 for α = 2 in (3.1.10) we deduce that

for u ∈ C∞
c (HN \ {xo}), with N ≥ 7 there holds

�
HN

|∆ru|2 dvHN ≥
(
N − 1

2

)2 �
HN

|∇ru|2 dvHN

+ (N − 4)2

16

�
HN

u2

r4 dvHN + (N − 1)
8

�
HN

u2

r2 dvHN . (4.4.4)

Remark 4.4.2. Exploiting (3.1.6) in the above inequality (4.4.4), we deduce

for all u ∈ C∞
c (HN \ {xo}), with N ≥ 7 there holds

�
HN

|∆ru|2 dvHN ≥
(
N − 1

2

)4 �
HN

u2 dvHN

+ (N − 4)2

16

�
HN

u2

r4 dvHN + (N2 − 1)
16

�
HN

u2

r2 dvHN .

(4.4.5)

If we compare (4.4.4) and (4.4.5) with the inequalities (4.4.1) and (4.4.2) re-

spectively, then it is easy to observe that inequalities in the first case perform

better when r approaching towards zero. In particular, this creates another

interesting fact that if we compare (4.4.5), after applying [29, Lemma 6.1]

suitably, with [29, Theorem 2.3] in the manifold M = HN with N ≥ 7, then

the constant appearing in front of the Hardy term 1
r2 can be larger than (N−1)2

16

as proved in [29], keeping the constant in front of Rellich term unchanged.

Also, we notice that unfortunately in both cases finding the best possible con-

stant is still an open question.

If we use above inequality (4.4.5), Lemma 4.3.6 and (3.1.6), then we will
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be obtaining the following corollary, where the constants are larger than

(4.4.3) but demand more dimensional restriction.

Corollary 4.4.1. Let k be a positive integer and N ≥ 4k − 1. Then there

exist k positive constants Di
k,0 such that the following inequality holds

�
HN

|∇k
ru|2 dvHN −

(
N − 1

2

)2k �
HN

u2 dvHN ≥
k∑
i=1

Di
k,0

�
HN

u2

r2i dvHN , (4.4.6)

for all u ∈ C∞
c (HN \ {xo}). Moreover, the leading terms are given by Dk

k,0 =

Ck
k,0 and

D1
k,0 =



(N2 − 1)
16

m∑
j=1

(
N − 1

2

)4m−2j−2

if k = 2m,

(N2 − 1)
m∑
j=1

(N − 1)2m+2j−2

22m+2j+2 + (N − 1)2m

22m+2 if k = 2m+ 1.

General case k = 2m even and l = 2h even. Here we will discuss the

case when both index are even.

Theorem 4.4.2. Let k = 2m > l = 2h ≥ 0 be integers and N > 2k. Then

there exist k positive constants Ci
k,l such that for all u ∈ C∞

c (HN \ {xo}),

there holds

�
HN

(∆m
r u)2 dvHN −

(
N − 1

2

)4(m−h) �
HN

(∆h
ru)2 dvHN ≥

k∑
i=1

Ci
k,l

�
HN

u2

r2i dvHN ,

(4.4.7)

where Ck
k,l = Ck−l

k−l,0 Ξ0
2(k−l),l/2 and C1

k,l = C1
k−l,0 Ξl

2,l/2.

Proof. By applying first (4.4.3) with k = 2(m− h), then (4.3.5) with α = 2i
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and β = h, we deduce

�
HN

(∆m
r u)2 dvHN =

�
HN

(∆m−h
r (∆h

ru))2 dvHN

≥
(
N − 1

2

)4(m−h) �
HN

(∆h
ru)2 dvHN +

2(m−h)∑
i=1

Ci
2(m−h),0

�
HN

(∆h
ru)2

r2i dvHN

≥
(
N − 1

2

)4(m−h) �
HN

(∆h
ru)2 dvHN

+
2(m−h)∑
i=1

Ci
2(m−h),0

[ 2h∑
j=0

Ξj
2i,h

�
HN

u2

r2i+4h−2j dvHN

]

=
(
N − 1

2

)4(m−h) �
HN

(∆h
ru)2 dvHN +

2m∑
i=1

Ci
2m,2h

�
HN

u2

r2i dvHN

with C1
2m,2h = C1

2(m−h),0 Ξ2h
2,h and C2m

2m,2h = C
2(m−h)
2(m−h),0 Ξ0

4(m−h),h.

General case k = 2m+ 1 odd and l = 2h even. Here one index is odd

and other is even.

Theorem 4.4.3. Let k = 2m + 1 > l = 2h ≥ 0 be integers and N > 2k.

Then there exist k positive constants Ci
k,l such that for all u ∈ C∞

c (HN \{xo}),

there holds

�
HN

|∇r(∆m
r u)|2 dvHN ≥

(
N − 1

2

)4(m−h)+2 �
HN

(∆h
ru)2 dvHN

+
k∑
i=1

Ci
k,l

�
HN

u2

r2i dvHN , (4.4.8)

where Ck
k,l = Ck−l

k−l,0 Ξ0
2(k−l),l/2 and C1

k,l = C1
k−l,0 Ξl

2,l/2.

Proof. Exploiting (4.4.3) with k = 2(m−h) + 1 and Lemma 4.3.5 for α = 2i
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and β = h, we obtain
�
HN

|∇r(∆m
r u)|2 dvHN =

�
HN

|∇2(m−h)+1
r (∆h

ru)|2 dvHN

≥
(
N − 1

2

)4(m−h)+2 �
HN

(∆h
ru)2 dvHN +

2(m−h)+1∑
i=1

Ci
2(m−h)+1,0

�
HN

(∆h
ru)2

r2i dvHN

≥
(
N − 1

2

)4(m−h)+2 �
HN

(∆h
ru)2 dvHN

+
2(m−h)+1∑

i=1
Ci

2(m−h)+1,0

[ 2h∑
j=0

Ξj
2i,h

�
HN

u2

r2i+4h−2j dvHN

]

=
(
N − 1

2

)4(m−h)+2 �
HN

(∆h
ru)2 dvHN +

2m+1∑
i=1

Ci
2m+1,2h

�
HN

u2

r2i dvHN

with C2m+1
2m+1,2h = C

2(m−h)+1
2(m−h)+1,0 Ξ0

4(m−h)+2,h and C1
2m+1,2h = C1

2(m−h)+1,0 Ξ2h
2,h.

General case k = 2m even and l = 2h+ 1 odd. Here is the next case.

Theorem 4.4.4. Let k = 2m > l = 2h + 1 ≥ 1 be integers and N > 2k.

Then there exist k positive constants Ci
k,l such that for all u ∈ C∞

c (HN \{xo}),

there holds
�
HN

(∆m
r u)2 dvHN ≥

(
N − 1

2

)4(m−h)−2 �
HN

|∇r(∆h
ru)|2 dvHN

+
k∑
i=1

Ci
k,l

�
HN

u2

r2i dvHN , (4.4.9)

where

C1
k,l =



(N − 1)2k−2l−1

22k−2l+2 Ξl−1
2,(l−1)/2 + C1

k−l−1,0 Ξl+1
2,(l+1)/2 if k = 2m, l = 2h+ 1

where m− h ̸= 1,
(N − 1)

16 Ξl−1
2,(l−1)/2 if k = 2h+ 2

and l = 2h+ 1,

and

Ck
k,l =


Ck−l−1
k−l−1,0 Ξ0

2(k−l−1),(l+1)/2 if k = 2m, l = 2h+ 1 and m− h ̸= 1,
(N − 4)2

16 Ξ0
4,(l−1)/2 if k = 2h+ 2 and l = 2h+ 1.
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Proof. Let m− h ̸= 1. By applying first (4.4.3) with k = 2(m− h− 1), then

(4.4.1) and in the end Lemma 4.3.5 with α = 2i, β = h+ 1 once and another

time with α = 2, β = h, we obtain
�
HN

(∆m
r u)2 dvHN =

�
HN

(∆m−h−1
r (∆h+1

r u))2 dvHN

≥
(
N − 1

2

)4(m−h−1) �
HN

(∆h+1
r u)2 dvHN

+
2m−2h−2∑

i=1
Ci

2m−2h−2,0

�
HN

(∆h+1
r u)2

r2i dvHN

≥
(
N − 1

2

)4(m−h−1)[(
N − 1

2

)2 �
HN

|∇r(∆h
ru)|2 dvHN

+ (N − 4)2

16

�
HN

(∆h
ru)2

r4 dvHN + (N − 1)
16

�
HN

(∆h
ru)2

r2 dvHN

]

+
2m−2h−2∑

i=1
Ci

2m−2h−2,0

[ 2h+2∑
j=0

Ξj
2i,h+1

�
HN

u2

r2i+4h+4−2j dvHN

]

≥
(
N − 1

2

)4(m−h−1)[(
N − 1

2

)2 �
HN

|∇r(∆h
ru)|2 dvHN

+ (N − 4)2

16

�
HN

(∆h
ru)2

r4 dvHN

]

+ (N − 1)4(m−h)−3

24(m−h)

[ 2h∑
j=0

Ξj
2,h

�
HN

u2

r2+4h−2j dvHN

]

+
2m−2h−2∑

i=1
Ci

2m−2h−2,0

[ 2h+2∑
j=0

Ξj
2i,h+1

�
HN

u2

r2i+4h+4−2j dvHN

]

=
(
N − 1

2

)4(m−h)−2 �
HN

|∇r(∆h
ru)|2 dvHN +

2m∑
i=1

Ci
2m,2h+1

�
HN

u2

r2i dvHN .

Furthermore, one can observe

C1
2m,2h+1 = (N − 1)4(m−h)−3

24(m−h) Ξ2h
2,h + C1

2m−2h−2,0 Ξ2h+2
2,h+1

and

C2m
2m,2h+1 = C2m−2h−2

2m−2h−2,0 Ξ0
4m−4h−4,h+1

and this establishes the result.
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If m− h = 1, then exploiting (4.4.1) and Lemma 4.3.5 with α = 4, β = h

once and then α = 2, β = h, (4.4.9) holds with proper constants and this

concludes the proof.

General case k = 2m + 1 odd and l = 2h + 1 odd. Here is the final

senario.

Theorem 4.4.5. Let k = 2m+ 1 > l = 2h+ 1 ≥ 1 be integers and N > 2k.

Then there exist k positive constants Ci
k,l such that for all u ∈ C∞

c (HN \{xo}),

there holds
�
HN

|∇r(∆m
r u)|2 dvHN ≥

(
N − 1

2

)4(m−h)−2 �
HN

|∇r(∆h
ru)|2 dvHN

+
k∑
i=1

Ci
k,l

�
HN

u2

r2i dvHN , (4.4.10)

where Ck
k,l = 1

4 Ξ0
2,(k−1)/2 and

C1
k,l =



1
4 Ξk−1

2,(k−1)/2 + (N − 1)2

4 C1
k−1,l if k = 2m+ 1, and l = 2h+ 1

where m− h ̸= 1,
(N − 1)3

26 Ξl−1
2,(l−1)/2 + 1

4 Ξl+1
2,(l+1)/2 if k = 2h+ 3 and l = 2h+ 1.

Proof. Assume m−h ̸= 1. Exploiting first (3.1.6), then (4.4.9) for the index

k = 2m, l = 2h+ 1 and finally Lemma 4.3.5 with α = 2, β = m, we have
�
HN

|∇r(∆m
r u)|2 dvHN ≥

(
N − 1

2

)2 �
HN

(∆m
r u)2 dvHN + 1

4

�
HN

(∆m
r u)2

r2 dvHN

=
(
N − 1

2

)2[(
N − 1

2

)4(m−h)−2 �
HN

|∇r(∆h
ru)|2 dvHN

+
2m∑
i=1

Ci
2m,2h+1

�
HN

u2

r2i dvHN

]
+ 1

4

2m∑
j=0

Ξj
2,m

�
HN

u2

r2+4m−2j dvHN

=
(
N − 1

2

)4(m−h) �
HN

|∇r(∆h
ru)|2 dvHN +

2m+1∑
i=1

Ci
2m+1,2h+1

�
HN

u2

r2i dvHN ,

where constants are represented by C2m+1
2m+1,2h+1 = 1

4 Ξ0
2,m and C1

2m+1,2h+1 =
1
4 Ξ2m

2,m + (N−1)2

4 C1
2m,2h+1.
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If m − h = 1, then using first (3.1.6), then inequality (4.4.1) and in the

end applying Lemma 4.3.5 with α = 2, β = h+1 first and then α = 2, β = h,

we deduce the results.

Making use of Lemma 4.3.6, Corollary 4.4.1 and improved inequalities for

lower indices namely (3.1.6), (4.4.4) and (4.4.5) with the preceding technique,

we will be obtaining another version of (1.2.5). This result gives a better

constant but requires more dimension restriction. Without detailing the

proof, just by noting this result, we will finish this section.

Corollary 4.4.2. Let k > l be positive integers and N ≥ 4k− 1. There exist

k positive constants such that for all u ∈ C∞
c (HN \ {xo}), there holds

�
HN

|∇k
ru|2 dvHN −

(
N − 1

2

)2(k−l) �
HN

|∇l
ru|2 dvHN ≥

k∑
j=1

Dj
k,l

�
HN

u2

r2j dvHN .

(4.4.11)

Moreover, the leading terms for r → 0 and r → ∞, namely Dk
k,l and D1

k,l are

given by as follows

Dk
k,l :=



Dk−l
k−l,0 ζ

0
2(k−l),l/2 if l = 2h and k > l,

Dk−l−1
k−l−1,0 ζ

0
2(k−l−1),(l+1)/2 if k = 2m, l = 2h+ 1 and m− h ̸= 1,

(N − 4)2

16 ζ0
4,(l−1)/2 if k = 2h+ 2 and l = 2h+ 1,

1
4 ζ0

2,(l+1)/2 if k = 2m+ 1 and l = 2h+ 1,
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and

D1
k,l :=



D1
k−l,0 ζ

l
2,l/2 if l = 2h and k > l,

(N − 1)2k−2l−1

22k−2l+1 ζ l−1
2,(l−1)/2 +D1

k−l−1,0 ζ
l+1
2,(l+1)/2 if k = 2m, l = 2h+ 1

and m− h ̸= 1,
(N − 1)

8 ζ l−1
2,(l−1)/2 if k = 2h+ 2

and l = 2h+ 1,
1
4 ζk−1

2,(k−1)/2 + (N − 1)2

4 D1
k−1,l if k = 2m+ 1,

l = 2h+ 1,

and m− h ̸= 1,
(N − 1)3

25 ζ l−1
2,(l−1)/2 + 1

4 ζ l+1
2,(l+1)/2 if k = 2h+ 3

and l = 2h+ 1.

————— ◦ —————
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Chapter 5

Hardy-Rellich and second order

Poincaré identities on the

hyperbolic space via Bessel

pairs

In this chapter, we will prove a family of Hardy-Rellich and Poincaré iden-

tities and inequalities on the hyperbolic space having, as particular cases,

improved Hardy-Rellich, Rellich, and second-order Poincaré inequalities. All

remainder terms provided improvement of those already known in the litera-

ture, and all identities hold with the same constants for radial operators also.

Furthermore, as applications of the main results, second-order versions of the

uncertainty principle on the hyperbolic space will be derived. The material

of this chapter corresponds to the article [30].
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5.1 Introduction to main results

We have already seen that the N -dimensional hyperbolic space HN admits

a polar coordinate decomposition structure. From now onward, if nothing

is specified, we will always assume N ≥ 2. Also we have already intro-

duced the radial version of Riemannian Laplacian and Gradient in earlier

chapter. As concerns inequality (1.1.5), we recall that it has been shown

first in [2] and then, with different methods, adapted to larger classes of

manifolds in [27] where criticality has also been shown. Very recently, a

further development has been done in [60] where, by using the notion of

Bessel pairs, it has been proved that a further positive term of the form�
HN

r
sinhN−1 r

∣∣∣∇HN

(
u sinh

N−1
2 r
r

)∣∣∣2dvHN can be added at the r.h.s. of (1.1.5) so

that the inequality becomes an equality. Clearly, this is not in contrast with

the criticality proved in [27] since the added term is not of the form V u2. We

refer the interested reader to [25] for the Lp version of (1.1.5), and to [36] for

remainder terms of (1.1.2) involving the Green’s function of the Laplacian.

Regarding (1.1.10), it’s worth recalling that generalizations to Rieman-

nian manifolds of the classical euclidean Hardy inequality have been inten-

sively pursued after the seminal work of Carron [48]. In particular, on Cartan-

Hadamard manifolds the optimal constant is known to be
(
N−2

2

)2
and im-

provements of the Hardy inequality have been given e.g., in [51,60,77–79,119].

This is in contrast to what happens in the Euclidean setting where the op-

erator −∆RN −
(
N−2

2

)2 1
|x|2 is known to be critical in RN \ {0} (see [53]). In

particular, in inequality (1.1.10) the effect of the curvature allows to provide

a remainder term of L2-type, therefore of the same kind of that given in the

seminal paper by Brezis-Vazquez [42] for the Hardy inequality on euclidean

bounded domains.

The above mentioned results make it natural to investigate the existence

of a family of inequalities extending (1.1.9) to the second order, that is an
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inequality including either improvement of the second order Poincaré inequal-

ities:
�
HN

(∆HNu)2dvHN ≥
(
N − 1

2

)2(2−l) �
HN

|∇l
HNu|2dvHN (l = 0 or l = 1)

(5.1.1)

for all u ∈ C∞
c (HN) (N ≥ 2), and improvement of the second order Hardy

inequalities:
�
HN

(∆HNu)2dvHN ≥ N2

4

(
N − 4

2

)2(1−l) �
HN

|∇l
HNu|2

r4−2l dvHN (l = 0 or l = 1)

(5.1.2)

for all u ∈ C∞
c (HN) (N ≥ 5), i.e. the Rellich inequality which comes for

l = 0 and the Hardy-Rellich inequality for l = 1. We recall that inequalities

(5.1.1) are known from [100] and [76] with optimal constants, while improve-

ments have been provided in [26, 27] and, for radial operators, in [29, 112].

Instead, inequalities (5.1.2) were firstly studied in [77] and in [119], where

the optimality of the constants was proved together with the existence of

some remainder terms. More recently, a stronger version of (5.1.2), only in-

volving radial operators and still holding with the same constants, has been

obtained in [102]. See also [80] for improved versions of (5.1.2) in the general

framework of Finsler-Hadamard manifolds.

In the present chapter we complete the picture of results in HN by proving

a family of inequalities including either an improved version of (5.1.1) and

an improved version of (5.1.2) when l = 1, therefore extending (1.1.9) to the

second order, see Theorem 5.1.2 below. Furthermore, in Theorem 5.1.1, we

show that the obtained family of inequalities reads as a family of identities

for radial operators (also for non radial functions) giving a more precise

understanding of the remainder terms provided. A fine exploitation of these

results also allows to obtain improved versions of (5.1.1) and of (5.1.2) for
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l = 0 in such a way to exhaust the second order scenario, see Corollaries

5.1.3 and 5.1.4. As far we are aware, all the improvements provided have a

stronger positive impact, on the r.h.s. of (5.1.1) and of (5.1.2), than those

already known in literature, see Remark 5.1.2 in the following.

5.1.1 Hardy-Rellich and Poincaré identities

Our main result for radial operators regarding Hardy-Rellich and Poincaré

identities and improved version reads as follows

Theorem 5.1.1. For all 0 ≤ λ ≤ λ1(HN) =
(
N−1

2

)2
and all u ∈ C∞

c (HN \

{xo}) there holds
�
HN

|∆r,HNu|2 dvHN = λ

�
HN

|∇r,HNu|2 dvHN

+ h2
N(λ)

�
HN

|∇r,HNu|2

r2 dvHN +
[(
N

2

)2
− h2

N(λ)
] �

HN

|∇r,HNu|2

sinh2 r
dvHN

+ γN(λ)hN(λ)
�
HN

r coth r − 1
r2 |∇r,HNu|2 dvHN

+
�
HN

(Ψλ(r))2
∣∣∣∣∣∇r,HN

(
ur

Ψλ(r)

)∣∣∣∣∣
2

dvHN

where γN(λ) :=
√

(N − 1)2 − 4λ, hN(λ) := γN (λ)+1
2 and

Ψλ(r) := r− N−2
2
(

sinh r
r

)− N−1+γN (λ)
2 . Furthermore, for N ≥ 5 and λ given,

the constants h2
N(λ) and

[(
N
2

)2
− h2

N(λ)
]

are jointly sharp in the sense that,

fixed h2
N(λ), the inequality does not hold if we replace

[(
N
2

)2
− h2

N(λ)
]

with

a larger constant.

Remark 5.1.1. We remark that the the function r coth r−1
r2 is positive, strictly

decreasing and satisfies

r coth r − 1
r2 ∼ 1

3 as r → 0+ and r coth r − 1
r2 ∼ 1

r
as r → +∞ .

Furthermore, the map [0, λ1(HN)] ∋ λ 7→ hN(λ) is decreasing and 1
4 ≤

hN(λ) ≤
(
N
2

)2
.
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Furthermore, for non radial operators we obtain the second order analo-

gous to (1.1.9):

Theorem 5.1.2. Let N ≥ 5. For all 0 ≤ λ ≤ λ1(HN) =
(
N−1

2

)2
and all

u ∈ C∞
c (HN \ {xo}) there holds
�
HN

|∆HNu|2 dvHN ≥ λ

�
HN

|∇HNu|2 dvHN

+ h2
N(λ)

�
HN

|∇HNu|2

r2 dvHN +
[(
N

2

)2
− h2

N(λ)
] �

HN

|∇HNu|2

sinh2 r
dvHN

+ γN(λ)hN(λ)
�
HN

r coth r − 1
r2 |∇HNu|2 dvHN

+
�
HN

(Ψλ(r))2
∣∣∣∣∣∇HN

(
ur

Ψλ(r)

)∣∣∣∣∣
2

dvHN

where γN(λ), hN(λ) and Ψλ(r) are as given in Theorem 5.1.1. Furthermore,

for any given λ, the constants h2
N(λ) and

[(
N
2

)2
− h2

N(λ)
]

are jointly sharp

in the sense explained in Theorem 5.1.1.

We notice that the dimension restriction N ≥ 5 in Theorem 5.1.2 comes

from assumption (5.3.2) in Theorem 5.3.2 below where we state our abstract

Rellich inequalities, see also Remark 5.3.1 for some comments about this as-

sumption that naturally comes when passing from the radial to the non radial

framework. Theorems 5.1.1 and 5.1.2 yield a number of improved Poincaré

and Hardy-Rellich inequalities that we state here below; a comparison with

previous results is provided in Remark 5.1.2. More precisely, for λ = 0 we

readily got the following improved Hardy-Rellich identity and inequality:

Corollary 5.1.1. For all u ∈ C∞
c (HN \ {xo}) there holds

�
HN

|∆r,HNu|2 dvHN =
(
N

2

)2 �
HN

|∇r,HNu|2

r2 dvHN

+ N(N − 1)
2

�
HN

r coth r − 1
r2 |∇r,HNu|2 dvHN

+
�
HN

rN

(sinh r)2(N−1)

∣∣∣∣∣∇r,HN

(
(sinh r)N−1 ur

r
N
2

)∣∣∣∣∣
2

dvHN .

95



CHAPTER 5. HARDY-RELLICH AND SECOND ORDER POINCARÉ IDENTITIES
ON THE HYPERBOLIC SPACE VIA BESSEL PAIRS

Moreover, if N ≥ 5, for all u ∈ C∞
c (HN \ {xo}) there holds

�
HN

|∆HNu|2 dvHN ≥
(
N

2

)2 �
HN

|∇HNu|2

r2 dvHN

+ N(N − 1)
2

�
HN

r coth r − 1
r2 |∇HNu|2 dvHN

+
�
HN

rN

(sinh r)2(N−1)

∣∣∣∣∣∇HN

(
(sinh r)N−1 ur

r
N
2

)∣∣∣∣∣
2

dvHN ,

and the constant
(
N
2

)2
appearing in the L.H.S of both equations is the sharp

constant.

For λ = λ1(HN) we got an improvement of the second order Poincaré

identity (5.1.1) with l = 0, and the related inequality:

Corollary 5.1.2. For all u ∈ C∞
c (HN \ {xo}) there holds

�
HN

|∆r,HNu|2 dvHN =
(
N − 1

2

)2 �
HN

|∇r,HNu|2 dvHN

+ 1
4

�
HN

|∇r,HNu|2

r2 dvHN + N2 − 1
4

�
HN

|∇r,HNu|2

sinh2 r
dvHN

+
�
HN

r

(sinh r)N−1

∣∣∣∣∣∇r,HN

(
(sinh r)N−1

2 ur

r
1
2

)∣∣∣∣∣
2

dvHN .

Moreover, if N ≥ 5, for all u ∈ C∞
c (HN \ {xo}) there holds

�
HN

|∆HNu|2 dvHN ≥
(
N − 1

2

)2 �
HN

|∇HNu|2 dvHN

+ 1
4

�
HN

|∇HNu|2

r2 dvHN + N2 − 1
4

�
HN

|∇HNu|2

sinh2 r
dvHN

+
�
HN

r

(sinh r)N−1

∣∣∣∣∣∇HN

(
(sinh r)N−1

2 ur

r
1
2

)∣∣∣∣∣
2

dvHN .

The constant
(
N−1

2

)2
appearing in the L.H.S of both equations is the sharp

constant. Moreover, for N ≥ 5, the constants 1
4 and N2−1

4 are jointly sharp

in the sense explained in Theorem 5.1.1.

By combining Corollary 5.1.1 with [60, Corollary 3.2] we also get an

improved Rellich inequality:
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Corollary 5.1.3. For all u ∈ C∞
c (HN \ {xo}) there holds

�
HN

|∆r,HNu|2 dvHN = N2

4

(
N − 4

2

)2 �
HN

u2

r4 dvHN

+ N2(N − 4)(N − 1)
8

�
HN

r coth r − 1
r4 u2 dvHN

+ N(N − 1)
2

�
HN

r coth r − 1
r2 |∇r,HNu|2 dvHN

+ N2

4

�
HN

1
rN−2

∣∣∣∣∣∇r,HN

(
r

N−4
2 u

)∣∣∣∣∣
2

dvHN

+
�
HN

rN

(sinh r)2(N−1)

∣∣∣∣∣∇r,HN

(
(sinh r)N−1 ur

r
N
2

)∣∣∣∣∣
2

dvHN .

Moreover, if N ≥ 5, for all u ∈ C∞
c (HN \ {xo}) there holds

�
HN

|∆HNu|2 dvHN ≥ N2

4

(
N − 4

2

)2 �
HN

u2

r4 dvHN

+ N2(N − 4)(N − 1)
8

�
HN

r coth r − 1
r4 u2 dvHN

+ N(N − 1)
2

�
HN

r coth r − 1
r2 |∇HNu|2 dvHN

+ N2

4

�
HN

1
rN−2

∣∣∣∣∣∇HN

(
r

N−4
2 u

)∣∣∣∣∣
2

dvHN

+
�
HN

rN

(sinh r)2(N−1)

∣∣∣∣∣∇HN

(
(sinh r)N−1 ur

r
N
2

)∣∣∣∣∣
2

dvHN ,

and the constant N2

4

(
N−4

2

)2
appearing in the L.H.S of both equations is the

sharp constant.

Instead, by combining Corollary 5.1.2 with [60, Theorem 1.4 and Corol-

lary 3.2], we improve (5.1.1) with l = 0, i.e. we complete the second order

scenario about Poincaré identities and inequalities:

Corollary 5.1.4. For all u ∈ C∞
c (HN \ {xo}) there holds
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�
HN

|∆r,HNu|2 dvHN

=
(
N − 1

2

)4 �
HN

u2 dvHN +
(
N − 1

4

)2 �
HN

u2

r2 dvHN

+ (N − 1)3(N − 3)
16

�
HN

u2

sinh2 r
dvHN

+ 1
4

�
HN

|∇r,HNu|2

r2 dvHN + N2 − 1
4

�
HN

|∇r,HNu|2

sinh2 r
dvHN

+
[(
N − 1

2

)2
+ 1

] �
HN

r

(sinh r)N−1

∣∣∣∣∣∇r,HN

(
(sinh r)N−1

2 ur

r
1
2

)∣∣∣∣∣
2

dvHN .

