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Abstract

Full Waveform Inversion (FWI) is an advanced and emerging seismic imaging technique that ex-
ploits the full wavefield information present in the data. FWI is an optimization problem where the
misfit between the recorded and generated data is iteratively minimized. This project attempts to
create a robust forward acoustic wave propagation engine with appropriate boundary conditions and
a non-linear waveform inversion algorithm using the Gauss-Newton (GN) and Non-Linear Conju-
gate Gradient (NLCG) methods for the 2D seismic dataset. Both the acoustic wave propagation
modeling and the waveform inversion are formulated in the frequency domain. The forward model
is created using the fourth-order finite difference approximation of the scalar wave equation on
staggered-grid. The boundaries are incorporated with Perfectly Matching Layers (PMLs) to sup-
press undesired reflections from edges. The forward modeling was posed as a sparse linear system
and is solved for each frequency by LU decomposition. The seismogram in the time domain was
retrieved by applying a Fourier transform to the generated data. The waveform inversion is imple-
mented in a least-square sense, i.e., the objective function defined as L2 norm of data residuals is
minimized. A term containing the prior information about the model parameters is also incorpo-
rated in the objective function for stability. The inversion is done initially using the Gauss-Newton
method, where the Hessian (the second-order derivative of the objective function) is approximated
in terms of the first-order derivative of the forward operator. And later implemented using the
Non-Linear Conjugate Gradient method, where the model is updated in the opposite of gradient
direction. The forward modeling results establish the reliability and robustness of the created for-
ward engine. We start with a simple two-layer model and compare the arrival time of the reflection
event of generated seismogram with the calculated arrival time. A comparison of data generated
using the algorithm and data generated using Madagascar is also provided. The waveform inversion
is done at discreet frequencies; hence it is computationally less expensive as compared to the time
domain approach. The inversion results on synthetic models with buried boxes at different depths
with anomalous velocities are presented using both GN and NLCG methods. Both methods are
also tested on a checkerboard velocity model for a rigorous investigation of the robustness of the
algorithms.

Keywords: FWI, inverse theory, optimization, finite-difference methods, frequency domain mod-
eling, acoustic wave propagation.

vii



Table of Contents

Abstract vii

1 Introduction 1

1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Rise of Waveform Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Material and Methods 7

2.1 The Forward Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 The Inverse Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Gauss-Newton Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Jacobian Matrix Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.2 Non-Linear Conjugate Gradient Method . . . . . . . . . . . . . . . . . . . . 20

3 Results and Discussion 22

3.1 Forward modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Full Waveform Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Conclusion 44

References 45

A 13 Point stencils from fourth-order discretization of the wave equation 51

B Inversion algorithm 53



List of Figures

1.1 Illustration of 2D marine (left) and land (right) seismic survey methods; images
taken from “https://www.nopsema.gov.au/offshore-industry/environmental-management/marine-
seismic-surveys” and “http://geologylearn.blogspot.com/2015/06/marine-and-land-
seismic-aquisition.html”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Representation of the issue of cycle-skipping in FWI after Anagaw (2014). . . . . . 8

2.2 Illustration of 13-point stencils used for the finite difference discretization of the
scalar wave equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Structure of the complex-valued M matrix after Hustedt et al. (2004). . . . . . . . . 15

3.1 Ricker wavelet as the source wavelet with a peak frequency of 3Hz in the frequency
domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Simple two layer velocity model (left) and overlay of the estimated arrival time (red
dash line) of reflection event on the generated seismogram (right). Since the source
wavelet is not a zero-phase wavelet a shift of 0.180s is applied to the estimated
arrival time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Layered velocity and density (model 1) used to create the forward simulation. The
velocity of the top layer is 1500ms−1 and it increases by 25ms−1 with each layer.
The density of top layer is 2500kg m−3 and increment is 50kg m−3. . . . . . . . . . 24

3.4 Real part of pressure wavefields for selected frequencies generated from model 1.
x-axis of each panel represents the x-location and y-axis represents the depth. . . . 25

3.5 Seismogram after Fourier transform of frequency data obtained from five layer
model. The left panel represents the raw seismogram, and the right panel repre-
sents the amplitude corrected seismogram. . . . . . . . . . . . . . . . . . . . . . . . 26

3.6 Model 2 used for checking diffraction events produced by the corner of the buried
body. The background velocity is of 1500ms−1 and velocity of the buried body is
1600ms−1. The right panel represents the density. . . . . . . . . . . . . . . . . . . . 27

3.8 Seismogram generated from the buried box model. The left panel represents the
raw seismogram and the right panel represents the amplitude corrected corrected
seismogram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.7 Real part of pressure wavefields for selected frequencies generated from model 2. . 28

https://www.nopsema.gov.au/offshore-industry/environmental-management/marine-seismic-surveys
https://www.nopsema.gov.au/offshore-industry/environmental-management/marine-seismic-surveys
http://geologylearn.blogspot.com/2015/06/marine-and-land-seismic-aquisition.html
http://geologylearn.blogspot.com/2015/06/marine-and-land-seismic-aquisition.html


3.9 Comparison of seismogram from the Marmousi velocity model. The left panel
represents the data generated using Madagascar, and the right panel represents the
data generated using our forward algorithm. . . . . . . . . . . . . . . . . . . . . . . . 30

3.10 Inversion test with two buried boxes using discreet frequencies 0.5, 1, 1.5, 2Hz. . . 31

3.11 Velocity profile comparison of models. The left panel represents the horizontal
profile at z=210m, and the right panel represents the vertical profile at x=1500m
(test 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.12 Inversion test with two buried boxes using discreet frequencies 0.5, 1, 1.5, 2, 4, 6Hz 32

3.13 Velocity profile comparison of models. The left panel represents the horizontal
profile at z=210m, and the right panel represents the vertical profile at x=1500m
(test 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.14 Test on detecting shallow high-velocity and deep low-velocity bodies using GN.
The panels from left to right represent the initial, the inverted, and the true model,
respectively. The colorbar gives the velocity information in ms−1. . . . . . . . . . . 33

3.15 Test on detecting shallow high-velocity and deep low-velocity bodies using NLCG
with the same source-receiver configuration and optimization parameters as GN. . 34

3.16 Comparison of the velocity profile of models from GN method. The left panel rep-
resents the horizontal profile at z=150m, and the right panel represents the vertical
profile at x=1650m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.17 Comparison of the velocity profile of models from NLCG method. The left panel
represents the horizontal profile at z=150m, and the right panel represents the ver-
tical profile at x=1650m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.18 Difference between data and synthetic data from the initial model (dotted red) vs
difference between data and synthetic data from the inverted model (solid blue)
from the above synthetic model usingg (a) GN and (b) NLCG. . . . . . . . . . . . . 36

3.19 Inversion results from checkerboard test using (a) GN and (b) NLCG methods. The
checkers have a dimension of 910m×195m (x × z). The left panels represents the
starting model of a uniform velocity of 1500ms−1, the middle panels represents the
inverted model from each method, and right panels represents the actual model. . . 38

3.20 Velocity profile of models from GN. The left panel represents the horizontal profile
at z=225m, and the right panel represents the vertical profile at x=1050m. . . . . . 39

3.21 Velocity profile of models from NLCG. The left panel represents the horizontal
profile at z=225m, and the right panel represents the vertical profile at x=1050m. . 39



3.22 Difference between data and synthetic data from the initial model (dotted red) vs
difference between data and synthetic data from the inverted model (solid blue)
from checkerboard test using (a) GN method and (b) NLCG. . . . . . . . . . . . . . 40

3.23 Normalized residual over iterations for GN and NLCG in checkerboard test. The
red triangles correspond to the GN method and blue dots correspond to NLCG. . . 41



List of Tables

3.1 Summary of GN inversion for both models. nITER represents the number of total
iterations performed and nRMS represents the normalized final rms error (i.e. ratio
of initial to final error). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Summary of NLCG inversion for both models. . . . . . . . . . . . . . . . . . . . . . 42



1 ∥ Introduction

1.1 Context

Seismic data provide information on the physical parameters and detailed structure of the subsur-
face. Since the 1900s, modern seismology has witnessed a dramatic evolution in terms of seismic
data acquisition and data processing techniques (Oldham, 1906). Another possible method of study-
ing the subsurface geology is by drilling boreholes; however, due to the high cost and limited ability
to provide information only at discrete locations make it useful for obtaining information at selected
locations only. The seismic method offers a relatively rapid and cost-effective means of retrieving
information on subsurface structures. For reliable imaging, the seismic data go through rigorous
processing, however, in case of complex geology, the interpretation of the data may include a fair
amount of uncertainties. The information derived from other geophysical surveying methods, in-
cluding borehole data, can be integrated with seismic data to reduce these uncertainties. Seismic
surveying methods can be divided into two major methods. First which makes use of natural source
fields, and second, those that employ artificially generated energy to study the subsurface. Natu-
ral sources like earthquakes, ambient noise, could provide information on subsurface structures of
exceptionally deeper depths, sometimes up to the Earth’s core, and are logistically more simple to
carry out than artificial active-source methods. However, the active-source methods are capable of
producing a high-resolution image with fine details about the structures of the subsurface geology
(Kearey et al., 2002) and have been a common survey method for hydrocarbon exploration since
the late 20th century.

