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Abstract

The Number Field Sieve Factoring Algorithm

by Rahul Kumar

Integer factorization has been interesting problem for mathematicians since centuries.

Integer factorisation lies in the heart of Number Theory. There has been many

algorithms for factorisation such as Dixon’s factorisation, continued fractions and

Quadratic Sieve Factoring Algorithm. Many of the encryption algorithms in cryptog-

raphy are based on the “hardness” in factoring large composite numbers with no small

prime factors Number Field Sieve is the best known factoring algorithm. It works

best with large numbers, for small one Quadratic Sieve is the best algorithm because

of its low requirement of storage. Time complexity of GNFS (General Number Field

Sieving) algorithm is Ln[1
3
, 3

√
64
3

](explanation of L-notation is given in appendix) and

that of quadratic sieve algorithm is Ln[1
2
, 1].
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Chapter 1

Introduction

1.1 Motivation

Most of the modern factoring algorithm use the concept of the difference of squares as

described under Legendre’s method. All these algorithm uses concept of factor base,

smoothness, sieving,and reducing matrices over Z2. The major difference between

Quadratic Sieve and Dixon’s Algorithm is the basic function used in construction

of smooth elements. This eventually results in faster collection of relations. The

success of General Number Field Sieve Algorithm relies on the realization that unlike

Quadratic Sieve and Dixon’s Algorithm we can use a higher degree polynomial for

smooth element collection.

There is one more reason for thinking about this algorithm,which arises from the fact

that there could be ring on which the notion of smoothness can be imposed,similar

to Z. This ring could possibly have more smooth elements than that in Z. If we have

some kind of natural mapping between Z/nZ and these rings then we could possibly

arrive at the difference of squares.

1.1.1 Shaping the Idea

In this section we will be discussing on ways to try some other ring instead of Z/nZ.

The main idea is, to consider the function chosen for smooth element generation. In

Quadratic sieve we have

f(x)= r2i - n

this function can be thought of as

1



2 CHAPTER 1. INTRODUCTION

f : Z → Z/nZ

this function maps product of all the smooth r2i - n, a square in Z to a square in

Z/nZ. Once we have a square in Zn, we can use the difference in square congruence.

Similarly if we have a different ring with the same kind of map, then we can use it to

generate congruent squares.

f : Ring → Zn

1.2 Historical Perspective

The idea of this algorithm was given by Pollard. He circulated a paper to all the

eminent mathematicians of that time describing this algorithm. Then H.A.Lenstra,

Pollard and couple of their colleagues factored Fermats ninth number [4],that is 229 +1

using Number Field Sieve. But the algorithm developed by them was only for certain

kind of numbers. Then Pomerance and few more came up with a general algorithm

which works for all numbers. Recently, this algorithm has factored a 663-bit RSA

challenge number.

The problem of factorization was there since the time of Euclid. Before Fermat this

problem was solved by trail division method.

In 1640, Fermat introduced some unique idea of factorization which are still used.

His idea was to write the composite number n in form of x2 − y2 from where we can

easily see the factor (x+ y)(x− y). If the factors of n are close this is good method.

In 1750, Euler gave an algorithm for special type of integers, the integers which can

be expressed in the form n = a2 + Db2 in two different ways with the same D. He

used the method to successfully factor large numbers [5].

In 1798, Legendre presented an idea which will revolutionize the factoring game. If

we have integer x and y which satisfies this congruence

x2 = y2 mod n, 0 ≤ x, y ≤ n;x 6= y;x+ y 6= n

then GCD(n, x− y) and GCD(n, x+ y) is non trivial factor of n. If n = pq,

x2 = y2 mod n

⇒ pq | x2 − y2

⇒ pq | (x− y)(x+ y)
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⇒ p | (x− y) or p | (x+ y)

⇒ q | (x− y) or q | (x+ y)

The importance of integer factorization gained new heights with use of hardness of

factorization for security. Some of the cryptographic algorithm which rely on hardness

of factorization are listed below

1.2.1 RSA Cryptosystem

The RSA system, named after its inventors Ron Rivest, Adi Shamir and Len Adleman,

was the first public key cryptosystem and is still the most widely used cryptosystem

[12] Its security is closely related to difficulty of factoring the large composite number.

Alice wants to send message to Bob. The algorithm goes like this:

• Bob generates randomly and independently two large composite number p, q

and find n = pq. Bob also chooses an integer e with

1 < e < φ(n) = (p− 1)(q − 1) and GCD(e, (p− 1)(q − 1)) = 1

(NOTE: Given n of the form p.q where p and q are primes, the order of the

group Zn is (p− 1)(q − 1))

.

• Bob computes an integer d with 1 < d < (p− 1)(q − 1) and

de ≡ 1 mod (p− 1)(q − 1).

• ENCRYPTION: A plaintext m is encrypted by computing c = me mod n. The

chipertext is c. If Alice knows the public key (n, e) she can encrypt.

• DECRYPTION: Bob knows the exponent d which he has already chosen. cd

mod n = med mod n = m mod n

(as ed = 1 mod φ(n)).

1.2.2 Rabin Encryption

This encryption method is almost the same as RSA. The difference between them

is that breaking Rabin Encryption system [13] is equivalent to efficiently factoring

integers. It is still not known that breaking RSA is equivalent to efficiently factoring

integers.
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• Alice chooses randomly two large prime numbers p, q with

p ≡ q ≡ 3 mod 4

Alice calculates n = pq. Her public key is n and her private key is (p, q).

• As in RSA the plaintext is in set {0, 1, ..., n − 2, n − 1} Bob uses public key n

and calculates

c = m2 mod n

This c is the ciphertext.

• Alice computes the plain text by calculating the square root of c.

mp = c(p+1)/4 mod p, mq = c(q+1)/4 mod q

Then ±mp + pZ are the two square roots of c + pZ in Zp and ±mq + pZ are

the two square roots of c + qZ in Zq Now one of these four is plaintext. But

the problem is how does one decide which one is plain text? Alice can choose

the candidate which looks most likely, but this might not always work. If the

plaintext is chosen is such that some bits in the starting are same as the bits at

the end(we are adding some bits in front and back of the message bit), then the

output will also have the the similar pattern. This output will be the required

square root.

Now we will look into some of the factoring Algorithms:

1.2.3 Trail Division

Let the number we want to factor be n. To find the small prime factor of n. This is

the most primitive algorithm. We have a table containing primes numbers below a

bound B. Pick a prime divide the number n by maximum possible power of prime.

Keep on doing this until all the primes are exhausted. This will lead to a factor of n.

In fact we will have complete contribution from prime below B.
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1.2.4 p− 1 method

There are certain algorithm which works good for special type of composite number.

This algorithm was given by Pollard. The (p−1) method [14] works good for compos-

ite number having prime factor such that p− 1 has only small prime divisors, where

n is the composite number to be factored and p is the prime factor of n. The algo-

rithm is based on the fact that given the above condition it is possible to determine

a multiple k of p− 1 without knowing p− 1 as the product of powers of small prime

numbers. Then Fermat’s little theorem implies that

ak ≡ 1 mod p

for all integers a that are not divisible by p. This means that p divides ak − 1. If

ak − 1 is not divisible by n, a factor of n is found.

1.2.5 Kraitchik’s Scheme

There are large number of factoring algorithm which shares a common stratergy. If

n is a number to be factored with no small factor and if we can find x and y which

satisfies following condition:

• x2 ≡ y2 mod n

• x 6≡ ±y mod n

Then g = gcd(x− y, n) will be a non trivial factor of n.

All sieveing algorithm differ in method and approach of finding x and y.

