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Synopsis 
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Chapter 1: Introduction 

Inherited variation is central to evolution by natural selection. In asexual organisms, 

mutations, arising from erroneous replication of the genetic material, are the ultimate source 

of variation. An increase in mutation rate which, increases the supply of variation, can 

influence the rate and extent of adaptation (Sniegowski et al. 1997; Taddei et al. 1997; Stich 

et al. 2010; Wielgoss et al. 2013). A number of genetic and environmental factors have been 

studied as mutation rate modifiers (reviewed in (Tenaillon et al. 2004; Galhardo et al. 2007; 

Ram & Hadany 2012). Ultraviolet (UV) radiation is one such extensively studied 

environmental mutagen. Extensive studies have shown that factors such as bacterial 

physiology and environmental fluctuations influence the microorganisms’ response to UV 

radiation (Child et al. 2002; Dantur & Pizarro 2004; Sukhi et al. 2009; Bucheli‐Witschel et 

al. 2010). Such factors can also influence adaptation by shaping UV induced selection and 

mutagenesis.  



vi 

 

While mutations are a major source of variation, migration is an important factor that 

influences the distribution as well as maintenance of variation. Studies on migration in 

simple/constant environment have shown that migration can promote (Bell & Gonzalez 2011; 

Lagator et al. 2014) as well as impede (Morgan et al. 2005; Vogwill et al. 2011; Lawrence et 

al. 2016) adaptation. However, its effect on populations evolving in temporally fluctuating 

environment is less explored. Interestingly, fluctuating environments are also important in the 

maintenance of variation (Hallsson & Björklund 2012; Canino-Koning et al. 2019; Nguyen et 

al. 2021). While the predictability and frequency of fluctuations is expected to influence the 

evolutionary outcomes, few empirical studies have directly compared the effects of the nature 

of fluctuation on adaptation. In my thesis, I have used a combination of experimental 

evolution of laboratory populations of Escherichia coli and whole genome sequencing to 

address some of these lacunae. The key results are summarized below.  

 

Chapter 2: Genomic signatures of UV resistance evolution in Escherichia coli depend on 

the growth phase during exposure 

Physiological states and growth conditions of a microbial cell can influence its ability to 

handle stress (Gilbert et al. 1990; Lindqvist & Barmark 2014; Lin & Kussell 2016). I 

observed this in laboratory populations of E.coli where exponential phase cultures were more 

sensitive to UV radiation induced mortality than lag phase cultures. However, replicate 

populations exposed separately to UV radiation for 100 cycles in the two growth phases, 

showed no difference in their sensitivity to UV radiation. Interesting differences were 

observed in the genome of the evolved populations. Mutations in different functional groups 

were accumulated in populations subjected to lag and exponential growth phases. Genes 

involved in transcriptional and translational regulation was mutated in lag exposed 
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populations whereas, signal transduction and cell adhesion genes were mutated in exponential 

phase exposed populations. However, these genomic differences did not translate into 

phenotypic difference in fitness assayed in a number of novel environments. The results 

suggested that physiological differences influence selection pressures resulting in genomic 

signatures of adaptation, without observable phenotypic differences. 

This chapter has been published as the following research article: 

Selveshwari, S., Lele, K. and Dey, S., 2021. Genomic signatures of UV resistance evolution 

in Escherichia coli depend on the growth phase during exposure. Journal of Evolutionary 

Biology, 34(6), pp.953-967. 

 

Chapter 3: Fluctuating exposures to UV radiation and Erythromycin result in increased 

mean and variance in fitness in novel environments 

UV radiation is known for its GC→AT transition bias in mutagenesis (Brash 2015). Such 

mutations biases have been shown to influence evolutionary trajectories (Stoltzfus & 

McCandlish 2017; Payne et al. 2019; Storz et al. 2019; Cano & Payne 2020; Gomez et al. 

2020). In line with this expectation, when E.coli populations were exposed to UV radiation 

during evolution of resistance to erythromycin, they evolved to be genotypically different 

from the control (i.e. unexposed to UV) populations. While both UV exposed and control 

populations had fixed for an efflux pump mutation (acrB), the un-exposed control 

populations had an additional target site mutation (rplD) whereas, the UV exposed population 

had an additional efflux pump regulator mutation (acrR). However, this was not accompanied 

by phenotypic difference in resistance to erythromycin. I also studied the effect of constant 

vs. fluctuating exposures to UV. Interestingly, populations subjected to fluctuations in UV 
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and erythromycin exposures had evolved the highest mean and variation in fitness to novel 

antibiotic environments. Genetically distinct subpopulations, each resistant to a different 

antibiotic, coexisted in the fluctuating treatment. My results are in line with prior studies on 

the effect of mutation rates in fluctuating environments (Ishii et al. 1989; Travis & Travis 

2002; Carja et al. 2014) and highlight the role of interactions between mutation rate modifiers 

and temporal fluctuations in shaping genetic variation and evolutionary trajectories.  

 

Chapter 4: The effect of migration and variation on populations of Escherichia coli 

adapting to complex fluctuating environments 

Migration, a key evolutionary force, has been shown to promote (Bell & Gonzalez 2011; 

Lagator et al. 2014) as well as impede (Morgan et al. 2005; Vogwill et al. 2011; Lawrence et 

al. 2016) adaptation. Unfortunately, most studies on the evolutionary effects of migration 

have been limited to simple and /or constant environments. Very little is known about the 

effects of migration on adaptation to complex as well as fluctuating environments. I used 

replicate population of Escherichia coli, to study the effect of migration on adaption to 

complex and unpredictably fluctuating environments. Here, I subjected populations to 

different proportions of clonal ancestral immigrants. Contrary to the results from 

simple/constant environments (Perron et al. 2007), clonal immigrants resulted in the 

reduction of all measured proxies of fitness. However, migration from a source population 

with larger variation for fitness resulted in little or no change in fitness w.r.t the no-migration 

control. Thus, the presence of variation in the immigrants could counter the negative effects 

of migration in complex and unpredictably fluctuating environments. My results demonstrate 

that the effects of migration are strongly dependent on the nature of the destination 

environment as well as the genetic makeup of immigrants. These results enhance our 
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understanding of the influences of migrating populations, which could help better predict the 

consequences of migration. 

 

Chapter 5: Frequency and predictability of fluctuations have very little effect on 

adaptation in Escherichia coli populations 

Adaptation in fluctuating environments has been shown to differ from adaptation in constant 

environments (Gilchrist 1995; Kassen 2002; Condon et al. 2014; Kassen 2014; Haaland et al. 

2020). However, adaptation in fluctuating environment may not be consistent but is expected 

to be influenced by the predictability and frequency of fluctuation. I subjected laboratory 

populations of Escherichia coli to environments that fluctuated every 12 or 24 or 72 hours, 

either predictably or unpredictably. When fitness was assayed after 240 generations and 720 

generations of evolution, I observed no strong effect of either predictability or frequency of 

fluctuation on adaptation. The only exception was predictable environments fluctuating every 

12 hours. However, the observation was limited to fitness measured as growth rate in only 

one of the environments. Moreover, the trend of fitness differences was reversed between 240 

generations and 720 generations. My results are consistent with prior studies that report no 

effects of predictability (Turner & Elena 2000; Karve et al. 2018) and frequency of 

fluctuation (Kassen & Bell 1998; Scheiner & Yampolsky 1998; Buckling et al. 2007) on 

adaptation.  

 

Chapter 6: Conclusions and Future directions 

I summarise the key findings, discuss their implications and possible future directions. 
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Chapter 1: Introduction 
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Natural environments are hardly ever constant. Instead, organisms are often faced with spatial 

and/or temporal heterogeneity in the environment resulting in fluctuations in both intensity 

and direction of natural selection. Evolution in heterogeneous environments can influence 

both mean and variance of fitness (Via & Lande 1987; Van Tienderen 1991; Kassen 2002; 

Byers 2005). Spatially heterogeneous environments, connected by migration, have been 

shown to limit/slowdown adaptation (Cuevas et al. 2003). This is because repeated 

introduction of locally maladapted individuals/alleles by migration can prevent the fixation of 

locally fit genotypes, diluting the strength of selection (Kawecki & Holt 2002; Lenormand 

2002; Kawecki & Ebert 2004; Yeaman & Guillaume 2009). In temporally fluctuating 

environments, populations are subjected to one environment followed by another. Such 

fluctuating selection pressures between the different environments can prevent the fixation of 

any single genotype, slowing the rate of adaptation (Kassen 2014). However, the increased 

time to fixation in both spatially and temporally heterogeneous environments can promote the 

maintenance of greater variance in fitness within the populations (Kassen 2014). In this case, 

genetic variation may be transiently maintained, which may eventually be lost due to the 

fixation of a generalist phenotype that is fittest in all constituent environments. Conversely, 

variance in fitness can increase as a result of the evolution of phenotypic plasticity or bet-

hedging strategies which has been shown to be favoured in heterogeneous environments 

(Kussell et al. 2005; Kussell & Leibler 2005; Acar et al. 2008; Beaumont et al. 2009; Patra & 

Klumpp 2014). Although both these mechanisms give rise to multiple phenotypes from the 

same genotype, phenotypic plasticity is expected to be favoured in predictable environments 

and bet-hedging in stochastic environments (Simons 2011). Other studies have shown that 

depending on the scale of variation, heterogeneous environments may promote the stable co-

existence of specialist phenotypes (Rodríguez-Verdugo & Ackermann 2021). In short, 

organisms respond to environmental heterogeneity in multiple ways, influenced by different 
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elements of heterogeneity such as the nature (spatial vs. temporal), predictability (predictable 

vs. stochastic), and scale of variation (fine vs. coarse). Consequently, understanding evolution 

in heterogeneous environments is a fundamental question in evolutionary biology.  

Of all the factors influencing adaptation in heterogeneous environments, migration is a key 

evolutionary force, particularly in spatially heterogeneous environments. Gene flow resulting 

from the migrating individuals can have contrasting effects on adaptation. On one hand, 

migration can limit adaptation and phenotypic divergence by altering allele frequencies 

shaped by local selection (Lenormand 2002; Kawecki & Ebert 2004). In extreme cases, high 

migration load can swamp local adaptation, resulting in loss of genetic variation in the 

population (Lenormand 2002; Kawecki & Ebert 2004). On the other hand, migration is an 

important source of variation, particularly in mutation limited populations (Holt & 

Gomulkiewicz 1997; Hermsen & Hwa 2010). It can facilitate rapid adaptation by promoting 

the spread of beneficial alleles between subpopulations. Thus, migration can have contrasting 

effects on adaptation influenced by the nature of environments. Migration between 

same/similar environments has been observed to facilitate faster adaptation (Dennehy et al. 

2010; Bell & Gonzalez 2011) whereas, migration between unrelated /antagonistic 

environments limits evolution (Cuevas et al. 2003; Dennehy et al. 2010). Understanding the 

effects of gene flow in the context of pleiotropy between environments and/or fitness effects 

of alleles in the different environments may provide some explanation for the contrasting 

effects of migration on adaptation. However, most empirical studies on the effects of 

migration on adaptation have used constant single environments (Morgan et al. 2005; 

Dennehy et al. 2010; Ching et al. 2013; Lagator et al. 2014; Lawrence et al. 2016). The effect 

of migration on adaptation in the presence of multiple stress environments and temporally 

fluctuating environment has received relatively less attention (however see (Perron et al. 

2007). 
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Pleiotropy between environments and traits may influence the evolution of specialist and 

generalist phenotypes in spatial and temporally heterogeneous environments (Van Tienderen 

1991; Reboud & Bell 1997; Kassen 2002; Wang & Dai 2019). Additionally, the predictability 

of fluctuations is known to play a crucial role in influencing adaptation in temporally 

fluctuating environments. When the environment fluctuates predictably evolution of 

phenotypic plasticity may be favoured as it can lead to rapid generation of alternate 

phenotypes (West-Eberhard 1989; Kussell & Leibler 2005; Murren et al. 2015). 

Unpredictable fluctuations, on the other hand, are expected to favour the evolution of 

diversifying bet-hedging strategy (Acar et al. 2008; Beaumont et al. 2009; Simons 2011). In 

addition to the predictability of fluctuation, the scale of fluctuation is another important factor 

known to influence adaptation. For example, when organisms are exposed to fine-scale 

fluctuations (fluctuation within an organism’s lifetime) or intermediately fluctuations (once 

every few generations), a single genotype with the highest fitness across all constituent 

environments i.e., generalist, are expected to evolve (Kassen 2002; Wang & Dai 2019). 

Conversely, coarse-grained fluctuations may promote the sequential evolution of specialist 

phenotypes (Crill et al. 2000; Tufto 2015). Despite these predictions, empirical studies on the 

effects of these factors have not been conclusive. While some studies have shown that 

predictable and unpredictable fluctuations result in qualitative differences in evolutionary 

outcomes (Hughes et al. 2007; Alto et al. 2013), other studies find no effect of the 

predictability of fluctuations (Turner & Elena 2000; Karve et al. 2018). Additionally, the few 

empirical studies on the effects of the scale of fluctuations (Kassen & Bell 1998; Scheiner & 

Yampolsky 1998; Buckling et al. 2007) showed no differential effect on adaptation.  

Microbial evolution under heterogeneous environments depends on an intricate interaction 

between selection and generation of de novo variation through mutation. Another 

environmental factor that can influence both selection and genetic variation is ultraviolet 
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radiation (UV). Since the first microbial life during the Archean eon, all terrestrial organisms 

have been subjected to ultraviolet radiation. All of UV-C radiation (100-280nm) and most of 

UV-B radiation (280-315nm) is absorbed by the ozone layer of the atmosphere. However, the 

small portions of UV-B radiation and all of UV-A radiation (315-400nm) that reach the 

earth’s surface have damaging effects on all organisms: from prokaryotes to eukaryotes 

including plants, animals and humans (Sinha & Häder 2002). Although UV-C radiation has 

the highest germicidal property, it is irrelevant in the context of natural environments, as it is 

completely absorbed by the ozone layer. Nonetheless, artificial UV-C is extensively used for 

disinfection  in laboratories (Wedum et al. 1956; Gefrides et al. 2010), clinical microbiology 

(Rutala et al. 2010; Ramos et al. 2020), food packing industry (Ansari & Datta 2003; 

Guerrero-Beltr· n & Barbosa-C· novas 2004) as well as in strain engineering in 

biotechnology (Hashimoto et al. 2005; Tillich et al. 2012). Exposure to UV radiation causes 

widespread damages to the cell including lesions in nucleic acids, damages to proteins and 

membranes and inactivation of enzymes (Cadet et al. 2005; Goosen & Moolenaar 2008) and 

references therein).  

Organisms have evolved multiple, robust mechanisms for dealing with UV induced damages. 

The best-known example is the naturally radio-resistant species of the genus Deinococcus. 

Deinococcus radiodurans can survive up to 5000 Gy of radiation with no loss of viability 

(Battista 1997). In contrast, exposure to 30Gy of radiation is lethal in Escherichia coli 

(Battista 1997). The extreme radio-resistance in Deinococcus sp. has been attributed to the 

extensive clean-up of damaged cellular products and reactive oxygen species, proteome 

protection, and efficient repair of DNA damages (Blasius et al. 2008; Jin et al. 2019). While 

damaged DNA maybe accurately repaired via photoreactivation, excision repair, and 

recombination repair (reviewed in (Sinha & Häder 2002), extreme damage, that cannot be 

repaired, can result in cell-cycle arrest and death. UV induced mortality is a strong agent of 
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selection and repeated exposures to UV can select for increased resistance to it. Evolution of 

UV resistance, in the laboratory, has been observed in multiple species: Moraxella spp. 

(Keller & Maxcy 1984), Lactobacillus spp., (Hastings et al. 1986), Halobacterium spp. 

(Kottemann et al. 2005; DeVeaux et al. 2007), yeast (Fabre 1970), Escherichia coli (Morton 

& Haynes 1969; Dantur & Pizarro 2004; Bucheli‐Witschel et al. 2010), Cronobacter 

sakazakii (Arroyo et al. 2012), and Salmonella typhimurium (Child et al. 2002). However, 

huge variations in UV resistance have been observed in natural as well as experimental 

populations. Multiple factors like growth rate (Keller & Maxcy 1984; Berney et al. 2006; 

Bucheli‐Witschel et al. 2010), DNA content (Fabre 1970; Bucheli‐Witschel et al. 2010), and 

nutrient availability (Child et al. 2002; Sukhi et al. 2009) have been shown to influence an 

organisms’ response to UV radiation. However, little is known about the effects of these 

factors on long-term exposures to UV radiation and the evolution of resistance to it. 

UV radiation is also one of the most important and well-studied natural mutagens. UV 

induced mutagenesis plays an important role in evolution since mutations are the raw 

material for natural selection. An organism’s persistence through multiple environmental 

changes may be dependent on the generation of novel variation via mutation. Spontaneous 

mutation rates are small, of the order of 10−10 mutations per nucleotide per generation or 10−3 

per microbial genome per generation (Lee et al. 2012). Moreover, only a small proportion of 

all mutations are beneficial and contribute to fitness increase (Eyre-Walker & Keightley 

2007). However, given the large population sizes, microbial populations adapting to a new 

environment typically involve 1 to 4 mutations with a median of 3 mutations (Kassen 2014). 

Exposure to mutagens, such as UV radiations, can increase mutation rates and the number of 

mutations within a population, influencing the rate and extent of adaptation (Sniegowski et 

al. 1997; Taddei et al. 1997; Stich et al. 2010; Wielgoss et al. 2013).  
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UV induced mutations are known for their bias in the mutational spectrum GC → AT 

transitions (Brash 2015). Differences in the mutations spectrum have been suggested to be an 

important factor driving evolutionary trajectories (Yampolsky & Stoltzfus 2001; Stoltzfus & 

McCandlish 2017; Cano et al. 2021) and the references listed within). Analysis of adaptive 

substitutions from ~50 natural and experimental populations revealed that transitions were 

over-represented compared to transversions (Stoltzfus & McCandlish 2017). Differences in 

the occurrence and/or supply of the different mutational classes can result in fixation biases 

(Streisfeld & Rausher 2011) which can in turn influence fitness landscapes and the direction 

of adaptation (Yampolsky & Stoltzfus 2001). Studies on T7 bacteriophage (Cunningham et 

al. 1997) and E.coli (Couce et al. 2015) have shown that manipulation of mutational biases 

can influence the genomics of adaptive evolution.  Despite the extensive studies on UV 

induced mutagenesis, the evolutionary effects of the mutational biases of UV have received 

less attention (Shibai et al. 2017). 

In my thesis, I attempt to address some of the above-mentioned lacunae using experimental 

evolution in Escherichia coli. Experimental evolution is an extremely powerful and popular 

tool for studying evolutionary processes and testing evolutionary theories in real-time 

(Kawecki et al. 2012; Van den Bergh et al. 2018; McDonald 2019). In particular, microbial 

populations are ideal model systems for experimental evolution studies. They are small, easy 

to maintain, have short generation time, and can be propagated in large population sizes and 

replicates. Moreover, microbial systems offer precise and powerful control over factors that 

can influence adaptation. To begin with, the causes and consequences of environmental 

heterogeneity can be studied by easy experimental manipulation of the selection environment 

within smaller culture volumes. Precise control of the genetics of the founding populations is 

easy in microbial populations.  In addition, whole-genome sequencing of the evolved 

populations is a relatively new but powerful technique to study the genomics underlying 
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evolutionary changes (Dettman et al. 2012; Cooper 2018). In the following chapters, I will 

discuss the results of five selection experiments that I conducted with the aim to understand 

the significance of genetic and environmental variation on adaptation. 

Bacterial populations show variation in their sensitivity to UV induced mortality depending 

on the phase of growth during exposure (Morton & Haynes 1969; Fabre 1970; Dantur & 

Pizarro 2004; Sukhi et al. 2009; Bucheli‐Witschel et al. 2010). However, no prior study has 

compared the effects of long-term exposures to UV radiation at different growth phases. In 

chapter 2, I investigate the effects of UV exposure during different growth phases on the 

evolution of UV resistance. Populations of Escherichia coli were evolved under two different 

conditions, namely exposure during the lag and the exponential growth phases. Initially, 

populations in the two treatments exhibited differential survival, with exponential phase 

exposures resulting in greater UV sensitivity. However, there were no phenotypic differences 

between the two treatments at the end of 100 cycles of exposure and growth. Interestingly, 

there were strong growth phase specific signatures of UV exposure at the level of the 

genome. Different functional groups were found mutated in the lag and exponential UV 

treatment. In the former, genes involved in transcriptional and translational regulations and 

cellular transport were mutated, whereas the latter treatment showed mutations in genes 

involved in signal transduction and cell adhesion. Curiously, the genomic differences did not 

translate into fitness differences, measured in a number of novel environments. 

In chapter 3, I focus on UV induced mutagenesis to investigate the effects of UV induced 

mutation bias on the evolution of antibiotic (erythromycin) resistance. Additionally, given 

that increased mutation rates are favoured in heterogeneous environments (Ishii et al. 1989; 

Travis & Travis 2002; Carja et al. 2014), I attempted to understand the interaction between 

UV mutagenesis and temporally fluctuating environment. To this end, I studied the evolution 

of erythromycin resistance in replicate populations of Escherichia coli in the absence of UV 
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radiation as well as constant and fluctuating exposures to UV. While all populations evolved 

similar levels of resistance to erythromycin, exposure to UV radiation, both constant and 

fluctuating, resulted in alternate genomic routes to resistance. While both UV exposed and 

unexposed populations had fixed for efflux pump mutation (acrB), the un-exposed control 

populations had an additional target site mutation (rplD) whereas, the UV exposed population 

had an additional efflux pump regulator mutation (acrR). Fixation of target-site vs. regulator 

mutations is expected to result in trade-offs between MIC and growth rate (Andersson & 

Hughes 2010; Hughes & Andersson 2017; Santos-Lopez et al. 2019). However, all 

populations had evolved similar MIC and growth rates in erythromycin. Another key result 

from chapter 3 is that fluctuating exposures to UV and erythromycin resulted in increased 

mean and variation in fitness in novel antibiotic environments. Genomic analysis revealed 

that the fluctuation populations had fixed mutations in global regulator genes. It is possible 

that these genes promote noisy gene expression, introducing and aiding the maintenance of 

genetically distinct subpopulations, resistant to different antibiotics.  

In chapter 4, I study the effects of migration in populations adapting to complex and 

unpredictably fluctuating environments. Replicate Escherichia coli populations were 

subjected to complex and unpredictably fluctuating environments as well as one-way 

migration. Populations were subjected to different levels of migration from a source 

population that was either clonal or had accumulated variation in fitness. In contrast to 

adaptation in a simple/constant environment (Perron et al. 2007), I saw that clonal migration 

impeded adaptation in complex unpredictably fluctuating environments. The extent of 

reduction in fitness was influenced by the rate of migration. In the second selection 

experiment, where migrants originated from a source population with a larger variance in 

fitness, migration resulted in little to no change in fitness, w.r.t the no migration control. This 

suggests that variation in the migrating individuals can alleviate some of the negative effects 
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of migration. It also highlights the significance of the nature of the environment in 

determining the effect of migration.  

In chapter 5, I study the effects of the frequency and predictability of temporal fluctuations on 

adaptation. Replicate populations of E.coli were subjected to environments that fluctuated 

either predictably or unpredictably every 12, 24, or 72 hours. In line with previous studies 

(Kassen & Bell 1998; Scheiner & Yampolsky 1998; Buckling et al. 2007), the frequency of 

fluctuation had no effect on the extent of adaptation. Predictability of fluctuations also had no 

effect on adaptation. However, a minor effect was observed in populations exposed to 

predictable 12-hour fluctuations. But this effect was limited to fitness measured as growth 

rate in only one of the environments.  

In the final chapter, I summarise the results, highlight key findings and discuss their 

implications. I also discuss possible follow-up studies, build on the current work, to further 

our understanding of the effects of mutation, migration and temporally fluctuating 

environments. 
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Chapter 2: Genomic signatures of UV resistance evolution in Escherichia 

coli depend on the growth phase during exposure 
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2.1. Introduction 

Environmental stresses can strongly influence the growth and physiology of microbial cells 

(Aertsen & Michiels 2004; Schimel et al. 2007). At the same time, antecedent growth 

conditions and physiology of the cells can influence a microbe’s response to environmental 

stresses (Gilbert et al. 1990; Lindqvist & Barmark 2014; Lin & Kussell 2016). For example, 

it has been shown that the response of bacteria to ionizing radiations is influenced by both the 

growth phases during which the exposure happens as well as the physiology of microbial 

cells. The typical batch culture involves bacterial growth through three distinct growth 

phases: lag (where cells adapt to the new growth conditions), exponential (characterized by 

rapid cell division), and stationary phase (where growth plateaus as a result of nutrient 

depletion) (Monod 1949). Among the three growth phases, the fast-dividing cells (in 

exponential phase) have been shown to be more resistant to ionizing radiations than growth-

arrested and non-dividing cells (in stationary phase) in Moraxella spp. (Keller & Maxcy 

1984), Lactobacillus spp. (Hastings et al. 1986),  Halobacterium spp. (Kottemann et al. 2005; 

DeVeaux et al. 2007), and yeast (Fabre 1970). However, the converse has also been observed 

in species like Escherichia coli (Morton & Haynes 1969; Dantur & Pizarro 2004; Bucheli‐

Witschel et al. 2010), Cronobacter sakazakii (Arroyo et al. 2012), and Salmonella 

typhimurium (Child et al. 2002). Although the effects of radiation on the exponential phase 

and the stationary phase have been explored in detail in the microbial literature, the same 

cannot be said about another important part of the microbial growth curve, namely the lag 

phase. Lag phase represents the adaptive period where the cells are metabolically active, but 

cell division has not begun (Rolfe et al. 2012). Study of this phase of growth has a number of 

implications including food preservation (Sun 2011), bacterial infections, and antibiotic 

resistance (Frimodt-Møller et al. 1983) as well as in maintaining laboratory cultures. Several 

environmental and physiological attributes that are unique to the lag phase (Bertrand 2019 
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and the references therein) can influence the response to radiation stress (Gayán et al. 2014). 

For example, microbes in lag phase express distinctive transcriptomic and proteomic profiles 

which include components essential for metabolism and growth (Rechinger et al. 2000; 

Hornbæk et al. 2004; Larsen et al. 2006) as well as genes and proteins involved in repair of 

stasis induced macromolecular damages (Rolfe et al. 2012). This increased expression of 

DNA repair machinery in the lag phase might influence the cells’ response to radiation. 

Consequently, the physiological state of the cell can influence its sensitivity to radiation both 

in the short term as well as over longer, evolutionary timescales.  

Experimental evolution of resistance to ultraviolet radiation have been demonstrated in 

several microbial species including Escherichia coli (Ewing 1995; Alcantara-Diaz et al. 