Conventionally, the marine seismic data are acquired using a vessel that tows streamers and airgun
arrays. The airguns produce an artificial acoustic wave, and the streamers comprise hydrophones
that are capable of measuring the change in acoustic pressure inside the water column (Figure 1.1).
On land, common sources are dynamite or Vibroseis, and geophones are used for field measure-
ments and monitoring the land surface vibrations, usually with accelerometer sensors (Yilmaz,
2001). Ocean Bottom Nodes (OBNs) include these types of sensors in addition to a hydrophone
(the combined set of sensors is sometimes referred to as the 4C sensor: 3 components geophone
and a hydrophone). OBNs use battery-powered cableless receivers - although sometimes linked by
a string to speed up the retrieval. Nodes have been designed to tackle the exploration in deep water
areas beyond the 1km depth limit that most Ocean Bottom Cables (OBCs) have. By nature, nodes
are also usable in complicated areas with obstacles (close to the platform, small islands, and rocks)



Figure 1.1: Illustration of 2D marine (left) and land (right) seismic survey methods; images
taken from “https://www.nopsema.gov.au/offshore-industry/environmental-management/marine-
seismic-surveys” and “http://geologylearn.blogspot.com/2015/06/marine-and-land-seismic-
aquisition.html”.

for which other types of sensors cannot be deployed without risks. The deployment of these nodes
can be more flexible than the cables in OBC due to their smaller size and lower weight, and OBNs
are significantly important for 4D time-lapse studies (Cantillo et al., 2010). Remotely Operated un-
derwater Vehicles (ROV) are used to place these nodes at their predetermined locations accurately.
OBNs are able to collect large offset and wide-azimuth data. The set of 4C sensors embedded in
OBNs ensures proper measurements of ground movement in both vertical and horizontal directions,
as well as pressure variations at the sea bottom.

Standard seismic data processing involves removing unnecessary noises and multiple reflections
by keeping the primary reflections only. For removing these unwanted events, the data (from the
time-offset domain) is transformed into other domains where they are spatially separated and can
easily be removed. F-K transform, radon transform (Cao, 2006), and frequency filter are some of
the common techniques used for noise removal. In the early days, the reflection data was stacked
after NMO correction, where the events are made flat in each Common Depth Point (CDP) gathers,
and the stack was migrated (post-stack migration (Bancroft, 2007)). Migration is a technique that
maps the dipping reflectors to their actual subsurface positions and collapses diffraction events,
thereby increasing the resolution (Sheriff and Geldart, 1987). Due to advancements in processing
sequences and computing power, the denoised data is migrated before stacking (pre-stack migration
(Dondurur, 2018)). Reverse Time Migration (RTM), Kirchhoff pre-stack depth (or time) migration
(KPSDM), and Wave-Equation based Kirchhoff migration are some examples of pre-stack migra-
tion algorithms. In order to obtain a better image with effective focusing and a clear definition of
events, the pre-stack migration algorithms require an accurate velocity model (Robein, 2010). In
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earlier days, ray theory-based traveltime tomography was used for velocity model building. Travel-
time tomography-based techniques using only the arrival time information of major events gave only
approximate velocity models and sometimes failed for complex geological settings of the survey
area.

1.2 Rise of Waveform Inversion

Over the past fifty years, the understanding of seismic imaging methodologies has rapidly evolved.
Two major types of interaction between the medium and the seismic waves have been established
for the model-building strategies. The first is a smooth interaction which occurs where the direction
of propagation of the wave is affected with a minor deviation. This minor variation in the wavefields
allows the waves to carry on to advance forward. This interaction, which causes slight variation in
wave direction in a forward scattering mode, constitutes the transmission regime. Another type of
interaction is a rough interaction where the direction of the propagation of the wave is completely
modified by the properties of the medium. This type of interaction compels the waves to prop-
agate in the same plane as the incident wave. This kind of interaction, in a backward scattering
manner, constitutes the reflection regime. Other types of interaction, such as multiple scattering
effects, which constitutes the diffusive regime, could also be used for the model building. However,
these regimes require entirely different strategies and techniques (Wu and Aki, 1988). The trans-
mission and reflection regimes have paved the way for two major strategies for subsurface imaging.
The primary type of imaging is based on tomographic approaches in which smoothly varying in-
formation of the subsurface is reconstructed by taking into account slow variations of phases (or
the traveltimes). Many approaches are considered depending on the different phases. First-arrival
phases, refraction phases, reflection phases, and surface-wave phases are different possible phases
used for these analyses and reconstruction. It was also observed that accounting for the combina-
tion of these different phases significantly enhances the quality of the reconstruction (Thurber and
Ritsema, 2007). The secondary type of imaging is based on migration approaches. This can be
implemented either in time or in space. This strategy is associated with Huygens’ principle, which
states that every point on the primary wavefront act as a source point for the secondary wavefront.
Abrupt variations in the properties of the medium are retrieved through this strategy. The so-called
least-square migration is one of the strategies that make use of the reflection regime and have im-
proved the quality of the imaging techniques by accurately estimating the properties of the medium
(Nemeth et al., 1999).

Towards the end of 20th century, the waveform inversion scheme was posed as a local optimization
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problem (Lailly, 1983; Tarantola, 1984), where the aim was to minimize the least-square misfits
of recorded and predicted data. The minimization is done iteratively due to the highly non-linear
nature of the problem. The above authors showed that the gradient of the misfit function through
a perturbation model could be calculated by zero-lag correlation of incident wavefields from the
source and the back-propagated residual wavefields from the receiver. It was observed that the re-
constructed model after the first iteration of FWI shows a close resemblance to the image of the
subsurface, migrated using the RTM algorithm. In FWI, the full-wavefield information content,
including primary reflections, transmitted waves, supercritical reflections, and multiple scattered
waves such as surface-related multiples, short-path multiples (Virieux and Operto, 2009) are ex-
ploited. Contrary to traveltime tomography, FWI provides a more accurate velocity model since it
accounts for all the wave attributes, such as arrival time, amplitude, frequency, and phase.

The modeling of seismic data and waveform inversion can be performed either in the time domain
or in the frequency domain (Plessix, 2007; Vigh and Starr, 2008). Hybrid approaches are also tried
where the wave propagation is implemented in the time domain and the inversion in the frequency
domain (Sirgue et al., 2008). Today most of the FWI algorithms are completely equipped in the time
domain due to the good scalability, ease in parallelization, and moderate memory demand for large
3D datasets. For 2D datasets, frequency domain modeling and inversion are more effective and
computationally less expensive (Pratt, 1999). A few implementations of 3D FWI in the frequency
domain on synthetic and real data can be discovered in Plessix (2009); Virieux and Operto (2009);
Ben-Hadj-Ali et al. (2008); Petrov and Newman (2014). Waveform inversion was quite compu-
tationally expensive, even for 2D surveys. Nevertheless, it has been successfully implemented in
various studies by wave propagation using strategies such as finite difference techniques (Ikelle
et al., 1988), finite element and spectral element methods (Bae et al., 2010), and extended ray the-
ory (Sambridge and Drijkoningen, 1992). The insensitivity of seismic wavefields to intermediate
wavelengths arises from short-offset acquisitions, and the iterative optimization process fails to re-
trieve the subsurface velocity structure accurately. The waveform inversion reconstructs the actual
subsurface structure through such updates only when an adequately accurate starting model is pro-
vided and contains long-offset and transmission data to retrieve intermediate to long wavelength
structures (Mora, 1987; Pratt and Worthington, 1990).

At this moment, FWI is still a deterministic approach, and nevertheless it is a powerful tool in mod-
ern seismic imaging methodologies. However, It faces some challenges and limitations such as the
non-uniqueness of the model parameters estimation, the highly non-linear nature of the problem,
convergence to local minima, high computational cost, lack of low-frequency signals and presence
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of low-frequency noises in the recorded seismic data, and also the approximations we consider while
creating the forward engine. The advancements in modern high-performance computing and multi-
component wide-aperture and wide-azimuth acquisitions techniques, such as Ocean Bottom Nodes
(multi- to rich-azimuth data), very long streamers (ultra-far offset data), mitigate these challenges
to some extent and favors to obtain a robust and reliable subsurface image. Furthermore, FWI is be-
coming a mature strategy for high-resolution seismic imaging by the inversion of multi-parameters
with elastic wave equation.

Over the past three decades, frequency-domain finite-difference (FDFD) methods have been ar-
dently applied to model wave propagation. However, the challenges in solving the huge linear
systems have limited its popularization and further advancements. Sparse LU decomposition strat-
egy (George and Liu, 1981) was greatly favored for FDFD methods by allowing easy computation
of multiple simultaneous sources for 2D problems. Nonetheless, the application for 3D problems
is rare due to the huge memory requirement. One of the main benefits of FDFD methods in wave-
form inversion is the ease of sequentially using the low- to high-frequency components of the data,
termed the spectral inversion strategy (Pratt and Worthington, 1990). Low-frequency data contains
long wavelengths and it will be harder to skip a half cycle while matching the observed and modeled
data. Then using these long wavelength updated models as the starting models for higher frequency
components increases the possibility of convergence to the global minimum of the objective func-
tion. In the time domain, the waveform matching process is highly prone to cycle-skipping since
low- and high-frequency components are inverted simultaneously. Arbitrary frequency-dependent
attenuation mechanisms can be incorporated into FDFD wave propagation modeling at no extra
computational cost by making the elastic parameters complex. In the same way, by the FDFD
method, the inclusion of attenuation in the inversion is also made practical. The wave propagation
modeling of multiple simultaneous sources by FDFD approaches is greatly simplified by using LU
decomposition strategies. The memory requirement for this approach limits the use for 2D and 2.5D
problems only, and for 3D problems, the frequency domain methods renounce this advantage, and
iterative Krylov-type techniques are required. Despite these benefits, FDFD methods also suffer
from a number of challenges that have limited their broad popularization. One of the main limita-
tions of FDFD over TDFD (time-domain finite-difference) is its high sensitivity towards imperfect
and poor boundary conditions since FDTD could easily remove those remnant energies by time
windowing.

One of the vital elements for a robust FWI result is an efficient and powerful forward engine that can
account for all the phenomena while the wave interacts with the subsurface/ medium. Frequency
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domain forward modeling is particularly favored over time domain for multiple simultaneous source
experiments because of its computational efficiency (Pratt and Worthington, 1990) due to the finite
frequency effect. The critical step in FDFD modeling responsible for its computational efficiency
is solving the massive sparse linear system. The FDFD approach gained popularity for 2D acoustic
and elastic problems with centered finite difference discretization on a single grid using second-
order spatial derivative approximations (Pratt and Worthington, 1990). This led to the five-point
stencils for the acoustic and nine-point stencils for the elastic wave equations. This scheme de-
mands at least ten gridpoints be included within the shortest wavelength for accurate modeling and
numerical stability. This requirement of the minimum number of gridpoints was reduced by having
a higher number of stencil points. The fourth-order FD approximations on staggered-grid led to
thirteen-point stencils and required only four gridpoints per shortest wavelength.