1.2.6 Quadratic Sieve

Quadratic sieve works best uptill 115 digit number. The idea of Quadratic sieve

was given by Carl Pomerance in 1990. The time complexity of this algorithm is

e(logn)
1/2(loglogn)2/3 In nutshell, Quadratic sieve is a method of finding x and y. The

main steps are as follows:

• Select a factor base F (B) = {p ∈ P : p ≤ B} ∪ {−1}

• Compute m = bnc

• Choose a sieving interval S = {−c, · · · , c} and do the following:
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– Compute f(s) = (x + m)2 − n, and test by dividend the number of F (B)

weather this is B-smooth or not.

– If some f(s) is B-smooth then

f(s) =
t∏

j=1

pijj (1.2.1)

and define vi = (vi1, · · · , vit), where vij = eij mod 2.

NOTE : f(s) is called an auxiliary number.

• Use linear algebra over Z2 to find a non-empty set of T = {i} such that
∑
vi = 0.

• Compute x =
∏

i∈T

√
f(s) + n mod n.

• For each j, 1 ≤ j ≤ t, compute lj =
(
∑
i∈T eij)

2

• Compute y =
∏t

j=1 p
lj
j mod n.

• If this x and y satisfies the Kraitchik’s criteria then d = gcd(x− y, n) will be a

non trivial factor of n else find another set T such that
∑
vi = 0 and compute

another x and y.



Chapter 2

Mathematical Preliminaries

In this chapter, we will be discussing some of the basic mathematics which is essential

to understand the basic working of the algorithm.

2.1 Basic Properties of Integers(Z)

In this section we will discuss the basic properties of Z. We will be defining basic

things which is necessary for the implementation of algorithm [1].

Definition 2.1.1 (Greatest Common Divisor). Greatest Common Divisor of a, b ∈
Z, denoted by gcd(a, b), is the largest positive integer which divides a and b.

Definition 2.1.2 (Relative Prime). Two numbers a, b ∈ Z, are called relatively prime

if gcd(a, b) = 1.

Definition 2.1.3 (Fundamental theorem of Algebra). a ∈ Z and a > 1 then either

a is a prime or can be expressed as product of finitely many primes.

Definition 2.1.4 (Euler phi function). Given a positive integer n. φ(n) equals the

number of positive integers less than or equal to n and are relatively prime to n.

Definition 2.1.5 (B-Smooth). A positive integer is called B − smooth if all of it’s

factors are less than B.

Theorem 2.1.6 (Euler’s Theorem). If n is a positive integer with gcd(a, n) = 1, then

aφ(n) ≡ 1(mod) n.

Theorem 2.1.7 (Fermat’s Little Theorem). If p is a prime number and a is a integer

and p 6 \a then ap−1 ≡ 1 mod p.

7
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2.2 Properties of Polynomial over Z and Q

In this section we will discuss about the polynomial over integer and rational. The

basic form of polynomial is

anx
n + an−1x

n−1 + ...+ a1x+ a0

Definition 2.2.1. Divisibility in Q[x]. Let f, g ∈ Q[x], f is called divisor of g if

there exists h ∈ Q[x], such that g = f.h. Otherwise we say f is not a divisor of g

and is denoted by f 6 \g.

Definition 2.2.2. Irreducibility and Prime in Q[x]. An element f of Q[x] is called a

zero polynomial if f = 0. An element f of Q[x] is called a unit if f/1. An element f

of Q[x] is called irreducible if given f = g.h, where g, h ∈ Q[x] then either f or g is

a unit. An element f of Q[x] is called prime if given f/g.h, where g, h ∈ Q[x] then

f/g or f/h or both. If none of the above then the element is called irreducible.

Associates : f, g ∈ Q[x] are called associates if f = gu, where u is unit.

2.3 Basic Algebraic Number Theory

Definition 2.3.1 (Number Field). If r is an algebraic number of degree n , then the

totality of all expressions that can be constructed from r by repeated additions,subtractions,

multiplications and divisions is called a number field (or an algebraic number field)

generated by r , and is denoted by F [r].Formally, a number field is a finite extension

Q̄ of the field Q of rational numbers.

Definition 2.3.2 (Algebraic Number). If r is a root of a nonzero polynomial equation

anx
n + an−1x

n−1 + ...+ a0,

where the ai’s are rational numbers and satisfies no similar equation of degree < n

,then r is said to be an algebraic number of degree n.

Definition 2.3.3 (Algebraic Integer). An element δ is an algebraic integer if it is a

root of some monic polynomial with coefficient in Z. If Number Field(2.3.1) is K,

then ring of algebraic integer is denoted by OK. Note that, in general case OK 6= Z[α],

where Z[α] is Z[x]/f(x), f(x) is irreducible polynomial over Z[x].

Definition 2.3.4 (Norm Map). We can view the Algebraic Number Field as a finite

dimensional vector space over Q. Then if α ∈ Q, the map form K to K defined
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by φα : v −→ αv define a linear operator on K and we define the norm map as

determinant of that map NK := det(φα).

we define the norm of an non zero ideal in OK to be its index in OK.

Definition 2.3.5 (Noetherian Ring). A ring is called Noetherian if every ascending

chain A1 ⊆ A2 ⊆ A3 ⊆ ... of ideals terminates,i.e., if there exists n such that

An = An+k for all k ≥ 0.

Definition 2.3.6 (Dedekind Domain). A commutative integral domain which satisfies

these conditions is called a Dedekind domain:

• Integrally Closed.

• Every non zero prime ideal is maximal.

• It should be Noetherian.

Definition 2.3.7 (First Degree Prime Ideal). A first degree prime ideal P of a

Dedekind Domain D is a prime ideal of D such that N(P)= p for some integer

p.

Lemma 2.3.8. If R is a commutative ring with 1R, S is a commutative ring with

identity 1S, and φ : R −→ S ring epimorphish then φ(1R) = 1S.

Proof. Let y ∈ S. As φ is a ring epimorphism there exists x ∈ R such that φ(x) = y.

Then y.φ(1R)= φ(1R).y = φ(1R).φ(x) = φ(1R.x)= φ(x) = y hence φ(1R) = 1S.

Theorem 2.3.9. Let R be a commutative ring with identity. Then:

a) M is a maximal ideal if and only if R/M is a field.

b) P is a prime ideal if and only if R/P is an integral domain.

c) A and B be ideals of R. If P is a prime ideal containing AB, then P ⊇ A or

P ⊇ B.

d) If P is a prime ideal containing the product A1A2...Ar of r ideals of R, then

P ⊇ Ai, for some i.
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Proof. a) We know there is a bijection between the ideals of R containing M and

ideals of R/M. By this correspondence R/M has a non trivial ideal if and only if

there is an ideal A of R strictly between M and R. Thus, M is maximal, ⇒ R/M
has no non trivial ideals, ⇒ R/M is a field.

b) Let P be a prime ideal means, If ab ∈ P then either a or b ∈ P . we know

ab+P = 0 +P in R/P . ⇒ a+P= 0 +P or b+P= 0 +P in R/P , ⇒ R/P has no

zero divisors, ⇒ R/P is an integral domain.

c) Suppose that P ⊇ AB, P 6⊇ A. Let a ∈ A, a 6∈ P . We know aB ∈ P for all b

∈ B since aB ⊆ P . But, a 6∈ P . Thus b ∈ P for all b ∈ B, since P is prime. Thus B
⊆ P .

d)We will prove this by induction. For r=1 it is trivial. Let r > 1 and a1a2...ar−1ar

⊆ P . By (c), A1A2...Ar−1 ⊆ P or Ar ⊆ P . If A1A2...Ar−1 ⊆ P then the induction

hypothesis implies that Ai ⊆ P for some i ∈ {1, 2, ..., r − 1}. In either case, Ai ⊆ P
for some i ∈ {1, 2, ..., r}.

Theorem 2.3.10. For any commutative ring with identity, the following are equiva-

lent

a) R is Noetherian;

b) every nonempty set of ideals contains a maximal element; and

c) every ideal of R is finitely generated.