2004; Goldman & Travisano 2011; Shibai et al. 2017), Salmonella typhimurium (Davies & 

Sinskey 1973), Bacillus subtilis (Wassmann et al. 2010), Pseudomonas cichorii (Weigand & 

Sundin 2009), and T7 bacteriophage (Tom et al. 2018). Although all these studies found that 

repeated exposures to UV resulted in increased ability to survive UV stress, there were 

several differences in the correlated responses to selection. For example, the increase in UV 

resistance was accompanied by increased cell size (Goldman & Travisano 2011), increased 

tolerance to osmotic, oxidative and desiccation stress (Wassmann et al. 2010), and  the 

appearance and maintenance of rare colony morphologies due to increased rate of UV 

induced mutations (Weigand & Sundin 2009). These studies on evolution of radiation 

resistance looked at the effects of exposure either during the lag phase (Ewing 1995; 

Weigand & Sundin 2009; Goldman & Travisano 2011; Shibai et al. 2017) or the stationary 

phase (Davies & Sinskey 1973; Alcantara-Diaz et al. 2004; Wassmann et al. 2010). 

Consequently, there is little understanding of the evolutionary effects of exposure during the 

exponential phase. At the same time, these existing studies have primarily focused on the 

evolution of resistant phenotypes and the correlated phenotypic changes (but see Shibai et al. 
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2017; Tom et al. 2018). The genomics of radiation resistance has been studied in detail in 

radio-resistant species such as Deinococcus spp. (White et al. 1999; Blasius et al. 2008), 

Rhodobacter spp. (Perez et al. 2017). However, there is relatively less work on this aspect in 

the context of non-radio-resistant species (although see Bruckbauer et al. 2019). It is not 

obvious that the insights gained about the genomic correlates of exposure to UV in the above 

radio-resistant species would be applicable to other microbes. Thus, in order to unearth the 

putative mechanisms underlying the evolution of radiation resistance, it is important to 

extend the genetic studies conducted in the radio-resistant species to other microbes.  

In this study, we attempt to address some of these lacunae in our understanding of the 

evolution of radio-resistance, particularly ultraviolet radiation. First, we observe that our 

ancestral population of Escherichia coli is more sensitive to UV in the exponential phase than 

in lag phase. To study the evolutionary response to UV radiation in these two phases, we 

subjected two sets of replicate populations to 100 rounds of UV exposure and growth in the 

lag and the exponential phases. Both treatments showed a significant reduction in sensitivity 

to UV compared to control populations. However, growth phase differences in UV sensitivity 

were no longer observed. To investigate the genomic correlates of evolution of UV 

resistance, the UV-treated and control populations were further subjected to whole-genome 

whole-population sequencing. Genes associated with DNA repair pathways, RNA 

polymerase, and cell membrane structure were commonly mutated in both UV-treated 

populations. Additionally, mutations in the populations exposed to UV in the lag phase were 

grouped in genes involved in transcription / translation regulation and cellular transport. On 

the other hand, only the populations that faced UV in the exponential phase contained 

mutations in signal transduction and cell adhesion. The genes and pathways that were 

mutated during UV resistance evolution may also have led to correlated changes in growth 

and survival in novel environments such as antibiotics, heavy metal salts, and minimal media 
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with a single carbon source. Contrary to our expectation, these differences in the genome did 

not translate to phenotypic differences between lag and exponential treatments in either the 

selection or the novel environments. 
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2.2. Materials and Methods 

We used an Escherichia coli K12 MG1655 strain in which the lacY gene had been replaced 

with a Kanamycin resistance gene. Colonies of this bacterium are white coloured on 

MacConkey’s agar as opposed to the red coloured colonies produced by other Escherichia 

coli. All cultures were maintained at 37oC and 150 RPM throughout the selection and assays, 

except where stated otherwise.  

2.2.1 Experimental evolution 

Six populations were initiated from six independent E. coli colonies picked from a nutrient 

agar streaking of the ancestral E. coli strain. These six are henceforth referred to as the 

ancestor populations. From each ancestor, we derived three replicate populations and 

assigned them randomly to one of the three selection regimes, namely lag, exponential, and 

control. Both lag and exponential treatments were subjected to UV during the respective 

growth phases while the control was devoid of UV exposure. The populations were exposed 

to UV in a custom-built dark chamber where the only source of light was an 8W UV-C tube-

light (Philips TUV 8W) with an emission peak at 254 nm. The lamp was placed at a height of 

18 inches from a platform shaker, which results in a constant irradiance of 100.5 µW/cm2. At 

the beginning of the experiment, the duration of exposure was 15 seconds, which resulted in 

2 – 3 log10 reduction (100 – 1000 fold) in colony forming units (CFUs); see section 2.2.2 for 

more details regarding estimation of log10 reduction. To allow sufficient time for the 

populations to adapt, the duration of UV exposure was increased gradually i.e., once every 5 

days. For the full trajectory of exposure duration throughout selection, from day 0 – 100 (see 

table 2.1). By the end of 100 days of evolution, the exposure time was 370 seconds, i.e. an 

increase of ~25 times.  
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Table 2.1. Exposure duration during selection. The duration of exposure to UV was 

increased every five days.  

 

Days 
UV exposure duration 

(seconds) 

1 - 5 15 

6 - 10 20 

11 - 15 25 

16 - 20 35 

21 - 25 45 

26 - 30 60 

31 - 35 75 

36 - 40 90 

41 - 45 110 

46 - 50 130 

51 - 55 160 

56 - 60 200 

61 - 65 220 

66 - 70 240 

71 - 75 270 

76 - 80 300 

81 - 85 330 

86 - 90 340 

91 - 95 350 

96 - 100 370 
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All cultures were grown in 2ml nutrient broth with kanamycin (NBKan) in six-well tissue 

culture plates. The use of six-well plates allowed for a larger surface area to volume ratio for 

better UV penetration. Growth of all populations reached a plateau within 24 hours. Every 24 

hours, 20 µl of the grown culture was sub-cultured into fresh NBKan. Control populations (C) 

were sub-cultured in NBKan with no UV exposures, whereas populations designated as Lag 

(L) treatment were exposed to UV during the lag phase, immediately after subculture (0h). 

Exponential (E) treatment populations were exposed to UV during the exponential phase by 

monitoring their growth/OD600 in a plate reader (Synergy HT, BIOTEK Winooski, VT, USA) 

at 20-minute intervals. Based on pilot experiments, the exponential phase was deemed to 

have been reached when the OD600 of the culture was greater than 0.11, and the difference 

between two consecutive OD measurements were greater than 5% for the first time, i.e., 

ODt+1 >1.05 × ODt, where the subscript t and t+1 refer to two successive time points. 

Populations in the exponential treatment were exposed to UV only when both the conditions 

were met. The 6-well plates containing the cultures were placed on the shaker platform 

directly under the UV lamp without the lid. The cultures were shaken at room temperature 

and 150 RPM during exposure. Since bacteria possess the photoreactivation pathway, which 

can induce error-free reversal of UV induced damages and reduce the efficiency of UV 

radiation (Thoma 1999; Sinha & Häder 2002), the cultures were maintained in darkness 

throughout the process of selection, except during sub-culturing. The UV induced mortality 

makes it impossible to accurately estimate the dilution ratio, and consequently, the number of 

generations in the UV-treated populations. However, at the end of 100 days, the UV-treated 

populations would have experienced more generations, on average, than control populations 

which underwent ~667 generations of evolution (6.67 doublings/transfer x 100 days). Every 

five days, 15% glycerol stocks (300 µl of 50% glycerol + 700 µl culture) of all populations 

were prepared and stored at -80oC. Due to logistic reasons, the selection was interrupted once 
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at day 60. Selection was reinitiated by reviving 10µl glycerol stocks of all populations (UV-

treated and controls) in 90 µl NBKan in a 96 well plate for 12 hours. 20 µl of this revived 

culture was inoculated in 2ml NBKan to initiate day 61. Glycerol stocks prepared at the end of 

100 days, were used for all assays. 

2.2.2 Measuring UV sensitivity 

Sensitivity to UV induced mortality was measured as the log of change in the number of 

colony forming units (CFUs) before and after UV exposure (log10(CFUs before 

exposure/CFUs after UV exposure)) (Koivunen & Heinonen-Tanski 2005). The populations 

to be assayed were revived by inoculating 5 µl of the corresponding glycerol stocks in 2ml 

NBKan and incubating them overnight at 37°C. Assays were conducted in six well plates with 

20µl of the revived culture inoculated in 2ml NBKan. UV sensitivities of all populations were 

assayed in both lag and exponential phases, where the UV exposures were carried out in a 

manner similar to the selection procedure. CFU counts before and after exposure were 

determined by serially diluting the cultures and plating 100 µl of the appropriate dilutions (to 

obtain a countable number of colonies) on 2% nutrient agar containing kanamycin (NAKan). 

The serial dilution and plating after UV exposure was carried out in a dark room illuminated 

by red light to prevent photo-reactivation. The NAKan plates were incubated in darkness at 

37oC, overnight and the number of colonies were counted manually and multiplied by the 

dilution factor to obtain the number of CFUs. 

To measure the UV sensitivities of the ancestors, all six ancestral populations were assayed at 

both lag and exponential phase and four exposure durations: 15, 60, 200, and 370 seconds. 

After 100 rounds of selection for UV resistance, we measured the UV sensitivity of the 

evolved populations L, E, and C along with the ancestors. Log10 reduction in CFUs during 

both lag and exponential growth phases was measured at exposure duration of 370 seconds. 
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Two independent measurement replicates of the UV sensitivities of the evolved populations 

were obtained by conducting the entire assay from revival to CFU counts, twice. The relative 

change in UV sensitivity due to selection was obtained by scaling the sensitivities of the 

evolved populations by the sensitivity of the ancestors in the corresponding growth phases. 

2.2.3 Whole-genome sequencing and analysis 

To understand the genomics of repeated exposures to UV and selection for UV resistance, we 

randomly chose two replicates (rep 1 and 3) of the evolved populations (L, E, C), and their 

corresponding ancestors, and subjected them to whole-genome whole-population sequencing. 

5 µl of the corresponding glycerol stocks were inoculated in 4ml NBKan and incubated 

overnight at 37°C. 3ml of the revived cultures were centrifuged down, washed twice in 

phosphate buffer saline (PBS), air dried, and shipped for genome sequencing to a commercial 

service-provider. They performed paired-end whole-genome sequencing on NextSeq500 

platform (Illumina, USA) at ~100X (range: 98.8X – 139.2X) coverage and 150bp read 

length. The service-provider provided us with high quality reads after removing adaptor 

sequence, ambiguous reads (reads with unknown nucleotide “N” of more than 5%), and low-

quality sequences (reads with more than 10% having a phred score < 20) using Trimmomatic 

v0.38. We then used Breseq version 0.33.2 pipeline (Deatherage & Barrick 2014) at default 

parameters for sequence alignment and variant calling. First, mutations in the ancestral 

genome were identified (in consensus mode) by aligning it to the reference genome of 

Escherichia coli MG1655 (Genbank accession: NC_000913.3). Breseq’s gdtools package 

was used to incorporate the predicted mutations and update the ancestral genome. This 

updated ancestral genome sequence was then used as reference for alignment and variant 

calling (in polymorphism mode) in the evolved populations. Following previous studies 

(Bailey et al. 2015; Sandberg et al. 2017; Santos-Lopez et al. 2019), the list of predicted 
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mutations were further curated by removing all variants present at frequencies less than 10%. 

We also aligned the ancestral sequence in the polymorphism mode. To limit our analysis to 

the genomic changes that evolved de novo in response to selection, all polymorphic variants 

common between the ancestral and evolved populations were also removed from the dataset. 

This curated list of mutations was used for computing the number of SNPs and indels, SNPs 

in coding vs intergenic regions, synonymous vs nonsynonymous SNPs, as well as the 

mutational spectrum of all mutations. We estimated the dN/dS ratio as the number of non-

synonymous mutations per non-synonymous sites (dN) to the number of synonymous 

mutations per synonymous sites (dS). The total number of non-synonymous and synonymous 

sites in the genome was estimated using Breseq’s gdtools package. Note that the relationship 

between dN/dS ratio and the selection coefficient can be an issue when comparing two 

populations sharing a number of fixed mutations. However, this issue is avoided in our study 

as we compare evolved populations with their ancestors (Chen & Zhang 2020). Functional 

annotations and enrichment analysis of the genes were carried out on DAVID v.6.8 (Huang et 

al. 2009b, a), a web-based bioinformatics application. The list of mutated genes was 

classified into functional groups (based on UniProtKB keywords) followed by manual 

curation.  

2.2.4 Measuring fitnesses in novel environment 

We observed that the UV-treated populations had accumulated numerous mutations across 

the genome. These UV induced mutations could affect the fitness of the populations under 

environmental conditions not faced during selection (see Discussion for details). Therefore, 

after 100 days of selection for UV resistance, we assayed the fitness of the evolved 

populations (L, E, C) as change in minimum inhibitory concentration (MIC) and growth rate 

in a suite of environments. 
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Measuring minimum inhibitory concentrations 

MICs of the evolved populations were measured in four antibiotic environments and three 

heavy metal environments. Antibiotics (ampicillin, chloramphenicol, nalidixic acid, and 

rifampicin) from four different classes were chosen for their different mechanisms of action 

(Kohanski et al. 2010). Similarly, the heavy metal salts (cobalt chloride, copper sulphate and 

nickel chloride) were chosen for the different ways in which they disrupt metabolic processes 

(Dupont et al. 2011; Macomber & Hausinger 2011; Majtan et al. 2011). To the best of our 

knowledge, evolution of resistance to UV has no known association with fitness in these 

environments.  

Populations were grown in increasing concentrations of the assay environment (antibiotics or 

heavy metals), and the minimum concentration at which no visible growth was obtained was 

taken as MIC. The evolved populations and their corresponding ancestor were revived as 

mentioned before. A gradient of the assay environments was prepared by serial two-fold 

dilutions in 96 well plates. The revived cultures were inoculated in each concentration of the 

assay environment at a dilution of 1/1000 in triplicates. After 48 hours of growth, each plate 

was scored for absence of growth either visually (for antibiotic environments) or when OD600 

< 0.2 (for heavy metals). A concentration was considered the MIC of the population only if at 

least two out of the three replicates showed no growth. The entire assay from revival to MIC 

determination was repeated twice and served as measurement replicates. MIC of all the 

evolved populations were scaled by the MIC of their corresponding ancestor to obtain the 

change in MIC due to selection. 

Measuring growth rate 

Growth rates of the evolved populations were assayed under two kinds of conditions: a) in 

nutrient broth, and b) in M9 minimal media containing a single carbon source at 
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concentration of 4g/L. Growth rate was measured in five different carbon sources: fructose, 

glucose, glycerol, mannose and thymidine, all of which feed into the glycolysis pathway via 

different intermediates (Voet & Voet 2011).  Mutations in the intermediate enzymatic steps 

can likely alter the efficiency of metabolism of the carbon sources and consequently growth. 

The revived evolved and ancestral populations were inoculated in 200 µl of the assay 

environment (i.e. M9 media containing one of the five carbon sources) at a dilution of 1/1000 

in 96 well plates. These cultures were subjected to automated growth measurements using a 

plate reader (Synergy HT, BIOTEK Winooski, VT, USA). OD600 was measured every 20 

minutes for 24 hours at 37oC and slow continuous shaking, at 17 cycles per second. 

Following previous studies (Karve et al. 2015; Sprouffske et al. 2018; Chavhan et al. 2019; 

Rodríguez-Rojas et al. 2020), we computed the growth rate as the maximum slope of the 

curve over a moving window of 10 readings. Two measurement replicates were obtained by 

repeating the entire assay twice. The growth rates of the evolved populations were scaled by 

the ancestral growth rate to obtain the relative change in growth rate due to selection.  

2.2.5 Statistical analysis 

Ancestral UV sensitivities were compared using a three-way mixed model ANOVA with 

randomized complete block design (RCBD) (Rohlf & Sokal 1995). Here, we used growth 

phase (lag and exponential) and exposure duration (15s, 60s, 200s, and 370s) as fixed factors 

crossed with each other and replicate populations (6 populations) as an independent random 

factor (neither crossed nor nested in other factors). Cohen’s d (Cohen 2013) was computed to 

assess the effect sizes of the differences between the two growth phases. The effects sizes 

were interpreted as small, medium and large for 0.2 < d < 0.5, 0.5 < d < 0.8 and d > 0.8, 

respectively (Sullivan & Feinn 2012). UV sensitivities of the evolved populations after 100 

days of selection were compared in a three-way mixed model ANOVA with selection (lag, 
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exponential and control) and assay environment (lag and exponential) as fixed factors and 

replicate populations (6 populations) as a random factor in a full factorial design. Fitness in 

novel environments weas analyzed as separate two-way mixed model ANOVAs for each 

fitness measure and environment. Selection (lag, exponential and control) as fixed factors and 

replicate populations (6 populations) as a random factor were analyzed in a full factorial 

design. Correction for inflation of family-wise error rate was done for the two fitness 

measurements, independently, using the Holm–Šidák procedure (Abdi 2010).  

We compared the dN/dS ratio of the evolved populations to the expected ratio (0.754, ratio of 

possible synonymous sites to nonsynonymous sites in the genome computed using Breseq) 

using a binomial test on R 3.6.1. 

All the ANOVAs were performed on STATISTICA v7.0 (Statsoft Inc.). Cohen’s d statistics 

were estimated using the freeware Effect Size Generator v2.3.0 (Devilly 2004). 
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2.3. Results 

2.3.1 Ancestral UV sensitivity in lag and exponential growth phases 

 

 

Figure 2.1. UV induced log10 reduction in CFUs during lag and exponential growth 

phases. UV sensitivity of the ancestral E.coli was measured at four exposure durations (15, 

60, 200, and 370 seconds) and two growth phases. Mean sensitivity of the six ancestral 

populations are plotted as circles (lag phase) and triangles (exponential phase). Whiskers 

represent ±SE. The scatter of the six ancestral value is represented by diamonds (♦). * denote 

p value < 0.05 in Tukey’s post-hoc analysis at that exposure value and # denotes p = 0.065 
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We first measured the UV sensitivity of the ancestral Escherichia coli during the lag and 

exponential phases at four exposure durations. We found a significant interaction between 

growth phase and exposure duration (F3,35 = 3.34, P = 0.03). The exponential phase 

sensitivity was significantly larger than the lag phase sensitivity in all but one comparison in 

Tukey’s post hoc analysis (Fig. 2.1; 60s: p=0.0005; Cohen’s d = 2.69 (large), 200s: p=0.002; 

Cohen’s d = 2.93 (large), 370s: p=0.0001; Cohen’s d = 4.4 (large)). At 15 seconds of 

exposure, the difference between lag and exponential exposure was marginally non-

significant but with a large effect size (Fig. 2.1; 15s: p=0.065; Cohen’s d = 2.09 (large)). 

Additionally, the six ancestral populations show no significant differences in their UV 

sensitivity (F5,35 = 0.36, P = 0.87). Together, this shows that our ancestral strain of E.coli was 

more sensitive to UV during exponential phase of growth. However, as the interaction of 

growth phase and exposure was significant, we refrain from interpreting the main effects.   
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2.3.2 UV sensitivity of evolved populations 

 

 

Figure 2.2. UV sensitivity of evolved populations relative to the ancestor’s sensitivity. 

The decline in the relative log10 reduction (sensitivity to UV) in lag and exponential 

populations signifies evolution of resistance. Each box plot represents data from 12 values 

i.e., 6 replicate populations assayed twice. Solid lines represent median, upper whisker 

denotes the largest data point lesser than or equal to 1.5 * IQR (inter-quartile range) and 

similarly for the lower whisker. * denotes that the control population has significantly (p < 

0.05) lower resistance to UV than both lag and exponential populations in Tukey’s post-hoc 

analysis.  
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UV sensitivity of the evolved populations in the two growth phases were compared after 

scaling them by the corresponding ancestral values. At the end of 100 rounds of UV exposure 

and selection, the populations significantly differed in their relative UV sensitivities (F2,36 = 

249.72, P = 2.91E-09). Tukey’s post hoc analysis showed that both lag (L) and exponential 

(E) populations had evolved significantly higher resistance compared to control (C) 

populations but were not different from each other (Fig. 2.2; L and C P = 0.0001; Cohen’s d 

= 6.23 (large), E and C P = 0.0001; Cohen’s d = 5.34 (large), and L and E P = 0.13; Cohen’s 

d = 0.58 (medium)). Interestingly, the interaction between selection lines and assay 

environments was also not significant (F2,36 = 3.82, P = 0.059). This also suggests that the 

populations had evolved similar extents of resistance in both growth phases irrespective of 

the selection environment.  
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2.3.3 Genomics of UV resistance evolution 

To investigate the genomic changes accumulated during selection for UV resistance, we 

carried out whole-genome whole-population sequencing of two replicate populations from 

each selection regime (L, E, C) and their corresponding ancestors. Both our ancestral 

populations had nearly identical sequences. However, our lab strain differed from E.coli K-12 

reference genome (NC_000913.3) at several genome locations. Therefore, we used the 

assembled sequences of the corresponding ancestor as reference for identifying mutations in 

the evolved populations. Exposure to UV in both growth phases resulted in a marked increase 

in the total number of mutations. The two replicates of lag (193 and 317) and exponential (60, 

319) treatments had much greater number of single nucleotide polymorphisms (SNPs) 

compared to the control populations (8, 13). A histogram showing the distribution of 

mutation frequencies of all SNP in the four UV-treated populations is given in the figure 2.4. 

Very few indels (insertions and deletions) were identified in all three evolved populations (2, 

2 in lag; 4,12 in exponential; and 3,7 in control). Some of these indels, 0 (L1), 1 (L3, E1, E3), 

2 (C1) and 5 (C3), were found to be mediated by IS2 insertional elements.  
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Figure 2.3: Mutational spectrum of SNPs accumulated during lag and exponential UV 

exposure. Colours in the stacked bar represent the relative frequency of each of the six type 

of base-pair substitutions (BPS), in the coding and intergenic regions. 
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Figure 2.4. A histogram showing the distribution of mutation frequency in the UV 

selected populations. 

 

We also found that the mutational spectra of both lag and exponential treatments were 

transition-biased as GC→AT transitions accounted for at least 50% of all mutations, a 

confirmed signature of exposure to UV (Fig. 2.3) (Griffiths et al. 2005; Brash 2015). In spite 

of the bias, all six mutations types were represented in both UV treatments. Mutations in the 

control populations were confined to three or four types only (see table 2.2). 
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Table 2.2. Mutational spectrum of all SNPs. The mutational spectrum of all SNPs 

identified in the selected populations including coding and non-coding regions and 

synonymous and non-synonymous mutations. The spectrum of two replicates (1 and 3) of lag 

(L), exponential (E) and control (C) populations are listed below. 

 

 

Mutation type L1 L3 E1 E3 C1 C3 

Transition 

A→G 17 14 6 25 0 0 

T→C 14 13 9 24 0 2 

G→A 52 129 20 111 2 2 

C→T 69 99 10 78 2 1 

Transversion 

G→T 7 12 1 11 0 0 

C→A 5 11 3 13 0 0 

A→C 3 2 3 4 3 2 

T→G 3 7 1 6 0 2 

G→C 1 2 1 1 0 0 

C→G 4 4 0 4 0 0 

A→T 13 8 2 20 0 2 

T→A 5 16 4 22 1 2 

          

Total 193 317 60 319 8 13 
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We notice that 75 – 80% of all SNPs in the UV treatments were found in the coding regions 

which typically makes up about 88% of the Escherichia coli genome (Rogozin et al. 2002). 

We estimated the dN/dS ratio (ratio of non-synonymous mutations per non-synonymous sites 

to synonymous mutations per synonymous sites) to infer the selection pressure that led to the 

genomic changes. Table 2.3 summarizes the dN/dS ratios in the evolved populations. The 

ratios were statistically significant in both the lag treatments (L1, L3) and one of the 

exponential treatment (E3). In all three cases, the ratios were less than unity, indicating that 

these populations were primarily subjected to purifying selection (Yang & Bielawski 2000).  
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Table 2.3: Estimates of non-synonymous mutation to synonymous mutation ratio in the 

evolved populations. P value denotes the binomial probability that the observed dN/dS ratio 

differs from the expected ratio (0.754), the ratio of possible synonymous sites to 

nonsynonymous sites in the genome) 

 

Population dN/dS ratio p value 

L1 0.665 0.023 

E1 0.877 0.737 

C1 0.652 0.571 

L3 0.632 6.0E-4 

E3 0.469 2.75E-8 

C3 0.489 0.274 
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Next, we investigated the genetics of UV resistance evolution by considering only the 

nonsynonymous mutations in the UV-treated populations. To begin with, the genes that were 

mutated differed considerably between lag and exponential treatments (see jeb13764-sup-

0002-Supinfo2.xlsx for file containing the full list of non-synonymous mutations). There 

were only two genes (recA and mepS) that had mutated in both treatments but not in the 

control populations. Our ancestral populations had a single mutation in recA (G161D) with 

respect to the reference MG1655 strain. Reversion of this mutation had fixed in all UV-

treated populations but not the controls. We note that this reversion in recA (D161G) is the 

only consistent mutation where all treatments have the same amino acid change. In addition 

to this, one other mutation (P314L) in recA was present at low frequency in L3. recA is 

involved in DNA recombination and repair (Smith et al. 1987; Schlesinger 2007) and plays 

an integral role in the mediation of SOS response (Markham et al. 1985; Maslowska et al. 

2019). The second commonly mutated gene was mepS with four different mutations: Y82I (in 

E1), R83C (in L1), P111L (in L3, E3), and T114I (in L3). mepS is known to be involved in 

peptidoglycan biosynthesis during cell growth (Singh et al. 2012). Populations L1 and E3 had 

mutations in recJ and L3 had mutation in recQ, both components of the recFOR 

recombination pathway. Similarly, RNA polymerase genes rpoC was mutated in L1 and E3 

population, while mutations in rpoB was observed in L3. 

Besides these commonly mutated genes, we also identified 9 genes that were mutated in both 

the replicates of lag treatment. Of these, a functional cluster of 5 genes was identified. crp, 

deoR, fadR, hfq, and lexA are known to be involved in DNA-binding, transcription and 

translational regulation. Additionally, lexA in association with recA, is known to mediate the 

SOS response. The remaining four genes show no obvious clustering (see table 2.4 for full 

functional annotations). Similarly, in the populations exposed to UV during the exponential 

https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1111%2Fjeb.13764&file=jeb13764-sup-0002-Supinfo2.xlsx
https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1111%2Fjeb.13764&file=jeb13764-sup-0002-Supinfo2.xlsx
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phase, we identified four genes that were mutated in both replicates. However, these genes 

too showed no obvious clustering of function (table 2.4). 

 

Table 2.4: List of genes consistently mutated in both replicates of lag and exponential 

treatments. The genes along with their functional annotations are listed. 