Through this study, we try to develop a robust forward wave propagation engine in the frequency
domain with proper boundary conditions. Elastic wave equation could give more accurate results
but demands much higher computational cost due to the influence of multiple parameters such
as P- and S-wave velocity, mass density, anisotropy, attenuation, etc. The existence of these multi-
parameters increases the ill-posedness of the local optimization process due to the increased degrees
of freedom and the variable sensitivity of these different parameters (Virieux and Operto, 2009).
Therefore, we are constraining the acoustic approximation of the wave equation and considering
a single parameter, P-wave velocity, for the inversion. The inversion algorithm is implemented in
the frequency domain using the Gauss-Newton (GN) method (Fletcher, 1986) and the Non-Linear
Conjugate Gradient (NLCG) method (Fletcher and Reeves, 1964). The Gauss-Newton method
is a variant of the Newton method for determining the minimum of a non-linear system, and it
corresponds to a more accurate optimization strategy by utilizing the Hessian (the second derivative
of the objective function) information (Wang and Dong, 2021). The GN method does not actually
calculate the second derivative explicitly but approximates it in terms of the Fréchet derivative of
the forward operator, which is computationally less expensive to assess as compared to full Newton
methods. NLCG is a further development of the linear conjugate gradient method to solve non-
linear systems. In NLCG, the model update is performed in the opposite direction of the gradient,
and the amount of update is estimated using the line search methods. NLCG exhibits a faster
convergence than the steepest descent methods but slower than GN. Even though GN has a faster
convergence rate than NLCG, NLCG requires lesser computational resource per iteration than GN.
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2 ∥ Material and Methods
Before the rise of Full Waveform Inversion, the velocity information of the subsurface was retrieved
by the techniques such as traveltime tomography, wave equation tomography, and waveform to-
mography, which are ray-based methods or methods using approximations of the wave equation. In
traveltime tomography, the first arrival time of major events from source to receiver was picked, and
the difference between the observed and modeled traveltime was minimized. Wave equation tomog-
raphy is based on the cross-correlation of recorded data with the synthetic data (Wang et al., 2014).
The cross-correlation measures the similarity (shift in traveltime) between recorded and synthetic
waveforms, and the misfit is minimized by maximizing the cross-correlation. And in waveform to-
mography, only phase, by normalizing the amplitude, is accounted for in the inversion and is helpful
in detecting shadow zones (low-velocity gradient) or regions that cause triplications (high-velocity
gradient). Unlike these methods, in FWI, the difference between the recorded and simulated data
(sample by sample, i.e., both traveltime and amplitude) is minimized iteratively to get an image
of the subsurface that theoretically could represent the subsurface accurately if non-uniqueness is
appropriately handled. FWI does not require the manual picking of events, and it is a data-driven
strategy. Consequently, no subjective choice of user or bias of event picking algorithm is involved in
the subsurface velocity model building. FWI takes into account the complete information available
in the seismic data, exploiting traveltime and waveform attributes such as amplitude, phase, and
frequency content. All kinds of events present in the data, such as primary reflections, transmitted
waves, and surface multiples, could be accounted for in the inversion process. Ideally, FWI output
should be the exact representation of subsurface structures and parameters. But due to the limita-
tions such as approximate forward simulation introduced to optimize the high computational cost
and issue of cycle skipping, currently, FWI is mainly used as a velocity model building strategy for
the pre-stack depth migration (Borisov and Singh, 2015). The final subsurface image is retrieved
after stacking the migrated seismic data.

Low-frequency signals are of high significance for FWI to overcome the solution being trapped in
the local minima. The quality of usable low-frequency components present in the data increases
the chance of matching the modeled data with the observed data within a half wavelength. The
initial model also determines the robustness of the FWI output. If the initial model is far away from
the proximity of the global minimum, FWI will output the wrong subsurface image by converging
to one of the many local minima of the misfit function. This happens because of the wrapping-
around behavior of phase in the frequency domain or the cycle-skipping issue(figure 2.1) in the



Figure 2.1: Representation of the issue of cycle-skipping in FWI after Anagaw (2014).

time domain (Bunks et al., 1995; Sirgue and Pratt, 2004). Cycle-skipping in FWI originates from
the oscillatory nature of seismic data. It occurs when the arrival time of the modeled waveform
differs from that of the observed waveform by more than half a period. If the initial model is not
sufficiently accurate, it is possible to face the cycle-skipping ambiguity. In the attempt to fit the
waveforms, the half-cycle shifted waveforms wrongly match and lead to one of the local minima
during the optimization process. This is significant in the case of least-square misfit functions
(L2 norm of the data residual). Therefore, it is required to rely on conventional methods such as
traveltime tomography for constructing the starting models.

The near-surface effects, such as complex and irregular surface topography, and surface wave prop-
agation through the highly heterogeneous near-surface on land, contribute to the high non-linear
behavior of the optimization problem. It is also required to have specific acquisition geometry for
better and accurate results, in particular, long offset data because of the presence of deepest penetrat-
ing transmitted waves. The solution of ill-posed problems suffers from non-uniqueness, instability,
or non-existence; the inverse theory provides the means to solve ill-posed problems. Conversely, if
a problem has a stable unique solution, it is termed a well-posed problem. In the ill-posed waveform

8



inversion problem, a unique model cannot be estimated because of the existence of multiple models
which are capable of producing data that could possibly match with the observed data or provide
minimal data residual value. Prior information regarding the model parameters, preconditioning
of data, and regularization methods are essential for a rewarding FWI scheme (Tarantola, 1987;
Virieux and Operto, 2009). An accurate representation of the source wavelet is also significant for
modeling the waveforms.

Lailly (1983) and Tarantola (1984) introduced the concept of waveform inversion in the time do-
main, and subsequently, it was developed in the frequency domain by Pratt (1999). Each domain has
its own benefits and constraints. In wide-aperture seismic data, the redundancy of the wavenumber
allows the inversion of model parameters using discreet frequency values in the frequency domain.
This makes it computationally less expensive than the time domain approach and is preferred for
small-scale problems (Sirgue and Pratt, 2004). It also has the ability to incorporate multiple simul-
taneous sources efficiently. The inversion is executed in a sequential manner starting from the low-
to high-frequencies. This sequential inversion can be implemented with a single frequency value
or multiple frequencies. The output models obtained from the inversion using low-frequency com-
ponents are used as the starting model for subsequent inversions with high-frequency components.
Using the low-frequency, in the beginning, will deliver long wavelength updates to the model. The
consequent inversions with higher frequencies bring short wavelength updates and finer details of
the subsurface structures. This multiscale spectral inversion approach overcomes the issue of the
cycle-skipping (in time domain) or wrapping around of phase (in frequency domain) due to the
reduced probability of skipping a half-cycle for low-frequency components (Bunks et al., 1995).
If all the frequencies are used in the inversion, then the frequency domain approach is identical to
the time domain approach. Despite these advantages of the frequency domain approach, the ease
and practicability in implementation and parallelization of the algorithm for massive 3D datasets,
the time domain approach is most favored and broadly popularized for waveform inversion (Warner
et al., 2013). Time domain-based wave modeling and inversion allows easy removal of spurious
and remnant energies, as well as muting of specific part of the data by time-windowing, and it
also provides higher flexibility for data preconditioning. The multiscale spectral inversion strategy
equivalent to the frequency domain can also be implemented at an increased cost in the time domain
by band-pass (or low-bass) filtering the time domain data based on different frequency bandwidths.

FWI is a highly non-linear, non-unique, and ill-posed inverse problem. In order to accurately re-
trieve the subsurface structure, any available information should be used while the optimization
process. Geophysical methods such as well logs, stratigraphic data, gravimetric methods, elec-
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tromagnetic prospecting, etc could provide information about the subsurface. Incorporating these
pieces of information in FWI could result in a robust reconstruction (Bell et al., 1978). It is possi-
ble to integrate such prior information as a preconditioner for data gradient (Fomel and Claerbout,
2003). Or it is also possible to jointly update for different model parameters using other types of
data along with seismic data (Asnaashari et al., 2013). Both these approaches improve convergence
and linearity and provide a reliable output through the completely data-driven inversion strategy.

As mentioned earlier, implementing the inversion in the frequency domain provides an unaliased
image using a very limited number of discreet frequencies (Pratt and Worthington, 1988). Previ-
ously Wu and Toksöz (1987) presented that in the wavenumber domain, even a single frequency
provides a significant amount of information about the subsurface. These observations demonstrate
the low computational cost for inversion in the frequency domain since the computational cost is
directly proportional to the number of discreet frequencies used. However, Freudenreich and Singh
(2000) investigated the efficiency of frequency domain over time domain inversion and concluded
that frequency domain inversion fails in the presence of a limited offset range and claimed that
there exists no strategy to choose the discreet frequencies appropriately. Sirgue and Pratt (2004)
revisited the frequency domain waveform inversion more rigorously and came up with a strategy
for selecting discreet frequencies for an efficient waveform inversion and imaging. The frequencies
can be selected using the following expression,

fn+1 = fn

{√
1+R2

max

}
(2.1)

where fn is the previously selected frequency value, and Rmax is the ratio of maximum half-offset
to the depth of interest for imaging.