Moreover, if N ≥ 5, for all u ∈ C∞
c (HN \ {xo}) there holds�

HN

|∆HNu|2 dvHN

≥
(
N − 1

2

)4 �
HN

u2 dvHN +
(
N − 1

4

)2 �
HN

u2

r2 dvHN

+ (N − 1)3(N − 3)
16

�
HN

u2

sinh2 r
dvHN

+ 1
4

�
HN

|∇HNu|2

r2 dvHN + N2 − 1
4

�
HN

|∇HNu|2

sinh2 r
dvHN

+
[(
N − 1

2

)2
+ 1

] �
HN

r

(sinh r)N−1

∣∣∣∣∣∇HN

(
(sinh r)N−1

2 ur

r
1
2

)∣∣∣∣∣
2

dvHN .

The constant
(
N−1

2

)4
appearing in the L.H.S of both equations is the sharp

constant. Moreover, for N ≥ 5, the constants 1
4 and N2−1

4 in both equations

are jointly sharp in the sense explained in Theorem 5.1.1.

Remark 5.1.2. As far as we are aware, improved second order Poincaré

and Hardy-Rellich equalities in HN were not known in literature; besides, the

above inequalities yield improvements of Poincaré and Hardy-Rellich inequal-

ities which are stronger than those already known in literature. As concerns

the Hardy-Rellich and Rellich inequalities, improved versions were already

known from [80], [102] and [119] on general manifolds but with fewer and

smaller remainder terms. As a matter of example, if we compare Corol-

lary 5.1.1 with [102, Theorem 4.2], the improvement of the Hardy-Rellich
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inequality provided there reads as 3N(N−1)
2

�
HN

|∇
r,HN u|2

π2+r2 dvHN , therefore it

decays more rapidly, both as r → 0+ and as r → +∞, than the term
N(N−1)

2

�
HN

r coth r−1
r2 |∇r,HNu|2 dvHN provided in Corollary 5.1.1. Similarly,

if we compare Corollary 5.1.2 with [102, Theorem 4.3], again, the correc-

tions of the Rellich inequality provided there decays more rapidly than ours,

both as r → 0+ and as r → +∞. As concerns the improved second order

Poincaré inequalities given by Corollaries 5.1.3 and 5.1.4, the gain with re-

spect to the inequalities already known in [29] is in the adding of a further

remainder term.

5.1.2 Second order Heisenberg-Pauli-Weyl

uncertainty principle

Another remarkable consequence of Theorem 5.1.2 is the following quantita-

tive version of Heisenberg-Pauli-Weyl (in short HPW) principle in HN :

Theorem 5.1.3. Let N ≥ 5. For all 0 ≤ λ ≤ λ1(HN) and all u ∈ C∞
c (HN \

{xo}) there holds(�
HN

(
|∆HNu|2 − λ|∇HNu|2

)
dvHN

)(�
HN

r2|∇HNu|2dvHN

)
(5.1.3)

≥h2
N(λ)

(�
HN

|∇HNu|2dvHN

)2

where hN(λ) is as defined as in Theorem 5.1.1. In particular, for λ = 0, we

obtain(�
HN

|∆HNu|2dvHN

) (�
HN

r2|∇HNu|2 dvHN

)
≥ N2

4

(�
HN

|∇HNu|2 dvHN

)2

,

(5.1.4)

for all u ∈ C∞
c (HN \ {xo}).

Remark 5.1.3. In the Euclidean context the second order Heisenberg-Pauli-

Weyl uncertainty principle has been only recently studied in [49, Theorem
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2.1-2.2] where it is proved that the best constant switches from N2

4 to (N+2)2

4

when passing to the second order. Moreover, Duong-Nguyen in [56, Theorem

1.1] has studied the weighted version of inequality (5.1.4) in the Euclidean

setting and discuss its sharp constants and extremals.

As far as we know, inequality (5.1.3) is the first example of second order

Heisenberg-Pauli-Weyl uncertainty principle in the Hyperbolic context. For

the first order case, we refer instead to [69] and [79] where the authors fully

describe the influence of curvature to uncertainty principles in the Rieman-

nian and Finslerian settings. It’s worth mentioning that a finer exploitation

of Theorem 5.1.2 yields the improved version of (5.1.3) below which supports

the conjecture that the sharp constant (5.1.3) should be larger than h2
N(λ).

More precisely, a small modification of the proof of Theorem 5.1.3 allows us

to prove that, for all 0 ≤ λ ≤ λ1(HN) and all u ∈ C∞
c (HN \{xo}), there holds(�

HN

(
|∆HNu|2 − λ|∇HNu|2

)
dvHN

)(�
HN

r2|∇HNu|2dvHN

)

≥ h2
N(λ)

(�
HN

|∇HNu|2dvHN

)2

+
(�

HN

r2|∇HNu|2dvHN

)
×
{[(

N

2

)2
− h2

N(λ)
] �

HN

|∇HNu|2

sinh2 r
dvHN

+ γN(λ)hN(λ)
�
HN

r coth r − 1
r2 |∇HNu|2 dvHN

}
where γN(λ) and hN(λ) are defined as in Theorem 5.1.1. Therefore, for

λ = 0, we obtain the improved version of (5.1.4):(�
HN

|∆HNu|2dvHN

) (�
HN

r2|∇HNu|2 dvHN

)
≥ N2

4

(�
HN

|∇HNu|2 dvHN

)2

+
(�

HN

r2|∇HNu|2dvHN

)(
N(N − 1)

2

�
HN

r coth r − 1
r2 |∇HNu|2 dvHN

)

for all u ∈ C∞
c (HN \ {xo}). The above inequality should be compared with

inequality (5.3.4) provided in Section 5.3 which also improves (5.1.4).

We conclude the section by stating the counterpart of Theorem 5.1.3 for

radial operators:
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Theorem 5.1.4. For all 0 ≤ λ ≤ λ1(HN) and all u ∈ C∞
c (HN \ {xo}) there

holds(�
HN

(
|∆r,HNu|2 − λ|∇r,HNu|2

)
dvHN

)(�
HN

r2|∇r,HNu|2dvHN

)

≥h2
N(λ)

(�
HN

|∇r,HNu|2dvHN

)2

where hN(λ) is as defined as in Theorem 5.1.1. In particular, for λ = 0, we

obtain(�
HN

|∆r,HNu|2dvHN

) (�
HN

r2|∇r,HNu|2 dvHN

)
≥ N2

4

(�
HN

|∇r,HNu|2 dvHN

)2

for all u ∈ C∞
c (HN \ {xo}).

5.2 Bessel pairs

Ghoussoub-Moradifam in [63] provided a very general framework to obtain

various Hardy-type inequalities and their improvements on the Euclidean

space (or bounded domain). It was based on the notion of Bessel pair that

we recall in the following:

Definition 5.2.1. We say that a pair (V,W ) of C1-functions is a Bessel pair

on (0, R) for some 0 < R ≤ ∞ if the ordinary differential equation:

(V y′)′ +Wy = 0

admits a positive solutions f on the interval (0, R).

Example 5.2.1.
(
rN−1, rN−1 (N−2)2

4
1
r2

)
forms a Bessel pair with the positive

solution function f(r) = r
(2−N)

2 on the interval (0,∞).

In [63] the authors proved the following inequality, for some positive con-

stant C > 0 :
�

BR

V (x)|∇u|2 dx ≥ C

�
BR

W (x) |u|2 dx ∀ u ∈ C∞
c (BR), (5.2.1)
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subject to the constraints that the functions V and W are positive radial

functions defined on the euclidean ball BR and (rN−1V, rN−1W ) is a Bessel

pairs such that
� R

0
1

rN−1V (r) dr = ∞ and
� R

0 rN−1V (r) dr < ∞ where 0 < R ≤

∞ is the radius of the ball BR.

Remark 5.2.1. The Bessel pair in the Example 5.2.1 and (5.2.1) produce

the known Hardy inequality.

In view of (5.2.1), with particular choices of (V,W ), the results in [63]

simplified and improved several known results concerning Hardy inequalities

and their improvements. Recently, the notion of Bessel pairs has been ex-

ploited: in [87] to establish improved Hardy inequalities involving general

distance functions, in [86] to sharpen several Hardy type inequalities on half

spaces, and in [85] to prove Hardy inequalities on homogeneous groups.

Regarding Cartan-Hadamard manifolds, the notion of Bessel pairs has

been very recently exploited to obtain improved Hardy inequalities in [60];

to our future purposes, we recall their Theorem 3.2 on HN :

Lemma 5.2.1. [60, Theorem 3.2] Let (rN−1V, rN−1W ) be a Bessel pair on

(0, R) with positive solution f on (0, R). Then for all u ∈ C∞
c (HN \ {x0}),

there holds

�
BR

V (r)|∇HNu|2 dvHN

=
�

BR

W (r)|u|2 dvHN +
�

BR

V (r)(f(r))2
∣∣∣∣∣∇HN

(
u

f(r)

)∣∣∣∣∣
2

dvHN

− (N − 1)
�

BR

V (r)f
′(r)
f(r)

(
coth r − 1

r

)
u2 dvHN .
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and
�

BR

V (r)|∇r,HNu|2 dvHN

=
�

BR

W (r)|u|2 dvHN +
�

BR

V (r)(f(r))2
∣∣∣∣∣∇r,HN

(
u

f(r)

)∣∣∣∣∣
2

dvHN

− (N − 1)
�

BR

V (r)f
′(r)
f(r)

(
coth r − 1

r

)
u2 dvHN .

In view of Lemma 5.2.1 a natural question is to study higher order Hardy

type inequalities in HN using the notion of Bessel pairs. In the Euclidean

space (or in bounded euclidean domains) these questions were studied in [63].

One of their results read as follows: let 0 < R ≤ ∞, V and W be positive C1-

functions on BR \ {0} such that (rN−1V, rN−1W ) forms a Bessel pair. Then

for all radial functions u ∈ C∞
c (BR) there holds

�
BR

V (x)|∆u|2 dx ≥
�

BR

W (x) |∇u|2 dx

+ (N − 1)
�

BR

(
V (x)
|x|2

− Vr(x)
|x|

)
|∇u|2 dx, (5.2.2)

where r = |x|. In addition, if W (x) − 2V (x)
|x|2 + 2Vr(x)

|x| − Vrr(x) ≥ 0 on (0, R),

then the above is true for non radial function as well (we refer [63, Theorem

3.1-3.3] for more insight). We also refer to [57, 58, 85] for recent results on

Hardy-Rellich inequalities and their improvements on the Euclidean space

using the approach of Bessel pairs.

5.3 Abstract Rellich identities and

inequalities via Bessel pairs

In the present section, we extend (5.2.2) to HN by showing first the following:

Theorem 5.3.1. Let (rN−1V, rN−1W ) be a Bessel pair on (0, R) with positive

solution f on (0, R). Then for all radial function u ∈ C∞
c (BR \ {xo}) there
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holds

�
BR

V (r)|∆HNu|2 dvHN =
�

BR

W (r)|∇HNu|2 dvHN

+ (N − 1)
�

BR

(
V (r)

sinh2 r
− Vr(r) cosh r

sinh r

)
|∇HNu|2 dvHN

− (N − 1)
�

BR

V (r)f
′

f

(
coth r − 1

r

)
|∇HNu|2 dvHN

+
�

BR

V (r)(f(r))2
∣∣∣∣∣∇HN

(
ur
f(r)

)∣∣∣∣∣
2

dvHN . (5.3.1)

As a direct consequence of the above result, we tackle the non-radial

scenario by spherical harmonic method and we prove:

Corollary 5.3.1. Let (rN−1V, rN−1W ) be a Bessel pair on (0,∞) with posi-

tive solution f on (0,∞). Then for all u ∈ C∞
c (HN \ {xo}) there holds

�
HN

V (r)|∆r,HNu|2 dvHN =
�
HN

W (r)|∇r,HNu|2 dvHN

+ (N − 1)
�
HN

(
V (r)

sinh2 r
− Vr(r) cosh r

sinh r

)
|∇r,HNu|2 dvHN

− (N − 1)
�
HN

V (r)f
′

f

(
coth r − 1

r

)
|∇r,HNu|2 dvHN

+
�
HN

V (r)(f(r))2
∣∣∣∣∣∇r,HN

(
ur
f(r)

)∣∣∣∣∣
2

dvHN

Now it is natural to ask whether there is a counterpart of Theorem 5.3.1

for any function, not necessarily radial. We give an affirmative answer in

below provided that V satisfies the extra condition (5.3.2) below:

Theorem 5.3.2. Let (rN−1V, rN−1W ) be a Bessel pair on (0,∞) with posi-

tive solution f on (0,∞). Also assume N ≥ 5 and V satisfies

(N − 5) V (r)
sinh2 r

+ 3Vr(r) cosh r
sinh r − Vrr(r) + (N − 4)V (r) ≥ 0. (5.3.2)
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Then for all u ∈ C∞
c (HN \ {xo}) there holds

�
HN

V (r)|∆HNu|2 dvHN ≥
�
HN

W (r)|∇HNu|2 dvHN

+ (N − 1)
�
HN

(
V (r)

sinh2 r
− Vr(r) cosh r

sinh r

)
|∇HNu|2 dvHN

− (N − 1)
�
HN

V (r)f
′

f

(
coth r − 1

r

)
|∇HNu|2 dvHN

+
�
HN

V (r)(f(r))2
∣∣∣∣∣∇HN

(
ur
f(r)

)∣∣∣∣∣
2

dvHN . (5.3.3)

Remark 5.3.1. We remark that assumption (5.3.2) in Theorem 5.3.2 is

not too restrictive to our purposes: we shall provide a remarkable family of

(V,W ) for which the assumption holds true in the proof of Theorem 5.1.1. On

the other hand, an analogous assumption was even required in the Euclidean

space as well, see (5.2.2) and the comments just below; this seems the natural

prize to pay in order to pass to the higher order case.

We conclude the section by stating an abstract version of Heisenberg-

Pauli-Weyl uncertainty principle involving Bessel pairs which follows as a

corollary from Theorem 5.3.2 and Corollary 5.3.1:

Theorem 5.3.3. Let (rN−1V, rN−1W ) be a Bessel pair on (0,∞) with posi-

tive solution f on (0,∞) and set

W̃ (r) := W (r)+(N−1)
(
V (r)

sinh2 r
−Vr(r) cosh r

sinh r

)
−(N−1)V (r)f

′

f

(
coth r−1

r

)
.

Furthermore, let N ≥ 5 and assume that V satisfies 5.3.2 and that W̃ (r) > 0

for all r > 0. Then for all u ∈ C∞
c (HN \ {xo}) there holds( �

HN

V (r)|∆HNu|2 dvHN

)(�
HN

|∇HNu|2

W̃ (r)
dvHN

)
≥
(�

HN

|∇HNu|2 dvHN

)2

and( �
HN

V (r)|∆r,HNu|2dvHN

)(�
HN

|∇r,HNu|2

W̃ (r)
dvHN

)
≥
( �

HN

|∇r,HNu|2dvHN

)2

.
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We want to mention that for the second inequality we do not require

condition 5.3.2, whereas the other conditions and Corollary 5.3.1 are enough.

Remark 5.3.2. A non trivial example of pairs satisfying the assumptions

of Theorem 5.3.3 is given by the family of Bessel pairs (rN−1, rN−1Wλ), for

all 0 ≤ λ ≤ λ1(HN), defined in (5.4.1) below and exploited in the proof of

Theorem 5.1.1. Indeed, they satisfy condition (5.3.2) and, in this case, the

function W̃ reads

W̃λ(r) = λ+h2
N(λ) 1

r2 +
((

N

2

)2
− h2

N(λ)
)

1
sinh2 r

+γN(λ)hN(λ)
r

(
coth r−1

r

)

which is positive in (0,+∞) for all 0 ≤ λ ≤ λ1(HN). In particular, with this

pair, taking λ = 0 for simplicity, Theorem 5.3.3 yields(�
HN

|∆HNu|2 dvHN

)(�
HN

|∇HNu|2
N2

4
1
r2 + N(N−1)

2r (coth r − 1
r
)

dvHN

)

≥
(�

HN

|∇HNu|2 dvHN

)2

, (5.3.4)

for all u ∈ C∞
c (HN \ {xo}). The above inequality turns out to be more strin-

gent than (5.1.4) thereby confirming the conjecture that N2

4 is not the sharp

constant in (5.1.4).

5.4 Proofs of Theorems 5.1.1 and 5.1.2

Proofs of Theorems 5.1.1 and 5.1.2. The proof follows, respectively, by

applying Corollary 5.3.1 and Theorem 5.3.2 with the family of Bessel pairs

(rN−1, rN−1Wλ) with 0 ≤ λ ≤ λ1(HN) and

Wλ(r) := λ+ h2
N(λ) 1

r2 +
((

N − 2
2

)2
− h2

N(λ)
)

1
sinh2 r

+
(
γN(λ)hN(λ)

r
+ (N − 1)Ψ′

λ(r)
Ψλ(r)

)(
coth r − 1

r

)
(r > 0) ,

(5.4.1)
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where γN(λ) and hN(λ) are as defined in the statement of Theorem 5.3.1 and

Ψλ(r) := r− N−2
2

(
sinh r
r

)− N−1+γN (λ)
2

(r > 0) .

In particular, by noticing that

Ψ′
λ(r) = Ψλ(r)

[
hN(λ)
r

+ 1 −N − γN(λ)
2 coth r

]
,

Ψ′′
λ(r) = Ψλ(r)

[(1 −N − γN(λ))2

4 + γ2
N(λ) − 1
r2

− (1 −N − γN(λ))(1 +N + γN(λ))
4 sinh2 r

+ (1 −N − γN(λ))hN(λ) coth r
r

]

and recalling the definition of γN(λ), it follows that Ψλ(r) satisfies

(rN−1Ψ′
λ(r))′ + rN−1Wλ(r)Ψλ(r) = 0 for r > 0 ,

namely (rN−1, rN−1Wλ) is a Bessel pair with positive solution Ψλ(r). See

also [28, Lemma 6.2] where the functions Ψλ were originally introduced but

exploited with different purposes. Finally, from Corollary 5.3.1 we deduce

that, for all function u ∈ C∞
c (BR \ {xo}), there holds

�
BR

|∆HNu|2 dvHN =
�

BR

Wλ(r)|∇HNu|2 dvHN

+ (N − 1)
�

BR

(
1

sinh2 r

)
|∇HNu|2 dvHN

− (N − 1)
�

BR

Ψ′
λ(r)

Ψλ(r)

(
coth r − 1

r

)
|∇HNu|2 dvHN

+
�

BR

(Ψλ(r))2
∣∣∣∣∣∇HN

(
ur

Ψλ(r)

)∣∣∣∣∣
2

dvHN .

By this, recalling (5.4.1), the proof of Theorem 5.1.1 follows. The proof of

Theorem 5.1.2 works similarly by applying Theorem 5.3.2 since condition

(5.3.2) holds for the Bessel pair (rN−1, rN−1Wλ) if N ≥ 5.

As concerns the proof of the fact that the constants h2
N(λ) and[(

N
2

)2
− h2

N(λ)
]

are jointly sharp when N ≥ 5, this follows by noticing that
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as r → 0 we have

h2
N(λ)

�
HN

|∇HNu|2

r2 dvHN +
[(
N

2

)2
− h2

N(λ)
] �

HN

|∇HNu|2

sinh2 r
dvHN

∼ N2

4

�
HN

|∇HNu|2

r2 dvHN .

Therefore, locally, we recover inequality (5.1.2) for l = 1; by this we readily

infer that, for h2
N(λ) fixed, any larger constant in front of the term |∇HN u|2

sinh2 r

would contradict the optimality of the constant N2

4 in (5.1.2) (when l = 1).

2

Proof of Corollary 5.1.3. The proof follows from Corollary 5.1.1 by

evaluating the term
�
HN

|∇HN u|2
r2 dvHN with the aid of [60, Corollary 3.2] from

which we know that
�
HN

|∇HNu|2

r2 dvHN =
(
N − 4

2

)2 �
HN

u2

r4 dvHN

+ (N − 4)(N − 1)
2

�
HN

r coth r − 1
r4 u2 dvHN

+
�
HN

1
rN−2

∣∣∣∣∣∇HN

(
r

N−4
2 u

)∣∣∣∣∣
2

dvHN .

for all u ∈ C∞
c (HN \ {xo}). The proof for radial operators follows similarly

since the above identity holds with the same constants for radial operators

too. 2

Proof of Corollary 5.1.4. Here the proof follows by combining Corol-

lary 3.3 with [60, Theorem 1.4] according to which we know that
�
HN

|∇HNu|2 dvHN =
(
N − 1

2

)2 �
HN

u2 dvHN

+ 1
4

�
HN

u2

r2 dvHN + (N − 1)(N − 3)
4

�
HN

u2

sinh2 r
dvHN

+
�
HN

r

(sinh r)N−1

∣∣∣∣∣∇HN

(
(sinh r)N−1

2 ur

r
1
2

)∣∣∣∣∣
2

dvHN .
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for all u ∈ C∞
c (HN \ {xo}) and similarly for radial operators since the above

identity holds with the same constants for radial operators too. 2

Proof of Theorem 5.1.3. The proof is a simple application of Cauchy-

Schwartz inequality combined with Theorem 5.1.2:
�
HN

|∇HNu|2 dvHN =
�
HN

r|∇HNu| |∇HNu|
r

dvHN

≤
(�

HN

r2|∇HNu|2 dvHN

) 1
2
(�

HN

|∇HNu|2

r2 dvHN

) 1
2

︸ ︷︷ ︸
Using Theorem 5.1.2

≤ 1
hN(λ)

(�
HN

(
|∆HNu|2 − λ|∇HNu|2

)
dvHN

) 1
2
(�

HN

r2|∇HNu|2dvHN

) 1
2

.

2

5.5 Proofs of Theorems 5.3.1, 5.3.2 and 5.3.3

We shall begin with the proof of Theorem 5.3.1.

Proof of Theorem 5.3.1.

Let u ∈ C∞
c (BR \{xo}) be a radial function, in terms of polar coordinates

we have
�

BR

V (r)|∆HNu|2 dvHN = NωN

[ � R

0
V (r)u2

rr(sinh r)N−1 dr

+ (N − 1)2
� R

0
V (r)(coth r)2u2

r(sinh r)N−1 dr

+ 2(N − 1)
� R

0
V (r)urrur(coth r)(sinh r)N−1 dr

]
.

Now, applying integration by parts in the last term and setting ν = ur,

we deduce
�

BR

V (r)|∆HNu|2 dvHN =
�

BR

V (r)|∇HNν|2 dvHN

+ (N − 1)
�

BR

(
V (r)

sinh2 r
− Vr(r) cosh r

sinh r

)
|ν|2 dvHN . (5.5.1)
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On the other hand, from Lemma 5.2.1 for the function ν we have
�

BR

V (r)|∇HNν|2 dvHN =
�

BR

W (r)|ν|2 dvHN

+
�

BR

V (r)(f(r))2
∣∣∣∣∣∇HN

(
ν

f(r)

)∣∣∣∣∣
2

dvHN

− (N − 1)
�

BR

V (r)f
′

f

(
coth r − 1

r

)
|ν|2 dvHN .

By using this identity into (5.5.1) and writing back in terms of u we

deduce (5.3.1). 2

Before going to prove Corollary 5.3.1 and Theorem 5.3.2, we shall assume

by spherical harmonics decomposition

u(r,Θ) =
∞∑
n=0

an(r)Pn(Θ), (5.5.2)

where u(x) = u(r,Θ) ∈ C∞
c (HN), r ∈ (0,∞) and Θ ∈ SN−1.

In a continuation let us also describe the Gradient and Laplace Beltrami

operator in this setting. Now onward, to shorten the notations, we will always

assume ψ(r) = sinh r. They will be

|∇HNu|2 =
∞∑
n=0

a′
n

2
P 2
n + a2

n

ψ2 |∇SN−1Pn|2

and

(∆HNu)2 =
∞∑
n=0

(
a′′
n + (N − 1)ψ

′

ψ
a′
n

)2

P 2
n +

∞∑
n=0

a2
n

ψ4 (∆SN−1Pn)2

+ 2
∞∑
n=0

(
a′′
n + (N − 1)ψ

′

ψ
a′
n

)
an
ψ2 (∆SN−1Pn)Pn. (5.5.3)

Along with this the radial contribution of the operators will look like as

follows:

|∇r,HNu|2 =
∞∑
n=0

a′
n

2
P 2
n

and

(∆r,HNu)2 =
∞∑
n=0

(
a′′
n + (N − 1)ψ

′

ψ
a′
n

)2

P 2
n .
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Proof of Corollary 5.3.1. By spherical harmonics, we decompose u as

in (5.5.2). Now, exploiting Theorem 5.3.1 for each an, we deduce

�
HN

V (r)|∆r,HNu|2 dvHN =
∞∑
n=0

� ∞

0
V (r)

(
a′′
n + (N − 1)ψ

′

ψ
a′
n

)2

ψN−1 dr

=
∞∑
n=0

[ � ∞

0
Wa′

n
2
ψN−1 dr +

� ∞

0
V f 2

[(
a′
n

f

)′]2

ψN−1 dr

− (N − 1)
� ∞

0
V
f ′

f

(
coth r − 1

r

)
(a′
n)2ψN−1 dr

+ (N − 1)
� ∞

0
V a′

n
2
ψN−3 dr − (N − 1)

� ∞

0
Vrψ

′(a′
n)2ψN−2 dr

]

=
�
HN

W (r)|∇r,HNu|2 dvHN +
�
HN

V (r)(f(r))2
∣∣∣∣∣∇r,HN

(
ur
f(r)

)∣∣∣∣∣
2

dvHN

− (N − 1)
�
HN

V (r)f
′

f

(
coth r − 1

r

)
|∇r,HNu|2 dvHN

+ (N − 1)
�
HN

(
V (r)

sinh2 r
− Vr(r) cosh r

sinh r

)
|∇r,HNu|2 dvHN .

This completes the proof. 2

Proof of Theorem 5.3.2. Again, by spherical decomposition we can

write u as in (5.5.2). Granting the advantage of ψ(r) = sinh r, we can write

some relations like ψ′2

ψ2 = 1 + 1
ψ2 and ψ′2 = 1 + ψ2 and we will use these

identities in the proof frequently. Now, using (5.5.3) for the decomposed

function u, we get

�
HN

V (r)|∆HNu|2 dvHN =
∞∑
n=0

[ � ∞

0
V (r)

(
a′′
n + (N − 1)ψ

′

ψ
a′
n

)2

ψN−1 dr

+ λ2
n

� ∞

0
V (r)a

2
n

ψ4ψ
N−1 dr − 2 λn

� ∞

0
V (r)

(
a′′
n + (N − 1)ψ

′

ψ
a′
n

)
an
ψ2ψ

N−1 dr
]
.
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Exploiting Corollary 5.3.1 for each an, we deduce

�
HN

V (r)|∆HNan|2 dvHN = NωN

� ∞

0
V (r)

(
a′′
n + (N − 1)ψ

′

ψ
a′
n

)2

ψN−1 dr

= NωN

[ � ∞

0
Wa′

n
2
ψN−1 dr +

� ∞

0
V f 2

[(
a′
n

f

)′]2

ψN−1 dr

− (N − 1)
� ∞

0
V
f ′

f

(
coth r − 1

r

)
(a′
n)2ψN−1 dr

+ (N − 1)
� ∞

0
V a′

n
2
ψN−3 dr − (N − 1)

� ∞

0
Vrψ

′(a′
n)2ψN−2 dr

]
.