Proof. a) ⇒ b) Given R is Noetherain Suppose S is non-empty set of ideals of R

that does not contain a maximal element. Let A1 ∈ S. A1 is not maximal in S. So

there exists an ideal A2 in S such that A1 ⊂ A2. Now A2 is not maximal element

of S. So there exists an ideal A3 in S such that A2 ⊂ A3. Continuing this we get a

infinite ascending chain of ideals in R. This contradicts our assumption of R being

Noetherian. Hence, every nonempty set of ideals contains a maximal element.

b) ⇒ c) Let B be an ideal of R. Let A be the set of ideals contained in B which

are finitely generated. A is nonempty as (0) ∈ A. Thus, by b) A has a maximum

element, say A = (x1, x2, ..., xn−1, xn). if A 6= B, then ∃ x ∈ B but 6∈ A. But then

A + (x) = (x1, x2, ..., xn−1, xn, x) is a larger finitely generated ideal contained in B,

this contradicts the maximality of A. Thus, B = A. Thus B is finitely generated.

c)⇒ a) Let A1 ⊆ A2 ⊆ A3 ⊆ ... be a ascending chain of ideals of R. Thus ∪∝i=1Ai
is also an ideal of R, and so is finitely generated. say A = (x1, x2, ..., xn−1, xn, x).
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Then x1 ∈ Ai1 , ..., xn ∈ Ain . Let m = max(i1, ...in). Then A ⊆ Am, so A = Am.

Thus Am = Am+1 = ... and the chin does terminate. Thus, R is Noetherian.

Theorem 2.3.11. Any ideal of OK is can be written as a product of prime ideals

uniquely.

Proof. Existence: Let S be a set of ideals of OK that cannot be written as a product

of prime ideals. Now we will try to prove that this set is empty and this completes

the proof. We know OK is Noetherian, and assuming that this set,S, is non-empty

we have a maximal element in the set, say a. Then a ⊆ p for some maximal ideal P ,

as OK is Noetherian. From [2.17] Every maximal ideal of OK is prime. And hence

P is a prime ideal. Therefore A 6= P and A is not prime or else this contradicts our

assumption. Before going ahead we see a lemma.

FractionalIdeal : A fractional ideal A of OK is an OK module contained in K such

that there exists m ∈ Z with mA ⊆ OK .([2] page 57). Let P be a prime ideal. Define

P−1 = {x ∈ K : xP ⊆ OK}

Lemma : Let P be a prime ideal of OK . Then P−1 is a fractional ideal and PP−1=
OK .([2] page 58) Going back to proof, Consider P−1A. P−1A ⊂ P−1P= OK . Since

A ⊂ P ,

P−1A ⊆ P−1P= OK

Since for any x ∈ P but not in A,

P−1x ⊆ P−1A ⇒ x ∈ PP−1a= OKA= A,

which is not true. Means that P−1A is a proper ideal of OK , and contains A properly

since P−1 contains OK properly. Thus, P−1A 6∈ S, since A is a maximal element in

S. Thus, P−1A = P1...Pr, for some prime ideals Pi. Then, PP−1A = PP1...Pr, so

A = PP1...Pr. But then A 6∈ S, this is a contradiction. Thus, S is empty, so every

ideal of OK can be written as a product of prime ideals.

Uniqueness:Assume that this ideal factorization is not unique. So we can write

A = P1...Pr= P
′
1...P

′
s. Take P1, as P1 is an ideal of OK we have

P ′
1 ⊇ P

′
1...P

′
s= P1...Pr

so, P ′
1 ⊇ Pi for some i, say P ′

1 ⊇ P1. But P1 is maximal (as primes are maximal in

OK), so P ′
1 = P1. Now multiplying both side by (P ′

1)
−1, we get,
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P ′
2...P

′
s= P

′
2...P

′
r

Continuing the same thing completes the proof.



Chapter 3

Description of number field sieve

factoring algorithm

One question that everyone asks about the number field sieve algorithm is: Why is

this algorithm faster than all other known algorithms?

The reason for superior performance of general number field sieve (GNFS) over

quadratic field sieve is that in Quadratic Sieve we require auxiliary numbers of size

O(
√
n) and in GNFS we need smaller auxiliary number(for explanation see (1.2.1))

to be smooth they are of the size

exp
(
c′(log n)2/3(log log n)1/3

)
(3.0.1)

where c
′

is 2.77 approximately. In other words in GNFS the length of these numbers

is not half of the length of n, but it is only the 2/3− rd power of length of n [3].

3.1 Steps involved in the algorithm

• Given a number n to be factored, first check that it is neither prime, nor a

perfect square. For this we can use primality testing [15].

• Once these conditions are checked calculate the degree of the polynomial by

d = Round(3log(n)/log(log(n)))1/3 (3.1.1)

Where round() is integer round off function.

13
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• Calculate m= (n)1/d. Now write base m expansion of n i.e.

n = md + ad−1m
d−1 + ...+ a1m+ a0

Define f(x) as:

f(x) = xd + ad−1x
d−1 + ...+ a1x+ a0 (3.1.2)

• We can assume that this polynomial is irreducible because if it is reducible there

is no point in using this algorithm. Let

f(x) = l(x)v(x)

then, by substituting x by m we get

f(m) = l(m)v(m) = n

so the number n is factored without using Number Field Sieve Factoring Algo-

rithm.

• Assume α be a root of this polynomial. As f(x) is irreducible over Z[x]/f(x) so

this α has to be complex root of f(x). Decide upon the bound, say B for factor

base construction.

With f(x)( (3.1.2)) in hand we have a natural homomorphism in that is

φ : Z[α]→ Z/nZ (3.1.3)

This maps take polynomial f(α) to f(m). And we try to construct square in

Z[α] using smoothness(2.1.5) and take the image of it under φ and use congru-

ent squares to find a factor of n.

This is exactly similar to what we do in Quadratic Sieve(1.2.6).

Algebraic factor base is the factor base which is used to find the smooth

elements(2.1.5) over Z/nZ.

Rational factor base is the factor base which is used to find the smooth elements(2.1.5)

over Z[α].

• Construct the Algebraic factor base(AFB): Take primes upto bound B and

construct the set.
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• Construct the Rational Factor Base(RFB): Decide on bound B
′

and construct

a set say E Pick prime p from the set E now find the roots of f(x) inside Fp,

say ri be the set of roots w.r.t. p then store (r1, p), (r2, p),...(rk, p). Now pick

another element and repeat the process again until all the elements of E are

exhausted.

• Construct the Quadratic Character Base(QCB): Pick a prime greater than B
′

and repeat the above process. Take the next prime until we get a set half the

size of AFB.

Relation We call (a, b) a relation if a+ bm is smooth over the AFB and a+ bα

is smooth over RFB.

• After this we collect relations (a, b) which satisfies given conditions:

∏
(a,b)

a+ bm is a square in Z (3.1.4)

∏
(a,b)

a+ bα is a square in Z[α] (3.1.5)

We first sieve over RFB and then check those for smoothness over AFB. It is

quite clear that for QCB we just need to check B smoothness of a + bm. The

question is how do we check for smoothness over AFB? For this we use norm

map. If the Norm of a + bα is smooth, we call that a + bα is smooth. This

information can be used only to construct a product∏
(a,b)

a+ bα

with square Norm. A square in Z[α] implies the norm of it will be a square but

converse is far from being true. for example to demonstrate this:

Example: In the ring of Gaussian integers Z[i] we have

N(3 + 4i) = 32 + 42 = 52 = N(5).

Now 3 + 4i = (2 + i)2 is a square but 5 = (2 + i)(2 − i) is not. To provide a

better level check we use Quadratic character.
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• We use quadratic character to refine the sieve

( γ
P

)
:=

+1 if γ is a non zero square modulo P ,

−1 if γ is a not a square modulo P

where P is an element of QCB, and γ ∈ OK . Using this we emphasize on∏
(a,b)∈S(a + bm) is a square in Z and that

∏
(a,b)∈S(a + bα) generates a square

ideal in OK and
(
γ
P

)
= 1 for i = 1, ...s where s is the number of elements in

quadratic character base.

