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Abstract 

In a natural setting, sensory awareness aids the animal in evaluating its surroundings 

and making appropriate judgments. The results of these choices have an impact on 

the animal's habitat survival and fitness. Rodents primarily rely on their olfactory 

system to get information and carry out necessary tasks for their survival, including 

finding possible mates, foraging, navigating, seeing predators, etc. Based on a well-

known Go/No-Go olfactory behavioural paradigm, we train mice in our lab to execute 

detection and discriminating tasks. Water-deprived animals learn to lick for rewarded 

stimuli (reward being water) and to refrain from licking for non-rewarded input. Animals 

gradually develop the ability to distinguish between odour stimuli that are rewarded 

and those that are not. However, a preliminary study from the lab shows that animals 

that execute as accurately as possible respond to certain unrewarding stimuli by 

licking and quickly stop responding. These quick licking reactions may be the result of 

inadequate stimulus percept generation, in which a preliminary judgement was made 

prior to thorough processing and integration of the incoming stimulus. In order to 

characterize this behavior, we carried out Go/No-Go odor discrimination tasks and 

established a means to record these anomalies as reversal trials with its own set of 

characteristics. Further experiments were carried out to look at the significance of an 

odor vs a diluent in an odor discrimination task. This project aimed at attempting to 

quantify and characterize the properties of reversal trials and this phenomenon 

overall. Our findings call for further experiments to dissect out the physiological 

mechanism and behavioural impact of the same which will help us establishing this 

property as a usable readout to quantify finer subtleties in the decision making 

process. 
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1. INTRODUCTION 

In their natural habitat, sensory perception helps organisms to comprehend the 

external world and make decisions accordingly (Churchland et al., 2008; Hanks & 

Summerfield, 2017). The results of these regular decisions affect fitness and survival. 

The events in question could be as difficult as figuring out the best way to flee from a 

predator or as perceptive and complex as choosing the right moment for an 

interhemispheric migration, as the arctic tern's annual journey from pole to pole 

(Alerstam et al., 2019). Sense of smell is the primary sensory organ in rodents. They 

depend on their sense of smell to gather information and carry out survival-critical 

tasks including navigation, foraging, spotting possible mates, sensing predators, etc 

(Wilson, 2008; Wilson & Mainen, 2006).  

1.1. PERCEPTUAL DECISION MAKING 

The process of decision-making involves assessing different physical, emotional, and 

social parameters that could influence choice selection. Apt behavioral responses 

emanate from the formation of a stimulus percept in the decision-making process 

which helps the organism to be cognizant of its immediate surroundings. Another 

factor that comes into play while dealing with sensory information from real-life 

situations is its noisy and dynamic nature. Over this are the factors of internal and 

external states that might affect the course of action taken. Environmental biases and 

the factor of the flexibility of the cognitive processes add another layer of complexity 

to that. A coherent functioning between the sensory system and the internal 

reinforcement has been shown to accelerate learning and hence improves decision-

making abilities (Milman et al., 2019). For sensory stimuli such as that of vision, it is 

well established that the decision-making process is influenced by the temporal 

integration of sensory inputs since it has a role in the formation of stimulus percept 

formation (Dick et al., 2001; Moher & Song, 2014). However, we can’t say the same 

for a sensory modality that is chemically derived. For example, the ability of animals 

to identify and classify olfactory stimuli in their natural habitat is equally important to 

make accurate decisions. Hence the information on how odor signals are perceived 

and processed in the olfactory bulb and also in the higher cortical areas is necessary 

to comment on the dynamics of the decision-making process in the olfactory context. 



8  

 

1.2. RODENT OLFACTORY SYSTEM 

 
Olfactory information processing begins in the epithelium of the nasal cavity with the 

odorant molecules binding to their respective olfactory receptors (ORs)(Buck et al., 

n.d.; Schaefer & Margrie, 2007) on the surface of the olfactory sensory neuronal cilia 

(OSNs), each expressing only one olfactory receptor, out of the 1300 ORs known for 

mouse olfactory system, except for a very few OSN which can express more than one 

receptor type (Buck et al., n.d., Tan et al., 2015). The epithelium also includes the 

sustentacular and the basal cells (Graziadei & Graziadei, 1979; Xie et al., 2013). The 

binding of the odorant molecule with the receptor sends out information along the OSN 

projections to the Olfactory bulb (OB).  

 

 

Figure 1: Schematic diagram of the layered structure of the olfactory bulb 

(Nagayama et al., 2014) 

 

OB, a part of the forebrain is a laminar structure (Figure 1) with a diverse cell 

population, starting from the outside to the innermost layer: olfactory nerve layer 

(ONL), glomerular layer (GL), external plexiform layer (EPL), mitral cell layer (MCL), 

internal plexiform layer (IPL) and the granule cell layer (GCL) (Macrides & Schneider, 

1982; Mori et al., 2009; Nagayama et al., 2014; Shepherd et al., 2007) Projections 
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from the OSNs form spherical neuropil-like structures called glomeruli (in the GL). 

Notably, for any given glomerulus, all the OSNs that terminate into that particular 

glomerulus, express the same ORs (Mombaerts et al., 1996; Mori & Sakano, 2011; 

Soucy et al., 2009). These ORs can recognize multiple odorant molecules and vice 

versa i.e. multiple odorant molecules can be recognized by a single OR. Hence, 

different odorants are perceived by a combination of ORs (Malnic et al., 2000). 