 

Lag treatment 

Gene Functional annotation 

crp 

DNA-binding proteins, Repressors, Transcription and translational regulation 

 

deoR 

fadR 

hfq 

lexA 

lexA (recA) SOS response 

adiA Arginine catabolic processes 

fdoG Cellular respiration 

frlD Carbohydrate phosphorylation 

ycbK Uncharacterised protein 

 

Exponential treatment 

Gene Functional annotation 

fimA Cell adhesion 

phoR Response to phosphate starvation and signal transduction 

ygfS Oxidation-reduction process 

yoaE Membrane component 
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Figure 2.5: Functional grouping of non-consistent mutations. The functional 

categorizations are based on uniprot keywords and GO terms. Height of each stack represents 

the proportion of genes in that particular functional group. Functional annotation was done 

using DAVID v.6.8 followed by manual curation. See supplementary material Table S6 for 

list of genes in each group. 
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Using DAVID v.6.8, a web-based bioinformatics application, we carried out functional 

annotation and enrichment analysis of the list of non-consistent mutations. Only about half 

the list of genes fell into clusters of groups having similar functions (Fig. 2.5). This could 

have resulted in the observed lack of significance in enrichment analysis (table 2.5). 

However, functional clusters comprising genes involved in or a part of cell membrane, were 

represented in three out of four populations (L1, L3, and E3). This, in addition to the fact that 

mutations of mepS were consistent across treatments, can suggest that cell membrane 

modification may play an important role in evolution of UV resistance. A second major 

group, that was found to be common between the two replicates of lag treatment, consisted of 

genes involved in transmembrane transport. Aside from these, mutations in lag treatment 

were grouped by genes involving in ligase activity, acetylation, tRNA-binding, nucleotide 

binding, and exopolysaccharide synthesis (Fig. 2.5 and table 2.5). Similarly, mutations in 

exponential treatments were grouped by genes involved in metal-ion binding, nucleotide 

binding, pyridoxal phosphate binding, kinase, and serine esterase. These differences imply 

that selection for UV resistance at the two growth phases can result in differences in how and 

where mutations accumulate in the genome.  

To summarize, repeated exposure to UV resulted the accumulation of a large number of 

mutations despite the effects of purifying selection. While genes such as recA and mepS were 

commonly mutated in all UV-treated populations, genes of different functional classes were 

mutated in lag and exponential treatments. This led us to the investigation of how these 

mutations affected the fitness of the populations under other environmental conditions.  
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Table 2.5. Functional categorization using DAVID. The list of genes that were unique to 

each treatment population categorized into functional groups using DAVID. 

 

  UniProt_KEYWORD 
No. of 

genes 
Gene name p-Value 

L1 

Transport 21 

YEHB, DCTA, YFDV, PLAP, HYCB, 

FRVA, ADIC, CAIT, AMPG, MURJ, 

MLAE, XAPB, FTSW, YTFR, YJEH, 

PROV, ARAE, GLNP, CUSC, MACB, 

ACRD 

0.04873 

Membrane 30 

YBHM, YQJA, AMPG, YEAQ, MURJ, 

MLAE, FTSW, YAFT, ATOS, YJEH, 

PROV, BSMA, GLNP, YIAT, MACB, 

ACRD, YEHB, DCTA, YFDV, CBRB, 

PLAP, ADIC, CAIT, DAMX, PLSB, 

XAPB, YEJM, ARAE, EVGS, CUSC 

0.06482 

Ligase 5 PANC, GLUQ, GLYS, QUEC, FOLC 0.09765 

Ungrouped 47 

AEGA, AHPF, ASTD, BISC, CAS3, 

CHIA, DADX, DGT, DSBA, ELFD, 

FUMA, FUSA, HCAB, HSDS, INSG, 

LPXC, LRHA, MENC, MRP, NADC, 

NAGC, PPNN, PRIC, PUTA, RECJ, 

RFBA, RPOC, SMG, YAAI, YABR, 

YACH, YAIL, YCJW, YDDL, YDEP, 

YEBB, YEBK, YFDE, YGGF, YGID, 

YHJJ, YIAU, YIHM, YJFJ, YLBG, 

YPHB, ZINT 

- 

L3 

Acetylation 10 
ALAS, RPLL, GUAB, THRS, RPOB, 

RPLE, ADHE, PYKA, MANX, SODB 
0.0051 

tRNA-binding 5 ALAS, MNMA, TMCA, RPLE, DUSC 0.00673 

Exopolysaccharide 

synthesis 
3 WZA, RFFH, WZC 0.01062 

Nucleotide-binding 26 

TDCD, LON, DNAC, YJIA, CLPA, 

SERS, RTCR, GLPK, ALAS, THRS, 

RECQ, ASNB, NORR, PYKA, OPPD, 

ACKA, MNMA, WZC, TYRR, UUP, 

XYLG, ZRAR, TMCA, PRIA, ARGG, 

KEFC 

0.0197 
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Transport 32 

SFMD, UHPT, BGLH, RCNA, YFEO, 

DDPA, WZA, DTPB, AAEB, FECA, 

ACRB, FECB, MANX, PANF, SETA, 

OPPD, CHBC, MNGA, EMRA, OPPA, 

YEJE, YICJ, URAA, UUP, FIMD, 

XYLG, CHIP, YGCQ, TEHA, RSXA, 

EXBB, KEFC 

0.08821 

Cell outer membrane 9 
FIMD, SFMD, WZA, CHIP, BLC, 

FECA, OMPX, BGLH, MIPA 
0.0075 

Ungrouped 85 

ACEB, ALLS, AMIA, APPB, AROC, 

ARPA, ASTB, BCSB, CASC, CREA, 

CREB, CUEO, CYTR, CYUP, DADA, 

DCP, DLD, DNAN, DNAQ, FTSL, 

GATD, GFCD, GHRA, GLGP, GOR, 

HYFI, IADA, IDNR, LIPA, MLTD, 

NAC, NIRD, OTSB, PABA, PANB, 

PDEF, PDXI, PFLD, PPPA, QUEG, 

RBFA, RIMP, RSMC, SAD, SDAB, 

SELU, SLT, TCYN, TDCA, TDCG, 

THYA, UXAC, WAAF, WBBI, YAEH, 

YAER, YCAC, YDCC, YDFH, YEAG, 

YEGQ, YEHI, YEJA, YFBU, YGFB, 

YGFM, YGGT, YGIM, YHCO, YHFS, 

YHHH, YHHX, YHIJ, YIDP, YIGF, 

YIHU, YJBM, YJGL, YJGN, YMGE, 

YPEC, YPJB, YPJC, YQGA, YTFI 

- 

E1 

Metal-ion binding 4 AMYA, CHAA, MGLB, YDEN 2.81E-04 

Nucleotide-binding 7 
CYAA, NARQ, DNAB, HRPA, ARCB, 

HISS, YIHV 
0.05411 

Kinase 4 NARQ, ARCB, YIHV, FRYA 0.06819 

Ungrouped 16 

CUEO, CYUA, GHXQ, GSIC, LEPB, 

MDTE, RSXC, SAD, SBCD, TDCE, 

YAAA, YDDL, YDEE, YDHU, YHDP, 

YPAB 

- 

E3 

Serine esterase 3 YPFH, YQIA, YEIG 0.02751 

Cell membrane 39 

YDDG, ALAE, AMPG, ENVZ, FETB, 

ELAB, YDDW, YJGN, UIDB, CSGD, 

NFRB, EPTC, YBBW, CDH, YJEM, 

ATPA, UACT, YJHB, NUOM, YAEF, 

WCAD, CYSA, RHTB, UGPE, HYFF, 

LIVH, GFCB, CCMA, YDGA, LIVM, 

MRDB, SDHC, NUPX, FLIG, POTB, 

HFLK, PNUC, KEFC, KCH 

0.09658 

Pyridoxal phosphate 

binding 
5 LTAE, ADIA, CYSK, ALR, YGGS 0.09696 
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Ungrouped 80 

ACEF, ARAF, ASMA, BAER, CAIC, 

CAIE, CARB, CASA, CHBF, CLPB, 

CSPH, DAPB, DGOD, DNAE, ELAD, 

FABR, FDNG, FIMH, FUCR, GLMS, 

GLMU, GLPD, GLTB, GSHB, HMP, 

HXPB, LPTD, MALQ, METF, MQO, 

OPGG, PDHR, PHEM, PNP, PURN, 

RAPA, RDGB, RECJ, RHAB, RHSB, 

RIMJ, RLMA, RNB, RNK, RPMG, 

RPOC, SELU, SRLR, STPA, TORZ, 

TREA, UUP, VIAA, XSEA, YBHH, 

YCCT, YCHS, YCIA, YCIE, YCIF, 

YCJT, YCJW, YCJX, YDBD, YDIF, 

YDJO, YEEJ, YEJK, YFBK, YGIF, 

YHCO, YHHX, YIAJ, YIGL, YJGL, 

YJJQ, YKFM, YMGD, YPFJ, ZAPA 

- 
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2.3.4 Fitness in novel environment 

 

 

Figure 2.6: Relative fitness of the evolved populations in novel environment. Fitness is 

measured as (A) relative growth rate and (B) resistance, measured as minimum inhibitory 

concentration (MIC). Growth rate of the UV-treatedand control populations were assayed in 

nutrient broth (NB), M9 minimal media containing fructose (Fru), glucose (Glu), glycerol 

(Gly), mannose (Man) and thymidine (Thy). Resistance of all three evolved populations were 

measured in ampicillin (Amp), chloramphenicol (Chl), nalidixic acid (Nal), rifampicin (Rif), 

cobalt chloride (Co), copper sulphate (Cu), and nickel chloride (Ni). Fitnesses of the evolved 

populations were scaled by the ancestral fitness. Bars represent mean of 12 values i.e., 6 

replicate populations assayed twice. Whiskers represent ±SE. * denote control is significantly 

(p value < 0.05) less than lag and exponential in Tukey’s post-hoc analysis. † denotes 

significant differences between lag and exponential treatments. 

  



43 
 

Fitness of the evolved populations in novel environments was measured in two ways. Growth 

rate was measured in nutrient broth (NBKan) and M9 minimal media in the presence of 5 

different carbon sources: fructose (Fru), glucose (Glu), glycerol (Gly), mannose (Man) and 

thymidine (Thy). After correction for inflation of family-wise error rate (Holm–Šidák’s 

correction) only NB showed a significant effect of selection (Fig. 2.6A: F2,18 = 17.04, P = 

0.0036). Tukey’s post-hoc analysis show that both lag and exponential treatments have 

increased growth rate in NBKan compared to control populations but did not differ w.r.t each 

other. We also measured the resistance of evolved population in stress environments. 

Resistance was measured as change in MIC in 4 antibiotic environments: ampicillin (Amp), 

chloramphenicol (Chl), nalidixic acid (Nal), and rifampicin (Rif) and 3 heavy metal 

environments: cobalt chloride (Co), copper sulphate (Cu), and nickel chloride (Ni). After 

correction for multiple testing (Holm–Šidák’s correction), main effect of selection was 

significant in chloramphenicol (Fig. 2.6B: F2,18 = 16.76, P = 0.0037), nalidixic acid (F2,18 = 

70.33, P = 9.02E-06), rifampicin (F2,18 = 16.37, P = 0.0035), and cobalt chloride (F2,18 = 

7.22, P = 0.045). In all four cases, Tukey’s post hoc tests suggested that lag and exponential 

treatments had increased MIC w.r.t control populations. Only in the case of chloramphenicol, 

there was a difference between lag and exponential populations: lag had higher MIC than 

exponential treatment (P = 0.046 in Tukey’s post hoc analysis). To further explore the 

difference in resistance between lag and exponential treatments, we also measured their 

growth rate at sub-MIC concentration (0.5 µg/ml) of chloramphenicol. The main effect of 

selection was significant (Fig. 2.7: F2,18 = 49.67, P = 6.4E-06) and both lag and exponential 

treatments had higher growth rate than control populations. But interestingly, populations in 

the exponential treatment had higher growth rate than those in the lag treatment (P = 0.0005 

in Tukey’s post hoc analysis).  
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Figure 2.7: Relative growth rate of evolved populations in sub-MIC chloramphenicol. 

Bars represent mean of 12 values, i.e., 6 replicate populations assayed twice. Whiskers 

represent ±SE. * denote control is significantly (p value < 0.05) less than lag and exponential 

in Tukey’s post-hoc analysis. † denotes significant differences between lag and exponential 

treatments in Tukey’s post-hoc analysis. 
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To summarize, the genomic changes due to selection for UV resistance did not result in 

fitness changes, between the treatments, in all but one novel environment. Interestingly, the 

genomic changes induced by selection under UV, never led to a decrease in fitness, w.r.t 

control populations, in the novel environments. In the case of chloramphenicol, where there 

was an observable phenotypic difference between the lag and the exponential treatments, the 

effect was not consistent as lag treatment had higher MIC whereas exponential treatment had 

higher growth rate. In other words, genomic differences between the populations that 

experienced selection in different growth phases did not translate into observable differences 

in their phenotypes, either in the selection environment (Fig. 2.2), or in the novel 

environments (Fig. 2.6). 
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2.4. Discussion 

Bacterial growth phases show considerable variations in their resistance to ionizing 

radiations. While some studies have demonstrated that the exponential phase can have 

increased sensitivity to ionizing radiations (Morton & Haynes 1969; Child et al. 2002; Dantur 

& Pizarro 2004; Bucheli‐Witschel et al. 2010; Arroyo et al. 2012), others have shown that 

this phase can have greater resistance to such radiations (Keller & Maxcy 1984; Hastings et 

al. 1986; Kottemann et al. 2005; DeVeaux et al. 2007; Sukhi et al. 2009). In this study, we 

compared the UV sensitivity of our ancestral strain of Escherichia coli MG1655 in lag and 

exponential phase. Ancestral cells in the exponential phase were more sensitive to UV, which 

resulted in larger reduction (~ 1-2 log10 fold more reduction) in colony forming units (CFUs) 

compared to lag phase (Fig. 2.1). The two growth phases differ in a number of factors that 

can influence UV sensitivity. Factors such as changes in growth rate (Keller & Maxcy 1984; 

Berney et al. 2006; Bucheli‐Witschel et al. 2010), growth environment (particularly nutrition 

availability post irradiation) (Child et al. 2002; Sukhi et al. 2009), and the quantity of genetic 

material (Fabre 1970; Bucheli‐Witschel et al. 2010), have been suggested to explain the 

differential UV sensitivity in different growth phases. These differences can influence the 

organisms’ ability to repair UV induced damages and consequently the dynamics of 

resistance evolution.   

We subjected our E.coli populations to selection under UV exposures during the lag and the 

exponential phase. After 100 rounds of exposure and growth, the UV exposed populations 

evolved increased resistance to UV compared to the non-exposed control populations (Fig. 

2.2). 370 seconds of UV exposure in the ancestor and the control populations resulted in 5-7 

log10reduction in viable CFUs whereas the UV-treated populations experienced only 1-2 

log10reduction in CFUs. Contrary to our expectations, the differences between growth phases 



47 
 

observed in the sensitive strains (ancestor and control populations) did not translate into 

significant differences in the evolved response.  Both the treatments had evolved resistance to 

UV in both growth phases, irrespective of the selection environment. These results are 

comparable with previous studies in Bacillus subtilis (Wassmann et al., 2011) where it was 

shown that populations that evolved UV resistance in the stationary phase, also showed 

similar increased UV resistance in all growth phases. Interestingly, in that study, this was 

observed in spite of the fact that their ancestral and control populations showed growth phase 

dependent sensitivity to UV (Wassmann et al. 2011). Considering the results from our study 

and Wassman et al., (Wassmann et al. 2011), it is tempting to hypothesize that there are only 

a few routes to UV resistance, which might not be influenced by the growth phases. To 

investigate this possibility, we employed evolve and re-sequence (E&R) technique on 

replicate populations to characterize the genomics of UV resistance at different growth 

phases.  

Both the treatments saw the accumulation of a large number of mutations with an 

overrepresentation of GC→AT transitions (at least 50% of all mutations). GC→AT 

transitions are the signature mutations of UV (Griffiths et al. 2005; Brash 2015) which are a 

result of the repair of UV-induced oxidative damages to the DNA (Wang et al. 1998). This 

demonstrates the strong influence of UV radiation in shaping the genome of the UV-treated 

populations. 

To investigate the genomic changes associated with UV resistance, we focused on the non-

synonymous mutations in the populations. We found that a single amino acid change in recA 

(D161G) was convergent across all four UV-treated populations. Our ancestor had a mutation 

in recA (G161D) with respect to the reference strain, MG1655 (NC_000913.3). It is known 

that D161 is an extremely conserved amino acid and it plays an important role in determining 
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the preference of recA for single stranded DNA over double stranded DNA (Shinohara et al. 

2015). The fact that all UV-treated populations, but not the controls, had fixed for reversion 

to the wild type form, suggests that this region is highly essential for the functioning of recA 

in the presence of UV stress.  

While recA protein is a key regulator of recombinational repair of UV induced damages 

(Smith et al. 1987) we did not find any other prominent change in its sequence. Interestingly, 

we found mutations in recJ and recQ genes, which are components of the recFOR 

recombination machinery that is regulated by recA in response to DNA damage (Morimatsu 

& Kowalczykowski 2014). Additionally, mutations in the RNA polymerase (RNAP) genes, 

rpoB and rpoC, were also observed in UV-treated populations. Although mutation in rpoB 

gene are major effectors of rifampicin resistance, it was not observed in all populations. Since 

rifampicin resistance had evolved in both UV-treated populations, resistance cannot simply 

be explained by rpoB mutation. We also note that the mutation M1243L (in L3) is not one of 

the 69 known rpoB mutations conferring rifampicin resistance (Garibyan et al. 2003). 

However, mutations in RNAP have previously been shown to confer radiation resistance in 

Deinococcus (Bruckbauer et al. 2019). Studies show that RNAP and DNA repair proteins can 

interact when replication is stalled in rapidly dividing cells (Trautinger et al. 2005; Baharoglu 

et al. 2010). In our populations, we see an interesting combination of mutations in the 

recFOR pathway and RNAP genes. Mutations in recJ and rpoC were found together and at 

similar frequency in L1 and E3 populations while mutations in recQ and rpoB occurred 

together in L3, at similar frequency (see jeb13764-sup-0002-Supinfo2.xlsx for file containing 

the full list of non-synonymous mutations). It is likely that the interaction between the 

different components of the two mechanisms (recFOR pathway and RNAP) is crucial for UV 

resistance. However, these components can interact in multiple ways and figuring out the 

details of these interactions is a challenge that is outside the scope of this study. 

https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1111%2Fjeb.13764&file=jeb13764-sup-0002-Supinfo2.xlsx
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Although DNA/nucleotides are considered to be the primary target of UV radiation, there is 

growing evidence that cell membrane (Alper 1977; Schwarz 1998; Kumar et al. 2016) are 

also indirect targets of UV damage via generation of reactive oxygen species (ROS). 

Prevention and/or tolerance to damages to the cell membrane and protein can be an alternate 

strategy of UV resistance. It has been shown that ROS generated by UVB stress causes lipid 

peroxidation resulting in cell membrane damage (Gomes et al. 2013; Santos et al. 2013). 

Thus, maintaining cell membrane integrity is probably one of the first priorities under UV 

stress. For instance, in Enterobacter cloacae, outer membrane protein (ompC) and 

periplasmic oligopeptide binding protein (oppA) were among the differentially expressed 

genes when exposed to UVB (Kumar et al. 2016). Although a causal link between cell 

membrane structure and radiation resistance has not been experimentally shown, the highly 

radio-resistant Deinococcous spp. is well known for its unique multilayered (six layers) cell 

membrane (Makarova et al. 2001). Thus, it is possible that the structure and composition of 

the cell membrane might influence radiation resistance. Consistent with this, we see that all 

our UV-treated populations, but not the controls, carry mutations in mepS, an endopeptidase 

which is a part of cell wall biogenesis (Singh et al. 2012). Additionally, mutation clusters in 

genes involved in or a part of cell membrane structure were consistent among UV-treated 

populations (Fig. 2.5). With the present data, it is not possible for us to comment on whether 

these mutations directly led to increased UV resistance or were neutrally accumulated as a 

consequence of increased mutation rate in the UV-treated populations. However, this opens 

potential avenues for investigating the mechanism of UV resistance from the point of view of 

cell membrane structure and composition. It is also possible that the increased mutation 

supply in the UV treated populations allowed them to explore the mutation landscape for 

mutations that could be beneficial in the laboratory growth conditions. This is evident from 
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the fact that both UV-treated populations had significant increase in growth rate in nutrient 

broth than the control populations (Fig. 2.6A).  

One of the mechanisms of radiation resistance in Deinococcus is the export of 

damaged/degraded DNA following radiation (Battista 1997; White et al. 1999). Transport of 

the damaged oligonucleotides can prevent them from being reincorporated during repair. 

While the cells export damaged DNA, nutrients such as amino acids, sugars and phosphates 

may also be imported into the cell (Makarova et al. 2001). This increased nutrition is 

essential for the energy expensive DNA repair process (Venkateswaran et al. 2000). 

Consequently, radio-resistance has also been attributed to efficient transport of nutrients into 

the cell (Makarova et al. 2001; Child et al. 2002; Sukhi et al. 2009). In line with this, we 

observe clustering of mutations in genes involved in cellular transport (Fig. 2.5). These 

mutations are unique to the lag treatment and were not present in the exponential treatment. 

Another unique characteristic of the genome of the lag treatment is the fixation of mutations 

in lexA genes. lexA is a transcriptional repressor of SOS response (Maslowska et al. 2019). 

Additionally, mutations in transcriptional regulators such as crp, deoR, fadR, hfq were also 

common in the lag populations (Table 2.4). Taken together, this suggests that in addition to 

the direct response to radiation, UV resistance in lag treatment can comprise of 

protection/tolerance mechanisms as well as indirect response via regulation of other genes. 

The mutations in the exponential treatment, except for those in genes related to repair and cell 

membrane structure and function, could not be associated with any known pathway 

associated with UV resistance (Table 2.4 and Fig. 2.5). Characterizing the role of signal 

transduction, cell adhesion, metal-ion and nucleotide binding proteins, and enzymes such as 

kinases, and serine esterase, in the context of UV resistance, might suggest the association of 

novel pathways of UV resistance. 
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Horizontal gene transfer (HGT), by natural transformation of exogeneous DNA from the 

environment, is known to be induced by stress (Claverys et al. 2006; Prudhomme et al. 

2006), particularly UV radiation (Charpentier et al. 2011). Additionally, bacterial competence 

is also known to be influence by multiple factors including, growth phase (Szostkova et al. 

1999). However, exploring the influence of HGT on the genome evolution of our UV-treated 

populations was out of the scope of this study. 

UV as a mutagen is expected to increase the genome wide mutagenesis. A large number of 

the resulting mutations are expected to be deleterious in the selection environment and 

therefore likely to be purged by purifying selection. The observed dN/dS ratio of mutations in 

the coding region being less than one suggests that the UV-treated populations were indeed 

subjected to purifying selection (Table 2.3). The mutations that escaped being purged and 

accumulated to high frequencies were either beneficial or neutral in the selection 

environment. However, it is possible that some of these neutral mutations are contextually 

neutral, i.e. have an effect on fitness when the environment is altered (Wagner 2005). To 

investigate this possibility, we studied the fitness of the UV-treated populations under various 

antibiotics, heavy metals, and carbon sources. Despite the large genetic variation, fitness of 

the UV-treated populations was significantly different from the control populations in only 

four out of 12 novel environments namely, chloramphenicol, nalidixic acid, rifampicin, and 

cobalt chloride (Fig. 2.6). One possible way by which the UV-treated populations could have 

acquired resistance to these environments is via the UV induced alterations in the cell 

membrane permeability. Outer membrane permeability has previously been implicated in the 

evolution of antibiotic resistance (Delcour 2009; Ghai & Ghai 2018; May & Grabowicz 

2018). On the other hand, exposure to UV could have also resulted in the introduction of 

antibiotic resistance mutations in smaller subpopulations which could allow them to grow at 

higher concentrations of antibiotics (Band & Weiss 2019). Interestingly, the lag and 
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exponential populations showed significant differences only in resistance to chloramphenicol. 

Even in terms of chloramphenicol resistance, the differences between lag and exponential 

treatments were not consistent across MIC and growth rate (Figs. 2.6 and 2.7). Thus, taken 

together, the genomic signatures of UV adaptation in lag and exponential treatment 

populations did not result in any major phenotypic differences between them in both the 

selection as well as novel environments. 

2.5. Conclusion 

Experimental evolution in combination with high-throughput sequencing (evolve and 

resequence) is an extremely powerful tool to study the genomics of adaptation (Long et al. 

2015; Schlötterer et al. 2015). While it is known that the phenotype-genotype map can be 

degenerate, molecular parallelisms can be found at different levels of genome organization 

ranging from same nucleotide substitution to similar gene networks (Rosenblum et al. 2014; 

Hao et al. 2019). Evidence for this comes from previous studies where huge diversity in the 

beneficial mutations have been reported at the level of nucleotides but convergence was 

observed at the level of genes and functional groups (Woods et al. 2006; Tenaillon et al. 

2012). Similarly, in our study, although the large number of mutations initially seemed to be 

randomly distributed in the genome, we observed some convergence of functional groups. 

DNA repair, RNA polymerase and genes associated with cell membrane structure were some 

of the convergent changes observed in the UV-treated populations. However, the exposure to 

UV during different growth phases also led to some unique genomic signatures. It is likely 

that the two growth phases represent different physiological and biochemical environments 

inside the cell, which could have constrained the UV induced mutations and consequently the 

amount and nature of genetic variation available for selection to act. Nevertheless, mutations 

in genes for mechanisms besides DNA repair systems that have been observed in the UV-
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treated populations are suggestive of the role of other indirect pathways involved in UV 

resistance. These results are reminiscent of mechanisms of extreme radio-resistance in 

Deinococcus radiodurans R1 where resistance has been shown to rely more on indirect 

mechanisms such as cellular cleansing, signal transduction and transcriptional regulation than 

on extensive damage repair mechanisms (Makarova et al. 2001; Galperin et al. 2006; Blasius 

et al. 2008). In addition to recognizing the different possible mechanisms of UV resistance, 

this study highlights the influence of physiology in shaping genomic evolution. We see that 

mutational profiles are dependent on the growth phase of exposure. Very little is known 

about such growth phase specific effects of most mutagens. Such physiological biases of 

mutagenesis can have important implications in industrial strain improvement studies. 

Additionally, as UV radiation is widely used as a disinfectant, it is important to acknowledge 

the evolution of antibiotic resistance as a correlated response. To better manage this, further 

experiments need to be done to understand the relationship between growth physiology, UV 

response and antibiotic resistance evolution. 

  



54 
 

 

 

Chapter 3: Fluctuating exposures to UV radiation and Erythromycin result 

in increased mean and variance in fitness in novel environments 
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3.1. Introduction 

Variation in fitness within a population is one of the prerequisites of evolution by natural 

selection. The amount of available genetic variation determines the rate of fitness increase 

and consequently evolution (Fisher 1930). Evolution in asexual organisms such as bacteria, 

viruses, and other microbes, is largely dependent on de novo variation arising from mutations. 

