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Abstract

The chemistry of N-heterocyclic silylenes (NHSis) [a higher analogue of NHC], is
one of the hottest research topics in current low-valent organometallic
chemistry. In this work, a hybrid N-heterocyclic silylene (NHSi) and phosphine-
based compound was developed and used as a ligand in transition metal-
catalyzed homogeneous catalysis. We will be discussing the development and
electronic as well as steric properties of silylenes especially NHSi ligands to
achieve the potential catalyst for transition metal-catalyzed organic
transformation. The electronic and steric properties of the newly synthesized
silylene- and phosphine-based hybrid ligand are described. Further, the
application of the ligand-supported Ni" complex in the C-N coupling reactions as
potent catalyst is described. Next section will cover the synthesis and
characterization of the NHSi and phosphine-based ligand and its Ni"' metal

complex.
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1. Introduction

1.1 Silylenes: Divalent compounds of silicon

The heavier analogous of carbenes are silylenes, having divalent silicon
atoms. Silylenes and carbenes are both Lewis acids and Lewis bases because of
empty 3p orbitals and the presence of a lone pair of electrons respectively.* In
silylenes, silicon atoms prefer to remain in a singlet ground state. Silylenes are
highly reactive species that before the 1980s, these species noticed
spectroscopically at low temperatures and could be isolated as silylene metal
complexes. The first stable Si'" compound, decamethylsilicocene, was isolated by
Jutzi at el. in 1986 to draw attention to silylene chemistry. With the progress of
silylene chemistry, many other silylenes having thermodynamic and kinetic
stabilization (e.g., cyclic alkyl (amino) silylenes, cyclic dialkyl silylenes (CAASi), N-
heterocyclic silylenes (NHSis), and acyclic silylenes) were isolated by different
groups. These stable silylenes showed their potential in unreactive bond
activation and provide stability to compounds with low-valent main-group
atoms, and as ligands in transition metals-based catalysis. This chapter we will
be discussing the chemistry of the silylenes as ligand in Ni" support complex and

their potential properties in homogeneous catalysis.
A. Cyclic silylenes
N-heterocyclic silylenes (NHSis)

The first N-heterocyclic silylene (NHSis) was obtained by West and Denk in 1994
by the reduction of N-heterocyclic dichlorosilane by potassium in THF ./? The two
adjacent nitrogen atoms having bulky substituents provides the stability to these

moieties.
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Scheme 1: Synthetic route of the first NHSi I-2

In some coming years, NHSis with different substituent groups on N (e.g., I-3, I-

4) have been obtained and reported by different research groups.'*

N
/R / P
N —N Np\
| s | Si: N N—Np
! P ~\ A ‘Si.
N, R X \ "Sicy NSt
R Np \ I
Np Np
R = Mes (1-3) R=H, X = CH (I-5) Np= CH,Bu
R = Dip (1-4) R =Me, X =N (I-6)
R=H, X =N (I-7) 1-8

Scheme 2: Some examples of the NHSis
Further, Pyrido- and benzo-fused backbone stabilized N-heterocyclic silylenes
(e.g., I-5, 1-6, and I-7) were also obtained.””’ Following this, Lappert et al.

reported the bis-silylene-based biphenyl moiety I-8 in 2005. ©°

Driess et al. reported the first NHSi stabilized by a B-diketiminate-like backbone
(1-10) in 2006.°' This species was obtained by reacting dibromosilane 1-9 with

potassium graphitein THF and obtained as yellowish crystals.

N/Dip N,Di|o
\ B _2KCo THE \
I -
~ /
\ N B 2KBr,-16C \ N
\ \
Dip Dip
1-9 1-10

Scheme 3: Synthetic path of the NHSi I-10
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In presence of arenes, I-10 reacts with [Ni(cod);] providing the corresponding
Ni® (n®-arene) complexes. The reaction of Ni° complex with CO provided silylene
complex I-11. After reacting I-11 with HX (HX = H,0, HOTf, HCI, H.S, NHs, and

NH.('Pr), 1,4-addition products were obtained.!”