• After finding enough number of relations we do sieving and construct a matrix

similar to what we do in Quadratic Sieve(1.2.6). We reduce that matrix(mostly

we use gausian elimination method) to find out the null space of it.

• After getting the null space we pick up a vector from it and using that vector we

calculate the product of (a + mb) and (a + αb). Do the square root extraction

on Algebraic part and we get ν and square root of rational part say µ.

• Use the natural homomorphism

φ : Z[α] −→ Z/nZ

where xd + ad−1α
d−1 + ...+ a1α+ a0 goes to xd + ad−1m

d−1 + ...+ a1m+ a0 to

find the image of ν in Z/nZ, lets call it as u now we have µ 2 = u 2 mod n.

• Use Kraitchik scheme(1.2.5) and find GCD(µ− u, n) if its non trivial we get a

factor of n. If it is non trivial repeat the process.

This algorithm is called General Number Field Sieve factoring algorithm because

this can be used to factor any general n. Earlier version of the algorithm which was

used to factor “Fermat’s Number”, had a big assumption i.e. Z[α] = OK(2.3.3). In

the general case we may not have any of the nice property that we demand from the

ring in which we want to work. In this section we will discuss some of the theorems

which will be used as the basic building block of the algorithm. Our sole aim here

will be to describe how we can mimic the sieving done in the quadratic sieve in this

algebraic set up.After that we will handle some of the problem that arises in mimicking

the sieve. And at last we will state the obstacle that is there in implementing the
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algorithm for general set up. Before stating the first theorem of the section we need

to define

Canonical notation of ideal multiplication: Given two ideals A,B of ring R, their

multiplication AB = {aibj | ai ∈ A, bj ∈ B}

3.2 Setting Up the Factor bases

In Quadratic Sieve, we have factor base which is a collection of primes in Z upto some

bound. If we want to mimic the same idea in Z[α] we collect prime elements of ring

Z[α]. But the idea is to collect the prime ideals instead of primes in Z[α]. The major

reason behind this is group of units, in earlier implementations they have chosen such

a n, for which Z[α] has finitely generated unit set.

The first question is how do we decompose any ideal into prime ideals? Following

theorem will take care of it.

Theorem 3.2.1. Given a monic, irreducible polynomial f(x) of degree d with integer

coefficients and a root α ∈ C of f(x), then the ring of algebraic integers(2.3.3) OK

forms a Dedekind Domain.

• The ring OK is Noetherian.

• Prime ideals of OK are maximal ideals of OK.

• Using the canonical notations of ideal multiplication, ideals of OK can be uniquely

factored, up to order,into prime ideal of OK

Proof. [2][Chapter 5](page.56-59)

Theorem 3.2.2. Given a monic, irreducible polynomial f(x) of degree d with rational

coefficients and a root α ∈ C of f(x), then the norm map maps element of C(α) to

C. Furthermore, algebraic integers in Q(α) are mapped to elements in Z. In fact we

can say that it sends elements of Z[α] to elements of Z.

2. [Chapter 4](page.40)

This theorem is important because this tells us that the ideals of Z[α] are mapped

to Z by norm function. We will use this theorem when we will do sieving on rational

part.
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Theorem 3.2.3. Let f(x) be a monic irreducible polynomial of degree d with rational

coefficient and α ∈ C Then the norm function maps ideal of OK to positive integer.

If θ ∈ OK then

N(〈θ〉) = | N(θ) | where N(〈θ〉) is the norm of ideal generated by θ and | N(θ) |
modulus of norm of element θ

Proof. [?][Chapter 4](page 40)

Proposition 3.2.4. Let D be a Dedekind Domain. If P is a prime ideal of D with

N(P) = p for some prime integer p, then P is a prime ideal of D. Conversely, if P
is a prime ideal of D then N(P) = pe for some prime integer p and positive integer

e.

Given any element β ∈ OK from above proposition we can say that 〈β〉 of OK

factors uniquely as

〈β〉 = Pe11 Pe22 Pe33 · · · P
ek
k

for distict prime ideals Pi of OK and positive integer ei with 1 ≤ i ≤ k. Also,

| N(β) |= N(〈β〉) = N(Pe11 Pe22 Pe33 · · · P
ek
k ) (3.2.1)

= N(Pe11 )N(Pe22 )N(Pe33 ) · · ·N(Pekk ) (3.2.2)

= (pf11 )e1(pf22 )e2(pf33 )e3 · · · (pfkk )ek (3.2.3)

= (pf1+e11 )(pf2+e22 )(pf3+e33 ) · · · (pfk+ekk ) (3.2.4)

Here Pi is prime ideals, ei is the exponent of the ideal corresponding to Pi and the

norm of Pi is pf
i

i .

NOTE: Any ideal P of a ring R with N(P) = p for some prime integer p is necessarily

a prime ideal of R. Because [R : P ] = p implies R/P ∼= Z/pZ which is a field hence

P is maximal ideal and in Dedekind Domain maximal ideals are prime.

Here instead of prime ideals of OK we will consider the prime ideals of Z[α] because

we can easily handle the first degree prime ideals of Z[α] and with these type of ideals

only in the factor base it is easier to find smooth a + bα. Next theorem talks about

how we can view the prime ideals in Z[α], that is easier to work with, easier to store

in computer and easily manageable.

Theorem 3.2.5. Let f(x) be a monic, irreducible polynomial with integer coefficient

and let α ∈ C be a root of f(x). The set of pairs (r, p) where p is a prime integer and
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r ∈ Z/pZ with f(r) = 0 mod p is in bijective correspondence with the set of all first

degree prime ideals of Z[α].

Proof. Let P be a first degree prime ideal of Z[α], so we have [Z[α] : P ] = p, for some

prime p.

This implies that Z[α]/P is isomorphic to Z/pZ. Which gives us that there is function

φ : Z[α]→ Z[α]/P such that ker(φ) = P .

⇒ φ : Z[α] −→ Z/pZ such that ker φ = P . As, φ(1) = 1,φ(a)= a mod p means

constants are fixed under homomorphism φ where a ∈ Z.Now, Let r= φ(α) ∈ Z/pZ.

If f(x) = xd + ad−1x
d−1 + ...+ a1x+ a0 with ai ∈ Z, for 0 ≤ i < d, then φ(f(α)) ≡ 0

mod p , since f(α) = 0.

implies that 0 ≡ φ(αd + ad−1α
d−1 + ...+ a1α + a0)

≡ φ(α)d + ad−1φ(α)d−1 + ...+ a1φ(α) + a0

≡ (rd + ad−1r
d−1 + ...+ a1r + a0)

≡ f(r) mod p

so that r is a root of f(x) mod p and the ideal P determines the unique pair (r, p).

Convesely, Let p be a prime integer and r ∈ Z/pZ with f(r) ≡ 0 mod p. Then

there exists a homomorphism that maps α to r and polynomials in α to polynomial

in r.

In particular, φ(a) ≡ a mod p, ∀a ∈ Z. Let P= ker(φ). So, P is an ideal in Z[α].

Since φ is onto and kerφ= P it follows that Z[α]/P ≡ Z/pZ and hence [Z[α] : P ] =

p and P therefore is first degree prime ideal of Z[α]. Thus the pair (r, p) determines

a unique prime ideal P . This establishes the bijection. Now once we have collection

of ideals ready, we can look at divisibility of ideals.

Definition 3.2.6. For A,B ideals of OK, we say A divides B (denoted by A | B), if

A ⊇ B.

Definition 3.2.7. Let ePi: Q(α)∗(non zero elements of number field Q̄ 2.3.1)→ Z be

a function for a fixed prime ideal Pi and is homomorphism with following properties:

• ePi(β) ≥ 0 for all β ∈ Q(α)∗.

• ePi(β) > 0 if and only if the ideal Pi divides the principal ideal 〈β〉.