The easiness in the implementation of preconditioning strategies either on the data or the gradient
varies in different domains. Time windowing with residuals (Shipp and Singh, 2002) is a popular
preconditioning strategy; however, data residual is necessary to be represented in the time domain.
Nonetheless, it is possible to employ such a strategy in the frequency domain by including com-
plex values for frequencies (Mallick and Frazer, 1987). Conversely, in the frequency domain, it
is straightforward to implement the multiscale spectral inversion strategy at no additional com-
putational cost. Low-frequency components of the data show high linearity with respect to model
perturbations than higher frequencies, and this sequential strategy dramatically improves the chance
of reaching the global minimum while the optimization process (Sirgue and Pratt, 2004). Such a
methodology is possible in the time domain by low-pass filtering the data (Bunks et al., 1995),
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however, with an additional cost. The fact that the propagation of individual discreet frequency is
computationally cheaper than full-band time domain and therefore FDFD approach is considered
to be computationally superior and efficient (Marfurt, 1984).

Another advantage of frequency domain forward modeling is its ability to incorporate multiple si-
multaneous sources. Due to the advancements in seismic data acquisition methods, simultaneous
shooting (firing more than one source at a time or with a slight delay) is common in present-day ac-
quisition designs. The simultaneous source shooting considerably reduces the survey duration and
improves the illumination by increasing the source density (Abma et al., 2013). Most conventional
data processing steps are designed to process the non-overlapping source records. Therefore, the
separation of these blended source records into their equivalent non-overlapping source record is a
critical step prior to classical processing sequences. Deblending is the seismic processing step for
separating the overlapping simultaneous shot records into each non-overlapping single shot record.
However, frequency domain modeling does not require the shots to be non-overlapping. By imple-
menting the modeling and inversion in the frequency domain, the deblending process, which is a
computationally heavy task, can be skipped, and the raw shot records can be used for inversion.

Full Waveform Inversion is an advanced data-driven tool for extracting pieces of information about
the subsurface. This potentially high-resolution comes with a very high cost and strict require-
ments to mitigate the issue of cycle skipping, non-uniqueness, and high non-linearity (Virieux
et al., 2017). FWI is evolving towards incorporating the elastic wave equation in the forward en-
gine because of the increased focus on the amplitude information and also inversion up to higher
frequencies to get very-high-resolution image of the subsurface. However, this may require multi-
parameter estimation in which the Hessian matrix has a significant role and also encounter increased
non-linearity. With the advancements in massive computational capabilities and modern seismic
acquisition methodologies, we believe there could be much more innovations to be made in the
field of FWI so that it can serve as a single-independent technique for retrieving the accurate high-
resolution images of the subsurface.

2.1 The Forward Problem

Since the optimization process is minimizing the difference between the forward modeled and the
recorded data, the modeling of the seismic wave propagation has a significant contribution to the
robustness of the inversion result. i.e., the modeled data is trying to match with observed data
sample by sample, and therefore it is crucial to generate the data as realistically as possible. The
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forward modeling is done using fourth-order finite difference discretization of first-order hyperbolic
formulation (Virieux, 1984) of the acoustic wave equation (scalar wave equation) on staggered-
grids (Hustedt et al., 2004). The 13-point stencils used for the discretization are shown in figure
2.2. It is essential to introduce non-reflecting artificial absorbing boundary layers in the forward
engine to simulate an unbounded domain. A sponge-like Perfectly Matching Layer (PML) boundary
condition (Berenger, 1994) is included in the model to absorb undesired reflection energies from
the edges of the physical domain. The PML boundary is not considered at the top edge in order to
simulate a realistic free surface boundary condition, as it will allow reflections from the top edge
(surface-related multiples).

Figure 2.2: Illustration of 13-point stencils used for the finite difference discretization of the scalar
wave equation.

The system of hyperbolic 2D wave equations in the time domain is represented as (Hustedt et al.,
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2004):

∂Ψx(x, z, t )

∂t
+γx(x)Ψx(x, z, t ) = κ(x, z)

∂P (x, z, t )

∂x
+S (x, z, t )

∂Ψz(x, z, t )

∂t
+γz(z)Ψx(x, z, t ) = κ(x, z)

∂Q(x, z, t )

∂z
∂P (x, z, t )

∂t
+γx(x)P (x, z, t ) = 1

ρ(x, z)

(
∂Ψx(x, z, t )

∂x
+ ∂Ψz(x, z, t )

∂x

)
∂Q(x, z, t )

∂t
+γz(z)Q(x, z, t ) = 1

ρ(x, z)

(
∂Ψx(x, z, t )

∂z
+ ∂Ψz(x, z, t )

∂z

)
(2.2)

where P (x, z, t ) and Q(x, z, t ) represent the components of the particle velocity vector of pressure
wavefield in the Cartesian grid. The pressure wavefield Ψ(x, z, t ) is represented in terms of two
components such that,

Ψ(x, z, t ) = Ψx(x, z, t ) + Ψz(x, z, t )

S (x, z, t ) represents the term corresponding to the acoustic source. ρ(x, z) is the mass density
(inverse of density is called the buoyancy, b(x, z)), and κ(x, z) is the bulk modulus. The mass density
needs to be interpolated between gridpoints horizontally and vertically. A harmonic averaging
of density is performed for the interpolation. γx and γz define the damping behavior of PML
boundary layers. These functions are zero inside the physical domain and non-zero only in the
boundary layers. γ is defined as γx(x) = CP MLcos(π2

x
L ) (Hustedt et al., 2004), where L represents

the width of the boundary layer, and x is the local coordinate whose origin is located at the outer
edges of the physical domain. The value of CP ML is estimated such that the reflected energy from
the boundaries is minimum. The above system of equations is transformed to Fourier domain in
order to represent the wave equation in the frequency domain, and a new function ξx(x) is defined
such that ξx(x) = 1+ iγx

ω and ξz(z) = 1+ iγz
ω ;

− iω
ξx(x)

κ(x, z)
Ψx(x, z,ω) = ∂P (x, z,ω)

∂x
+S (x, z,ω)

− iω
ξz(z)

κ(x, z)
Ψz(x, z,ω) = ∂Q(x, z,ω)

∂z

− iωP (x, z,ω) = b(x, z)

ξx(x)

∂Ψ(x, z,ω)

∂x

− iωQ(x, z,ω) = b(x, z)

ξz(z)

∂Ψ(x, z,ω)

∂z

(2.3)

The above system is discretized using fourth-order centered FD approximation on staggered-grids
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such that; [
∂P

∂x

]
i , j

≈ 1

∆x

(
9

8
(P i+ 1

2 , j −P i− 1
2 , j )− 1

24
(P i+ 3

2 , j −P i− 3
2 , j )

)
[
∂Q

∂z

]
i , j

≈ 1

∆z

(
9

8
(Qi , j+ 1

2
−Qi , j− 1

2
)− 1

24
(Qi , j+ 3

2
−Qi , j− 3

2
)

) (2.4)

Using the above two systems of equations, we obtain the following equation consisting of 13-point
stencils;

−ω2

κi , j
Ψi , j = 1

∆2
xξi



9

8


bi+ 1

2 , j

ξi+ 1
2

(
9

8
(Ψi+1, j −Ψi , j )− 1

24
(Ψi+2, j −Ψi−1, j )

)

−
bi− 1

2 , j

ξi− 1
2

(
9

8
(Ψi , j −Ψi−1, j )− 1

24
(Ψi+1, j −Ψi−2, j )

)


− 1

24


bi+ 3

2 , j

ξi+ 3
2

(
9

8
(Ψi+2, j −Ψi+1, j )− 1

24
(Ψi+3, j −Ψi , j )

)

−
bi− 3

2 , j

ξi− 3
2

(
9

8
(Ψi−1, j −Ψi−2, j )− 1

24
(Ψi , j −Ψi−3, j )

)




+ 1

∆2
zξ j



9

8


bi , j+ 1

2

ξ j+ 1
2

(
9

8
(Ψi , j+1 −Ψi , j )− 1

24
(Ψi , j+2 −Ψi , j−1)

)

−
bi , j− 1

2

ξ j− 1
2

(
9

8
(Ψi , j −Ψi , j−1)− 1

24
(Ψi , j+1 −Ψi , j−2)

)


− 1

24


bi , j+ 3

2

ξ j+ 3
2

(
9

8
(Ψi , j+2 −Ψi , j+1)− 1

24
(Ψi , j+3 −Ψi , j )

)

−
bi , j− 3

2

ξ j− 3
2

(
9

8
(Ψi , j−1 −Ψi , j−2)− 1

24
(Ψi , j −Ψi , j−3)

)




+Si , j

(2.5)

This discrete frequency domain wave equation can be represented as a linear system of the form;

Mψ= s (2.6)

where M is the impedance matrix, s is the source vector and ψ is the pressure wavefield. Because
of the boundary conditions, the elements of the impedance matrix are complex in nature. And
the elements depend on model parameters (and frequency), and most importantly, M is sparse.
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Figure 2.3: Structure of the complex-valued M matrix after Hustedt et al. (2004).

Multiple sources can be easily incorporated into the s vector. For each discrete frequency value,
the matrix M is constructed and solved to obtain corresponding wavefields. The dimension of M

matrix is (nx×nz)×(nx×nz) , where nx and nz are the number of gridpoints in x- and z-directions
respectively ((nx×nz)2 elements in total). In the case of the 13-point stencil, (13×nx×nz) elements
are the only non-zero elements. These non-zero elements are distributed along the main diagonal
and six adjacent parallel bands, and the bandwidth is 6×nz as shown in the figure 2.3. The matrix
characteristics such as bandwidth and the number of non-zero elements decide the efficiency and
performance of the modeling algorithm (Hustedt et al., 2004). The details of the 13-point stencils
are given in Appendix A

To keep the computation practical, it is necessary to limit the extent of the domain considered for
modeling. This is accomplished by placing Perfectly Matching Layers (PMLs) at the truncation
boundaries. Ideally, the truncation boundaries are reflectionless, and they completely absorb the
energy. In many numerical simulations, Absorbing Boundary Conditions (ABCs) are extensively
adopted to generate an unbounded domain. The main purpose of these ABCs is to absorb outgoing
waves from the edges and to generate an unbounded physical domain. Several ABCs have been
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tested in the past for its usage in finite difference wave modeling. The ABC proposed by Cerjan
et al. (1985) contains lossy material layers at the edges to suppress the reflected wavefields. These
layers are observed to be absorbing the energy imperfectly, and undesired spurious energy comes
from the edges; they degrade the numerical accuracy of the results. So it is important to implement
the perfectly absorbing boundary condition in the forward modeling. Theoretically, an ABC should
absorb all energy arriving at the edges irrespective of the frequency and incident angles. However, in
practical problems, the performance of ABCs vitiates after some ranges of frequencies and incident
angles. The Perfectly Matching Layer (PML) boundary condition proposed by Berenger (1994)
overcome these issue to a greater extent. PML is regarded to be one of the finest techniques for
ABC implementation currently available because of its superior absorption over a wide range of
incident angles and its insensitivity towards frequency. In this study, we implemented the PML
boundary condition to the scalar wave equation. The term ξ in Eq. 2.5 governs the boundary
condition. The PMLs are considered as an extension of the outermost cell of the physical domain,
meaning the wave velocity and mass density of the PMLs are equal to that of the out-most cell. This
approach is studied and implemented to minimize the numerical reflection error and to perfectly
absorb the energy at the interface between the PML domain and the physical domain.