,Dip ,Dip

N —N_ _Ni(CO)
\ . 3
Si=>Ni(CO); __HX 57

N\ / \ 7
N N
; \
Dip

\
Dip

I-11 X = Variable group

Scheme 4: NHSi Ni complex I-11 reactivity towards HX
After the successful isolation of NHSi I-10, the N, N-di(tert-butyl)amidinato NHSi
I-14 was obtained by Roeskey and co-workers. This group synthesized this by
two pathways. First, by reducing the trichlorosilane precursor 1-12 with
elemental potassium in THF,®! This method yielded a low (10%) so they used
dichlorosilane I-13 as a precursor. Another pathway, reacting I-13 LiN(SiMe3); in
toluene provided considerably higher yields (90%) which encouraged further

research on I-14 and its derived compounds in catalysis as ligands.”’

;Bu
N 2K
Ph—< SiCls
N -2KCl
I’B Bu
u |
N
112 ——>  Ph— sit
N cl
|
tBu IBU
LiN(SiMes),
1-14

|
N\

Ph—Q JSHCl,  -LiCl,
N "HN(SiMe3), or -HCI.NHC

|
Bu
1-13

Scheme 5: Synthetic pathways to the NHSi I-14
12




B. Acyclic silylenes

By reducing of the corresponding dibromosilane with the potassium graphite
generated the acyclic silylene I1-15.1% However, this species persisted only for 10
to 12 hours at -20 °C. The introduction of the bulkier substituents led to the

stabilization of acyclic silylenes 1-16, 1-17, and 1-18.(Scheme 6)'*°’

Remarkably, acyclic silylene I-17 underwent H; activation at r.t. because of the

small LUMO-HOMO gap assisted by the wide bond angle at the Si center and the

strong o-donation property.*”

/Sil\/les N/Dip Dip\N
Me3Si—N
3 N </\ | : | /\>
. /Sl- N/B\N/SI\N/B\N
'V'e3S'_N\ | I I \
SiMes Dip SiMe; SiMe; Dip
1-15 1-16
Me3Si_  _ Dip
Dip\ ']l Me.Si ?iMe?, IIDip
N\N/su e3PINg, N
<\/, MesSi~ si” “SiMe,
NG
Dip
1-17 1-18

Scheme 6: Some selected examples of acyclic silylenes I-15 — 1-18

1.2 Silylene- and Phosphine-based hybrid donor ligands
Various NHSis stabilized by different donor atoms have been obtained and
demonstrated for their coordination properties towards the main-group
elements and transition metals.'*" **/ The hybrid two-donor center ligands can
provide more reliable stability than ligands with one donor sight; hence, the
substantial number of NHSi- and phosphine-based hybrid ligands were

synthesized with different donor atoms incorporated with the divalent Si
13




center.'”*) These hybrid bidentate systems, because of two donor sites, have the
potential to stabilize transition metal complexes and many other reactive

12,14,15

species.! I This new strategy of hybrid bidentate ligands has increased faith
in obtaining new moieties for small molecule activation and metal-mediated

homogeneous catalysis.

There are some literature on bidentate hybrid silylenes ligands coordination
to Ni halide complexes. Surprisingly, much attention is not given to the

complexes of Ni' metal halides with such a hybrid Si"-P"' system.

In 2016, Khan and co-workers reported a new dinuclear gold' cation system
supported with a silylene with aurophilic interaction.*® The silylene
(PhC(N'Bu),SiN(PPh;)(2,6-Pra-CeHs) 1-19 was synthesized from previously
reported (PhC(NtBu):SiCl) salt elimination pathway. The reaction of 1-19 with
AuCl(SMey) afforded I-20. Furthermore, chloride abstraction from 1-20 by AgSbFe
lead to dinuclear Au(l) cationic complex I-21 formation, possesses an intra-

molecular Au....Au interaction.
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Li(ArNPPh,)
[

Toluene
rt, 12 h
- LiCl

Bu Bu
N Ar Pha N AuCI
o AuCl(SMe \r
Ph—< Si—N, (SWe2) ,}l,‘Si/
[}j -PPh Toluene L/ \N——Ar
By rt, 12 h Bu /
-Me,S PhyP:
1-19 1-20
AgSbFg
CH,Cl, | -AgCl
rt, 12 h
Ph 2+
1f
N/ /N/ Bu
Bu— ~gi+—= Au~=PPh,
0.5 Ar_N/ N—Ar
\ ! /‘Bu
Ph P+ AU=—Si~N
)
tB 7
. Ph

1-21

Scheme 7: Synthesis of Au(l) complex with aurophilic interaction.