• ePi(β) = 0 for all but a finite number of prime ideal Pi of OK and | N(β) | =∏
N(Pi)ePi
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by Jordan-Holder Theorem( [16])

Proposition 3.2.8. For every prime ideal Pi of Z[α], there exists a group homomor-

phism lPi:Q(α)∗ −→ Z that posses the following properties:

• lPi(β) ≥ 0 for all β ∈ Q(α)∗.

• lPi(β) > 0 if and only if the ideal Pi divides the principal ideal 〈β〉.

• lPi(β) = 0 for all but a finite number of prime ideal Pi of Z[α] and | N(β) | =∏
N(Pi)lPi for all prime ideals Pi of Z[α].

Proof. For proof ([6])

This above homomorphism works as exponent map.

3.3 Finding the exponents

Theorem 3.3.1. Given an element β ∈ Z[α] of the form β= a+bα for co-prime inte-

gers a and b and a prime ideal P of Z[α], then the homomorphism lP , corresponding

to P has lP(β)=0 if P is not a first degree prime ideal of Z[α]. Furthermore, if P is

a first degree prime ideal of Z[α] corresponding to the pair (r, p) then

lP(β) =

ordp(N(β)) if a ≡ −br mod p

0 otherwise

where ordp(N(β)) denote the exponent of the prime integer p occurring in the unique

factorization of the integer N(β) into distinct primes.

Proof. Let P be a prime ideal of Z[α] with lP(a + bα) > 0. Thus P serves as kernel

of epimorphism φ : Z[α] −→ Z[α]/P .

Now Z[α]/P ≡ Fpe where p is a prime, e is a positive integer and Fpe denote the

finite field with pe elements. This means that Z[α]/P must contain an isomorphic copy

of Z/pZ. Now we will try to show that Image(φ) = Z/pZ then by first isomorphism

theorem Z[α]/ker(φ) ≡ Image(φ) and ker(φ) = P This implies Z[α]/P ≡ Z/pZ and

P is the first degree prime ideal of Z[α]. Since φ is an epimorphism of rings φ(1) = 1 ∈
Z/pZ and hence φ(m) ≡ m mod p ∀m ∈ Z. If lP(a+ bα), P | 〈a+ bα〉 ⇒ a+ bα ∈ P .

But since ker(φ) = P it follows that φ(a+ bα) ≡ 0 mod p. Now, Suppose b ∈ Z and

p | b. It follows from φ(a+ bα) ≡ 0 mod p and φ(b) ≡ b ≡ 0 mod p that
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0 ≡ φ(a+ bα) ≡ a+ bφα ≡ a mod p and hence p | a

This contradicts our assumption of a and b being coprime. Hence b cannot be divisible

by p. And since b is not divisible by p there exists a inverse of b, say b−1 in Z/pZ.

from above equation, a+bφ(α) equiv 0 mod p. ⇒ φ(α) ≡ -ab−1 mod p. ⇒ φ(α) ∈
Z/pZ Hence, Z/pZ ⊆ φ(Z[α]) ⊆ Z/pZ. Therefore, Image(φ) = Z/pZ. For Second

Part, We first prove that lP(a+ bα) > 0 for first degree prime ideal P with pair (r, p)

if and only if a ≡ −br mod p. Let lP(a+ bα) ⇒ a+ bα ∈ P . Now, P = ker(φ) where

φ : Z[α] −→ Z/pZ.

φ(α)= r mod p and φ(a) = a mod p ∀ a ∈ Z. But then 0 ≡ φ(a+ bα) = a+ br mod

p ⇒ a ≡ −br mod p.
Conversely: Suppose a ≡ −br mod p for first degree prime ideal P with pair

(r, p). Then 0 ≡ a+ br mod p = φ(a+ bα).

Hence, a+ bα ∈ ker(φ) = P which implies that P divides 〈a+ bα〉 and hence lP(a+

bα) > 0.

Next, it will be shown that for a first degree prime ideal P of Z[α] with pair (r, p)

that N(a+ bα) is divisible by p if and only if a ≡ −br mod p.
Combining this with what we have proved just now implies l(a+bα) if and only if

p | N(a+ bα).

We Know, N(a+ bα) = σ1(a+ bα).σ2(a+ bα)... σd(a+ bα)

(a+ bα1).(a+ bα2)....(a+ bαd)

(−b)d) (−a/b− α1).(−a/b− α2).... (−a/b− αd)
(−b)d) f(−a/b)

So, p | N(a + bα) iff p | (−b)d or p | f(−a/b) Now we have already proved that

p 6| (−b)d.
⇒ f(−a/b) ≡ 0 mod p. Hence, a ≡ −br mod p, for some root r of f(x) mod p.

The value of r taken together with p determines a first degree prime ideal for which

lP(a+ bα) > 0, and vice versa.

Suppose lP(a+ bα) > 0 for some first degree prime ideal P of Z[α] with pair (r, p).

Suppose another first degree prime ideal P2 exists with pair (r2, p) such that lP2(a+

bα) > 0.

⇒ a ≡ −br mod p and a ≡ −br2 mod p but the later implies that

r ≡ r2 mod p

⇒ P and P2 corresponds to the same pair and hence represent the same ideal. This
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means that there can be only one first degree prime ideal P with pair (r, p) and has

lP(a+ bα) > 0.

Hence, lP(a+ bα)= OrdpN(a+ bα).

This theorem above shows that we only need to consider the elements of the form

a + bα. We can easily follow the algorithm and get set U of pair of integer with the

desired property(3.1.5 and 3.1.4). But still we have some problem due to the following

theorem.

Theorem 3.3.2. If U is a set of pairs of integers (a, b) such that the product of all

elements a+ bα ∈ Z[α] is a perfect square α2 ∈ Q(θ), then∑
(a,b)∈U

lPi(a+ bα) ≡ 0 (mod 2)

for all prime ideals Pi of Z[α].

Proof. Let Pi prime ideal of Z[α] as lPi is homomorphism. We get

∑
(a,b)∈U

lPi(a+ bα) = lPi
∑

(a,b)∈U

(a+ bα)

= lPi(α
2) = 2lPi(α) ≡ 0 mod 2

.

NOTE: This is not sufficiency condition.

Example: Consider the number field Q(
√
−5). Take Z[

√
−5, we have 〈2, 1 +

√
−5〉

prime ideal as its index in Z[
√
−5 is two. Now consider the element 2 ∈ Q(

√
−5) the

ideal generated by 2 is square of the ideal generated by 〈2, 1 +
√
−5〉.

Now we need to show that this is not a square of an element in Z[
√
−5. We proceed

by contradiction. Assume that 2 = (a+ b
√
−5)2 this means that

a2 − 5b2 + 2ab
√
−5 = 2

Comparing the integer part we get, a2 − 5b2 = 2 and 2ab
√
−5 = 0. These two

conditions are not possible simultaneously. So, 2 is not a square.

Here we talk about necessary conditions for set U to give a square root in Q(θ) we

didn’t talk about Z[α] for which we need Quadratic Character.
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When a set U of pairs of integer (a,b) has been found such that∑
(a,b)∈U

lPi(a+ bα) ≡ 0 (mod 2)

a further test is needed to determine whether or not the product of corresponding

elements a+ bα ∈ Z[α] is a perfect square in Z[α].

3.4 Quadratic Character

To tackle the above problem we use concept of Quadratic character.

Theorem 3.4.1. Let U be the set of (a,b) pairs such that∏
(a,b)∈U

(a+ bα) = θ2

for some θ ∈ Q(α). Give a first degree prime ideal V corresponding to pair (s, v) that

doesn’t divide 〈a+ bα〉 for any pair (a, b) and for which f ′(s) 6= 0 (mod v),it follows

that ∏
(a,b)∈U

(
a+ bs

v

)
= 1

Proof. Let φ : Z[α] −→ Z/pZ such that φ(α) = s mod v. Then V = kerφ is the first

degree prime ideal corresponding to (s, v). Now if we restrict the map φ to Z[α] \ V
we get a onto map from Z[α] \ V to non zero elements of Z/pZ and using this map

we can define map χ : Z[α]− V −→ {1,−1} given by

χq(γ) =

(
φ(γ)

v

)
(3.4.1)

We know from algebraic number theory that there exists β= f
′
(α).θ ∈ Z[α] satisfies

f
′
(α)2.

