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1

Introduction

This thesis deals with two problems. The first one looks into the A1 connectivity of
moduli stack of vector bundles on a curve. This project was borne out of the need to
understand the relationship between an algebraic stack and its coarse moduli space in
the motivic setting. While we do prove that the moduli stack in question is A1 connected,
the broader question still remains. A1 connectivity of the aforementioned stack has some
pleasant consequences. It allows us to classify projective bundles on any curve upto their
A1 homotopy type. In fact we prove a stronger statement as we classify such bundles upto
their A1-h cobordant class. Along with results of [2] this provides complete classification of
projective bundles on curves upto their A1-h-cobordant class. Classification of projective
bundles over higher dimensional varieties upto A1-h cobordism is not known. For a partial
result over P2 see [1].
Another consequence of the theorem is that we are able to come up with an example
of a scheme which while being A1-h cobordant to projective bundle, is not isomorphic
to one. This answers a question raised in [1]. This is based on a joint work with Amit
Hogadi [15].
The second problem in this thesis is regarding the Gersten resolution of an A1 invariant
cohomology theory over a general base. Gersten resolutions are ubiquitous in Algebraic
geometry and has a rich history, starting with Algebraic K theory. While Gersten complex
always exists, proving it’s exactness is the central question here. When the base scheme
is a field, it’s exactness is already known (see for instance [5]). When the base is a
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2

DVR the conditional exactness was proved in [27]. The key ingredient in op. cit, is the
authors’ Gabber presentation lemma for DVR proved in [26]. Here we extend this result
to schemes of arbitrary dimension, based on [7] and [9]. We also prove the exactness
of Gersten complex for étale cohomology with finite coe�ecients, known as Bloch Ogus
theorem. This is based on joint work with Neeraj Deshmukh and Girish Kulkarni [8].
The main results are presented in Chapters 4 and 5. The raison d’être of other chapters
is to provide prerequisites needed for these two chapters. We have eschewed proofs in
these sections because most of the material is already standard and references have been
provided. Chapter 2 and Section3.1 (with exception of section 2.3) are the foundational
material for Chapter 4 while sections 2.3 and 3.2 go into chapter 5. Future directions are
hinted in Remarks 5.1.9 and 5.2.6.



2
A primer on A1-homotopy theory

We first reveiw the basics of model categories and then define unstable and stable motivic
homotopy categories.

2.1 Model categories

Following [17] or [12] we recall some basic definitions

Definition 2.1.1. Let C be a category with all small limits and colimits. A model
category structure on C consists of three classes W , C, F of morphisms in C (called
weak-equivalences, cofibrations, and fibrations respectively), satisfying the following.

M1 Given two composable morphisms X
f≠æ Y

g≠æ Z in C, if any two of the morphisms
f , g and g ¶ f are weak equivalences then so is the third.

M2 If f is a retract of g and g is a weak equivalence, fibration or cofibration, then so
is f (for the definition of retract see [17, Def. 1.1.1]).

M3 Given a diagram of solid arrows, a dotted arrow can be found making the following
diagram commutative

Z E

X B

i p

3



4 2.1. Model categories

if either

(a) p is a trivial fibration i.e. (p œ W fl F ) and i is a cofibration, or

(b) i is a trivial cofibration i.e. (i œ W fl C) and p is a fibration.

M4 Any map X æ Z in C admits two factorizations, X
f≠æ E

p≠æ Z and X
i≠æ Y

g≠æ Z,
such that f is an trivial cofibration, p is a fibration, i is a cofibration, and g is an
trivial fibration.

Definition 2.1.2. An object X in a model category C is called fibrant if the map X æ ú
to the final object is a fibration and cofibrant if the map ÿ æ X from the initial object
is a cofibration. Given an object X œ C, a fibrant(cofibrant replacement) is a trivial
cofibration(fibration) X æ RX (QX æ X) such that RX (QX) is fibrant (cofibrant).

The machinery of model category allows us to define homotopy category of a category
with a given model structure while avoiding set theoretic pitfalls.

Definition 2.1.3. Let C be a model category and X œ C be an object. A cylinder
object for X is an object Cyl(X) with the following diagram

X
‡

X
i0,i1≠≠æ Cyl(X) æ X

which factors the fold map X
‡

X æ X such that Cyl(X) æ X is a trivial fibration.

Definition 2.1.4. Let f, g : X æ Y be morphisms for some objects X, Y in a model
category C. A left homotopy between f and g is a morphism H : Cyl(X) æ Y such
that H ¶ i0 = f and H ¶ i1 = g, for some cylinder object Cyl(X) for X. In such a scenario
we say f and g are left homotopic.

Analogous to cylinder objects and left homotopies, there is a notion of path objects
and right homotopies which we define below.

Definition 2.1.5. Let C be a model category and Y œ C be an object. A path object
for Y is an object P(Y ) with the following diagram

Y æ P(Y ) e0,e1≠≠æ Y ◊ Y

which factors the diagonal map Y æ Y ◊ Y such that P(Y ) æ Y is a trivial cofibration.
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Definition 2.1.6. Let f, g : X æ Y be morphisms for some objects X, Y in a model
category C. A right homotopy between f and g is a morphism H : X æ PY such that
e0 ¶ H = f and e1 ¶ H = g, for some path object P(Y ) for Y . In such a scenario we say
f and g are right homotopic.

Definition 2.1.7. Morphisms f, g : X æ Y in C are said to be homotopic if they are
left as well as right homotopic.

Definition 2.1.8. Let C be a model category. Its homotopy category denoted Ho(C)
is a category such that

• objects of Ho(C) are same as C

• Given X, Y œ C, the morphisms in Ho(C) between them, denoted [X, Y ] are given
by C(RQX, RQY )/ ≥, where ≥ denotes

Remark 2.1.9.Given arbitrary X, Y in a model category C, a left homotopy between
two morphisms f, g : X æ Y doesn’t necessarily imply a right homotopy or vice-versa.
Furthermore neither left homotopy nor right homotopy is an equivalence relation. How-
ever in the case X and Y are cofibrant-fibrant objects the previous two statements hold
true.

Definition 2.1.10. Let F : C � D : G be an adjunction between model categories, with
F and G left adjoint and right adjoint respectively. This is a Quillen adjunction if one
of the following equivalent conditions is satisfied

• F preserves cofibrations and trivial cofibrations

• G preserves fibrations and trivial fibrations

• F preserves cofibrations and G preserves fibrations

• F preserves trivial cofibrations and G preserves trivial fibrations.

2.1.1 Simplicial sets

Let � be the category whose objects are finite ordered sets, denoted as [n] := {0 < 1 <

· · · < n}. A morphism between two objects [n] æ [m] is an order preserving morphism
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of finite ordered sets. Any morphism in � [n] æ [m] can be uniquely written as a
composition of the morphisms of following type (for 0 Æ i Æ n)

di : [n ≠ 1] æ [n], di(j) = j if j < i and di(j) = j + 1 if j Ø i

si : [n + 1] æ [n], si(j) = j if j Æ i and si(j) = j ≠ 1 if j > i

Definition 2.1.11. A simplicial set X is a functor

X : �op æ SET

where SET is the category of sets. Given a simplicial set X, its n-simplices, denoted
Xn, is the set X([n]). Henceforth the category of simplicial sets will be denoted as sSet.

Remark 2.1.12.Unravelling the definition of a simplicial set X we obtain that a simpli-
cial set is a collection of sets {Xn} along with morphisms di : Xn æ Xn≠1 called the face
maps , si : Xn æ Xn+1, called the degeneracy maps, satisfying the following simplicial
identities

didj = dj≠1di, for i < j

disj = sj≠1di, for i < j

djsj = 1 = dj+1sj

disj = sjdi≠1 for i > j + 1
sisj = sj+1si for i Æ j

Example 2.1.13.One class of important example of simplicial sets is the representable
functor Hom�(_, [n]), henceforth denoted as �n. Hence by Yoneda lemma, for a simpli-
cial set X, we have Xn = HomsSet(�n, X).

Example 2.1.14.Given a small category C we can construct a simplicial set N(C) called
nerve of that category. Then zero simplices of N(C) correspond to the objects of C.
N(C)n (the n simplices) correspond to the composable morphisms

A0 æ A1 æ · · · æ An

in C. The face maps di : N(C)n æ N(C)n≠1 send A0 æ A1 æ · · · æ Ai≠1 æ Ai æ
Ai+1 æ · · · æ An to A0 æ A1 æ · · · æ Ai≠1 æ Ai+1 for i ”= 0, n. For i = 0, n the face
map di simply removes A0 and An respectively.
The degeneracy map si : N(C)n æ N(C)n+1 sends A0 æ A1 æ · · · æ Ai≠1 æ Ai æ
Ai+1 æ · · · æ An to A0 æ A1 æ · · · æ Ai≠1 æ Ai

id≠æ Ai æ Ai+1 æ · · · æ An
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Let |�n| be the standard n-simplex in Rn+1 defined as a topolgical space in the
following way

|�n| := {(t0, · · · , tn) œ Rn+1| qn
i=0 ti = 1, ti Ø 0}

This allows us to construct the realization functor

| ≠ | : sSet æ Top

which sends �n to |�n|. Since an arbitrary simplicial set X can be written as a colimit
of representables i.e �n, |X| is defined by taking the colimit of the same diagram with
respect to |�|n in Top (where colimits exist). Moreover it can be shown that |X| is a
CW complex [12, Prop. 2.3.] .

Definition 2.1.15. A morphism f : X æ Y of simplicial sets in a weak equivalence
if |f | : |X| æ |Y | is a weak equivalence of topological spaces.

Theorem 2.1.16. [12, Theorem 11.3] There is a model structure on sSet with weak
equivalences as defined in Definition 2.2.12, cofibrations as monomorphisms of simplicial
sets and fibrations the morphisms with lifting property with respect to trivial cofibrations.

2.1.2 Chain complexes

Example 2.1.17.Let ChØ0 be the category of bounded below co-chain complexes of
abelian groups. Then we describe two model structures called injective and projec-
tive model structure.
Injective model structure:

• f : X æ Y is a weak equivalence if it is a quasi isomorphism, that is, the induced
map Hn(X) æ Hn(Y ) is an isomorphism for all n.

• f : X æ Y is a cofibration if fn : Xn æ Yn is injective for all n > 0.

• f : X æ Y is a fibration if fn : Xn æ Yn is surjective and kerfn is an injective
group for all n.