1.3. STIMULUS PROCESSING IN THE OLFACTORY BULB 
  

OB is the site of primary olfactory sensory information processing. Information from 

the bulb is transmitted to the olfactory cortex by projection neurons from the MCL and 

the EPL. Their primary dendrites synapse in the glomeruli with the OSNs. However, 

before reaching the higher brain centers, odor information is processed within the bulb 

(Gallarda & Lledo, 2012; Wilson, 2008). This involves signal transduction in the GL, 

with the help of the juxtaglomerular cells (JGCs), chiefly interneurons such as 

superficial short-axon cells (sSACs), periglomerular cells (PGCs) and a subpopulation 

of external tufted cells (ETCs). Hence, different cell types of the OB communicate with 

each other across different layers with the help of projection neurons forming 

dendrodendritic synapses. The sSACs and the PGCs decrease the activity of the 

projection neurons owing to their inhibitory nature (Burton, 2017; Burton & Urban, 

2014). To have a precise percept formation and an efficient decorrelation of 

overlapping patterns of sensory stimuli in the glomerular layer, a proper balance needs 

to exist between the excitatory and inhibitory activity in the OB (Barnes et al., 2008; 

Gschwend et al., 2015). Also, the factor of combinatorial coding of odor information in 

the OB makes the olfactory system one of a kind (Malnic et al., 2000). Additionally, for 

the olfactory context, it has been shown recently that the decision-making process is 

influenced by the complexity of the input stimuli (Bhattacharjee et al., 2019).  

 

1.4. DECISION REVERSAL IN GO/NO-GO TASK 
 

The Go/No-Go task is a simple behavioral paradigm that requires the participant to do 

exactly what it says: respond to the “Go” signal and not respond to the “No-Go” signal 

(Abraham et al., 2004). The nature of the input signal and response elicited varies 

depending on the context of the experiment and the modality involved. This is a very 
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handy tool to study the decision mechanism and in the olfactory context, multiple 

variants of this concept have been used (Loos et al., 2010). For example, it has been 

seen when a Go cue is followed by a Stop signal, with a varied delay interval in 

between both cues, behavioral outputs tend to terminate and this phenomenon is 

called the stop-signal task (Mayse et al., 2014, 2015). A similar yet peculiar behavior 

is observed in the Go/No-Go paradigm used in our lab: the go cue and no-go cue are 

provided to the participant (here mouse head-restrained to the setup) in a pseudo-

randomized manner. It has been repeatedly observed that there is a distinct deliberate 

cessation of the motor response for the non-rewarded stimulus (the no-go cue).  And 

this stopping response always occurs after the initiation of the response. The task 

demands water restrained animals to respond to the go-cue by licking onto a water 

delivery port placed near their mouth; also the site from where they receive water as 

the reward. When animals are trained on a Go/No-go behavioral paradigm for an odor 

discrimination task, they begin with licking in response to both the rewarded and the 

non-rewarded stimulus (go as well as no-go cue). Over the training sessions, they start 

associating reward availability with stimulus i.e. for rewarded odors and refrain to lick 

for non-rewarded odors. As training progresses, the performance accuracy reaches 

upto 80%. Intriguing observation is that the learnt animals that are performing with 

higher accuracy exhibits a tendency to start licking for the unrewarded trial initially 

followed by stopping of response after few ms of odor presentation. These lick 

responses often begin with stimulus commencement, or a few milliseconds after odor 

delivery, and are then suppressed later in the stimulus duration. These non-rewarded 

trials are considered as Failed to No-Go trials. These trials also constituted error trials 

in which animals held on the tube for longer due to motivation issue or technical 

glitches. Thus, after excluding error trials all failed to No-Go trials were considered for 

analysis of lick behaviour and called as Reversal/Revision trials. 
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Figure 2: Lick probability plot for a single animal (blue- S+ trial and orange- S- trial) 

 

Figure 2 shows the average lick probability of a single animal having already learnt 

the paradigm hence performing the task with an accuracy well above 80%. The plot 

shows the lick patterns for both the rewarded as well as the non-rewarded stimuli. It 

can be noted that there is a distinct peak on the non-rewarded stimulus at the point of 

deflection of both the curves. This feature was noticed for almost all animals across 

different experimental settings. This represents a behaviour at the population level for 

the no-go cue by animals that have already learnt the task. We hypothesised that 

these short licking behaviour as a response to the unrewarded stimuli might be 

emanating from incomplete stimulus percept formation i.e. a primitive decision is made 

before the complete processing and integration of the incoming stimulus, which later 

gets revoked upon a full percept formation, in the later phases of stimulus duration. 

 

In the current work, we aimed at characterising this peculiar behaviour of the non-

rewarded trials and establish these responses as a quantitative behavioural readout. 

We also looked at the dynamics of this behaviour in the context of altering stimulus 

percept formation in an olfactory detection and discrimination task. To start with, we 

quantified these and developed a robust method to extract such revision trials with 

high temporal resolution. We establish further sub-parameters to look at the factors 

which can be used to characterise the properties of these trials under different 
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experimental conditions involving wild type animals (C57BL6/J) and mouse model with 

perceptual deficits (mouse model of stress). Further we adopted different experimental 

strategies to look at how these properties change based on the presence or absence 

of odor as a stimulus and how complexity of the task plays a role in framing the 

features of these decision-reversal trials.  
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2. MATERIALS & METHODS 

 
2.1. ANIMALS USED 

Mice of the C57BL/6J (Jackson Lab) wild type, ranging in age from 8 to 10 weeks, 

were used in all behavioural studies. Metal head-posts were implanted using a 

stereotaxic system, followed by a two-day recovery period before behavioural 

experiments. Animals were housed in individually ventilated cages (IVCs) on a 12 

hours light-dark cycle with 50-60% relative humidity and 25-27 C temperature, and ad 

libitum food and water while the experiments were not being conducted. Animals were 

water restricted for 12–14 hours a day, five–six days a week, during behavioural 

experiments. All experimental procedures were performed in accordance with the 

guidelines of the Institutional Animal Ethics Committee, IISER Pune, and the 

Committee for the Purpose of Control and Supervision of Experiments on Animals, 

Government of India. 