Carlos and coworkers reported the synthesis of phosphane decorated silylenes

and germylenes 1-22, 1-23 and their reaction with group 10 metals in 2020.**

These tetrylenes, having phosphane side-arm synthesized by reaction of

amidinatotetrylenes with LipyrmPtBu..

/ \

N
I
H

PBu,

(a) Li'Bu,
Ph
(b) >§N—’Bu N\ e
tBU/C’\:;E: fBu—N:’N E = Si (I-22)
> E: E = Ge (I-23)

Toluene, Et,0O

N PBu,
[~

Scheme 8: Synthetic route for the heavier tetrylenes-phosphane compounds.
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The reaction of I-22 and I-23 with selected M(0) metal precursors has provided
the synthetic path for corresponding metal complexes showing outstanding Ge,

P- and Si, P-chelating properties of ligands 1-22 and 1-23./**¢

Ph ‘Bu Ph_ Ph
Ph\p/ ,!] o \ /:
. oluene
-
+ Ph—<\ “si—cl > E:[ + Ll
N -78°C, 12 h s By
Li ! NG
BU tBu/N\/(
I-24  Ph

Scheme 9: Synthesis of Phosphine- and silylene-based hybrid-donor ligand 1-24

In 2021, Roeskey et al. reported a new hybrid bi-dentate ligand with P and Si
donor atom sites and its coordination behaviour.*”! The ligand 1-24 was
obtained reacting chlorosilylene (PhC(NtBu).SiCl) with ortho-lithiated
diphenylphosphinobenzene (LiCsH4PPh;).

Further treatment of ligand 1-24 with various metal complexes afforded the
corresponding metal precursor complexes.

In the same year, Xi and co-workers reported the synthesis and reactivity of side-
arm phosphine functionalized amidinato-silylene- and amidinato-germylene

and their corresponding Ni® complexes.!**?
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Li\N/P’PrZ

/tBu
IBU N
| Ph \-, i
! \-El PP
.-
Ph—&\ /E\ tBu/
N Cl THF
Bu -35°C tort
E = Si (I-25)
E = Ge (I-26)
By IIQ
N/ Ni-—~
[Ni(cod),] Ph— \t :‘g,iprz
Ligands 1-25, 1-26 > N~ N
THF, rt !
Bu

Scheme 10: Synthesis of ligands 1-25 — 1-26 and corresponding Ni° metal
complexes

Very recently, Khan et al. reported complexes of phosphine-silylene-based
hybrid ligands with first-row transition metals.''”>' They prepared new hybrid
silylene-phosphine-based ligands Si{N(R)C¢Ha(PPh2)}{PhC(N‘Bu),} [R= TMS
{trimethylsilyl} (I-27) and R = TBDMS {tert-butyldimethylsilyl} (I-28) with two
donor sites. Further, the reaction of ligands with base metal halides afforded the

corresponding metal complexes of I-27 and 1-28.

R By

R By | /
- | N N
NLi N Toluene, rt A Y
Ngi Si
+ Ph—<\ /SI\Z T> \N/ Ph
N
PPh, p C -LiCl PPhy |
tBU tBU
R = TMS (1-27)

R = TBDMS (1-28)

Scheme 11: Synthesis of I-27 and 1-28 using amidinato chlorosilylene
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1.3  Electronic properties of silylene ligands
Different-different backbones of the silylenes are the factor behind the varying
electronic properties of the silylene ligands. The dialkylsilylene ligands have the
most electronically poor two-coordinate Si' center with an up-field 2°Si NMR
shift than other silylenes. The m-donation from the nitrogen atom makes cyclic

alkyl (amino) silylenes with a more shielded Si" nucleus."®

The three-coordination donor site provides extra stabilization to three-
coordinate silylenes with more electron-rich Si" centre. Among three-coordinate
silylenes, silylenes having B-diketiminato and N,N-di(tert-butyl)amidinato
backbones facilitates the balance of the o-donor strength by easily modifying X

substitutions.

O QO O

Strong Pi Strong sigma Tunable sigma donor
acceptor 4— donor strength

w)

Scheme 12: Modifications in o-donation properties of silylenes with different
donor sites and X-substitutions

The N,N-di(tert-butyl)amidinato backbone-based silylene ligands are easy to

modify relative to silylene ligands with B-diketiminato backbones.