Projective model structure:
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• f : X æ Y is a weak equivalence if it is a quasi isomorphism, that is, the induced
map Hn(X) æ Hn(Y ) is an isomorphism for all n.

• f : X æ Y is a fibration if fn : Xn æ Yn is surjective for all n > 0.

• f : X æ Y is a cofibration if fn : Xn æ Yn is injective and cokerfn is a projective
for all n.

Let Ab denote the category of abelian groups.

Definition 2.1.18. A simplicial abelian group is a functor X : �op æ Ab

Given a simplicial abelian group X, let NXk := uk≠1
i=0 ker(di) µ Xk, where di’s are

the boundary maps. One has the morphism NXk
(≠1)kdk≠≠≠≠æ NXK≠1 and this gives rise to

a chain complex
· · · æ NXk æ NXk≠1 æ · · ·

. Thus one has a functor
N : sAb æ ChÆ0

from simplicial abelian groups to bounded above chain complexes of abelian groups.
Moreover there is a functor � : ChÆ0 æ sAb which is an inverse of N and gives rise to
equivalence between these two categories. This is called Dold Kan correspondence.
For more details see [12, III].

2.2 Unstable A1-homotopy category

In this section we recall some constructions from [22]. Let S be a Noetherian scheme
of finite Krull dimension and SmS denote the category of smooth schemes of finite type
over S. The category of presheaves of simplicial sets on SmS is denoted by sPre(SmS).

Remark 2.2.1.Note that any simplicial set S, considered as a constant presheaf is an
object in sPre(SmS). Any scheme X œ SmS considered as presheaf of sets is also an
object in sPre(SmS).

Definition 2.2.2. Let S be a Noetherian scheme of finite dimension. A finite family
{Ui} æ X family of étale morphisms is called a Nisnevich cover if one of the following
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equivalent conditions are satisfied

• For any point x œ X there exists an i and a point u œ Ui such that u maps to x

and the induced morphism of residue fields k(x) and k(u) is an isomorphism

• for any point x œ X the following morphism of schemes has a section

‡
i(Ui ◊X SpecOh

X,x) æ Spec (Oh
X,x)

where Oh
X,x is the Henselisation of local ring OX,x at x.

One can then define a Grothendieck site with Nisnevich topology generated by Nis-
nevich covers. Stalk at a point x of a scheme X in Nisnevich topology is Oh

X,x. One then
obtains a local model structure on sPre(SmS) such that

• Let X, Y be simplicial presheaves. Then X æ Y is weak equivalence if
X(Spec (Oh

X,x)) æ Y(Spec (Oh
X,x)) is a weak equivalence of simplicial sets for any

point x in any scheme X œ SmS.

• Cofibrations are monomorphisms of simplicial presheaves.

• Fibrations are characterized by lifting property with respect to trivial cofibrations.

Definition 2.2.3. An elementary distinguished square is the following pullback
diagram in SmS

U ◊X V V

U X

p

j

such that where p is étale morphism, j is an open embedding and p≠1(X ≠ U) æ X ≠ U

is an isomorphism. Note that the closed subschemes p≠1(X ≠U) and X ≠U are assumed
to have reduced induced scheme structure.

One has the following characterisation of fibrant objects in the local model structure
on sPre(SmS).

Proposition 2.2.4.Let S be a Noetherian scheme of finite Krull dimension. X œ
sPre(SmS) is projective fibrant if and only if for every elementary distinghished square
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U ◊X V V

U X

p

j

the natural map

X(X) æ X(V ) ◊X(U◊V ) X(U)

is a weak equivalence of simplicial sets, X(X) is a fibrant simplicial set and X(„) is an
empty object.

One can do the Bousefield localisation (see [14] for more details) of local model struc-
ture on sPre(SmS) with respect to projection morphisms U ◊ A1 æ U and obtain a new
model structure denoted sPre(SmS)A1 where all the morphisms of the form X◊ A1 æ X

(for any X œ sPre(SmS))are weak equivalences. The unstable motivic homotopy
category, denoted H(S) is the homotopy category of sPre(SmS)A1 . A fibrant object X

in sPre(SmS)A1 is called an A1 local object. In addition to being a Nisnevich fibrant
object as characterised in Proposition 2.2.4 it satisfies the following condition

X(U) æ X(U ◊ A1)

is a weak equivalence of simplicial sets for every U œ SmS.

Example 2.2.5.Gm, abelian varieties and their products are some examples of schemes
which are A1-local.

Remark 2.2.6.A pointed simplicial presheaf consists of a simplicial presheaf X along with
a morphism ú æ X, where ú is the final object in sPre(SmS). There is a forgetful functor
from the category of pointed simplicial presheaves to sPre(SmS). All the constructions
of this section can be carried out mutatis mutandis for the category of pointed simplicial
presheaves on SmS. For instance a morphism of pointed simplicial presheaves is a weak
equivalence if it is a weak equivalence after applying the forgetful functor. Moreover
the forgetful functor admits a left adjoint which also induces an adjunction on resulting
homotopy categories.
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2.2.1 A1 homotopy sheaves

There exists a functor LA1 : sPre(SmS) æ sPre(SmS) such that given any simplicial
presheaf X, LA1(X) is a fibrant object in H(S) (for construction see [22, page 107]), this
functor is called A1-fibrant replacement functor.

Let fis
i (X, x) denote the ith homotopy group of a pointed simplicial set (X, x). Then

the ith A1-homotopy sheaf of a pointed simplicial sheaf (X, x) (denoted fiA1
i (X, x)) is

defined to be the Nisnevich sheafification of the preseheaf

U ‘æ fis
i (LA1(X)(U), x) ƒ [U · Si,X]H(S)

.

Definition 2.2.7. Let k be a field and S = Spec(k)

1. A sheaf of sets F on SmS in the Nisnevich topology is said to be A1-invariant if for
any X œ SmS, the map F(X) æ F(A1 ◊X) induced by the projection A1 ◊X æ X,
is a bijection.

2. A sheaf of groups G on SmS in the Nisnevich topology is said to be strongly A1

-invariant if for any X œ SmS the map

H i
Nis(X; G) æ H i

Nis(X ◊ A1; G)

induced by the projection A1 ◊ X æ X, is a bijection for i œ {0, 1}.

3. A sheaf M of abelian groups on SmS in the Nisnevich topology is said to be strictly
A1-invariant if for any X œ SmS the map

H i
Nis(X; M) æ H i

Nis(X ◊ A1; M)

induced by the projection A1 ◊ X æ X, is a bijection for any i œ N.

Remark 2.2.8.Given any pointed simplicial presheaf (X, x), fiA1
0 (X, x) is conjectured by

F. Morel to be A1-invariant. In full generality this conjecture is open though it has been
proved in some special cases.
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Remark 2.2.9.When the base S is a field, fiA1
1 (X, x) is a strongly A1 invariant sheaf of

groups [21, Theorem 6.1] and with the additional condition of base being a perfect field,
fiA1

i (X, x) (i > 1) is a strictly A1 invariant sheaf of abelian groups [21, Corollary 6.2].
Moreover any strongly A1 invariant sheaf of abelian groups over a perfect field is strictly
A1 invariant [21, Corollary 5.45].

Definition 2.2.10. A pointed presheaf X œ sPre(SmS)A1 is called A1- connected if the
canonical map X æ S induces an isomorphism fiA1

0 (X) ƒ≠æ fiA1
0 (S) ƒ ú.

Example 2.2.11.An’s are A1-connected schemes (in fact they are A1 contractible). Pn’s
are A1-connected. Projective bundles over A1-connected proper schemes are A1-connected.

For the remaining section assume S is a field, denoted k.

Lemma 2.2.12. [20, Lemma 6.1.3.] Let Y be an A1 local simplicial sheaf such that
fi0Y(F ) = ú for every finitely generated field extension F/k. Then Y is A1-connected.

Proof. We have to prove for any smooth scheme X over k, fi0Y(X) is trivial. Since we
are working with Nisnevich sheaves we need to prove that for a covering X Õ æ X, the
morphism X Õ æ fi0Y is trivial. Surjectivity of sheaves Y æ fi0Y implies any morphism
X Õ æ fi0Y lifts to a morphism U æ Y for some Nisnevich covering of X Õ. So it’s su�ces
to show for any irreducible smooth k scheme U , any morphism U æ fi0Y obtained after
composing with Y æ fi0Y is trivial.
Let F be the function field of U . Then the condition fi0Y(F ) = ú implies that there
exists a dense open U Õ µ U such that U Õ æ fi0Y is trivial. By assuming Y to be
simplicially fibrant we can prove that any morphism U æ fi0Y restricts to a trivial
morphism U Õ æ fi0Y for some U Õ µ U . Therefore we have a morphism U/U Õ æ fi0Y.
By Gabber presentation lemma one can prove that U/U Õ is A1- connected and hence
U/U Õ æ fi0Y is trivial. This finishes the proof.

For a simplicial presheaf X consider the presheaf U ‘æ X(U)/ ≥, where ≥ is the
equivalence relation generated by “naive" A1 homotopies. x and y in X(U) are naively
A1 homotopic if there exists f : A1

U æ X such that f0 = x and f1 = y. Its sheafification
will be denoted as Xnv.



Chapter 2. A primer on A1-homotopy theory 13

Let �n
A1 be algebraic n simplex defined as the following smooth scheme

�n
A1 := Spec k[x0, · · · , xn]/(�i=n

i=0 xi ≠ 1)

Note that �n
A1 is isomorphic (non canonically) to An

k . Given X,Y œ sPre(SmS)A1 we can
obtain a simplicial sheaf Hom(X,Y) such that Hom(X,Y)n := HomsP re(SmS)A1 (X◊�n

A1 ,Y).

Definition 2.2.13. Let X be a simplicial sheaf. Then SingA1
ú (X) is the diagonal of

bisimplicial sheaf
Hom(�m

A1 ,Xn)

Remark 2.2.14.It follows from definitions that for any given simplicial sheaf X,
fis

0(SingA1
ú (X)) ƒ Xnv

Corollary 2.2.15.A simplicial sheaf X is A1-connected if Xnv(F ) = ú for every finitely
generated field extension F over k.

Proof. Consider LA1(X). As a consequence of unstable connectivity theorem [22, Section
2, Corollary 3.22] and Remark 2.2.14, the condition Xnv(F ) = ú implies LA1(X)(F ) = ú
for every finitely generated field extension F/k. Then by Lemma 2.2.12 we have that X

is A1-connected.