2.2 The Inverse Problem

FWI is performed to reconstruct the subsurface model that could generate synthetic data which
well matches the recorded seismic data. The similarity between the synthetic and observed data is
measured quantitatively by a misfit/ penalty function, and the prime objective is to minimize that
function. Although FWI is known for its ability to provide accurate high-resolution images, its
practical applications on large-scale datasets have been limited by many challenges. The high non-
linear behavior of the problem and the non-existence of the perfect optimization scheme to account
for the non-linear nature is one of the main challenges. Numerous iterative inversion strategies
such as Non-Linear Conjugate Gradient (NLCG) (Hestenes and Stiefel, 1952), steepest-descent,
gradient-descent which are based on the gradient methods, or methods such as full Newton (FN),
quasi-Newton, limited-memory BFGS (l -BFGS) (Nocedal, 1980), and Gauss-Newton (GN) meth-
ods which are based on Newton optimization scheme have been implemented for waveform inver-
sion (Herrmann et al., 2011). For large-scale problems, gradient-based methods are more popular
due to their cheaper demand of computational resources for simulating forward/adjoint response on
each iteration. However, they generally have a slow convergence rate and have difficulties in prop-
erly scaling the update in the inverted model in comparison to Newton’s methods. The convergence
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can be improved by scaling the gradient using the diagonal elements of pseudo-Hessian (Shin et al.,
2001). Conversely, Newton-based methods exhibit a faster rate of convergence. Nevertheless, the
rapid convergence comes with an additional cost. In the full-Newton method, the second derivative
of the misfit function, which is the Hessian matrix, is explicitly estimated and inverted. Whereas
quasi-Newton methods are a cost-effective alternative to the full-Newton methods. For instance,
in the l -BFGS method, without explicitly computing or storing the Hessian in the memory, it ap-
proximates the inverse of the full-Hessian matrix from a finite number of gradients and updates the
model (Nocedal, 1980). “The choice of model parameterization significantly affects the behavior of
the Hessian matrix and thereby influence the rate of convergence and the accuracy of the inversion
result.”

2.2.1 Gauss-Newton Method

The inversion is driven by optimizing the misfit function defined in the least-square sense. The
least-square misfit function is defined as;

φd (m)
.= 1

2

[
d obs −F (m)

]T
W T

d Wd

[
d obs −F (m)

]
(2.7)

where F (m) denotes the modeled data, d obs is the observed data, superscript T represents conjugate
transpose of the matrix and Wd denotes the data weighting matrix of dimension Nd ×Nd (where
Nd is the number of data points). Generally, Wd is a diagonal matrix with elements equal to the
reciprocal of standard deviation (or data amplitudes scaled by the error floor). The weighting matrix
is introduced to give equal weights to the data points and prevents the result from being biased
towards the high amplitude data samples and, at the same time, penalize the erroneous data points.
Although the main motive is to minimize the above function, one may have to redefine the objective
function to stabilize the process (Bell et al., 1978). In order to do so, a regularisation term is added
to the above function, defined as,

φm(m,mr e f )
.=

(
m −mr e f

)T
W T

mWm

(
m −mr e f

)
, (2.8)

where mr e f contains the prior information about the model, Wm defines the model smoothness,
which can be a finite difference approximation of Laplacian operator (∇2) or an identity matrix or
a sparse operator with different weights for each diagonal.
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The final objective function can be defined as the sum of the above two functions as;

φ(m)
.=φd (m)+λφm(m,mr e f ) (2.9)

where λ is a scalar which determines the weight of regularisation term in the overall objective
function.

To optimize the above objective function, there are several algorithms with varying rates of con-
vergence and computational costs, such as steepest-descent, gradient-descent, conjugate gradient
methods, full-Newton’s method, Gauss-Newton method, quasi-Newton method, l -BFGS, etc. In
Newton methods, the exact Hessian matrix, the second derivative of the misfit function, is given as;

∇2
mφ(m) ≡∇mF (m)T∇mF (m)−∇2

mF (m)T (d −F (m)) (2.10)

In Gauss-Newton (GN) method, the first-order derivative of the forward operator, Jacobian, is used
to approximate Hessian (by neglecting the second-order term of RHS). Calculating the exact Hes-
sian is often computationally intractable. Therefore GN method is considered computationally more
practical and has a faster convergence rate compared to gradient-based schemes. In this study, we
used the GN method to optimize the objective function.

By minimizing the Eq. 2.9 and discarding higher-order derivative terms, we obtain the linear system
as;

[
J T W T

d Wd J +λW T
mWm

]
∆mi =

{
J T W T

d Wd (d −F (mi ))−λW T
mWm

(
m −mr e f

)}
(2.11)

where J is the Jacobian matrix (∇mF (m)), ∆mi denotes the model perturbation at the i th iteration
given by,

∆mi = mi −mi−1 (2.12)

The Eq. 2.11 can be rewritten to directly estimate the updated model, mi+1 (the model parameters
corresponding to the (i +1)th iteration) by substituting Eq. 2.12 in Eq. 2.11 and we obtain;

mi+1 =
[

J T W T
d Wd J +λW T

mWm
]−1

[
J T W T

d Wd (∆ri + Jmi )+λW T
mWmmr e f

]
(2.13)
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where ∆ri = d −F (mi ) is the the data residual corresponding to the i th iteration.

Since the impedance matrix is complex-valued, its Fréchet derivative is also automatically complex-
valued. While optimization, it is a common practice to decompose the real and imaginary values of
the Jacobian. This strategy of decomposition of complex elements is also applied on the frequency
domain data samples and is regarded as independent observations.

Jacobian Matrix Formulation

In the GN method, the construction of the Jacobian matrix takes most of the runtime. The Jacobian
is defined as the Fréchet derivative of the forward operator with respect to the model parameters.
The elements of the matrix are defined as;

Ji , j = ∂Fi (m)

∂m j
(2.14)

where i goes from 1 to Nd and j goes from 1 to Np .

It is not necessarily required that the receiver positions match with the gridpoints, and in order to
interpolate the recordings at the gridpoints, ψ to the actual observation points, we define a trans-
formation matrix T , such that the observations d pr ed is defined as;

d pr ed = Tψ (2.15)

Using Eq. 2.6, Eq. 2.14, Eq. 2.15, the Jacobian is estimated using the following matrix operation;

J = T M−1G (2.16)

where G is given as;

G =
[(

− ∂M
∂m1

ψ

)(
− ∂M
∂m2

ψ

)
. . .

(
− ∂M

∂mNp

ψ

)]
(2.17)

It was noted that estimating J T is computationally cheaper than estimating J directly because esti-
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mation of J requires Np calls (Eq. 2.16) , so J T can be estimated as;

J T =GT (M−1)T T T (2.18)

And for solving Eq. 2.18, it requires only Nd calls and generally Nd < Np .

2.2.2 Non-Linear Conjugate Gradient Method

Non-Linear Conjugate Gradient (NLCG) is a Krylov subspace-based optimization strategy for de-
termining the minimum of a non-linear system. The GN method updates the model using the Hes-
sian, (approximated using the Jacobian). For large 3D problems, GN demands massive compu-
tational resource. Important and reliable alternative for large problems are l -BFGS and NLCG.
l -BFGS is a quassi-newton method. In NLCG, the minimum of the misfit is estimated using the
gradient of the misfit for update direction and line search method for step length.

Hestenes and Stiefel (1952) proposed the linear conjugate gradient method as an iterative optimiza-
tion strategy for solving linear systems. The forward operator of the linear system should be a
positive definite coefficient matrix. Fletcher and Reeves (1964) proposed the NLCG method, and it
was one of the very first techniques to solve large-scale non-linear systems. Many modified versions
of the method have been introduced over time. The prime benefit of this method is the low mem-
ory requirement as they store no matrices and have a faster convergence rate than steepest descent
(Nocedal and Wright, 2006).