On the other hand, the r.h.s of inequality (5.3.3) in terms of spherical de-

composition is

�
HN

W (r)|∇HNu|2 dvHN +
�
HN

V (r)(f(r))2
∣∣∣∣∣∇HN

(
ur
f(r)

)∣∣∣∣∣
2

dvHN

− (N − 1)
�
HN

V (r)f
′

f

(
coth r − 1

r

)
|∇HNu|2 dvHN

+ (N − 1)
�
HN

(
V (r)

sinh2 r
− Vr(r) cosh r

sinh r

)
|∇HNu|2 dvHN

=
∞∑
n=0

[ � ∞

0
Wa′

n
2
ψN−1 dr + λn

� ∞

0
Wa2

nψ
N−3 dr

+
� ∞

0
V f 2

[(
a′
n

f

)′]2

ψN−1 dr + λn

� ∞

0
V a′

n
2
ψN−3 dr

− (N − 1)
� ∞

0
V
f ′

f

(
coth r − 1

r

)
a′
n

2
ψN−1 dr

− (N − 1)λn
� ∞

0
V
f ′

f

(
coth r − 1

r

)
a2
nψ

N−3 dr

+ (N − 1)
� ∞

0

(
V (r)
ψ2 − ψ′

ψ
Vr(r)

)
(a′
n)2ψN−1 dr

+ (N − 1)λn
� ∞

0

(
V (r)
ψ2 − ψ′

ψ
Vr(r)

)
a2
n

ψ2ψ
N−1 dr

]
.

Therefore, we will be done if we prove that the following quantity B is non-
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negative:

B :=
∞∑
n=0

[
λ2
n

� ∞

0
V (r)a

2
n

ψ4ψ
N−1 dr

− 2 λn
� ∞

0
V (r)

(
a′′
n + (N − 1)ψ

′

ψ
a′
n

)
an
ψ2ψ

N−1 dr

− λn

� ∞

0
W (r)a

2
n

ψ2ψ
N−1 dr − (N − 1)λn

� ∞

0

(
V (r)
ψ2 − ψ′

ψ
Vr(r)

)
a2
n

ψ2ψ
N−1 dr

− λn

� ∞

0
V (a′

n)2ψN−3 dr + (N − 1)λn
� ∞

0
V
f ′

f

(
coth r − 1

r

)
a2
nψ

N−3 dr
]
.

(5.5.4)

To show that B is non-negative, we establish some preliminary identities.

Let bn(r) := an(r)
ψ(r) , by Leibniz rule we have a′

n = b′
nψ + bnψ

′. Using this and

by parts formula, we obtain
� ∞

0
V a′

n
2
ψN−3 dr =

� ∞

0
V b′

n
2
ψN−1 dr − (N − 3)

� ∞

0
V b2

nψ
N−3 dr

−
� ∞

0
Vrb

2
nψ

′ψN−2 dr − (N − 2)
� ∞

0
V b2

nψ
N−1 dr.

(5.5.5)

Then applying Lemma 5.2.1 for bn, we deduce
� ∞

0
V b′

n
2
ψN−1 dr =

� ∞

0
Wb2

nψ
N−1 dr +

� ∞

0
V f 2

[(
bn
f

)′]2

ψN−1 dr

− (N − 1)
� ∞

0
V
f ′

f

(
coth r − 1

r

)
b2
nψ

N−1 dr.

Using this estimate into (5.5.5) and writing bn in terms of an, we have
� ∞

0
V a′

n
2
ψN−3 dr =

� ∞

0
Wa2

nψ
N−3 dr +

� ∞

0
V f 2

[(
an
fψ

)′]2

ψN−1 dr

− (N − 1)
� ∞

0
V
f ′

f

(
coth r − 1

r

)
a2
nψ

N−3 dr − (N − 3)
� ∞

0
V a2

nψ
N−5 dr

−
� ∞

0
Vra

2
nψ

′ψN−4 dr − (N − 2)
� ∞

0
V a2

nψ
N−3 dr. (5.5.6)
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Before proving B is non-negative, first exploiting by parts formula, we

evaluate separately some terms. First there holds
� ∞

0
V a′′

nanψ
N−3 dr = 1

2

� ∞

0
Vrra

2
nψ

N−3 dr + (N − 3)
2

� ∞

0
Vra

2
nψ

′ψN−4 dr

−
� ∞

0
V (a′

n)2ψN−3 dr − (N − 3)
� ∞

0
V a′

nanψ
′ψN−4 dr

(5.5.7)

and then
� ∞

0
V a′

nanψ
′ψN−4 dr = −1

2

� ∞

0
Vra

2
nψ

′ψN−4 dr

− (N − 4)
2

� ∞

0
V a2

nψ
N−5 dr − (N − 3)

2

� ∞

0
V a2

nψ
N−3 dr.

(5.5.8)

Next, using (5.5.6), (5.5.7) and (5.5.8) into (5.5.4), we derive

B =
∞∑
n=0

[
λ2
n

� ∞

0
V a2

nψ
N−5 dr − 2λn

� ∞

0
V a′′

nanψ
N−3 dr

− 2(N − 1)λn
� ∞

0
V a′

nanψ
′ψN−4 dr − λn

� ∞

0
Wa2

nψ
N−3 dr

− (N − 1)λn
� ∞

0
V a2

nψ
N−5 dr + (N − 1)λn

� ∞

0
Vra

2
nψ

′ψN−4 dr

− λn

� ∞

0
V (a′

n)2ψN−3 dr + (N − 1)λn
� ∞

0
V
f ′

f

(
coth r − 1

r

)
a2
nψ

N−3 dr
]

=
∞∑
n=0

[
λ2
n

� ∞

0
V a2

nψ
N−5 dr − 2λn

{
1
2

� ∞

0
Vrra

2
nψ

N−3 dr

+ (N − 3)
2

� ∞

0
Vra

2
nψ

′ψN−4 dr −
� ∞

0
V (a′

n)2ψN−3 dr

− (N − 3)
� ∞

0
V a′

nanψ
′ψN−4 dr

}
− 2(N − 1)λn

� ∞

0
V a′

nanψ
′ψN−4 dr

− λn

� ∞

0
Wa2

nψ
N−3 dr − (N − 1)λn

� ∞

0
V a2

nψ
N−5 dr

+ (N − 1)λn
� ∞

0
Vra

2
nψ

′ψN−4 dr − λn

� ∞

0
V (a′

n)2ψN−3 dr

+ (N − 1)λn
� ∞

0
V
f ′

f

(
coth r − 1

r

)
a2
nψ

N−3 dr
]
.
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Further calculation gives

B

=
∞∑
n=0

[
λ2
n

� ∞

0
V a2

nψ
N−5 dr − 2λn

{
1
2

� ∞

0
Vrra

2
nψ

N−3 dr −
� ∞

0
V a′

n
2
ψN−3 dr

}

− 4λn
{

−1
2

� ∞

0
Vra

2
nψ

′ψN−4 dr − (N − 4)
2

� ∞

0
V a2

nψ
N−5 dr

− (N − 3)
2

� ∞

0
V a2

nψ
N−3 dr

}
− λn

� ∞

0
Wa2

nψ
N−3 dr

− (N − 1)λn
� ∞

0
V a2

nψ
N−5 dr + 2λn

� ∞

0
Vra

2
nψ

′ψN−4 dr

− λn

� ∞

0
V (a′

n)2ψN−3 dr + (N − 1)λn
� ∞

0
V
f ′

f

(
coth r − 1

r

)
a2
nψ

N−3 dr
]

=
∞∑
n=0

[
λn(λn +N − 7)

� ∞

0
V a2

nψ
N−5 dr − λn

� ∞

0
Vrra

2
nψ

N−3 dr

+ 2λn
� ∞

0
V a′

n
2
ψN−3 dr + 4λn

� ∞

0
Vra

2
nψ

′ψN−4 dr

+ 2λn(N − 3)
� ∞

0
V a2

nψ
N−3 dr − λn

� ∞

0
Wa2

nψ
N−3 dr

− λn

� ∞

0
V (a′

n)2ψN−3 dr + (N − 1)λn
� ∞

0
V
f ′

f

(
coth r − 1

r

)
a2
nψ

N−3 dr
]

=
∞∑
n=0

[
λn(λn +N − 7)

� ∞

0
V a2

nψ
N−5 dr − λn

� ∞

0
Vrra

2
nψ

N−3 dr

+ 4λn
� ∞

0
Vra

2
nψ

′ψN−4 dr + λn

{� ∞

0
Wa2

nψ
N−3 dr

+
� ∞

0
V f 2

[(
an
fψ

)′]2

ψN−1 dr − (N − 3)
� ∞

0
V a2

nψ
N−5 dr

−
� ∞

0
Vra

2
nψ

′ψN−4 dr − (N − 2)
� ∞

0
V a2

nψ
N−3 dr

}

+ 2λn(N − 3)
� ∞

0
V a2

nψ
N−3 dr − λn

� ∞

0
Wa2

nψ
N−3 dr

]

=
∞∑
n=0

[
λn(λn − 4)

� ∞

0
V a2

nψ
N−5 dr − λn

� ∞

0
Vrra

2
nψ

N−3 dr

+ 3λn
� ∞

0
Vra

2
nψ

′ψN−4 dr + λn(N − 4)
� ∞

0
V a2

nψ
N−3 dr

+ λn

� ∞

0
V f 2

[(
an
fψ

)′]2

ψN−1 dr
]
.
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Finally continuing the calculation we obtain

B =
∞∑
n=0

λn

[
(λn − 4)

� ∞

0
V a2

nψ
N−5 dr +

� ∞

0

{
3Vrψ′

ψ
− Vrr

}
a2
nψ

N−3 dr

+ (N − 4)
� ∞

0
V a2

nψ
N−3 dr +

� ∞

0
V f 2

[(
an
fψ

)′]2

ψN−1 dr
]

≥
∞∑
n=0

λn

[ � ∞

0

{
(N − 5) V

ψ2 + 3Vrψ
′

ψ
− Vrr + (N − 4)V

}
a2
nψ

N−3 dr

+
� ∞

0
V f 2

[(
an
fψ

)′]2

ψN−1 dr
]
.

In the last line we have used λn ≥ N − 1 for all n ≥ 1. Hence, B eventu-

ally turns out to be non-negative due to the hypothesis (5.3.2) and the non

negativity of the last term. 2

Proof of Theorem 5.3.3. The idea of the proof is similar to that of

Theorem 5.1.3. First, exploiting the given conditions into Theorem 5.3.2, we

deduce that for all u ∈ C∞
c (HN \ {xo}) there holds

�
HN

V (r)|∆HNu|2 dvHN ≥
�
HN

W̃ (r)|∇HNu|2 dvHN .

Finally, we use Hölder inequality and the above to get:

( �
HN

|∇HNu|2 dvHN

)2

=
( �

HN

√
W̃ (r)|∇HNu| |∇HNu|√

W̃ (r)
dvHN

)2

≤
(�

HN

|∇HNu|2

W̃ (r)
dvHN

)(�
HN

W̃ (r)|∇HNu|2 dvHN

)

≤
(�

HN

|∇HNu|2

W̃ (r)
dvHN

)(�
HN

V (r)|∆HNu|2 dvHN

)
.

The proof of Heisenberg-Pauli-Weyl uncertainty principle involving radial

part of the operator is in a similar line. 2
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5.6 Appendix: a family of improved Hardy-

Poincaré equalities

In this appendix we present a family of improved Hardy-Poincaré equalities

which follows as a corollary from [60, Theorem 3.2], i.e. Lemma 5.2.1 above,

by exploiting the family of Bessel pairs (rN−1, rN−1Wλ) introduced in Section

5.4 for all 0 ≤ λ ≤ λ1(HN). If λ = λ1(HN) the identity we got is already

known from [60, Theorem 3.2] while for 0 ≤ λ < λ1(HN) it is new and im-

proves (1.1.9), i.e. [28, Theorem 2.1], with the presence of an exact remainder

term. The precise statement of the result reads as follows:

Theorem 5.6.1. Let N ≥ 2. For all 0 ≤ λ ≤ λ1(HN) =
(
N−1

2

)2
and for all

u ∈ C∞
c (HN \ {xo}) there holds

�
HN

|∇HNu|2 dvHN = λ

�
HN

u2 dvHN + h2
N(λ)

�
HN

u2

r2 dvHN

+
[

(N − 2)2

4 − h2
N(λ)

] �
HN

u2

sinh2 r
dvHN

+ γN(λ)hN(λ)
�
HN

r coth r − 1
r2 u2 dvHN +

�
HN

(Ψλ(r))2
∣∣∣∣∣∇HN

(
u

Ψλ(r)

)∣∣∣∣∣
2

dvHN

and for the radial operator we have
�
HN

|∇r,HNu|2 dvHN = λ

�
HN

u2 dvHN + h2
N(λ)

�
HN

u2

r2 dvHN

+
[

(N − 2)2

4 − h2
N(λ)

] �
HN

u2

sinh2 r
dvHN

+ γN(λ)hN(λ)
�
HN

r coth r − 1
r2 u2 dvHN

+
�
HN

(Ψλ(r))2
∣∣∣∣∣∇r,HN

(
u

Ψλ(r)

)∣∣∣∣∣
2

dvHN ,

where γN(λ) :=
√

(N − 1)2 − 4λ, hN(λ) := γN (λ)+1
2 and

Ψλ(r) := r− N−2
2
(

sinh r
r

)− N−1+γN (λ)
2 .

Proof. The proof follows by applying [60, Theorem 3.2], i.e. Lemma 5.2.1
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above, with the Bessel pairs (rN−1, rN−1Wλ), where Wλ is as given in (5.4.1).

In particular, for λ = N − 2 Theorem 5.6.1 yields the Hardy identity

below which improves (1.1.10):

Corollary 5.6.1. Let N ≥ 3. For all u ∈ C∞
c (HN \ {xo}) there holds

�
HN

|∇HNu|2 dvHN =
(
N − 2

2

)2 �
HN

u2

r2 dvHN + (N − 2)
�
HN

u2 dvHN

+ (N − 2)(N − 3)
2

�
HN

r coth r − 1
r2 u2 dvHN

+
�
HN

(
r1/2

sinh r

)2(N−2) ∣∣∣∣∣∇HN

(
(sinh r)N−2u

r(N−2)/2

)∣∣∣∣∣
2

dvHN .

————— ◦ —————
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Study of eigenvalue problems

for second-order elliptic PDEs
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Chapter 6

Eigenvalue problems for

second-order elliptic PDEs

The second part of the thesis devoted to study the generalized eigenvalue

problem in RN for a general convex nonlinear elliptic operator which is locally

elliptic and positively homogeneous. Also in the later part of this we study

ergodic problems in the whole space RN for a weakly coupled systems of

viscous Hamilton-Jacobi equations with coercive right-hand sides. One can

find the details in the Chapter 7 and 8 covering the material of [38] and [9]

respectively.

6.1 Brief description of the obtained results

Here we will discuss the brief description of the problems and obtained results

of the second part of the thesis.
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6.1.1 Problem 4

This main contribution in Chapter 7 of the thesis is to the study of eigenvalue

problem of the form

F (D2ψ,Dψ, ψ, x) = λψ in RN ,

where F is a fully nonlinear, convex, positively 1-homogeneous elliptic op-

erator with measurable coefficients. We establish the existence of half (or

demi) eigenvalues and characterize the set of all eigenvalues with positive

and negative eigenfunctions. This generalizes a recent work of Berestycki

and Rossi [35] which considers linear elliptic operators. We also derive nec-

essary and sufficient conditions for the validity maximum principles in RN

and discuss the uniqueness of principal eigenfunctions.

It has long been known that certain types of positively homogeneous

operators possess two principal eigenvalues (one corresponds to a positive

eigenfunction and the other one corresponds to a negative eigenfunction).

In fact, this first appeared in the work of Pucci [108] who computed these

eigenvalues explicitly for certain extremal operators in the unit ball. Later

it also appeared in a work of Berestycki [31] while studying the bifurcation

phenomenon for some nonlinear Sturm-Liouville problem and Berestycki re-

ferred them as half eigenvalues. In connection to this work of Berestycki,

Lions used a stochastic control approach in [92] to characterize these eigen-

values (he called it demi-eigenvalues) for operators which are the supremum

of linear operators with C1,1-coefficients, and relate them to certain bifurca-

tion problem. In their seminal work [33] Berestycki, Nirenberg and Varadhan

introduced the notion of Dirichlet generalized principal eigenvalue for linear

operators in non-smooth bounded domains and also established a deep con-

nection between sign of the principal eigenvalue and validity of maximum

principles. This work serves as a founding stone of the modern eigenthe-
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ory and has been used to study eigenvalue problems for general nonlinear

operators, including degenerate ones. We are in particular, attracted by the

works [13,14,32,37,43,44,73,74,104,109]. We owe much to the work of Quass

and Sirakov [109] who study the Dirichlet principal eigenvalue problem for

convex, fully nonlinear operators in bounded domains.

All the above mentioned works deal with bounded domains. It is then

natural to ask how the eigentheory changes for unbounded domains. In fact,

the necessity for studying eigenvalue problems in RN becomes important to

understand the existence and uniqueness of solutions for certain semi-linear

elliptic operators. See for instance, the discussion in [34, 35] and references

therein. Principal eigenvalue is a key ingredient to find the rate functional

for the large deviation estimate of empirical measures of diffusions [54,55,75].

Recently, eigenvalue problems in RN have got much attention due to its ap-

plication in the theory of risk-sensitive controls [4, 5, 10] (see the discussion

in Subsection 7.1). Presently we are motivated by a recent study of Beresty-

cki and Rossi [35] where the authors consider non-degenerate linear elliptic

operators and develop an eigentheory for unbounded domains. Monotonicity

property of the principal eigenvalue (with respect to the potentials) in RN

and its relation with the stability property of the twisted process is estab-

lished in [10]. The paper [4] considers a class of semi-linear elliptic operators

and obtains a variational representation of the principal eigenvalue under

the assumption of geometric stability. Here we will develop an eigentheory

for fully nonlinear positively homogeneous operators in the whole space RN

(see Chapter 7 for details). Similar kind of generalized eigenvalue problem

has been studied in [8] on the whole Euclidean space for a class of integro-

differential elliptic operators.
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6.1.2 Problem 5

In Chapter 8 of the thesis we study the existence and uniqueness of solution

(u, λ) = (u1, u2, λ) to the equation

−∆u1(x) +H1(x,∇u1(x)) + α1(x)(u1(x) − u2(x)) = f1(x) − λ in RN ,

−∆u2(x) +H2(x,∇u2(x)) + α2(x)(u2(x) − u1(x)) = f2(x) − λ in RN ,

(6.1.1)

where Hi : RN × RN → R denote the Hamiltonians, and αi : RN → R+

are the switching rate parameters for i = 1, 2. The system of equations

(6.1.1) arises as the Hamilton-Jacobi equations (HJE) in certain ergodic con-

trol problems of diffusions in a switching environment. The ergodic control

problems for scalar second order elliptic equations has been studied exten-

sively by several mathematicians and therefore, it is almost impossible to

list all the important works in this direction. Nevertheless, we mention some

of them that, in our opinion, are milestones in this topic. Ergodic control

problems with quadratic Hamiltonian were first studied by Bensoussan and

Freshe [23, 24] where the authors established the existence and uniqueness

of unbounded solutions in RN . For space-time periodic Hamiltonians, the

existence and uniqueness are considered by Barles and Souganidis [22]. Ichi-

hara [70–72] considers the problem for a general class of Hamiltonians and

recurrence/transience properties of the optimal feedback controls are also dis-

cussed. We also mention the work of Cirant [50] who investigates the ergodic

control problem in RN for a fairly general family of Hamiltonians. It is shown

in [50] that the problem in RN can be approximated by the ergodic control

problems in bounded domains with Neumann boundary condition. Recently,

the uniqueness of unbounded solutions for a general family of right-hand sides

is established by Barles and Meireles [19], which is then further improved by

the first two authors and Caffarelli [6] in the subcritical case. There are

also several important works studying long-time behaviour of the solutions
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to certain parabolic equations and its convergence to the solutions to the

ergodic control problems: see for instance, Barles-Souganidis [22], Fujita-

Ishii-Loreti [61], Tchamba [116], Ichihara [71], Barles-Porretta-Tchamba [20],

Barles-Quaas-Rodríguez [21].

On the other hand, number of works on the ergodic control problem for

weakly coupled elliptic systems are very few. All existing results in this direc-

tion consider the domain to be torus and the Hamiltonians to be quadratic.

See for instance, Mitake-Tran [97], Filippo-Gomes-Mitake-Tran [47] and ref-

erences therein. However, if one assumes the action set to be compact then

similar problems have been addressed in detail, see Ghosh-Arapostathis-

Marcus [12], Arapostathis-Borkar-Ghosh [11, Chapter 5]. One of the main

challenges in studying the weakly coupled systems is in establishing appro-

priate gradient estimates and bounds on the term |u1 − u2| (see Proposition

8.4.1 below and the Chapter 8 for details).

————— ◦ —————
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Chapter 7

Generalized principal

eigenvalues of convex nonlinear

elliptic operators in RN

In this chapter we will study the generalized eigenvalue problem in RN for a

general convex nonlinear elliptic operator which is locally elliptic and posi-

tively homogeneous. Generalizing Berestycki and Rossi [35] we consider three

different notions of generalized eigenvalues and compare them. We also dis-

cuss the maximum principles and uniqueness of principal eigenfunctions. The

content of this chapter corresponds to the article [38].

7.1 Motivations behind the problem

One of the important examples of F comes from the control theory. In

particular, we may consider

F (D2ϕ,Dϕ, ϕ, x) = sup
α

{trace(aα(x)D2ϕ(x)) + bα(x) ·Dϕ(x) + cα(x)ϕ(x)}

= sup
α

{Lαϕ+ cαϕ} , (7.1.1)
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where α varies over some index set I, λ(x)I ≤ aα(x) ≤ Λ(x)I, and

supα∈I |bα(x)|, supα∈I |cα(x)| are locally bounded. The eigenvalue problem

corresponding to the operator F appears in the study of risk-sensitive con-

trols. See for instance, [5, 10] and references therein. To elaborate, suppose

that I is a compact subset subset of Rm. Let U be the collection of Borel mea-

surable maps α : RN → I. Note that constant functions are also included in

U. This set U represents the collection of all Markov controls. Given α ∈ U,

suppose that Xα is the Markov diffusion process with generator Lα. Denote

the law of Xα by Pα and Eα[·] is the expectation operator associated with it.

Consider the maximization problem

Λ = sup
α∈U

lim sup
T→∞

1
T

logEα
[
e
� T

0 cα(Xt)dt
]
.

Then under reasonable hypothesis, one can show that Λ is an eigenvalue of F

(i.e. Λ ∈ E+) and for many practical reasons it is desirable that Λ = λ+
1 (F ).

Also, simplicity of λ+
1 (F ) is important to find an optimal strategy or control.

We refer the readers to [5, 10] for more details on this problem.

7.2 Preliminary model and assumptions

In this section we will first introduce our model and elaborate some basic

assumptions. Let λ,Λ : RN → (0,∞) be two locally bounded functions with

the property that for any compact set K ⊂ RN we have

0 < inf
x∈K

λ(x) ≤ sup
x∈K

Λ(x) < ∞.

Choosing K = {x} it follows from above that 0 < λ(x) ≤ Λ(x) for all

x ∈ RN . These two functions will be treated as the bounds of the ellipticity

constants at point x. By SN we denote the set of all N ×N real symmetric

matrices. The extremal Pucci operators corresponding to λ,Λ are defined as
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follows. For M ∈ SN the extremal operators at x ∈ RN are defined to be

M+
λ,Λ(x,M) = sup

λ(x)I≤A≤Λ(x)I
trace(AM) = Λ(x)

∑
βi≥0

βi + λ(x)
∑
βi<0

βi,

M−
λ,Λ(x,M) = inf

λ(x)I≤A≤Λ(x)I
trace(AM) = λ(x)

∑
βi≥0

βi + Λ(x)
∑
βi<0

βi,

where β1, . . . , βn, denote the eigenvalues of the matrix M .

Our operator F is a Borel measurable function F : SN×RN×R×RN → R,

with the following properties:

(H1) F is positively 1-homogeneous in the variables (M, p, u) ∈ SN ×RN ×R

i.e., for every t > 0 we have we have

F (tM, tp, tu, x) = tF (M, p, u, x) for all x ∈ RN .

In particular, F (0, 0, 0, x) ≡ 0.

(H2) F is convex in the variables (M, p, u) ∈ SN × RN × R.

(H3) There exist locally bounded functions γ, δ : RN → [0,∞) satisfying

M−
λ,Λ(x,M −N) − γ(x)|p− q| − δ(x)|u− v|

≤ F (M, p, u, x) − F (N, q, v, x)

≤ M+
λ,Λ(x,M −N) + γ(x)|p− q| + δ(x)|u− v|,

for all M,N ∈ SN , p, q ∈ RN , u, v ∈ R and x ∈ RN .

(H4) The function (M,x) ∈ SN × RN 7→ F (M, 0, 0, x) is continuous.

Throughout this chapter we assume the conditions (H1)-(H4) without any

further mention. Also, observe that due to our hypotheses the operator F

satisfies the conditions in [109] which studies the Dirichlet eigenvalue problem

for F in bounded domains. Therefore the results of [109] holds for F in

smooth bounded domains.
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Let us now define the principal eigenvalues of F in a smooth domain

Ω ⊂ RN , possibly unbounded. For any real number λ we define the following

sets

Ψ+(F,Ω, λ)

= {ψ ∈ W 2,N
loc (Ω) : F (D2ψ,Dψ, ψ, x) + λψ ≤ 0 and ψ > 0 in Ω} ,

and

Ψ−(F,Ω, λ)

= {ψ ∈ W 2,N
loc (Ω) : F (D2ψ,Dψ, ψ, x) + λψ ≥ 0 and ψ < 0 in Ω} .

By sub or super-solution we always mean LN -strong solution. The (half)

eigenvalues are defined to be

λ+
1 (F,Ω) = sup{λ ∈ R : Ψ+(F,Ω, λ) ̸= ∅} ,

λ−
1 (F,Ω) = sup{λ ∈ R : Ψ−(F,Ω, λ) ̸= ∅} .

Using the convexity of F and [109, Proposition 4.2] it follows that λ+
1 (F,Ω) ≤

λ−
1 (F,Ω) < ∞. For F linear we also have λ+

1 (F,Ω) = λ−
1 (F,Ω). In this chap-

ter we would be interested in the case Ω = RN and for notational economy

we denote λ±
1 (F,RN) = λ±

1 (F ).

Remark 7.2.1. We can replace the LN -strong super and sub-solutions in

Ψ±(F,Ω, λ) by LN -viscosity super and sub-solutions, respectively.

7.3 Statement of main results

We now state our main results. Most of the results obtained here are gen-

eralization of its linear counterpart in [35]. Recall from [35, Theorem 1.4]

that for F linear and λ ∈ (−∞, λ1(F )] there exists a positive function

φ ∈ W 2,p
loc (RN), p > N, satisfying F (D2φ,Dφ, φ, x) + λφ = 0 in RN . Thus

there is a continuum of eigenvalues with the largest one being the principal

eigenvalue. This leads us to the following sets of eigenvalues.
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Definition 7.3.1. We say λ ∈ R is an eigenvalue with a positive eigenfunc-

tion if there exists ϕ ∈ W 2,p
loc (RN), p > N , such that

F (D2ϕ,Dϕ, ϕ, x) = −λϕ in RN , and ϕ > 0 in RN .

We denote the collection of all eigenvalues with positive eigenfunctions by E+.

Analogously, we define E− as the collection of all eigenvalues with negative

eigenfunctions.

Our first result generalizes [35, Theorem 1.4].

Theorem 7.3.1. We have E+ = (−∞, λ+
1 (F )] and E− = (−∞, λ−

1 (F )].

It is well known that for bounded domains it is also possible to define

principal eigenvalues through sub-solutions (cf. [109, Theorem 1.2]). How-

ever, this situation is bit different for unbounded domains. To explain we

introduce the following quantities.