A total of 20 wild-type mice were used for the experiment, 10 in each group of 

experiments. Results does not include animals that couldn’t finish all the tasks or with 

failed head post implantations.  

 

2.2. GO/NO GO BEHAVIOR PARADIGM 

The behaviour experiments were performed by training mice on custom-built 

Olfactometers, using the Go/No-go operant conditioning behaviour paradigm. Training 

was preceded by a pre-training phase which helps the animal to get acquainted with 

the setup. Pre-training helps the animal to get accustomed to the setup gradually learn 

lick criteria to correct hit trials (rewarded trials). Initial phases of pre-training are 

designed to make animals lick on lick port for obtaining water as reward, followed by 

subsequent phases wherein air puff/neutral stimulus (mineral oil) is introduced. 

Animals are required to lick during stimulus presentation time to secure 3-5µL of water 

per trial as reward. Figure 3 shows an illustration of the trial structure. Pre-training 

phases constitute only rewarded trials. This criterion is made progressively stringent 

so as to match the actual training criteria, over successive trials.  
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(a) 

 

(b) 

Figure 3: (a)A representative diagram of a standard trial. It starts with a short tone of 

200ms followed by a delay time of 1 second. Odor is then delivered for a 2 second 

duration which is followed by the response window. At the end of odor-stimulus 

duration, water is delivered as the reward for a rewarded trial (S+ trial); (b) 

Schematic illustration of the head-restrained setup for behavioural experiments 

(Abraham et al., 2014) 

During the training phase, the animal gets reward only for one out of the two odour 

saturated air puffs. The air puffs were provided by an aquarium pump at a steady flow 

rate of 400mL/min. The training/conditioning phase involves the mouse to discriminate 

between the rewarded (S+) and the non-rewarded (S-) stimuli and respond 

accordingly to obtain the reward. The animal is placed inside of a cylindrical tunnel, at 

the mouth of which the animal’s head is fixed using a screw that attaches the head 

post on the animal to the anterior part of the tunnel. The nozzle of the odour port is 
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placed right under the left nostril of the mouse at an approximate distance of 3mm. 

The lick port is placed under the mouth of the animal at roughly the same distance. 

The base of the tunnel has a wire mesh which acts as a conductive interface. Every 

time, the animal licks the metal tip of the lick port, it acts as a key completing an electric 

circuit, which feeds the information back to the computer at a high temporal resolution. 

Every trial begins with a brief 1s long preloading time followed by the onset of odour 

delivery which lasts for a total of 2s, and also serves as the response window at the 

end of which water is rewarded if the conditions are met. Rewarded (S+) and non-

rewarded (S-) trials, 10 of each sort, are distributed in blocks of 20 trials in a pseudo-

randomized way. This is done so that not more than two consecutive trials of S+ or S- 

are presented together in each block. The stimulus duration of 2 seconds is divided 

into 4 bins of 500ms each. For the S+ trial to be deemed as correct, animals have to 

lick at least once, in minimum 3 out of the 4 bins (or a minimum of 240ms as the lick 

duration). For S- trial to be correct, animal has to refrain from licking or it must not lick 

for more than 1 out of the 4 bins (or a maximum of 80ms of lick duration). There is no 

negative reinforcement or punishment of any kind involved for the wrong trials. There 

is an 8-9 seconds long window during which the animal obtains the reward (for correct 

S+ trials), before which the next trial is initiated. Additionally, if the animal licks during 

the preloading time (i.e. before the odour delivery), double the duration of lick is 

required during stimulus presentation to obtain reward in a S+ trial. 

 

2.3. HEAD POST IMPLANTATION 

The GO/No Go behaviour experiments were performed on the head-fixed setup, 

where the animals were restrained using a stainless steel head post. The head post 

is implanted on to the cranium of the animals. Animals were intraperitoneally 

administered a mixture of Ketamine and Xylazine (in the ratio of 36:15) as 

anaesthesia; the dosage being equated according to their body weights as 2µL per 

gram of body weight. Surgical procedures were performed once animals were deeply 

anaesthetized and unconscious i.e., absence of reflex upon toe pinching/ no whisker 

movement. A small part of their tongue was retracted out of their mouth, so that there 

is no hazards of choking. Animals were placed on the stereotaxic setup (with labelled 

ear & nose bar) to avoid head movement. Clinically prescribed eye drops were used 

to keep them hydrated and prevent corneal drying during the head post implantation. 
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A solution of artificial cerebro-spinal fluid (ACSF) was used during the cleaning and 

the moistening of the exposed tissues. 

Lidocaine was applied on the head of the animal, below the eye level and sterilised 

surgical tools were used to make a small circular opening in the skin on the head about 

1cm in diameter. The exposed transparent sheath of connective tissues (Periostuem) 

was cleared off. A few drops of etching cream (Ivoclar Vivadant EcoEtch) was put on 

the dry cranium to partially corrode the cranium surface creating a scratchy surface. 

Next a dental primer (Ivolclar Vivadant Te-Econom Bond) was applied which acts as 

the intermediate agent. UV treatment was used to dry it. A thin layer of white dental 

cement (Ivoclar Vivodant Tetric N-Ceram) was spread and a surface equipped with a 

grip was created for the head post to have friction while being placed on it. It was UV 

treated from a close proximity so that cross-linking instantly hardens it. Another thin 

film of white cement was applied at the base and sides of the stainless steel head post 

and was fused to the already hardened cement layer at the base, following by 

adequate UV treatment. Dental acrylic cement (DPI RR Cold cure) was then used to 

seal all the exposed parts of the cranium fusing and hardening with the skin in a couple 

of minutes, marking the cessation of the head post implantation. The animal was then 

monitored till the effect of anesthesia was gone. 