While organisms are equipped with robust replication machinery, un-repaired errors in 

replication results in mutations. The rate at which such mutations arise, vary between 

organisms but are strongly regulated within a species. For example, the spontaneous mutation 

rate in divergent strains of Escherichia coli were nearly identical (Foster et al. 2015), at a rate 

of 10−3 per genome per generation (Lee et al. 2012). However, a number of factors can 

influence mutation rates including loss-of-function mutations in replication and/or repair 

mechanisms. Such hypermutator phenotypes, with tens to few thousand fold higher mutation 

rates have been routinely observed in natural, clinical and experimental populations 

(reviewed in (Sniegowski et al. 1997; Eliopoulos & Blázquez 2003; Oliver 2005; Jolivet-

Gougeon et al. 2011)). While the increased mutational supply may not always be adaptive, it 

can increase the probability of beneficial mutations. Such mutator phenotypes can quickly 

spread and fix within a population by hitchhiking with beneficial mutations. The evolution of 

mutator phenotypes, as well as their effects on evolution is still a dynamic field of study 

(reviewed in (Raynes & Sniegowski 2014; Natali & Rancati 2019)). 

In addition to intrinsic genetic changes, many environmental factors have been identified as 

strong regulators of mutation rate. Factors such as temperature, pH, nutritional state, 

chemicals and radiations have been studied for their mutagenic properties (reviewed in 

(Tenaillon et al. 2004; Galhardo et al. 2007; Ram & Hadany 2012)). Typically, stress 

environments, that negatively affect the growth rate and/or fitness of an organism exerts 
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direct or indirect influence over mutation rates. For example, Liu & Zhang (Liu & Zhang 

2019) showed that yeast populations grown in seven different environments show varying 

mutation rates with high mutation rates usually accompanying slow growth rate. More recent 

studies have shown that in addition to mutation rates, environments also influence mutational 

biases (Maharjan & Ferenci 2017; Liu & Zhang 2019). Maharanja & Ferenci (Maharjan & 

Ferenci 2017) showed that iron and oxygen limitation resulted in higher transposition events 

compared to greater incidence of base-pair substitutions and indels when populations were 

phosphate-limited. Such mutational differences may be due to the fact that different 

environmental conditions induce differences in the nature of DNA damage such as double 

strand breaks (DSBs) and incorporation of oxidized bases. Additionally, the 

mechanisms/pathways employed to repair the damaged DNA can also vary resulting in 

unique mutational signatures. For example, UV radiations induces pyrimidine dimers and 

photoproducts which are repaired by excision repair mechanisms resulting in a majority of 

GC→AT transitions (Brash 2015). In contrast, knockout of mutT which, repairs mispairing 

due to mutagenic 8-oxo-dGTP, results in greater incidences of A:T → C:G transversions 

(Sekiguchi 1996; Fowler & Schaaper 1997). Thus mutational biases are ubiquitous in 

adaptive evolution ((Stoltzfus & McCandlish 2017; Cano et al. 2021) and references within), 

which can be shaped by the type of both DNA damage and DNA repair (Volkova et al. 

2020).  

An increasing number of empirical and observational studies have shown that mutational 

biases strongly influence the evolutionary trajectories (Stoltzfus & McCandlish 2017; Payne 

et al. 2019; Storz et al. 2019; Cano & Payne 2020; Gomez et al. 2020). For example, Couce 

et. al., (Couce et al. 2015) showed that mutator strains with different mutational spectra 

evolved antibiotic resistance via divergent mutational pathways (i.e., divergence in genomic 

evolution). De novo mutations are central to antibiotic resistance evolution (Woodford & 
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Ellington 2007) and the effects of mutator strains have been well studied (Eliopoulos & 

Blázquez 2003; Perron et al. 2010; Gifford et al. 2019). Mutator strains may provide a 

selective advantage in the presence of antibiotics by increasing the probability of resistance 

mutations. On the other hand, exposure to antibiotic can itself induce higher mutation rates by 

induction of stress response mechanisms resulting in mutagenesis. Long et. al., (Long et al. 

2016) showed that antibiotic (norfloxacin) concentration and mutation rates have a strong 

linear relationship. As a result of both these scenarios, elevated mutation rates have often 

been observed accompanying resistance evolution. However, a large majority of studies on 

the relationship between resistance evolution and mutation rates have focused only on the 

genetic mutation rate modifiers. Environmental mutagens and their role in the evolution of 

antibiotic resistance evolution has received relatively less attention.  

UV radiation, an environmental mutagen, is both an agent of selection as well as 

mutagenesis. It has been previously shown that outcome of selection for UV resistance as 

well as the mutational profile depends on the growth phase during which the bacteria are 

exposed to the radiation (Selveshwari et al. 2021). In this study, we aim to understand how 

UV induced mutational biases influence the evolution of antibiotic resistance. Another 

important factor that affects the maintenance of variation is environmental heterogeneity, 

both temporal and spatial (Hallsson & Björklund 2012; Canino-Koning et al. 2019; Nguyen 

et al. 2021).  Environmental heterogeneity, resulting in divergent selection, could promote the 

maintenance of polymorphism for traits that show a negative genetic correlation between  

components of the heterogeneous environments (Levene 1953; Kassen 2014). Other factors 

such as negative frequency-dependent selection, in heterogeneous environments, have also 

been cited as mechanisms influencing the extent of genetic variation (Dykhuizen & Dean 

2004; Friesen et al. 2004; MacLean et al. 2005). Additionally, it is interesting to note that 

multiple theoretical as well as empirical studies have shown that increased mutation rates are 
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maintained and even favored in fluctuating environments (Ishii et al. 1989; Travis & Travis 

2002; Carja et al. 2014). Thus, it would be interesting to investigate the interaction between 

mutation rate modifications and fluctuating environments, and how that in turn influences 

genetic variation and evolutionary trajectories. 

To address the aforementioned issues we used the technique of experimental evolution on 

laboratory populations of Escherichia coli. Replicate populations were subjected to 

increasing concentrations of the antibiotic (erythromycin) with or without UV exposures. 

Moreover, when the populations were exposed to UV radiation, they were also subjected to 

either constant or fluctuating treatments. Experimental evolution was followed by whole 

genome sequencing to further understand the genomics of evolution. After 60 rounds of 

selection, we saw that populations exposed to UV and/or erythromycin had evolved similar 

extents of resistance to their respective stress environments. However, there were major 

differences between UV exposed and unexposed populations in terms of the genes associated 

with erythromycin resistance. Erythromycin specific target-gene mutation (rplD) were 

observed in populations that were selected in only erythromycin. Exposure to UV radiation 

(both constant and fluctuating) resulted in mutation in efflux pump regulator gene (acrR) and 

the absence of target gene mutation (rplD). Additionally, fluctuating exposures to UV 

radiation and erythromycin resulted increased fitness in other antibiotics. Follow-up 

experiments revealed that the greater variance in fitness in these populations was likely due to 

the maintenance of large proportions of genetically distinct subpopulations. 
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3.2. Materials and Methods 

Escherichia coli K12 MG1655 strain with kanamycin resistance was used in this study. 

Cultures were maintained at 37oC and 150 RPM, throughout selection and assays, except 

where stated otherwise. 

3.2.1 Experimental evolution 

Six independent E.coli colonies were picked from nutrient agar streaks to initiate six replicate 

ancestral populations. Four selection regimes: only UV, only antibiotic (erythromycin), 

constant exposure to both UV+antibiotic, and fluctuating exposures to UV and antibiotic; 

were initiated from each of the replicate ancestral populations. It is known that SOS response 

is one of the primary responses to DNA damage due to UV radiation (Sinha & Häder 2002). 

SOS response is also known to be induced on exposure to a number of antibiotics (Kohanski 

et al. 2010). Therefore, in order to independently study the effect of exposure to UV radiation 

as well as antibiotics, we used erythromycin. It belongs to the macrolide class of antibiotics 

which inhibits protein synthesis by binding to the 50s ribosomal complex (Weisblum 1995). 

Therefore, it has no known link to DNA damage and induction of SOS response. 

The UV control populations were exposed to UV as described in a previous study 

(Selveshwari et al. 2021). Briefly, they were exposed to a constant irradiance of 100.5 

µW/cm2 in a custom-built UV chamber with a 254nm UV-C tube-light (Philips TUV 8W). 

All populations were grown in six-well tissue culture plates in 2ml NBKan, until they reached 

the stationary phase. After 20 hours from inoculation, the populations were exposed to UV at 

room temperature and 150 RPM orbital shaking. After every 5 exposures, the duration of 

exposure to UV was increased. This ensured that all populations were allowed sufficient time 

to adapt. At the beginning of the experiment, populations were exposed to 15 seconds of UV, 
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which was gradually increased up to 3 minutes and 20 seconds by the end of 60 exposures. 

The antibiotic control populations were grown in NBKan containing erythromycin. They were 

initially exposed to a sub-lethal concentration of erythromycin which resulted in ~75% 

reduction in growth rate compared to growth rate in NB (personal observation). This 

concentration was also increased every 5 days, from 15µg/mL to 200µg/mL. Populations 

subjected to constant UV + antibiotic treatments were grown in NBKan containing 

erythromycin and every 20 hours from subculture they were exposed to UV radiation. The 

fluctuating treatment populations, on the other hand, were subjected to daily alternation 

between the two stresses, starting with growth in erythromycin. For direct comparisons 

between treatments, the number of exposures to each stress was kept constant in all 

treatments. Therefore, the selection in fluctuating treatment lasted twice as long as the other 

treatments. For the full trajectory of exposure duration and antibiotic concentration see Table 

3.1. At the end of every 5 rounds of exposures to stress, before the intensity of stress was 

increased, all populations were stored as 15% glycerol stocks at -80oC. Fitness of the evolved 

populations were assayed at the end of 60 rounds of exposures to stress, either UV or 

erythromycin or both. Throughout selection and assays, except during subculturing, all 

populations were maintained in dark. This prevents induction of photoreactivation, the first 

and most efficient, error-free repair mechanism (Sinha & Häder 2002).  
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Table 3.1. Exposure duration during selection. The duration of exposure to UV was 

increased every 5 days. 

 

Days 
UV exposure duration 

(seconds) 

1 - 5 15 

6 - 10 20 

11 - 15 25 

16 - 20 35 

21 - 25 45 

26 - 30 60 

31 - 35 75 

36 - 40 90 

41 - 45 110 

46 - 50 130 

51 - 55 160 

56 - 60 200 
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3.2.2 Sensitivity to UV radiation 

Sensitivity to UV exposure was measured as described in a previous study (Selveshwari et al. 

2021). Briefly, resistance to UV was estimated as the log of the ratio of the number of colony 

forming units (CFUs) before and after UV exposure (log10(CFUs before exposure/CFUs after 

UV exposure)) (Koivunen & Heinonen-Tanski 2005). Glycerol stocks of the evolved and 

ancestor populations were revived in 2ml NBKan, overnight. 20µl of the revived culture was 

inoculated in 2ml NBKan and allowed to grow till stationary phase (for 20 hours) before being 

exposed to 3 minutes and 20 seconds of UV radiation. CFUs of the populations were 

determined, both before and after exposure, by plating appropriate dilutions on 2% nutrient 

agar containing kanamycin (NAKan). The serial dilution and plating after UV exposure were 

performed in a dark room illuminated by red light. The number of colonies on the plates were 

counted after 24 hours of incubation in darkness at 37oC. The average CFUs of two 

independent measurement replicates, obtained by repeating the entire assay from revival to 

CFU counts twice, were compared. 

3.2.3 Resistance to erythromycin 

Fitness of the evolved populations in erythromycin was measured in two ways: growth rate 

and minimum inhibitory concentration (MICs).  

Measuring growth rate 

Since the populations were exposed to sub-lethal concentrations during selection, growth 

rates of the evolved and ancestral populations were measured at the final concentration of 

erythromycin. The revived evolved and ancestral populations were inoculated in 200µl NBKan 

with 200µg/mL erythromycin at a dilution of 1/1000 in 96 well plates. These cultures were 

incubated at 37oC and continuous shaking and monitored for 24 hours using a plate reader 
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(Synergy HT, BIOTEK Winooski, VT, USA). The OD600 was measured every 20 minutes. 

Growth rate was computed as maximum slope of the curve over moving windows of 3 hours 

(Karve et al. 2015; Sprouffske et al. 2018; Chavhan et al. 2019; Rodríguez-Rojas et al. 

2020). The average of two measurement replicates obtained by repeating the entire assay 

twice, was compared between populations. 

Measuring minimum inhibitory concentrations 

The resistance of the evolved and ancestor populations were also estimated as the Minimum 

Inhibitory Concentration or MIC. The revived populations were diluted to 1/1000th initial 

concentration and inoculated in serial two-fold dilutions of erythromycin, in triplicates. After 

48 hours, the populations were visually scored as growth or no-growth. The minimum 

concentration where at least two replicates showed no growth was determined as the MIC of 

the populations. MICs of the evolved populations were scaled by their corresponding 

ancestral MIC and the average of two independent experiments were analyzed.  

3.2.4 Fitness in novel environment 

To understand how exposures to UV or erythromycin influence cross resistance to novel 

antibiotics, we measured growth rate and MIC of the evolved and ancestor populations in 

three antibiotics: rifampicin, nalidixic acid and chloramphenicol, belonging to different 

classes of antibiotics. Nalidixic acid and rifampicin inhibit DNA and RNA synthesis by 

binding to DNA gyrase and RNA polymerase, respectively (Kohanski et al. 2010). 

Chloramphenicol inhibits protein synthesis by binding to the 50s ribosome (Kohanski et al. 

2010) which is similar to the mechanism of action of erythromycin. However, the antibiotics 

have different sites of inhibition on the ribosome. Both growth rate and MICs of all 

populations were measured as described above (section 2.3). Growth rate estimations were 

carried out at concentrations that reduced growth rate by ~50%. The sub-lethal concentrations 
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used were as follows: 4µg/mL rifampicin, 25µg/ml nalidixic acid, and 0.5µg/ml 

chloramphenicol.  

3.2.5 Population analysis profile 

To further explore antibiotic resistance of the evolved populations, we performed a 

population analysis profile (PAP). PAP is traditionally performed on clonal populations to 

study the presence of resistant sub-populations within an otherwise isogenic susceptible 

population. However here, we use the PAP protocol to examine the distribution of variation 

in resistance phenotype within our evolved populations. The protocol from (Sherman et al. 

2019) was used with modifications. Briefly, the number of CFUs of the evolved and ancestor 

populations were estimated on NAKan plates with or without a gradient of antibiotics. 

Antibiotic plates were prepared with two-fold increment of antibiotic starting from 0.25x 

where 1x corresponds to the MIC of the ancestor in broth. The assay was performed for 

erythromycin as well as the three novel antibiotics: rifampicin, nalidixic acid and 

chloramphenicol. Revived cultures were diluted and spotted (20µl) and spread undiluted 

(100µl), at each concentration of the antibiotic and incubated for 48 hours. CFU estimations 

were made at appropriate dilution in increasing concentration until either no growth or only a 

single colony were observed in 100µl of undiluted culture. In rifampicin, our observations 

were restricted to 256x (or 4096µg/ml) as the fluctuating treatment populations were able to 

grow at all assayed concentrations. The experiments were replicated twice and the average 

proportion of resistant cells at each concentrations were estimated. One of our populations 

(C2) repeatedly failed to revive. In this case, the PAP assay was performed on a pseudostock; 

cultures revived from D60 stock, stored as a second glycerol stock for backup. 

Resistance and the proportion of resistant cells were interpreted using a modified protocol 

based on (Andersson et al. 2019; Sherman et al. 2019; Maeda et al. 2020). Populations were 



65 
 

considered susceptible when a particular concentration of antibiotic resulted in less than 

1x10−7 CFUs. This ensures that the observed resistance is not a result of spontaneous 

resistance mutants which is expected to arise at a rate <10−7 per cell per generation (Williams 

2014). This concentration was termed as the inhibitory concentration and the concentration 

prior to it as the highest non-inhibitory concentration. Homogeneous resistance was identified 

when at least 50% of the populations survive concentration at least eight fold higher than the 

highest non-inhibitory concentration of the ancestors. Populations exhibited variation in 

resistance when the proportion of population surviving at least 8X non-inhibitory 

concentration of the ancestors was between 10−7 and 50%. 

3.2.6 Cross resistance in subpopulations 

Using PAP assay, we observed that resistance in F populations were distributed as small 

proportions of resistant cells. To further understand the resistance phenotypes of these 

subpopulations, we checked the cross-resistance of these resistant subpopulations in all novel 

environments. Resistant subpopulations were obtained by inoculating the revived F 

population in 8X concentration of nalidixic acid and rifampicin, and 2X concentration of 

chloramphenicol. These correspond to 1024µg/mL nalidixic acid, 128µg/mL rifampicin, and 

8µg/mL chloramphenicol. After 48 hours of growth at these antibiotic concentrations, the 

resulting resistant subpopulations were assayed for their resistance (MIC) in all three 

antibiotics, as described before. The ancestors, revived 24hour prior, were also assayed 

alongside. 

3.2.7 Whole-genome sequencing and analysis 

To understand the genomics of adaptation, we performed whole-genome sequencing at two 

levels. Firstly, we performed whole-population whole-genome sequencing on two randomly-

chosen replicates (rep 3 and 5) and their corresponding ancestors. Secondly, we sequenced 
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only the nalidixic acid and rifampicin resistant subpopulations of the corresponding replicates 

of fluctuating treatments; F3 and F5. Whole-population sequencing was performed on the 

glycerol stocks revived in 4ml NBKan. After incubation for ~16 hours, the culture was 

pelleted, twice washed in phosphate buffer saline and shipped for genome sequencing with a 

commercial service-provider (Eurofins Genomics India Pvt. Ltd., Bengaluru). For 

subpopulation sequencing, the revived populations were inoculated in 1024µg/mL nalidixic 

acid and 128µg/mL rifampicin i.e., 8X concentration of two antibiotics (where 1X is the 

ancestral MIC). The cultures were pelleted after 48 hours of growth. Cell pellets were washed 

in PBS and shipped to a genome-sequencing service provider for sequencing (Genepath 

Diagnostics India Pvt Ltd., Pune). The whole-population sequencing was performed on 

NextSeq500 platform (Illumina, USA) at an average depth of ~135X (range: 83X – 200X) 

and 150bp read length. The subpopulations were sequenced on MiSeq platform (Illumina, 

USA) at average depth of ~91X (range: 87X – 96X) and 150bp read length. The sequence 

reads were trimmed of adaptors, ambiguous and low-quality reads using Trimmomatic v0.38 

(Bolger et al. 2014). The resulting high quality reads were aligned and variants called using 

Breseq version 0.33.2 pipeline (Deatherage & Barrick 2014) at default parameters. We used a 

custom reference genome for alignment. The NCBI reference (Genbank accession: 

NC_000913.3) was updated by incorporating mutations identified in our ancestral sequence. 

The whole population and subpopulations were aligned to their corresponding ancestor 

sequence and mutations were predicted in polymorphism mode. Only the mutations that were 

present at a frequency greater than 10%, and those that were unique in our evolved 

populations, were used in our analysis.  
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3.2.8 Statistical analysis 

UV sensitivity, and erythromycin MIC and growth rate of the evolved and ancestral 

populations were compared in three independent two-way mixed model ANOVAs and 

randomized complete block design (RCBD) (Rohlf & Sokal 1995). Treatment (5 levels) was 

taken as fixed factor and replicates (6 levels) as an independent random factor (neither 

crossed nor nested in other factors). The evolution of correlated fitness in populations 

exposed to single stress (controls) and combination of stress (constant or fluctuating) were 

independently compared to the ancestral fitness. The growth rate and MIC in the three novel 

antibiotics were analyzed in separate two-way mixed model ANOVAs, as before, followed 

by Holm–Šidák correction (Abdi 2010) for inflated family-wise error rate. When the main 

effect of treatment was significant after correction, Tukey’s post-hoc analysis was performed 

for all pairwise comparisons. The MIC of the subpopulations in the three novel antibiotics 

were also analyzed in separate two-way mixed model ANOVAs followed by Holm–Šidák 

correction. Subpopulation identity (3 levels) and replicates (6 levels) were taken as fixed and 

independent random factors, respectively. Tukey’s pairwise comparisons were performed for 

significant main effects, after correction. We also computed the Cohen’s d as a measure of 

effect sizes of fitness differences between pairs of treatment populations (Cohen 2013). The 

effect sizes were interpreted as small, medium and large for 0.2 < d < 0.5, 0.5 < d < 0.8 and d 

> 0.8, respectively (Sullivan & Feinn 2012). 
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3.3. Results 

3.3.1 Fitness in selection environments 

3.3.1.1 UV resistance is not influenced by selection for erythromycin resistance. 

 

 

  

 

Fig. 3.1 Mean log10 reduction (±SEM) in CFUs. Sensitivity to UV induced reduction in 

CFUs was measured at 3 minutes and 20 seconds of exposure. Circles represent mean 

sensitivity and whiskers represent ±SE. The scatter of the six replicate populations is 

plotted as diamonds (♦). Populations denoted by different alphabets are significantly (P < 

0.05, Tukey’s HSD test) different from each other.  
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UV sensitivity, measured as the log10 reduction in CFUs, was significantly between the 

evolved populations and their ancestors (Fig. 3.1; F4,20 = 18.69, P = 1.56E-06). Tukey’s 

pairwise comparisons showed that the three UV exposed populations, UV control, C 

(constant UV + erythromycin) and F (fluctuations between UV and erythromycin), show a 

significant reduction in sensitivity compared to the ancestor and Ery control populations (see 

Table 3.1 for Tukey values and their effect sizes). Ery and ancestors showed no significant 

differences (Tukey’s P = 0.91) suggesting that selection in erythromycin did not result in UV 

resistance. Furthermore, C and F populations had evolved similar extents of UV sensitivity, 

compared to UV control populations (see Table 3.1). Taken together, these results suggest 

that the presence or the absence of erythromycin did not influence the evolution of resistance 

to UV.   
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Table 3.1. Summary of Tukey’s P value and Cohen’s d value of pairwise comparisons of 

UV sensitivity. 

 

Pairwise 

comparison 

P value 

(Tukey's 

post hoc) 

Cohen’s d Interpretation 

C vs. Anc 2.24E-04 2.800 Large 

F vs. Anc 1.36E-04 7.172 Large 

Er vs. Anc 0.915 0.850 Large 

UV vs. Anc 0.002 1.858 Large 

C vs. Er 0.001 2.627 Large 

F vs. Er 1.70E-04 13.203 Large 

UV vs. Er 0.013 1.613 Large 

C vs. UV 0.688 0.453 Medium 

F vs. UV 0.134 1.109 Large 

C vs. F 0.765 0.628 Medium 

 

 

 

  



71 
 

3.3.1.2 Erythromycin resistance is not influenced by UV resistance 

 

 

Fig. 3.2 Fitnesses of the four selection regimes and ancestor in erythromycin. (A). 

Mean growth rate at 200µg/ml of erythromycin (B). Mean of log transformed value of the 

change in MIC (Minimum Inhibitory Concentration), w.r.t the ancestor. Error bars 

represent SEM. The scatter of the six replicate populations is plotted as diamonds (♦) 

around the mean. Populations denoted by a different alphabets are significantly (P < 0.05, 

Tukey’s HSD test) different from each other.  
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Fitness of the evolved populations and their ancestors, in erythromycin, was measured as 

change in minimum inhibitory concentration (MIC) as well as growth rate in 200µl/mL 

erythromycin (final concentration of erythromycin during selection). The populations showed 

a significant main effect for both measures of fitness: growth rate (Fig. 3.2A; F4,20 = 55.75, P 

= 1.45E-10) and change in MIC (Fig. 3.2B; F4,20 = 152.29, P = 1.12E-014). Tukey’s post hoc 

pairwise comparisons showed that all treatments that faced erythromycin during selection 

(Ery control, C, and F) had evolved significantly higher growth rate as well as MIC than both 

ancestor and UV control populations (see Table 3.2 for exact Tukey’s values and their effect 

sizes). Growth rate and MIC of C and F treatments were not significantly different from 

growth rate and MIC of Ery populations. However, the growth rate of F populations was 

marginally greater than C populations with large effect size. There was no significant 

difference between C and F populations in terms of their MICs. Finally, there was no 

significant difference between UV control and ancestors in terms of both growth rate and 

MIC. Taken together, these results suggest that exposure to UV does not influence fitness in 

erythromycin. However, fluctuations between the two stresses confer a marginal advantage, 

over constant exposures, in-terms of growth rate in erythromycin. 
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Table 3.2. Summary of pairwise comparisons of fitnesses in erythromycin. 

 

Pairwise 

comparison 

Growth rate MIC 

P value 

(Tukey's 

post hoc) 

Cohen’s 

d 

Interpretation 

P value 

(Tukey's 

post hoc) 

Cohen’

s d 

Interpretation 

C vs. Anc 1.32E-04 3.290 Large 1.32E-04 16.089 Large 

F vs. Anc 1.32E-04 15.157 Large 1.32E-04 14.032 Large 

Er vs. Anc 1.32E-04 10.762 Large 1.32E-04 12.247 Large 

UV vs. Anc 1.000 0.498 Small 0.861 0.489 Small 

C vs. Er 0.996 0.136 Small 0.971 0.359 Small 

F vs. Er 0.087 2.478 Large 0.763 0.659 Medium 

UV vs. Er 1.32E-04 10.748 Large 1.32E-04 6.567 Large 

C vs. UV 1.32E-04 3.286 Large 1.32E-04 6.846 Large 

F vs. UV 1.32E-04 15.140 Large 1.32E-04 6.449 Large 

C vs. F 0.043 1.174 Large 0.979 0.369 Small 

 

 

 

  



74 
 

3.3.3.2 Genomics of adaptation 

Using whole genome analysis of two replicates of each treatment we identified 77 and 167 

mutations in UV, 14 and 15 mutations in Ery, 33 and 32 mutations in C, and 66 and 26 

mutations, in the respective replicates (see https://doi.org/10.5281/zenodo.5918401 for full 

list of mutations). To understand the genomics of resistance evolution we focused on non-

synomymous SNP that were consistent in both replicates of a treatment. Table 3.3 

summarizes the list of genes, substitutions, and frequency of mutations that were observed in 

both replicate of at least one treatment group (convergent mutations).  

D161G substitution in rec A was fixed in all UV control populations; UV, C, and F. It is a 

reversion of an ancestral mutation that was also observed in our previous experiments 

(Selveshwari et al. 2021). The UV control had mutation in 5 other genes (Table 3.3) involved 

in transcriptional regulation, cell division, aerobic respiration, and protein processing. With 

the exception of crp and yhjJ mutation in UV3, all SNPs were found in smaller proportions in 

the populations (<40%).  

When compared to UV control, exposures to erythromycin (Ery, C and F) resulted in fewer 

mutations. All erythromycin exposed populations, Ery, C and F, show fixation for L828S in 

acrB, a component of RND efflux system (Zgurskaya & Nikaido 1999). In addition, Ery 

control populations had fixed for G66A/D substitutions in rplD, a ribosomal protein with a 

known macrolide binding site (Arevalo et al. 1988). On the other hand, C and F treatments do 

not have the rplD mutations instead, they have an additional mutation, fixation of T5N 

substitution in acrR, a regulator of RND efflux (Ma et al. 1996). In addition to these common 

mutations, ydcT was convergent in C populations and cyaA, nudE, and rpsG were convergent 

in F populations. These genes may be involved in regulation of translation via amino acid 

https://doi.org/10.5281/zenodo.5918401
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transport/metabolism, cAMP biosynthesis, purine metabolism, and ribosomal assembly (see 

discussion).  
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Table 3.3. Summary of genes consistently mutated in both replicate of at least one 

treatment populations. The treatments with mutations in both replicates have been 

highlighted in bold. 