λ′,+
1 (F ) := inf{λ ∈ R : ∃ψ ∈ W 2,N

loc (RN) ∩ L∞(RN),

ψ > 0, F (D2ψ,Dψ, ψ, x) + λψ ≥ 0 in RN},

λ′,−
1 (F ) := inf{λ ∈ R : ∃ψ ∈ W 2,N

loc (RN) ∩ L∞(RN),

ψ < 0, F (D2ψ,Dψ, ψ, x) + λψ ≤ 0 in RN},

and

λ′′,+
1 (F ) := sup{λ ∈ R : ∃ψ ∈ W 2,N

loc (RN),

inf
RN

ψ > 0, F (D2ψ,Dψ, ψ, x) + λψ ≤ 0 in RN} ,

λ′′,−
1 (F ) := sup{λ ∈ R : ∃ψ ∈ W 2,N

loc (RN),

sup
RN

ψ < 0, F (D2ψ,Dψ, ψ, x) + λψ ≥ 0 in RN} .
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We remark that in case of bounded domains one has

λ1(F,Ω) = λ′,+
1 (F,Ω) = λ′′,+

1 (F,Ω)

and

λ1(F,Ω) = λ′,−
1 (F,Ω) = λ′′,−

1 (F,Ω),

provided we required the sub-solution (super-solution) to vanish on ∂Ω in

the definition of λ′,+
1 (λ′,−

1 , resp.) (cf. [109]). But the same might fail to hold

in unbounded domains (counter-example in [34, p. 201]). However, we could

prove the following relation which generalizes [35, Theorem 1.7].

Theorem 7.3.2. The following hold.

(i) We have λ′,+
1 (F ) ≤ λ+

1 (F ) and λ′,−
1 (F ) ≤ λ−

1 (F ).

(ii) Suppose that

sup
RN

δ(x) < ∞, lim sup
|x|→∞

γ(x)
|x|

< ∞, and lim sup
|x|→∞

Λ(x)
|x|2

< ∞ .

(7.3.1)

Then we have λ′′,+
1 (F ) ≤ λ′,+

1 (F ) and λ′′,−
1 (F ) ≤ λ′,−

1 (F ).

In view of Theorem 7.3.2 we see that λ′′,+
1 (F ) ≤ λ′,+

1 (F ) ≤ λ+
1 (F ) and

λ′′,−
1 (F ) ≤ λ′,−

1 (F ) ≤ λ−
1 (F ), provided (7.3.1) holds. Again, due to the

convexity of F we have λ+
1 (F ) ≤ λ−

1 (F ). One might wonder if there is any

natural relation between “plus” and “minus” eigenvalues. We now argue that

this might not be possible, in general. If we consider F to be linear then we

have λ·,+
1 (F ) = λ·,−

1 (F ), and therefore if (7.3.1) holds, then λ+
1 (F ) ≥ λ′′,−

1 (F ),

by Theorem 7.3.2. We now produce an example where the reverse inequality

holds.

Example 7.3.1. Consider two linear elliptic operators of the form

Lαu = ∆u+ bα(x) ·Du+ cα(x)u,
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for α ∈ {1, 2} with the properties that

λ′′
1(L2,RN) > λ′′

1(L1,RN) and λ′′
1(L1,RN) = λ′

1(L1,RN) = λ1(L,RN).

Now define a nonlinear operator

F (D2u,Du, u, x) := ∆u+ max
α∈{1,2}

{bα(x) ·Du} + cα(x)u}.

It is then easily seen that

λ
′′−
1 (F ) ≥ max{λ′′

1(L1,RN), λ′′
1(L2,RN)} ,

and

λ+
1 (F ) ≤ min{λ1(L1,RN), λ1(L2,RN)}.

Combining we obtain

λ′′,−
1 (F ) ≥ λ′′

1(L2) > λ′′
1(L1,RN) = λ1(L1,RN) ≥ λ+

1 (F ).

Next we list a few class of operators for which these three eigenvalues

coincide (compare them with [35, Theorem 1.9]). We only provide the result

for “plus” eigenvalues and the analogous result for “minus” eigenvalues are

easy to guess.

Theorem 7.3.3. The equality λ+
1 (F ) = λ′′,+

1 (F ) holds in each of the follow-

ing cases:

(i) F = F̃ + γ̃(x), where F̃ is a nonlinear operator with an additional

property λ+
1 (F̃ ,RN) = λ′′,+

1 (F̃ ,RN), and γ̃ ∈ L∞(RN) is a non-negative

function satisfying lim|x|→∞ γ̃(x) = 0.

(ii) λ+
1 (F ) ≤ − lim sup|x|→∞ F (0, 0, 1, x).

(iii) Assume that λ0 ≤ λ(x) ≤ Λ(x) ≤ Λ0 for all x ∈ RN , lim|x|→∞ γ(x) = 0

and for all r > 0 and all β such that β < lim sup|x|→∞ F (0, 0, 1, x),

there exists Br(x0) satisfying infBr(x0) F (0, 0, 1, x) > β .

133



CHAPTER 7. GENERALIZED PRINCIPAL EIGENVALUES OF CONVEX
NONLINEAR ELLIPTIC OPERATORS IN RN

(iv) There exists a V ∈ C2(RN) with infRN V > 0 and

F (D2V,DV, V, x) ≤ −λ+
1 (F )V for all x ∈ Bc,

for some ball B.

Now we turn our attention towards maximum principles. It was observed

in the seminal work of Berestycki, Nirenberg and Varadhan [33] that the

sign of the principle eigenvalue determines the validity of maximum princi-

ples in bounded domains. Extension of this result for nonlinear operators are

obtained by Quaas and Sirakov [109] and Armstrong [14]. Further generaliza-

tion in smooth bounded domains for a class of degenerate, nonlinear elliptic

operators are obtained by Berestycki et. al. [32], Birindelli and Demengel [37].

Recently, Berestycki and Rossi [35] establish the maximum principles in un-

bounded domains for linear elliptic operators. Here we extend their results

to our nonlinear setting.

Definition 7.3.2 (Maximum principles). We say that the operator F satisfies

β+-MP with respect to a positive function β if for any function u ∈ W 2,N
loc (RN)

satisfying

F (D2u,Du, u, x) ≥ 0 in RN , and sup
RN

u

β
< ∞ ,

we have u ≤ 0 in RN . For β = 1, we simply mention this property as +MP.

We say that the operator F satisfies β−-MP with respect to a negative

function β if for any function u ∈ W 2,N
loc (RN) satisfying

F (D2u,Du, u, x) ≤ 0 in RN , and sup
RN

u

β
< ∞ ,

we have u ≥ 0 in RN . For β = −1, we simply mention this property as

−MP.

Note that β ≡ 1 corresponds to the well known maximum principle. We

would be interested in a function β : RN → (0,∞) which satisfies either

∃σ > 0, lim sup
|x|→∞

β(x)|x|−σ = 0 , (7.3.2)
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or

∃ σ > 0, lim sup
|x|→∞

β(x) exp(−σ|x|) = 0 . (7.3.3)

Generalizing [35, Definition 1.2] we now consider the following quantities.

Definition 7.3.3. Given a positive function β : RN → R, we define

λ′′,+
β (F ) := sup{λ ∈ R : ∃ ψ ∈ W 2,N

loc (RN),

ψ ≥ β, F (D2ψ,Dψ, ψ, x) + λψ ≤ 0 in RN} ,

λ′′,−
β (F ) := sup{λ ∈ R : ∃ψ ∈ W 2,N

loc (RN),

ψ ≤ −β, F (D2ψ,Dψ, ψ, x) + λψ ≥ 0 in RN} .

Our maximum principles would be established under the following growth

conditions on the coefficients.

sup
RN

δ(x) < ∞, lim sup
|x|→∞

γ(x)
|x|

< ∞, and lim sup
|x|→∞

Λ(x)
|x|2

< ∞ . (7.3.4)

sup
RN

δ(x) < ∞, sup
RN

γ(x) < ∞, and supRN Λ(x) < ∞ . (7.3.5)

Next we state our maximum principle

Theorem 7.3.4. Suppose that either (7.3.2) and (7.3.4) or (7.3.3) and

(7.3.5) hold. Then the following hold:

(i) The operator F satisfies β+-MP in RN if λ′′,+
β (F ) > 0.

(ii) The operator F satisfies (−β)−-MP in RN if λ′′,−
β (F ) > 0.

As a consequence of Theorem 7.3.4 we obtain the following corollaries.

Corollary 7.3.1. Suppose that either (7.3.4) or (7.3.5) holds. Then we have

(i) The operator F satisfy +MP in RN if λ′′,+
1 (F ) > 0.
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(ii) The operator F satisfy −MP in RN if λ′′,−
1 (F ) > 0.

(iii) Suppose that λ′′,+
1 (F ) > 0 (therefore, λ′′,−

1 (F ) > 0). Let u ∈

W 2,N
loc (RN) ∩ Ł∞(RN) satisfy F (D2u,Du, u, x) = 0 in RN . Then u ≡ 0.

Corollary 7.3.2. Suppose that F satisfies β+-MP. Let u, v ∈ W 2,N
loc (RN) be

such that

F (D2u,Du, u, x) ≥ 0, F (D2v,Dv, v, x) ≤ 0 in RN ,

and supRN
u−v
β

< ∞ . Then we have u ≤ v in RN .

Proof. Denote by w = u− v. By using the convexity of F it follows that

F (D2w,Dw,w, x) ≥ F (D2u,Du, u, x) − F (D2v,Dv, v, x) ≥ 0 in RN .

Hence the result follows from β+-MP.

Generalizing λ′,+
1 (F ) and λ′,−

1 (F ) we define the following quantities. Let

β be a positive valued function and

λ′,+
β (F ) := inf{λ ∈ R : ∃ ψ ∈ W 2,N

loc (RN),

β ≥ ψ > 0, F (D2ψ,Dψ, ψ, x) + λψ ≥ 0 in RN} ,

and

λ′,−
β (F ) := inf{λ ∈ R : ∃ ψ ∈ W 2,N

loc (RN),

− β ≤ ψ < 0, F (D2ψ,Dψ, ψ, x) + λψ ≤ 0 in RN} .

As a necessary condition for the validity of maximum principles we deduce

the following.

Theorem 7.3.5. The following hold.

(i) If F satisfies the β+-MP then λ′,+
β (F ) ≥ 0. In particular, if F satisfies

+MP then we have λ′,+
1 (F ) ≥ 0.
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(ii) If F satisfies the (−β)−-MP then λ′,−
β (F ) ≥ 0. In particular, if F

satisfies the −MP then we have λ′,−
1 (F ) ≥ 0.

Finally, we discuss about simplicity of the principal eigenvalues. For

linear F uniqueness of principal eigenfunctions can be established impos-

ing Agmon’s minimal growth condition at infinity [35, Definition 8.2] on the

eigenfunctions. But such criterion does not seem to work well for nonlin-

ear F . Recently, in [7, Theorem 2.1] it is shown that Agmon’s minimal

growth criterion is equivalent to monotonicity of the principal eigenvalue on

the right. Our next result establish simplicity of principal eigenvalue under

certain monotonicity condition of principal eigenvalue at infinity.

Theorem 7.3.6. Suppose that there exists a positive V ∈ W 2,N
loc (RN) satis-

fying

F (D2V,DV, V, x) ≤ −(λ+
1 (F ) + ε)V for all x ∈ Kc, (7.3.6)

for some compact ball K and ε > 0. Then λ+
1 (F ) is simple i.e. the positive

eigenfunction is unique upto a multiplicative constant.

We remark that (7.3.6) is equivalent to

λ+
1 (F ) < lim

r→∞
λ+

1 (F, B̄c
r).

Our next result is about simplicity of λ−
1 (F ).

Theorem 7.3.7. Suppose that there exists a positive V ∈ W 2,N
loc (RN) satis-

fying

F (D2V,DV, V, x) ≤ −(λ−
1 (F ) + ε)V for all x ∈ Kc, (7.3.7)

for some compact ball K and ε > 0. Then λ−
1 (F ) is simple.
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7.4 Proofs of main results

In this section we prove Theorem 7.3.1-7.3.7. Let us start by recalling the

following Harnack inequality from [109, Theorem 3.6] which will be crucial

for our proofs. The result in [109, Theorem 3.6] is stated for LN -viscosity

solutions and also applies to LN -strong solutions due to [46, Lemma 2.5].

Theorem 7.4.1. Let Ω ⊂ RN be bounded. Let u ∈ C(Ω̄) ∩ W 2,N
loc (Ω) and

f ∈ LN(Ω) satisfy u ≥ 0 in Ω and

M+
λ,γ(x,D2u) + γ|Du| + δu ≥ f in Ω,

M−
λ,γ(x,D2u) − γ|Du| − δu ≤ f in Ω.

Then for any compact set K ⋐ Ω we have

sup
K
u ≤ C [inf

K
u+ ∥f∥LN (Ω)] ,

for some constant C dependent on K,Ω, N, γ, δ, minΩ λ and maxΩ Λ.

Next we prove Theorem 7.3.1. The idea is the following: we show using

the Harnack inequality and stability estimate that the Dirichlet principal

eigenpair in Bn converges to a principal eigenpair in RN . For any λ < λ+
1 (F )

or λ < λ−
1 (F ) we use the refined maximum principle in bounded domains

and then stability estimate to pass the limit. We spilt the proof of Theorem

7.3.1 in Lemma 7.4.1 and Lemma 7.4.2.

Lemma 7.4.1. It holds that E+ = (−∞, λ+
1 (F )].

Proof. Let λ+
1 (F,Bn) be the Dirichlet principal eigenvalue in Bn correspond-

ing to the positive principal eigenfunction. Existence of λ+
1 (F,Bn) follows

from [109, Theorem 1.1]. For notational economy we denote λ+
1 (F,Bn) = λ+

1,n

and λ+
1 (F ) = λ+

1 . We also set Ep(Ω) = W 2,p
loc (Ω) ∩C(Ω̄). We divide the proof

into two steps.
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Step 1. We show that limn→∞ λ+
1,n = λ+

1 and λ+
1 ∈ E+. It is obvious

from the definition that λ+
1,n is decreasing in n and bounded below by λ+

1 .

Thus if limn→∞ λ+
1,n = −∞, we also have λ+

1 = −∞ and there is nothing

to prove. So we assume limn→∞ λ+
1,n := λ̃ > −∞. It is then obvious that

λ̃ ≥ λ+
1 . From [109, Theorem 1.1] we have ψ+

1,n ∈ Ep(Bn), ∀ p < ∞, such

that ψ+
1,n > 0 in Bn, ψ+

1,n = 0 on ∂Bn and satisfies

F (D2ψ+
1,n, Dψ

+
1,n, ψ

+
1,n, x) = −λ+

1,nψ
+
1,n in Bn , (7.4.1)

for all n ≥ 1. Normalize each ψ+
1,n by choosing ψ+

1,n(0) = 1. Fix any compact

K ⊂ RN such that 0 ∈ K and choose n0 large so that K ⋐ Bm for all

m ≥ n0. Applying Theorem 7.4.1 on (7.4.1) we find a constant C = C(n0)

satisfying

sup
K

ψ+
1,n ≤ C inf

K
ψ+

1,n ≤ C ψ+
1,n(0) = C.

Thus applying [109, Theorem 3.3] we obtain, for p > N , that

∥ψ+
1,n∥W 2,p(K) ≤ C ∀n > n0 .

Since K is arbitrary, using a standard diagonalization argument we can find

a non-negative φ+ ∈ Ep(RN), ∀ p < ∞, such that ψ+
1,n → φ+ in W 2,p

loc (RN),

upto a subsequence. Hence by [46, Theorem 3.8 and Corollary 3.7] we obtain

F (D2φ+, Dφ+, φ+, x) = −λ̃φ+ in RN , φ+(0) = 1.

Again, applying Theorem 7.4.1 we have φ+ > 0. Thus, λ̃ ≤ λ+
1 . This shows

λ̃ = λ+
1 and λ+

1 ∈ E+.

Step 2. We show that E+ = (−∞, λ+
1 ]. It is obvious that E+ ⊂ (−∞, λ+

1 ].

To show the reverse relation we consider λ < λ+
1 . We choose a sequence

{fn}n≥1 of continuous, non positive, non-zero functions satisfying

support(fn) ⊂ Bn \ Bn−1 for all n ∈ N.

139



CHAPTER 7. GENERALIZED PRINCIPAL EIGENVALUES OF CONVEX
NONLINEAR ELLIPTIC OPERATORS IN RN

Denote by F̃ = F +λ. Then λ+
1 (F̃ ,Bn) = λ+

1,n −λ ≥ λ+
1 −λ > 0. Therefore,

by [109, Theorem 1.5 and Theorem 1.8], there exists a unique non-negative

un ∈ Ep(Bn), for all p ≥ N , which satisfies

F̃ (D2un, Dun, un, x) = fn in Bn, and un = 0 on ∂Bn . (7.4.2)

By the strong maximum principle [109, Lemma 3.1] it follows that un > 0 in

Bn. For natural number n ≥ 2 we define

vn(x) := un(x)
un(0) .

Clearly, vn ∈ Ep(Bn−1), ∀ p < ∞, positive in Bn−1 and vn(0) = 1. Also, by

(7.4.2),

F (D2vn, Dvn, vn, x) = −λvn in Bn−1 .

Now we continue as in Step 1 and extract a subsequence of vn that converges

in W 2,p
loc (RN) to some positive φ ∈ Ep(RN), ∀ p < ∞, and satisfies

F (D2φ,Dφ, φ, x) = −λφ in RN .

This gives us λ ∈ E+. Thus E+ = (−∞, λ+
1 ].

Next lemma concerns the eigenvalues with negative eigenfunctions.

Lemma 7.4.2. It holds that E− = (−∞, λ−
1 (F )].

Proof. Idea of the proof is similar to Lemma 7.4.1. Let λ−
1 (F,Bn) be the

Dirichlet principal eigenvalue in Bn corresponding to the negative principal

eigenfunction [109, Theorem 1.1]. For simplicity we denote

λ−
1 (F,Bn) = λ−

1,n and λ−
1 (F ) = λ−

1 .

We divide the proof of into two steps.

Step 1. We show that limn→∞ λ−
1,n = λ−

1 and λ−
1 ∈ E−. It is obvious from

the definition that λ−
1,n in decreasing in n and bounded below by λ−

1 . Thus
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if limn→∞ λ−
1,n = −∞, we also have λ−

1 = −∞ and there is nothing to prove.

So we assume limn→∞ λ−
1,n := λ̂ > −∞. It is then obvious that λ̂ ≥ λ−

1 .

From [109, Theorem 1.1], for all n ∈ N, we have ψ−
1,n ∈ Ep(Bn), ∀ p < ∞,

such that ψ−
1,n < 0 in Bn, ψ−

1,n = 0 in ∂Bn, and

F (D2ψ−
1,n, Dψ

−
1,n, ψ

−
1,n, x) = −λ−

1,nψ
−
1,n in Bn . (7.4.3)

Normalize each ψ−
1,n by fixing ψ−

1,n(0) = −1. Denoting G(M, p, u, x) =

−F (−M,−p,−u, x) we find from (7.4.3)

G(D2ϕ−
1,n, Dϕ

−
1,n, ϕ

−
1,n, x) = −λ−

1,nϕ
−
1,n in Bn ,

for ϕ−
1,n = −ψ−

1,n ≥ 0. Since G satisfies conditions (H1), (H3) and (H4),

Theorem 7.4.1 applies. Then using (7.4.3) and [109, Theorem 3.3], we can

obtain locally uniform W 2,p
loc bounds on ϕ−

1,n. Now apply the arguments of

Step 1 in the proof of Lemma 7.4.1 to show that limn→∞ λ−
1,n = λ−

1 and

λ+
1 ∈ E−.

Step 2. As discussed in Lemma 7.4.1, it is enough to show that for any

λ < λ−
1 we have λ ∈ E−. Consider a sequence {fn}n≥1 of continuous, non

negative, non-zero functions satisfying

support(fn) ⊂ Bn \ Bn−1 for all n ∈ N.

Denote by F̃ = F +λ. Then λ−
1 (F̃ ,Bn) = λ−

1,n −λ ≥ λ−
1 −λ > 0. Therefore,

by [109, Theorem 1.9], there exists a non-zero, non positive un ∈ Ep(Bn),

for all p ≥ N , satisfying

F̃ (D2un, Dun, un, x) = fn in Bn, and un = 0 in ∂Bn.

Since G satisfies (H3) we can apply the strong maximum principle [109,

Lemma 3.1] to obtain that un < 0 in Bn. Now repeat the arguments of Step

2 in the proof of Lemma 7.4.1 to conclude that λ ∈ E−. This completes the

proof.
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Proof of Theorem 7.3.1. The proof follows from Lemma 7.4.1-7.4.2.

The following (standard) existence result will be required.

Lemma 7.4.3. Suppose that u, ū ∈ Ep(Ω), for some p ≥ N and Ω is

a smooth bounded domain, and ū (u) is a super-solution(sub-solution) of

F (D2u,Du, u, x) = f(x, u) in Ω for some f ∈ L∞
loc(Ω̄ × R). Assume that

f is locally Lipschitz in its second argument uniformly (almost surely) with

respect to the first argument and u ≤ 0, ū ≥ 0 on ∂Ω. Then there exists

u ∈ Ep(Ω) with u ≤ u ≤ ū in Ω and satisfies

F (D2u,Du, u, x) = f(x, u) in Ω,

v = 0 on ∂Ω .

Proof. The proof is based on monotone iteration method. See also [109,

Lemma 4.3] for a similar argument. Define the operator F̃ = F − θ in such

a way that λ+
1 (F̃ ,Ω) > 0. We may choose θ large enough so that

θ > Lip(f(x, ·) on [inf
Ω
u, sup

Ω
ū]) almost surely for x ∈ Ω,

and F̃ is proper i.e., decreasing in u. Also, note that F̃ satisfying (H1)-

(H4). Now we define the monotone sequence. Denote by v0 = u, and for

each n ≥ 0, we define
F̃ (D2vn+1, Dvn+1, vn+1, x) = f(x, vn) − θvn in Ω ,

vn+1 = 0 on ∂Ω .

Existence of vn+1 ∈ Ep follows from [109, Theorem 3.4]. Also, since F̃ is

proper, we can apply comparison principle [109, Theorem 3.2] to obtain v0 ≤

v1 ≤ v2 ≤ · · · ≤ ū. It is then standard to show that vn → u in C(Ω̄) for some

u ∈ Ep(Ω) and u is our required solution (see for instance, [109, Lemma 4.3]).

This completes the proof.

Applying Lemma 7.4.3 we obtain the following.
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Theorem 7.4.2. It holds that λ′,+
1 (F ) ≤ λ+

1 (F ) and λ′,−
1 (F ) ≤ λ−

1 (F ).

Proof. We divide the proof into two steps.

Step 1. We show that λ′,+
1 (F ) ≤ λ+

1 (F ). Replacing F by F −λ+
1 (F ) we may

assume that λ+
1 (F ) = 0. Considering any λ satisfying λ > 0 we show that

λ′,+
1 (F ) ≤ λ. Recall from Lemma 7.4.1 that λ+

1 (F,Bn) ↘ λ+
1 (F ) as n → ∞.

Thus we can find k large enough satisfying λ > λ+
1 (F,Bk) > λ+

1 (F ) = 0. Let

ψ+
k ∈ Ep(Bk), p < ∞, satisfy

F (D2ψ+
k , Dψ

+
k , ψ

+
k , x) = −λ+

1,kψ
+
k in Bk,

ψ+
1 > 0 in Bk, ψ+

k = 0 in ∂Bk,

where λ+
1 (F,Bk) = λ+

1,k. Let δ̃ = supBk
δ where δ is given by (H3). Normalize

ψ+
k so that

∥ψ+
k ∥L∞(Bk) = min

{
1,
λ− λ+

1,k

λ+ δ̃

}
.

Now we plan to find a bounded, positive solution of

F (D2u,Du, u, x) = (λ+ c+(x))u2 − λu in RN , (7.4.4)

where c(x) = F (0, 0, 1, x) ∈ L∞
loc(RN). This would imply F (D2u,Du, u, x) ≥

−λu, and therefore, λ′,+
1 (F ) ≤ λ. Thus to complete the proof of Step 1 we

only need to establish (7.4.4).

Let ū = 1 and u = ψ+
k . Note that ū is a super-solution in RN and u

is a sub-solution in Bk. Now fix any ball B containing Bk. Since 0 is a

sub-solution, by Lemma 7.4.3, we find v ∈ Ep(B), p < ∞, with 0 ≤ v ≤ 1

and satisfies

F (D2v,Dv, v, x) = (λ+ δ̃)v2 − λv in B, v = 0 on ∂B .

The proof of Lemma 7.4.3 also reveals that v ≥ ψ+
k in Bk. Now choosing a

sequence of B increasing to RN , and the interior estimate [109, Theorem 3.3]

we can find a subsequence locally converging to a solution u of (7.4.4). Pos-

itivity of u follows from Theorem 7.4.1.
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Step 2. We next show that λ′,−
1 (F ) ≤ λ−

1 (F ). Replacing F by F − λ−
1 (F )

we may assume that λ−
1 (F ) = 0. Considering any λ satisfying λ > 0 we show

that λ′,−
1 (F ) ≤ λ. As done in Step 1, we can choose k large enough so that

λ > λ−
1 (F,Bk) := λ−

1,k and there exists ψ−
k ∈ Ep(Bk) satisfying

F (D2ψ−
k , Dψ

−
k , ψ

−
k , x) = −λ−

1,kψ
+
k in Bk,

ψ−
k < 0 in Bk, ψ−

k = 0 in ∂Bk.

Normalize ψ−
k so that

∥ψ−
k ∥L∞(Bk) = min

{
1,
λ− λ−

1,k

λ+ δ̃

}
,

where δ̃ is same as in Step 1. Then

F (D2ψ−
k , Dψ

−
k , ψ

−
k , x) ≤ −(λ+ c−(x))(ψ−

k )2 − λψ−
k in Bk.

Thus, using Lemma 7.4.3 and the arguments of Step 1, we obtain a negative,

bounded solution u ∈ W 2,p
loc (RN), p < ∞, to

F (D2u,Du, u, x) = −(λ+ c−(x))u2 − λu ≤ −λu.

This of course, implies λ′,−
1 (F ) ≤ λ. Hence the theorem.

Theorem 7.3.2(ii) will be proved using Theorem 7.3.4. Thus we prove

Theorem 7.3.4 first.

Theorem 7.4.3. Suppose that either (7.3.2) and (7.3.4) or (7.3.3) and

(7.3.5) hold. Then F satisfies β+-MP in RN provided λ′′,+
β (F ) > 0.

Proof. Let u ∈ W 2,N
loc (RN) be a function satisfying

F (D2u,Du, u, x) ≥ 0 in RN , and sup
RN

u

β
< ∞ .

Also, since λ′′,+
β (F ) > 0, there exists λ > 0 and ψ ∈ W 2,N

loc (RN) with the

property that ψ ≥ β and

F (D2ψ,Dψ, ψ, x) + λψ ≤ 0 in RN .
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Multiplying ψ with a suitable constant we may assume that ψ ≥ u.

For this proof we follow the idea of [35, Theorem 4.2]. Choose a smooth

positive function χ : RN → R such that, for |x| > 1,

χ(x) =

 |x|σ if β satisfies (7.3.2) ,

exp(σ|x|) if β satisfies (7.3.3) .

Using (H3) and an easy computation we obtain for x ∈ Bc
1

F (D2χ,Dχ, χ, x) ≤


[
(σ2 +Nσ − 2σ)Λ(x)

|x|2 + σ γ(x)
|x| + δ(x)

]
χ or,[

σ

(
σ + N−1

|x|

)
Λ(x) + σγ(x) + δ(x)

]
χ

if β satisfies (7.3.2) or (7.3.3) respectively. Hence for both the cases, using

(7.3.4) and (7.3.5) accordingly on B
c

1, there exists a positive constant C such

that

F (D2χ,Dχ, χ, x) ≤ Cχ. (7.4.5)

Modifying C, if required, we can assume (7.4.5) to hold in RN . Now set

ψn = ψ + 1
n
χ and define κn = supRN

u
ψn

. If κn ≤ 0 then there is nothing

to prove. Thus we assume κn > 0 to reach a contradiction. Since ψ ≥ u it

follows that κn ≤ 1 and κn ≤ κn+1 for all n ≥ 1. Moreover, by (7.3.2) and

(7.3.3),

lim sup
|x|→∞

u(x)
ψn(x) ≤ n sup

RN

u

β
lim sup

|x|→∞

β(x)
χ(x) = 0 .

Hence there exist xn ∈ RN such that κn = u(xn)
ψn(xn) .