The gradient of the misfit function, (∇mφ(m)), represents the direction of the maximum increase.
So the opposite (steepest descent) direction indicates the direction towards minima and is given by;

h =−∇mφ(m) (2.19)

The model parameters are updated in the steepest descent direction such that, mi = mi−1+αi hi The
value of α is determined by the line search approach where the descent direction is estimated and
then estimates a step length that decides the amount of model perturbation in the descent direction.
The value of αi can be estimated by the Taylor series expansion of φ(mi+1) = φ(mi +αi hi ) as
follows (Yang et al., 2015);

φ(mi +αi hi ) =φ(mi )+αi∇mφ(mi )T hi + α2

2
hT

i ∇2
mφ(mi )hi (2.20)
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The derivative of the above expression with respect to αi gives;

∇mφ(mi )T h +αhT
i ∇2

mφ(mi )hi = 0 (2.21)

The value of αi can be estimated from the above equation as follows;

αi = (Ji hi )T∆ri

(Ji hi )T (Ji hi )
(2.22)

After the first iteration, the descent direction is updated as;

hi =−∇mφ(mi )+βi hi−1 (2.23)

To estimate the value ofβ, Fletcher and Reeves (1964) proposed a method known as Fletcher–Reeves
method. They extended the method from linear systems to non-linear systems. The value of β
through the Fletcher–Reeves method is given as;

βi = ∇mφ(mi )T∇mφ(mi )

∇mφ(mi−1)T∇mφ(mi−1)
(2.24)

There are many variants of the Fletcher–Reeves method, such as Polak–Ribière, Hestenes-Stiefel,
and Dai–Yuan methods. In this study, we use Polak–Ribière formula (Polak and Ribiere, 1969)
described as;

βi =
∇mφ(mi )T

{∇mφ(mi )−∇mφ(mi−1)
}

∇mφ(mi−1)T∇mφ(mi−1)
(2.25)

It was observed that the Fletcher-Reeves method converges if the initial model is sufficiently near
to the global minimum, whereas the Polak–Ribière method could possibly enter in an infinite cycle
without converging in rare situations. However, it has a better convergence rate than Fletcher–Reeves
approach (Shewchuk, 1994).
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3 ∥ Results and Discussion

3.1 Forward modeling

The forward modeling is done by solving the Eq. 2.6 using the UMFPACK solver for each fre-
quency. This frequency domain data is transformed into the time domain to retrieve the seismo-
gram. For generating the data, a source with the signature of Ricker wavelet (Ricker, 1953) with a
dominant frequency of 3Hz is considered. The following figure represents the amplitude spectrum
of the wavelet.

Figure 3.1: Ricker wavelet as the source wavelet with a peak frequency of 3Hz in the frequency
domain.

As a preliminary test to verify the reliability of seismograms created using the forward scheme, we
considered a simple two-layer model; the first layer with a velocity of 1500ms−1 and the second
layer with a velocity of 1600ms−1 with the interface at a depth of 1000m. Data was generated
form this model in the frequency domain and then transformed into the time domain to obtain the
seismogram. In the seismogram, we expect only a single reflection event corresponding to the
interface of the two layers. Since we know the depth of interface, and offset, we can calculate the
arrival time for the event at each receiver using the equation given by;

t =

√√√√t 2
0 +

x2
o f f

v2
1

, (3.1)



where t0 is the zero-offset two-way traveltime, xo f f is the offset, and v1 is the velocity of the first
layer. The above equation is the arrival expression for the reflection event from a horizontal reflector
for two-layer medium. This expression is used in seismic data processing for normal moveout
(NMO) correction, which is done before CMP stacking in order to make events arrive at the same
time.

Figure 3.2: Simple two layer velocity model (left) and overlay of the estimated arrival time (red
dash line) of reflection event on the generated seismogram (right). Since the source wavelet is not
a zero-phase wavelet a shift of 0.180s is applied to the estimated arrival time.

In figure 3.2, the left panel corresponds to the two-layer velocity model, and the colorbar represents
the velocity values inside the domain. The right panel shows an overlay of the seismogram with the
arrival time (red dashed line) of the reflection event calculated using the above equation. Since the
source wavelet is not a zero-phase wavelet, a time shift of 0.180s (180ms) is applied and it is evident
that the calculated arrival time matches precisely with the reflection event in the seismogram. The
seismogram shown here is not the raw record, but an amplitude correction is applied to visualize
each events.
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Figure 3.3: Layered velocity and density (model 1) used to create the forward simulation. The
velocity of the top layer is 1500ms−1 and it increases by 25ms−1 with each layer. The density of
top layer is 2500kg m−3 and increment is 50kg m−3.

For the next test, a five-layer model, as shown in figure 3.3 with each layer of 20 gridpoints in z-
direction is considered. The velocity varies from 1500 to 1700 ms−1 with an increment of 50ms−1

and density ranges from 2500 to 2600 kg m−3 with an increment of 25kg m−3. Since this study
is done using fourth-order FD approximation on staggered-grid (resulting in a 13-point stencil), in
order to get a stable result, there should be at least four gridpoints per shortest wavelength. The
minimum wavelength is 125 m ( minimum velocity=1500ms−1, maximum frequency=12Hz), so
we considered 20m for grid spacing in both x- and z-directions, which effectively includes more
than six gridpoints in one wavelength. For forward simulation, the source is located at x=800m
at a depth of 5m, and the receivers are placed at a depth of 10m at every 10m throughout the
x-direction. The forward modeled data for the above model in the frequency domain (for some
selected discreet frequency values) is given in figure 3.4. The wavefields corresponding to each
frequencies are solved independently, so the problem of error propagation is is addressed to a good
extent as compared the time domain approach.

The data in frequency domain, D(x, z,ω) can be converted to time domain D(x, z, t ) by taking the
Fourier transform (Bailey and Swarztrauber, 1994) given by;

D(x, z, t ) =
∫ ∞

−∞
1p
2π

D(x, z,ω)e−iωt dω (3.2)
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Figure 3.4: Real part of pressure wavefields for selected frequencies generated from model 1. x-
axis of each panel represents the x-location and y-axis represents the depth.
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The seismogram, after the Fourier transform of frequency data for model 1, is shown below.

Figure 3.5: Seismogram after Fourier transform of frequency data obtained from five layer model.
The left panel represents the raw seismogram, and the right panel represents the amplitude corrected
seismogram.

In figure 3.5, the left panel shows the actual time series (raw seismogram) recorded at the receivers.
The right panel corresponds to the seismogram after amplitude correction (after multiplying the
time series with 1.5 power of time values, divergence correction). In the right panel, the direct
arrival, reflections from each layer boundaries, and some multiples are clearly observed.

For the next test, a model as shown in figure 3.6 is considered with a background velocity of
1500ms−1, and a block buried inside with a velocity 1600ms−1 is considered. In this test, the
source was placed at x=10m, and z=5m, and the generated pressure wavefields in the frequency
domain are given in figure 3.7. The seismogram in the time domain generated from model 2 is
shown in figure 3.8.
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Figure 3.6: Model 2 used for checking diffraction events produced by the corner of the buried body.
The background velocity is of 1500ms−1 and velocity of the buried body is 1600ms−1. The right
panel represents the density.

Figure 3.8: Seismogram generated from the buried box model. The left panel represents the raw
seismogram and the right panel represents the amplitude corrected corrected seismogram.

Similar to the previous case, the left panel in figure 3.8 corresponds to the raw seismogram, and
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Figure 3.7: Real part of pressure wavefields for selected frequencies generated from model 2.
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the right corresponds to amplitude corrected seismogram. In the right panel, the direct arrival is
clearly visible. The reflected events from the bottom and top surfaces of the buried box are also
observed. Apart from these, the diffraction events from the top and bottom corners of the box are
also present in the seismogram.

From the above two tests, the forward algorithm was able to generate all the possible seismic events
for each model, and it is important to note that there were no reflected events from bottom/right/left
boundaries, which proves that the PML boundary condition is effectively implemented in the for-
ward algorithm. If the boundary condition is not properly implemented, there will be remnant
energies coming from the edges. Since it is not the case for previous results, we can infer that the
boundary layers are absorbing all energies and provides an unbounded domain for modeling.

Apart from these above numerical examples, we also attempted to further establish the robustness of
the forward scheme by comparing our result with the result available at “https://reproducibility.org/
RSF/book/data/marmousi/paper.pdf”. Here we compare the data generated on the Marmousi model
using our forward algorithm and data generated using Madagascar. The comparison of the modeled
data is given below. In the example, the shot was fired at x=5000m at a depth of 10m. The receivers
are placed every 12.5m at a depth of 25m. In figure 3.9, the right panel corresponds to the data
generated using our forward scheme, and the left panel is taken from the above document. If we
compare them, it is observed that both panels have similar reflection and diffraction events. They
closely resemble to each other. Towards the right bottom of both panels, the transmitted waves are
distinctly visible. Consistent diffraction events on both panels are observed over arrival times be-
tween 0.6 and 1s. This close resemblance between the above panels indicates that the data generated
using our forward scheme is reliable and robust.

All the above tests establish the robust performance of the forward algorithm. From the first ex-
periment, we verified the arrival time of the reflection event for a simple model. Then the next
two tests show that the forward engine is able to generate all the possible seismic events. Then the
last comparison of data generated using the Marmousi model also points in favor. From all these
tests, we are confident that the created forward scheme is able to handle the acoustic approximation
well enough with appropriate boundary conditions and is capable of generating realistic data for
waveform inversion.
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Figure 3.9: Comparison of seismogram from the Marmousi velocity model. The left panel repre-
sents the data generated using Madagascar, and the right panel represents the data generated using
our forward algorithm.
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3.2 Full Waveform Inversion

For the initial inversion tests, a synthetic model is considered, and data is generated in the frequency
domain for four frequencies. These data are used for inversion using the GN algorithm. For the
first test, a model with two boxes with velocity 1600ms−1, buried inside a background velocity of
1500ms−1, is considered. The model extends up to 2000m in the x-direction and 1200m in the
z-direction. One of the two boxes is buried at a shallow depth at z=150m and the another at a
deeper depth at z=900m. A half-space model with a velocity of 1500ms−1 (background velocity,
no information about the boxes) was considered as the initial model. In the beginning, the inversion
is done only using frequencies 0.5, 1, 1.5, and 2Hz. The result from the inversion comparing with
the initial and true model is given below.

Figure 3.10: Inversion test with two buried boxes using discreet frequencies 0.5, 1, 1.5, 2Hz.

In figure 3.10, the left panel indicates the initial model, the middle panel shows the inverted model,
and the right panel displays the true model. If we compare the inverted model and true model, it
is very evident that without any prior information about the buried blocks, the inversion scheme
was able to detect them and shows a close match with the true model. In figure 3.11, the left panel
illustrates the horizontal profile of the velocity at a constant depth of 210m, and the right panel
shows the vertical profile of the velocity at a constant x-location; x=1500m. In both panels, the
green line represents the inverted profile, blue represents the true profile, and orange represents the
initial profile. It is observed that the green and blue curves show a close match up to a good extent.