 

2.4. DATA ACQUISITION AND FILTERING 

The data produced by the behavioural experiments are acquired and stored in 

separate csv files with the help of custom made C++ files. Every trial is roughly 13 

seconds long; blocks of 20 trials (that have 10 of each kind: S+ and S-) are created 

and the percentage accuracy is calculated block wise to determine how efficiently the 

animal has learnt to discriminate between the rewarded and the non-rewarded odour 

in the experimental task. 

This data includes 3 kinds of files: 

Block-data: It stores data about the time taken for every block, the block number, 

number of trials performed in every block, the session number, the number of trials 

that were performed correctly vs incorrectly for S+ as well as S- stimuli per block, the 

accuracy of the performance in percentage and the total block-wise accuracy attained 
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(averaged over both the S+ and S- trials). This data is segregated for every session 

that the animal was trained. 

 

 

Figure 4. A snapshot from the data acquired and recorded in the block results file. 

The red box represents an example of a complete block 

Trial-data: It stores data about the timing of every individual trial, the trial number, the 

type of trial (rewarded or non-rewarded), whether the particular trial was performed 

correctly or incorrectly and whether reward was delivered at the end of the odour 

presentation. The odour is given for a total of 2 seconds every trial. This period of 

2000ms is divided into 1000 equal bins and the state of circuit being complete or not 

i.e. if the animal was licking or not, is recorded for every bin as the ‘lick state’ (1 for a 

lick and 0 for a no-lick). This data is also segregated session wise. 
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Figure 5. A snapshot from data acquired and recorded in the form of trial data. The 

red box represents an example of a complete block corresponding to the same block 

from figure 4 

Master-file: This is the largest file that stores data in an extensive manner. It records 

every minute alteration, such as changes in lick detection state, the licking duration, 

the breath count, liquid and odour, the bin number, etc. time stamped with a temporal 

precision as high as 30 microseconds. 

 Custom Python programming scripts were created in order to extract the pertinent 

trials from these data sets. Only trials that were a part of complete blocks were taken 

into account for analysis (block with 20 trials). These blocks were again filtered based 

on average percentage accuracy and blocs with 80% or above accuracy were 

considered. In few trials, animals tend to hold on to the lick port or parts of their snout 

come in contact with the lick port. These situations could give some false signals for 

the lick detection states. In order to avoid taking in any such kind of trials for the 

analysis of potential decision reversals, a criterion for maximum single-lick duration 

was set. For every trial, each lick’s duration was taken into account and all such trials 

were excluded in which a single lick was longer than 80ms in duration. This criterion 

of 80ms was determined based on literature references and iterative calculations in 

which all individual lick durations were averaged over all rewarded and non-rewarded 

trials separately to calculate a representative value for a single lick duration (mean = 

42ms, SD= 12). 

Further, a representative distribution of licks in the stimulus window of 2 seconds, 

animal-wise, was produced by cumulating the lick states for all the bins (2ms each) of 

the filtered trials across all the animals in the set and normalising them. The 

normalisation step is done in order to avoid the representative lick plot to be a 

numerical representation of the number of reversal trials (RTs) per animal. The 

average of the lick states was then calculated for all the animals. 

 

2.5. BEHAVIOURAL READOUTS 
 

Learning curve: Animals were trained on an odor discrimination task to differentiate 
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between 2 odors. They had to perform trials that were presented in groups of 20 called 

blocks that had an equal number of S+ and S- trials and the average accuracy was 

calculated block-wise. Learning curve gives the progressive performance of animals 

across trials. (Fig 6a) 

Lick pattern: Animals tend to lick for the S+ and refrain from licking for the S- trial 

respectively and this gets refined over time. When we take the average of about 100-

200 trials of S+ and S- separately and plot them across the odor duration time, we get 

the representative probability of the lick states bin wise (1 bin= 2ms, total of 1000 

values for 2s) (Fig 6b) 

Detection and Discrimination time: When we take the bin wise values of a large 

number of trials, and then compare the lick states of the S+ trials against those of the 

first few milliseconds (25bins/50ms), we can do statistical tests to find out the point in 

time when the lick probability deflected significantly for the first time from the baseline 

value. That gives the detection time of the animal. When we carry out similar tests 

between the S+ and the S- trials (having considered an equal number of each), the 

point in time where they significantly divert from each other that point is known as the 

discrimination time. Figure 6c shows the p-curves obtained from t-tests performed on 

the lick states across bins. 

 

 

 
Figure 6: (a)Learning Curve for monomolecular odor discrimination task average of 7 

animals, whiskers depict SEM; (b) Lick pattern average: average of lick probability 
states of 1 animal with accuracy >=80%, (c) p-curve from one-tailed t-test for the 

same set of animals 
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2.6. DATA ANALYSES 

The first 50ms of lick state was taken as baseline licking and a bin wise one-tailed 

unpaired Student’s t-test was performed between baseline licking and every 

successive bin to determine the boundaries of the peak, if any. This was all performed 

in python using available packages: Numpy, Matlpotlib, Pandas and Scipy. The 

fraction of reversal trials was calculated out of the total number of S- trials that belong 

to blocks with at the least 80% average accuracy. This window obtained from the p-

curve is used to see how many trials from among the reversal trials existed such that 

their individual licks primarily lied within this window and this attribute was called 

reversal trials in the window (RTWs). Analysis for the reversal trials in the freely 

moving setup is done similarly keeping all the parameters just the same.  