Let us now estimate the term χ(xn)
n

. Note that

1
κ2n

≤ ψ2n(xn)
u(xn) = 1

κn
− χ(xn)

2nu(xn) ,

which implies

χ(xn)
n

≤ 2
(

1
κn

− 1
κ2n

)
u(xn) ≤ 2

(
1
κn

− 1
κ2n

)
ψ(xn) .
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Hence for each natural number n there exist a small positive ηn such that

χ(x)
n

≤
(

1
κn

− 1
κ2n

)
ψ(x) in Bηn(xn). (7.4.6)

On the other hand, using convexity of F with (7.4.5) and (7.4.6), we get

F (D2ψn, Dψn, ψn, x) ≤ F (D2ψ,Dψ, ψ, x) + 1
n
F (D2χ,Dχ, χ, x)

≤
[
−λ+ C

(
1
κn

− 1
κ2n

)]
ψ(x) ,

in Bηn(xn). Since {κn} is a convergent sequence, we can choose m large

enough so that

F (D2ψm, Dψm, ψm, x) < 0 in Bηm(xm) . (7.4.7)

Now note that w = κmψm−u is non-negative and by (H3), there exist positive

a, b such that in Bηm(xm) we have

M−
λ,Λ(x,D2w) − a|Dw| − bw

≤ κmF (D2ψm, Dψm, ψm, x) − F (D2u,Du, u, x)

< 0 .

By the strong maximum principle [109, Lemma 3.1] we then obtain w ≡ 0 in

Bηm(xm). But this contradicts (7.4.7) as

0 ≤ F (D2u,Du, u, x) = κmF (D2ψm, Dψm, ψm, x) < 0 in Bηm(xm) .

Therefore, κn ≤ 0 for large n and hence u ≤ 0.

In the same spirit of Theorem 7.4.3 we can also prove β−-MP.

Theorem 7.4.4. Suppose that either (7.3.2) and (7.3.4) or (7.3.3) and

(7.3.5) hold for the function β. Then F satisfies (−β)−-MP in RN provided

λ′′,−
β (F ) > 0.
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Proof. As done in Theorem 7.4.3, we choose λ ∈ (0, λ′′,−
β (F )) and ψ ∈

W 2,N
loc (RN) satisfying ψ ≤ −β and

F (D2ψ,Dψ, ψ, x) + λψ ≤ 0 in RN .

Let u ∈ W 2,N
loc (RN) be a function satisfying

F (D2u,Du, u, x) ≤ 0 in RN , and sup
RN

u

(−β) < ∞ .

We need to show that u ≥ 0. To the contrary, we suppose that u is negative

somewhere in RN . Multiplying ψ with a suitable positive constant we may

assume ψ ≤ u. Consider the function χ from Theorem 7.4.3 and note that

(7.4.5) holds. Set ψn(x) = ψ(x)− 1
n
χ(x) and κn := supRN

u
ψn

. It can be easily

checked that (κn)n∈N is positive, increasing and bounded by 1. Furthermore,

κn = u(xn)
ψn(xn) for some xn ∈ RN . Then repeating a similar calculation we find

that for each natural number n there exist a small positive ηn satisfying

−χ(x)
n

≥
(

1
κn

− 1
κ2n

)
ψ(x) in Bηn(xn) .

Then using convexity, (7.4.5) and above estimate, we obtain

F (D2ψn, Dψn, ψn, x) ≥ F (D2ψ,Dψ, ψ, x) − 1
n
F (D2χ,Dχ, χ, x)

≥
[
−λψ(x) − C

χ(x)
n

]

≥
[
−λ+ C

( 1
κn

− 1
κ2n

)]
ψ(x) ,

in Bηn(xn). As ψ(x) is negative and {κn} is convergent, we can choose m

large enough such that

F (D2ψm, Dψm, ψm, x) > 0 in Bηm(xm). (7.4.8)

Note that w := κmψn − u is a non-positive function vanishing at xm. Re-

peating the arguments of Theorem 7.4.3 we find positive constants a1, b1

satisfying

M+
λ,Λ(x,D2w) + a1|Dw| − b1w ≥ 0 ,
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in Bηm(xm). This of course, implies w ≡ 0 in Bηm(xm) which is a contra-

diction to (7.4.8). Thus it must hold that u ≥ 0.

Proof of Theorem 7.3.4. The proof follows by combining Theorem 7.4.3-

7.4.4.

Now we prove Theorem 7.3.5.

Proof of Theorem 7.3.5. First we consider (i). To the contrary, suppose that

λ′,+
β (F ) < 0. Then there exists λ < 0 such that λ′,+

β (F ) < λ < 0 and there

exists ψ ∈ W 2,N
loc (RN) satisfying

0 < ψ ≤ β, F (D2ψ,Dψ, ψ, x) + λψ ≥ 0 .

This of course, implies F (D2ψ,Dψ, ψ, x) ≥ −λψ > 0 and sup ψ
β

≤ 1. This

clearly violates β+-MP.

Next we consider (ii). Again, we suppose that λ′,−
β (F ) < 0. Then there

exists λ < 0 such that λ′,−
β (F ) < λ < 0 and there exists ψ ∈ W 2,N

loc (RN)

satisfying

0 > ψ ≥ −β, F (D2ψ,Dψ, ψ, x) + λψ ≤ 0 .

This gives F (D2ψ,Dψ, ψ, x) ≤ −λψ < 0 and sup ψ
(−β) ≤ 1. This clearly

violates (−β)−-MP.

Now we can prove Theorem 7.3.2(ii).

Theorem 7.4.5. Assume that either (7.3.4) or (7.3.5) holds. Then we have

λ′′,+
1 (F ) ≤ λ′,+

1 (F ), and λ′′,−
1 (F ) ≤ λ′,−

1 (F ) .

Proof. Let us first show that λ′′,+
1 (F ) ≤ λ′,+

1 (F ). To the contrary, suppose

that there exists λ with λ < λ′′,+
1 (F ) and λ′,+

1 (F ) < λ. Then there exists

positive ψ ∈ W 2,N
loc (RN) ∩ L∞(RN) such that F (D2ψ,Dψ, ψ, x) + λψ ≥ 0.

Also, note that λ′′,+
1 (F + λ) = λ′′,+

1 − λ > 0. By Theorem 7.4.3, the operator
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F + λ satisfies +MP. Therefore, ψ ≤ 0 which contradicts the fact ψ > 0.

Hence we must have λ′′,+
1 (F ) ≤ λ′,+

1 (F ).

We prove the second claim. To the contrary, suppose that there exists λ

with λ < λ′′,−
1 (F ) and λ′,−

1 (F ) < λ. Then there exists a negative function

ψ ∈ W 2,N
loc (RN) ∩ L∞(RN) such that F (D2ψ,Dψ, ψ, x) + λψ ≤ 0. Also, we

have λ′′,−
1 (F + λ) = λ′′,−

1 (F ) − λ > 0, and therefore, the operator F + λ

satisfies −MP. This gives ψ ≥ 0 which contradicts the fact ψ < 0. Hence we

must have λ′′,−
1 (F ) ≤ λ′,−

1 (F ).

Proof of Theorem 7.3.2. The proof follows by combining Theorem 7.4.2-

7.4.5.

Our next result should be compared with [35, Theorem 7.6]. Recall that

for a smooth domain Ω

λ′′,+
1 (F,Ω) = sup{λ : ∃ ψ ∈ W 2,N

loc (Ω),

inf
Ω
ψ > 0 and F (D2ψ,Dψ, ψ, x) + λψ ≤ 0 in Ω} ,

λ′′,−
1 (F,Ω) = sup{λ : ∃ ψ ∈ W 2,N

loc (Ω),

sup
Ω
ψ < 0 and F (D2ψ,Dψ, ψ, x) + λψ ≥ 0 in Ω} .

Theorem 7.4.6. It holds that

λ′′,+
1 (F ) = min{λ+

1 (F ), lim
r→∞

λ′′,+
1 (F, B̄c

r)} .

Proof. Notice that the function λ′′,+
1 (r) := λ′′,+

1 (F, B̄c
r) is an increasing func-

tion with respect to r and

λ′′,+
1 (F ) ≤ lim

r→∞
λ′′,+

1 (r) .

Also, from definition we already have λ′′,+
1 (F ) ≤ λ+

1 (F ). Combining these

two we obtain

λ′′,+
1 (F ) ≤ min{λ+

1 (F ), lim
r→∞

λ′′,+
1 (F, B̄c

r)} .
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Let us now show that the above inequality can not be strict. That is, for

every

λ < min{λ+
1 (F ), lim

r→∞
λ′′,+

1 (F, B̄c
r)} ,

we have λ′′,+
1 (F ) ≥ λ. To do this we need to construct a positive super-

solution of the operator F + λ in the admissible class of λ′′,+
1 (F ). Choose a

positive number R so that λ < λ′′,+
1 (R). Then there exists positive function

ϕ ∈ W 2,N
loc (Bc

R) with infBc
R
ϕ > 0 and F (D2ϕ,Dϕ, ϕ, x) + λϕ ≤ 0 in B

c

R. We

claim that there exists a function φ ∈ W 2,p
loc (Bc

R+1), p > N, with infBc
R+1

φ ≥ 1

and satisfies

F (D2φ,Dφ, φ, x) + λφ ≤ 0 in Bc
R+1 . (7.4.9)

Let us first complete the proof assuming (7.4.9). By Morrey’s inequality we

see that φ ∈ C1(B̄c
R+1). Consider a positive eigenfunction ψ ∈ W 2,N

loc (RN)

associated to λ+
1 (F ). Choose a non-negative function χ ∈ C2(RN) such that

χ = 0 in BR+2 and χ = 1 in Bc
R+3. For ϵ > 0, define u := ψ + ϵχφ. Using

convexity of F we can write

F (D2u,Du, u, x) ≤ F (D2ψ,Dψ, ψ, x) + ϵF (D2(χφ), D(χφ), (χφ), x) .

From the construction we can immediately say that F (D2u,Du, u, x)+λu ≤ 0

in BR+2 ∪ Bc
R+3. We are left with the annuals region B̄R+3 \ BR+2. In this

compact set we have

F (D2u,Du, u, x) + λu

≤ (λ− λ+
1 (F ))ψ + ϵ

[
F (D2(χφ), D(χφ), (χφ), x) + λχφ

]
= (λ− λ+

1 (F ))ψ + ϵ
[
F (χD2φ+ 2Dχ ·Dφ+ φD2χ, χDφ+ φDχ, χφ, x)

+ λχφ
]

≤ (λ− λ+
1 (F ))ψ + ϵχ

[
F (D2φ,Dφ, φ, x) + λφ

]
+ ϵF (2Dχ ·Dφ+ φD2χ, φDχ, 0, x)

≤ (λ− λ+
1 (F ))ψ + ϵC < 0,
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for ϵ small enough, where we have again used convexity of F . This of course,

implies λ′′,+
1 (F ) ≥ λ, as required.

To complete the proof we only need to show (7.4.9). To this end, we

may assume that inf ϕ ≥ 2. Let c(x) = F (0, 0, 1, x) + λ and define f(x, u) =

|c(x)|f(u) where f : R → (−∞, 0] is a Lipschitz function with the property

that f(1) = −1, f(t) = 0 for t ≥ 2. Then ū = ϕ is super-solution to

F (D2u,Du, u, x) + λu = f(x, u) in Bc
R ,

and u = 1 is a sub-solution. The existence of a solution to (7.4.9) follows by

constructing solutions (squeezed between ū and u) in an increasing sequence

of bounded domains in Bc
R and the passing to the limit using local stability

bound [109, Theorem 3.3]. To construct a solution in any smooth bounded

domain we may follow the idea of Lemma 7.4.3 with the help of general

existence results from [118, Theorem 4.6] which deals with non-zero boundary

condition.

Now we would like to see if a result analogous to Theorem 7.4.6 holds for

λ′′,−
1 (F ). Denote by

G(S, p, u, x) = −F (−M,−p,−u, x).

It is easily seen that G is a concave operator and λ′′,−
1 (F ) = λ′′,+

1 (G). But

we can not apply the arguments of Theorem 7.4.6 for concave operators. To

obtain the results we impose a mild condition at infinity.

Theorem 7.4.7. Suppose that

lim
r→∞

λ′′,−
1 (F,Bc

r) = lim
r→∞

λ′′,−
1 (G,Bc

r) . (7.4.10)

Then we have

λ′′,−
1 (F ) = min

{
λ−

1 (F ), lim
r→∞

λ′′,−
1 (F,Bc

r)
}
.
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Proof. It is easy to see that

λ′′,−
1 (F ) ≤ min

{
λ−

1 (F ), lim
r→∞

λ′′,−
1 (F,Bc

r)
}
.

As done in Theorem 7.4.6, we show that the above inequality can be strict.

So we consider any

λ < min
{
λ−

1 (F ), lim
r→∞

λ′′,−
1 (F,Bc

r)
}
, (7.4.11)

and show that λ′′,−
1 (F ) ≥ λ. We now construct a sub-solution of the operator

F + λ in the admissible class of λ′′,−
1 (F ). Using (7.4.10) and (7.4.11) we find

a positive R so that

λ < λ′′,−
1 (G,Bc

R) .

Hence repeating the arguments of Theorem 7.4.6 we can find φ ∈

W 2,p
loc (Bc

R+1), p > N , with supBc
R+1

φ < 0 and G(D2φ,Dφ, φ, x) + λφ ≥ 0

in Bc
R+1. By Morrey’s inequality φ ∈ C1(Bc

R+1). Also, consider a nega-

tive eigenfunction ψ ∈ W 2,N
loc (RN) associated to λ−

1 (F ). Let χ be the cut-off

function in Theorem 7.4.6 and define u = ψ + ϵχφ for ϵ > 0. Since, by

convexity,

F (D2u,Du, u, x) ≥ F (D2ψ,Dψ, ψ, x) + ϵG(D2(χϕ), D(χϕ), (χϕ), x),

repeating a calculation analogous to Theorem 7.4.6 we find that for some ϵ

small F (D2u,Du, u, x) + λu ≥ 0 in RN . Thus we get λ′′,−
1 (F ) ≥ λ.

To this end, we define c(x) = F (0, 0, 1, x) and d(x) = F (0, 0,−1, x). Our

next result is a generalization to [35, Proposition 1.11].

Proposition 7.4.1. Define ζ = lim sup|x|→∞ c(x) and ξ = lim sup|x|→∞ d(x).

Then the following hold.

(i) Suppose that ζ < 0, and either (7.3.4) or (7.3.5) holds. Then F satisfies

the +MP if and only if λ+
1 (F ) > 0.
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(ii) Suppose that ξ > 0, and either (7.3.4) or (7.3.5) holds. Furthermore,

assume (7.4.10). Then F satisfies the −MP if and only if λ−
1 (F ) > 0.

We need a small lemma to prove Proposition 7.4.1.

Lemma 7.4.4. The following hold for any smooth domain Ω.

(i) − supΩ c(x) ≤ infΩ d(x).

(ii) − supΩ c(x) ≤ λ′′,+
1 (F,Ω).

(iii) infΩ d(x) ≤ λ′′,−
1 (F,Ω).

Proof. Part (i) follows from convexity property of F . Note that for λ =

− supΩ c(x), ψ = 1 is an admissible function for λ′′,+
1 (F,Ω). This gives us

(ii). In a similar fashion we get (iii).

Now we prove Proposition 7.4.1

Proof of Proposition 7.4.1. First consider (i). Assume that λ+
1 (F ) > 0. Us-

ing Lemma 7.4.4 we obtain

0 < −ζ = lim
r→∞

− sup
B̄c

r

c(x)
 ≤ lim

r→∞
λ′′,+

1 (F,Bc

r) . (7.4.12)

By Theorem 7.4.6, we obtain λ′′,+
1 (F ) > 0, and therefore, using Theorem

7.4.3 we see that F satisfies the +MP. To show the converse direction we

assume that F satisfies +MP. Then Theorem 7.3.5 implies that λ′,+
1 (F ) ≥ 0.

Using Theorem 7.4.2 we then have λ+
1 (F ) ≥ 0. If possible, suppose that

λ+
1 (F ) = 0. We show that there exists a bounded principal eigenfunction φ

which would give a contradiction to the validity of +MP, and hence we must

have λ+
1 (F ) > 0. Consider a smooth positive function ϕ satisfying ϕ = 1 in

Bc
r for some large r. Since ζ < 0, we have a compact set K satisfying

c(x) < ζ

2ϕ(x), ϕ(x) = 1, x ∈ Kc.
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Recall the Dirichlet principal eigenfunction ψ+
1,n from (7.4.1). Choose κn =

maxBn

ψ+
1,n

ϕ
and define vn = κ−1

n ψ+
1,n. Observe that ϕ− vn must vanish in K.

Indeed, in Bn \K we have

M−
λ,Λ(x,D2(ϕ− vn)) − γ(x)|Dϕ− vn| − δ(x)(ϕ− vn)

≤ F (0, 0, ϕ, x) − F (D2vn, Dvn, vn, x)

≤ ζ

2 + λ+
1,nvn

≤ ζ

2 + λ+
1,n < 0 ,

for all large n, and therefore, by strong maximum principle [109, Lemma 3.1],

ϕ − vn can not vanish in Bn \ K. Now applying Harnack’s inequality and

standard W 2,p estimates we can extract a convergent subsequence of vn con-

verging to a positive eigenfunction φ. This completes the proof.

The proof for (ii) would be analogous.

Next we prove Theorem 7.3.3

Proof of Theorem 7.3.3. (i) From the definition it follows that

λ′′,+
1 (F, B̄c

r) ≥ λ′′,+
1 (F̃ ,Bc

r) − sup
B̄c

r

γ̃(x) ,

and then letting r towards infinity we have

lim
r→∞

λ′′,+
1 (F, B̄c

r) ≥ lim
r→∞

λ′′,+
1 (F̃ ,Bc

r) ≥ λ′′,+
1 (F̃ ) = λ+

1 (F̃ ) .

Since γ̃(x) ≥ 0, it gives us λ+
1 (F̃ ) ≥ λ+

1 (F ). Combining it with above

calculation, we find

lim
r→∞

λ′′,+
1 (F, B̄c

r) ≥ λ+
1 (F ).

Applying Theorem 7.4.6 we obtain λ+
1 (F ) = λ′′,+

1 (F ).

(ii) Using Lemma 7.4.4 and the given hypothesis we find

λ+
1 (F ) ≤ − lim sup

|x|→∞
c(x) = lim

r→∞

(
− sup

B
c
r

c(x)
)

≤ lim
r→∞

λ′′,+
1 (F,Bc

r) .
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Hence, by Theorem 7.4.6, we get λ+
1 (F ) = λ′′,+

1 (F ).

(iii) We show that under the given condition we have (ii). Hence it is

enough to show that if σ < lim sup|x|→∞ c(x) then λ+
1 (F ) ≤ −σ. Now define

a positive function

ψ(x) = exp
(

− 1
1 − |εx|2

)
on the ball B 1

ε
where an appropriate ε will be chosen later. It is easily

checked that

Dxi
ψ = −2ε2xi

(1 − |εx|2)2ψ,

Dxixj
ψ =

[
4ε4

(1 − |εx|2)4xixj − 2ε2

(1 − |εx|2)2 δij − 8ε4

(1 − |εx|2)3xixj

]
ψ.

For x0 ∈ RN , define ϕ(x) = ψ(x− x0). We will choose ε and x0 such that

F (D2ϕ,Dϕ, ϕ, x) − σϕ > 0 in B 1
ε
(x0). (7.4.13)

Since all the notions of eigenvalues of F coincide in bounded domains (cf.

[109]), using (7.4.13) we deduce

−σ ≥ λ′,+
1 (F,B 1

ε
(x0)) = λ+

1 (F,B 1
ε
(x0)) ≥ λ+

1 (F ).

Thus we only need to establish (7.4.13). For a different way to construct

such sub-solutions we refer [111]. Using (H3) we see that

F (D2ϕ,Dϕ, ϕ, x) − σϕ (7.4.14)

= F (D2ϕ,Dϕ, ϕ, x) − F (0, 0, ϕ, x) + F (0, 0, 1, x)ϕ− σϕ

≥ M−
λ,Λ(x,D2ϕ) − γ(x)|Dϕ| + c(x)ϕ− σϕ

≥
[

4λ0ε
2|ε(x− x0)|2

(1 − |ε(x− x0)|2)4 − 2NΛ0ε
2

(1 − |ε(x− x0)|2)2 − 8Λε2|ε(x− x0)|2
(1 − |ε(x− x0)|2)3

− 2ϵ2|x− x0|γ(x)
(1 − |ϵ(x− x0)|2)2 + c(x) − σ

]
ϕ . (7.4.15)

Given ε we choose R such that |γ(x)| ≤ ε for |x| ≥ R and then choose

x0 ∈ RN satisfying |x0| ≥ R+ 2ε−1. Furthermore, due to our hypothesis, we
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can choose x0 such that

inf
B 1

ε
(x0)

c(x) > σ . (7.4.16)

We now compute (7.4.14) in two steps.

Step 1. Suppose 1 − δ < |ε(x− x0)|2 < 1 where δ is very close to zero and

will be chosen later. It then follows from (7.4.14) that

F (D2ϕ,Dϕ, ϕ, x) − σϕ

≥ ε2

(1 − |ε(x− x0)|2)4

[
4λ(1 − δ) − 2NΛδ2 − 8Λ(1 − δ)δ − 2δ2

]
ϕ

+
(
c(x) − σ

)
ϕ .

Now we can choose small positive δ, independent of ε, so that

4λ(1 − δ) − 2NΛδ2 − 8Λ(1 − δ)δ − 2δ2 > 0.

This proves (7.4.13) in the annulus.

Step 2. Now we are left with the part 0 ≤ |ε(x − x0)|2 ≤ 1 − δ where δ is

already chosen in Step 1. An easy calculation reveals

F (D2ϕ,Dϕ, ϕ, x) − σϕ ≥
[(
c(x) − σ

)
− 2NΛε2

δ2 − 8Λ(1 − δ)ε2

δ3 − 2ε2

δ2

]
ϕ .

Using (7.4.16), we can choose ε small enough so that the RHS becomes

positive.

Combining the above steps we obtain (7.4.13), completing the proof of

part (iii).

(iv) This follows from Theorem 7.4.6. Let us also provide a more direct

proof. Let φ∗ be an eigenfunction corresponding to λ+
1 (F ) = λ+

1 . For δ, ε > 0

we define ϕε = φ∗ + εV . Choose ε small enough so that

δ min
B̄

φ∗ > εmax
B̄

[F (D2V,DV, V, x) + λ+
1 V ]. (7.4.17)
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By using convexity and homogeneity it follows that

F (D2ϕε, Dϕε, ϕε, x) ≤ F (D2φ∗, Dφ∗, φ∗, x) + εF (D2V,DV, V, x)

= −λ+
1 φ

∗ + ε1B(x)F (D2V,DV, V, x) − ελ+
1 1Bc(x)V (x)

≤ −λ+
1 ϕε + εmax

B̄
[F (D2V,DV, V, x) + λ+

1 V ]

≤ −(λ+
1 − δ)ϕε,

using (7.4.17). Hence λ′′,+
1 (F ) ≥ λ+

1 (F ) − δ and from the arbitrariness of δ

the result follows.

Thus it remains to prove Theorem 7.3.6-7.3.7. Let us first attack Theorem

7.3.6.

Proof of Theorem 7.3.6. Without any loss of generality, we assume that

λ+
1 (F ) = 0. Recall from Lemma 7.4.1 that the pair (ψ+

1,n, λ
+
1,n) solving the

Dirichlet eigenvalue problem with positive eigenfunction in Bn. That is,

F (D2ψ+
1,n, Dψ

+
1,n, ψ

+
1,n, x) = −λ+

1,nψ
+
1,n in Bn ,

ψ+
1,n > 0 in Bn, and ψ+

1,n = 0 on ∂Bn . (7.4.18)

Let κn > 0 be such that κnψ+
1,n ≤ V in Bn and it touches V at some point

in Bn. We claim that κnψ+
1,n has to touch V inside K. Note that, by (H3),

if w = V − κnψ
+
1,n then

M−
λ,Λ(x,w) − γ|Dw| − δw ≤ −εV + λ+

1,n(κnψ+
1,n)

≤ (−ε+ λ+
1,n)(κnψ+

1,n)

≤ 0 in Kc ∩ Bn ,

for large n, using (7.3.6) and (7.4.18). Thus, if w vanishes in Kc ∩ Bn,

then it must be identically 0 in Kc ∩ Bn, by the strong maximum principle

[109, Lemma 3.1]. But this is not possible since w > 0 on ∂Bn. Now

onwards we denote κnψ+
1,n by ψ+

1,n. By the above normalization, ψ+
1,n would
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converge, up to a subsequence, to a positive function φ ∈ W 2,p
loc (RN), p < ∞,

an eigenfunction corresponding to λ+
1 (F ) = 0. See for instance, the argument

in Lemma 7.4.1.

We now show that any other principal eigenfunction is a multiple to φ.

For η, a small positive number, we define Ξη = ψ+
1,n − ηV . Using convexity

of F we note that, in Bn ∩Kc,

F (D2Ξη, DΞη,Ξ, x) ≥ F (D2ψ+
1,n, Dψ

+
1,n, ψ

+
1,n, x) − ηF (D2V,DV, V, x)

≥ (−λ+
1,nψ

+
1,n + ηεV )

≥ (−λ+
1,n + ηε)V > 0 ,

provided we choose n large (depending on η). Let ψ be any principal eigen-

function satisfying

F (D2ψ,Dψ, ψ, x) = 0 in RN .

Define

δ = δ(η) = min
K

ψ

Ξη

.

Then δΞη ≤ ψ on K. Since, by the Harnack inequality,

0 < inf
n

inf
K
ψ+

1,n ≤ sup
n

sup
K
ψ+

1,n < ∞,

we can choose η0 small enough (independent of n) so that

0 < inf
η∈(0,η0]

inf
n

inf
K

Ξη ≤ sup
η∈(0,η0]

sup
n

sup
K

Ξη < ∞,

Thus, δ remains bounded and positive as n → ∞ and η → 0. Since

F (D2ψ,Dψ, ψ, x) = 0 in Bn ∩ Kc and λ+
1 (F,Bn ∩ Kc) > 0, it follows

from [109, Theorem 1.5], that

δΞη ≤ ψ in Bn .

Furthermore, there exists xη ∈ K so that δΞη(xη) = ψ(xη). Now letting

n → ∞ first, and then η → 0, we can extract a subsequence so that δ → θ >
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0, and xη → x̂ ∈ K and θφ(x̂) = ψ(x̂) with θφ ≤ ψ in RN . Let u = ψ − θφ.

It is easy to see that

M−
λ,Λ(x, u) − γ|Du| − δu ≤ 0 in RN .

By the strong maximum principle we must have u = 0 and hence the proof.

Finally, we prove Theorem 7.3.7.

Proof of Theorem 7.3.7. The main idea of the proof is the same as that of

the proof of Theorem 7.3.6. Without any loss in generality, we assume that

λ−
1 (F ) = 0. Let (ψ−

1,n, λ
−
1,n) be the pair satisfying the Dirichlet eigenvalue

problem in the ball Bn i.e.,

F (D2ψ−
1,n, Dψ

−
1,n, ψ

−
1,n, x) = −λ−

1,nψ
−
1,n in Bn ,

ψ−
1,n < 0 in Bn, and ψ−

1,n = 0 on ∂Bn . (7.4.19)

By Lemma 7.4.2, ψ−
1,n ↘ 0 as n → ∞. Recall that G(M, p, u, x) :=

−F (−M,−p,−u, x). Denote by ϕn = −ψ−
1,n. Then we get from (7.4.19)

that

G(D2ϕn, Dϕn, ϕn, x) = −λ−
1,nϕn in Bn , ψn < 0 in Bn, and ϕn = 0 on ∂Bn .

(7.4.20)

Note that G satisfies (H1), (H2) and (H3) but it is a concave operator. So

need some extra care to apply the proof of Theorem 7.3.6. Since F is convex

it follows from (7.3.7) that

G(D2V,DV, V, x) ≤ F (D2V,DV, V, x) ≤ −(λ−
1 (F ) + ε)V for all x ∈ Kc.

(7.4.21)

As done in Theorem 7.3.6, using (7.4.21), we can normalize ϕn to touch V

from below and it would touch V somewhere in K. Therefore, we can apply
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the Harnack inequality (see Lemma 7.4.2) to find a positive function φ such

that ϕn → φ in W 2,p
loc (RN), p > N , along some subsequence and

0 = −λ−
1 (F )φ = G(D2φ,Dφ, φ, x) = −F (−D2φ,−Dφ,−φ, x) in RN .