For the second test, the effect of the number of discrete frequency values are investigated. So in
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Figure 3.11: Velocity profile comparison of models. The left panel represents the horizontal profile
at z=210m, and the right panel represents the vertical profile at x=1500m (test 1).

this test, apart from the above frequency values, 4Hz and 6Hz are also used. The inversion result
from the test is given below.

Figure 3.12: Inversion test with two buried boxes using discreet frequencies 0.5, 1, 1.5, 2, 4, 6Hz

If we compare figure 3.10 and figure 3.12, in figure 3.12, the buried box at the shallow depth is
defined sharply; however it contains artifacts in the background velocity region between the boxes.
In order to better visualize the result, we could look at a particular vertical profile going through
both boxes. The right panel in figure 3.11 and figure 3.13 shows the vertical profile. In both images,
both the true and inverted profiles match inside the boxes, but due to the presence of higher fre-
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Figure 3.13: Velocity profile comparison of models. The left panel represents the horizontal profile
at z=210m, and the right panel represents the vertical profile at x=1500m (test 2).

quencies, the inverted profile shows a wiggly nature between the boxes in figure 3.13. Conversely,
the horizontal profile points that the presence of higher frequency values is better, and the inverted
profiles match more correctly with the true. This test shows that for estimating the velocities with
higher accuracy in the horizontal direction, higher frequency values are necessary, however, it may
affect the vertical information.

For the next test, we considered a synthetic model with several dipping reflectors and one body with
high-velocity (1650ms−1) at a shallow depth and another body with low-velocity(1400ms−1) at a
deeper depth. The domain spreads 4400m in the x-direction and 600m in the z-direction. For the
inversion, the initial model is considered without the two bodies.

Figure 3.14: Test on detecting shallow high-velocity and deep low-velocity bodies using GN. The
panels from left to right represent the initial, the inverted, and the true model, respectively. The
colorbar gives the velocity information in ms−1.
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Figure 3.15: Test on detecting shallow high-velocity and deep low-velocity bodies using NLCG
with the same source-receiver configuration and optimization parameters as GN.

In figure 3.14 and 3.15, the right panel represents the true velocity model with dipping reflectors
and the two anomalous bodies; the left panel represents the initial model without the bodies. The
middle panel represents the inverted model. To compare the results with GN and NLCG, both
inversions were performed with the same configurations of source and receivers as well as the same
optimization parameters. Figure 3.14 represents the inversion result using the GN method, and
figure 3.15 represents the results using NLCG. In figure 3.14, both the shallow and the deeper bodies
are retrieved with good accuracy. In figure 3.15, the NLCG scheme has successfully reconstructed
the anomalous bodies. However, the GN result is giving sharp boundaries of the bodies, and the
NLCG result has artifacts that looks like the velocity of the bodies are smeared with the background
velocities. It is also observed that the bottom layer in the inverted model has some wrong update in
the NLCG result, even though the modeled data closely matches the actual data. This clearly shows
the non-uniqueness of the model parameters. The shallow body is reconstructed with very higher
accuracy in the GN result than NLCG.

The horizontal and vertical profiles of these models at selected depth and x-location for GN and
NLCG, respectively, are shown in figure 3.16 and 3.17. The left panels represent the horizontal
profile at a constant depth of 150m. The profile passes through the shallow high-velocity body.
The body can be seen as a high-velocity zone between x=2200 and x=3200. In figure 3.16, the
inverted profile (green) almost perfectly matches the true profile (blue) inside the body. It is to be
noted that the inverted profile perfectly matches the true profile so that it gives a sharp definition of
the boundaries of the body. However, in figure 3.17, the matching is not as perfect as GN. The sharp
edge is not reconstructed using NLCG. In the right panel, the vertical profile through a constant x-
location, x=1650m, passing through the deep low-velocity body, both methods give a good match
of the inverted profile with the true profile, but the amount of update is insufficient in both cases.
This test demonstrates the ability of FWI to detect bodies with anomalous velocities at variable
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Figure 3.16: Comparison of the velocity profile of models from GN method. The left panel repre-
sents the horizontal profile at z=150m, and the right panel represents the vertical profile at x=1650m.

Figure 3.17: Comparison of the velocity profile of models from NLCG method. The left panel
represents the horizontal profile at z=150m, and the right panel represents the vertical profile at
x=1650m.

35



depths inside the subsurface.

The evolution of error between modeled and observed data from the beginning to the end of inver-
sion for both methods are shown below,

Figure 3.18: Difference between data and synthetic data from the initial model (dotted red) vs
difference between data and synthetic data from the inverted model (solid blue) from the above
synthetic model usingg (a) GN and (b) NLCG.

To check the quality of the update retrieved by the FWI scheme, it is also possible to look at the
difference between the observed data and the data modeled using the initial model (initial error)
and the difference between the observed data and the data modeled from the inverted model (final
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error). The difference is calculated sample by sample, so the x-axis represents the sample index and
y-axis is the error. In figure 3.18, the dotted red curve represents the difference between observed
data and modeled data using the initial model, and the solid blue curve represents the difference
between observed data and modeled data using the inverted model. The misfit plots demonstrate a
good agreement between observed and inverted data for GN. In NLCG, there is a slight variation
from zero for some data samples; however, the misfit is within the tolerance limits. This NLCG
result was obtained after 30 iterations, and the GN result was obtained after 8 iterations.

For the next test, a domain of 750m in the z-direction and 5600m in the x-direction with a discretiza-
tion of 20m in z-direction and 70m in x-direction is considered. For this test, the main objective
is to rigorously check the robustness of the inversion algorithm, so the domain is populated with
many blocks having checkers pattern. The size of each block is 195m in z-direction and 910m in
x-direction. The checkers model contains blocks of velocity 1450ms−1 and 1550ms−1 alternately
placed adjacent to each other. The inversion is done using the discreet frequency values 0.1, 0.2,
0.4, 0.9, 2, 4.5Hz. In order to rigorously and firmly test the algorithm, no prior information on the
velocity of the checkers or the background velocity is incorporated in the initial model; i.e., the
initial model is considered as a uniform velocity model of 1500ms−1.

In figure 3.19, the left column represent the initial model of uniform velocity (1500ms−1) without
any prior information about the true model. The middle column represent the inverted model, and
the right column represent the true checkerboard model. The top row corresponds to GN inversion
and bottom row corresponds to NLCG. It is very evident that the inverted models have tried to
correctly retrieve the information about the checkerboard model over the whole inversion domain.
If we compare the GN and NLCG results at shallower depths, GN result is superior to the NLCG
result. As we go into deeper depths, both results show a degrading trend in the quality of updates.
Similar to the previous synthetic model tests, GN is able to better delineate the edges/ boundaries
of the checkers than NLCG. The NLCG presents a smearing of velocity like artifacts significantly
as compared to GN, even at shallow depths.

The horizontal and vertical profiles of these models at selected depth and x-location, respectively,
for GN and NLCG are shown in figure 3.20 and 3.21. The left panels represent the horizontal profile
at a constant depth of 225m. The true profile alternates between 1450ms−1 and 1550ms−1 and the
initial profile is a constant velocity of 1500ms−1. The inverted profile (green) matches the true
profile (blue) to a good extent in both cases. However, the inverted profiles exhibit an oscillatory
nature, and the amount of update seems insufficient. The oscillatory nature is more prominent in
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Figure 3.19: Inversion results from checkerboard test using (a) GN and (b) NLCG methods. The
checkers have a dimension of 910m×195m (x × z). The left panels represents the starting model
of a uniform velocity of 1500ms−1, the middle panels represents the inverted model from each
method, and right panels represents the actual model. 38



Figure 3.20: Velocity profile of models from GN. The left panel represents the horizontal profile at
z=225m, and the right panel represents the vertical profile at x=1050m.

Figure 3.21: Velocity profile of models from NLCG. The left panel represents the horizontal profile
at z=225m, and the right panel represents the vertical profile at x=1050m.
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the GN result. In the right panels, the vertical velocity profile at x=1050m is shown for both results;
the inverted profile closely matches the true profile with more correctness at the shallow depths,
and at deeper depths, the amount of update is not enough for a good match, but the direction is
appropriate. In the vertical profile, the amount of update is significantly insufficient in the NLCG
result. In GN, at least at the shallow region, the update is sufficiently close to the true velocity value.

Figure 3.22: Difference between data and synthetic data from the initial model (dotted red) vs
difference between data and synthetic data from the inverted model (solid blue) from checkerboard
test using (a) GN method and (b) NLCG.
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Figure 3.22 represents a comparison between the initial and the final error corresponding to GN
and NLCG methods, respectively. It is clearly visible that the initial error lies between ±15000,
however, the final error is almost zero for all data points in both cases. This clearly points out that
the misfit function has been reduced to a minimum and the modeled data closely matches the actual
data. If the final error curves of both methods are compared, GN shows a consistently better fit
for all samples than NLCG. This points to fact that the GN method is able to better reconstruct the
model parameters than NLCG.

The NLCG inversion result was obtained after 40 iterations, whereas the GN inversion result was
obtained after 8 iterations. The normalized residual value over iteration for both methods is shown
below, and it evidently demonstrates the superior convergence rate of GN toward the minima.

Figure 3.23: Normalized residual over iterations for GN and NLCG in checkerboard test. The red
triangles correspond to the GN method and blue dots correspond to NLCG.

The following table3.1 and 3.2 summarizes the details of GN and NLCG inversion schemes respec-
tively. The nRMS error is defined to assess the quality of update and it is defined as,
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nRMS = 1p
Nd

√[
d obs −d pr ed

abs(d obs)

]T d obs −d pr ed

abs(d obs)
(3.3)

For ideal case it will be near to zero. In our case, the values are near to zero, this could be because
the data did not contain any noise.