2.3 Stable A1 homotopy theory

Let S1 denote the simplicial set �1/ˆ�1.

Definition 2.3.1. The category of spectra, Spt, consists of

• Objects called spectrum. A spectrum X consists of simplicial sets Xi i œ N along
with morphisms Xi · S1 æ Xi+1 for all i.

• A morphism of spectra ‡ : X æ Y consists of morphisms of simplicial sets ‡i :
Xi æ Yi along with following commutative diagram

Xi · S1 Xi+1

Yi · S1 Yi+1

‡·S1 ‡i+1
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Remark 2.3.2.By adjunction between suspension and loop functors a morphism Xi ·
S1 æ Xi+1 is equivalent to a morphism Xi æ �S1Xi+1. This induces a natural map
fik(Xi) æ fik+1(Xi+1), for all i and k.

Definition 2.3.3. Given a spectrum X its nth stable homotopy group fin(X) is the
following colimit

lim≠æ
i

fin+i(Xi)

Definition 2.3.4. An S1-spectrum E is the data of simplicial sheaves Ei, i œ N along
with the maps Ei · S1 æ Ei+1.

Definition 2.3.5. Given an S1 spectrum E, its nth- homotopy sheaf, denoted fin(E)
is the sheaf associated to the presehaf

X ‘æ lim≠æ
i

fin+i(Ei(X))

for X œ SmS.

Definition 2.3.6. The category of S1- spectra, SptS1(SmS), has the following model
structure called stable model structure

• f : E æ F is a weak equivalence if f induces an isomorphism of homotopy sheaves
fin(E) æ fin(F ) for all n.

• E æ F is a cofibration if E0 æ F0 and the following maps are cofibrations

(S1 · Fn) fiS1·En En+1 æ Fn+1

The weak equivalences in the above model structure are called stable weak equiva-
lences. The homotopy category of SptS1(SmS), denoted SHS1(S) is called stable homo-
topy category of spectra. SHS1(S) has the structure of a triangulated category. For
definition of a triangulated category see [24] . As a consequence the following is true

• SHS1(S) is an additive category with the additive functor S1 · _ : SHS1(S) æ
SHS1(S) an equivalence of additive category.
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• an exact triangle is of the form

E
f≠æ F æ C(f) æ E[1]

where C(f) is a spectrum such that C(f)n is the cone of morphism fn : En æ Fn

and E[1] := E · S1.

Remark 2.3.7.The category of simplicial sheaves embed inside SptS1(SmS) via the fully
faithful functor �Œ, where

�Œ(F)n := F · (S1)·n

.

Definition 2.3.8. Given a spectrum E œ SptS1(SmS). We call the functor on SmS

defined as X ‘æ [�ŒX, E]SHS1 (S), for X/S as the cohomology theory defined by E.

Remark 2.3.9.The Dold Kan correspondence defined in previous section extends to a
functors between Spectra and unbounded chain complexes. However this is only an equiv-
alence between the category of unbounded chain complexes and a subcategory of Spectra
(spectra of modules over Eilenberg Maclane spectrum). This is called Stable Dold Kan
correspondence.

Definition 2.3.10. • Let E œ SptS1(SmS). Then E is called A1-local if E(X) æ
E(X ◊ A1) is a weak equivalence.

• A morphism F æ G œ SptS1(SmS) is called a stable A1 weak equivalence if for
any A1 local spectrum E the following map is an isomorphism

[G, E]SHS1 (S) æ [F, E]SHS1 (S)

• The stable A1 homotopy category, denoted SHA1
S1(S) is the homotopy category

of SptA1
S1(SmS)- which is Bousefield localization of SptS1(SmS) at stable A1 weak

equivalences.
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2.3.1 Gersten Complex

The main reference for this section is [27].
Let f : X æ Y be a morphism, where X, Y œ SmS. This morphism induces the following
adjunction

f ú : sPre(SmY ) � sPre(SmX) : fú

such that fúF(U) = F(X ◊Y U) for any U œ SmY . Moreover f úZ = X ◊Y Z where X is
considered as a representable sheaf. This adjunction extends to following adjunction

f ú : SptS1(SmY ) � SptS1(SmX) : fú

such that fúE(U) = E(X ◊Y U) for any U œ SmY . In case f : X æ Y is smooth f ú also
admits a left adjoint functor denoted f#

f# : SptS1(SmX) � SptS1(SmY ) : f ú (2.1)

Let XNis denote the small Nisnevich site at X. Assume f : X æ Y is smooth. This
gives rise to the inclusion functor iX/Y : XNis æ SmY . Precomposing with this functor
leads to the adjunction

iú
X/Y : SptS1(XNis) � SptS1(SmY ) : iX/Y ,ú

It follows from definitions that iX/Y ,ú (E)(U) = E(U), for U œ XNis. From now on we
will denote iX/Y ,ú (E) by EX .

Remark 2.3.11.Given f : X æ Y a smooth morphism we will use the notation of 2.1
to also denote adjunction

f# : SptS1(XNis) � SptS1(YNis) : f ú

Example 2.3.12.Let X be a scheme and x œ X be a point. Then corresponding to the
morphism of schemes j : SpecOX,x æ X, we have the the following adjunction

jú : SptS1(XNis) ⌧ SptS1(Spec (OX,x)Nis) : jú
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Proposition 2.3.13.Let X œ SmS and j : U æ X be an étale morphism. Then
jú ¶ EX ƒ EU for any E œ SptS1(SmS)

The previous proposition when applied to open immersions allows us to define the
following spectrum.

Definition 2.3.14. Let X œ SmS and E œ SptS1(SmS). Let Z Òæ X be a closed
immersion and denote by j : X \Z Òæ X, the open immersion. Then EZ/X œ SptS1(XNis)
is defined to be the homotopy fibre (which is not unique, but unique upto homotopy type)
of the following

EX æ júj
úEX ƒ júEX\Z

Remark 2.3.15.(Excision) [27, Lemma 3.6] Let X œ SmS and E œ SptS1(SmS). Let
Z Òæ X be a closed immersion and denote by j : U æ X, an étale map and UZ := U◊X Z.
Then júEZ/X ƒ EUflZ/U . In particular EZ/X(U) ƒ EUZ/U(U). In particular when U is
an open immersion EZ/X(U) ƒ EUflZ/U(U)

Definition 2.3.16. Let E œ SptS1(SmS) and Z Õ ™ Z ™ X be closed subschemes of X.
Then the induced map EZ/X æ EZÕ/X is called forget support map .

We define
EX(p) := colim

ZµXclosed
codim(Z,X)Øp

EZ/X

in SptS1(XNis), for p Ø 0 with structure maps are given by forget support maps.

Remark 2.3.17.It’s clear from the definitions that EX(0) ƒ EX and there are canonical
morphisms EX(p) æ EX(p≠1).

Definition 2.3.18. The spectrum EX(p≠1/p) is defined to be the homotopy cofibre of the
map EX(p) æ EX(p≠1)

Definition 2.3.19. Let E œ SptS1(SmS) then we define En as the presheaf X ‘æ
fi≠n(E(X)).

For rest of the section we will assume E œ SptS1(SmS) is a fibrant object in the stable
model structure defined in Definition 2.3.6.
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Remark 2.3.20.Following isomorphism holds

EX(p≠1/p) ƒ
n

zœX(p≠1)

júj
úEZ/X

where j is as defined in Example 2.3.12 and Z := z. Analogous isomorphism holds for
the presheaves En, that is

En
X(p≠1/p) ƒ

n

zœX(p≠1)

júj
úEn

Z/X

Moreover jújúEn
Z/X is a flabby sheaf of abelian groups on XNis. As a consequence En

X(p≠1/p)

is a flabby sheaf.

The cofiber sequence in the Definition 2.3.18 gives rise to a long exact sequence of
homotopy groups for each p. Using these long exact sequences for each p, we can construct
a chain complex of flabby sheaves (with the exception of En

X) of abelian groups on XNis,

0 æ En
X

eæ En
X(0/1)

d0
æ En+1

X(1/2)
d1
æ . . .

dd≠2
æ En+d≠1

X(d≠1/d)
dd≠1
æ En+d

X(d) æ 0 (2.2)

Definition 2.3.21. Nisnevich Gersten complex of E in degree n, denoted as G•(E, n)
is defined as follows

Gp(E, n) :=
n

zœX(p)

júj
úEn

Z/X

The di�erential di : En+i
X(i/i+1) æ En+i+1

X(i+1/i+2) is constructed as follows. The homotopy
cofibre sequence EX(i+1) æ EX(i) æ EX(i/i+1) gives rise to a long exact sequence of
homotopy groups, part of which looks like

æ En+i
X(i+1) æ En+i

X(i) æ En+i
X(i/i+1)

f≠æ En+i+1
X(i+1) æ

. Similarly homotopy cofibre sequence EX(i+2) æ EX(i+1) æ EX(i+1/i+2) gives rise to

æ En+i+1
X(i+2) æ En+i+1

X(i+1)
g≠æ En+i+1

X(i+1/i+2) æ

Then di := g ¶ f

The above construction implies that the complex 2.2 is exact if following morphism are
zero for all p > 0
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En
X(1) æ En

X(0)

En+p
X(p) æ En+p

X(p≠1)

However we will be interested in checking the exactness of above complex at a particular
position p. The exactness of sheaves can be checked on stalks and stalks in Nisnevich
topology are Henselian local rings. Thus we obtain the following conditions for the
exactness of Gersten complex at position p, where (En

X)≥ is sheafification of (En
X)

• Exactness at (En
X)≥: if and only if for every x œ X and all closed Z µ X of

codimension greater than 0, the forget support map

En
Z/X(SpecOh

X,x) æ En
X(SpecOh

X,x) (2.3)

is trivial

• Exactness at Gp(E, n), p Ø 0: If for all closed Z ™ X with codimension greater than
p ≠ 1 there exists closed Z Õ ™ X of codimension greater than p ≠ 2 such that

En+p
Z/X(X) æ En+p

ZÕ/X(X) (2.4)

is trivial and for all closed Z of codimension greater than p + 1, there exists closed
Z Õ of codimension greater than p such that

En+p+1
Z/X (X) æ En+p+1

ZÕ/X (X) (2.5)

is trivial
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Recollections from Algebraic Geometry

In this chapter we review some details about Algebraic stacks from [25] and étale coho-
mology from [19]

3.1 Stacks

Throughout Sch will denote the category of schemes and unless mentioned otherwise, we
will be working with étale site in this section.