It is enough to show that φ agrees with any other positive eigenfunction (up

to a multiplicative constant) of G with eigenvalue 0.

Next we define Ξη(x) = ϕn − ηV . Since ∥ϕn − φ∥L∞(K) → 0, it is evident

that Ξη > 0 for all η small, independent of n. Using (7.3.7) and (7.4.19), we

see that, in Kc ∩ Bn,

F (−D2Ξη,−DΞη,−Ξ, x) ≤ F (−D2ϕn,−Dϕn,−ϕn, x) + ηF (D2V,DV, V, x)

≤ (λ−
1,nϕn − ηεV )

≤ (|λ−
1,n| − ηε)V < 0, (7.4.22)

for all large n. Now consider any positive eigenfunction ψ ∈ W 2,p
loc (RN)

satisfying

F (−D2ψ,−Dψ,−ψ, x) = 0 ,

and let

δ = δ(η) = min
K

ψ

Ξη

.

Then −δΞη ≥ −ψ on ∂K ∪ ∂Bn for all n. From (7.3.7) if follows that

λ+
1 (F,Kc) ≥ ε. Since

λ+
1 (F,Kc ∩ Bn) → λ+

1 (F,Kc) > 0 as n → ∞,

we can apply the maximum principle [109, Theorem 1.5] in Bc ∩ K for all

large n. From (7.4.22) we therefore get ψ ≥ δΞη and δΞη touches ψ at some

point in K. Now we can follow the arguments in Theorem 7.3.6 we show

that φ = tψ for some t > 0. Hence the proof.

We conclude the chapter with a remark on the eigenvalue problem in a

general smooth unbounded domain.
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Remark 7.4.1. For the case of an unbounded domain with smooth boundary

all the results developed here hold true and the proofs would be somewhat sim-

ilar. As mentioned in [35], in case of general unbounded domains, one needs

the boundary Harnack property to control the behaviour of eigenfunctions

near the boundary. For the operator F , the boundary Harnack property has

been obtained recently by Armstrong, Sirakov and Smart in [15, Appendix A].

Therefore one can easily adopt the techniques of [35] along with our results

to deal with general unbounded domains.

————— ◦ —————
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Chapter 8

On ergodic control problem for

viscous Hamilton-Jacobi

equations for weakly coupled

elliptic systems

In this chapter we will study ergodic problems in the whole space RN for a

weakly coupled systems of viscous Hamilton-Jacobi equations with coercive

right-hand sides. The Hamiltonians are assumed to have a fairly general

structure and the switching rates need not be constant. We prove the exis-

tence of a critical value λ∗ such that the ergodic eigenvalue problem has a

solution for every λ ≤ λ∗ and no solution for λ > λ∗. Moreover, the existence

and uniqueness of non-negative solutions corresponding to the value λ∗ are

also established. We also exhibit the implication of these results to the er-

godic optimal control problems of controlled switching diffusions. The detail

of this chapter is covered from [9].
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8.1 Motivations behind the problem

Consider the controlled dynamics is given by a pair (X,S) where {Xt} de-

notes the continuous part governed by a controlled diffusion

dXt = b(Xt, St) dt− Ut dt+ dWt,

where W is a standard N -dimension Brownian motion, U is an admissible

control, and {St} is a two state Markov process, taking values in {1, 2},

responsible for random switching. The functions α1, α2 corresponds to the

switching rates which is also allowed to be state dependent, that is,

P(St+δt = j|St = i,Xs, Ss, s ≤ t) =


α1(Xt)δt+ o(δt) if j = 2, i = 1,

α2(Xt)δt+ o(δt) if j = 1, i = 2.

The HJE in (6.1.1) corresponds to the minimization problem

λ∗ = inf
U∈U

lim inf
T→∞

1
T
E
[� T

0
(f(Xt) + ℓ(Xt, St))dt

]
,

where U denotes the set of all admissible controls. For a more precise descrip-

tion see Section 8.5. Because of the presence of both continuous dynamics

and discrete jumps, regime-switching systems are capable of describing com-

plex systems and randomness of the environment. We refer to the book of

Yin and Zhu [120] for more detail on regime-switching dynamics and its ap-

plication to the theory of stochastic control. Note that our equations (EP)

includes the stochastic LQ ergodic control problem (that is, γ1 = γ2 = 2)

for regime-switching dynamics which are quite popular models in portfolio

selection problems (cf. [121, Chapter 6]). One of our main results establishes

the existence of a unique optimal stationary Markov control (see Theorem

8.5.1) for the above optimization problem.
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8.2 Basic assumptions

In this part we study the existence and uniqueness of solution (u, λ) =

(u1, u2, λ) to the equation

−∆u1(x) +H1(x,∇u1(x)) + α1(x)(u1(x) − u2(x)) = f1(x) − λ in RN ,

−∆u2(x) +H2(x,∇u2(x)) + α2(x)(u2(x) − u1(x)) = f2(x) − λ in RN ,

(EP)

where Hi : RN × RN → R denote the Hamiltonians, and αi : RN → R+ are

the switching rate parameters for i = 1, 2. We will move on this section by

making the following assumptions:

Assumption 8.2.1. The functions αi : RN → R+ are continuously differ-

entiable and for some constant α0 > 0 we have

α−1
0 ≤ αi(x) ≤ α0, sup

x
|∇αi(x)| ≤ α0 for i = 1, 2. (8.2.1)

Also, the following hold.

(A1) There exist ℓi ∈ C(RN × RN), ξ 7→ ℓi(x, ξ) strictly convex, and

Hi(x, p) = sup
ξ∈RN

{ξ · p− ℓi(x, ξ)}, i = 1, 2.

Moreover, Hi ∈ C1(RN × RN) and the functions ξ 7→ Hi(x, ξ) are

strictly convex for i = 1, 2.

(A2) For some constants γi > 1, i = 1, 2, we have for (x, p) ∈ RN × RN ,

C−1
1 |p|γi − C1 ≤ Hi(x, p) ≤ C1(|p|γi + 1), (HP1)

|∇pHi(x, p)| ≤ C1(1 + |p|γi−1), (HP2)

for some constant C1 and i = 1, 2.
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Since ζ 7→ Hi(x, ζ) is convex, it follows from (HP1) that

|∇pHi(x, p)| ≤ C̃1(1 + |p|γi−1) for (x.p) ∈ RN × RN , i = 1, 2, (RHP2)

for some positive constant C̃1. In fact, for |p| > 0 we see that

|∇pHi(x, p)| = max
|e|=1

∇pHi(x, p) · e = max
|z|=|p|

1
|p|

∇pHi(x, p) · z

≤ max
|z|=|p|

1
|p|

(Hi(x, p+ z) −Hi(p))

using convexity. This gives that (RHP2) follows from (HP1).

A typical example of Hi satisfying the above assumptions would be

Hi(x, p) = 1
γi

⟨p, ai(x)p⟩γi/2 + bi(x) · p,

where ai : RN → RN×N , bi : RN → RN are bounded functions with bounded

derivatives and ai are uniformly elliptic for i = 1, 2. In this case,

ℓi(x, ξ) = 1
γ′
i

⟨ξ − bi(x), a−1
i (x)(ξ − bi(x))⟩γ′

i/2 where 1
γi

+ 1
γ′
i

= 1,

for i = 1, 2. The source terms fi are assumed to satisfy the following

Assumption 8.2.2. The functions fi : RN → R, i = 1, 2, are continuously

differentiable and for some constant C2 we have

|∇fi(x)| ≤ C2(1 + |fi(x)|2− 1
γi ) x ∈ RN , (F1)

for i = 1, 2. We also assume that for some r > 0 we have

[|fi(x)| + 1]−1 sup
Br(x)

|fi(x)| < C3, for x ∈ RN , (F2)

for some constant C3 and i = 1, 2.

Without any loss of generality, we would assume that r = 1. Note

that (F1)-(F2) hold if we have supx∈RN |∇ log fi(x)| < ∞ and fi are posi-

tive outside a compact set. Some other type of examples include fi(x) =
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|x|β1(2+sin((1+ |x|2)β2)) for βi > 0 and (β1 +2β2 −1) γi

2γi−1 ≤ β1. From (F2)

we also see that

|fi(x)| ≤ C3(|fi(y)| + 1) whenever |x− y| ≤ 1,

which readily gives

|fi(x)| ≤ C3

(
inf
B1(x)

|fi(y)| + 1
)

for all x ∈ RN . (8.2.2)

(F2) will be used to obtain certain estimate on the gradient of u (see Lemma

8.4.1).

Throughout the chapter, if X(RN) is a subspace of real-valued functions

on RN then we define the corresponding space X(RN × {1, 2}) :=
(
X(RN)

)2
,

and endow it with the product topology, if applicable. Thus, a function

g ∈ X(Rd × {1, 2}) is identified with the vector-valued function

g := (g1, g2) ∈
(
X(Rd)

)2
, where fk(·) := f(·, k) , k = 1, 2 .

With a slight abuse in notation we write g ∈ X(RN × {1, 2}).

8.3 Statement of main results

Our chief goal in this chapter is to find solutions corresponding to the critical

value λ∗ defined by

λ∗ = sup{λ ∈ R : ∃ u ∈ C2(RN × {1, 2}) such that

(u, λ) is a subsolution to (EP)}. (8.3.1)

The above definition is quite standard and has been used before by several

authors [19, 20,70,116]. Our first main result is the following.

Theorem 8.3.1. Grant Assumption 8.2.1 and also assume that for i = 1, 2,

infx∈RN fi(x) > −∞ . Then for every λ ≤ λ∗ there exists u ∈ C2(RN ×{1, 2})

such that (u, λ) solves (EP).
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For a proof see Theorem 8.4.3 below. We should mention that the proof

of Theorem 8.3.1 relies on an appropriate gradient estimate and bounds on

the quantity |u1 − u2| (see Proposition 8.4.1). In fact, these estimates are

crucial for most of our proofs.

We say a function g : RN → R is coercive if

g(x) → ∞, as |x| → ∞.

Given a set X and two functions g1, g2 : X → R, we say g1 ≍ g2 in X if there

exist positive constants κ1, κ2 satisfying

κ1g1 ≤ g2 ≤ κ2g1 in X.

Next we show that there exists a solution u, bounded from below, corre-

sponding to the eigenvalue λ∗.

Theorem 8.3.2. Suppose Assumption 8.2.1 holds. Also, assume that

fi, i = 1, 2, are coercive. Then there exists a solution (u, λ∗) to (EP) where

infRN ui > −∞ for i = 1, 2.

For a proof see Theorem 8.4.4. Our next result concerns the uniqueness

of solutions.

Theorem 8.3.3. Grant Assumptions 8.2.1, and 8.2.2. In addition, we also

assume that f1 ≍ f2 outside a compact set, and fi, i = 1, 2, are coercive. Let

(u, λ) and (ũ, λ̃) be two solutions to (EP) with infRN ui > −∞, infRN ũi >

−∞ for i = 1, 2. Then we must have λ = λ̃ = λ∗ and ui = ũi + C for some

constant C and i = 1, 2.

Proof of Theorem 8.3.3 follows from Theorem 8.4.1. As can be seen from

above that Assumption 8.2.2 is a bit stronger than the usual hypotheses used

to establish uniqueness in the super-critical case (i.e., γi ≥ 2) for scalar model

(cf. [19]). In the scalar case, one generally uses an exponential transformation
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together with the coercive property of the solutions to establish uniqueness

[19,23]. Similar transformation does not seem to work in the present setting

because of the presence of the coupling terms. So for the uniqueness we

rely on the convex analytic approach of [6] and the estimates in Proposition

8.4.1. Also, the condition f1 ≍ f2 can be relaxed provided fi satisfy certain

polynomial growth hypothesis. See Theorem 8.4.2 for further detail.

Remark 8.3.1. Above results correspond to a switching Markov process hav-

ing two states , that is, the solution u is given by a tuple (u1, u2) of length 2.

All the results of this chapter continue to hold if the weakly coupled system

has any finite number of states, provided Assumption 8.2.1, and 8.2.2 are

modified accordingly.

8.4 Proofs of main results

In this section we prove Theorem 8.3.1, 8.3.2, and 8.3.3. We start by proving

a gradient estimate which is a key ingredient for most of the proofs below.

Proposition 8.4.1. Let Assumption 8.2.1 hold. Let ε ∈ [0, 1]. Suppose

B1 ⋐ B2 ⋐ D be two given concentric balls, centred at z, in RN . Consider

a solution u ∈ C2(D × {1, 2}) to the system of equations

−∆u1(x) +H1(x,∇u1) + α1(x)(u1(x) − u2(x)) + εu1(x) = f1(x) in D,

−∆u2(x) +H2(x,∇u2) + α2(x)(u2(x) − u1(x)) + εu2(x) = f2(x) in D.

(8.4.1)

Then there exists a constant C > 0, dependent only on dist(B1, ∂B2), γi, C1, N

and supB2(|αi| + |∇αi|) for i = 1, 2, satisfying

sup
B1

{|∇u1|2γ1 , |∇u2|2γ2} ≤ C
(

1 + sup
B2

2∑
i=1

(fi)2
+

+ sup
B2

2∑
i=1

|∇fi|2γi/(2γi−1) + sup
B2

2∑
i=1

(εui)2
−

)
. (8.4.2)
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Furthermore, for some constant C̃, dependent only on dist(B1, ∂B2), γi, C1,

N,α0, we have

|u1(z)−u2(z)|2 ≤ C̃
(

1+sup
B2

2∑
i=1

(fi)2
++sup

B2

2∑
i=1

|∇fi|2γi/(2γi−1)+sup
B2

2∑
i=1

(εui)2
−

)
.

(8.4.3)

The proof of this Proposition is quite long and therefore, is deferred to

Appendix 8.6.

Next we show that any solution of (EP) which is bounded from below, is

actually coercive. This lemma should be compared with [19, Proposition 3.4]

and [6, Lemma 2.1]. Our proof does not use Harnack’s inequality like these

previous works. Our proof is based on the comparison principle.

Lemma 8.4.1. Grant Assumptions 8.2.1, and 8.2.2. Let u = (u1, u2) be a

non-negative solution to

−∆u1 +H1(x,∇u1) + α1(x)(u1 − u2) = f1 in RN ,

−∆u2 +H2(x,∇u2) + α2(x)(u2 − u1) = f2 in RN .

Also, assume that fi, i = 1, 2, are coercive. Then for some constants M1,M2

we have

ui(x) ≥ M1[fi(x)]1/γi −M2 x ∈ RN , i = 1, 2. (8.4.4)

Moreover, if f1 ≍ f2 outside a compact set, then 1
ui(x) |∇ui|

2 ≤ M3[fi(x)]1/γi

outside a compact set, for some constant M3.

Proof. Choose R > 0 so that fi(x) > 1 for |x| ≥ R. Fix a point x0 ∈ Bc
R+1(0)

and define

ψi(y) = θ|fi(x0)|1/γi(1 − |y − x0|2),

where θ > 0 is to chosen later and i = 1, 2. Then, using (HP1), we have in
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B1(x0)

∆ψ1(y) −H1(y,∇ψ1(y)) + α1(y)(ψ2 − ψ1) + f1(y)

≥ ∆ψ1(y) − C1|∇ψ1|γ1 − C1 + α1(y)(ψ2 − ψ1) + f1(y)

≥ −2Nθ|f1(x0)|1/γ1 − 2γ1θγ1C1|f1(x0)||y − x0|γ1

− C1 − α1(y)θ|f1(x0)|1/γ1 + f1(y)

≥ f1(x0)
[

− 2Nθ|f1(x0)|1/γ1−1 − 2γ1θγ1C1

− C1(f1(x0))−1 − α0θ|f1(x0)|1/γ1−1 + κ

]
, (8.4.5)

where[
inf

|x|≥R+1
inf

y∈B1(x)
f(y)

]
(|f(x)| + 1)−1 ≥ κ > 0 for R large enough, by (8.2.2).

Since f1 is coercive, we can choose θ small and R large so that the r.h.s.

of (8.4.5) is positive. Similarly, we can also show that for some small θ and

large R

∆ψ2(y) −H2(y,∇ψ2) + α2(x)(ψ1 − ψ2) + f2(y) ≥ 0 in B1(x0),

whenever |x0| > R. We can now apply comparison principle, Theorem

8.7.1, in B1(x0) to conclude that (u1, u2) ≥ (ψ1, ψ2) in B1(x0) implying

ui(x0) ≥ θ[fi(x0)]1/γi for i = 1, 2 and for all |x0| > R. This gives (8.4.4).

Again, from (F1)-(F2) we have

max{|Du1(x)|2γ1 , |Du2(x)|2γ2} ≤ C(1 + |f1(x)|2 + |f2(x)|2),

for some constant C and for all x outside a compact set. Since f1 ≍ f2

outside a compact set, the second conclusion follows from the above display

and (8.4.4). Hence the proof.

We now first establish the uniqueness and then discuss the existence re-

sults, that is, we assume Theorems 8.3.1, and 8.3.2 and prove Theorem 8.3.3

first, and then we prove Theorem 8.3.1, and 8.3.2.
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8.4.1 Uniqueness

We begin by introducing a few notations. By g = (g1, g2) ∈ C2(RN × {1, 2})

we mean gi ∈ C2(RN) for i = 1, 2. Define the operator A = (A1,A2) :

C2(RN × {1, 2}) → C2(RN × RN × {1, 2}) for (x, ξ) ∈ RN × RN , k = 1, 2 by

Akg(x, ξ) := ∆gk(x) − ξ · ∇gk(x) + αk(x)
2∑
j=1

(gj(x) − gk(x)),

with g = (g1, g2) ∈ C2(RN × {1, 2}). Also, C2
c(RN × S) denotes the class of

functions in C2(RN × S) with compact support. Let P(RN ×RN × S) denote

the set of Borel probability measures µ = (µ1, µ2), with µi = µ(· × {i})

being a sub-probability measure. For a function h : RN × RN → R2 we use

the notation

µ(h) :=
�
RN ×RN

〈
h(x, ξ) ,µ(dx, dξ)

〉
=

2∑
k=1

�
RN ×RN

hk(x, ξ)µk(dx, dξ) .

We define

M :=
{
µ ∈ P(RN × RN × {1, 2}) : µ

(
Ag

)
= 0 ∀ g ∈ C2

c(RN × {1, 2})
}
.

Let

Fk(x, ξ) := fk(x) + ℓk(x, ξ) k = 1, 2, (8.4.6)

where ℓk is given by Assumption 8.2.1. Now define

MF :=
{
µ ∈ M : µ(F ) < ∞

}
,

and

λ := inf
µ∈M

µ(F ) = inf
µ∈MF

µ(F ) . (LP)

In Lemma 8.4.3 below we show that MF is non-empty. Our next result shows

that λ∗ is smaller that λ̄.

Lemma 8.4.2. Consider the setting of Theorem 8.3.3. Then we must have

λ∗ ≤ λ̄.

172



8.4. Proofs of main results

Proof. We only consider the case when λ̄ < ∞, otherwise there is nothing to

prove. Let µ ∈ M be such that µ(F ) < ∞. Since µ ∈ M we have

µ(Ag) =
2∑

k=1

�
RN ×RN

Akg(x, ξ)µk(dx, dξ) = 0 for all g ∈ C2
c(RN × {1, 2}).

(8.4.7)

Let u = (u1, u2) be a non-negative solution to (EP) corresponding to λ∗, that

is,

−∆u1(x) +H1(x,∇u1(x)) + α1(x)(u1(x) − u2(x)) = f1(x) − λ∗ in RN ,

−∆u2(x) +H2(x,∇u2(x)) + α2(x)(u2(x) − u1(x)) = f2(x) − λ∗ in RN .

(8.4.8)

Existence of u follows from Theorem 8.3.2. From Lemma 8.4.1 we also know

that ui, i = 1, 2, are coercive. We would modify u suitably so that it can

used in (8.4.7) as a test function. To do so, we consider a family of concave

functions.

For r > 0, we let χr be a concave C2(R) function such that χr(t) = t for

t ≤ r, and χ′
r(t) = 0 for t ≥ 3r. Then χ′

r and −χ′′
r are non-negative, and the

latter is supported on [r, 3r]. In addition, we select χr so that

|χ′′
r(t)| ≤ 2

t
∀ t > 0 . (8.4.9)

In particular, we may define χr by specifying

χ
′′

r (t) =



4
3
r−t
r2 if r ≤ t ≤ 3r

2 ,

− 2
3r if 3r

2 ≤ t ≤ 5r
2 ,

4
3( t

r2 − 3
r
) if 5r

2 ≤ t ≤ 3r.
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Using (8.4.8) we now compute

∆χr(uk) − ξ · ∇χr(uk) + αk
2∑
j=1

(χr(uj) − χr(uk))

= χ′′
r(uk)|∇uk|2 + χ′

r(uk)
(
∆uk − ξ · ∇uk

)
+ αk

2∑
j=1

(χr(uj) − χr(uk))

= χ′′
r(uk)|∇uk|2 + χ′

r(uk)
(
λ∗ +Hk(x,∇uk) − fk − ξ · ∇uk

)

+ αk
2∑
j=1

(
χr(uj) − χr(uk) − χ′

r(uk)(uj − uk)
)

= χ′′
r(uk)|Duk|2 + χ′

r(uk)
(
λ∗ − fk − ℓk(x, ξ)

)
+ χ′

r(uk)
(
ℓk(x, ξ) − ξ · ∇uk +Hk(x,∇uk)

)

+ αk
2∑
j=1

(
χr(uj) − χr(uk) − χ′

r(uk)(uj − uk)
)
.

(8.4.10)

Thus, defining

Gr,k[u](x) := αk
2∑
j=1

(
χr(uj) − χr(uk) − χ′

r(uk)(uj − uk)
)
,

and integrating (8.4.10) with respect to a µ, we obtain

n∑
k=1

�
RN ×RN

χ′
r

(
uk(x)

)(
fk(x) + ℓk(x, ξ) − λ∗

)
µk(dx, dξ)

=
2∑

k=1

�
RN ×RN

χ′
r

(
uk(x)

)(
ℓk(x, ξ) − ξ · ∇uk +Hk(x,∇uk)

)
µk(dx, dξ)

+
2∑

k=1

�
RN ×RN

(
χ′′
r

(
uk(x)

)∣∣∣Duk(x)
∣∣∣2 +Gr,k[u](x)

)
µk(dx, dξ) .

(8.4.11)

Next we show that the last term on the r.h.s. of (8.4.11) goes to 0 as r → ∞.

Since f1 ≍ f2 outside a compact set and

µ(f) =
2∑

k=1

�
RN ×RN

fk(x)µk(dx, dξ) < ∞,
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we obtain �
RN ×RN

(|f1(x)| + |f2(x)|)µ1(dx, dξ) < ∞, and
�
RN ×RN

(|f1(x)| + |f2(x)|)µ2(dx, dξ) < ∞. (8.4.12)

Therefore, using Lemma 8.4.1 and (8.4.9), we get
2∑

k=1

�
RN ×RN

|χ′′
r

(
uk(x)

)
|
∣∣∣Duk(x)

∣∣∣2µk(dx, dξ)
≤

2∑
k=1

�
RN ×RN

1{r<uk(x)<3r}
2

uk(x)
∣∣∣Duk(x)

∣∣∣2µk(dx, dξ)
≤ κ

2∑
k=1

�
RN ×RN

1{r<uk(x)<3r}|fk(x)|1/γiµk(dx, dξ),

for some constant κ. Since uk, k = 1, 2, are coercive, using dominated con-

vergence theorem it follows that the r.h.s. of the above display tends to 0 as

r → ∞. Again, since χ′ ≤ 1, it follows that

|Gr,k[u](x)| ≤ 2α01Ac
r
(x)|u1(x) − u2(x)| for all x ∈ RN , k = 1, 2,

where Ar = {x : u2(x) ∨ u1(x) ≤ r}. Using (F1)-(F2) and (8.4.3) we then

have

|Gr,k[u](x)| ≤ κ11Ac
r
(x)(|f1(x)| + |f2(x)|) for all x ∈ RN , k = 1, 2,

for some constant κ1. Again using (8.4.12) and dominated convergence

theorem we thus get

lim
r→∞

2∑
k=1

�
RN ×RN

Gr,k[u](x)µk(dx, dξ) = 0 .

From our construction, it also follows that χ′
3n is an increasing sequence.

Therefore, letting r = 3n → ∞ in (8.4.11) and applying monotone conver-

gence theorem we obtain

µ(F ) − λ∗ =
2∑

k=1

�
RN ×RN

(
ℓk(x, ξ) − ξ · ∇uk +Hk(x,∇uk)

)
µk(dx, dξ) ≥ 0 .

(8.4.13)

Since µ is arbitrary, this proves the lemma.
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Next we show that MF is non-empty.

Lemma 8.4.3. Suppose that u is a coercive, non-negative solution to (EP)

with eigenvalue λ. Define

ξk(x) = ∇pHk(x,∇uk(x)) k = 1, 2.

Then there exists a Borel probability measure ν = (ν1, ν2) on RN × {1, 2} so

that

µu = (µ1,u, µ2,u) ∈ MF where µk,u := νk(dx)δξk(x)(dξ).

Furthermore, λ̄ ≤ λ.

Proof. Since Hk is the Fenchel–Legendre transformation of ℓk, it is well

known that

Hk(x, p) = p · ξ − ℓk(x, ξ) for ξ = ∇pHk(x, p), (8.4.14)

for k = 1, 2. Therefore, we can rewrite (EP) in RN as
∆u1(x) − ξ1(x) · ∇u1(x) − α1(x)(u1(x) − u2(x)) = λ− F1(x, ξ1(x)),

∆u2(x) − ξ2(x) · ∇u2(x) − α2(x)(u2(x) − u1(x)) = λ− F2(x, ξ2(x)),
(8.4.15)

where F is given by (8.4.6). We define the extended generator Au =

(A1,u,A2,u) : C2(RN × {1, 2}) → C2(RN × {1, 2}) for (x, ξ) ∈ RN × RN , k =

1, 2 by

Ak,ug(x) := ∆gk(x) − ξk(x) · ∇gk(x) + αk(x)
2∑
j=1

(gj(x) − gk(x)),

Since u,F are coercive, there exists a switching diffusion (Xt, St) associated

to the generator Au (cf. [11, Chapter 5]). Furthermore, the mean empirical

measures of (Xt, St) will be tight and therefore, should have a limit point

(cf. [11, Lemma 2.5.3]). Let ν = (ν1, ν2) be one such limit points. It is also

standard to show that
2∑

k=1

�
RN

Ak,ug(x)νk(dx) = 0 (8.4.16)
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for all g ∈ C2
c(RN × {1, 2}). Hence it follows that µu ∈ M.

To prove the second part, we consider the concave function χr from

Lemma 8.4.2. Since χr is concave we have χ′′
r ≤ 0 and

χr(uj) − χr(uk) − χ′
r(uk)(uj − uk) ≤ 0.

Thus, the calculation of (8.4.10) and (8.4.14)-(8.4.15) gives

∆χr(uk) − ξk · ∇χr(uk) + αk
2∑
j=1

(χr(uj) − χr(uk))

≤ χ′
r(uk)(λ− Fk(x, ξk(x)).

Integrating both sides with νk and summing over k, we obtain from (8.4.16)

that
2∑

k=1

�
RN

χ′
r(uk)Fk(x, ξk(x))νk(dx) ≤ λ.

Now letting r → ∞ and using Fatou’s lemma we obtain

µu(F ) ≤ λ.

Thus, µu ∈ MF and λ̄ ≤ λ.

We note that the proof of Lemma 8.4.3 also works for C2 super-solutions.

Combining the above result with Lemma 8.4.2 we get the following corollary.

Corollary 8.4.1. Under the assumptions of Theorem 8.3.3 we have

λ∗ = inf{λ ∈ R : ∃ nonnegative u ∈ C2(RN × {1, 2}) such that

(u, λ) is a super-solution to (EP)}.

Note that the existence of a non-negative solution u for the value λ∗ follows

from Theorem 8.3.2.

Now we are ready to establish our uniqueness result.