Gauss-Newton
Model nITER er ri ni

er r f i n
nRMS error

model 1 (synthetic model with
anomalous bodies)

8 9.48e-7 0.011374

model 2 (checkerboard test) 8 5.47e-7 0.115504

Table 3.1: Summary of GN inversion for both models. nITER represents the number of total iter-
ations performed and nRMS represents the normalized final rms error (i.e. ratio of initial to final
error).

Non-linear conjugate gradient
Model nITER er ri ni

er r f i n
nRMS error

model 1 (synthetic model with
anomalous bodies)

30 1.89e-2 0.195804

model 2 (checkerboard test) 40 3.45e-3 0.137496

Table 3.2: Summary of NLCG inversion for both models.

In the previous two inversion tests, a rigorous comparison of inversion using the Gauss-Newton
method and the Non-Linear Conjugate Gradient method is performed. In both cases, it is consis-
tently observed that GN provides a sharper boundary of anomalous bodies and converges to minima
at a faster rate than NLCG. It was observed that The NLCG results are susceptible to smearing of
velocity resulting in blurred boundaries of the bodies. The inferences are completely based on the
previous two tests, and it is not fair to establish a final conclusion regarding the superiority of the
methods based on these two tests only. Both the algorithms require rigorous tests on benchmark
models such as Marmousi or SEG/EAGE salt models and then apply both algorithms to real seis-
mic data. More studies must be done on establishing stable optimization parameters by performing
numerous tests with both methods.
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In figure 3.2, the calculated arrival time matches with the reflection event in the seismogram. In
figure 3.8, it is very evident that the forward engine is able to generate all the possible events from
model 2 (figure 3.6) with no reflection from the boundaries. In figure 3.9, a comparison between
generated data with data from another source is presented, and it is clear that both of the seismo-
grams resemble closely, indicating our forward modeling scheme is able to accurately generate the
data. All these examples of forward modeling results prove the reliable and robust performance of
the scheme. If the data is generated without implementing proper boundary conditions, then strong
unwanted reflection events from boundaries will be generated, and these kinds of event resulting
from improper boundary conditions will tremendously tamper the quality of the inversion result.
Since the authenticity of the forward engine is accessed and evaluated thoroughly, we moved to the
inversion scheme. The inversion algorithm is successfully applied to several synthetic models. The
inversion scheme was able to retrieve the information about the buried box (figure 3.10 and 3.12)
starting from the initial model without having any prior information on the boxes. Even though the
initial goal of the project was to create the inversion algorithm using the Gauss-Newton method,
we also got the opportunity to explore the conjugate gradient methods. So we tried to create the
inversion algorithm using the Non-Linear Conjugate Gradient method also. Figure 3.14 and 3.15
present the inversion results of synthetic test on detecting anomalous bodies using GN and NLCG
methods, respectively. And figure 3.19 and ?? present the inversion results on checkerboard tests.
The checkerboard test proves the robustness of both methods by successfully reconstructing the
velocity information starting from no prior information. The checkerboard test is often widely used
to assess the performance and competency of the inversion algorithms rigorously. Both methods
gave comparable results, however, the convergence rate of GN is far superior. NLCG requires more
iterations to converge to minima to reach comparable results of GN,however, the computation cost
per iteration is less in case on NLCG.
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4 ∥ Conclusion
Through this project, we made an attempt to develop the algorithm of 2D FWI of seismic data
in the frequency domain, initially using the GN method and later using the NLCG method. The
acoustic forward modeling was implemented using the fourth-order finite difference scheme on
staggered-grids, with PML boundary conditions to create an unbounded domain with very little to
no numerical error. The choice of frequency domain was made by accounting for its low computa-
tional cost for 2D cases due to the fact that only discreet frequencies are used for the inversion. If we
use all the frequencies, it would be equivalent to implementing the inversion in the time domain.
In the GN method, the second derivative of the misfit function, the Hessian matrix, is approxi-
mated in terms of the Fréchet derivative of the forward operator, the Jacobian matrix. Estimating
the accurate Hessian is a time and resource-consuming task and sometimes nearly impossible to
estimate. GN being a Newton method presents a faster rate of convergence to minima as com-
pared to gradient-methods such as steepest descent. The gradient-based approaches require much
lesser computational resources per iteration. The NLCG is a gradient-based method and demands
less computational resources than the GN method, however, it requires more iterations to reach
comparable results. In NLCG, the model update is performed using the gradient and a step length
estimated using line search methods.

Through the forward simulation tests, we have established the sound quality of data generated using
the algorithm. The comparison of data generated on the Marmousi model using Madagascar and our
algorithm gives confidence in our scheme. The boundary condition was implemented with proper
parameters so that we observe no remnant energies reflecting from the edges of the domain. The
forward scheme is incorporated in the inversion scheme to generate the synthetic data for matching
with the recorded data. The inversion algorithm is developed using GN and NLCG methods. We
also have presented the results from both methods and done a comprehensive analysis of the inverted
result from both methods. From the results obtained on these tests, we inferred that the GN method
outperforms the NLCG in terms of the quality of the update as well as the number of iterations.
It was consistently observed that the NLCG results appear to have a smearing of velocity artifact
as compared to GN results. Also, the quality of both results at deeper depths diminished due to
poor illumination. In the horizontal profile of GN results, we observe oscillatory behavior that
require further investigation for optimal inversion and regularization parameters. The statement
made on the outperformance of GN is completely made based on the two tests, and it requires
further investigations on different benchmark models and real seismic data.



Since the modeling was performed using the fourth-order finite difference approximation on staggered-
grid resulting in the 13-point stencil, it gives more fidelity to using less number of gridpoints (four
gridpoints) per shortest wavelength. This minimum number of gridpoints can be further reduced us-
ing high-order approximations resulting in more stencil points with additional computational cost.
It is also noted that the forward modeling contains only P-waves because of the acoustic approxima-
tion of the wave equation. This approximation could be partially valid for marine environments for
controlled-source experiments but may fail on land data due to the presence of surface waves gen-
erated by the interference between both P- and S-waves. For more accurate imaging, elastic wave
equation could be helpful. However, it requires massive computational resources due to the inver-
sion of multi-parameters, and is highly non-linear, and each parameter have different sensitivity. In
this study, we are minimizing the data residuals in a least-square sense. It is also possible to modify
the misfit function to other norms such as the Wasserstein metric (optimal transport), a combination
of different norms with varying weights, and to implement global optimization strategies such as
Markov chain Monte Carlo, simulated annealing, and genetic algorithm.

We believe there are more innovations made in the field of seismic imaging. As a future aspect of
this study, we intend to further investigate on regularization and stabilization of both methods for
applying to benchmark models such as Marmoiusi, SEG/EAGE salt model, 2004 BP benchmark
model, and then on real seismic data. We also intend to further investigate the performance of both
GN and NLCG methods and investigate the possibility of creating a hybrid optimization strategy
where we start the inversion with GN for a few iterations and change to NLCG for further itera-
tions. We also intend to attempt on implementing elastic or visco-elastic approximation of the wave
equation for improved imaging.
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A ∥ 13 Point stencils from fourth-order discretiza-
tion of the wave equation

From the Eq. 2.5, the stencil points are as given below;
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B ∥ Inversion algorithm
The algorithm for generating the synthetic data and the Jacobian matrix is given below. F and s are
the discreet frequency values and corresponding source amplitude, respectively, T is the transfor-
mation matrix for interpolating the data from gridpoints to receiver locations.

Algorithm 1 Generate synthetic data and Jacobian matrix
Require: F, s, T, C1, . . . , C13

for i ← 1 to leng th(F ) do
M ← di ag ([C12,C10,C8,C6,C4,C2,C1,C3,C5,C7,C9,C11,C13],

[−3nx,−2nx,−nx,−3,−2,−1,0,1,2,3,nx,2nx,3nx])
p ← M−1s
P mod ← append(T p)
G1 ←−∂M

∂m p
G ← append(G1)
R1 ← (M−1)T T T

R ← append(R1)
end for
J ←GT R
return P mod and J

The algorithm for inversion using the Gauss-Newton method is given below. 1

Algorithm 2 Inversion using GN
Require: P obs , mi ni t i al , mr e f

m ← mi ni t i al

E r ms ← 100
Wd ← di ag ( 100

|P obs | )
Wm ← Id

while i ter ≤ max_i ter or E r ms ≥ tol er ence do
P mod , J ← call Algorithm 1
∆r ← P obs −P mod

λ← ||J T W T
d W d J ||∞
ni ter

m ← (
J T W T

d W d J +λW T
mWm

)−1 (
J T W T

d Wd (∆r + Jm)+λW T
mWmmr e f

)
E r ms ←

√
∆r T∆r

leng th(dr )
i ter ← i ter +1

end while
mi nv ← m
return mi nv

1value of n for λ can be decided by trial and error.



The algorithm to estimate the scaled gradient of the objective function is given below.

Algorithm 3 Generate gradient of objective function
Require: J , ∆r, Wm , Wd , m, mr e f , λ

g r ad ← −2
Nd

J T W T
d Wd∆r + 2λ

Np
(m −mr e f )(W T

mWm)T

return g r ad

The algorithm for inversion using the Non-Linear Conjugate Gradient method is given below. 2

Algorithm 4 Inversion using NLCG
Require: P obs , mi ni t i al , mr e f , λ

m ← mi ni t i al

E r ms ← 100
Wd ← di ag ( 100

|P obs | )
Wm ← Id

while i ter ≤ max_i ter or E r ms ≥ tol er ence do
P mod , J ← call Algorithm 1
∆r ← P obs −P mod

g r ad ← call Algorithm 3
g ←−g r ad
if i ter == 1 then
β← 0

else
β← g T (g−g0)

g T
0 g0

end if
h ← g +βh0

α← (Jh)T ∆r
(Jh)T (Jh)

m ← m +αh
g0,h0 = g ,h

E r ms ←
√

∆r T∆r
leng th(dr )

i ter ← i ter +1
end while
mi nv ← m
return mi nv

2All codes used in this study are available in python at https://github.com/mssujith/
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