1.4 Silylene- and phosphine-based hybrid donor ligands in catalysis
NHSis with two-coordinate silicon are both Lewis acids and bases, because of
the presence of an empty 3p orbital and a lone pair of electrons, respectively.

The remarkable discovery of two-coordinate isolable silylenes stabilizes the

18




reactive Si'" atom providing symbiotic thermodynamic and kinetic stabilization

with the advantage of transition metal stabilization support.*”!

Since the last two decades, silylene, especially isolable NHSi, has been
demonstrated to act as a promising ligand in different metal-catalyzed reactions
including C-C bond-making reactions, C-X (X = N, Si) bond-making reactions, and
reduction reactions.!*??) Current literature indicates that efficiencies of various
catalytic organic transformations can be enhanced by silylene ligands due to
their stronger o-donation ability. The properties can also promote excellent
regio-selectivity, stereo-selectivity, and chemo-selectivity in the metal-catalyzed

transformation reactions of organic substrates.!?’

A. C-C bond formation reactions

Some selected examples of NHSi-supported transition-metal complexes
showing their potential in catalytic C-C bond formation reactions have been
demonstrated in Scheme 1-15. Complexes 1-29 and I-30 were obtained by the
reaction of NHSi ligands with corresponding metal complexes via ligand
exchange. Complex 1-29 was found useful in the Suzuki coupling reactions. In
2008, Roesky et al. found the catalytic activity of 1-30 in the Heck coupling

reactions.!*®

Complex I-31 was synthesized by reaction of NHSi ligand with NiBr,:(DME) metal
complex via an aromatic C-H activation in the presence of NEts. The Ni' complex
I-31 was demonstrated as active precatalyst in the Sonogashira coupling

%2l The Ni complex 1-32 synthesized by the reaction of N-heterocyclic

reactions.'
silylcarbene with NiBr,-(DME) via proton migration in toluene. Complex I-32 was
found to be a potent catalyst in Kumada-Tamao-Corriu coupling reactions with

excellent catalytic yields.**"

19
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1-29 1-30
t t
Bu\ |l3r /Bu Br
N . N Br
N\a.o—9 Ni s’ . .
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FARe (0] ’\“ —N \¢
t \ 2
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Bu By N\D'\/)zk
p
1-31 1-32

Scheme 13: Selected silylene-based metal complexes utilized in C-C bond-
making reactions

B. C-X (X =N, Si) bond-making reactions

In 2016, Driess et al. reported Ni complexes I-33a, 1-33b, and 1-35 promotes
Buchwald-Hartwig amination reactions of aryl halides with secondary amines
with excellent catalytic activity.'*”? Iwamoto and coworkers reported the Pt°-
complex I-35 having a cyclic dialkyl silylene as a ligand and demonstrated it as a
catalyst in the olefin hydrosilylation reactions in the same year . Additionally, I-
35 was also found potent pre-catalyst in the hydrosilylation of terminal

alkenes.!'*?!

In 2017, the same group reported a related Pt° complex 1-36 with CAASi ligand

which was found effective in olefin hydrosilylation.**"
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/N)\ph 'Bu -Fe-
Bu
L =Br, CO
1-33 I-34
. SiMe W\ O/
SiMe \ 3 \ A
N \—S/I/ SiMe; —si—
SiMej \ \O
Si+—s Pt P N/S"__' 3 \/_Si/
. Si /4
SiMe; \/_ | \ }Ad 7 | \
SiMe3
1-36
1-35

Scheme 14: Selected examples of silylene ligand-bearing metal complexes
utilized in C-X (X = N, Si) bond-making reactions

C. Reduction reactions

In 2017, Driess at el. Reported Ni(cod)-complex 1-37 (cod=cyclooctadiene)
decorated with a xanthane-based bis-N-heterocyclic silylene. This Ni® complex
was demonstrated as potent catalyst in the hydrogenation of olefin at room
temprature. The Ni(PMes);-complex 1-38 was also demonstrated catalytically

active in the same reactions, but with less efficiency and with different

20c] 6

functional group tolerance. — arene Fe® complex 1-39 was found

n
catalytically active in the hydrogenation of aldehydes and ketones.!?°"

Complex 1-40 and I-41 reported by Driess et al., are Mn metal complexes bearing
silylene ligand which was first found catalytically active in the hydrogenation of

unsaturated hydrocarbons with excellent yields.!?*!
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Scheme 15: Selected examples of silylene ligand-based metal complexes

utilized in reduction reactions.