Theorem 8.4.1. Grant the setting of Theorem 8.3.3. Let (u, λ) be a solution

to (EP) and u is non-negative. Then
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(a) λ = λ∗ = λ̄ = µu(F ), where µu is given by Lemma 8.4.3

(b) Suppose that (ũ, λ̃) is another solution to (EP) and ũ is non-negative,

then λ̃ = λ∗ and ũ = u+ C for some constant C.

Proof. (a) follows from Lemma 8.4.2, and 8.4.3 and (8.4.13). So we consider

(b). Using Lemma 8.4.3, we find a Borel probability measure ν̃ = (ν̃1, ν̃2)

such that for

µ̃ũ = (µ̃1,ũ, µ̃2,ũ) with µ̃k,ũ := ν̃k(dx)δξ̃k(x)(dξ), ξ̃k(x) = ∇pHk(x,∇ũk),

we have λ̃ = µ̃ũ(F ) = λ∗. Again, by [11, Theorem 5.3.4], there exist strictly

positive Borel measurable functions ρ = (ρ1, ρ2) and ρ̃ = (ρ̃1, ρ̃2) satisfying

νk(dx) = ρk(x)dx, ν̃k(dx) = ρ̃k(x)dx for k = 1, 2.

Let us now define

ζk = ρk
ρk + ρ̃k

, ζ̃k = ρ̃k
ρk + ρ̃k

, vk(x) = ξk(x)ζk(x) + ξ̃k(x)ζ̃k(x),

µ̂k(dx, dξ) = 1
2(νk(dx) + ν̃k(dx))δvk(x)(dξ), for k = 1, 2.

We claim that µ̂ = (µ̂1, µ̂2) ∈ M. Consider g = (g1, g2) ∈ C2
c(RN × {1, 2}).

Also, we note that
1
2(νk(dx) + ν̃k(dx)) = 1

2(ρk(x) + ρ̃k(x))dx for k = 1, 2.

A simple computation then yields�
RN ×RN

Ak(x, ξ) µ̂k(dx, dξ)

=
�
RN

(
∆gk(x) − vk(x) · ∇gk(x) + αk(x)

2∑
j=1

(gj(x) − gk(x))
)

× 1
2(ν1(dx) + ν̃1(dx))

= 1
2

�
RN

(
(ρk(x) + ρ̃k(x))∆gk(x) − (ξk(x)ρk(x) + ξ̃k(x)ρ̃k(x)) · ∇gk(x)

+ (ρk(x) + ρ̃k(x))αk(x)
2∑
j=1

(gj(x) − gk(x))
)

dx

= 1
2

�
RN

Ak,ug(x) νk(dx) + 1
2

�
RN

Ak,ũg(x) ν̃k(dx).
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Therefore,

2∑
k=1

�
RN ×RN

Ak(x, ξ) µ̂k(dx, dξ) = 1
2 [µu(Aug) + µũ(Aũg)] = 0.

This proves the claim. Using the convexity of ℓk in ξ it is also easily seen

that µ̂(F ) < ∞. Now from Lemma 8.4.2, and 8.4.3 we see that µu and µũ

are optimal for (LP). Thus we have

0 ≤ µ̂(F ) − 1
2µu(F ) − 1

2µũ(F )

= 1
2

2∑
k=1

[ �
RN

ℓk(x, vk(x))(ρk(x) + ρ̃k(x))dx−
�
RN

ℓk(x, ξk(x))ρk(x)dx

−
�
RN

ℓk(x, ξ̃k(x))ρ̃k(x)dx
]

= 1
2

2∑
k=1

[ �
RN

(
ℓk(x, vk(x)) − ℓk(x, ξk(x))ζk(x)

− ℓk(x, ξ̃k(x))ζ̃k
)
(ρk(x) + ρ̃k(x))dx

]
≤ 0,

where the last line follows from the convexity of ℓk in ξ. Therefore,

2∑
k=1

[�
RN

(
ℓk(x, vk(x)) − ℓk(x, ξk(x))ζk(x) − ℓk(x, ξ̃k(x))ζ̃k

)
(ρk(x) + ρ̃k(x))dx

]

= 0.

Since ρk, ρ̃k are strictly positive, and ℓk is strictly convex, it the follows that

ξk = ξ̃k for k = 1, 2. Since Hk(x, ·) is strictly convex, by (A1), given ξ there

exists a unique p satisfying

Hk(x, p) = p · ξ − ℓk(x, ξ).

Thus, from (8.4.14), we obtain ∇uk = ∇ũk in RN , for k = 1, 2. This, of

course, implies ui = ũi+Ci for some constant Ci, i = 1, 2. Again, subtracting

the equation of u from the equations of ũ we see that α1(C1 − C2) = 0

implying C1 = C2. This completes the proof.
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The proof of uniqueness in Theorem 8.4.1 requires f1 to be comparable

to f2 outside a compact set. This property is crucially used in Lemma 8.4.1,

and 8.4.2. However, if we impose more structural assumption on f then we

could relax the requirement of f1 ≍ f2.

(F3) Suppose that there exists β1, β2 > 1 satisfying

C−1|x|βi − C ≤ fi(x) ≤ C(|x|βi + 1), x ∈ RN ,

where

β2 ≤ β1
γ1 + 1

2 , β1 ≤ β2
γ2 + 1

2 ,

and

max
{
β1(γ1 + 1)

2γ1
,
β2(γ2 + 1)

2γ2

}
≤ β1 ∧ β2 − 1 .

As a consequence of (F3) it follows that

|f2(x)|2/γ1 ≤ κ(1 + |f1(x)|1+γ−1
1 ) and |f1(x)|2/γ2 ≤ κ(1 + |f2(x)|1+γ−1

2 )

(8.4.17)

for some κ > 0. Theorem 8.4.1 can be improved as follows.

Theorem 8.4.2. Suppose that Assumptions 8.2.1, and 8.2.2 and (F3) hold.

Then the conclusions of Theorem 8.4.1 hold true.

Proof. We only need to modify Lemma 8.4.1, and 8.4.2. Note that (8.4.4)

holds. Using (F1),(F2),(8.4.2) and (8.4.17) it follows that

|∇ui(x)|2 ≤ κ1(1 + |fi(x)|1+γ−1
i ) (8.4.18)

for some constant κ1. Therefore, for some compact set K and a constant κ3,

we obtain from (8.4.4) that

|∇ui|2

ui(x) ≤ κ3|fi(x)| x ∈ Kc. (8.4.19)

Again, using (F3) and (8.4.18) we see that

|∇ui(x)| ≤ κ4

(
1 + |x|

βi(1+γi)
2γi

)
for some κ4, i = 1, 2.
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Using (F3) this also implies

max{u1(x), u2(x)} ≤ κ5 min{1 + |f1(x)|, 1 + |f2(x)|} (8.4.20)

for some κ5. Using (8.4.19) and (8.4.20) we can complete the proof of Lemma

8.4.2. Rest of the argument of Theorem 8.4.1 follows without any change.

8.4.2 Existence

First we establish Theorem 8.3.1. We see that if infRN fi > −∞, then set

of sub-solution in (8.3.1) is non-empty. In particular, if we choose λ =

mini infRN fi, then u = (1, 1) is a sub-solution to (EP) with eigenvalue λ.

Lemma 8.4.4. Grant Assumption 8.2.1 and also assume that f ∈ C1(RN ×

{1, 2}). Suppose that u is a C2 sub-solution to (EP) with some eigenvalue

λ1. Then (EP) has a C2 solution for every λ ≤ λ1.

Proof. Since u is also a sub-solution for any λ ≤ λ1, it is enough to show

that there exists a solution w to (EP) with eigenvalue λ1. For a n ∈ N,

fix D = Bn(0). Applying Theorem 8.7.3, we can find a function wn =

(wn1 , wn2 ) ∈ C2(D × {1, 2}) that satisfies

−∆wn1 (x) +H1(x,∇wn1 (x)) + α1(x)(wn1 (x) − wn2 (x)) = f1(x) − λ1 in Bn(0),

−∆wn2 (x) +H2(x,∇wn2 (x)) + α2(x)(wn2 (x) − wn1 (x)) = f2(x) − λ1 in Bn(0).

(8.4.21)

We translate wn to satisfy wn1 (0) = 0. Let K be a compact subset of RN .

Then, by Proposition 8.4.1, we get supn{|wn1 (0)|, |wn2 (0)|} bounded and

sup
K

{|∇wn1 |, |∇wn2 |} < CK,

for all n satisfying Bn(0) ⋑ K. Thus, {wn} is locally bounded in W 2,p
loc ,

uniformly in n. Applying a diagonalization argument, we can find a sub-

sequence of {wn}, converging to some w ∈ W 2,p
loc (RN × {1, 2}) for p > N .
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Passing limit in (8.4.21) gives

−∆w1(x) +H1(x,∇w1(x)) + α1(x)(w1(x) − w2(x)) = f1(x) − λ1 in RN ,

−∆w2(x) +H2(x,∇w2(x)) + α2(x)(w2(x) − w1(x)) = f2(x) − λ1 in RN .

We can now bootstrap the regularity of w to C2 using standard elliptic reg-

ularity theory (cf. [64]).

Now we can complete the proof of Theorem 8.3.1.

Theorem 8.4.3. Grant Assumption 8.2.1. For i = 1, 2, suppose that fi ∈

C1(RN) are bounded below. Then λ∗ is finite and (EP) has solution for the

eigenvalue λ∗. In particular, by Lemma 8.4.4, (EP) has a solution for every

λ ≤ λ∗.

Proof. From the discussion preceding Lemma 8.4.4 we see that

λ∗ ≥ min
i=1,2

inf
RN

fi .

We first show that λ∗ < ∞. Suppose, on the contrary, that λ∗ = ∞. Then,

in view of Lemma 8.4.4, there exists a sequence of solutions {(ϕk, λk)} =

{(ϕk1, ϕk2, λk)} of (EP) satisfying λk → ∞ as k → ∞. We can translate ϕk to

satisfy ϕk1(0) = 0. Since

−∆ϕk1(x) +H1(x,∇ϕk1(x)) + α1(x)(ϕk1(x) − ϕk2(x)) = f1(x) − λk in RN ,

−∆ϕk2(x) +H2(x,∇ϕk2(x)) + α2(x)(ϕk2(x) − ϕk1(x)) = f2(x) − λk in RN ,

(8.4.22)

and (fi − λk)+ ≤ (fi)+ for large k, it follows from Proposition 8.4.1 that

sup
k

sup
K

{|H1(x,∇ϕk1)|, |H2(x,∇ϕk2)|} < ∞, sup
k

sup
K

{|ϕk1|, |ϕk1|} < ∞,

(8.4.23)

for every compact set K in RN . Setting

ψki := λ−1
k ϕki for i = 1, 2,
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we see from (8.4.22) that in RN ,

−∆ψk1(x) + λ−1
k H1(x,∇ϕ̂k1(x)) + α1(x)(ψk1(x) − ψk2(x)) = λ−1

k f1(x) − 1,

−∆ψk2(x) + λ−1
k H2(x,∇ϕ̂k2(x)) + α2(x)(ψk1(x) − ψk2(x)) = λ−1

k f2(x) − 1.

Using (8.4.23) we see that {ψk} is locally bounded in W 2,p
loc (RN) for p > N .

Therefore, we can find a convergence subsequence, converging to some ψ.

(8.4.23) also shows that |∇ψi| = 0 implying ψ to be a constant. Then

passing limit in the above display we get a contradiction. Hence λ∗ must be

finite.

Now choose λn < λ∗ such that λn → λ∗ as n → ∞. Then, using Lemma

8.4.4, we get a solution (un1 , un2 , λn) to (EP). Applying an argument similar

to Lemma 8.4.4 we can extract a convergent subsequence, converging locally

to u = (u1, u2) and u solves (EP) with the eigenvalue λ∗. This completes

the proof.

Rest of this section is devoted to the proof of Theorem 8.3.2, that is, we

construct a non-negative solution to (EP) corresponding to the eigenvalue

λ∗. The broad idea of the proof is the following: We solve the ergodic control

problem (EP) on an increasing sequence of balls Bn and find solution pairs

(un, λn) in the balls. We then show that λn decreases to λ∗ and un → u.

Using the coercivity of f , we can confine the minimizer of un inside a fixed

compact set, independent of n. This also makes u bounded from below. For

this idea to work it is important that un attends its minimum inside Bn.

This can be achieved if we set un = +∞ on ∂Bn. For γi ≤ 2, this can be

done using the arguments of Lasry-Lions in [88]. But for γi > 2, we need to

modify f to attend the boundary data.

Let f be a C1 function. Let B = Br(0) be the ball of radius r ≥ 1 around
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0. Let ϱ : (0,∞) → (0,∞) be a smooth, non-negative function satisfying

ϱ(x) =


x−1 for x ∈ (0, 1

2),

0 for x ≥ 1.

Define

fi,α(x) = fi(x) + [ϱ(r2 − |x|2)]α x ∈ B, i = 1, 2,

for some α to be fixed later. Let β > max{2, γ1, γ2} be such that (β+1)(γi∧

2) > β + 2. Choose α > 0 to satisfy β < α < (β + 1)(γi ∧ 2). With no loss

of generality, we also assume that 1 < γ2 ≤ γ1. Our next result concerns

discounted problem in B.

Lemma 8.4.5. Grant Assumption 8.2.1. Then, for any ε ∈ (0, 1), the system

−∆wε1 +H1(x,∇wε1) + α1(x)(wε1 − wε2) + εwε1 = f1,α in B,

−∆wε2 +H2(x,∇wε2) + α2(x)(wε2 − wε1) + εwε2 = f2,α in B,
(8.4.24)

admits a solution (wε1, wε2) in C2(Br × {1, 2}) with wεi → ∞ as x → ∂Br.

Moreover, the set {εwεi (0) : ε ∈ (0, 1)} is bounded for i = 1, 2.

Proof. To find a solution of (8.4.24) first we find appropriate sub and super-

solutions of (8.4.24). Define ξδ(x) = − log(r2 − δ|x|2) and let (ξδ1, ξδ2) =

(κ1ξ
δ, κ1ξ

δ). It can be easily checked that, for some δ0 > 0 and δ ∈ (δ0, 1),

−∆ξδ1 + C1(|∇ξδ1|γ1 + 1) + α1(x)(ξδ1 − ξδ2) + εξδ1 ≤ f1,α for r − δ1 ≤ |x| < r,

−∆ξδ2 + C1(|∇ξδ2|γ2 + 1) + α2(x)(ξδ2 − ξδ1) + εξδ2 ≤ f2,α for r − δ1 ≤ |x| < r

for some appropriate constant κ1, dependent on γ1, γ2. κ1, δ1, and δ can be

chosen independent of ε. Now choose M suitably large, independent of ε, δ,

so that (κ1ξ
δ
1 − M

ε
, κ1ξ

δ
2 − M

ε
) forms a sub-solution of (8.4.24).

Next we construct a super-solution. To this end, we consider the ap-

proximating function ψn from Lemma 8.7.1. More precisely, we consider a
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sequence of functions ψn = (ψ1
n, ψ

2
n) where ψin(x) = x if γi ≤ 2, otherwise

ψin = ψn from Lemma 8.7.1.

We define (ζδ1 , ζδ2) = (κ2ζ, κ2ζ) where

ζ = (r2 − δ|x|2)−β for i = 1, 2.

Using the condition β < α < (β + 1)(γi ∧ 2), and choosing M large, inde-

pendent of n, ε, δ, we see that (κ2ζ
δ
1 + M

ε
, κ2ζ

δ
2 + M

ε
) forms a super-solution

to the equation

−∆wε1 + ψ1
n(H1(x,∇wε1)) + α1(x)(wε1 − wε2) + εwε1 = f1,α in B,

−∆wε2 + ψ2
n(H2(x,∇wε2)) + α2(x)(wε2 − wε1) + εwε2 = f2,α in B,

for all n. From the argument of Theorem 8.7.3, we find a solution wδ =

(wδ1, wδ2) of

−∆wδ1 +H1(x,∇wδ1) + α1(x)(wδ1 − wδ2) + εwδ1 = f1,α in B,

−∆wδ2 +H2(x,∇wδ2) + α2(x)(wδ2 − wδ1) + εwδ2 = f2,α in B,

and

κ1ξ
δ
i − M

ε
≤ wδi,n ≤ κ2ζ

δ
i + M

ε
in B, i = 1, 2.

Using the estimates in Proposition 8.4.1, we can now let δ → 1 and find a

solution to

−∆wε1 +H1(x,∇wε1) + α1(x)(wε1 − wε2) + εwε1 = f1,α in B,

−∆wε2 +H1(x,∇wε1) + α2(x)(wε2 − wε1) + εwε2 = f2,α in B,

satisfying

−κ1 log(r2 −|x|2)−M

ε
≤ wεi ≤ κ2(r2 −|x|2)−β+M

ε
in B, i = 1, 2. (8.4.25)

From (8.4.25) we also obtain

sup
ε∈(0,1)

sup
B1/2

|εwεi | < ∞.

This completes the proof.

185



CHAPTER 8. ON ERGODIC CONTROL PROBLEM FOR VISCOUS
HAMILTON-JACOBI EQUATIONS FOR WEAKLY COUPLED ELLIPTIC SYSTEMS

Now we can provide a proof of Theorem 8.3.2.

Theorem 8.4.4. Grant Assumption 8.2.1 and assume fi, i = 1, 2, to be

coercive. Then there exists a non-negative solution to (EP) corresponding to

the eigenvalue λ∗.

Proof. First we find a pair (un, λn) solving

−∆un1 +H1(x,∇un1 ) + α1(x)(un1 − un2 ) = fn1,α − λn in Bn(0),

−∆un2 +H2(x,∇un2 ) + α2(x)(un2 − un1 ) = fn2,α − λn in Bn(0),
(8.4.26)

with un → ∞, as x → ∂Bn(0), where

fni,α = fi + [ϱ(n2 − |x|2)]α,

and α is same as in Lemma 8.4.5. Fix n ∈ N and denote by B = Bn(0).

Consider the solution wε from Lemma 8.4.5. We set vε1 = wε1(x) −wε1(0) and

vε2(x) = wε2(x) − wε1(0). From (8.4.24) we then find

−∆vε1 +H1(x,∇vε1) + α1(x)(vε1 − vε2) + εwε1 = fn1,α in B,

−∆vε2 +H2(x,∇vε2) + α2(x)(vε2 − vε1) + εwε2 = fn2,α in B.
(8.4.27)

From our choice of α and (8.4.25) we see that fi,α − εwεi ≥ 1
2fi,α near the

boundary, and since maxB1/2{|vε1|, |vε2|} is bounded uniformly in ε (by Propo-

sition 8.4.1), we can see that vεi ≥ κ3ξ
δ
i − M for some κ3, using Theorem

8.7.1, where ξδ is same as in Lemma 8.4.5. Now let δ → 1 to get a lower

bound that blows up at the boundary. Using Proposition 8.4.1 and the fact

{εwε(0)} is bounded, we let ε → 0 in (8.4.27) to find a solution to (8.4.26).

Now consider the sequence of solutions {un, λn} solving (8.4.26). We

claim that λn ≥ λn+1 ≥ λ∗. Suppose, on the contrary, that λn < λn+1.

Choose a constant κ so that un+1 + κ touches un from below in Bn. This is

possible as un blows up at the boundary. Let vn = un − un+1. Also, note

that

fn+1
i,α (x) = fi(x) ≤ fni,α in Bn.
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Choose D ⋐ Bn so that vn vanishes inside D. From (8.4.26) we then have
−∆vn1 + hn1 · ∇vn1 + α1(x)(vn1 − vn2 ) ≥ λn+1 − λn > 0 in D,

−∆vn2 + hn2 · ∇vn1 + α2(x)(vn2 − vn1 ) ≥ λn+1 − λn > 0 in D,

where

hni (x) =
� 1

0
∇pHi(x,∇un+1

i + t(∇uni − ∇un+1
i )) dt, i = 1, 2.

By strong maximum principle we obtain vn = 0 in D. Since D is arbitrary,

we must have vn = 0 in Bn which is a contradiction. Thus we have λn ≥

λn+1. An analogous argument also shows λn ≥ λ∗.

Using the estimates in Proposition 8.4.1, we can now find a subsequence

of {un} converging weakly in W 2,p
loc (RN) to some u. Passing limit in (8.4.26)

we see that u solves (EP) with the eigenvalue λ∗ (since limn→∞ λn is equal

to λ∗). To see that u is bounded from below, we consider a point (xn, iu) ∈

Bn × {1, 2} so that unin(xn) is the minimum of un in Bn. From (8.4.26) we

then obtain

λ1 ≥ λn ≥ fnin(xn) ≥ fin(xn) ≥ min{f1(xn), f2(xn)}.

Since fi is coercive, we can find a compact set K, independent of n, so

that xn ∈ K. Thus un ≥ minK{un1 , un2 }. This, of course, implies that u is

bounded from below. We can now translate u to make it non-negative. This

completes the proof.

We complete the section by mentioning few properties of λ∗ = λ∗(f).

Proposition 8.4.2. Let f , f̃ be two C1 functions. Then

(i) For any c ∈ R we have λ∗(f + c) = λ∗(f) + c.

(ii) f 7→ λ∗(f) is concave, that is, for t ∈ [0, 1] we have

λ∗(tf + (1 − t)f) ≥ tλ∗(f) + (1 − t)λ∗(f̃).

187



CHAPTER 8. ON ERGODIC CONTROL PROBLEM FOR VISCOUS
HAMILTON-JACOBI EQUATIONS FOR WEAKLY COUPLED ELLIPTIC SYSTEMS

(iii) If f ≤ f̃ , then λ∗(f) ≤ λ∗(f̃). Furthermore, if we assume the setting

of Theorem 8.4.1 or Theorem 8.4.2, then for f ⪇ f̃ we have λ∗(f) <

λ∗(f̃).

Proof. (i) is obvious. (ii) follows from the convexity of Hi and the definition

(8.3.1). Also, first part of (iii) follows from the definition (8.3.1). To Prove

the second part, we suppose, on the contrary, that λ∗(f) = λ∗(f̃). Let ũ be

a non-negative solution to (EP) with right-hand side f̃ and eigenvalue λ∗(f̃).

Then ũ would be a super-solution to (EP) with right-hand side f . From

Lemma 8.4.3 we know that for

ξ̃k(x) = ∇pHk(x,∇ũk(x)) k = 1, 2,

there exists a Borel probability measure ν̃ = (ν̃1, ν̃2) so that

µ̃ũ = (µ̃1,u, µ̃2,u) with µ̃k,ũ := ν̃k(dx)δξ̃k(x)(dξ) ∈ MF .

Moreover, µ̃ũ(F ) ≤ λ∗(f). By Theorem 8.4.1 or Theorem 8.4.2 we must

have µ̃ũ(F ) = λ∗(f). Again, using (8.4.13), we obtain

2∑
k=1

�
RN

(
ℓk(x, ξ̃k(x)) − ξ̃k(x) · ∇uk +Hk(x,∇uk)

)
ν̃k(dx) = 0.

Since ν̃k has strictly positive densities (cf. [11, Theorem 5.3.4]), it follows

that ∇uk = ∇ũk. Thus uk = ũk + ck for some constants ck for k = 1, 2.

Subtracting the equation satisfied by u and ũ we obtain

α1(x)(c2 − c1) = f̃1(x) − f1(x), and α2(x)(c1 − c2) = f̃2(x) − f2(x),

which implies
f̃1(x) − f1(x)

α1(x) + f̃2(x) − f2(x)
α2(x) = 0.

But this is not possible as f ⪇ f̃ . Hence we must have λ∗(f) < λ∗(f̃).
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8.5 Application to optimal ergodic control

In this section we describe the optimal ergodic control problem associated to

the problem (EP). Denote by S = {1, 2}, the state space of the switching con-

tinuous time Markov process. We introduce the regime switching controlled

diffusion process on a given complete probability space (Ω,F,P). This is a

process (Xt, St) in RN × S governed by the following stochastic differential

equations:

dXt = b(Xt, St)dt− Ut dt+
√

dWt ,

dSt =
�
R

h(Xt, St− , z)℘(dt, dz) ,
(8.5.1)

for t ≥ 0, where

(i) (X0, S0) are prescribed deterministic initial data;

(ii) W is an N -dimensional standard Wiener process;

(iii) ℘(dt, dz) is a Poisson random measure on R+ ×R with intensity dt×

m(dz), where m is the Lebesgue measure on R;

(iv) ℘(·, ·), W (·) are independent;

(v) The function h : RN × S ×R → R is defined by

h(x, i, z) :=


j − i if z ∈ ∆ij(x),

0 otherwise,

where for i, j ∈ S, i ̸= j, and fixed x, ∆ij(x) are left closed right open

disjoint intervals of R having length mij(x), and

m11(x) = −α1(x), m12 = α1(x), m21(x) = α2(x), m22(x) = −α2(x).
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Note thatM (x) := (mij) can be interpreted as the rate matrix of the Markov

chain St given that Xt = x. In other words,

P(St+h = j |Xt, St) =


mStj(Xt)h+ o(h) if St ̸= j ,

1 +mStj(Xt)h+ o(h) if St = j ,

and X behaves like an ordinary diffusion process governed by (8.5.1) between

two consecutive jumps of S.

We assume b : RN × S → RN to be a bounded C1 function with bounded

first derivatives. The process {Ut} takes values in RN and non-anticipative

in nature, that is, the sigma fields

σ{X0, S0,Ws, Us, ℘(A,B) : A ∈ B([0, s]), B ∈ B(R), s ≤ t}

and

σ{Ws −Wt, ℘(A,B) : A ∈ B([s,∞)), B ∈ B(R), s ≥ t},

are independent. To introduce the admissible class of controls we set γ1 =

γ2 = γ and define

U =
{
U : E

[� T

0
|Ut|γ

′dt
]
< ∞ for all T > 0

}
,

where γ′ is the Hölder conjugate of γ. We also assume ℓ̃i to satisfy the

following bound

κ−1|ξ|γ′ − κ ≤ ℓ̃i(x, ξ) ≤ κ(1 + |ξ|γ′),

for some κ > 0 and ξ 7→ ℓi(x, ξ) are strictly convex, i = 1, 2. We let

Hi(x, p) = −bi(x) · p+ sup
ξ∈RN

{p · ξ − ℓi(x, ξ)} i = 1, 2.

Also, assume that Hi ∈ C1(RN × RN) and the functions ξ 7→ Hi(x, ξ) are

strictly convex for i = 1, 2. It can be easily shown that (8.5.1) has a unique

strong solution for U ∈ U. This can be verified using Picard iterations. Now

we can state the main result of this section.
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Theorem 8.5.1. Consider the setting of Theorem 8.4.1 or Theorem 8.4.2.

We also assume that γ1 = γ2 = γ. Then

inf
U∈U

lim inf
T→∞

1
T
E
[� T

0

(
f(Xt, St) + ℓ(Xt, St, Ut)dt

)]
= λ∗. (8.5.2)

Furthermore, the stationary Markov control

(∇pH1(x,∇u1(x)),∇pH2(x,∇u2(x))) + b

is optimal where u is a non-negative solution to (EP) corresponding to the

eigenvalue λ∗. Furthermore, from (8.4.13), we also see that this is the only

optimal stationary Markov control.

Proof. We only show that the l.h.s. of (8.5.2) is larger than λ∗. Rest of the

proof follows from Theorem 8.4.1 or Theorem 8.4.2. Consider U ∈ U so that

lim inf
T→∞

1
T
E
[� T

0

(
f(Xt, St) + ℓ(Xt, St, Ut)dt

)]

= lim inf
Tn→∞

1
Tn

E
[� Tn

0

(
f(Xt, St) + ℓ(Xt, St, Ut)dt

)]
< ∞. (8.5.3)

We define the mean empirical measure as on RN × RN × S as follows

µn(A1×A2×C) = 1
Tn

E
[� Tn

0
1A1×C×A2(Xt, Ut, St)dt

)]
, Ai ∈ B(RN), C ⊂ S.

From the definition of µn it follows that

µn(F ) = 1
Tn

E
[� Tn

0

(
f(Xt, St) + ℓ(Xt, St, Ut)dt

)]
,

where F is given by (8.4.6). From the coercivity property of F it can be

easily seen that {µn} is tight. Let µ be a sub-sequential limit of {µn}.