∏
(a,b)∈U

(a+ bα) = β2 (3.4.2)

As we have assumed that 〈a+ bα〉 is not divisible by ideal V we get a+ bα 6∈ V . We

have also assumed that f
′
(s) is not divisible by V , we get f

′
(α)2 6∈ V . Thus we have,

〈β〉 and 〈β2〉 hence χV is defined at both β and β2.
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χV (β2) =

(
φ(β)2

v

)
=

(
φ(β)φ(β)

v

)
=

(
φ(β)

v

)2

= 1 (3.4.3)

and we also have, χV (f
′
(α)2) = 1.

Now from 3.4.3 we have,

1 = χV (β2) = χV

f ′
(α)2.

∏
(a,b)∈U

(a+ bα)

 =

(
f

′
(α)2.

∏
(a,b)∈U(a+ bα)

v

)

=

(
φ(f

′
(α)2).φ(

∏
(a,b)∈U(a+ bα))

v

)
=

(
φ(f

′
(α)2)

v

)
.

(∏
(a,b)∈U φ(a+ bα)

v

)

= χV (f
′
(α)2).

(∏
(a,b)∈U φ(a+ bs)

v

)
= 1.

∏
(a,b)∈U

(
a+ bs

v

)

Hence Proved.

3.5 Square root extraction

Now the final step of the algorithm is to find the square root of the polynomial

constructed in Z[α]. For general number field sieve, square root extraction can be

done by computing the root of polynomial x2 − γ2 in Qα. Where γ is

f
′
(α)2.

∏
(a,b)∈U

(a+ bα) (3.5.1)

There exists a lot of standard methods to do this but the most widely used method

is successive approximation using Hensel’s lemma ([17]). Here in my implementation

I have used SquareRoot() command which directly computes the square root.
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Implementation of algorithm

We chose a number randomly and tried to factor it using our algorithm [1, Chapter

2] the code can be found in Appendix. We took n = 56442324723497.

• Using 3.1.1 calculate the degree of the polynomial. And using this degree find

the value of m. The value of m turns out to be 38359.

• Using this m find the polynomial which turns out to be

X3 + 10376X + 8234 (4.0.1)

• Construct the factor bases, which turns out to be

25
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Rational factor base:

{ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89,97, 101, 103, 107, 109, 113, 127, 131,

137, 139, 149, 151, 157, 163, 167, 173,179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271,

277,281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433,

439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601,

607, 613, 617, 619, 631, 641, 643, 647,653,659,661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769,

773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919,929,937,941,947, 953, 967,

971, 977, 983, 991, 997, 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103,

1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277,

1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399, 1409, 1423, 1427, 1429, 1433,

1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511, 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571,

1579, 1583, 1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723,

1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889,

1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, -1 }

Algebraic factor base

{
(0,2),(2,7),(3,7),(8,13), (3,17), (7,17), (2,19), (0,23), (13,29), (1,37), (4,37), (32,37), (41,47), (30,53), (5,59), (25,59), (29,59),

(37,61), (24,67), (12,71), (27,71), (32,71), (34,89), (50,97), (94,101), (2,109), (75,113), (67,127), (54,131), (92,131), (116,131),

(81,139), (87,139), (110,139), (82,149), (77,151), (148,157), (44,163), (54,163), (65,163), (157,167), (34,173), (0,179), (56,181),

(22,191), (33,193), (58,199), (164,199), (176,199), (98,227), (167,229), (121,233), (137,239), (44,241), (76,269), (206,269),

(256,269), (53,271), (99,277), (7,281), (97,281), (177,281), (257,293), (197,313), (132,317), (3,331), (257,337), (101,347),

(114,349), (310,359), (19,373), (163,379), (83,383), (134,383), (166,383), (360,421), (376,431), (127,433), (349,443), (115,457),

(30,467), (407,467), (466,479), (146,487), (1,503), (142,503), (360,503), (144,509), (200,521), (187,541), (114,547), (442,547),

(538,547), (99,557), (116,557), (342,557), (19,569), (39,571), (113,577), (470,577), (571,577), (90,593), (162,593), (341,593),

(123,599), (480,601), (312,607), (142,617), (135,619), (529,631), (306,641), (342,641), (634,641), (22,647), (336,653), (482,659),

(4,673), (157,673), (512,673), (326,691), (412,701), (294,719), (546,733), (341,751), (355,757), (319,761), (270,773), (55,787),

(354,787), (378,787), (503,797), (168,809), (172,809), (469,809), (147,823), (181,823), (495,823), (39,827), (227,829), (65,839),

(165,853), (199,853), (489,853), (331,857), (101,859), (805,859), (812,859), (632,863), (533,881), (38,883), (59,887), (372,907),

(630,907), (812,907), (78,919), (518,937), (12,947), (55,947), (880,947), (21,953), (428,953), (504,953), (478,983), (719,991),

(615,997), (982,1009), (995,1013), (5,1021), (345,1031), (449,1039), (233,1049), (687,1051), (815,1063), (596,1091), (687,1091),

(899,1091), (533,1093), (725,1097), (583,1103), (590,1103), (1033,1103), (384,1109), (309,1117), (1136,1151), (10,1153), (548,1163),

(760,1171), (520,1181), (339,1187), (1015,1201), (732,1213), (768,1213), (926,1213), (707,1229), (69,1237), (410,1237), (758,1237),

(325,1249), (836,1277), (648,1279), (926,1279), (984,1279), (94,1283), (204,1291), (140,1297), (517,1297), (640,1297), (549,1303),

(169,1307), (306,1307), (832,1307), (669,1319), (474,1327), (1036,1327), (1144,1327), (455,1367), (527,1381), (90,1409), (442,1409),
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(877,1409), (718,1423), (182,1429), (1280,1429), (1396,1429), (778,1433), (158,1439), (870,1451), (918,1451), (1114,1451),

(1000,1453), (837,1459), (832,1481), (970,1487), (869,1489), (967,1493), (357,1511), (294,1523), (1522,1553), (976,1559), (406,1571),

(1258,1571), (1478,1571), (276,1579), (431,1583), (765,1601), (649,1607), (23,1609), (273,1609), (1313,1609), (87,1613), (326,1619),

(140,1621), (581,1627), (781,1637), (1542,1657), (334,1663), (199,1667), (1356,1693), (1067,1699), (1455,1709), (1672,1721),

(309,1723), (627,1733), (1067,1747), (1713,1759), (1393,1777), (845,1783), (1235,1783), (1486,1783), (566,1787), (811,1811),

(1169,1811), (1642,1811), (425,1823), (1245,1831), (121,1861), (316,1873), (1006,1877), (727,1879), (1389,1879), (1642,1879),

(949,1889), (790,1901), (1291,1901), (1721,1901), (644,1907), (1325,1907), (1845,1907), (679,1913), (1230,1931), (870,1933),

(1455,1933), (1541,1933), (154,1949), (350,1949), (1445,1949), (836,1951), (1153,1951), (1913,1951), (1899,1979), (815,1997),

(1964,1999), (33,2003), (443,2003), (1527,2003), (1679,2011), (1935,2029), (1337,2039), (233,2053), (534,2053), (1286,2053),

(633,2063), (217,2069), (846,2081), (1566,2081), (1750,2081), (1394,2083), (661,2087), (1450,2087), (2063,2087), (2046,2099),

(211,2111), (688,2111), (1212,2111), (56,2113), (934,2113), (1123,2113), (1972,2129), (1025,2137), (2142,2143), (1626,2153),