 

 

Gene Codon substitution Population Proportion 

recA  D161G (GAC→GGC)  UV 3 100% 

UV 5 100% 

C 3 100% 

C 5 100% 

F 3 100% 

F 5 100% 

crp T203I (ACC→ATC)  UV 3 100% 

H20Q (CAC→CAA)  UV 5 25.50% 

K45E (AAA→GAA)  UV 5 25.20% 

L74R (CTG→CGG)  C 5 100% 

ftsQ P116F (CCT→TTT)  UV 3 16.80% 

P116L (CCT→CTT)  UV 5 39.40% 

rsxC V707E (GTA→GAA)  UV 3 10.40% 

UV 5 10.90% 

F 3 22.20% 

Q575P (CAG→CCG)  F 3 11.90% 

Q582E (CAA→GAA)  C 5 12.70% 

yacH  K487Q (AAG→CAG)  UV 3 10.60% 

F 3 11.30% 

R492S (AGA→AGC)  UV 5 10.00% 

K487Q (AAG→CAG)  C 5 10.60% 

Er 5 10.00% 

yhjJ  W283* (TGG→TAA)  UV 3 92.90% 
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E457K (GAA→AAA)  UV 5 18.80% 

acrB  L828S (TTA→TCA)  Ery 3 100% 

Ery 5 100% 

C 3 100% 

C 5 100% 

F 3 100% 

F 5 100% 

rplD  G66A (GGC→GCC)  Ery 3 100% 

G66D (GGC→GAC)  Ery 5 100% 

C 3 100% 

F 5 76.50% 

acrR T5N (ACC→AAC)  C 3 100% 

C 5 100% 

F 3 100% 

F 5 100% 

ydcT D166G (GAT→GGT)  C 3 100% 

C 5 100% 

cyaA R162C (CGT→TGT)  F 3 100% 

F 5 100% 

R160C (CGC→TGC)  C 3 100% 

R160S (CGC→AGC)  Ery 5 100% 

nudE  D83Y (GAT→TAT)  F 3 100% 

F 5 100% 

P54L (CCG→CTG)  C 3 100% 

rpsG  L157* (TTA→TGA)  F 3 100% 

F 5 100% 

UV 3 100% 
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3.3.3 Fitness in novel environments 

3.3.3.1 Correlated fitness of exposure to single stress is limited 

 

 

Fig. 3.3 Fitness of control populations in novel antibiotics. (A) Mean growth rate and 

(B) Mean MIC of control populations compared to ancestors in three antibiotics, Nalidixic 

acid (Nal), Rifampicin (Rif) and Chloramphenicol (Chl). Error bars represent SEM. The 

scatter of the six replicate populations is plotted as diamonds (♦) around the mean. 

Populations denoted by different alphabets are significantly (P < 0.05) different in Tukey’s 

pairwise comparisons. Non-significant main effects are represented as n.s. 
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The correlated response of UV and erythromycin resistance was measured as growth rate and 

MIC in three novel antibiotics: nalidixic acid, rifampicin, and chloramphenicol. The control 

populations (UV and Ery) and ancestor showed significant difference only in terms of growth 

rate in rifampicin and chloramphenicol (Fig. 3.3A, Table. 3.4). Selection for erythromycin 

resistance resulted in higher growth rate in rifampicin and chloramphenicol with large effect 

sizes. Growth rate of the Ery populations was significantly greater than both UV selected and 

ancestor population, in rifampicin and significantly greater than ancestor but marginally non-

significant w.r.t UV populations, in chloramphenicol (see table 3.4 for all pairwise 

comparisons). It is interesting to note that despite a large number of mutations in the UV 

control populations, they did not show any fitness difference in the three novel antibiotics.   
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Table 3.4. Summary of the pairwise comparisons of the control populations in novel 

environment 

 

Growth rate      

Assay 

environment 

Holm–

Šidák 

Corrected 

P value 

Pairwise 

comparison 

P value 

(Tukey's 

post hoc) 

Cohen’s d Interpretation 

Nalidixic acid 0.067 - - - - 

Rifampicin 0.007 

UV vs. Anc 0.451 0.626 Medium 

Ery vs. Anc 0.004 10.834 Large 

Uv vs. Ery 0.026 1.574 Large 

Chloramphenicol 0.007 

UV vs. Anc 0.106 1.469 Large 

Ery vs. Anc 0.002 5.113 Large 

Uv vs. Ery 0.063 1.459 Large 

      

MIC      

Assay 

environment 

Holm 

Sidak 

Corrected 

P value 

Pairwise 

comparison 

P value 

(Tukey's 

post hoc) 

Cohen’s d Interpretation 

Nalidixic acid 0.123 - - - - 

Rifampicin 0.292 - - - - 

Chloramphenicol 0.178 - - - - 
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3.3.3.2 Fluctuating exposures to stresses result in broad collateral resistance 

 

 

Fig. 3.4 Novel environment fitness of populations exposed to both stresses. (A) Mean 

growth rate and (B) Mean MIC w.r.t the ancestors in three antibiotics, Nalidixic acid (Nal), 

Rifampicin (Rif) and Chloramphenicol (Chl). Error bars represent SEM. The scatter of the 

six replicate populations is plotted as diamonds (♦) around the mean. Populations denoted 

by different alphabets are significantly (P < 0.05) different in Tukey’s pairwise 

comparisons. 
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The growth rate and MIC of C and F treatment populations were compared to the ancestors in 

the three novel antibiotics. In contrast to the correlated effect of control populations, the main 

effect of selection was significant in all three antibiotics as well as both measures of fitness 

(Fig. 3.4 and Table 3.5). Tukey’s post hoc analysis showed that the C populations had 

evolved significantly greater growth rate in rifampicin and chloramphenicol and greater MIC 

in nalidixic acid and rifampicin, with large effect sizes. However, F populations had evolved 

significantly higher growth rate and MIC, than ancestors, in all three antibiotics. 

Interestingly, the F populations had evolved higher fitness than C populations that was 

significant in three cases (G.R and MIC in rifampicin and G.R in chloramphenicol) and only 

marginally non-significant in the remaining three cases (G.R and MIC in nalidixic acid and 

MIC in chloramphenicol) (Table 3.5). Thus, taken together, fluctuating exposures to UV and 

erythromycin resulted in stronger correlated response than evolution of resistance to single 

stress as well as constant exposures to both stresses. A summary of these results have been 

presented in Table 3.6. 
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Table 3.5. Summary of the pairwise comparisons of C and F populations in novel 

environment 

 

Growth rate      

Assay 

environment 

Holm–

Šidák 

Corrected 

P value 

Pairwise 

comparison 

P value 

(Tukey's 

post hoc) 

Cohen’s d Interpretation 

Nalidixic acid 0.006 

C vs. Anc 0.210 0.898 Large 

F vs. Anc 0.005 10.357 Large 

C vs. F 0.092 1.148 Large 

Rifampicin 6.23E-07 

C vs. Anc 2.01E-04 4.928 Large 

F vs. Anc 1.99E-04 15.366 Large 

C vs. F 0.003 2.280 Large 

Chloramphenicol 3.79E-04 

C vs. Anc 0.018 1.495 Large 

F vs. Anc 3.12E-04 12.758 Large 

C vs. F 0.018 1.464 Large 

      

MIC      

Assay 

environment 

Holm 

Sidak 

Corrected 

P value 

Pairwise 

comparison 

P value 

(Tukey's 

post hoc) 

Cohen’s d Interpretation 

Nalidixic acid 8.15E-04 

C vs. Anc 0.016 1.801 Large 

F vs. Anc 4.71E-04 7.821 Large 

C vs. F 0.057 1.286 Large 

Rifampicin 2.39E-08 

C vs. Anc 0.001 1.836 Large 

F vs. Anc 1.68E-04 10.904 Large 

C vs. F 1.85E-04 2.569 Large 

Chloramphenicol 0.004 

C vs. Anc 0.161 0.919 Large 

F vs. Anc 0.003 4.743 Large 

C vs. F 0.070 1.063 Large 
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Table 3.6 Summary of results in novel antibiotic environment. Growth rate and MICs were 

measured in Nalidixic acid (Nal), Rifampicin (Rif) and Chloramphenicol (Chl). ↑ denotes 

significant increase in fitness w.r.t ancestor (P < 0.05, Tukey’s HSD test). ≈ represents no 

significant change from ancestor. 

 

* denotes F population significantly better than C with P<0.05 from Tukey’s HSD test and # 

denotes F population significantly better than C with P<0.1 from Tukey’s HSD test. 

 

  

Sub-Lethal (Growth rate) Lethal (MIC) 

Nal Rif Chl Nal Rif Chl 

UV ≈ ≈ ≈ ≈ ≈ ≈ 

Ery ≈ ↑ ↑ ≈ ≈ ≈ 

Constant UV+Ery ≈ ↑ ↑ ↑ ↑ ≈ 

Fluctuating UV/Ery ↑# ↑* ↑* ↑# ↑* ↑# 
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3.3.4 Resistance in fluctuating treatment is due to resistant subpopulations 

 

 

Fig. 3.5 Population analysis profile (PAP) of the four selection regimes and their 

ancestors. PAP of the 5 population were assayed in four antibiotics: (A) Erythromycin, (B) 

Nalidixic acid, (C) Rifampicin, and (D) Chloramphenicol. The horizontal line denote the 

threshold for detection of resistance: 1 X 10-7. The vertical line denotes the concentration 

that is 8 times higher than the non-inhibitory concentration of the ancestral population. 
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We used a population analysis profile (PAP) to study the distribution of variation in 

resistance in the evolved populations. In erythromycin, all erythromycin selected populations 

survived concentrations that were at least 8 times higher than the highest non-inhibitory 

concentration of the ancestors. Since 50% of the total population showed growth at this 

concentration, the populations were considered to be genetically resistant to erythromycin 

(Maeda et al. 2020) (Fig. 3.5A). The only exception was replicate 1 of the C treatment where 

50% of the total population was resistant to concentrations four-fold higher than ancestor. At 

eight-fold higher concentration, the proportion of the resistant populations dropped to 17%.  

In chloramphenicol, Ery, C and F populations survived concentrations only four-fold higher 

than the ancestors (Fig. 3.5D) which corresponds to the resistance level observed in MIC 

assays. However, based on the resistance threshold typically used in PAP assays (El-Halfawy 

& Valvano 2015; Andersson et al. 2019) these populations were considered not resistant. We 

observe growth at eight-fold higher concentrations of nalidixic acid and rifampicin. Three 

treatments, UV, C, and F, were resistant in nalidixic acid (Fig. 3.5B) and only F treatment 

was resistant in rifampicin (Fig. 3.5C). The proportion of resistant cells of the populations in 

these antibiotics were much less than 50% but greater than 1x10−7. This is indicative of the 

presence of large variation in resistance phenotypes (heteroresistance) (El-Halfawy & 

Valvano 2015; Andersson et al. 2019) and that high resistance was due to a smaller 

proportion of resistant subpopulations. It is interesting to note that the F treatment had the 

largest fitness gains in the novel environment and that the high MIC was actually due to small 

subpopulations.  
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3.3.5 Resistance in fluctuating treatment is due to independent subpopulations 

 

 

 

Fig. 3.6 Cross resistance profile of the subpopulation in F population. Subpopulations 

were enriched in nalidixic acid (8XN), rifampicin (8XR), and chloramphenicol (2XC) 

where, 1X corresponds to the ancestral MIC. The MICs of the resulting subpopulations 

were measured in (A) Nalidixic acid, (B) Rifampicin, and (C) Chloramphenicol. Mean 

MIC w.r.t the ancestors and SEM are plotted along with scatter of the six replicate values. 

Populations denoted by different alphabets are significantly (P < 0.05) different in Tukey’s 

pairwise comparisons. 
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While we see that resistance in the F populations was due to resistant subpopulations, it is not 

clear whether this is due to a single subpopulation resistant to all antibiotics or multiple 

subpopulations each resistant to one antibiotic. To investigate this, we estimated the MIC of 

the resistant subpopulations from F population in all three novel antibiotics. 

The resistant subpopulations show significant differences in their MICs in all three 

antibiotics: nalidixic acid (Fig. 3.6A; F2,10 = 8.22, P = 0.008), rifampicin (Fig. 3.6B; F2,10 = 

112.89, P = 4.12E-07), and chloramphenicol (Fig. 3.6C; F2,10 = 14.73, P = 0.002). The 

nalidixic acid MIC of the Nal subpopulations were significantly greater than Rif 

subpopulations (Tukey’s P = 0.04) but not significantly different from Chl subpopulations 

(Tukey’s P = 0.55). The rifampicin MIC of the Rif subpopulations were significantly greater 

than both Nal subpopulations (Tukey’s P = 0.0002) and Chl subpopulations (Tukey’s P = 

0.0002). Similarly, the chloramphenicol MIC of the Chl subpopulations were significantly 

greater than both Nal subpopulations (Tukey’s P = 0.004) and Rif subpopulations (Tukey’s P 

= 0.002). Thus, the subpopulations did not show a strong cross resistance to other novel 

antibiotics. It is possible that the resistance to multiple drugs was likely due to the 

coexistence of multiple subpopulations. 
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3.3.6 Resistant subpopulations vary in their resistance mechanism  

To determine the genetics of resistance in the subpopulations of the F treatment, we 

sequenced the subpopulations resistant to at least 8X ancestral MIC in nalidixic acid and 

rifampicin. We used the same two replicate populations as used in the whole genome 

sequencing, F3 and F5 (see https://doi.org/10.5281/zenodo.5918401 for full list of 

mutations). 

In addition to the six nonsynomyous mutations found in the whole population sequencing of 

F treatment (Table 3.3), both nalidixic acid and rifampicin subpopulations had fixed for 

T315P substitution in glvC. It is a putative PTS enzyme II component and likely a 

pseudogene (Reizer et al. 1994). No other mutations, nonsynonymous, synonymous, or 

intergenic, were common between the two replicate subpopulations in nalidixic acid. 

Additionally, no mutations were observed in the common quinolone resistance genes; gyrA 

and parC. On the other hand, rifampicin resistant subpopulations had accumulated multiple 

rpoB mutations: D516N (both replicates), P645L (both replicates), S531F (F3), and Q517H 

(F5).  

Taken together, phenotypic variation in the F populations was also accompanied by variation 

in the genomics of resistance i.e., target-gene mutations vs. general mechanisms of resistance. 

 

  

https://doi.org/10.5281/zenodo.5918401
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3.4. Discussion 

UV radiation acts as both a mutagen and a selective agent. Exposure to UV is expected to 

increase the mutational supply thereby increasing variation available for selection. This can 

result in phenotypic and/or genomic variation in the populations.  It has previously been 

shown that UV induces correlated fitness changes in novel environments including antibiotics 

(Zhang et al. 2017; Li et al. 2021; Selveshwari et al. 2021). Contrary to this earlier result, we 

found that populations were able to evolve similar extents of resistance to erythromycin, 

irrespective of whether or not they were exposed to UV radiation during selection (Fig. 3.1 

and 3.2). Interestingly, constant or fluctuating exposures to UV and erythromycin had very 

little effect on the extent of fitness. However, fluctuating exposures resulted in a marginally 

higher growth rate in erythromycin than constant populations (Fig. 3.2A). These results are 

contrary to our a priori expectation that UV radiation would influence the evolutionary 

outcomes. The observed convergence of phenotypes could indicate a strong selection 

pressure for increased resistance. However, genomic variation could open up multiple routes 

to the same phenotype. Therefore, we next investigated the whole population whole genome 

sequences of the evolved and ancestor populations. 

The number of mutations in the UV control populations was greater than those in the 

erythromycin control population as well as the constant and fluctuating treatment populations 

(see https://doi.org/10.5281/zenodo.5918401 for full list of mutations). UV exposures in both 

constant and fluctuating treatments may have increased the supply of mutations. However, 

we believe that the presence of the second selection pressure (erythromycin) reduced this 

pool of variation to only those that were either beneficial or neutral in the presence of 

erythromycin. Subsequently, to investigate the likely drivers of the evolved phenotypes, we 

limited our analysis to nonsynonymous mutations in genes that were observed in both 

https://doi.org/10.5281/zenodo.5918401
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replicates of at least one treatment population. We identified six such genes in the UV control 

populations. Out of these six, only one mutation was also shared by the treatment populations 

(C and F): D161G recA. We have previously shown that this reversion occurs in UV exposed 

populations and discussed its importance in our previous study (Selveshwari et al. 2021). 

Briefly, although this mutation is a reversion to wild-type recA, the 161st amino acid is an 

important site for proper functioning of recA (Shinohara et al. 2015). Although exploring the 

functional effects of these mutations are currently out of scope for our study, we emphasize 

that a properly functioning recA is crucial under UV stress. recA is responsible for 

recombination repair and as an effector of SOS response in the presence of damaged DNA 

(Smith et al. 1987; Schlesinger 2007; Maslowska et al. 2019). Four of the remaining five 

mutated genes crp, rsxC, yacH, and yhjJ have been previously observed in at least one 

replicate of UV resistant populations (Selveshwari et al. 2021). These genes are involved in 

transcriptional regulation, regulation of transcription factors, membrane protein, and with no 

putative function, respectively (Keseler et al. 2021). The only exception is ftsQ which is an 

essential cell division protein (Carson et al. 1991). Genes related to ftsQ, such as ftsW and 

ftsL were observed in our previous study. Although there are few to no prior studies linking 

the genes and these specific mutation to UV resistance phenotypes, this opens up new 

avenues for research into novel UV resistance mechanisms.  

The two convergent mutations in the Ery control populations are in the known erythromycin 

resistance genes: G66A/D rplD and L828S acrB (Table 3.3). Point mutation in the ribosomal 

protein L4, coded rplD, at G66 is known to modify the ribosomal complex and reduce the 

erythromycin binding capacity (Weisblum 1995; Gregory & Dahlberg 1999; Gomes et al. 

2017). Indeed, substitutions in L4 protein has been recovered in macrolide resistance strains 

of multiple species including Legionella pneumophila (Descours et al. 2017), Haemophilus 

influenza (Clark et al. 2002; Peric et al. 2003), Streptococcus pneumonia (Tait-Kamradt et al. 
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2000; Schroeder & Stephens 2016). In addition to mutation in L4 protein, mutations in 

another ribosomal proteins, L22 and 23s rRNA are also known to confer resistance 

phenotypes (Gomes et al. 2017). However, we failed to detect mutations in these two genes 

in our Ery control populations. The fluctuating treatment, on the other hand, had mutations in 

other ribosomal proteins. Substitution that results in L157* in the S7 ribosomal subunit was 

fixed in the F populations. We also observed this mutation in one of the replicate of UV 

control populations (UV3). A truncated S7 protein is a natural variant that is common in all 

E. coli strains except K as well as other Enterobacteriaceae (Tritsch et al. 1977). Therefore, 

it is less likely that this mutation resulted in direct fitness changes in the selection 

environment. This mutation may have appeared at higher frequency in the fluctuating 

treatment and rose to fixation. We also observed small frequencies of other ribosomal 

mutations in the fluctuating treatment: F3: K90I (L22 protein), K60E (L20 protein) P22F 

(S12 protein) and F5: R95L/C (L6 protein). However, these genes were mutated in only one 

replicate and we refrain from discussing their potential fitness effects in the selection 

environments.  

In addition to mutations to the macrolide binding sites on ribosomal proteins and 23s rRNA, 

epigenetic modifications and altered efflux activity have also been implicated in 

erythromycin resistance (Gomes et al. 2017). However, since WGS cannot identify 

epigenetic modifications, we refrain from discussing its role in resistance in our populations. 

On the other hand, we observe mutation in efflux genes that may have increased resistance to 

erythromycin. A mutation in acrB gene, a part of the RND family of efflux pumps, was fixed 

in our populations. Mutations in the acrAB system has been previously reported in 

erythromycin resistance in E. coli (Chollet et al. 2004; Li et al. 2015). Very interestingly, a 

single SNP (L828S) was fixed in the erythromycin control population as well as the constant 

and fluctuating treatment populations. L828 is a known binding site for erythromycin and 
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changes at this site can influence substrate binding and decrease susceptibility (Schuster et al. 

2016). In addition to mutation in the acrB gene, the constant and fluctuating treatment 

populations had additional mutation in acrR, a repressor of acrAB genes. The SNP T5N was 

fixed in both treatments and is known to inactivate the repressor and increasing the 

expression of acrA by atleast 20% (Gerken & Misra 2004). 

While rplD and acrB mutations were the only convergent mutations in Ery population, both 

C and F populations lacked the rplD mutation instead, they had a combination of mutations in 

acrB and acrR genes. The C treatment had an additional mutation in ydcT which is an ATP-

binding component of a putative ABC transporter (Saier Jr et al. 2014) which likely functions 

as an additional efflux system in the presence of antibiotics. The F treatment on the other 

hand, had mutations in ribosomal subunit protein (rpsG) along with cya A and nudE. We 

have already discussed rpsG mutation in the context of erythromycin resistance above and 

will be discussing the relevance of cyaA and nudE genes in the context of antibiotic and UV 

resistance later in the discussion.  

Altered efflux activity may or may not increase the MIC but will increase the chance of 

mutations in the antibiotic target sites (target altering mutations) resulting in high fitness 

(Ebbensgaard et al. 2020; Papkou et al. 2020). For example, the median change in 

ciprofloxacin MIC in strains with increased efflux activity results was orders of magnitude 

lower than strain with both target alteration and efflux mutations (van der Putten et al. 2019). 

We see a similar combination of target (rplD) and efflux (acrB) mutations which, can explain 

the high levels of resistance in Ery control populations. However, it is interesting that similar 

levels of erythromycin resistance in C and F treatments were achieved with mutations in the 

efflux gene (acrB) and its regulator (acrR) but without target altering mutations. More 

importantly, all three treatments were homogeneously resistant to erythromycin, as seen in 
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population analysis profile (PAP) assay (Fig. 3.5A). Thus we see that although exposure to 

UV radiation along with selection for erythromycin resistance in the C and F treatments had 

very little effect in terms of the phenotype, it resulted in divergent genomic pathways to 

resistance. These results are in line with Couce et al. (Couce et al. 2015) where differences in 

the spectrum of mutational supply influenced the trajectory of genomic evolution to 

cefotaxime resistance. 

Although the genomic differences did not translate into phenotypic differences in the 

selection environment, the polymorphism may become apparent as fitness differences in 

other novel environments i.e., conditional neutrality (Wagner 2005). To study this, we 

investigated the correlated fitnesses of our evolved populations in the presence of other 

antibiotic environments. The key mutations in our evolved populations have been shown to 

also influence fitness in other antibiotic environments. While G66A/D rplD has no effect on 

fitness in the presence of rifampicin (Descours et al. 2017), L828S acrB may influence 

fitness in rifampicin (Nakashima et al. 2011). Nakashima et al (Nakashima et al. 2011) found 

that there was an overlap of erythromycin and rifampicin binding regions in the acrB protein. 

In addition, mutation at the 5th amino acid position of acrR, more specifically T5N 

substitution, is known to influence resistance to norfloxacin and chloramphenicol (Wang et 

al. 2001). Interestingly, although there was such overlap in terms of resistance mechanisms, 

all the three antibiotics belong to different classes with different sites of action.  

The correlated effect of the evolved population in norfloxacin, rifampicin, and 

chloramphenicol, measured as growth rate and MIC revealed interesting interactions. The UV 

control population did not show change in correlated fitness in any of these environments, in 

both growth rate and MIC (Fig. 3.3). The lack of correlated effect of UV resistance is 

contrary to our a priori expectation that increased genetic variation may result in beneficial 
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variation for increased resistance. It is also in contrast to our previous study (Selveshwari et 

al. 2021) where exposure to UV radiation during lag and exponential phase resulted in 

increased MIC in nalidixic acid, rifampicin, and chloramphenicol. The discrepancy could be 

due to the fact that the populations in this study were subjected to 60 rounds of UV exposure 

during stationary phase as compared in 100 rounds during lag and exponential phase in our 

previous study. It is possible that 60 exposures were not long enough to elicit a strong 

collateral response. Secondly, UV induced mutations during the stationary phase may have 

very different functional effects resulting in little cross resistance. This further highlights the 

importance of studying the growth phase specific effects of UV mutagenesis.  

Erythromycin resistance in erythromycin control populations on the other hand, was 

associated with increased growth rate in rifampicin and chloramphenicol but not MIC (Fig. 

3.3). While the observed mutations and the resulting change in efflux activity may explain 

fitness in rifampicin, it does not explain fitness in chloramphenicol. One of the primary 

macrolide resistance mechanisms is target altering mutations of 23s rRNA which, is also 

known to confer chloramphenicol resistance (Ettayebi et al. 1985). While there is an 

interaction in the resistance mechanisms between chloramphenicol and erythromycin, we do 

not see this exact pathway being implicated in our population. It may be possible that there 

are other unknown pathways to chloramphenicol and erythromycin cross resistance that do 

not involve 23s rRNA mutations and/or acrB efflux protein.  

While novel fitness in the Ery control populations were limited to increased growth rate in 

chloramphenicol and rifampicin, the C treatment had additional increase in nalidixic acid and 

rifampicin MIC (Fig. 3.4). The observed mutation in acrB and acrR genes (efflux protein) 

likely explain the increase in growth rate in the novel antibiotics  in C treatment. However, 

we expect changes in MIC to be usually accompanied with target altering mutations such as 
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DNA gyrase and topoisomerase IV, and RNA polymerase w.r.t nalidixic acid and rifampicin 

resistance, respectively (Bearden & Danziger 2001; Ruiz 2003; Hopkins et al. 2005; Tupin et 

al. 2010; Goldstein 2014). However, we do not observe any target altering mutations in either 

of gryA, parC, or rpoB genes in the WGS of C treatment. The F treatment had the highest 

fitness increase in all three antibiotics in terms of both growth rate as well as MIC (Fig. 3.4). 

While mutations in acrB and acrR resulting in altered efflux activity, may explain the fitness 

changes in the three antibiotic environments, it is not clear why or how the F populations 

were able to evolve fitness greater than C populations which also share the same mutations. 

No additional target altering mutations that could be attributed to greater increase in MICs, 

were identified in the F treatment.  

Further analysis (PAP) revealed that the evolved populations showed variation in resistance 

to the novel antibiotics. Mutations in the efflux proteins were fixed in these populations. 

Thus, if modified efflux activity were alone responsible for resistance to novel antibiotics, we 

would expect no differences in fitness. However among the treatment populations, C showed 

variation in resistance to nalidixic acid whereas F showed variation in both nalidixic acid and 

rifampicin resistance (Fig. 3.5B and 3.5C). Since the proportion of these resistant cells were 

orders of magnitude smaller, other genetic determinants for resistance, if any, may be missed 

in the whole population sequencing. Identification of other such mechanisms may explain the 

increase in fitness and variation in the F treatment. Therefore, we focused on WGS of the 

resistant subpopulations from the F treatment.  