Graphpad Prism software was used to perform all statistical analyses. This also 

includes the plotting of figures showing bar graphs, pie charts and smoothed average 

lick states for reversal trials. For comparison of curves obtained from averaged lick 

states of reversal trials, KS (Kolmogorov-Smirnov) test was used. K-50 Nearest 

neighbour smoothing was applied to the curves just for a better visual representation, 

while the actual t-test and KS test was done on the raw data. This smoothing works 

by averaging/differentiating data points in the neighbourhood of the said size. K=50 

was found to be a desirable size since that represents only 5% of the total number of 

data points (50 out of 1000) and is still large enough to yield a smoother curve. 

Analysis of the breathing data was primarily done using custom made Python scripts. 

The breath sensors record data with a distinctly high temporal resolution based on a 

thermocouple mechanism. This data is saved as binary information which can be used 

to determine inhalation onset, sniff frequency, etc. This information was compiled over 

trials in Python and then statistically analysed using Graph Pad prism. 

 

 

 

 



21  

3. RESULTS 

 

3.1. PRELIMINARY RESULTS 
 

It has been shown that rodents learn to distinguish between odor stimuli based on 

reward association in an olfactory Go/No-go paradigm within first 150-200 trials. The 

discrimination time is the time during odour presentation when the lick probabilities of 

the rewarded and unrewarded stimuli markedly diverge (Figure 7). The lick pattern of 

the non-rewarded stimulus spikes up a bit, around the discrimination time within the 

odor duration (total duration of 2 seconds) and fades away after a few milliseconds 

into odor presentation. It has been observed repeatedly across experimental designs 

that there exists a definitive peculiarity in the average lick pattern of the animals for 

the non-rewarded trials. As mentioned before, this peculiar behaviour persisted across 

different odor discrimination tasks in an olfactory Go/No-go setting.  

 

Figure 7: Avg. lick probability states showing the peculiar bulge on the lick pattern for 

the non-rewarded trial (orange) 

In order to quantify this licking behaviour of mice for the (non-rewarded) S- trial, we 

decided upon a few filtering criteria to take only the relevant trials for the analysis, 

henceforth called reversal trials (RTs). In order to get a gross representation of just 

the RTs, we accumulated them bin-wise to obtain the cumulative lick plot of every 

animal as shown in Fig. 8. 
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(a) 

 

(b) 

 

 

(c) 

Figure 8: Steps involved in data processing and curve generation;(a) shows the 

cumulation step with bin wise simple addition of lick states for 1 animal; (b) relation 

between the number of RTs and the curve characteristics (4RTs vs 16RTs vs 64 

RTs) for 3 different animals after execution of all filtering criteria; 
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(c) Normalisation step done by dividing all values by the maxima animal wise 

It can be seen that the features of the plot for example smoothness and peak value of 

the cumulated plots is dependent on the number of the RTs, hence before averaging 

these plots for all animals in the same experimental group, we normalized them based 

on the total number of these reversal trials, in order to remove their influence on the 

characteristic of the curve generated. We roughly got 5-20% of such trials over 

different experiments performed. This could lie in the range of about 20-60 RTs in 

general per animal totaling up to about 200 trials in an experimental set. Following this 

they were averaged, to yield a representative plot for every experimental group. It was 

observed that there is a distinctive peak in the first half of the stimulus window. This 

data could fit well with a log-normal distribution (Fig. 9a). 
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Figure 9: (a) Average of reversal trials fitted with a lognormal distribution on 2 

different data sets- black line represents fitted curve, green line represents raw data, 

eqn.: Y=(A/X)*exp(-0.5*(ln(X/GeoMean)/ln(GeoSD))^2); (b) Compilation of data 

showing similar patterns in RTs from experiments done previously in lab 

We performed similar data extraction and analysis with data produced in lab in 

previous experiments and found the peak with similar curve characteristics (Fig. 9b). 

Hence, we came to the conclusion, that this peculiar behaviour that only accompanies 

the non-rewarded stimuli is a recurring behaviour that exists in Go/No-go olfactory 

discrimination tasks across different experimental conditions. 

3.2. QUANTIFICATION OF REVERSAL TRIALS 

 

In order to establish this parameter as a working readout, we decided to alter various 

attributes of this behavioural phenomena (mostly the number and time duration) by 

making relevant changes in the paradigm. Hence, two sets of naive animals were 

taken and odor discrimination tasks were performed in the sequence as shown in 

Figure 10. 

 

Figure 10: Schematic diagram of experimental paradigm showing the different group 

of animals (Grp1 and Grp2) included and the chronology of experiments carried out 

 

Animals were trained for 900-1200 trials over a span of 10-12 days. They reached 

performance criterion in first 150-200 trials. By performance criterion it is referred to 

the average accuracy of the animals’ performance in a given block of 20 trials. The 

average of their learning curves were plotted to confirm the same. Similar criteria were 
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used to filter the data and trials were acquired to determine the reversal trials. 

 

Figure 11: (a)Learning curves of animals performing AA/EB and AA/- in different 

orders shown by legend; (b) Avg. RT plot for set of animals performing AA/- followed 

by AA/EB (Grp1); (c) Avg. RT plot for set of animals performing AA/EB followed by 

AA/- (Grp2) [for (b) and (c), x-axis represents time in ms and y-axis represents avg. 

lick state of RTs] 
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Figure 11(a) shows the learning accuracies for a monomolecular odor discrimination 

task (odor pairs Iso-amyl Acetate (AA) and Ethyl Butyrate (EB) or mineral oil denoted 

by “-/blank interchangeably”). The average of the lick states for the RTs is also plotted 

along with. As can be seen, the same pattern is observed with the peak residing in the 

first half of the response time (2 seconds). Moreover, it appears that the decay of the 

peak for the case of AA/- where there was no odor for the non-rewarded trial there is 

a high level of overall noise. The peak in this case does not fall down to a similar 

baseline value.  

The normalisation step involved is used to remove the influence of the number of RTs 

and preserve just the basic characteristics of the plot. So, for the analysis involving 

the quantification of the RTs, we compared them across different experimental frames. 