(923,2161), (627,2179), (660,2179), (892,2179), (733,2207), (1552,2207), (2129,2207), (386,2213), (825,2221), (1585,2221),

(2032,2221), (71,2237), (880,2237), (1286,2237), (1683,2243), (163,2273), (2252,2281), (1731,2287), (896,2293), (76,2297),

(774,2309), (1864,2311), (1147,2333), (1639,2341), (372,2347), (241,2351), (555,2357), (1738,2371), (544,2377), (570,2377),

(1263,2377), (656,2381), (1729,2381), (2377,2381), (1849,2389), (327,2393), (482,2399), (1545,2411), (883,2417), (1586,2417),

(2365,2417), (227,2423), (1669,2459), (1009,2467), (1174,2473), (1526,2477), (1737,2521), (905,2531), (1831,2531), (2326,2531),

(721,2539), (813,2543), (1220,2549), (799,2551), (428,2557), (755,2557), (1374,2557), (1243,2579), (1493,2579), (2422,2579),

(1263,2593), (53,2609), (464,2609), (2092,2609), (452,2617), (960,2617), (1205,2617), (1561,2621), (1343,2633), (749,2647),

(1360,2657), (112,2677), (667,2683), (2224,2687), (1156,2689), (2002,2689), (2220,2689), (1572,2693), (596,2699), (2250,2699),

(2552,2699), (1615,2711), (1335,2719), (1686,2729), (1839,2731), (869,2741), (601,2749), (1890,2753), (223,2767), (1159,2777),

(1997,2777), (2398,2777), (2775,2791), (2767,2797), (1144,2801), (2407,2833), (1345,2837), (1550,2837), (2779,2837), (635,2843),

(2518,2851), (1368,2861), (1659,2861), (2695,2861), (225,2887), (1141,2887), (1521,2887), (1752,2897), (1781,2903), (2478,2909),

(395,2969), (2755,2969), (2788,2969)

}

Quadratic character base

{
(1443,2999), (740,3011), (744,3011), (1527,3011), (735,3019), (301,3023), (813,3023), (1909,3023), (2534,3079), (733,3083),

(2663,3083), (2770,3083), (684,3089), (1310,3109), (1947,3109), (2961,3109), (2904,3119), (644,3121), (395,3163), (1071,3163),

(1697,3163), (1279,3167), (476,3169), (1112,3169), (1581,3169), (895,3187), (1130,3191), (1706,3203), (2685,3251), (1327,3253),

(1960,3253), (3219,3253), (1176,3257), (905,3259), (959,3259), (1395,3259), (2578,3299), (782,3307), (889,3313), (2438,3319),

(1190,3323), (2456,3323), (3000,3323), (3266,3329), (1371,3331), (1244,3343), (579,3347), (50,3361), (1724,3371), (858,3391),

(2682,3391), (3242,3391), (2481,3407), (2609,3413), (235,3433), (2197,3449), (2160,3457), (1094,3463), (1830,3467), (477,3491),

(738,3491), (2276,3491), (485,3511), (931,3517), (8,3529), (1351,3533), (1512,3539), (1848,3541), (370,3557), (3429,3559),

(1710,3581), (2430,3583), (1915,3593), (2263,3593), (3008,3593), (1451,3607), (2846,3607), (2917,3607), (3376,3617), (418,3623),
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(735,3623), (2470,3623), (1053,3631), (3286,3637), (1560,3643), (1300,3659), (2702,3659), (3316,3659), (2056,3671), (1467,3673),

(568,3677), (3356,3677), (3430,3677), (2665,3691), (1524,3697), (3361,3709), (1939,3719), (1445,3767), (2795,3767), (3294,3767),

(2235,3769), (1288,3793), (923,3797), (2098,3803), (1543,3821), (630,3823), (1857,3833), (1653,3847), (3358,3851), (2066,3853),

(1331,3877), (2420,3881), (929,3889), (3803,3907), (3241,3917), (3730,3919), (3834,3923), (1364,3929), (2455,3943)

}

Using these factor bases we collected smooth relations. Using those relations

and factor bases we constructed the matrix and after calculating the null space

of it.

the value of f
′
(m) = 4414249019

and the value of
√∏

(a,b)∈S(a+ bm) is 47460456068820.

u = f
′
(m).

√ ∏
(a,b)∈S

(a+ bm) = 209502271643081281487580. (4.0.2)

Then we calculate the value of f
′
(α) and f

′
(α) which turns out to be

3α2 + 10376 and − 31128α2 − 74106α + 107661376

respectively and the value of

ν =

√
f ′(α).

∏
(a,b)∈S

(a+ bα) = (4.0.3)

-71698655736614058051872222240663869012512861398405905499722665210556609760710820489997792449780478415285821524191889745206539317890686560

254707674042263748923681640659211523282732296214466855932462967210241256969878557020213291352645851891276162254607766967275494505033753548

8049245517164996756042042036918724551283687837730084612355356672α2+

111536589308245578848856438895889427673374088636175303801078944190378977711324243538165437633584015906718371492574708297142104219629068763

605462441661642395818920406456563262015595991528832670096901465474177885056559278675633853379201858764579676098956062156647822050168853396

934375874519171554287549908292043741093496327132394135747857758208α+

889572961906148392580677101616124712791023699035365651140603288640341891473273526923273544327828844879163393574020521419472403670593558196

724418684214077571578516594824967376297808013785419469716456171077366925060151850135683105042392239244388911632181097682023880063442894661

03048242094398436454078233189165411868229295745337195975991756800

calculating the value of u which is the image of ν under φ. we get, u =

96687834939610.
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So find the factor of n using

GCD(209502271643081281487580−96687834939610, 56442324723497) (4.0.4)

So we get 47107 as a factor of n and the other factor is 1198172771.
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Chapter 5

Appendix

5.1 Code for the General Number Field Sieve writ-

ten in MAGMA

The code goes like this:

h1:=n;

/* Polynomial construction started*/

d:= Round(Root(3*Log(h1)/Log(Log(h1)),3));

m := Iroot( h1, d );

print "m := ", m, ";";

coeffs := [];

for i := d to 0 by -1 do

temp2 := m^i;

coeff := h1 div temp2;

coeffs[i+1] := coeff;

h1 -:= coeff*temp2;

end for;

P<X> := PolynomialRing( IntegerRing() );

f := P!coeffs;

print f;

31
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/*Polynomial constructed*/

J<alpha> := NumberField(f);

derivativef := Derivative(f);

/*Finding Smoothness Bound*/

dlogd:=d*Log(d);

tempo:=1.0/d * Log(n);

e:=dlogd + Sqrt(dlogd^2 + 4*tempo*Log(tempo));

k1:=Round(Exp(0.5*e));

k:=2*Floor(k1);

/* k is the smoothness bound */

/* constructing the Factor Bases*/

RFB:=PrimesUpTo (k);

RFB:=Append(RFB,-1);

/*AFB*/

localset:=PrimesUpTo(Floor(1.5*k));

AFB:= AssociativeArray();

cg:=0;

just:=1;

for ko in [1 .. #localset] do

x:=localset[ko];

S:=GF(x);

T:=PolynomialRing(S);

v1:=[];

set1:=[];

set1:=Roots( f , S);

for j in [1.. #set1] do
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tt:=IntegerRing()!set1[j][1];

cg:=cg+1;

vv:=IntegerRing()! x;

AFB[just] := [*tt,vv*];

just:=just+1;

end for;

end for;

/*AFB done */

/*QCB*/

tempset:=PrimesInInterval(Floor(1.51*k) , Floor(2*k));

QCB:= AssociativeArray();

cg1:=0;

just1:=1;

for kp in [1 .. #tempset] do

x:=tempset[kp];

S:=GF(x);

T:=PolynomialRing(S);

v2:=[];

set2:=[];

set2:=Roots(f , S);

for jq in [1.. #set2] do

tj:=IntegerRing()!set2[jq][1];

cg1:=cg1+1;

vv:=IntegerRing()! x;