Definition 3.1.1. Let p : F æ Sch be a functor. We say that F is fibered category
over Sch if the following hold

• For every morphism f : X æ Y in Sch and every lift y of Y (i.e y œ F such that
p(y) = Y ) there is a lift „ : x æ y of f , i.e p(x) = X and p(„) = f . Often we say
that x is a pullback of y along f .

• For every pair of morphism „ : x æ z , Â : y æ z and any morphism f : p(x) æ p(y)
such that p(Â)¶f = p(„), there exists a unique lift ‰ : x æ y of f such that Â¶‰ = „.

For any X œ Sch, FX is the category whose objects are objects in F lying over X

and morphisms are morphisms lying over idX .

20
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Definition 3.1.2. Let p : F æ Sch be a fibered category such that FX is a groupoid,
then p : F æ Sch is called category fibered in groupoids.

Remark 3.1.3.Corresponding to any presheaf F : Schop æ SET , one can obtain a
category fibered in groupoids F æ Sch. The objects of F are the pairs (X, x) where
X œ Sch and x œ F (X). A morphism f : (X, x) æ (Y, y) corresponds to a morphism
f1 : X æ Y such that F (f1)(y) = x. In particular any scheme (regarded as a functor of
points) is a category fibered in groupoids.

Definition 3.1.4. Let p : F æ Sch and pÕ : G æ Sch be two categories fibered in
groupoids. A morphism between F and GÕ is a functor of categories „ : F æ G such that
pÕ ¶„ = p. Given two categories fibered in groupoids F and GÕ, the category HOM(F, G)
has as objects the morphisms between F and G, while the morphisms in HOM(F, GÕ)
are the natural transformations of the functors between F and GÕ.

The following is a version of Yoneda lemma for categories fibered in groupoids.

Proposition 3.1.5.Let F æ Sch be a category fibered in groupoids and X be a scheme.
Then

HOM(X, F ) æ FX

given by „ ‘æ „(idX) is an equivalence of categories.

Definition 3.1.6. A morphism F æ G of categories fibered in groupoids is said to be
representable by schemes if for any any scheme X and any morphism X æ G, the
resulting fibered product F ◊G X is a scheme.

Remark 3.1.7.For the construction of fiber product of categories fibered in groupoids
see [25, Section 3.4.9].

Definition 3.1.8. Let X æ Sch be a category fibered in groupoids and X a scheme with
x, y objects in FX . Then we have the following presheaf

Isom(x, y) : Sch/X æ Set

such that
Isom(x, y)(Y f≠æ X) := IsomFY (f úx, fúy)
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where f úx and f úy is the pullback of x and y respectively to FY along f .

Roughly speaking a stack is a category fibered in groupoids satisfying sheaf condition.

Definition 3.1.9. Let p : X æ Sch be a category fibered in groupoids and {Xi æ
X}iœI be morphisms in Sch. Let X({Xi æ X}) be category of collection of data
({E}iœI , {‡ij}i,iœI), where Ei œ X(Xi) and for each i, j œ I, ‡i,j : prú

1Ei æ prú
2Ej is

an isomorphism in X(Xi ◊X Xj) such that the composition

prú
12prú

1Ei
prú

12‡ij≠≠≠≠æ prú
12prú

2Ej = prú
23prú

1Ej
prú

23‡jk≠≠≠≠æ prú
23prú

2Ek

equals the composition

prú
12prú

1Ei = prú
13prú

1Ei
prú

13‡ik≠≠≠≠æ prú
13prú

2Ek = prú
23prú

2Ek

in X(Xi ◊X Xj ◊X Xk) The set of isomorphisms {‡ij}is called descent data on {Ei}iœI .
There is a natural functor

‘ : X(X) æ X({Xi æ X})

A given descent data {‡ij} for {Ei}iœI is called e�ective if it’s in essential image of ‘.

Definition 3.1.10. A category fibered in groupoids p : X æ Sch is called a stack if it
satisfies the following conditions

• For all schemes U œ Sch and for all x, y œ X(U), Isom(x, y) is a sheaf on (Sch/U)ét

• Given any covering {Xi æ X}, for X œ Sch, any descent data with respect to it is
e�ective.

Definition 3.1.11. Let S be a scheme. An algebraic space X/S is a functor X :
(Sch/S)op æ Set satisfying the following

• X is an sheaf on the site (Sch/S)ét

• The diagonal morphism � : X æ X ◊ X is representable by schemes.

• There exist a surjective étale morphism U æ X, where U is a scheme over S.

Definition 3.1.12. A morphism of stacks X æ Y is representable if for every scheme
U and a morphism U æ Y the fiber product X ◊Y U is an algebraic space.
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Definition 3.1.13. An algebraic stack X is a stack satisfying the following

• The diagonal map � : X æ X ◊ X is representable.

• There exists a smooth surjective morphism X æ X, where X is a scheme.

Example 3.1.14.One important example, and one which this thesis is concerned with is
moduli stack of vector bundles on a curve. Let C be a smooth projective curve of genus
g over a field k. Fix a line bundle L œ Pic(C). Then the following category fibered in
groupoids, denoted Bunn,L, is indeed an algebraic stack

Bunn,L(Y ) = { category of rank n vector bundles on C ◊ Y with an isomorphism of its
determinant to pú(L), where p : C ◊ Y æ C}

Example 3.1.15.Let X be a scheme over a fixed base scheme S and G be a smooth group
scheme over S with an action on X. Then the functor of groupoids [X/G] is defined for
any scheme Y/S as the groupoid with objects

P //

✏✏

X

Y

where P æ Y is a principal G bundle and P æ X is a G equivariant map. [X/G] is
known to be an algebraic stack and is often called a quotient stack.

Definition 3.1.16. Let X/S be an algebraic stack. A coarse moduli space for X is a
morphism fi : X æ X, with X an algebraic space such that

• Given a morphism X æ Y with Y an algebraic space, it factors uniquely through
a morphism X æ Y . In other words, fi is initial among maps to algebraic spaces.

• |X(k)| æ X(k) is a bijection for every algebraically closed field k. |X(k)| denotes
the set of isomorphism classes in the groupoid X(k).

The following theorem is an important result about existence of coarse moduli spaces

Theorem 3.1.17.(Keel-Mori theorem) Assume S is locally noetherian and X/S is
an algebraic stack locally of finite presentation with finite diagonal. Then there exists a
coarse moduli X æ X for X.
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3.1.1 Stacks as simplicial sheaves

Intuitively any category fibered in groupoids p : F æ Sch can be thought of as a "functor"
F : Sch æ Grpd, where Grpd is the category of groupoids. However strictly speaking
such an F is what is called a lax 2-functor as composition of two morphism is satisfied
only upto a coherence condition.

Definition 3.1.18. [6, Lemma 2.4, Remark 2.5, Def. 2.6] Let p : F æ C be a category
fibered in groupoids. Then the functor X ‘æ NF (X), for a smooth scheme X (where N

is the nerve functor defined in Example 2.1.14) gives a simplicial presheaf and hence an
object in unstable motivic homotopy category.

3.2 Étale cohomology

We will mostly follow [19]. All cohomology groups in this chapter are étale cohomology
groups unless specified otherwise.

Definition 3.2.1. A site is a category C along with set of families of maps (Ui æ U)iœI ,
called coverings, for each object U in C satisfying the following

• For any morphism V æ U , V ◊U Ui exists and is a covering of V

• given a coverings Ui æ U and (Vij æ Ui)jœJi for each Ui, (Vij æ U)i,j is a covering
of U .

We will denote the site with (C, ·).

Definition 3.2.2. A sheaf on a site (C, ·). is a presheaf F satisfying the following sheaf
condition

F(U) æ
Ÿ

iœI

F(Ui) ◆
Ÿ

i,jœI◊I

F(Ui ◊ Uj)

for any covering(Ui æ U)iœI for any object U in C.

Example 3.2.3.Let X be a scheme. The small étale site on X, denoted Xét, is
category with objects f : Y æ X such that f is étale. Morphism between objects f : Y æ
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X and f Õ : Y Õ æ X is a morphism g : Y æ Y Õ such that f = f Õ ¶ g and covering for an
object U is a surjective étale map V æ U . An étale sheaf is sheaf on Xét.

Remark 3.2.4.The category of sheaves of abelian groups on Xét will be denoted Sh(Xét).
It is known to be an abelian category with enough injectives.

Definition 3.2.5. Let X be Noetherian. A sheaf F œ Sh(Xét) is called locally constant
on X if there exists an étale cover Ui æ X such that F|Ui is a constant sheaf. F œ Sh(Xét)
is called constructible if X = ‡

iœI Zi, where Zi are locally closed subschemes and I

finite, such that F|Zi is locally constant with finite stalks.

Definition 3.2.6. In light of previous remark, given F œ Sh(Xét), its étale cohomology
H i(X,F) is the ith right derived functor of the (left exact) global section functor evaluated
at F

� : Sh(Xét) æ Ab

where �(F) := F(X)

Example 3.2.7.In étale topology all presheaves representable by schemes are sheaves.
Therefore Gm := Gm(U) := �(Spec (U),OU)◊ and µn where µn(U) is the subgroup of
roots of unity in �(Spec (U),OU), for U æ X, a�ne and étale, are étale sheaves. In
fact, assuming n is invertible in every residue field of X, µn is a � := Z/nZ module,
constructible and locally isomorphic to it.

Example 3.2.8.Let X be a scheme and n be an integer invertible over any residue field
of X. Let � = Z/nZ. Then we have a constructible sheaf, denoted �(r) , r œ Z, on Xét

defined as

�(U, �(r)) =

Y
_____]

_____[

µn(�(U,OU))¢r, r > 0

�, r = 0

Hom�(µn(�(U,OU))¢≠r, �), r < 0

There is a short exact sequence of sheaves called Kummer sequence

0 æ µn æ Gm
n≠æ Gm æ 0

The resulting long exact sequence of cohomology groups gives a morphism H1(X, Gm) ƒ
Pic(X) c1≠æ H2(X, �(1)) = H2(X, µn)
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Definition 3.2.9. For any sheaf F of locally constant � module on X and an integer r,
we define F(r) := F ¢ �(r).