Fig. 12 shows the number of RTs for both the experimental groups across different 

odor discrimination tasks. There was no significant difference found across all the 

conditions. 

 

Figure 12: Fraction of RTs out of the total number of trials post data filtering step for 

2 different experimental groups (Grp1 and Grp2) differing in their order of odor pairs;  

Teal green represents detection task and Pink represents discrimination task  

Hence, we conclude that the RTs resulted in a similar curve with peak attributes similar 

to the ones obtained from previous experiments. Also relatively, the fraction of RTs 

out of the total number of trials considered for the analysis (>80% average accuracy 

trials) is consistent across different experimental groups.  
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3.3. DETERMINING THE REVERSAL WINDOW 

 

In order to characterize the peak temporally, the same data of 1000 values (2000ms, 

each bin is 2ms in duration) was used to create a p-curve. *one-tailed t-test was carried 

out between the average of the first few bins considered to be the baseline (25 bins = 

50ms) across all the subsequent bins in the total response window of 2 seconds. The 

window of the peak was determined by the point in time where the p<0.05 and p>0.05 

respectively for the first time, giving a range for the window size on the temporal scale. 

This had to be a major inflexion point to be considered as the window duration.  

 

   Figure 13: (a)p-curve for window determination of Grp1; (b)p-curve for window 

determination of Grp2 [x-axis has time in ms and y-axis has p-values in log-scale, 

horizontal line is for p=0.05] 

 

Fig. 13 shows the p-curves obtained from the analysis of the averaged lick states for 

the RTs. The window gives a probable range within which the majority of these 
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“decision reversals” take place. In order to quantify the proportion of the reversal trials 

that are responsible for this spike, we re-analysed the filtered trials and calculated the 

number of such trials that lay within the window range obtained for a particular 

experimental group. For all arbitrary window values, we took a default value of 1000ms 

as the window termination. This resulted in a subset of RTs that are confined to the 

‘reversal window’ and hence were called reversal trials in the window (RTWs).  

 

Fig. 14 shows the fraction of these trials out of the total reversal trials i.e. RTWs/RTs. 

They were not found to be significantly different across groups or experimental sets. 

Additionally, we also looked at the correlation between the number of RTs and the 

number of RTWs in order to determine the relevance of the window in the context of 

the experiment. The grey dashed line is for the line of identity which refers to maximum 

correlation. The purple and the green lines represent regression lines for the individual 

experiment groups. It was observed that, the value of Pearson’s r for all the sets lied 

within the range of 0.833 and 0.970. A high correlation signifies that the weightage of 

the RTs arises from these RTWs.  

 

 

 

(a) 
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(b) 

Figure 14: (a)Bar graphs showing reversal trials within the window (RTWs) for Grp1 

and Grp2, whiskers: SEM; (b) Correlation plots with Pearson’s r factor and 

regression lines for Grp1 and Grp2, circles represent single animals, grey dashed 

line represents ideal correlation 

 

In the framework of a binary choice, when there is a reward associated with only one 

of the stimuli, animals tend to commit errors less frequently after having learned the 

task. Here, it is observed that even after learning, the animals tend to be fickle with 

their decisions. For example, in the case of the S- trial, they refrain from any licking 

ideally. However, in these so called RTs, they suddenly start licking and then quickly 

revert back to their non-licking decision. Hence, they are referred to as episodes of 

decision reversals and hence the name of reversal trials (RTs). 

In this segment, we devised a method to determine a range of time in the response 

window for the reversal trials. This would be describing the temporal attributes of the 

RTs. We also defined a new parameter called the reversal trials in the window (RTWs) 

in order to emphasise on the subset of these reversal trials that are confined in a small 

duration of the response window, approx. 400-600ms out of 2seconds i.e. 20-30%, 

called as the reversal window. Roughly 60% of the reversal trials lie in this small 

segment (some cases as high as 85-90%). This point was reinforced with the help of 
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a correlation plot between the RTs and the RTWs. A high Pearson’s r value confirms 

the significance of the reversal window across different experiments conducted. 

3.4. EFFECT OF TRAINING SEQUENCE ON REVERSAL TRIALS 

 

Fig 15 shows the average lick plots of the reversal trials (dashed lines) and the same 

plots with a smoothing factor of 50 (50 nearest neighbours i.e. 5% of data points). This 

is just for purpose of representation. The statistics, t-tests and calculations of other 

characteristics are determined on the original data. The plot also includes the average 

of discrimination times (discrimination time or DT is calculated by taking S+ and S 

trials 150 each, and then running a one-tailed t-test across rewarded and the non-

rewarded trials bin wise hence getting 1000 values. The point where they significantly 

differ i.e. the last p-value <0.05 determines the discrimination time for that animal). 

It was found that the peak was much more pronounced for the AA/EB case compared 

to AA/- which was contrary to our original hypothesis. It had a proper peak and a lower 

basal noise for post-peak decay. The rubric behind designing such a paradigm was to 

create a relatively easier task for the animals (AA/-) with only one stimulus, hence the 

task was similar to a detection task. This was then followed by a standard simple odor 

discrimination task (AA/EB), which was thought to be the harder task for the animal. 

Although the number of RTs is not differing significantly, the post decay noise and a 

relatively flat peak in the former case suggests that animals were more confused while 

performing the discrimination task involving a single odor for the stimuli. 

 

(a) 
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(b) 

Figure 15: Reversal plots for Grp1 (a) and Grp2 (b) with dashed lines representing 
mean of the lick states and bold lines represent K=50 smoothed curve. Reversal 

window is shaded with vertical coloured line marking the Discrimination time [Pink 
represent AA/- and blue represents AA/EB, plots follow the chronology of 

experiments in each group] 

 

When order of the experiments was reversed i.e. a different set of animals were 

trained on AA/EB first followed by AA/-, a similar pattern was observed. It was 

observed, just like before, a sharper and more refined peak was observed for the case 

of AA/EB and for AA/- the peak had much more post-decay noise as can be seen in 

Fig. 15(b).  