22




2. Motivation
We are aware of the unique electronic properties of NHSis after the brief
introduction to silylenes. Considering these potential properties of the silylenes
this project is to study the application of NHSi- and phosphine-based hybrid

ligand in metal-mediated catalysis.
The objectives of this project are:

1) Synthesizing the NHSi- and phosphine-based hybrid donor sites ligand and
its corresponding Ni" metal complex.
2) Application of NHSi-based hybrid ligand in C-N bond formation reactions

under various reaction conditions.

23




3. Result and Discussion:

3.1 Synthesis of Silylene- and Phosphine-based hybrid ligand system and its
corresponding Ni' metal complex

hd h

NH, NH NH
(:[ Isopropyl iodide @ KPPh,
K,CO3 1, 4-dioxane
F F Ph

Neat reaction 5 days reflux

20 h
a b

Scheme 16: Synthesis of phosphine substituted compound b
The neat reaction of 2-fluoroaniline with isopropyl iodide in presence of K,CO3
for 20 hours afforded compound a with 30% yield after purification by using
column chromatography. Reflux of a with KPPh; in Dioxane for 5 days afforded
diphenylphosphine-decorated compound b with 50% yield. Compound b was

characterized by regular spectroscopic techniques.

The lithiation of secondary amine was done in diethyl ether at 0 'C. Lithiated salt
of compound b and chlorosilylene (LSiCl) was added to the reaction flask at
ambient temperature and stirred for 12 h in toluene. After filtration through frit
afforded the expected L1 in pale yellow solid. The hybrid donor ligand L1 was
characterized with *H NMR, 3C NMR, 2°Si NMR, 3P NMR, and mass
spectrometry. However, due to the very low melting point, we are not able to

crystallize ligand L1.

1
Bu
Y 1. nBuLi \I/ N
NH o Neco” .
0°C Et,0 @( S_l\N/>—Ph NiBryDME
—_— —_—
2. LSiCl ) | THF

PPh2  Toluene Ph/llj. Bu
Ph

L1 1
Scheme 17: Synthesis of hybrid ligand L1 and its corresponding Ni" complex 1
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31p NMR shifts for the ligand are & = -20.64 ppm (s); 2°Si NMR shifts are 6 = -
15.36 —-15.65 ppm (d).

ESI: HRMS- mass calculated for L1: m/z 578.3120; found: m/z 578.3191

Stirring 1:1 equivalents of ligand L1 and NiBr,:(DME) metal complex in Schlenk
flask at room temperature in THF afforded deep red/brownish compound 1 with

90% vyield.

3P NMR shift for Complex 1 is 6 = 20.10 ppm (s); 2°Si NMR shift is 6 = 10.74 —
9.50 ppm (d).

We can notice a downfield shift in the 3!P NMR and ?°Si NMR of complex 1
compare to the ligand L1 showing the coordination of the Ni' metal center to
the donating Si and P atom centers. A downfield shift in NMR shows the electron

donation from the hybrid donor centers to the Ni metal.

Crystallization of complex 1 was performed in THF/n-hexane solvent at room
temperature and we obtained red colour needle like crystals of complex 1.

Important bond parameters and angles are mentioned in Table 1 and Table 2.

Figure 1. The molecular structure of complex 1. Hydrogen atoms and solvent

molecules are omitted for the better clarity.
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Table 1. Selected bond distances [A] of complex 1

Bond distances [A]
N3-Sil 1.744(5)
Si1-Nil 2.152(2)
P1-Nil 2.129(2)
Ni1-Brl 2.315(1)
Ni1-Br2 2.258(1)

Table 2. Selected bond angles [°] of complex 1

Bond angles [°]
N3-Si1-Ni2 118.6(2)
P1-Ni1-Si1 87.76(6)
Br1-Nil-Br2 96.58(4)
Si1-Nil-Brl 88.51(5)
P1-Ni1-Br2 92.16(5)