Definition 3.2.10. Let Z Òæ X be a closed subscheme and U be its complement. Then
we have the left exact functor

�Z(X, _) : Sh(Xét) æ Ab

such that �Z(X,F) = ker(�(X,F) æ �(U,F)). Its ith right derived functor is denoted as
H i

Z(Xét, _)

Theorem 3.2.11.(Gabber purity) Let i : Z Òæ X be a closed immersion of regular
Noetherian schemes, pure of codimension c. For any sheaf F of locally constant � module
on X there are canonical isomorphisms

Hr≠2c(Z,F(≠c)) æ Hr
Z(X,F)

for all r Ø 0.

For more details about Gabber purity and its proof see [10].

Definition 3.2.12. Assume the setup of the previous theorem. Then clX(Z) called class
map denotes the image of 1 in the following map

� = H0(Z, �) æ H2c
Z (X, �(c)) æ H2c(X, �(c))

The first map is an isomorphism from the previous theorem for F = �(c), r = 2c and
second morphism is the forget support map.

Remark 3.2.13.Let i : Z Òæ X be a closed immersion of regular Noetherian schemes
and Z is of codimension 1. Then clX(Z) = c1(Z) in H2(X, �(1)) where clX is the class
map of previous definition and c1 is the map defined in Example 3.2.8.

The following result is known in literature as Gabber rigidity or Gabber a�ne proper
base change theorem, see [11, Theorem 1]
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Theorem 3.2.14.Let A be a Henselian local ring with residue field k. Then for
any constructible sheaf F on Spec A, with the order of torsion coprime to char(k),
Hn(Spec A,F) ƒ Hn(Spec k,F|k) for all n Ø 0.

3.2.1 Derived categories

Let Ch(Sh(Xét)) and Ch+(Sh(Xét)) be the category of co-chain complexes in the abelian
category Sh(Xét) and co-chain complexes A• such that Ai = 0 for i << 0 respectively.
Then akin to model structure described in section 2.1.2, there is a model structure on
Ch(Sh(Xét)) and Ch+(Sh(Xét)) where weak equivalence are quasi-isomorphisms and fi-
brant objects are complexes with injective objects. See [18, Theorem 2.2]. The homotopy
categories thus obtained are called derived category, denoted D(X) and D+(X) respec-
tively. While these derived categories are not abelian they are triangulated categories.
Db(X) will denote the derived category of chain complexes whose cohomology groups are
bounded. Db

c(X) will denote the derived category of chain complexes whose cohomology
groups are constructible sheaves and Db

c(X, �) the derived category of chain complexes
whose cohomology groups are constructible sheaves of � modules. Morever given any
abelian category C one can construct D+(C) in a similar fashion.
Let F : Sh(Xét) æ C, be a left exact functor and C be any abelian category. Then it’s
right derived functor, denoted RF is the functor

RF : D+(X) æ D+(C)

such that RF(A•) = F(I•) where I• is a complex of injective objects and quasi isomorphic
to A•. In other words I• is a fibrant replacement of A•. We denote by RiF := H i(RF).

Example 3.2.15.Let i : Z Òæ X be a closed subscheme and j : X \ Z = U Òæ X be the
open immersion. For a sheaf F œ Sh(Xét), i!(F) := iú(ker(F æ jújúF)). Moreover we
have the following adjunction

iú : Sh(Zét) � Sh(Xét) : i!
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Hence i! is left exact. Hence we have an induced derived functor

Ri! : Db(X, �) æ Db(Z, �)

,Then Gabber purity implies the following isomorphism

R2ci!A• ƒ iú(A•)(≠c)[2c]

for any complex A• œ Db(X, �)

Example 3.2.16.The left exact functor �Z(X, _) defined in Definition3.2.10 leads to a
derived functor

R�Z(X, _) : D(X) æ D(Ab)

Let F œ Sh(Xét) considered as an object in D(X), as complex concentrated in degree 0.
Then Ri�Z(X,F) ƒ H i

Z(X,F).

Remark 3.2.17.Observe the isomorphism HomDb(X,�)(�[≠2], �(1)) ≥= H2(X, �). There-
fore if a cohomology class [c] œ H2(X, �) is trivial then the corresponding morphism
�[≠2] æ �(1) is trivial in Db(X, �). For instance if X is a local scheme then Pic(X) is
trivial and so clZ/X(1) will be zero in H2(X, �).

Remark 3.2.18.Let A• be any complex in Db(S, �). By stable Dold Kan correspon-
dence alluded to in Remark 2.3.9, we have a corresponding spectrum denoted Eét(A•) œ
SptS1(SmS,ét). Then E(A•) := R‘úEét(A•) œ SptS1(SmS), where ‘ : SptS1(SmS,ét) æ
SptS1(SmS) is induced by canonical functor from étale site to Nisnevich site. By [27,
Lemma 6.3], E(A•) is A1 local.



4
A1-connectivity of Bunn,L and its consequences

In this chapter we prove the first main result of the thesis namely Theorem 4.0.1 about
A1 connectivity of the moduli stack of vector bundles on a curve. We then explore some
consequences of the theorem, more specifically, classification of projective bundles on a
curve upto A1-h-cobordism. Throughout, unless mentioned otherwise, the base field k is
assumed to be infinite.

Theorem 4.0.1.Bunn,L is A1 connected for any curve C and L œ Pic(C).

The proof of the Theorem 4.0.1 relies on finding an explicit A1-concordance (see [1,
Definition 5.1] or definition 4.1.1) between a vector bundle E of rank n and determinant L
to the vector bundle On≠1

C üL. This is achieved by induction on n. The results produced
here are from [15].

4.1 A1-concordances of vector bundles and their clas-
sification

Definition 4.1.1. Given a scheme X/k. Then two vector bundles E0 and E1 on X are
said to be directly A1-concordant if there exists a vector bundle E on X ◊ A1 such that
iú
0E = E0 and iú

1E = E1, where ik : X ◊ {k} Òæ X ◊ A1, for k = 0, 1 . E0 and E1 on X

are A1-concordant if they are equivalent under equivalence relation generated by direct
A1 concordance.

29
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Lemma 4.1.2.Let E0 and E1 are A1-concordant vector bundles on a normal variety X

and V be a vector bundle on X ◊ A1. Then (iú
0(V) ¢ L) ü E0 and (iú

1(V1) ¢ L) ü E1 are
A1-concordant, for any L œ Pic(X).

Proof. It is enough to prove the lemma in the case when E0 and E1 are directly A1-
concordant. Let the direct A1- concordance be given by a vector bundle E on X ◊ A1.
Note that pú : Pic(X) æ Pic(X ◊ A1) (where p : X ◊ A1 æ X) is an isomorphism
(see [13, II, Prop. 6.6]) with the inverse given by iú

0 = iú
1. Then the lemma immediately

follows from the definition by considering the vector bundle (V¢ púL) üE and exactness
of pullback functor for vector bundles.

In the the light of previous lemma, the following corollary is rather obvious but we
state it nevertheless, keeping in mind its direct application in the proof of Theorem 4.0.1.

Corollary 4.1.3.Let E0 and E1 are A1-concordant vector bundles on a projective normal
variety X Then following statements hold

1. On
X ü E0 and On

X ü E1 are A1-concordant for any n Ø 0.

2. OX(m) ü E0 and OX(m) ü E1 are A1-concordant for any m.

Proof. For the first statement take V = On
X◊A1 , keeping notation of previous lemma in

mind.
For the second statement take V = OX◊A1 and L = púOX(m).

Proposition 4.1.4.Let 0 æ E0 æ E æ E1 æ 0 be any short exact sequence of vector
bundles on a projective scheme X. Then E is directly A1-concordant to E0 ü E1.

Proof. Consider E as an element in Ext1(E1,E0). In case E is trivial then our claim is
obvious, so assume to the contrary. Consider the the moduli functor Ext1(E1,E0) given
by Y ‘æ Ext1(púE1, púE0), where p : X ◊ Y æ X. It’s well known that this functor is
representable by An

k(see [16, Proposition 3.1]), where n = dim(Ext1(E1,E0)) as a vector
space over k. Note that n > 0 by assumption that E is non trivial. Therefore by
representability there is a universal class V (of vector bundle) on X ◊ An whose pullback
to X ◊ ti Òæ X ◊ An, i = 0, 1 is E and E0 ü E1 respectively for some ti œ An. We connect
these ti’s via an A1 and restrict V to X ◊ A1 to obtain a direct A1 concordance between
E and E0 ü E1.
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Theorem 4.1.5.Let E and F be rank n vector bundles on the curve C. Then the following
hold

1. E is A1-concordant to On≠1
C ü det(E).

2. E is A1-concordant to F i� det(E) ≥= det(F).

Proof. Clearly, (1) implies one direction of (2). We first prove (1) for the case when
n = 2. For general case we will use induction.
Case 1: n = 2. First assume E is globally generated. Then by [13, II, Exercise 8.2], we
have the following exact sequence

0 æ OC æ E æ EÕ æ 0

EÕ is a line bundle and by the additivity property of first chern class of vector bundles
over exact sequence

c1(L) = c1(E) = c1(OC).c1(EÕ) = c1(EÕ).

Therefore by Proposition 4.1.4, E is directly A1- concordant to OC ü L. For a general E,
choose m >> 0 such that E(m), L(m) are globally generated. Then again by applying [13,
II, Exercise 8.2] we get a short exact sequence for E(m) which we tensor by O(≠m) to
obtain the following

0 æ OC(≠m) æ E æ L(m) æ 0

This proves E is directly A1-concordant to OC(≠m) ü L(m). As the final step we now
prove that OC(≠m) üL(m) is directly A1-concordant to OC üL. Note that m is choosen
such that L(m) is globally generated, therefore OC(m) ü L(m) is globally generated.
Hence we have a short exact which shows OC(≠m) ü L(m) is directly A1-concordant to
OC ü L.