QCB[just1] := [*tj,vv*];

just1:=just1+1;

end for;
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end for;

print cg1;

/*QCB done*/

/* main body of the program */

a:=AssociativeArray();

e:=AssociativeArray();

b:=0;

rels:=[];

req:= #RFB + cg1+ cg + 20;

got:= 0;

while (got lt req) do

b:=b+1;

c:=Floor(k1);

for i in [-c .. c] do

a[i]:= i+b*m;

end for;

for y1 in [-c .. c] do

for j3 in [1 .. #RFB-1] do

if (y1 mod RFB[j3]) eq (-b*m mod RFB[j3]) then

while ((a[y1] ne 1) and ((a[y1] mod RFB[j3]) eq 0)) do

a[y1]:=a[y1] div RFB[j3];

end while;

end if;

end for;

end for;

for i3 in [-c .. c] do

e[i3]:= Numerator( Norm(i3+(b*alpha)));

end for;

for y2 in [-c .. c] do

/* print "y2 loop is running";*/

for j9 in [1 .. cg] do
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/* print "j9 loop is running";*/

if (y2 mod AFB[j9][2]) eq (-b*(AFB[j9][1]) mod AFB[j9][2]) then

while ((e[y2] ne 1) and ((e[y2] mod AFB[j9][2]) eq 0)) do

e[y2]:= e[y2] div AFB[j9][2];

end while;

end if;

end for;

end for;

for i5 in [-c .. c] do

if (a[i5] eq e[i5]) and (a[i5] eq 1) and (Gcd(i5,b) eq 1) then

rels := Append(rels, [i5,b]);

got:=got+1;

end if;

end for;

end while;

/*relation collected*/

/*constructing the matrix from relations*/

M := RMatrixSpace (IntegerRing(),#rels, req-20)!0;

gf2:= GF(2);

Mprime := RMatrixSpace (gf2, #rels, req-20)!M;

for i21 in [1 .. #rels] do

if (rels[i21][1] + (rels[i21][2]*m) lt 0) then

Mprime[i21][#rels]:= 1;

end if;

end for;

for i21 in [1 .. #rels] do
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tte:= rels[i21][1]+(rels[i21][2]*m);

for i22 in [2 .. #RFB-1 ] do

dummy:=0;

while ((tte mod RFB[i22]) eq 0) do

tte:= tte div RFB[i22];

dummy := dummy+1;

end while;

M[i21][i22]:= dummy;

dummy:=dummy mod 2;

Mprime[i21][i22]:= dummy;

end for;

end for;

for j21 in [1 .. #rels] do

tte1:= Abs(Numerator((-rels[j21][2])^d * Evaluate(f,-rels[j21][1]/rels[j21][2])));

for j22 in [1 .. cg] do

dummy1:=0;

while ((tte1 mod AFB[j22][2]) eq 0) do

tte1:=tte1 div AFB[j22][2];

dummy:=dummy+1;

end while;

M[j21][#RFB+j22]:= dummy;

dummy:=dummy mod 2;

Mprime[j21][#RFB+j22]:= dummy;

end for;

end for;

/* inserting the QCB part */

for k21 in [1 .. #rels] do

for k22 in [1 .. cg1] do
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tte3:= rels[k21][1]+(rels[k21][2]*QCB[k22][1]);

lsymbol:= LegendreSymbol(tte3,QCB[k22][2]);

if (lsymbol ne 1) then

M[k21][#RFB+cg+k22]:=1;

Mprime[k21][#RFB+cg+k22]:=1;

end if;

end for;

end for;

/* matrix construction done */

/* finding the null space */

nullmat := NullSpace(Mprime);

for j41 in [1 .. Dimension(nullmat)] do

sol1:= ChangeUniverse (Eltseq (nullmat.j41), IntegerRing());

exponent := RSpace(IntegerRing(),req-20 )!0;

for i41 in [1 .. #rels] do

if sol1[i41] eq 1 then

exponent := exponent + M[i41];

end if;

end for;

/* calculating the integer square root */

num := 1;

for i44 in [1 .. #RFB] do

e := exponent[i44];

if e gt 0 then

num:=(num * (RFB[i44]^(e div 2) ) ) mod n;

end if;

end for;
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num := (num * Evaluate(derivativef , m));

list := [];

for i51 in [1 .. #rels] do

if sol1[i51] eq 1 then

Append (~list, rels[i51][1]+(alpha* rels[i51][2]));

end if;

end for;

Append ( ~list, Evaluate(derivativef , alpha)^2 );

prod_alg := 1;

for i61 in [1 .. #list] do

prod_alg:=(J!( prod_alg*list[i61]));

end for;

if IsSquare(prod_alg) eq false then

print "not square";

continue;

else;

prod_alg:= Sqrt(prod_alg);

prod_alg:=(J! prod_alg);

prod_alg;

list:= Eltseq (prod_alg);

yu:=0;

elt := 0;

for j in [1 .. #list] do

num_coeff:= Numerator(list[yu+1]) mod n;

den_coeff:= Denominator(list[yu+1]) mod n;

elt := elt + ((num_coeff * Modinv(den_coeff, n) mod n) * Modexp(m, yu,n)mod n);

yu:=yu+1;

end for;

v:= elt;

v;

factor:= GCD(v-num,n);
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print factor;

end if;

end for;

Note: This code is not at all optimised. Magma is a software package designed for the

computation in Algebra, number theory, algebraic number theory, algebraic geometry

and algebraic combinatorics. [18]

5.2 L-Notation

Ln[α, c] = e(c+o(1))(ln (n))α(ln (ln (n)))

where c is positive constant and α is a constant 0 ≤ α ≥ 1



40 CHAPTER 5. APPENDIX



Bibliography

[1] David S. Dummit, Richard M. Foote, Abstract Algebra, Wiley- India, 1999.

[2] Jody Esmonde, M. Ram Murty, Problems in Algebraic Number Theory, Springer,
1999.

[3] Peter Stevenhagen, The Number Field Sieve, Algorithmic Number Theory, 2008

[4] A.K. Lenstra, H.W. Lenstra jr., M.S. Manasse, J. M. Pollard, The Factorization
of Ninth Fermat’s Number, Mathematical Subjects Classification, 1990.

[5] Johannes A. Buchmann, Introduction to Cryptography, Springer, 2001.

[6] Joshua Baron, A Description of the Number Field Sieve, 2003.

[7] Carl Pomerance, The Number Field Sieve, Proceeding and Symposia in Applied
Mathematics, 1994.

[8] Carl Pomerance,A tale of two sieve, Notices of the AMS, 1996.

[9] Steven Bryens, The Number Field Sieve, 2005.

[10] A.K. Lenstra, H.W. Lenstra jr., M.S. Manasse, J. M. Pollard, The Number Field
Sieve,1995.

[11] Arjen K. Lenstra, Hendrik W.Jr. Lenstra, The Development of the Number Field
Sieve, springer, 1993.

[12] Ron L. Rivest, Adi Shamir, and Len Adleman, A method for obtaining digi-
tal signatures and public-key cryptosystems, Communications of the ACM 21
(1978), 120126.

[13] Martin O. Rabin, Digitalized signatures and public-key functions as in- tractable
as factorization, MIT Technical Report TR-212 (1979).

[14] John M. Pollard, Theorems on factorization and primality testing., Proceed- ings
of the Cambridge Philosophical Society 76 (1974), 521528.

[15] M. Agrawal, N. Kayal, and N. Saxena, Primes is in p, 2002.

41



42 BIBLIOGRAPHY

[16] Serge Lang, Algebra, Springer, 2002.

[17] J.P. Bulher, S.Wagon, Basic algorithms in number theory, surveys in algorithm
number theory, new york press, 2008.

[18] http://magma.maths.usyd.edu.au/magma/