Fig 16 shows the effect of chronology of olfactory training on the resultant decision 

reversal plots. These are the same plots as shown earlier, smoothed with 50 nearest 

neighbours and overlapped for each experimental group. As, can be clearly seen, 

AA/EB shows up somewhat similar in both the cases i.e. whether it was tried on naive 

set of animals (b) or on a set of animals that have already been trained to an odor 

discrimination task (a). Both the cases, yield a curve with a sharp peak and a slow 

decay. However, in the case of reversal trials for AA/-, when it was performed on a set 

of naive animals, the peak was diluted and reduced. Also, the peak decay was very 

slow and noisy, resulting in a wider peak. In the experimental group where it was the 

second odor pair (b), it can be seen, that the overall peak value is much higher, 

however the decay is almost obtuse. Post peak noise is very prominent despite the 

fact that animals are well-accustomed with the paradigm as they have already finished 

one odor-discrimination experiment.  
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(a)                                                 (b) 
 

Figure 16: Overlapped plots of K=50 smoothed curves derived from RTs of 
individual groups- (a) for Grp1 and (b) for Grp2 

 

We designed these paradigm, so as to provide the animal with a contextually easy 

experiment in one group (AA/- followed by AA/EB) and a harder experiment in the 

other (AA/EB followed by AA/-). We hypothesised, that reducing the complexity of the 

task might make animals attain lower episodes of confusion/dilemma once they have 

learnt the experiment. If that would have been the case, we would have observed a 

sharper peak and a finer post-peak decay. However, dampening of one of the odor, 

irrespective of the associated reward contingencies in a discrimination task resulted 

in more obscurity and confusion. Hence, reversal trials for AA/- task constitutes 

dispersed lick responses throughout the stimulus duration instead of the confinement 

observed for the case of AA/EB. A possible explanation to this anomaly is that, not 

having an odor for the stimulus actually challenges the detection and discrimination 

abilities of the animals. For our analysis we have focused on the non-rewarded trials 

only, and keeping the diluent as the S- stimulus could be leading to such a result.  
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3.5. SIGNIFICANCE OF PRESENCE OF ODOR AS NON-
REWARDED STIMULUS 

 

In order to confirm our hypothesis, we further designed an odor pair discrimination 

task with the animals that have already performed AA/- and AA/EB in the order to train 

on -/EB, i.e. just the mineral oil (diluent used for odors) for the S+ stimulus and EB 

(1% odor diluted in mineral oil) for the S- stimulus. Fig 17 shows the learning curve 

with respect to the previous learning curves. The order of training was: AA/-, AA/EB, 

-/EB. It also shows the average of the reversal trial lick states repeating the similar 

pattern as seen earlier. 

 

     

(a)                                                     (b) 

Figure 17:(a) Updated learning curve with Grp1 animals performing -/EB after AA/- 

and AA/EB; (b) Avg. lick state of the RTs for Grp1 animals in case of -/EB [x-axis has 

time in ms and y-axis has avg. lick state] 

 

Fig. 18 shows the p-curve obtained after performing the t-test, yielding the window 

range for the RTWs. The number of RTs is found to lie in the same range as before 

and so is the case for the RTWs. Hence, this does not make an exception to the 

general pattern of reversal trials and the reversal window.   
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(a)                                                             (b) 

      

(c) 

Figure 18:(a) P-curve of the RTs for -/EB for Grp1 animals [x-axis has time in ms and 

y-axis has p-values in log-scale, horizontal line is for p=0.05]; (b) Avg. lick plot with 

K=50 smoothed curve, DT and reversal window, (c) Updated fraction of RTs and 

RTWs as bar graphs with -/EB included for Grp1 animals 

 

However, as is seen in Fig 19, when we observe the smoothed out curve for the 

reversal trials in comparison to the previous experiments, it can be clearly seen that 

the post-peak decay for -/EB behaves similar to that AA/EB. Hence justifying the fact 
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that a noisy pattern is observed only in those cases when stimulus intensity dampens 

for the non-rewarded trial (S- having just the diluent).  

 

    
 

Figure 19: Updated smoothed RT plots for comparison between Grp1(left) and 

Grp2(right) with -/EB data included 

 

Another observation made during the analysis is that, in each group some of the 

animals were over motivated. This resulted in a lot of incorrect frequent-licking trials 

in the final set of reversal trials. In order to resolve this issue, we looked at the fraction 

of correct trials among the RTs and the final analysis involved only those animals that 

had a >50% correct rate for reversal trials. The animals marked with red dashed 

ellipses in Fig 20 were such animals that had a <50% of correct response rate and 

hence were not included in the final analysis. This also shows, that DT calculated for 

all these animals were comparable across groups across odor pairs. Hence, there 

was not inherent difference in the animals regarding the discriminability between odors 

(or in some cases between odor and diluent). 
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(a) 

 

 

(b) 

 

Figure 20:(a) Bar graphs depicting fraction of correct trials among the RTs; (b) Bar 

graphs comparing DTs across different odour pairs for both Grp1 and Grp2  

Thus, alleviating either of the stimulus in an odor discrimination task actually emerges 

as a more complex task for the animal. This was reverted by shifting the odor-less cue 
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to the S+ stimulus while bringing in an odor stimulus (EB) for the S- trial while still 

preserving the context as the animals were performed to do AA/EB before. Our 

analysis shows that animal exhibits similar lick responses when there is a prominent 

odor present as non-rewarded stimulus i.e. lick responses in -/EB was similar to that 

of AA/EB.  