The complexation of L1 with NiBr,:(DME) provides complex 1, which crystallize
in the triclinic PT space group. It’s always tricky to analyse the geometry
(tetrahedral and square planner) for tetrahedral complexes. However, analysing
the previous reports of Ni' tetrahedral complexes we can predict that the
complex 1 shows a distorted square planner geometry with the bond angles P1-
Ni1-Si1, Br1-Nil1-Br2, Si1-Ni1-Brl, and P1-Nil1l-Br2 of 87.76(6), 96.58(4), 88.51(5),
and 92.16(5), respectively. This kind of distortion in the geometry of Ni"
complexes was also observed in the previously reports of analogous Ni'"

complexes.!*> 27!
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3.2 C-N coupling reactions catalyzed by silylene- and phosphine-based hybrid
donor ligand Ni'" complex

Carbon-Nitrogen bond-forming reaction is usually catalyzed by the palladium-
based complexes and named as Buchwald-Hartwig amination reactions. These
amination reactions are important in organic transformations since a huge
number of medical and biochemical important molecules contain amine
species.”* However, in the last two decades, for decreasing the dependency on
expensive and less earth-abundant elements, much attention is given to the
development of less expensive and with good abundance on earth first-row
transition metal complexes as an alternative. Among transition metals, nickel is
a promising replacement metal that could make facile the initial addition step of

various substrates at the Ni metal center.!??

In recent years, either based on structure or in situ obtained Ni metal complexes
are chosen by various researchers as pre-catalyst in Buchwald-Hartwig
amination reactions. Taking the strong o-donating properties of NHSi ligands
into account, the integration of NHSis with Ni metal complexes would further
make facile the oxidative addition step, thus the development of new NHSi

ligand systems for C-N coupling reactions is demanding.'**

Initial optimization revealed that 5 mol % of complex 1 can catalyze the desired
C-N bond formation reactions providing good to excellent yields after 24 hours
at 100 'C using the catalytic amounts of AgSbFe and K!BuO (2 equiv.) used as
base. (Table 3) The reaction without AgSbFs ended up with lower conversions
(10-40%). When K;COs3, NaHCOs, and Cs,COs were utilized, the reactions
provided very low conversions (5-20%). Na‘BuO provided better conversions

(20-30%), but not to promising levels because of side product formation.

27




Table 3. The complex 1 C-N coupling using different reaction conditions!®
Complex1(5 mol%) |

X
X Additive(10 mol%) LN
R "R R, > R R
Z Base, (2 eq.) 4

time, T

ZT

ArX(1eq.) Amine(1.2eq.)

Sr.no. Additive Base Solvent Time(h) Temp.('C) Conv.Pl(%)

1 - NaHCOs: Toluene 12 80 5

2 - NaHCOs: Dioxane 12 80 10
3 AgSbFs  K,CO3 Toluene 12 100 10
4 AgSbFs  K,COsz Dioxane 16 100 15
5 AgSbFs  Cs,COs Toluene 24 100 15
6 AgSbFs Cs,COs3 Dioxane 24 100 20
7 AgSbFs Na'BuO Toluene 24 100 25
8 AgSbFs Na'BuO Dioxane 24 100 30
9 AgSbFs  K'BuO Toluene 24 100 45
10 AgSbFs  K'BuO Dioxane 24 100 95

[a] Reaction conditions: ArX (1 mmol), Amine (1.2 mmol), complex 1 (5 mol%),

Additive (10 mol%), base (2 eq.), T=80-100 °C, Solvent = 3mL, t = 12-24 h.

[b] The conversions and yields are calculated taking ArX (X = Cl, Br) substrate as

reference.

Aryl halides having electron-withdrawing groups on the para- and meta-position
of the ring increased the overall reaction rate (Me< H < NH2 < OMe; Table 4). It
shows that the electronic properties of starting material used in the reaction

determines the overall reaction rate. A substituent at the ortho-positions gave
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lower conversions compared to meta- and para-positions of aryl halides

suggesting the steric impact.

The catalytic potential of complex 1 was verified using different amine
substrates with different substituents to reach the various steric and electronic
properties. It was observed that the amination of aryl halides provided good to
excellent yields (Table 3) as a result of the steric and electronic properties of
amine substrates. Usually, anilines and secondary amines with a bulky group
(e.g. Diisopropylamine) gave lower yields than secondary amines with less steric

substituents. (e.g., Diethyl amine).