The genomic sequences of the resistant subpopulations revealed divergent resistance 

mechanisms. Both replicates of the rifampicin resistant subpopulations had acquired 

mutations in the rpoB gene which codes for RNA polymerase (RNAP), the primary target of 

rifampicin. In total, four different mutations were observed in the rpoB genes of which, 3 



97 
 

SNPs have been previously shown to confer rifampicin resistance in E.coli (Garibyan et al. 

2003) and the fourth SNP has been observed in rifampicin resistant Mycobacterium sp. (Wu 

et al. 2009; Zenteno-Cuevas et al. 2009). The nalidixic acid resistant subpopulations, on the 

other hand, do not have any convergent genomic changes between the two replicate 

populations which could be used to deduce the mechanism of resistance. More importantly, 

no additional target altering mutations in DNA gyrase (gryA) or DNA topoisomerase IV 

(parC) were identified even in the nalidixic acid resistant subpopulations. There is a rare 

pleotropic effect of rpoB mutations that is known to confer resistance to ciprofloxacin, a 

fluroquinolone similar to nalidixic acid (a quinolone) (Pietsch et al. 2016). However, we did 

not find any rpoB mutations in the nalidixic acid subpopulations which could point towards 

cross-resistance within the subpopulations. Interestingly, we found that the F population were 

actually composed of multiple subpopulations, each resistant to one antibiotic (Fig. 3.6). This 

is different from ‘multi-drug resistance’ where a single mutation (such as efflux regulation) 

makes the population resistant to multiple antibiotics (Gifford et al. 2019).  

Phenotypic heterogeneity, similar to that observed in the F treatment, is a common 

phenomenon in microbial populations (Holland et al. 2014; Ackermann 2015; van Boxtel et 

al. 2017). Heterogeneity within microbial populations can originate due to multiple factors 

including variation in the environment (Holland et al. 2014; Smith et al. 2018), genome 

(Bódi et al. 2017; Carja & Plotkin 2017), epigenetic changes such as phase-variable genes, 

methylation and feedback regulatory networks (Smits et al. 2006; Ackermann 2015). 

Environment fluctuations are central to the F treatment which, is expected to maintain greater 

genetic variation (Kussell et al. 2005; Kussell & Leibler 2005; Acar et al. 2008; Beaumont et 

al. 2009; Carja et al. 2014; Patra & Klumpp 2014). However, the effect of heterogeneous 

environment on variation may be limited by the supply of variation itself (Bürger & 

Gimelfarb 2002). Since the F populations had increased MIC in rifampicin and nalidixic acid 
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we are unable to perform a fluctuation test to estimate the mutation rates. Therefore, we can 

only speculate the effects of increased mutation rates on fitness and variation in fitness. An 

increased intrinsic or UV induced mutation rate in the F treatment, may interact with 

environmental fluctuations resulting in the observed variation in fitness.  

Another factor that could influence variation in fitness is epigenetic changes resulting in 

noisy gene regulation. It could promote variation by ensuring the survival of at least a small 

proportion of cells under stress conditions (Garcia-Bernardo & Dunlop 2015; Freddolino et 

al. 2018). Global regulator genes have been implicated in generation of variation antibiotic 

tolerance, resulting in persister cells (Mok et al. 2015; Uppal & Jawali 2016; Molina-Quiroz 

et al. 2018). Persisters increase survivorship as well as mutation rates, increasing the 

likelihood of acquiring antibiotic resistance mutations (Windels et al. 2019). Additionally, 

selection for increased growth rate in antibiotic free medium can also give rise to antibiotic 

resistance mutations such as rpoB mutations (Katz & Hershberg 2013; Knöppel et al. 2017). 

We observe this in the F treatment as significant increase in growth rate in the presence of 

erythromycin (Fig. 3.2A) as well as in its absence (growth in NB, figure 3.7). 
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Figure 3.7. Mean growth rate (± SEM) of the evolved and ancestral population in 

nutrient broth. The scatter of the six replicate populations is plotted as diamonds (♦) 

around the mean. The main effect of selection in significant (F4,20 = 14.94, P = 8.34E-06). 

Tukey’s post hoc analysis show that F treatment has a significantly higher growth rate 

compared to all other populations (p values of pairwise comparisons with A: p=0.0001; 

UV: p=0.025; Ery: p=0.0004; C: p=0.002). Populations denoted by a different alphabets 

are significantly (P < 0.05, Tukey’s HSD test) different from each other. 

 

  



100 
 

Additionally, we also observe fixation of two global regulator genes in our F treatment: cyaA 

and nudE. The product of cyaA, adenylate cyclase, catalyzes the synthesis of cyclic AMP 

(cAMP), an important metabolism-signaling molecule (Pastan & Perlman 1970). 

Additionally, cAMP bound to crp protein is responsible for the regulation of over half of 

E.coli genome (reviewed in (Soberón-Chávez et al. 2017). Mok et. al., (Mok et al. 2015) 

showed that expression of cyaA, in addition to other global regulator genes, leads to 

phenotypic variation and persisters within isogeneic populations. Although nudE gene has not 

been previously associated with antibiotic resistance, it is a part of the nudix hydrolase 

superfamily which regulate (p)ppGpp (Sanyal et al. 2020), which is a crucial regulator of 

metabolism in persisters (Liu et al. 2017).  Changes in these global regulator genes could 

have resulted in the generation of increased variation in fitness, more specifically antibiotic 

tolerant persister cells. Such intermediate antibiotic tolerance can function as stepping stones 

towards resistance via genetic changes (Levin-Reisman et al. 2017; Barrett et al. 2019).  

To summarize, evolution of erythromycin resistance resulted in correlated fitness increase in 

other novel antibiotics. However, exposure to UV radiation during erythromycin resistance 

evolution led to the increase in the extent of the correlated fitness. Further analysis revealed 

that fluctuation in exposure to UV and erythromycin resulted in the maintenance of 

subpopulations resistant to different antibiotics. Whole genome sequencing of the population 

and subpopulations suggests complex interactions between mutational spectrum and supply, 

and epigenetic changes, resulting in the observed variation in fitness in the F treatment.  
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Chapter 4: The effect of migration and variation on populations of 

Escherichia coli adapting to complex fluctuating environments 
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4.1. Introduction 

Migration affects a number of ecological and evolutionary processes, such as a species’ range 

(Kirkpatrick & Barton 1997; Barton 2001; Sexton et al. 2009), composition, and diversity in 

meta-populations and natural communities (Venail et al. 2008; Albright & Martiny 2018) and 

evolution of traits like virulence (Boots & Sasaki 1999; Lively 1999) and antibiotic resistance 

(Perron et al. 2007). Interestingly, when it comes to adaptation, migration can have 

contrasting effects. For example, migration has been shown to impede adaptation in a 

microbial community subjected to warmer temperatures (Lawrence et al. 2016) and in 

coevolving host-phage systems (Morgan et al. 2005; Vogwill et al. 2011). Similarly, in 

viruses, migration can reduce the extent of specialization to different tissue types (Cuevas et 

al. 2003). One of the ways migration negatively affects adaptation is by swamping the 

destination environment with alleles that are beneficial or neutral at the source environment 

but maladaptive at the destination (Kawecki & Holt 2002; Kawecki & Ebert 2004; Yeaman & 

Guillaume 2009). At the same time, several studies have demonstrated that migration can 

promote adaptation. For example, asexual populations of Chlamydomonas exposed to 

herbicides (Lagator et al. 2014) and yeast populations evolving in the presence of salt stress 

(Bell & Gonzalez 2011) adapted more rapidly in the presence of migration. Similarly, 

adaptation of Φ6 phage population to a novel host was favored by migration from 

populations that had the ability to infect this novel host (Ching et al. 2013). However, when 

migrants came from control populations unable to infect the novel hosts there was no effect 

on the absolute fitness (Ching et al. 2013). Migration can positively influence adaptation by 

increasing the supply of beneficial mutations, particularly when populations are mutation 

limited (Holt 2003; Sexton et al. 2009), such as in asexual microbes.  
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Interestingly, most empirical studies on how migration influences adaptation in microbes 

have been carried out only in constant environments, typically in the presence of a single 

selection pressure (Morgan et al. 2005; Dennehy et al. 2010; Ching et al. 2013; Lagator et al. 

2014; Lawrence et al. 2016). However, in nature, organisms are often faced with 

heterogeneous environments that contain multiple stressors at the same time. To further 

complicate matters, the magnitudes of these stresses can fluctuate over time, either 

predictably or unpredictably. Adaptations in such spatially and/or temporally heterogeneous 

environments can be very different from what has been observed in simple constant 

environments (Levins 1968; Reboud & Bell 1997; Cooper & Lenski 2010; Karve et al. 2016). 

The effect of migration on adaptation under such complex and fluctuating environments has 

received relatively less attention (however see (Perron et al. 2007)). 

Here, we present the results of our study on the effects of different rates of migration on 

adaptation, in replicate populations of Escherichia coli that were subjected to complex 

environments undergoing unpredictable fluctuations.  We also looked at the effects of 

migrants that were either clonal or carrying variation.  When the immigrants were clonal, the 

recipient populations evolved reduced fitness compared to the no migration control.  

Interestingly, the magnitude of fitness reduction varied positively with the fraction of 

immigrants received. However, treatments that received immigrants with variation showed 

little or no change in fitness compared to the no migration control. Thus, our results highlight 

the importance of considering the nature of the environment as well as the immigrants in 

studying the effects of migration on adaptation. 
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4.2. Materials and Methods 

This study was conducted using Escherichia coli MG1655 with kanamycin resistance 

cassette. All cultures were maintained at 37oC and 150 RPM throughout the selection and 

assays, except where stated otherwise. 

4.2.1 Immigrant Populations 

This study consisted of two selection experiments. In each selection experiment, we used two 

types of populations: the immigrant and the native. The native populations evolved in the 

complex fluctuating environments and experienced the effects of immigration. The 

immigrant populations were non-evolving cultures freshly revived every day (see section 2.2 

Selection protocol). The two selection experiments differed only in terms of the nature of the 

immigrant populations. In experiment 1, we used a Clonal immigrant population (henceforth 

C). This was derived from a single E.coli colony and grown in 150ml NB with kanamycin 

(NBKan) for 18 hours. Multiple 1 ml glycerol stocks (15%) of this culture were prepared and 

stored at -80oC. In the second experiment, we used the Variation immigrant population 

(henceforth V), which was derived from the C population. V population was initiated by 

reviving 1ml glycerol stock of the C population in 10ml NBKan
 followed by inoculation of 

1ml of this revived culture in 50ml NBKan. For the next 15 days, we sub-cultured (1/10th 

dilution) this population into 50ml NBKan every 12 hours. After 15 days (i.e. 30 transfers), 

50ml of the grown culture was added to 50ml fresh NBKan and incubated for another 12 

hours. Multiple 1ml glycerol stocks (15%) were prepared and stored at -80oC. By this time, 

the V population had spent ~100 generations in benign environment, during which a number 

of spontaneous mutations were expected to have arisen in the culture. Since we maintained 

this population under optimal conditions, large culture volume (Nf: 50ml) and lenient 

bottlenecks (1/10), we expect most mutations arising in the population to accumulate. Thus, 
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the V population was expected to harbor greater genetic variation than the C population. To 

confirm this, we quantified the within-population variance in fitness in the C and V 

populations using the methodology of an earlier study (McDonald et al. 2012).  

4.2.2 Quantification of within-population variance 

To quantify the amount of variation accumulated in the V population, fitnesses of 72 

individual colonies of both C and V populations was assayed in 6 environments and the 

within-population fitness variance is used as a proxy for genetic variation (McDonald et al. 

2012). Single colony suspensions were made from 6 similar sized colonies of both C and V 

population. 10µL of the single colony suspension was inoculated in 200µL of six assay 

environments, assayed in a single 96-well plate. The environments included sub-lethal 

concentrations of all stress combinations and NBKan. Environment I: pH 5+Salt 3.5g%, 

Environment II: pH 8.5+Salt 2.5g%, Environment III: pH 5+4µl 0.3% H2O2, Environment 

IV: pH 8.5+2µl 0.3% H2O2, Environment V: Salt 2.5g%+1.5µl 0.3% H2O2 and Environment 

VI: NBKan. H2O2 was added, 2 hours after inoculation, where required. The populations were 

continuously monitored (OD600) for 24 hours, from inoculation, using a plate reader (Synergy 

HT) at 37oC and continuous medium shaking. This entire procedure was repeated over 12 

days for a total of 72 colonies from each of the C and V populations. Growth rate and yield 

were estimates using a custom python script; see section 2.4 for details of estimation. The 

coefficient of variation in fitness (growth rate and yield) between the six colonies of each day 

was compared, between C and V and across each environment.  
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4.2.3 Selection Protocol 

We initiated 48 replicate populations each from both the C and the V ancestor populations. 

1ml of the corresponding glycerol stocks were revived overnight in 10ml NBKan and 20µL of 

the revived culture (OD600 1.0 – 1.1) was inoculated in 2ml selection environment  

Selection environment: The populations were subjected to selection for 30 days in 

environments that were complex (i.e., multiple stressors were present simultaneously) and 

fluctuated unpredictably. Selection regime similar to a previous study (Karve et al. 2015) was 

used. Briefly, selection involved three stresses: pH, osmotic (NaCl) and oxidative (H2O2) 

stress. Combinations of the stresses were created such that two of the three components was 

present at inhibitory concentration while the third was present at concentration as found in 

NB (i.e., pH=7, NaCl=0.5g% and H2O2=0). A number of such combinations at different 

concentrations were tested for their effect on growth of the WT in a pilot experiment. 

Combinations that resulted in ~ 40 – 70% reduction in growth as compared to growth in NB 

were chosen. A total of 28 combinations were chosen and a sequence of 30 environments 

were chosen from a uniform distribution with replacement. The sequence of environments 

used is listed in Table 4.1. 

Migration treatment: We used four levels of migration, namely 0% (control), 10% (low 

migration), 50% (intermediate migration) and 90% (high migration). Addition of immigrant 

population as surplus to the native population can increase population sizes proportional to 

the extent of migration. This can result in large differences in population sizes across 

treatments, which can affect the evolutionary outcomes (Chavhan et al. 2019). To avoid the 

confounding effect of population size, we kept the inoculum size constant (~107 cells) and 

defined migration as the percentage of immigrants in the inoculum. For example, in the low 

(10%) migration treatment, 10% of the individuals in the subculture inoculum consisted of 
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immigrants while the remaining 90% were individuals from the native population (evolving 

under complex fluctuating environment). The proportions were adjusted based on the OD600 

values of the immigrant and native populations at the time of subculture. When OD600 = 1, the 

culture contained ~109 cells / ml of NB (S Selveshwari, personal observations). 

1ml glycerol stock of the C or V population were revived in 10ml NBKan, everyday. OD600 of 

the revived culture was adjusted to 1.0 – 1.1 and used as immigrant population. OD600 of the 

native populations were also measured and appropriate volume of culture containing the 

required inoculum size was used for the sub-culture. When the OD600 of these populations 

was less than 0.3, the populations were considered extinct and native population was obtained 

from the previous non-extinct population, stored at 4oC. The selected populations were stored 

as glycerol stocks at the end of 30 day. 

4.2.4 Fitness assays 

Fitnesses of the evolving populations were measured during selection as well as post 

selection. OD600 in the selection environment was noted at the end of every 24 hours and the 

geometric mean of these values over the 30 days of selection was used as a measure of fitness 

under fluctuating stress (Orr 2009). Using the same data, we also estimated the probability of 

extinction (OD600 < 0.3) during selection.  

Fitnesses post selection, was measured as growth rate and yield of the populations in three 

representative environments. Environment 1: pH 8.5+salt 4.5g%; Environment 2: pH 

5+0.5µL H2O2; Environment 3: salt 2.5g%+0.7µL H2O2. All 48 replicate populations of each 

selection experiment were assayed twice in each assay environment. 4µL of glycerol stock 

was revived in 2ml NBKan, overnight. The OD600 of the revived culture was measured and a 

volume containing 107 cells (assuming 109 cells/2ml when OD600 = 1) was inoculated in 2ml 

assay environments in 24-well tissue culture plates. The OD600 was measured every 2 hours 
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for 24 hours at 37oC and slow continuous shaking using a plate reader (Synergy HT BioTek, 

Winooski, VT, USA). Following previous studies, we used population growth rate and yield 

as fitness measures (Karve et al. 2015; Chavhan et al. 2019). The growth curve data was 

analyzed using a custom python script which fits overlapping straight lines over periods of 6 

hours. Growth rate was computed as the maximum slope of the curve and yield as the 

maximum OD600 reached in 24 hours. 

4.2.5 Statistical analysis 

All fitness comparisons were performed independently for the two selections. Population 

fitness during selection (geometric mean of growth and extinction probability), were 

compared across the migration treatments using separate one way ANOVAs with migration 

treatment (0, 10, 50, 90) as a fixed factor. Fitnesses (growth rate and yield), post selection, 

were compared as independent two way mixed model ANOVAs in each of the assay 

environments. Migration treatment (0, 10, 50, 90) was taken as fixed factor. The growth rate 

and yield from the two rounds of assays was considered as measurement replicates and the 

biological replicates (12 levels) was taken as random factor and nested in migration 

treatment. To account for the inflation of family-wise error rate, the P values of the main 

effect of migration were subjected to Holm–Šidák correction (Abdi 2010). When the 

corrected P value was significant, pairwise comparisons were performed using Tukey’s post 

hoc analysis. We also computed the Cohen’s d statistics (Cohen 2013) as a measure of the 

effect sizes (Sullivan & Feinn 2012). The biological significance of the differences between 

the treatments were interpreted as small, medium and large for 0.2 < d < 0.5, 0.5 < d < 0.8 

and d > 0.8, respectively. The within-population variance in fitness of the C and V 

populations was compared using paired t-Test in each environment. The inflation in family-

wise error was controlled using Holm–Šidák correction. 
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All the ANOVAs were performed on STATISTICA v7.0 (Statsoft Inc.). Cohen’s d statistics 

were estimated using the freeware Effect Size Generator v2.3.0 (Devilly 2004). 

 

Table 4.1. Sequence of complex fluctuating environments used during selection. 

Complex fluctuating environment 

Day pH NaCl (g/100ml) H2O2 (µL) 

1 5 4 - 

2 4.5 3 - 

3 5 4.5 - 

4 - 2.5 0.8 

5 5 3.5 - 

6 5 - 0.6 

7 5 3 - 

8 - 4 0.5 

9 - 3 0.5 

10 5 3 - 

11 - 4 0.5 

12 - 3 0.5 

13 5 - 0.7 

14 - 3 0.5 

15 8.5 - 0.5 

16 - 3 0.7 

17 5 - 0.5 

18 5 3 - 

19 9 - 0.5 

20 5 5 - 

21 - 3 0.5 

22 9 - 0.5 

23 8.5 5 - 

24 4.5 3 - 

25 8.5 4 - 

26 - 2 0.8 

27 5 3 - 

28 8.5 4 - 

29 5 4 - 

30 8.5 4 - 
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4.3. Results 

4.3.1. Clonal immigration impedes adaptation in complex and unpredictable environment  

 

 

 

Figure 4.1. Effect of clonal migration during selection in complex unpredictable 

environments. Fitness was measured as A) Geometric mean of growth, during selection. B) 

Probability of extinction in the selection environments, during selection. Each box plot 

represents data from 12 replicate populations. Solid lines represent median, dotted lines 

denote mean, whiskers denote 10th and 90th percentiles and dots denote 5th and 95th 

percentile. Box plots denoted by different letters are significantly different from each other (P 

< 0.05 in Tukey’s posthoc analysis). 
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After 30 rounds of clonal migration and selection, (corresponding to ~200 generations in the 

no migration control populations) we found that the control populations (i.e. those that did 

not receive any immigrants) were significantly better adapted than populations that received 

immigrants (from clonal source, C). The geometric mean of growth, during selection, was 

significantly different between the migration treatments (Fig. 4.1A; F3,44 = 28.76, P = 1.88E-

10). The no migration control populations had the highest GM of growth. However, this was 

only significantly higher than intermediate (Tukey’s p = 0.01; Cohen’s d = 1.49 (large)) and 

high (Tukey’s p = 0.0002; Cohen’s d = 3.56 (large)) migration treatments. The reduced GM 

of growth of high migration treatment was also significant w.r.t low (Tukey’s p = 0.0002; 

Cohen’s d = 2.88 (large)) and intermediate (Tukey’s p = 0.0002; Cohen’s d = 2.42 (large)) 

migration treatments. This reduction in growth was accompanied by a significant effect in 

terms of extinction probability (Fig. 4.1B; F3,44 = 13.48, P = 2.25E-06). Tukey’s post hoc 

indicated that the high migration treatment had significantly greater extinction probability 

compared to all treatment population (control: p = 0.0002; Cohen’s d = 2.11 (large); 

intermediate: p = 0.0002; Cohen’s d = 2.13 (large); high: p = 0.006; Cohen’s d = 1.66 

(large)). Thus, during selection, presence of migration reduced the populations’ ability to 

survive and grow in the selection environment, resulting in significant increase in extinction 

probability at high migration. We next tested how this reduced survivability and growth 

affected the overall adaptation. 
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Table 4.2. Summary of P values of the effect of clonal migration on fitness measured 

during selection. 

 

  
ANOVA P 

value 

Pairwise 

comparison 

P value 

(Tukey's 

post hoc) 

Cohen’s d Interpretation 

GM of 

growth 
1.88E-10 

Cont. vs. Low 0.8840 0.265 Small 

Cont. vs. Inter 0.0097 1.490 Large 

Cont. vs. High 0.0002 3.557 Large 

Low vs. Inter 0.0613 1.017 Large 

Low vs. High 0.0002 2.879 Large 

Inter vs. High 0.0002 2.425 Large 

Extinction 

probability 
2.25E-06 

Cont. vs. Low 0.9977 0.054 Small 

Cont. vs. Inter 0.1719 0.868 Large 

Cont. vs. High 0.0002 2.112 Large 

Low vs. Inter 0.2414 0.869 Large 

Low vs. High 0.0002 2.132 Large 

Inter vs. High 0.0058 1.657 Large 
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4.3.2. Presence of variation in the immigrant pool counters the negative effect of migration. 

 

 

Figure 4.2. Effect of clonal migration on fitness, post selection. Two fitness proxies A) 

growth rate and B) growth yield were measured in three complex environments. See methods 

for composition of the three complex environments. Each box plot represents data of 24 

values i.e., 12 replicate population, assayed twice. Solid lines represent median, dotted lines 

denote mean, whiskers denote 10th and 90th percentiles and dots denote 5th and 95th 

percentile. Box plots denoted by different letters are significantly different from each other  

(P < 0.05 in Tukey’s posthoc analysis).   
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Extent of adaptation, post selection, was estimated as growth rate and growth yield in three 

complex environments. When the fitnesses across all three environments were analyzed 

together in a single ANOVA, we see that the interaction between migration treatments and 

assay environment is significant (Fig. 4.2; Growth rate: F6,144 = 2.43, P = 0.03; Growth yield: 

F6,144 = 4.62, P = 4.0E-04). Therefore, the effect of clonal migration on fitness in the three 

complex environments were analyzed separately. 

The results of ANOVAs, P values and Cohen’s d of all pairwise comparisons are summarized 

in Tables 4.3 and 4.4. Briefly, all migration treatment had significantly lower growth rate and 

yield than the no migration control populations in environment 1. Growth rate of low 

migration treatment was significantly higher than both intermediate and high migration 

treatments which were not significantly different from each other. Similarly, growth yield of 

low migration treatment was higher but it was significant w.r.t only high migration treatment. 

But again, both intermediate and high migration treatments were not significantly different 

from each other. In environment 2, only two migration treatments (intermediate and high) 

had significantly lower growth rate and yield w.r.t the control. However, the growth rate of 

the low migration populations was only marginally insignificant (Tukey’s p = 0.054) w.r.t 

control populations in environment 2. Both growth rate and yield of the low migration 

treatment was significantly higher than the intermediate and high migration treatment. 

However, there was no significant difference between growth rates and yields of intermediate 

and high migration treatment. In environment 3, both growth rate and yield of only the high 

migration treatment was significantly lower than all other treatments. Thus, taken together, 

we see that when populations are faced with complex and unpredictable environments, 

migration can have an overall negative effect on the evolutionary outcomes. Additionally, the 

negative effects experienced by these populations were monotonic with the level of migration 

received. 
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Table 4.3. Summary of the P values for growth rate of clonal migration, post selection.  

P value of the main effect of migration is reported after Holm-Šidák correction for 

familywise error. Migration treatments were compared with each other using Tukey’s post-

hoc analysis. Pairwise effect sizes were computed as Cohen’s d. 

 

Growth rate 

  

Holm 

Sidak 

Corrected 

P value 

Pairwise 

comparison 

P value 

(Tukey's 

post hoc) 

Cohen’s d Interpretation 

Envt. 1 0.001252 

Cont. vs. Low 0.011 0.491 Small 

Cont. vs. Inter 1.67E-04 1.043 Large 

Cont. vs. High 1.67E-04 1.245 Large 

Low vs. Inter 0.023 0.702 Medium 

Low vs. High 0.002 0.997 Large 

Inter vs. High 0.814 0.348 Small 

Envt. 2 5.68E-06 

Cont. vs. Low 0.054 0.684 Medium 

Cont. vs. Inter 1.75E-04 1.321 Large 

Cont. vs. High 1.67E-04 2.330 Large 

Low vs. Inter 0.037 0.626 Medium 

Low vs. High 2.98E-04 1.302 Large 

Inter vs. High 0.255 0.486 Small 

Envt. 3 5.07E-05 

Cont. vs. Low 0.462 0.390 Small 

Cont. vs. Inter 0.330 0.473 Small 

Cont. vs. High 1.76E-04 1.915 Large 

Low vs. Inter 0.995 0.059 Small 

Low vs. High 0.002 1.184 Large 

Inter vs. High 0.003 1.177 Large 
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Table 4.4. Summary of the P values for growth yield of clonal migration, post selection.      

P value of the main effect of migration is reported after Holm-Šidák correction for 

familywise error. Migration treatments were compared with each other using Tukey’s post-

hoc analysis. Pairwise effect sizes were computed as Cohen’s d. 