0 æ OC(≠m) æ OC ü L æ L(m) æ 0

Therefore, E is A1-concordant to OC ü L.
Case 2: Now we handle the general case. So assume n > 2 and choose m such that
E(m) and L(m) are globally generated. Then we have a short exact sequence giving
a direct A1-concordance between E and OC(≠m) ü EÕ, where EÕ is a vector bundle of
rank n ≠ 1 with determinant L(m). By induction, EÕ is A1-concordant to On≠2

C ü L(m).
Therefore by second statement of Corollary 4.1.3 we have an A1-concordance between
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OC(≠m)üOn≠2
C üL(m) and OC(≠m)üEÕ. Hence E is A1-concordant to O(≠m)üOn≠2

C ü
L(m). Now by the last short exact sequence in the previous case OC ü L is directly A1-
concordant to OC(≠m) ü L(m), which implies – by first statement of Corollary 4.1.3 –
that O(≠m) ü On≠2

C ü L(m) is directly A1-concordant to On≠1
C ü L, thus finishing the

proof of (1).
For proving (2), we note that the reverse implication directly follows from (1). It is
enough to show that when E is directly A1 concordant to F, det(E) ≥= det(F). So we have
a vector bundle EÕ on C ◊A1 such that iú

0E
Õ = E and iú

1E
Õ = F. Then by property of chern

classes we have (i0)ú(c1(iú
0E)) = c1(EÕ) = (i1)ú(c1(iú

1F)). But c1(iú
0E

Õ) = c1(detE) and
c1(iú

1E
Õ) = c1(detF). Moreover, (i0)ú = (i1)ú are isomorphisms on Picard group, hence on

CH1, as Pic(C) ≥= Pic(C ◊ A1). Therefore det(E) ≥= det(F).

Proof of Theorem 4.0.1. We regard Bunn,L as a simplicial sheaf. By definition, any two
F valued points of Bunn,L are two rank n (with determinant condition) vector bundles,
say E0 and E1 on C. A morphism A1

F æ Bunn,L is a vector bundle E on C ◊ A1. Then
E0 and E1 are naively A1-homotopic if and only if they are A1-concordant. By Theorem
4.1.5 both E0 and E1 are A1-concordant to On≠1

C ü L. Hence they are A1-concordant to
each other. Therefore by Lemma 2.2.12, Bunn,L is A1-connected.

Motivated by the question of A1 connectivity of moduli stack of stable vector bundles,
we observe in the example below that there does not seem to be an immediate way of
concluding A1-connectivity of a stack by looking at its coarse moduli space.

Example 4.1.6.Let C be a curve of genus 2 over C. In particular it is a hyperelliptic
curve (See [13, IV, Exercise 1.7(a)]). Therefore, there is a finite morphism f : C æ P1

of degree 2 and we have an action of the finite group Z2 on C. By [13, IV, Exercise
2.2(a)], such a morphism is unramified at all but 6 points (denoted as closed subscheme
Z Õ) of C. So the action of Z2 is free on C \ Z Õ. Let Z denote the closed subset in P1

corresponding to the 6 branched points. The quotient stack
Ë
C/Z2

È
(see Example 3.1.15)

has coarse moduli space P1 and the morphism fi :
Ë
C/Z2

È
æ P1 gives an isomorphism of

an open subscheme of
Ë
C/Z2

È
with P1 \ Z.

We now claim that
Ë
C/Z2

È
is not A1 connected. This follows from [21, Theorem 6.50]

applied to the morphism E(G)◊C æ
Ë
C/Z2

È
. This morphism is a G-torsor over

Ë
C/Z2

È
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and fiA1
0 (Z2) ≥= Z2 being a finite abelian group is a strictly A1-invariant sheaf. Hence we

can apply the theorem to aforementioned morphism and obtain a long exact sequence of
A1 homotopy groups/sets. But on the account of E(G) being simplicially contractible and
C being A1-rigid (as all curves of genus g > 0 are) fiA1

0 (E(G) ◊ C) ≥= fiA1
0 (C) ≥= C. So

by long exact sequence,
Ë
C/Z2

È
being A1-connected would imply surjection of finite group

Z2 on C, which can not happen.

4.2 Applications

Definition 4.2.1. [2, Definition 3.1.1] Let X0 and X1 be smooth and proper varieties
over k. They are directly A1-h cobordant if there exists a smooth scheme X with
f : X æ A1 a proper surjective morphism such that

1. fibers of f over 0 and 1 are X0 and X1 respectively

2. the natural maps Xi Òæ X for i = 0, 1 are A1-weak equivalences.

X0 and X1 are A1-h cobordant if they are equivalent under the equivalence relation
generated by direct A1-h-cobordance.

Remark 4.2.2.While A1-concordance is a relation between vector bundles, A1-h cobor-
dism a relation between proper schemes. Note that by [1, Lemma 6.4], projectivization of
A1-concordant vector bundles are A1-h cobordant.

As applications of results in the previous section we first classify projective bundles
on a curve upto A1-h-cobordism.

Theorem 4.2.3.Let X = PC(E) and Y = PC(F) be Pn-bundles over C. Then the
following are equivalent :

1. X and Y are A1- weakly equivalent.

2. X and Y are A1-h cobordant.

3. det(E) ¢ det(F)≠1 = L¢n+1 for some L œ Pic(C).
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In another application of our theorem we answer a question raised in [1]: whether a
variety which is A1-h-cobordant to a P1-bundle over P2 has a structure of P1-bundle over
P2. The answer is no and we prove in following theorem that the suggested example in
op. cit. indeed works.

Theorem 4.2.4.Let X := PP1(E), where E := O ü O(≠1) ü O(1) on P1. Then X is
A1-h-cobordant to P1 ◊ P2 but doesn’t have the structure of a P1-bundle over P2.

We now paraphrase the classification of Pn-bundles on P1 up to A1-weak equivalence
proved in [2] to highlight that Theorem 4.2.3 is its direct generalization to a general
curve.

Proposition 4.2.5. [2, Proposition 3.2.10] P(On
P1 üOP1(a)) and P(On

P1 üOP1(b)) are A1-
weakly equivalent if and only if they are A1-h-cobordant if and only if n + 1 divides a ≠ b.

Note that in case of C = P1 the condition det(E) ¢ det(F)≠1 = L¢n+1 in Theorem
4.2.3 exactly translates to the fact that n + 1 divides a ≠ b as stated in the previous
proposition. This is due to Pic(P1) being isomorphic to Z. For a general curve Picard
group is much more complicated and humongous (think Jacobian variety of a curve) so
one doesn’t get any further simplification. We now prove Theorem 4.2.3, which is the
extension of previous proposition.

Proof of 4.2.3. (3) =∆ (2): By Theorem 4.1.5, E is A1-concordant to On
C ü L1, where

L1 = det(E) and F is A1-concordant to On
C ü L2, where L2 = det(F). Hence X and

PC(On
C ü L1) are A1-h cobordant. In the exact same manner, Y and PC(On

C ü L2) are
A1-h cobordant. Suppose L1 ¢ L≠1

2 = L¢n+1. That implies L1 = L¢n+1 ¢ L2 for some
L œ Pic(C). Let EÕ = (On

C ü L2) ¢ L. Then det(EÕ) = L1. Therefore P(EÕ) is A1-h-
cobordant to P(On

C üL1). Furthermore, P(EÕ) is isomorphic (as a scheme) to P(On
C üL2)

by the general fact that tensoring a vector bundle by a line bundle gives an isomorphism
of projectivization of the two vector bundles. This proves X and Y are A1-h-cobordant.

(2) =∆ (1): this is immediate from the definition of A1-h-cobordism.

(1) =∆ (3) : Since Chow rings factor through A1-equivalence, it is enough to show
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that the Chow rings of P(On
C üL1) and P(On

C üL2) are not isomorphic if L1¢L≠1
2 ”= L¢n+1

for any L œ Pic(C). The Chow ring of C – which is simply Z ü Pic(C), with product of
any two line bundles under the ring structure being zero – is denoted R. The Chow ring
of P(E1) is R1 := R[’]/(’n+1 + c1(E1)’n). But c1(E1) = c1(L1). In R1, both ’ and any
element x œ Pic(C) have grading 1 with x.y = 0 for x, y œ Pic(C). Let’s assume we have
a graded ring isomorphism „ between R1 and R2 := R[‡]/(‡n+1 + c1(L2)‡n). Then such
an isomorphism has to respect the grading and hence „(’) = x + a.‡, where x œ Pic(C)
and a œ Z. Furthermore by graded ring structure of R1, as discussed before, xi = 0 for
any i > 1. Moreover „(’n+1 + c1(L1)’n) has to be divsible by ‡n+1 + c1(L2)‡n in R2. We
expand „(’n+1 + c1(L1)’n) as an+1.‡n+1 + an‡n((n + 1).x + c1(L1)) and this expression
is divisible by ‡n+1 + c1(L2)‡n. Comparing coe�ecients we conclude that a = ±1 and
c1(L1) ≠ c1(L2) = ±(n + 1)x. This implies that L1 ¢ L≠1

2 = L¢n+1, where c1(L) = ±x.

Now, we answer a question raised in [1], negatively.

Question 4.2.6. [1, Question 6.9.1] If X is any smooth projective variety that is A1-h-
cobordant to a P1-bundle over P2, does X have the structure of a P1-bundle over P2?

The authors further add the answer is possibly no and non-trivial rank three vector
bundles over P1 deformable to the trivial one are the likely counterexamples. We now
prove Theorem 4.2.4 which shows that the example alluded to above is indeed a correct
counterexample.

Proof of 4.2.4. : By Theorem 4.1.5, X := P(E) fi≠æ P1 is A1-h-cobordant (though not
isomorphic) to trivial P2- bundle on P1, namely, P1◊P2. Suppose X ƒ PP2(EÕ) := Y

„≠æ P2

for some rank 2 vector bundle EÕ on P2. We thus have the following diagram

X ƒ Y P2

P1

„

fi

Without loss of generality we can assume (by twisting EÕ with a suitable line bundle
in Pic(P2)), c1(EÕ) œ {0, 1}. Since Y is A1-weakly equivalent to trivial bundle on P2,
their Chow rings are isomorphic. By [1, Lemma 4.5], we have c1(EÕ)2 ≠ 4c2(EÕ) = 0. So
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c1(EÕ) = 0 = c2(EÕ). It thus su�ces to show that EÕ splits as a direct sum of line bundles
as this will prove that EÕ ƒ OP2 ü OP2 which will be a contradiction to our assumption.

To that end we will prove that „ has a section. That section will correspond to a
short exact sequence of the form

0 æ L1 æ EÕ æ L2 æ 0

As both chern classes of EÕ vanish, by property of chern classes over short exact sequences,
both L1 and L2 will be trivial. Therefore such a short exact sequence has to be a split
one.
Let F Òæ X be the fiber of fi over a point in P1, say x. We claim „ maps F isomorphically
onto P2. First we claim that „|F is surjective. Suppose not, then Z := „(F ) is either
a point or an irreducible curve (not necessarily smooth) in P2. The former possibility
can be easily discounted on the account of „ being a P1-bundle map over P2. The latter
case implies existence of a smooth P1 in P2 which contracts to a smooth point of Z.
By taking another smooth point of Z we have another P1 in P2, which contracts to this
point. However any two lines in P2 intersect, so they can not contract to two di�erent
points. So „|P2 is a degree d morphism to P2 with d Ø 1.
It su�ces to show that d = 1. We prove this by comparing the graded ring isomorphism
induced on Chow rings of X and Y . Chow ring of X is R1 := Z[x, y]/(x2, y3), where

(i) x is the divisor P2 as a fiber over a point of P1

(ii) y corresponds to a divisor DÕ, such that the pushforward fiú(OX(DÕ)) to P1 is the
vector bundle E.