Using [11, Lemma 2.5.3] and the lower-semi continuity property of weak

convergence we see that µ ∈ MF . Again, from (8.5.3), we get

lim inf
T→∞

1
T
E
[� T

0

(
f(Xt, St) + ℓ(Xt, St, Ut)dt

)]
≥ µ(F ).

By Lemma 8.4.2 we obtain

lim inf
T→∞

1
T
E
[� T

0

(
f(Xt, St) + ℓ(Xt, St, Ut)dt

)]
≥ λ∗.

This completes the proof.
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8.5.1 Some results from stochastic calculus

Here we recall some results from stochastic analysis which will be useful for

the proof of Theorem 8.4.1. We are going to state few results for the above

mentioned process Zt = (Xt, St) in (8.5.1) and for more details one can look

in [11, Chapter 5] and [103,120].

Next we define the extended controlled generator. For ψ ∈ C2(RN × S),

we define the operators Lu and Πu for a fixed u ∈ RN as follows:

(Luψ)(x, y) := 1
2 ∆xψ(x, y) +

N∑
i=1

(
bi(x, y) − ui

) ∂ψ
∂xi

(x, y),

and for y ̸= ỹ,

(Πuψ)(x, y) := −αy(x)ψ(x, y) + αy(x)ψ(x, ỹ).

Lemma 8.5.1. Let ψ ∈ C2
c(RN × S). Then for T > 0, there holds

EUs
z [ψ(ZT )] − ψ(z) = Ez

[� T

0

[
LUsψ(Zs) + ΠUsψ(Zs)

]
ds
]
.

Proof of this lemma can be found in [11, Chapter 5, Lemma 5.1.4].

We write the operator A as follows

(Aϕ)k = aijk ∂ijϕk + bik∂iϕk + λkkϕk +
∑
l ̸=k

λlkϕl,

where aijk are locally Lipschitz and other coefficients are in L∞
loc(RN). Also

we have λlk ≥ 0 for k ̸= l and ∑l λ
l
k = 0. If µ⃗ = (µ1, · · · , µN) ∈ P(RN × S),

then we denote by

< ϕ(x), µ⃗(dx) >=
N∑
k=1

ϕk(x)µk(dx).

Theorem 8.5.2. Suppose µ is a Borel probability measure on P(RN × S)

satisfying
�
RN

< Af(x), µ⃗(dx) = 0 for all f ∈ C2
c(P(RN × S)).
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Then µ is absolutely continuous with respect to the Lebesgue measure. Let

Λ̂ ∈ {0, 1}N×N is defined by

Λ̂ij :=


0 if i = j or λji = 0 a.e.,

1 otherwise.

Then provided Λ̂ is an irreducible matrix, ψ is strictly positive on P(RN×S).

The proof of this theorem can be found in [11, Chapter 5, Theorem 5.3.4].

8.6 Proof of gradient estimate: Proposition

8.4.1

Part of the proof of this Proposition is inspired from [71].

Proof. With no loss of generality, we assume that z = 0, B1 = B1(0), B2 =

B2(0), and B 1
2

= B 1
2
(0). We first show that

sup
B1

{|∇u1|2γ1 , |∇u2|2γ2} ≤ C
(
1 + sup

B2

2∑
i=1

(fi)2
+ + sup

B2

2∑
i=1

|∇fi|2γi/(2γi−1)

+ |u1(0) − u2(0)|2 + sup
B2

2∑
i=1

(εui)2
−

)
. (8.6.1)

Let ρ : B2 → [0, 1] be smooth, radial function which is decreasing along the

radius, ρ = 1 in B1, and support(ρ) ⊂ B2. We take γ = min{γ1, γ2} and

define η = ρ
4γ

γ−1 . Without loss of generality we may assume that

max
B2

{η|∇u1|2, η|∇u2|2} = η(x0)|∇u1(x0)|2 for some x0 in B2.

Define θ(x) = η(x)|∇u1(x)|2 = η(x)w(x) where w(x) = |∇u1(x)|2. Then

we have ∇θ(x0) = 0 and ∆θ(x0) ≤ 0. We may also assume that θ(x0) > 1.

Otherwise, if θ(x0) ≤ 1, we get

max
B1

{η|∇u1|2, η|∇u2|2} ≤ θ(x0) ≤ 1,
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and (8.6.1) follows. Therefore, we work with θ(x0) > 1. We see that

0 = ∇θ(x0) = η(x0)∇w(x0) + w(x0)∇η(x0). (8.6.2)

Now onward we shall evaluate everything at the point x = x0 without ex-

plicitly mentioning the point x0. Then

∆w = Tr[(D2u1)2] + ∇(∆u1) · ∇u1

= Tr[(D2u1)2] + ∇(H1(x,∇u1) + α1(u1 − u2) + εu1 − f1) · ∇u1

= Tr[(D2u1)2] +
[
∇xH1 + (∇pH1)D2u1 + (u1 − u2)∇α1

+ α1(∇u1 − ∇u2) + ε∇u1 − ∇f1

]
· ∇u1.

Using (8.6.2) we then obtain

0 ≥ ∆θ = η∆w + 2∇η · ∇w + w∆η

= η

[
Tr[(D2u1)2] + ∇xH1 · ∇u1 + (−2wη−1)∇η · ∇pH1 + (u1 − u2)∇α1 · ∇u1

+ α1(∇u1 − ∇u2) · ∇u1 + εw − ∇f1 · ∇u1

]
− 2η−1w|∇η|2 + w∆η

≥ η

[
Tr[(D2u1)2] − |∇xH1||∇u1| − 2wη−1|∇pH1||∇η| + (u1 − u2)∇α1 · ∇u1

+ α1(∇u1 − ∇u2) · ∇u1 − |∇f1||∇u1|
]

− 2η−1w|∇η|2 − w|∆η|.

Using (8.4.1) , (HP1) and the inequality (t1 + t2 + t3 + t4)2 ≥ 1
4t

2
1 − [(t2)2

− +

(t3)2
− + (t4)2

−], we get (taking t1 = H1 + C1 ≥ 0)

N Tr[(D2u1)2] ≥ (∆u1)2 ≥
(

1
4C2

1
|∇u1|2γ1−(f1+C1)2

+−α2
1(u1−u2)2−(εu1)2

−

)
.
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Since N ≥ 1 and η ≤ 1, we obtain

1
4NC2

1
η|∇u1|2γ1

≤ ηTr[(D2u1)2] + (f1 + C1)2
+ + ηα2

1(u1 − u2)2 + (εu1)2
−

≤ (f1 + C1)2
+ + ηα2

1(u1 − u2)2 + (εu1)2
− + η|∇xH1||∇u1| + 2w|∇pH1||∇η|

− η(u1 − u2)∇α1 · ∇u1 − ηα1(∇u1 − ∇u2) · ∇u1

+ η|∇f1||∇u1| + 2η−1w|∇η|2 + w|∆η|. (8.6.3)

We observe that

η(x0)α1(x0)(|∇u1(x0)|2 − ∇u2(x0) · ∇u1(x0))

≥ η(x0)α1(x0)(|∇u1(x0)|2 − |∇u2(x0)||∇u1(x0)|)

≥ 0.

Also, by Mean Value Theorem, there exist ζ ∈ B2 , with |ζ| < |x0|, and a

constant κ1 > 0, dependent on supB2 |α1|, such that

η(x0)α2
1(u1(x0) − u2(x0))2 ≤ η(x0)κ1

(
|∇u1(ζ) − ∇u2(ζ)|2 + |u1(0) − u2(0)|2

)
≤ η(ζ)κ1

(
|∇u1(ζ) − ∇u2(ζ)|2 + |u1(0) − u2(0)|2

)
≤ κ1

(
4θ(x0) + |u1(0) − u2(0)|2

)
,

where in the second line we use the fact that η is radially decreasing. Another

application of the Mean Value Theorem and a similar estimate as above gives

us, for some ζ1 with |ζ1| < |x0|,

− η(x0)(u1(x0) − u2(x0))∇α1(x0) · ∇u1(x0)

≤ η(x0)|u1(x0) − u2(x0)||∇α1(x0)||∇u1(x0)|

≤ κ2

√
η(x0)

(
|∇u1(ζ1)| + |u1(0) − u2(0)|

)√
θ(x0)

≤ κ2
(√

η(ζ1)|∇u1(ζ1)| + |u1(0) − u2(0)|
)√

θ(x0)

≤ κ2
(
2θ(x0) + |u1(0) − u2(0)|2

)
,
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for some constant κ2 dependent on supB2 |∇α1|, where in the last part we used

ab ≤ 2−1(a2 + b2). Again, using (HP2)-(RHP2) and above three estimates in

(8.6.3) we deduce that for some constant κ3, dependent only on the bounds

of α1, it holds

1
4NC2

1
η|∇u1|2γ1

≤ 2(f1)2
+ + 2C2

1 + (εu1)2
− + C1η(1 + |∇u1|γ1)|∇u1|

+ 2C1(1 + |∇u1|γ1−1)|∇u1|2|∇η| + κ3
(
η|∇u1|2 + |u1(0) − u2(0)|2

)
+ η|∇f1||∇u1| + |∇u1|2(2η−1|∇η|2 + |∆η|). (8.6.4)

Using Young’s inequality for appropriate δ > 0 to |∇u1||∇f1|, we obtain

κδ > 0 satisfying

|∇u1||∇f1| ≤ δ|∇u1|2γ1 + κδ|∇f1|2γ1/(2γ1−1).

Since |∇u1(x0)| ≥ 1 and γ1 > 1, we also have

(1 + |∇u1|γ1)|∇u1| ≤ 2|∇u1|γ1+1, and (1 + |∇u1|γ1−1)|∇u1|2 ≤ 2|∇u1|γ+1.

Thus, from (8.6.4) we obtain a constant κ4 > 0, dependent on N,C1, κ1, κ2,

κ3, κδ, such that

η|∇u1|2γ1 ≤ κ4

(
1 + (f1)2

+ + |u1(0) − u2(0)|2 + (εu1)2
− + |∇f1|2γ1/(2γ1−1)

+ |∇u1|γ1+1|∇η| + |∇u1|2
(
2η−1|∇η|2 + |∆η|

))
.

Now we define V (x0) = η(x0)|∇u1(x0)|2γ1 and β = γ1+1
2γ1

∈ ( 1
γ1
, 1). Then

η|∇u1|2γ1 ≤ κ4

(
1 + (f1)2

+ + |u1(0) − u2(0)|2 + (εu1)2
− + |∇f1|2γ1/(2γ1−1)

+ V βη−β|∇η| + V 1/γ1
(
2η−(γ1+1)/γ1|∇η|2 + η−1/γ1|∆η|

))

≤ κ4

(
1 + (f1)2

+ + |u1(0) − u2(0)|2 + (εu1)2
− + |∇f1|2γ1/(2γ1−1)

)

+ κ4V
β

(
η−β|∇η| + 2η−2β|∇η|2 + η−β|∆η|

)
,
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where in the last line we used V (x0) ≥ (η(x0)|∇u1|2)γ1 > 1, η ≤ 1 and
1
γ1
< β. To conclude the proof of (8.6.1) it is enough to show that η−β|∇η|

and η−β|∆η| are bounded quantities. Recall that η = ρτ where τ = 4γ
γ−1

with γ = min{γ1, γ2}. It is easily seen that τ = max{ 4γ1
γ1−1 ,

4γ2
γ2−1}. A simple

calculation yields

η−β|∇η| = τρτ−1−τβ|∇ρ|,

η−β|∆η| ≤ τ{ρτ−1−τβ|∆ρ| + (τ − 1)ρτ−2−τβ|∇ρ|2}.

We observe that 1 − β = γ1−1
2γ1

, and thus,

τ(1 − β) − 1 ≥ γ1 − 1
2γ1

4γ1

γ1 − 1 − 1 = 1, and τ(1 − β) − 2 ≥ 0.

Hence, there exist constant C > 0 satisfying

η(x0)|∇u1|2γ1 ≤ C

(
1 + (f1)2

+ + |u1(0) − u2(0)|2 + (εu1)2
− + |∇f1|2γ1/(2γ1−1)

)
.

Now taking supremum over B2, we can write

sup
B1

{|∇u1|2γ1 , |∇u2|2γ2} ≤ C
(
1 + sup

B2

(f1)2
+ + sup

B2

|∇f1|2γ1/(2γ1−1)

+ |u1(0) − u2(0)|2 + sup
B2

(εu1)2
−

)
.

If the maximum is attained at the second component we can repeat an anal-

ogous argument. This gives us (8.6.1).

Next we prove (8.4.3). Suppose, on the contrary, that there exists

{(uni , fni , αni , εn)}n with αni satisfying (8.2.1), and in D,
−∆un1 (x) +H1(x,∇un1 ) + αn1 (x)(un1 (x) − un2 (x)) + εun1 (x) = fn1 (x),

−∆un2 (x) +H2(x,∇un2 ) + αn2 (x)(un2 (x) − un1 (x)) + εnu
n
2 (x) = fn2 (x),

(8.6.5)

and

|un1 (0)−un2 (0)|2 > n
(
1+sup

B2

2∑
i=1

(fni )2
++sup

B2

2∑
i=1

|∇fni |2γi/(2γi−1)+sup
B2

2∑
i=1

(εui)2
−

)
.

(8.6.6)
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First of all note that we can always set un1 (0) = 0. Therefore, by (8.6.6),

we see that |un2 (0)| → ∞. Suppose that there is a subsequence, denoted by

the actual sequence, along which un2 (0) → ∞. Define vni = 1
un

2 (0)u
n
i . Since

a2 ≤ κi+a2γi for some κi, for all a ≥ 0, using (8.6.1) and (8.6.6) we find that

sup
B1

{|∇vn1 |2γ1 , |∇vn2 |2γ2} < C for all n.

Since (vn1 (0), vn2 (0)) = (0, 1), from above estimate if follows that supB1(|vn1 |+

|vn2 |) uniformly bounded in n. Using (HP1) and (8.6.6) we also get

sup
n

sup
B1

[ 1
u2(0) |H1(x,∇u1)| + 1

u2(0) |H2(x,∇u1)|] < Ĉ. (8.6.7)

Therefore, it follows from (8.6.5) that ∥vn1 ∥W 2,p(B 1
2

), ∥vn2 ∥W 2,p(B 1
2

) are uni-

formly bounded in n (cf. [64, Theorem 9.11]) for any p > N , and hence we can

extract a weakly convergence subsequence converging to some v = (v1, v2) ∈

W 2,p(B 1
2
)×W 2,p(B 1

2
). From the Sobolev embedding we also see that vn2 → v2

in C1,α(B 1
2
). Since |∇vni | → |∇vi| in B 1

2
and supn supB 1

2

1
|un

2 (0)| |∇u
n
i |γi is

bounded, by (HP1) and (8.6.7), it follows that ∇vi = 0 in B 1
2
. Thus,

v = (0, 1) in B 1
2
. Now from the second equation of (8.6.5) we get

−∆vn2 + αn2 (vn2 − vn1 ) = 1
un2 (0)f

n
2 − 1

un2 (0)H2(x,∇un2 ) ≤ 1
un2 (0)f

n
2 + C1

un2 (0) ,

by (HP1). Let φ be a non-zero, non-negative test function supported in

B 1
2
. Multiplying the above equation by φ, integrating over B 1

2
and letting

n → ∞ we obtain

α−1
0

�
B 1

2

φ(x)dx ≤ lim inf
n→∞

�
B 1

2

αn2 (x)vn2 (x)φ(x)dx

≤ lim inf
n→∞

�
B 1

2

φ
[
∆vn2 + 1

un2 (0)f
n
2 + αn2v

n
1 + C1

un2 (0)
]
dx = 0,

where we use the fact that supB1/2
|αn2vn1 | ≤ α0 supB1/2

|vn1 | → 0. Thus we

arrive at a contradiction.

A similar contradiction is also arrived is un2 (0) → −∞ along some subse-

quence. This establishes (8.4.3).

(8.4.2) follows from (8.4.3) and (8.6.1). This completes the proof.

198



8.7. Existence results in bounded domains

8.7 Existence results in bounded domains

By D we denote a bounded C1,1 domain in RN .

Theorem 8.7.1 (Comparison principle). Let Hi ∈ C1(RN × RN), i = 1, 2

be given functions. Let u = (u1, u2) ∈ C2(D × {1, 2}) ∩ C1(D̄ × {1, 2}) be a

sub-solution to

−∆u1 +H(x,∇u1) + α1(x)(u1 − u2) = f1 in D,

−∆u2 +H(x,∇u2) + α2(x)(u2 − u1) = f2 in D,
(8.7.1)

and v = (v1, v2) ∈ C2(D × {1, 2}) ∩ C1(D̄ × {1, 2}) be a super-solution to

(8.7.1). Moreover, assume that v ≥ u on ∂D. Then we have v ≥ u in D̄.

Proof. Write wi = vi − ui. Then it follows from (8.7.1) that

−∆w1 + h1(x) · ∇w1 + α1(x)(w1 − w2) ≥ 0 in D,

−∆w2 + h2(x) · ∇w2 + α2(x)(w2 − w1) ≥ 0 in D,

where

hi(x) =
� 1

0
∇pHi(x,∇ui(x) + t(∇vi(x) − ∇ui(x)))dt, i = 1, 2.

The result follows by applying the maximum principle, Busca-Sirakov [45,

Theorem 3.1], Sirakov [113, Theorem 1].

We next recall an existence result from [3]. Let Fi : D̄×RN → R, i = 1, 2,

be two continuous functions satisfying

|Fi(x, ξ)| ≤ κ(1 + |ξ|2) for all (x, ξ) ∈ D̄ × RN , i = 1, 2,

for some constant κ. We also assume that ξ 7→ Fi(x, ξ) is continuously

differentiable.
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Theorem 8.7.2. Let v̄,v ∈ C2(D̄×{1, 2}) be respectively a sub-solution and

super-solution to

−∆u1 + F1(x,∇u1) + α1(u1 − u2) = 0 in D,

−∆u2 + F2(x,∇u2) + α1(u2 − u1) = 0 in D,

u1, u2 = 0 on ∂D.

Also, assume that v ≤ v̄ in D. Then there exists a solution u ∈ W 2,p(D ×

{1, 2}) ∩ C(D̄ × {1, 2}) of the above equations satisfying v ≤ u ≤ v̄.

Proof. This can be established by mimicking the arguments of Amann-

Crandall [3, Theorem 1].

Note that Theorem 8.7.2 can be applied to find solution for our model

provided the Hamiltonian has at-most quadratic growth in the gradient. To

apply the theorem for a general Hamiltonian we need to introduce certain

approximations.

Lemma 8.7.1. Suppose that γ > 2. Given C1 > 0, there exists a sequence of

increasing C1,1 functions ψn : [−C1,∞) → [−C1,∞) satisfying the following

(i) ψn(x) ≤ x for all x ≥ −C1,

(ii) ψn(x) ≥ η1x
2
γ − η2,

(iii) 0 ≤ ψ′
n(x) ≤ 1,

where η1, η2 are positive constants independent of n. Furthermore,

sup
x

ψn(x)
1 + |x|2

< ∞,

and ψn(x) → x as n → ∞, uniformly on compact sets.

Proof. Define for each n ∈ N,

ψn(x) =


x for x ≤ n,

n− γ
2 + γ

2

(
x− n+ 1

) 2
γ for x > n.
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Differentiating ψn we get that

ψ′
n(x) =


1 for x ≤ n,(
x− n+ 1

) 2
γ

−1
for x > n.

(i) and (iii) are obvious. To see (ii), we note that ψn(x) ≥ x
2
γ − (1+C

2
γ

1 +C1)

for x ∈ [−C1, n]. For x > n we also note that

n− γ

2 + γ

2
(
x− n+ 1

) 2
γ ≥ (n− 1)

2
γ +

(
x− n+ 1

) 2
γ − γ

2
≥ x

γ
2 − γ

2 .

This gives us (ii).

We also require the following gradient estimate which follows by repeating

the arguments in the proof of Proposition 8.4.1.

Lemma 8.7.2. Grant Assumption 8.2.1. Let ϵ ∈ [0, 1) and f1, f2 ∈ C1(Rd).

Let u be a C2 function satisfying

−∆u1(x) + ψ1
n(H1(x,∇u1)) + α1(x)(u1(x) − u2(x)) + εu1(x) = f1(x) in B̄2,

−∆u2(x) + ψ2
n(H2(x,∇u2)) + α2(x)(u2(x) − u1(x)) + εu2(x) = f2(x) in B̄2,

where ψin is the approximating sequence in Lemma 8.7.1 if γi > 2, otherwise

ψin(x) = x. Suppose that B1 ⋐ B2 and B1,B2 are concentric. Then there

exists a constant C > 0, dependent on dist(B1, ∂B2), γi, d, η1, η2, α0 but not

on n and u, satisfying

sup
B1

{[ψ1
n(H1(x,∇u1))]2, [ψ2

n(H2(x,∇u2))]2}

≤ C
(
1 + sup

B2

2∑
i=1

(fi)2
+ + sup

B2

2∑
i=1

|∇fi|4/3 + |u1(0) − u2(0)|2 + sup
B2

2∑
i=1

(εui)2
−

)
.

Now we can prove our existence result.
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Theorem 8.7.3. Grant Assumption 8.2.1. Suppose ε ∈ [0, 1] and f =

(f1, f2) ∈ C1(D̄ × {1, 2}). Let v ∈ C2(D̄ × {1, 2}) be a sub-solution to

−∆u1 +H1(x,∇u1) + α1(x)(u1 − u2) + εu1 = f1 in D,

−∆u2 +H1(x,∇u2) + α2(x)(u2 − u1) + εu2 = f2 in D.
(8.7.2)

There there exists a solution u ∈ C2(D × {1, 2}) to (8.7.2) satisfying u ≥ v

in D.

Proof. The main idea of proof is to use the existence result from Theorem

8.7.2 by making use of the approximation sequence in Lemma 8.7.1. A similar

method was also used by Lions in [91] for scalar equations. In fact, the

method of Lions uses more sophisticated tools like Bony maximum principle

to obtain an up to the boundary bounds of the gradient. We do not use such

results. We split the proof in two steps.

Step 1. Fix n ≥ 1 and consider the system of equations

−∆w1 + ψ1
n(H1(x,∇w1)) + α1(x)(w1 − w2) + εw1 = f1 in D,

−∆w2 + ψ2
n(H1(x,∇w2)) + α2(x)(w2 − w1) + εw2 = f2 in D,

(8.7.3)

where ψin is the approximating sequence from Lemma 8.7.1 if γi > 2, oth-

erwise ψin(x) = x. By Lemma 8.7.1(i), we note that v is a sub-solution to

(8.7.3). So to apply Theorem 8.7.2 we need to find a super-solution. Denote

by M = max∂D{v1, v2}. Let v̄ ∈ C2(D̄ × {1, 2}) be the unique solution to

−∆v̄1 + α1(x)(v̄1 − v̄2) + εv̄1 = f1 + η2 ∧ C1 in D,

−∆v̄2 + α2(x)(v̄2 − v̄1) + εv̄2 = f2 + η2 ∧ C1 in D,

v̄1, v̄2 = M on ∂D,

(8.7.4)

where η2 is given by Lemma 8.7.1(ii). In fact, using Sweers [115, Theo-

rem 1.1], we can find a unique solution of (8.7.4) in W 2,p
loc (D) × C(D̄) and

then using a standard bootstrapping argument we can improve the regular-
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ity. Using Lemma 8.7.1(ii) and (HP1) we then obtain from (8.7.4) that

−∆v̄1 + ψ1
n(H1(x,∇v̄1)) + α1(x)(v̄1 − v̄2) + εv̄1 ≥ f1 in D,

−∆v̄2 + ψ2
n(H2(x,∇v̄2)) + α2(x)(v̄2 − v̄1) + εv̄2 ≥ f2 in D,

v̄1, v̄2 = M on ∂D.

This gives us the super-solution. By Theorem 8.7.1 we also have v ≤ v̄ in

D̄. Now we can apply Theorem 8.7.2 to find a solution wn = (wn1 , wn2 ) ∈

C2(D × {1, 2}) ∩ C(D̄ × {1, 2}) to (8.7.3) satisfying v ≤ wn ≤ v̄ in D̄ for all

n. It should also be noted that v̄ is independent of n.

Step 2. We now pass to the limit in (8.7.3) with the help of the gradient

estimate in Lemma 8.7.2. From step 1 we notice that supD |wn1 −wn2 | < ∞ uni-

formly in n. Thus, for any compact K ⊂ D we have maxK{|∇wn1 |, |∇wn2 |} <

∞ uniformly in n, by Lemma 8.7.2. Using (8.7.3) and standard elliptic esti-

mates, we get

sup
n

{
∥wn1 ∥W 2,p(K), ∥wn2 ∥W 2,p(K)

}
< ∞ for every compact K ⊂ D.

Using a standard diagonalization argument we can find a subsequence, de-

noted by the actual one, so that wni → ui in W 2,p
loc (D) for p > N and wni → ui

in C1
loc(D), as n → ∞. Thus passing to the limit in (8.7.3) we obtain

−∆u1 +H1(x,∇u1) + α1(x)(u1 − u2) + εu1 = f1 in D,

−∆u2 +H1(x,∇u2) + α2(x)(u2 − u1) + εu2 = f2 in D,

and v ≤ u ≤ v̄ in D. Moreover, using standard theory of elliptic pde we

obtain u ∈ C2(D × {1, 2}). This completes the proof.

————— ◦ —————
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In this part we will discuss few open-problems.

• From the Theorem 3.1.3 in Chapter 3, we know for N ≥ 5 there holds
�
HN

(∆HNu)2 dvHN ≥
(
N − 1

2

)4 �
HN

u2 dvHN + (N − 4)2

16

�
HN

u2

r4 dvHN

+ (N − 1)2

16

�
HN

u2

r2 dvHN ∀u ∈ C∞
c (HN \ {x0}).

This result immediately gives

inf
H2(HN )\{0}

�
HN (∆HNu)2 dvHN −

(
N−1

2

)4 �
HN u

2 dvHN�
HN

u2

r4 dvHN

≥ (N − 4)2

16 ,

which instantly implies for N ≥ 8, the constant in front of the Rellich

term u2

r4 can be larger than 9
16 which was conjectured as a possible

optimal constant in [27]. But what will be the best constant that is

still unknown and this can be a further research topic.

• In the Chapter 5, we have seen from the Theorem 5.3.2 that the abstract

Rellich type inequality holds true for N -dimensional hyperbolic space

HN . It will be interesting to study this result on general Riemannian

manifold (M, g) of dimension N .
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• The Chapter 8 presents the existence and uniqueness results of the

weakly coupled systems of viscous Hamilton-Jacobi equations (EP) un-

der suitable assumptions. It will be interesting to study the parabolic

coupled system of viscous Hamilton-Jacobi equations. More precisely,

we are interested in the following system of equations

∂u1

∂t
− ∆u1 +H1(x,∇u1) + α1(x)(u1 − u2) = f1(x) in RN × (0,+∞),

∂u2

∂t
− ∆u2 +H2(x,∇u2) + α2(x)(u2 − u1) = f2(x) in RN × (0,+∞),

u1(x, 0) = g1(x) in RN ,

u2(x, 0) = g2(x) in RN ,

with the necessary assumption on the functions. The key interest will

be in studying the large-time behaviour of the solutions after finding

the existence and uniqueness of solutions.

• In the Chapter 7 we have seen the study of generalized principle eigen-

value for nonlinear operator. Now it will be interesting to do simi-

lar kind study for coupled system of equations with square gradient

non-linearity. In particular, one can study the following system of

eigenequations

∆u1 − 1
u1

|∇u1|2 − α1(x)(u1 − u2) + (f1(x) − λ)u1 = 0 in RN ,

∆u2 − 1
u2

|∇u2|2 − α2(x)(u2 − u1) + (f2(x) − λ)u2 = 0 in RN ,

with appropriate measurable coefficients and (u1, u2) are strictly posi-

tive functions. This kind of risk sensitive problem arises in exponential

linear quadratic Gaussian control (LQG) problem. The scalar version

was studied by Nagai [99] but the same problem for switching is much

challenging due to gradient estimate.
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