 

Growth yield 

  

Holm 

Sidak 

Corrected 

P value 

Pairwise 

comparison 

P value 

(Tukey's 

post hoc) 

Cohen’s d Interpretation 

Envt. 1 0.000116 

Cont. vs. Low 0.171 0.598 Medium 

Cont. vs. Inter 0.321 1.113 Large 

Cont. vs. High 1.68E-04 1.304 Large 

Low vs. Inter 0.984 0.642 Medium 

Low vs. High 0.002 0.894 Medium 

Inter vs. High 0.001 0.227 Small 

Envt. 2 1.11E-08 

Cont. vs. Low 0.532 0.350 Small 

Cont. vs. Inter 1.68E-04 1.763 Large 

Cont. vs. High 1.67E-04 2.851 Large 

Low vs. Inter 2.85E-04 1.088 Large 

Low vs. High 1.67E-04 1.668 Large 

Inter vs. High 0.441 0.465 Small 

Envt. 3 1.5E-05 

Cont. vs. Low 0.034 0.567 Medium 

Cont. vs. Inter 2.13E-04 0.479 Small 

Cont. vs. High 1.72E-04 2.122 Large 

Low vs. Inter 0.159 0.088 Small 

Low vs. High 0.044 1.137 Large 

Inter vs. High 0.934 1.271 Large 
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4.3.3 Variant (V) population has higher variation in fitness than the clonal (C) population 

 

 

Figure 4.3. Average coefficient of variation of the clonal and variant population. 

Variation of fitness (CV) was measured in growth rate and yield of the two populations 

assayed in 6 representative environments. Each bar represents the average CV over 72 

individual colonies assayed over 12 days. Error bars are SE of mean. * denote p value < 0.05 

in paired t-Test after Holm-Šidák correction. 
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Next, we investigate the effects of increased variation in the migrant population on the 

evolutionary outcome of the recipient populations. For this, we enriched the variation of the 

ancestral population (variation source, V). After ~100 generations of lenient bottlenecking 

(1/10th), in benign environment, the V population showed significant increase in variation in 

fitness, measured as coefficient of variation, in 4 out of 6 tested environments (Fig. 4.3 and 

Table 4.5). The increase in variation was seen w.r.t both growth rate and yield in 

environments II, III, V and NB. The p values of all the paired t-Test after Holm-Šidák 

correction is listed in Table 4.5. Thus, V population had larger within-population fitness 

variance than C population and was used as the source of migrants in a second selection 

experiment.  

 

Table 4.5. Summary of the P values of paired T-test of coefficient of variation in fitness 

between C and V ancestors, after Holm-Šidák correction 

 

 

p value after Holm-Šidák 

correction 

Environment Growth rate Yield 

I 0.649 0.425 

II 0.003 0.0001 

III 0.018 0.005 

IV 0.413 0.858 

V 0.044 0.014 

NB 0.006 0.009 
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4.3.4 Presence of variation in the immigrant pool counters the negative effect of migration. 

 

Figure 4.4. The effect of migration, when the immigrants carry variation. Fitness was 

measured as A) Geometric mean of growth, during selection. B) Probability of extinction in 

the selection environments, during selection. Each box plot represents data from 12 replicate 

populations. Solid lines represent median, dotted lines denote mean, whiskers denote 10th 

and 90th percentiles and dots denote 5th and 95th percentile. Box plots denoted by different 

letters are significantly different from each other (P < 0.05 in Tukey’s posthoc analysis). 
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When the migrant populations carried variation (V population), migration had an effect only 

at high levels of migration. A significant main effect was observed w.r.t geometric mean of 

growth (Fig 4.4A; F3,44 = 34.14, P = 1.48E-11). GM of growth was reduced at high levels of 

migration and this reduction was significantly different from all other treatments in Tukey’s 

post-hoc analysis (control: p = 1.69E-04, Cohen’s d = 2.25 (large); low: p = 1.69E-04, 

Cohen’s d = 3.37 (large); intermediate: p = 1.69E-04, Cohen’s d = 3.52 (large)). 

Subsequently, extinction probability also had a significant main effect of migration (Fig 4.4B; 

F3,44 = 6.07, p= 0.0015) and high migration treatment had an elevated probability of 

extinction. However, this increase in extinction was significantly different from only low and 

intermediate migration treatment (low: p = 9.32E-04, Cohen’s d = 2.02 (large); intermediate: 

p = 0.03, Cohen’s d = 0.90 (large)). Thus in contrast to migration from a clonal source, the 

negative effect of migration, during selection, is diminished when the migrants carry 

variation. 
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Table 4.6. Summary of P values of the effect of migration with variation on fitness 

measured during selection.  

 

  
ANOVA 

P value 

Pairwise 

comparison 

P value 

(Tukey's 

post hoc) 

Cohen’s d Interpretation 

GM of 

growth 
1.48E-11 

Cont. vs. Low 0.133 0.932 Large 

Cont. vs. Inter 0.089 1.037 Large 

Cont. vs. High 0.0002 2.254 Large 

Low vs. Inter 0.998 0.097 Small 

Low vs. High 0.0002 3.371 Large 

Inter vs. High 0.0002 3.519 Large 

Extinction 

probability 
1.50E-03 

Cont. vs. Low 0.218 1.494 Large 

Cont. vs. Inter 0.906 0.242 Small 

Cont. vs. High 0.138 1.192 Large 

Low vs. Inter 0.576 0.439 Medium 

Low vs. High 0.001 2.021 Large 

Inter vs. High 0.030 0.898 Large 
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4.3.5. Presence of variation in the immigrant pool counters the negative effect of migration. 

 

Figure 4.5. Effect of migrant, with variation, on fitness post selection. Fitness was 

estimated as A) growth rate and B) growth yield in three complex environments. Each box 

plot represents data of 24 values i.e., 12 replicate populations, assayed twice. Solid lines 

represent median, dotted lines denote mean, whiskers denote 10th and 90th percentiles and 

dots denote 5th and 95th percentile. Box plots denoted by different letters are significantly 

different from each other (P < 0.05 in Tukey’s posthoc analysis). 

 

  



123 
 

Following the analysis in section 4.3.1, fitnesses of the populations, receiving migrants with 

variation, in the three complex environments, were also analyzed as independent ANOVAs 

(Tables 4.7 and 4.8). In contrast to clonal migration, we found that the main effect of 

migration was either non-significant (growth rate in environments 2 and 3) or when 

significant, the effect was limited to only the populations receiving high level of migration. 

The growth rate and yield of the populations in environment 1 is significant only between the 

no-migration control and high migration treatments. The main effect of growth rate in 

environment 2 was not significant (F3,44 = 1.9, P = 0.144). However, growth yield is 

significant and Tukey’s post hoc analysis show that high migration treatment has 

significantly lower yield than control and low migration treatments (Table 4.8). Alike 

environment 2, growth rate in environment 3 was also not significant (F3,44 = 2.56, P = 0.13). 

Similarly, growth yield is significant and Tukey’s post hoc analysis show that high migration 

treatment has significantly lower yield than only no-migration control (Table 4.8). Taken 

together, these results illustrate that the presence of variation in the migrant pool can 

ameliorate the negative effects of migration. 
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Table 4.7. Summary of the P values for growth rate of migration with variation. P value 

of the main effect of migration is reported after Holm-Šidák correction for family-wise error. 

Migration treatments were compared with each other using Tukey’s post-hoc analysis. 

Pairwise effect sizes were computed as Cohen’s d. 

 

Growth rate 

  

Holm 

Sidak 

Corrected 

P value 

Pairwise 

comparison 

P value 

(Tukey's 

post hoc) 

Cohen’s d Interpretation 

Envt. 1 0.02406 

Cont. vs. Low 0.984 0.109 Small 

Cont. vs. Inter 0.612 0.395 Small 

Cont. vs. High 0.032 0.847 Large 

Low vs. Inter 0.819 0.283 Small 

Low vs. High 0.074 0.747 Medium 

Inter vs. High 0.377 0.510 Medium 

Envt. 2 0.1435 NA NA NA NA 

Envt. 3 0.1296 NA NA NA NA 
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Table 4.8. Summary of the P values for growth yield of migration with variation. P value 

of the main effect of migration is reported after Holm-Šidák correction for familywise error. 

Migration treatments were compared with each other using Tukey’s post-hoc analysis. 

Pairwise effect sizes were computed as Cohen’s d. 

 

Growth yield 

  

Holm 

Sidak 

Corrected 

P value 

Pairwise 

comparison 

P value 

(Tukey's 

post hoc) 

Cohen’s d Interpretation 

Envt. 1 1.9E-05 

Cont. vs. Low 0.581 0.528 Medium 

Cont. vs. Inter 0.703 0.397 Small 

Cont. vs. High 0.010 1.070 Large 

Low vs. Inter 0.997 0.077 Small 

Low vs. High 0.200 0.681 Medium 

Inter vs. High 0.136 0.690 Medium 

Envt. 2 0.007 

Cont. vs. Low 1.000 0.046 Small 

Cont. vs. Inter 0.808 0.284 Small 

Cont. vs. High 0.009 0.934 Large 

Low vs. Inter 0.755 0.298 Small 

Low vs. High 0.007 0.922 Large 

Inter vs. High 0.084 0.555 Medium 

Envt. 3 0.010 

Cont. vs. Low 0.680 0.371 Small 

Cont. vs. Inter 0.328 0.587 Medium 

Cont. vs. High 0.003 1.057 Large 

Low vs. Inter 0.933 0.164 Small 

Low vs. High 0.061 0.627 Medium 

Inter vs. High 0.210 0.491 Small 
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4.4. Discussion 

In this study, we investigated the effect of immigration on adaptation of asexual populations 

in complex and unpredictably fluctuating environments. Immigration from clonal and non-

evolving source (ancestor) population, resulted in reduction in fitness during selection (Fig. 

4.1) as well as post-selection (Fig. 4.2). During selection, as the proportion of immigrants 

increased, the geometric mean (GM) of growth decreased (Fig. 4.1A) and the extinction 

probability increased (Fig: 4.1B). After ~200 generations, the populations that received 

immigrants during selection, had adapted less with reduced growth rate (Fig. 4.2A) and yield 

(Fig. 4.2B). The reduction in fitnesses increased with the fraction of immigrants in the 

evolving populations.  

These results are in contradiction with a number of studies where the presence of migration 

promotes larger and/or faster adaptation in asexual organisms (Bell & Gonzalez 2011; 

Lagator et al. 2014). In particular, it disagrees with a previous study (Perron et al. 2007) that 

used a similar experimental setup of clonal source population and showed that increasing 

immigration rates leads to rapid evolution. In their study, although the rates of adaptation 

were faster in benign (single antibiotic) environments than in harsh (two antibiotic) 

environments, the effect of migration was positive in all cases. In contrast, we see increasing 

negative effects of migration with increasing rates of migration. One possible reason for the 

discrepancy in results could be the intensity of the stress used in the selection environments. 

While both experiments had multiple stress components, Perron et. al., (Perron et al. 2007) 

used lethal concentrations of stress whereas we used sub-lethal concentrations. Lethal stresses 

create a sink environment where population size is expected to decline without sustained 

migration (as pointed out by the authors themselves) (Dias 1996; Holt 1997; Holt & 
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Gomulkiewicz 1997). As in the case of the two experiments ((Perron et al. 2007) and this 

study), immigration from a clonal source population can be expected to promote adaptation in 

terms of its demographic effect, i.e., changes in population sizes, which in turn can influence 

the adaptive dynamics of these populations. However, in non-lethal/ non-sink environments, 

like in our experiment, migration provided no demographic advantage as populations can 

persist here without immigration. Instead, the effect was largely negative as selection for 

locally fitter individuals can be diluted by increasing proportions of immigrants (Kawecki & 

Holt 2002; Lenormand 2002; Kawecki & Ebert 2004). The two studies taken together 

highlight that the nature of the environment faced by the evolving populations needs to be 

considered when studying the effect of migration on adaptation. The results can potentially be 

very different when the populations are evolving in sub-optimal environments compared to 

those evolving in lethal environments. 

Since clonal immigrants in sub-optimal environments did not provide any significant 

advantage to adaptation, we next investigated how variation in the immigrants influences 

adaptation to complex and unpredictable environments. To this end, we conducted a second 

selection experiment using source population with larger variation in fitness (Fig. 4.3). 

Immigration from this variant population had little or no effect on the evolving population as 

seen from fitness measured during as well as post selection (Figs. 4.4 and 4.5). Populations 

receiving low and intermediate levels of migration did not show reduction w.r.t any aspects 

of fitness. However, reduction in fitness was observed when the populations were subjected 

to high migration. 

It has been previously shown in bacteriophages that increased variation, due to migration, can 

promote adaptation (Dennehy et al. 2010). However in that study, the positive effect was 

limited to immigration from source populations grown in the same environment as the 
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selection environment. Migration between similar environments could have promoted the 

spread of beneficial variation between sub-populations (Kassen 2014). On the other hand, in 

our study the source population was grown in a benign environment, unrelated to the 

selection environment. Migration from such a source is not limited to only beneficial 

variants. Additionally, the distribution of fitness effects of new mutations is expected to 

greatly vary in a complex and fluctuating environment with a rugged and shifting fitness 

landscapes (Van Cleve & Weissman 2015). Thus, in non-sink but complex unpredictable 

environments, we see that the benefit of increased variation was only enough to counter the 

negative effects of migration. These results are in agreement with theoretical predictions that 

variation in the migrant pool can ameliorate the negative effects of migration (Barton 2001). 

However, if the amount of variation is too high, then one can expect negative effects on 

fitness, including extinctions (Barton 2001). Significant reduction in all aspects of fitness 

with high migration can be indicative of existence of such a limit on the positive effects of 

increased variation via migration. 

Populations receiving high levels of migration, from both clonal and variant sources, relied 

on recurrent immigration and revival from previous time points for survival under complex 

unpredictable conditions. This is a clear demonstration of the creation of pseudo-sinks where 

viable environments appear to have become a sink environment as a result of high migration 

(Watkinson & Sutherland 1995). Repeated introduction of individuals into sub-optimal 

environments can limit adaptation and result in the populations being in a constant state of 

maladaptation, a phenomenon commonly observed at range margins (Kirkpatrick & Barton 

1997). 
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4.5. Conclusions 

Migrating individuals play multiple roles (demographic, variation) in the destination 

environment (Garant et al. 2007). The relative importance of these aspects of migration and 

their influence on adaptation is dependent on the quality of environment. Maintenance of a 

sustainable population might be more critical in a lethal sink environment but supply of 

variation is more important in sub-optimal environments, without which migration can result 

in the creation of pseudo-sink environments. Since sub-optimal environments are likely more 

prevalent in nature, it is important that studies be conducted under such conditions to fully 

understand the effects of migration. Additionally, it becomes important to consider the 

interactions between the role of migrating individuals and the environment they migrate into.  
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Chapter 5: Frequency and predictability of fluctuations have very little 

effect on adaptation in Escherichia coli populations 
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5.1. Introduction 

Experimental evolution studies have played an important role in developing our 

understanding of the different aspects of evolution. However, until recently, most 

experimental evolution studies have typically considered static/constant environment (Lenski 

et al. 1991; Gresham et al. 2008; Goldman & Travisano 2011; Puentes-Téllez et al. 2013). 

But, the environment is rarely ever constant. Organisms are constantly challenged with 

heterogeneity and fluctuations in their environment. More specifically, the physical, chemical 

and biological components of the microscale environments surrounding microorganisms can 

be extremely heterogeneous.. For example, nutrients are not always uniformly distributed but 

maybe localized (Pett-Ridge & Firestone 2005; Billerbeck et al. 2006; Or et al. 2007; Stocker 

2012). Such heterogeneities can in turn strongly influence the growth and distribution of 

microorganisms in the environment. However, it is only in the last two decades that we have 

started understanding evolution in fluctuating environments (reviewed in (Nguyen et al. 

2021).  

Evolution in temporally fluctuating environments differs in many ways from that in constant 

environments. Firstly, the speed of adaptation is expected to be slower when the environment 

fluctuates vs. when the environment is constant (Kassen 2002, 2014). Secondly, a relatively 

homogeneous environment and a variable one are known to promote the evolution of 

specialist and generalist phenotypes respectively (Gilchrist 1995; Condon et al. 2014; 

Haaland et al. 2020). However, predictability and the relative scale of fluctuation (fine-

grained vs. coarse-grained) influence the finer details of these phenotypes. For example, 

predictable coarse-grained environmental fluctuations can support the evolution of 

phenotypic plasticity and/or sequential emergence of specialists (Crill et al. 2000; Simons 

2011; Rezaie et al. 2021). Unpredictable fine-grained fluctuations, on the other hand, can 
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favour the evolution of broadly adapted generalists with increased fitness in all component 

environments (Tufto 2015). Coarse-grained and unpredictable fluctuations can in general 

favour the evolution of bet-hedging strategies (Kussell et al. 2005; Acar et al. 2008). Studies 

have shown that intermediate levels of fluctuations can result in higher levels of genetic 

variation by promoting stable coexistence of diverse communities where constant 

environments would result in the exclusion of one or more species (Rodríguez‐Verdugo et al. 

2019). Again, the exact outcomes are highly dependent on the timescales of fluctuation 

where, too fast or too slow fluctuations have been shown to result in extinction (Rodríguez-

Verdugo & Ackermann 2021).  

Thus, microorganisms have been known to employ diverse strategies when adapting to 

fluctuations in the environment, which in turn, are influenced by the nature of fluctuations 

itself. Intuitively, adaptation to predictable fluctuation is expected to be different from 

adaptation to unpredictable fluctuations. Similarly, the frequency of fluctuations is expected 

to influence the rate and extent of adaptation. While prior studies have demonstrated 

differences in evolutionary outcomes depending on the nature of fluctuation (discussed 

above), relatively few empirical studies have directly compared the effects of differences in 

the nature of fluctuations. Studies on the effects of predictable vs. unpredictable fluctuations 

have yielded conflicting results. Some studies (Hughes et al. 2007; Alto et al. 2013) provide 

evidence for the effect of predictability on adaptation while others (Turner & Elena 2000; 

Karve et al. 2018) observed no difference between predictable and unpredictable fluctuations. 

Empirical studies comparing the effects of frequency of fluctuations have resulted in non-

significant results. In clonal populations of Chlamydomonas reinhardtii, there was no effect 

of the frequency of fluctuations (at intra- or inter-generational timescales) on the extent of 

adaptation (Kassen & Bell 1998). Similarly, Pseudomonas fluorescens adapting to 

fluctuations in nutrient concentration and a wide range of frequencies (between every day to 
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every 48 days) also did not show a significant effect of the rate of fluctuations (Buckling et 

al. 2007). However, it is to be noted that both these studies considered only predictable 

fluctuations. To the best of our knowledge, the interaction between the predictability and 

frequency of fluctuations has not received sufficient attention. 

We subjected replicate populations of Escherichia coli fluctuations between stress (sub-lethal 

concentration of cobalt chloride) and no-stress (nutrient broth) environment. Our goal in this 

study was to investigate the effect of fluctuations, with more emphasis on fluctuation and less 

on the choice of environment. Therefore, to simplify our experimental system, we used 

fluctuations between stress and no-stress conditions, such that the populations had to adapt to 

only one stress and not two separate ones. E. coli populations were subjected to both 

predictable and unpredictable fluctuations at three different frequencies. The populations 

were also subjected to gradual increase in the concentrations of cobalt chloride, every 240 

generations. After 240 generations, the populations subjected to rapid predictable fluctuations 

in cobalt chloride had evolved growth rate similar to populations constantly exposed to cobalt 

chloride. However, the populations experiencing the other combinations of fluctuation and 

predictability had a significant reduction in growth rate in the same environment. 

Interestingly, the pattern was completely reversed after 720 generations. At this point, the 

populations experiencing rapid predictable fluctuations had a significantly lower growth rate 

than the control populations, in cobalt chloride, whereas the fitness of all the other treatments 

were similar to that of the control. 
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5.2. Materials and Methods 

5.2.1 Experimental evolution 

This study was conducted on Escherichia coli MG1655 strain with kanamycin resistance. A 

single colony was inoculated in 10 ml nutrient broth with kanamycin (NBKan) and allowed to 

grow for 24 hours at 37oC and 150 RPM. A total of 64 replicate populations were initiated, 

by inoculating 20 µl of this grown culture in 2ml NBKan. These populations were equally 

divided between 8 treatment regimes with 8 replicate populations per treatment. The replicate 

populations were subjected to either constant stress (sublethal concentration of cobalt 

chloride) or benign (NBKan) environment, or fluctuations between the two. The fluctuations 

were either predictable or unpredictable, fluctuating at one of the three different frequencies: 

change in environment every 1, 2 or 6 subcultures. Predictable fluctuations involved 

alternating between the two environments and a random sequence of fluctuations was used 

for the unpredictably fluctuating treatment (see supplementary material for sequence of 

unpredictable fluctuations). The number of times populations were exposed to each of the 

two environments was kept the same in all fluctuating treatments (54 exposures to each 

environment), which was half of the number of exposures in the constant regimes (108 

exposures). Populations were subcultured every 12 hours by inoculating 20 µl of grown 

culture in 2ml fresh media, resulting in ~6.64 (log2 100) generations per transfer. All 

populations were maintained at 37oC and 150 RPM throughout the selection duration. At the 

beginning of the selection, populations were exposed to 10mg/ml cobalt chloride which 

resulted in ~60% reduction in growth, measured as both growth rate and yield, compared to 

growth in NBKan. With repeated exposures, populations showed an increase in fitness in the 

stress environment. Therefore, to ensure that the populations were continuously stressed, the 

concentration of cobalt was increased every 36 transfers (after ~240 generations). The 
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concentration was increased twice, from 10mg/ml to 20 mg/ml and then to 30 mg/ml. The 

selection lasted for a total of 108 transfers (54 days). After every ~240 generations, glycerol 

stocks were made for each population by adding 700 µl of culture to 300 µl of 50% glycerol. 

5.2.2 Fitness assays 

Fitness of the evolving populations was estimated after 240 and 720 generations of 

adaptation. All 64 populations, including the fluctuation and constant regimes, were assayed 

together in both stress and benign (cobalt and NBKan) environments. The populations after 

240 generations were subjected to 10mg/ml cobalt chloride whereas populations after 720 

generations were subjected to 30 mg/ml. 4µL glycerol stocks were revived in 2ml NBKan, 

overnight. The assays were performed in conditions similar to the selection. Briefly, 20µL of 

the revived culture was inoculated in 2ml assay environments, in 24-well tissue culture plates 

and incubated at 37oC and 150 RPM. Every 2 hours, for 24 hours, OD600 of the cultures was 

measured using a plate reader (Synergy HT BioTek, Winooski, VT, USA). Following 

previous studies (Karve et al. 2015; Chavhan et al. 2019), we estimated fitness as the 

populations’ growth rate and yield using a custom python script which computes the 

maximum slope (growth rate) of the growth curve data over a period of 6 hours and 

maximum OD600 in 24 hours (yield). The fitness of the treatment populations, scaled by the 

fitness of the corresponding control populations in the respective assay environments were 

compared. The entire assay was repeated twice to obtain two measurement replicate data. 

5.2.5 Statistical analysis 

The scaled fitnesses of the treatment populations, after evolution, were analyzed using two-

way mixed model ANOVA with treatment (7 levels; 6 treatments and 1 control line) as fixed 

factor and replicate populations (8 populations) as random factor nested in treatment. 

Fitnesses, measured as growth rate or yield, in the two assay environment and at two time-
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points were compared using independent ANOVA. Since a total of 8 ANOVAs were 

performed, to correct for the inflation of family-wise error rates, a Holm-Šídák correction 

was performed on p-values of the treatment main effect (Abdi 2010). When the main effect of 

treatment was significant, pairwise comparisons were performed using Tukey’s post-hoc 

comparisons. We also computed the Cohen’s d statistics (Cohen 2013) as a measure of the 

effect sizes (Sullivan & Feinn 2012). The biological significance of the differences between 

the treatments were interpreted as small, medium and large for 0.2 < d < 0.5, 0.5 < d < 0.8 

and d > 0.8, respectively.  

All the ANOVAs were performed on STATISTICA v7.0 (Statsoft Inc.). Cohen’s d statistics 

were estimated using the freeware Effect Size Generator v2.3.0 (Devilly 2004). 
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5.3. Results 

5.3.1 Fitness of the treatment populations measured as growth rate 

 

Figure 5.1. Mean scaled growth rate of the treatment populations w.r.t constant regime in the 

two assay environments. Fitness of the different treatment populations were measured as growth 

rate in the two environments i.e., 10mg/ml cobalt chloride after generation 240 (A) and 30mg/ml 

cobalt chloride after 720 generations (B) along with nutrient broth (NB) (C and D). Predictability 

of fluctuations are represented either as P (predictable, open symbols) or U (unpredictable, closed 

symbols). Error bars represent SEM. Horizontal reference lines represent growth rate of the 

constant populations in the corresponding environment. Letters above the mean represents the 

significance between the different treatments. Populations represented by different letters are 

significantly different from each other (P < 0.05, in Tukey’s posthoc analysis). An * below the 
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mean denote that the treatment is significantly different (P < 0.05, in Tukey’s posthoc analysis) 

from 1.0 (i.e., growth rate of the constant populations).  
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Growth rate of the fluctuating treatments, scaled by the growth rate of the control 

populations, showed significant main effect of treatment (after a Holm-Šídák correction) in 

both assay environments at both time-points: cobalt-240 generations (Fig. 5.1A; F6,56 = 28.67 

P = 1.57E-13), cobalt-720 generations(Fig. 5.1B; F6,56 = 5.32 P = 5.46E-04), NB-240 

generations (Fig. 5.1C; F6,56 = 8.22 P = 1.77E-05), NB-720 generations (Fig. 5.1D; F6,56 = 

11.58 P =6.92E-10). Tukey’s post-hoc analysis was performed to further compare the 

fluctuating treatment populations with each other as well as with the constant population. 

After 240 generations of adaptation with fluctuating exposures to sub-lethal concentrations of 

cobalt chloride and NBKan, treatment populations had significantly lower growth rate in 

cobalt chloride (Fig. 5.1A, table 5.1) with significantly higher growth rate in NBKan (Fig. 

5.1C, table 5.3) than the corresponding constant populations. However, this pattern had 

completely changed by the time the populations evolved for 720 generations. Here, the 

growth rate of the treatment populations were not significantly different from the constant 

population in cobalt environment (Fig. 5.1B, table 5.2). But, they had a significantly reduced 

growth rate in NBKan compared to the NBKan constant populations (Fig. 5.1D, table 5.4). 