Table 4. Some C-N coupled products catalyzed by complex 1

R4
complex 1 (5 mol%) |

S H Additive (10 mol%) SN
RL + ,N\ > Rl R>
P2 Ri Rz Base(2eq.)24h l

100 °C

ArX Amine

Entry ArX Amine t (h) Conv.’! (%) lIsolated yield (%)

O
/
Ir=

24 99 85

oy

/
Ir=

24 90 80

=

24 92 83
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N
(1

11
Br
12
Br
13
O~ .0
~N
\©\ =0
\

14 o

Br
15

Iz

I=

Ir=

Ir=

(J

Iz

24

12

12

24

12

98

97

95

90

92

88

85

86

82

84

[b] The conversions and yields are calculated taking ArX (X = Cl, Br) substrate as

reference.
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4. Materials and Methods

4.1 General Consideration
All reactions and manipulations were carried out using standard Schlenk
techniques and all the sensitive reactions were performed in an oxygen-free
environment i.e. in using nitrogen/argon-filled glovebox. All the glassware were
dried at 140 °C and cooled down to ambient temperature prior to use and
purged with nitrogen/argon gas. The handling of the sensitive solid samples
were carried out in inert gas filled glovebox with maintained O, and H,0 levels

below 0.5 ppm.

All solvents were distilled and purified under an N, atmosphere prior to use
using appropriate methods and stored in Schlenk flasks. The purification and
distillation of Benzene, toluene, and n-hexane were carried out using
Na/benzophenone. KOH were added to Et,0 and THF to get pre-dried solvents

and then distillation were carried out from Na/benzophenone.

4.2 Starting materials

All starting materials were commercially available and used as received. The
important precursor [N, N'-di-tert-butyl(phenylamidinato)chlorosilylene],"’

were synthesized according to reported procedure.

4.3 Analytical Methods
Nuclear Magnetic Resonance (NMR) Measurements: For all these moisture/air-
sensitive compounds NMR samples were prepared under an inert environment
and maintaining the inert environment the samples were sealed-off in dried
NMR tubes for measurements. All the deuterated solvents i.e., CsDs, toluene-ds,
and CDCls were dried over sodium, distilled in inert atmosphere (N2/Ar) and

stored into sealed schlenk flasks. Using ARX 400 (H, 400 MHz; 13C, 100.46 MHz)

32




spectrometers from the Bruker, all these 3C-NMR and H-NMR spectra were
recorded. Using ARX 400 (*°Si, 79.490 MHz) spectrometer, 2°Si-NMR spectra

were recorded.

The short notations for the multiplicity of the signals are as follows: br = broad,

m = multiplet, s = singlet, d = doublet, t = triplet, g = quartet and sept = septet.

Mass Spectrometry: Mass spectra of all isolated compounds - recorded using AB
Sciex, 4800 plus HRMS on the Waters Synapt, USA. A sealed glass tube were used
to record the melting points of samples. The N»/Ar filled glovebox were used to
prepare all the sensitive solid samples and solution of sample was prepared
freshly before the measurement into the inert atmosphere. The presentation of

the mass spectra is in the standard form, m/z.

4.4 Synthesis and characterization of all compounds

A. Synthesis of silylene- and phosphine-based hybrid ligand

Synthesis of compound a: 2-Fluorobenzamine (11.5 g, 103 mmol, 1 equiv.) and
2-lodopropane (52.5 g, 309 mmol, and 3.0 equiv.) were added to a 100 mL
Schlenk flask. With stirring, potassium carbonate (15.5 g, 113 mmol, 1.1 equiv.)
was added to the flask. After 24 hours of reflux of this neat reaction, we got an
off-white solution. Added some DI water and DCM to the reaction mixture and
separated organic and aqueous layers using a separating funnel. Dried organic
layer under vacuum and separated the pure product using column
chromatography. Compound a was isolated with 30 % yield and characterized
with *H NMR.

IH NMR (400 MHz, CDCls) 6 6.94 — 6.83 (m, 2H), 6.62 (td, J = 8.5, 1.5 Hz, 1H),
6.53 —6.47 (m, 1H), 3.68 —3.48 (m, 1H), 1.16 (d, J = 6.2 Hz, 6H).
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Synthesis of compound b: 1 (4.28 g, 27.93 mmol, 1equiv.) and KPPh; Y
(55.86 mL, 27.93 mmol, 1 equiv.) was added to a 250 mL schlenk @NH
flask. Around 80 ml of 1, 4-dioxane was added to the flask as Ph,
solvent.