Similarly Chow ring of Y is R2 := Z[s, t]/(s2, t3) where

(i) t corresponds to fiber of P1 (as a degree 1 curve in P2) via „

(ii) s corresponds to a divisor D, such that the pushforward „ú(OY (D)) to P2 is the
rank two vector bundle EÕ.

A simple calculation shows that the graded ring isomoprhism between R1 and R2 is given
by x ‘æ ±s and y ‘æ ±t. This implies s is equivalent (in Chow ring) to P2. Grauert’s
theorem ( [13, III, Corollary 12.9]) implies that intersection multiplicity of S = P2 with
any fiber of the map „ is 1. This can not happen unless d = 1 because if not, one can
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consider a point z in P2 such that the set „|≠1
P2 (z) has more than one point. This will

force „≠1(z) = P1 to intersect P2 in more than one point, which as we just proved can
not happen. This finishes the proof.
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Exactness of Gersten complex over a general base

In this chapter we prove that Nisnevich Gersten complex, for E œ SptS1(SmS), defined in
Definition 2.3.21 is exact barring at few places, which is dictated by the dimension of the
base S. The idea is to verify the conditions stated in 2.3, 2.4 and 2.5. Main ingredient in
the proof is Gabber presentation lemma proved in [7] and [9], which allows us to check
those conditions. We also give the conditions under which the Gersten complex is exact
at all places. When dimension of the base is 1 all the results produced here were proved
in [27] whereas the infinite field case follows from [5] and [4]. The general base case
presented here is from [8].

5.1 Gersten resolution

As a consequence of Gabber presentation lemma proved in [7] and [9] we have the fol-
lowing lemma

Lemma 5.1.1. [9, Remark 3] Let X be an essentially smooth henselian local scheme over
a Henselian local scheme S with the closed point s and let Z µ X be a closed subscheme
of positive relative codimension(dim Zs < dim Xs). Then there is a map p : X æ A1

V ,
where V = (Adim X≠1

S )h

0 is the henselisation at the point 0 and dim X is relative dimension
of X/S, such that p is étale, p induces an isomorphism Z ƒ p(Z), and p(Z) is finite over
V . Consequently, giving the following Nisnevich distinguished square:

38
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X \ Z X

A1
V \ p(Z) A1

V

f

Remark 5.1.2.Note that in the Nisnevich distinguished square in the above lemma V

is a limit of Nisnevich neighborhood of Adim X≠1, whereas in [26] and [7] it is a Zariski
neighborhood in Adim X≠1.

The following proposition generalises [27, Proposition 5.9] to a more general base. The
proof is exactly the same, except for the input from the presentation lemma.

Proposition 5.1.3.Let E œ Spt1
S(Sms) be a A1-Nisnevich local fibrant spectrum. Let

X œ SmS be irreducible scheme, Z Òæ X be a closed subscheme and x be a point in Z

lying above s œ S, such that dim(Zs) < dim(Xs). Then Nisnevich-locally around x there
exist

1. V œ SmS a smooth relative curve p : X æ V with Z finite over V

2. a closed subscheme Z Õ Òæ X containing Z such that codim(Z Õ, X) = codim(Z, X)≠
1.

and the forget support map induces the trivial morphism

púEZ/X æ púEZÕ/X

in the homotopy category. In particular EZ/X(X) æ EZÕ/X(X) is trivial.

Proof. From Lemma 5.1.1 (and using a standard limiting argument) we can find a Nis-
nevich distinguished square

X \ Z X

A1
V \ f(Z) A1

V

f

such that Z Òæ X
f≠æ A1

V
fi≠æ V is finite, after possibly shrinking X Nisnevich locally

around x. Let p = fi ¶ f , Z = p(Z)red and Z Õ = p≠1(Z). Since fi and f are flat, so is p
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hence it follows that codim(Z Õ, X) = codim(Z, X) ≠ 1. By the excision 2.3.15 it follows
that the upper horizontal morphism in the following diagram

Ef(Z)/A1
V

fúEZ/X

EA1
Z/A1

V
fúEZÕ/X

ƒ

f

is an equivalence. In the above diagram the vertical maps are respective forget support
maps and f≠1f(Z) = Z. Applying fiú to the above diagram we get the following diagram:

fiúEf(Z)/A1
V

púEZ/X

fiúEA1
Z/A1

V
púEZÕ/X

ƒ

f

From [27, Lemma 5.8], the left vertical map is trivial. Hence the right vertical map
is also trivial thereby proving the proposition.

Corollary 5.1.4.Under the assumptions of the previous proposition, the forget support
map

EZ/X(Spec (Oh
X,x)÷) æ EX(Spec (Oh

X,x)÷)

is trivial, Spec (Oh
X,x)÷ is the generic fiber of the Henselian local scheme at x.

Proof. By Lemma 5.1.1, we can find a cofinal family of Nisnevich neighbourhoods (W, w)
of x each admitting a Nisnevich distinguished square as in Proposition 5.1.3. Since,
E(Spec (Oh

X,x)÷) is colim(W,w) E(W÷), where W÷ is the generic fiber it is su�cient show
that for such neighbourhoods the forget support map is trivial. So we assume W = X.
As X÷ = colim

X÷µT µX
T and Z÷ = colim

X÷µT µX
T fl Z, where T is open subscheme of X, we have

the following distinguished square

T \ Z fl T T

A1
V \ f(Z fl T ) A1

V
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Now by previous proposition EZ/X(T ) æ EX(T ) is trivial. Hence EZ/X(Spec (OX,x,)÷) æ
EX(Spec (OX,x,)÷) is trivial , as EX(X÷) = colimT EX(T ). In a similar fashion
EZ/X(Spec (Oh

X,x)÷) æ EX(Spec (Oh
X,x)÷) is trivial.

Theorem 5.1.5.Let S be a Noetherian irreducible scheme of finite type of dimension p

and let E œ SptS1(SmS) be a fibrant object in SptA1
S1(SmS) and X œ SmS of dimension

d. Then the complex

0 æ (En
X)≥ e≠æ

n

zœX(0)

júj
úEn

Z/X
d0
≠æ

n

zœX(1)

júj
úEn+1

Z/X
d1
≠æ · · ·

· · · dd≠2
≠≠æ

n

zœX(d≠1)

júj
úEn+d≠1

Z/X
dd≠1
≠≠æ

n

zœX(d)

júj
úEn+d

Z/X æ 0 (5.1)

is exact with possible exceptions at (En
X)≥ and m

zœX(i) jújúE
n+i
Z/X for 1 Æ i Æ p. Further-

more, the above complex is exact everywhere if for each x œ X which lies over s œ S and
for any irreducible closed subset Z µ X of codimension k satisfying either

1. Xx ™ Z µ X or

2. Z is an irreducible component of Xx

there exists Z Õ ∏ Z of codimension k ≠ 1 such that following (forget support) map is
trivial

EZ/X(SpecOh
X,x) æ EZÕ/X(SpecOh

X,x).

In fact, this gives us a resolution of (En
X)≥ by flabby Nisnevich sheaves, which implies

the following isomorphism

Hk(Y, (En
X)≥) ≥= Hk(G•(E, n)(Y ))

for Y œ XNis, which vanishes for k > d.

Proof. As we can check exactness stalkswise, we assume S to be spectrum of a Henselian
local ring. Let ‡ be the closed point. By conditions 2.4 and 2.5 the theorem follows
by showing for a given closed subscheme Z µ X of codimension Ø p + 1, there ex-
ists Z ™ Z Õ ™ X with codim(Z Õ, X) < codim(Z, X), such that forget support map
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En+s
Z/X(Spec (Oh

X,x)) æ En+s
ZÕ/X(Spec (Oh

X,x)) is trivial. We can assume X to be a Henselian
local scheme.

If Z does not contain the special fibre X‡, then by Proposition 5.1.3 we are done. So
now suppose Z contains the special fibre. If Z is irreducible, then by hypothesis there
is a Z Õ such that codim(Z Õ, X) < codim(Z, X) and the forget support map EZ/X(X) æ
EZÕ/X(X) is trivial. If Z is not irreducible, then we can write Z = fiiZi where Zi’s are
the irreducible components of Z. Without loss of generality assume i = 2. Hence, by
hypothesis (and in case one of the irreducible component doesn’t entirely lie over the
closed point of S, by Proposition 5.1.3) there exist Z1 µ T1 and Z2 µ T2 such that forget
support maps EZ1/X(X) æ ET1/X(X) and EZ2/X(X) æ ET2/X(X) are trivial.

Writing T = T1 fi T2 we prove the forget support map EZ/X(X) æ ET/X(X) is
trivial. Note that as EZi/X(X) æ ETi/X(X) is trivial so is the composition EZi/X(X) æ
ETi/X(X) æ ET/X(X), for i = 1, 2. Since we have the triangle EZ/X(X) f≠æ ET/X(X) g≠æ
E(T \Z)/(X\Z)(X \Z), by a general fact about triangulated categories, proving f is trivial is
equivalent to proving g is a monomorphism. Now using the isomorphism (from Remark
2.3.15) EZ/X(U) ≥= E(UflZ)/U(U) for any open subscheme U in X, we have ET/X(X \
Z) ≥= E(T \Z)/(X\Z)(X \ Z). This implies that g factors as ET/X(X) æ ET/X(X \ Z1) æ
E(T \Z)/(X\Z)(X \ Z). We will prove that both these morphisms are monomorphisms.
We have the following exact triangle for Z1

EZ1/X(X) æ ET/X(X) æ E(T \Z1)/(X\Z1)(X \ Z1)

Therefore, ET/X(X) æ E(T \Z1)/(X\Z1)(X \ Z1) ≥= ET/X(X \ Z1) is a monomorphism.
Observing the triangle corresponding to Z2

EZ2/X(X \ Z1) æ ET/X(X \ Z1) æ E(T \Z2)/(X\Z2)(X \ Z)

we conclude that ET/X(X \ Z1) æ E(T \Z2)/(X\Z2)(X \ Z) ≥= E(T \Z)/(X\Z)(X \ Z) is
a monomorphism. This proves that composition g : ET/X(X) æ ET/X(X \ Z1) æ
E(T \Z)/(X\Z)(X \ Z) is a monomorphism.