While all treatment populations had this pattern of trade-off in fitness, there was one 

exception. The growth rate of populations exposed to predictable fluctuation every 12 hours 

(P12) was similar to the constant population after 240 generations (Fig. 5.1A, table 5.1) but 

had a significantly lower growth in cobalt chloride w.r.t the constant populations after 720 

generation (Fig. 5.1B, table 5.2). Furthermore, P12 was significantly different from all 

treatments except U72 after 240 generations (Fig. 5.1A, table 5.1) and P72 after 720 

generations (Fig. 5.2B, table 5.2) of evolution. However, growth rate of P12 in NBKan 

environment was similar to the other treatment populations after 240 and 720 generations i.e., 

there was no significant difference between the six treatment populations.  
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It is interesting to note that rapid predictable fluctuations were significantly different from the 

other treatments. However, the growth rate of these populations were similar to or 

significantly lower than the growth rate of the control populations after 240 and 720 

generations, respectively. Additionally, this effect was limited to the fitness in cobalt. 
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Table 5.1. Summary of Tukey’s P value of the scaled growth rate in cobalt chloride after 240 

generations 

 

 Treatment {1} {2} {3} {4} {5} {6} {7} 

1 P 12  0.000384 0.000145 0.017410 0.000139 0.071447 0.998031 

2 U 12 0.000384  0.981023 0.840128 0.938816 0.516171 0.000166 

3 P 24 0.000145 0.981023  0.340522 0.999989 0.121126 0.000136 

4 U 24 0.017410 0.840128 0.340522  0.229608 0.998176 0.003484 

5 P 72 0.000139 0.938816 0.999989 0.229608  0.072028 0.000135 

6 U 72 0.071447 0.516171 0.121126 0.998176 0.072028  0.017084 

7 Co 0.998031 0.000166 0.000136 0.003484 0.000135 0.017084  

 

Table 5.2. Summary of Tukey’s P value of the scaled growth rate in cobalt chloride after 720 

generations 

 

 Treatment {1} {2} {3} {4} {5} {6} {7} 

1 P 12  0.001953 0.010859 0.000559 0.073994 0.015333 0.013943 

2 U 12 0.001953  0.997480 0.999511 0.854919 0.992770 0.994492 

3 P 24 0.010859 0.997480  0.951941 0.990986 1.000000 1.000000 

4 U 24 0.000559 0.999511 0.951941  0.607304 0.919415 0.929642 

5 P 72 0.073994 0.854919 0.990986 0.607304  0.996668 0.995508 

6 U 72 0.015333 0.992770 1.000000 0.919415 0.996668  1.000000 

7 Co 0.013943 0.994492 1.000000 0.929642 0.995508 1.000000  
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Table 5.3. Summary of Tukey’s P value of the scaled growth rate in nutrient broth after 240 

generations 

 

 Treatment {1} {2} {3} {4} {5} {6} {7} 

1 P 12  0.996461 0.920336 0.622611 0.837920 0.655924 0.021944 

2 U 12 0.996461  0.998631 0.928659 0.990895 0.942857 0.003744 

3 P 24 0.920336 0.998631  0.997267 0.999993 0.998413 0.000812 

4 U 24 0.622611 0.928659 0.997267  0.999795 1.000000 0.000228 

5 P 72 0.837920 0.990895 0.999993 0.999795  0.999915 0.000462 

6 U 72 0.655924 0.942857 0.998413 1.000000 0.999915  0.000245 

7 Co 0.021944 0.003744 0.000812 0.000228 0.000462 0.000245  

 

Table 5.4. Summary of Tukey’s P value of the scaled growth rate in nutrient broth after 720 

generations 

 

 Treatment {1} {2} {3} {4} {5} {6} {7} 

1 P 12  0.445739 0.150774 0.358838 0.354331 0.911457 0.000135 

2 U 12 0.445739  0.996105 0.999999 0.999999 0.981434 0.000135 

3 P 24 0.150774 0.996105  0.999172 0.999260 0.777959 0.000135 

4 U 24 0.358838 0.999999 0.999172  1.000000 0.958344 0.000135 

5 P 72 0.354331 0.999999 0.999260 1.000000  0.956704 0.000135 

6 U 72 0.911457 0.981434 0.777959 0.958344 0.956704  0.000135 

7 NB 0.000135 0.000135 0.000135 0.000135 0.000135 0.000135  
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5.3.2 Fitness measured as yield 

 

Figure 5.2. Mean scaled growth yield of the treatment populations w.r.t constant 

regime in the two assay environments. Fitness of the different treatment populations 

were measured as growth yield in the two environment i.e., 10mg/ml cobalt chloride after 

generation 240 (A) and 30mg/ml cobalt chloride after 720 generation (B) along with 

nutrient broth (NB) (C and D). Predictability of fluctuations are represented either as P 

(predictable, open symbols) or U (unpredictable, closed symbols). Error bars represent 

SEM. Horizontal reference lines represent growth yield of the constant populations in the 

corresponding environment. Letters above the mean represents the significance between 

the different treatments. Populations represented by different letters are significantly 
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different from each other (P < 0.05, in Tukey’s posthoc analysis). An * below the mean 

denote that the treatment is significantly different (P < 0.05, in Tukey’s posthoc analysis) 

from 1.0 (i.e., growth yield of the constant populations).  
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The scaled growth yield show significant main effect of treatments (after a Holm-Šídák 

correction) for all four comparisons; cobalt-240 generations (Fig. 5.2A; F6,56 = 15.33 P = 

5.1E-09), cobalt-720 generations (Fig. 5.2B; F6,56 = 3.17 P = 0.01), NB-240 generations (Fig. 

5.2C; F6,56 = 6.52 P = 1.25E-04), NB-720 generations (Fig. 5.2D; F6,56 = 7.59 P =3.47E-05). 

Tukey’s post-hoc comparisons showed that there was no significant difference between the 

fluctuating treatments in all four comparisons. However, they significantly differed from the 

corresponding constant populations in terms of yield in both cobalt and NB, after 240 

generations. The fluctuating populations had evolved significantly lower yield in both 

environments (Figs. 5.2A and 5.2C, tables 5.5 and 5.7). On the other hand, all treatment 

populations (except P12) had evolved growth yield similar to both constant populations, after 

720 generations (Figs. 5.2B and 5.2D, tables 5.6 and 5.8). Although P12 treatment was not 

significantly different from the other treatment populations, it was the only treatment that had 

a lower fitness than the constant population in NB, after 720 generations (Fig. 5.2D, table 

5.8). 

Taken together, the fluctuating treatment populations did not show differences in yield across 

the two assay environments. 
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Table 5.5. Summary of Tukey’s P value of the scaled growth yield in cobalt chloride after 

240 generations 

 

 Treatment {1} {2} {3} {4} {5} {6} {7} 

1 P 12  0.999873 0.168308 0.704846 0.135890 0.243853 0.017420 

2 U 12 0.999873  0.317632 0.882150 0.266378 0.426943 0.006448 

3 P 24 0.168308 0.317632  0.959200 1.000000 0.999996 0.000137 

4 U 24 0.704846 0.882150 0.959200  0.934794 0.986450 0.000243 

5 P 72 0.135890 0.266378 1.000000 0.934794  0.999948 0.000136 

6 U 72 0.243853 0.426943 0.999996 0.986450 0.999948  0.000139 

7 Co 0.017420 0.006448 0.000137 0.000243 0.000136 0.000139  

 

Table 5.6. Summary of Tukey’s P value of the scaled growth yield in cobalt chloride after 

720 generations 

 

 Treatment {1} {2} {3} {4} {5} {6} {7} 

1 P 12  0.098240 0.264271 0.186707 0.996857 0.668732 0.129099 

2 U 12 0.098240  0.999027 0.999941 0.318933 0.907189 1.000000 

3 P 24 0.264271 0.999027  0.999997 0.616302 0.993607 0.999825 

4 U 24 0.186707 0.999941 0.999997  0.496806 0.977377 0.999997 

5 P 72 0.996857 0.318933 0.616302 0.496806  0.944681 0.387546 

6 U 72 0.668732 0.907189 0.993607 0.977377 0.944681  0.943830 

7 Co 0.129099 1.000000 0.999825 0.999997 0.387546 0.943830  
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Table 5.7. Summary of Tukey’s P value of the scaled growth yield in nutrient broth after 240 

generations 

 

 Treatment {1} {2} {3} {4} {5} {6} {7} 

1 P 12  1.000000 0.728767 0.783073 0.537267 0.441519 0.000173 

2 U 12 1.000000  0.689834 0.746986 0.496042 0.402723 0.000164 

3 P 24 0.728767 0.689834  1.000000 0.999940 0.999370 0.007597 

4 U 24 0.783073 0.746986 1.000000  0.999704 0.998041 0.005727 

5 P 72 0.537267 0.496042 0.999940 0.999704  0.999999 0.018115 

6 U 72 0.441519 0.402723 0.999370 0.998041 0.999999  0.027365 

7 Co 0.000173 0.000164 0.007597 0.005727 0.018115 0.027365  

 

Table 5.8. Summary of Tukey’s P value of the scaled growth yield in nutrient broth after 720 

generations 

 

 Treatment {1} {2} {3} {4} {5} {6} {7} 

1 P 12  0.315633 0.183670 0.154211 0.464283 0.406966 0.007852 

2 U 12 0.315633  0.999947 0.999763 0.999977 0.999998 0.723226 

3 P 24 0.183670 0.999947  1.000000 0.997948 0.999312 0.875335 

4 U 24 0.154211 0.999763 1.000000  0.995406 0.998123 0.907843 

5 P 72 0.464283 0.999977 0.997948 0.995406  1.000000 0.561007 

6 U 72 0.406966 0.999998 0.999312 0.998123 1.000000  0.621685 

7 NB 0.007852 0.723226 0.875335 0.907843 0.561007 0.621685  
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5.4. Discussion 

When fitness was estimated as yield, the populations subjected to the different kinds of 

fluctuations had either a significantly lower yield (after 240 generations; Fig. 5.2A and 5.2C) 

or comparable yield (after 720 generations; Fig. 5.2B and 5.2D) to the corresponding constant 

populations. However, when fitness was estimated as growth rate, the fluctuating treatments 

show tradeoffs, where they evolved fitness in only one of the environments at the expense of 

fitness in the other. After 240 generations of adaptation, all treatments, except P12, had 

significantly lower growth rate in cobalt and higher growth rate in NB than the corresponding 

constant populations (Fig. 5.1A and 5.1C). These results are similar to previous studies 

showing that the rate and extent of adaptation of populations exposed to fluctuating 

environment is lower than populations evolved in constant environments (Kassen 2014). 

However, it has also been shown that the reduction in fitness need not be uniform w.r.t all 

constant environments (Hughes et al. 2007; Jasmin & Kassen 2007; Cooper & Lenski 2010). 

This supports our result where populations evolve reduced growth rate in cobalt with higher 

growth rate in NB, even higher than constant NB populations. We observed contrasting 

results at the end of 720 generations. Here, the growth rate of the fluctuating populations was 

comparable to the constant cobalt populations in cobalt (Fig. 5.1B) but lower than constant 

NB populations in NB (Fig. 5.1D). Thus, although the fitness patterns after 240 and 720 

generations were similar i.e., populations were able to evolve increased fitness in only one 

component environment. It is not clear at this point why the identity of this component 

environment changes between the time-points. 

Additionally, contrary to the expectation that predictable and unpredictable fluctuations result 

in divergent evolutionary outcomes (Turner & Elena 2000; Hughes et al. 2007), we see little 

to no difference in fitness between the treatments. Furthermore, despite the intuitive 
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expectation that the frequency of environmental fluctuation could influence the evolutionary 

outcome, we see that it had little to no effect on fitness outcomes of our populations. The 

only difference is seen w.r.t short predictable fluctuations (P12). P12 was the only treatment 

with growth rate in cobalt equivalent to the constant populations, after 240 generations. 

Additionally, this was also significantly greater than all other treatment populations, except 

U72 (unpredictable fluctuations every 72 hours). Interestingly, the pattern was completely 

reversed after 720 generation of adaptation. Here, P12 was also the only treatment with 

significantly lower growth rate in cobalt than the constant populations and other fluctuating 

treatments, except P72 (fluctuation every 72 hours, but predictable fluctuations). P12 also 

showed a significant reduction in yield in NB compared to NB selected populations, although 

none of the fluctuating treatments showed a significant different w.r.t each other. Despite the 

observed differences, the frequency of fluctuations cannot be said to have had a strong effect 

on adaptation. This is because the effects were observed in only one treatment (P12) and only 

under limited conditions (fitness measured as growth rate in cobalt chloride). 

Overall, our results are in agreement with other empirical studies on the effect of frequency 

of fluctuation (Kassen & Bell 1998; Scheiner & Yampolsky 1998; Buckling et al. 2007). Like 

these earlier studies, we detected no significant effect of the frequency of environmental 

fluctuations on fitness. In particular, Buckling et al. (Buckling et al. 2007), covered 

fluctuation ranging from every day to every 48 days, and still failed to detect any difference. 

Interestingly, short exposures to minute-scale fluctuations, that match the timescales of 

protein expressions, have been shown to initiate differential response in microorganisms 

(Lambert & Kussell 2014; Graham et al. 2017). Although our fluctuation were not of the 

same scale, we found that our rapidly fluctuating treatment i.e., 12 hour fluctuation, either 

had a higher or lower growth rate than all treatments at the end of 240 and 720 generations of 

adaptation, respectively. However, this is limited to the predictable fluctuation and also to 
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fitness measured as growth rate in cobalt environments. Nevertheless, to the best of our 

knowledge, this is the first empirical study to report some significant effect of frequency of 

fluctuation on an evolutionary outcomes. It is possible that greater resolution of fluctuations 

is needed to observe the effect of frequency of fluctuation on adaptation.  
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Chapter 6: Conclusions and future directions 
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Conclusion 

In my thesis, I studied the effects of genetic variation and environmental fluctuations on 

microbial adaptation. In the first half, I focused on Ultraviolet radiation, an environmentally 

important mutagen, as a source of genetic variation. Laboratory populations of Escherichia 

coli, selected for increased resistance to UV, revealed multiple possible mechanisms of UV 

resistance. The mutated genes and pathways revealed notable overlaps with that UV 

resistance mechanisms in the naturally radio-resistant Deinococcus sp. Resistance in this 

genus has been attributed to multiple direct and indirect prevention, protection, and repair 

mechanisms such as effective removal of damaged cellular components and ROS, increased 

proteome protection, and cell cycle checkpoints to ensure complete repair before cell division 

(reviewed in (Makarova et al. 2001; Blasius et al. 2008; Jin et al. 2019). More interestingly, 

there were major differences between the accumulated mutations, influenced by the growth 

phase during UV exposures. For example, UV exposure during lag phase resulted in 

mutations in genes involved in cellular transport whereas, exponential phase exposures 

resulted in mutation in signal transduction and cell adhesion. Since there was no difference in 

the intensity and duration of UV exposure, the observed genomic differences can only be 

attributed to the physiological differences between lag and exponential phase cultures. 

However, the way by which UV induced selection and mutagenesis is shaped by the 

physiological differences between the growth phases is as yet unknown, and can be a fruitful 

topic of investigation.  

Bacterial cultures in the different growth phases are known to differ in multiple physiological 

factors such as cell size, protein content or metabolite composition (Kolter et al. 1993; Rolfe 

et al. 2012; Jun et al. 2018). A key effector of such differences between growth phases is 

differential gene expression. During transcription, highly expressed genes may be at a greater 
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risk of UV induced damages resulting from lesions that block RNA polymerase combined 

with complex transcription-coupled repair (Tornaletti & Hanawalt 1999). Consequently, 

differences in the gene expression patterns between growth phases can constrain or potentiate 

biases in UV induced mutagenesis. Alternatively, differences in the proteins and metabolites 

subjected to UV induced damages, in the different growth phases, can result in differential 

selection pressures on cellular components and functions. UV radiation has been extensively 

studied as an agent of selection as well as a mutagen (Weigand & Sundin 2009; Wassmann et 

al. 2010; Goldman & Travisano 2011; Shibai et al. 2017; Tom et al. 2018). However, UV 

selection and mutagenesis in the context of bacterial physiology has remained relatively 

unexplored. I showed that these interactions are extensive and can have significant effects on 

the organisms’ response to UV radiation. Further experiments can be designed to understand 

UV induced selection and mutagenesis and the nature of their interaction with cell 

physiology. For example, overexpression of proteins in the different growth phases can be 

used to study the effects of UV selection and the significance of these proteins in the specific 

growth phases. Alternatively, single exposures to UV radiation in the different growth phase, 

combined with deep sequencing, can help understand constraints and biases of UV induced 

mutagenesis. Such experiments can further our knowledge regarding genes and pathways that 

are fundamental to or highly expressed in the different growth phases. Extending the study of 

growth phase specific effects on mutagenesis to other physical and chemical mutagens can 

have interesting implications for applied microbiology. Random mutagenesis using UV 

radiation and other chemical mutagens is routine in strain improvement studies (Meireles et 

al. 2003; Lotfy et al. 2007; Fang et al. 2009; Joshi et al. 2010; Zhu et al. 2018). However, by 

understanding the physiology-induced biases in mutagenesis, experiments can be designed to 

subject cultures to the mutagens during specific growth phase. Such experiments may have a 

greater chance of obtaining the targeted mutations specific for the desired traits.  
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An important observation in the UV resistant populations is that they had evolved collateral 

resistance to different classes of antibiotics. In chapter 3, I further explored the effects of UV 

radiation on the evolution of antibiotic resistance. UV radiation had no effect on the 

resistance phenotype i.e., populations evolved similar levels of resistance irrespective of 

whether they were exposure to UV or not. However, UV radiation had strongly influenced 

the genomics of resistance. Resistance in the un-exposed control populations was 

accompanied by mutation that altered antibiotic target site and efflux pump protein (rplD and 

acrB). In contrast, resistance in UV exposed populations was associated with mutations in 

efflux pump protein as well as its transcriptional regulator (acrB and acrR). It is expected that 

mutations altering drug targets site confer high resistance at the expense of slower growth 

rate (Andersson & Hughes 2010; Hughes & Andersson 2017). On the other hand, mutations 

in regulators of efflux pumps have been shown to result in lower fitness however, without 

any costs in antibiotic-free medium (Santos-Lopez et al. 2019). Although the UV exposed 

populations were fixed for regulator mutations instead of target altering mutations, they had 

evolved equal resistance to erythromycin as control populations. Furthermore, populations 

subjected to fluctuating exposures of UV and erythromycin had evolved the highest growth 

rate in the presence and absence of erythromycin. It is possible that the increased mutational 

supply and/or mutational biases of UV radiation favoured the selection of cost-free and high-

fitness mutations. This can have serious implications for public health since UV radiation is a 

popular disinfection technology to control microbial growth on surfaces, air, and water (Das 

2001; Lim & Blatchley III 2009; Kowalski 2010; Bolton & Cotton 2011). In addition, UV 

radiation is a popular treatment for dermatological infections and diseases such as psoriasis, 

eczema, mycosis fungoides and sézary syndrome (Dai et al. 2008; Olsen et al. 2016; Wiznia 

et al. 2017). More recently, endotracheal application of UV radiation has shown promising 

results in reducing viral load and severity of COVID-19 (Rezaie et al. 2021). UV radiation 
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has also been suggested as alternate / adjunctive treatment for controlling antibiotic resistant 

infections (Thai et al. 2002; Thai et al. 2005) despite UV radiation having been shown to 

have conflicting effects on antibiotic resistance evolution. Some studies show that UV 

resistance is accompanied with reduced susceptibility to antibiotics (Zhang et al. 2017; Li et 

al. 2021) while others show that antibiotic resistant and susceptible populations are equally 

susceptible to UV radiation (Meckes 1982; Conner-Kerr et al. 1998). My results showed that 

exposure to UV can result in correlated antibiotic resistance and more importantly, the 

evolution of cost-free resistance. Without a systematic understand of the effect of UV on 

antibiotic resistance evolution, its extent and mechanisms, overuse of UV radiation may 

contribute to the already overwhelming problem of antibiotic resistance evolution.  

Another key result from chapter 3 is that fluctuations in exposure to UV and erythromycin 

resulted in increased mean and variation in fitness in novel antibiotic environments. Although 

mutation rates of these populations were not directly measured, alternating exposures to UV 

is expected to produce an inherent fluctuation in mutation rate. While mutation rates and 

fluctuating environment have been extensively studied in the context of antibiotic resistance 

evolution (Oliver 2005; Woodford & Ellington 2007; Roemhild et al. 2015; Lin & Kussell 

2016; Windels et al. 2019), the effect of fluctuating mutation rate on adaptation can be an 

interesting avenue for future studies. Fluctuations in antibiotic exposures can constrain and 

slowdown the evolution of resistance (Kim et al. 2014; Roemhild et al. 2015). On the other 

hand, elevated mutation rates may promote resistance evolution (Eliopoulos & Blázquez 

2003; Blázquez & Gómez‐Gómez 2007; Jolivet-Gougeon et al. 2011; Mehta et al. 2019) but 

the cost of increase in deleterious mutations results in the evolution of reduced mutation rates 

(Giraud et al. 2001; de Visser 2002; Turrientes et al. 2013). The dynamics of mutator strains 

in fluctuating environments has been studied using theoretical models (Travis & Travis 2002) 

and in silico replicator populations (Stich et al. 2010). However, simultaneous exposures to 
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elevated mutation rates and fluctuating environments can have serious implications for 

antibiotic resistance evolution in nature: a possibility that has not yet been fully investigated. 

While my results are limited to E. coli populations, future studies need to be expanded to 

other pathogenic organisms, to include organisms such as Pseudomonas sp. which have 

higher prevalence of hypermutable strains. Given that combination and fluctuating therapy is 

routinely suggested as a way to control/slow down antibiotic resistance evolution (Mouton 

1999; Baym et al. 2016; Davis et al. 2021), future studies can be extended to understand the 

effects of interaction between fluctuating mutation rates and environments in complex 

antibiotic environment.  

In chapter 4, I studied the effects of migration when populations are faced with complex and 

unpredictably fluctuating environments. Under these conditions, I showed that clonal 

migration has a negative effect on adaptation. My results are in contrast with Perron et al., 

(Perron et al. 2007), who showed that clonal migration can promote adaptation in predictably 

fluctuating environment. Adaptation in lethal environments, of the kind that was used in 

Perron et al., (Perron et al. 2007), can be dependent on recurrent migration to maintain stable 

population sizes. In contrast, my selection environment was sub-lethal, that could support 

growth and adaptation even in the absence of migration. The differences in these results point 

towards the importance of the nature of the environment and selection pressure, in 

determining the effect of migration. Organisms at the edge of an expanding range may be 

subjected to both complex selection pressures as well as migration from the core population 

(Bridle & Vines 2007). Future studies that directly test and compare migration under different 

strengths of selection pressure can help make better predictions about the effects of migration 

under varying environmental conditions, as experienced in range margins. I also showed that 

the presence of variation in the migrating individuals can alleviate some of the negative 

effects of migration. However, at high migration rate, variation resulted in reduced fitness. 
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This observation warrants further investigations into whether continuous increase in genetic 

variation leads to proportional increase in fitness or if there is a limit to the benefit of genetic 

variation in migrating individuals. Additionally, it is also known that the effect of genetic 

variation on adaptation can be influenced by other factors such as the strength of selection 

pressure and fitness of the organisms. Therefore, additional experiments designed to study the 

interaction between genetic and environmental variation and its effect on migration may help 

understand the contrasting effects of migration on adaptation.  

My experiments to study the effect of frequency and predictability of fluctuations on 

adaptation, in chapter 5 showed that the extent of adaptation was not influenced by either of 

the two factors. The only exception was the predictable, 12 hour fluctuation treatment. 

Although this treatment significantly differed from the other treatments, the effect was not 

consistent in all selection environment. My results are congruent with prior studies that have 

shown that adaptation is not influenced by the frequency of fluctuation (Kassen & Bell 1998; 

Scheiner & Yampolsky 1998; Buckling et al. 2007). However, the lack of empirical evidence 

to support the literature surrounding the effects of frequency and predictability of temporal 

fluctuations leaves us with outstanding questions. Do we need more resolution in the 

frequency of fluctuations to observe any effects on adaptation? Will the predicted effects of 

frequency of fluctuations be observable at all evolutionary timescales? i.e., short-term 

evolution vs. long-term evolution. Experiments designed to answer these questions can help 

understand the discrepancies between theory and experimental studies.  
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Future directions 

One of the key observation from my thesis was that strong and continuous selection pressures 

resulted in uniform fitness increase (chapter 2 and 3). At first glance, such results may have 

suggested that the different treatments i.e., physiological differences between growth phases 

or constant vs. fluctuation exposures to UV, had no effect on the evolutionary dynamics. 

However, whole genome sequencing (WGS) of the evolved populations revealed crucial and 

interesting differences in genomic evolution. Given the complex and degenerate interactions 

between genotype and phenotype, WGS in combination with experimental evolution can 

provide a much richer understanding of the evolutionary processes.  

Recent advancements have facilitated the extension of sequencing technologies to include 

analysis of gene expression, epigenetic factors, and microbiome as well as in-situ sequencing 

of fixed cells and tissues (Gupta & Verma 2019). While epigenetic modifications do not alter 

the genetic material, they can have profound effect on gene expression, contributing to 

phenotypic plasticity and phenotypic variance. Such epigenetic variation can be adaptive as it 

can increase rates of phenotypic change in the face of environmental change (Bonduriansky 

et al. 2012; Burggren 2016). This allows the organisms to detect and survive environmental 

change by altering gene expression to match the environmental condition (Angers et al. 2010; 

Bollati & Baccarelli 2010). While I have not looked at epigenetic changes in my thesis, I 

observed that mutations in global regulator genes were unique to populations subjected to 

fluctuating environment (chapter 2). This hints at the importance of variation in gene 

expression for survival in fluctuating environments. Future studies that combine sequencing 

technologies with the ability to detect genetic, epigenetic, and expression level changes can 

be crucial to furthering our understand evolution in fluctuating environment. 
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Next generation sequencing technologies, although a powerful tool, is largely used to identify 

beneficial variations that rose to high frequencies as a result of selection. However, recent 

studies have shown that by introducing unique sequences or neutral DNA barcodes in clonal 

populations, it is possible to track the distribution of variants even when they are rare and 

independent of the effects of selection (Levy et al. 2015; Jasinska et al. 2020). Lineage 

tracking via random barcodes coupled with WGS can be an exciting tool to study the 

generation, maintenance and distribution of variation in fluctuating environments. It can also 

be used to study the effects of migration since, migration is an important factor that 

influences variation. Furthermore, factors such as selection and drift strongly influence the 

probability of invasion of alleles introduced by migration (Blanquart et al. 2012). 

One common shortcoming of existing experimental evolution studies is the generalizability 

of the results since, in most cases, the evolutionary outcomes are highly restricted to the 

choice of environments. This points to an interesting issue regarding the robustness of 

evolutionary predictions across different environmental conditions. For example, it has been 

shown that the most important conditions that determine whether populations of E.coli 

evolved to become specialist or generalist, in a fluctuating environment, is the choice of 

environmental pair (Sandberg et al. 2017). Trait correlations such as those between 

glucose/glycerol and glucose/xylose fluctuation supported the evolution of generalists. 

Whereas, glucose/acetate fluctuation, that lack such correlations resulted in the evolution of 

specialist (Sandberg et al. 2017). The effect of migration that I report in my thesis, are in 

support with some of the prior studies while also contrasting with other studies (chapter 4). 

This also holds true for the effect of predictability and frequency of fluctuations. Given the 

contrasting and environmental specific effects on adaptive outcomes, future studies that make 

use of high-throughput technologies to study the evolutionary effect of the different factors in 

multiple environments may led to a unified robust understanding of evolution. Recent high-
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throughput experiments (Dragosits et al. 2013; Horinouchi et al. 2017; Maeda et al. 2020) 

with multiple environments have been successful in addressing questions such as the 

evolution of trade-offs and cross resistance across multiple stress/antibiotic environments. 

Such high-throughput experiments can be expanded to better predict the effects of 

mutagenesis, migration and fluctuating environment. 
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