The reaction mixture was set for 5 days of reflux at 110 °C. After 5 days of reflux,
the workup of the reaction mixture in DCM was followed by drying of DCM
under a vacuum. Compound b was isolated with 50 % yield. Then we added
some amount of ethanol for recrystallization but no crystals were obtained with
ethanol. Then we dried ethanol and tried recrystallization in n-pentane.

14 NMR (400 MHz, CIDCl3) 6 = 7.22 (d, ) = 2.4 Hz, 9H), 7.15 - 7.11 (m, 1H), 6.77 —
6.72 (m, 1H), 6.55 (dd, J = 8.1, 4.8 Hz, 1H), 6.48 (t, ) = 7.4 Hz, 1H), 3.51 (m, J =
11.0, 5.5 Hz, 1H), 0.97 (d, J = 6.3 Hz, 6H).

1P NMR (162 MHz, CDCls) 6 = -20.58 ppm (s).

Synthesis of L1: 2 (10.2 g, 31.5 mmol, 1 equiv.) was suspended in 50 mL Et,0 in
a 100 mL Schlenk flask. Flask was set up in a container filled with ice and n-Buli
(12.6 mL, 31.5 mmol, 1 eq.) was slowly added to the flask with stirring. After the
addition flask was packed and removed from the ice container then left for 12 h
of stirring. After 12 hrs reaction, added some amount of hexane was for
recrystallization. Lithiated salt (1 g, 2.11 mmol, 1 eq.) and chlorosilylene LSiCl
(0.624 g, 2.11 mmol, 1 eq.) were suspended in toluene in a 100 mL schlenk flask.
After overnight stirring, toluene was reduced under vacuum and some amount

of hexane was added for recrystallization.

IH NMR (400 MHz, CéDg) & = 7.30 (m, J = 7.7, 3.2, 1.7 Hz, 1H), 7.22 = 7.16 (m, 1H),
6.89 (d, J = 7.6 Hz, 10H), 6.79 (d, J = 0.7 Hz, 5H), 6.68 — 6.62 (m, 1H), 6.40 — 6.31
(m, 1H), 1.05 (s, 18H), 0.64 — 0.61 (m, 1H).
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13C NMR (101 MHz, CeDe) & = 137.13 (d, J = 2.4 Hz), 136.67 (s), 132.72 (dt, J =
14.7, 9.8 Hz), 132.06 (d, J = 10.5 Hz), 129.45 (s), 128.23 — 1a26.95 (m), 126.95 —
125.99 (m), 125.06 (s), 124.62 (d, J = 22.5 Hz), 124.50 (s), 123.02 (s), 51.99 (d, ]
= 8.3 Hz), 31.38 (s), 31.01 (d, J = 10.5 Hz), 30.32 (dd, J = 42.4, 15.3 Hz), 21.50 (d,

J =5.6 Hz), 20.25 (s). ltBu
N~ /
31p NMR (162 MHz, CsD6) 6 = -20.64 ppm (s). @[ oI |>*Ph
pr-h Bu
295i NMR (80 MHz, CsD¢) & = -15.51 (d, J = 22.9 Hz) ppm. Ph

B. Coordination of NitBr,-(DME) complex with the ligand L1

Ligand L1 (1.49 g, 2.16 mmol, 1 equiv.) and NiBr,-(DME) (0.665 g, 2.16 mmol, 1
equiv.) were weighed in a 100 mL Schlenk flask. THF was added as a solvent and
the reaction mixture was stirred for 3 hours at room temperature. After 3 hours,

some amount of THF was reduced under vacuum and the flask was kept at -20

°C for crystallization. ‘Bu
/
\l\|l/ ,NrPh
Due to the paramagnetic nature of the Ni metal center, 'H NMR @[ TRIeN \’Bu
%—le\
of complex 1 got denatured or there is a widening in the peaks.  pj | }BrBr
Ph

31p NMR (202 MHz, CDCI3) 6 = 20.10 ppm (s).

295i NMR (99 MHz, CDCI3) 6 = 10.74 — 9.50 ppm (d).
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OPT 14H ISER PUNE
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OPT 42 IISER PUNE
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OFT 366 IISER PUNE
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13C NMR Data
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29Si NMR of complex 1
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31p NMR of complex 1
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