We can greatly simplify the condition for exactness of the Nisnevich Gersten complex
in Theorem 5.1.5 when S is J-2. In this case, it su�ces to check the triviality of the
forget support maps for regular irreducible closed subschemes. The following is the
precise statement:
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Proposition 5.1.6.In the setting of Theorem 5.1.5 assume S to be a J-2 ring. Then if
for every regular irreducible closed subscheme Z µ X of codimension k satisfying either

1. X‡ ™ Z µ X or

2. Z is an irreducible component of X‡

there exists Z Õ ∏ Z of codimension k≠1 such that the forget support map EZ/X(Spec (Oh
X,x)) æ

EZÕ/X(Spec (Oh
X,x)) is trivial, the complex (5.1) of Theorem 5.1.5 is exact at all places.

Proof. As S is J-2, every closed subscheme z = Z has an open neighbourhood U

containing z such that U fl Z = Zreg is regular. Further EZ/X(Spec (Oh
X,x)) ≥=

EZreg/X(Spec (Oh
X,x)) and we proceed in the same manner as in the proof of previous

theorem.

Example 5.1.7.We now give an example of a spectrum E Õ œ SptS1(SmS) for which
the Gersten resolution (5.1) is not exact. In fact, Ayoub’s counterexample to Morel’s
conjecture on A1-connectivity [3] works for us. We give a brief description here.
Fix a perfect field k. Let KM

1 denote the Nisnevich sheaf (on smooth schemes over k)
respresenting Milnor K-theory. This sheaf, in fact, has transfers. Let S be a normal
surface in P3 given by equation w(x3 ≠y2z)+f(x, y, z) = 0 with f a general homogeneous
degree 4 polynomial. Then S is non singular outside the point [0 : 0 : 0 : 1]. Denote by
i : S Òæ P3

k the inclusion map and by fi : P3
k æ Spec k the structure map of P3

k.
We will consider KM

1,S := i!fiú(KM
1 ). It follows from Section 3 of op. cit that the Nisnevich

sheafification(denoted clS) of the presheaf U ‘æ H1
Nis(U,KM

1,S) on SmS is not strictly A1-
invariant. In particular, it cannot be zero. Therefore, the Gersten resolution of KM

1,S is
not exact.

Next we construct an A1-local fibrant spectrum with (E Õ0)≥ ≥= i!fiúKM
1 . As KM

1 is an
A1-invariant sheaf with transfers, it is also strictly A1-invariant. This implies that the
associated Eilenberg-Maclane spaces K(KM

1 , n) are A1-local for all n Ø 0. Therefore,
the spectrum E with En := K(KM

1 , n) is an A1- Nisnevich local fibrant spectrum in
SptS1(Smk) with (E0)≥ ≥= KM

1 . Moreover, E Õ := i!fiú(E) is also an A1-Nisnevich local
fibrant spectrum in SptS1(SmS) because i! and fiú both preserve fibrant objects in our
situation. Finally (E Õ0)≥ ≥= i!fiúKM

1 .

Remark 5.1.8.While S defined in the previous example is not regular, the same example
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shows exactness of Gersten resolution fails for iú(E Õ) in SptS1(SmP3
k
). This provides us

with a counterexample over a regular base.

Remark 5.1.9.In the light of above counterexample, Gersten resolution of a cohomology
theory over a general base is not exact. However conditions 2.3,2.4 and 2.5 suggest a
way to remedy this malady. If one could further localize SptA1

S1(S) such that morphism in
above conditions become trivial then in the resulting category Gersten complex will always
be exact. If such a construction is possible, the resulting category will serve as a better
model for doing motivic homotopy category over a general base. However constructing
such a localization is not a straightforward Bousefield localization which is about making
a set of maps isomorphisms, whereas what we need is to make a certain set of maps trivial
or equivalently monomorphism. This line of thought is currently under investigation in
a joint project.

5.2 Bloch Ogus Theorem

In this section, we specialise to the étale cohomology and prove Theorem 5.2.5. All co-
homology groups in this section, unless specified otherwise, are étale cohomology groups.
We fix the X œ SmS of finite relative dimension and A• œ Db

c(S, �) which we will call an
l.c.c complex. Given such an l.c.c complex, by abuse of notation, we will also denote by
A• œ Db

c(SmS, �). Restriction of A• to Db
c(X, �) will be denoted as A•|X . We will also

use notation from Remark 3.2.18.

To prove Theorem 5.2.5 we will verify the conditions stated in 2 and 3 about the
vanishing of forget support maps. Given any A• œ Db

c(X, �) we have to verify the
triviality of forget support maps for E(A•). Unwinding the definitions that is tantamount
to verifying

R�Z(X,A•) æ R�ZÕ(X,A•) (5.2)

is trivial Nisnevich locally. To verify these conditions we use Gabber purity for étale coho-
mology. As Gabber purity requires the schemes to be regular, we have to put some extra
hypothesis on our base scheme such as regularity and J-2. Note that [27] assume their
base to a DVR, hence the condition of regularity and J-2 is implicit in their hypothesis.
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As a first step, we verify 5.2 for A• = � using following Lemma.

Lemma 5.2.1.Let X/S be a Henselian regular local ring with ‡ : k(x) æ X, the closed
point. Assume ‡Z : Z Òæ X, ‡ZÕ : Z Õ Òæ X be regular closed subschemes (containing
special fiber) such that Z µ Z Õ and c = codim(X, Z Õ) = codim(X, Z) ≠ 1. Then the
following morphism

‡ú‡Zú((R‡!
Z)(�)) æ ‡ú‡ZÕú((R‡!

ZÕ)(�))

is trivial in Db(k(x), �))

Proof. We reduce the question to Z Õ (which is Henselian local because X is) and its
codimension 1 closed subscheme Z. Denote R‡!

ZÕ(�) by F and consider the closed point
‡ : k(x) ‡Õ

≠æ Z Õ Òæ X. Then purity for the closed immersion ‡Z/ZÕ : Z Òæ Z Õ implies that
R‡!

Z/ZÕF ≥= R‡!
Z(�) ≥= F(≠1)[≠2]. Now by Lemma 6.6 of [27], ‡Õú‡Z/ZÕú((R‡!

Z)(�)) æ
‡Õú((R‡!

ZÕ)(�)) is trivial in Db(k(x)et, �)) .
We finish the proof by noting the isomorphisms ‡ú‡ZÕú ≥= ‡Õú and ‡ú‡Zú ≥= ‡Õú‡Z/ZÕú.

Since étale cohomology is invariant for Henselian pairs(Theorem 3.2.14), the previous
lemma immediately yields the following corollary.

Corollary 5.2.2.In the setting of Lemma 5.2.1, the canonical morphism R�Z(X, �) æ
R�ZÕ(X, �) is trivial.

Corollary 5.2.3.In the setting of Lemma 5.2.1 the canonical morphism R�Z(X,A•|X) æ
R�ZÕ(X,A•|X) is trivial for any A• œ Db

c(S, �).

Now we are in a position to prove the next theorem which will yield Bloch-Ogus
theorem as its corollary. The key ingredients for the proof are Theorem 5.1.5 (and
Proposition 5.1.6) and Corollary 5.2.3. We will merely sketch the proof as it follows the
one given in [27], once all the essential ingredients are in place.

Theorem 5.2.4.Let S be a J-2 Noetherian irreducible regular scheme of finite type.
Let X/S be smooth, dim(X) = d and A• an l.c.c. complex in Db

c(Set, �). Then the
Nisnevich Gersten complex G•(E(A•), n) is a flasque resolution of the Nisnevich sheafifi-
cation RnÁúA

•|X of étale cohomology with coe�cients A•. In particular, we get the exact
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sequence

0 æ RnÁúA
•|X æ

n

zœX(0)

júHn(k(z),A•|k(z)) æ . . .

· · · æ
n

zœX(d)

júHn≠d(k(z),A•|k(z)(≠d)) æ 0.

Proof. E(A•) is A1-local by Remark 3.2.18. Therefore we can apply Theorem 5.1.5. Next
by Corollary 5.2.3 the morphism ‡ú‡Zú((R‡!

Z)(A•|X)) æ ‡ú‡ZÕú((R‡!
ZÕ)(A•|X)) is trivial.

Hence by Proposition 5.1.6, G•(E(A•), n) is a flasque resolution of RnÁúA
•|X . This proves

the first part of the theorem.
Then one proves júE(A•)n+s

Z/X
≥= Hn≠s(k(z),A•|k(z)(≠s)). To do so, by excision we

have júE(A•)n+s
Z/X

≥= zúzúE(A•)n+s
z/Xz

, where z = Z and Xz := Spec (OX,z). More-
over zúE(A•)n+s

z/Xz

≥= Hn+s
z (Xz,A•). By purity the latter group is isomorphic to

Hn≠s(k(z),A•|k(z)(≠s)). As Gs(E(A•), n) = m
zœX(s) jújúE(A•)n+s

Z/X , this concludes the
proof.

Theorem 5.2.4 immediately yields Theorem 5.2.5 after taking the Nisnevich stalks of the
spectrum.

Theorem 5.2.5.Let S be a J-2 Noetherian irreducible regular scheme of finite type. Fix
a point s œ S. Let X/S be smooth of finite type, d = dim(X) and A• an l.c.c. complex
in Db

c(Set, �). Let x be a point of X lying over s and Y = Xh
x the Nisnevich local scheme

at x. Then there is an exact sequence

0 æ Hn(Yet,A
•|Y ) e≠æ

n

zœY (0)

Hn(k(z), zúA•|Y ) d0
≠æ · · ·

· · · dd≠1
≠≠æ

n

zœY (d)

Hn≠d(k(z), zúA•|Y (≠d)) æ 0. (5.3)

Remark 5.2.6.Any orientable cohomology theory satisfies Gabber purity(see [23]). How-
ever it’s not yet known if such a cohomology theory (with finite coe�ecients) satisfies Gab-
ber rigidity. If Gabber rigidity holds then for such cohomology theories Gersten complex
should be exact over a general base. This is currently a joint work in progress.
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