 

3.6. EFFECT OF PSEUDO-RANDOMISATION ON OCCURRENCE 

OF REVISION TRIALS 

As mentioned earlier, the computer creates a pseudo-randomised list of trials for every 

block of 20 trials; it being pseudo-randomised such that there are no occurrences of 

a tuple of three S+ or S- trials. We wanted to see how occurrences of RTs is affected 

by the kind of trials (rewarded/non-rewarded) preceding the reversal trials. We started 

with a pair of two consecutive S- trials (“-,-“ where ‘-’ refers to a S- trial and ‘+’ refers 

to a S+ trial). First the probability of having an S- trial preceding to a randomly sampled 

S- trial was calculated based on a simulation prepared using custom-written python 

scripts. This basically gave the probability of getting a pair of S- trials (-,-) coming up 

entirely from the pseudo-randomisation of the computer code responsible for creating 

the blocks of trials. All the sampled S- trials were from blocks that had an average 

accuracy of >=80% so as to keep it in lines parallel to the criteria involved in the 

calculation of the RTs. This was then repeated in 3 different animals so as to confirm 

the result. Following this, all the reversal trials for every animal in the training set 

AA/EB (n=7) were used to calculate the probability of having an S- trial preceding to 

a RT (all reversal trials are S- in nature). In other words, this gives the probability of 

getting a reversal trial in the second position in an S- pair (-,-).  

           

(a)                                         (b) 
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Figure 21: S- probability bar graphs for (-,-) pair (a) and all possible tuples of 3 

(b)[green represents data from randomly sampled trials, dark blue represents data 

from RTs pooled over multiple animals of the same group] 

Fig 21 shows that there is a significant difference in the case of RTs. In a pair of (-,-) 

trials, the probability to get a RT is relatively lower. Further, we also looked at similar 

simulations and probability calculations in the case of tuples of 3 trials. Since, the 

conditions of pseudo-randomisations removes the possibilities of (+,+,+) and (-,-,-) 

trials, 6 other possible combinations are left, out of which only 3 have a S- trial at the 

last position: (+,+,-), (+,-,-) and (-,+,-). 

 

We looked at the relative probability of getting these tuples in a randomly sampled set 

of S- trials (tracing back to 2 trials this time) which is shown in Fig. 21(b). On taking 

the RTs and tracing back to 2 trials to find the probabilities of the same tuples, we 

observed, that the chances of getting an RT at the last position of a tuple in the form 

of (+,-,-) was relatively lower. This is in sync with results obtained earlier with respect 

to (-,-) pair. It is observed that whenever, if a random reversal trial were to be sampled, 

the probability that it would follow a consecutive pair of S- trials would be very low. 
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4. DISCUSSION 

 
An efficient and timely reversal of wrong decisions can lead to an enhanced accuracy 

ad positive reinforcement. According to research done on human subjects, changes 

done to an intial decision made better corrections to an error more often (Berg et. al., 

2016). A study by Berg and colleagues used behavioural data and visually guided 

perceptual decision-making tasks to develop a computational model that could explain 

decision mechanisms and correct bad decisions. Studies on rodents and humans 

suggested that the decision-making process involves a speed-accuracy tradeoff. 

Individuals' tendency to make decisions more quickly or hurriedly, which could 

compromise the decision's accuracy, is known as the speed-accuracy tradeoff (Wang 

et. al., 2002). This phenomenon may explain the impulsive decision-making process 

seen in numerous neuropsychiatric illnesses, which results in more wrong decisions. 

In a study by Carpenter and the group using human participants, it was found that 

accuracy was affected when subjects were asked to make decisions quickly. 

According to reports, quick responses fell short of accuracy (Reddi et. al., 2000) in 

most cases. Another study by Rinberg and colleagues focused on the speed-accuracy 

trade-off that occurs in rodent olfactory guided activities. In a two-alternative choice 

task, the duration of the stimulus was manually adjusted to examine the relationship 

between decision accuracy and stimulus duration. They created the paradigm with 

improved control over the complexity and duration of the stimulus. The findings 

suggested a direct relationship between stimulus duration and the accuracy of the 

decisions being made by the animal with increasing stimulus complexity, i.e., that 

complex odour mixtures required animals to sampl for longer periods of time than 

simple odours in order to make the correct decisions. Additionally, the likelihood that 

quick responses would be accurate was surprisingly low (Rinberg et. al., 2006, Chittka 

et. al., 2009). This suggests that there is a greater tendency for poor decisions when 

the situation calls for a speedy response. Perhaps the most intriguing question is, 

"What happens next?" Do bad choices get corrected? Does the adaptability of 

cognitive processes allow for changes after an action has been taken? Does the 

presence or absence of stimulus have an impact on these early reactions and 

reversals as well? 
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We attempted to investigate stopping/reversal behaviour observed specifically in the 

context of non-rewarded trial in an odor discrimination task. Mice were trained in a 

head restrained setup to distinguish between two different odors in a Go/No-go 

paradigm. They were water restrained and received water as reward for the rewarded 

trial when they fulfil a particular lick criteria which is pre-determined by the 

experimenter. Initially, animals lick for both the odors resulting in an average accuracy 

at chance level (~50%). As the training progresses, animals start to associate stimulus 

with the reward and learn to refrain from licking for the stimulus the non-rewarded trial. 

The animals get no feedback about their performance towards the S- trials since there 

is no negative reinforcement (for example some experiments indulge in providing a 

mild foot-shock for every wrong trial).  

 

Figure 22: Compilation of the majority kind of RTs, all correct S- trials, recorded 

during the data filtering process (x-axis has time in bins; 1bin=2ms and y-axis shows 

lick states as 1 or 0) 

However, we have seen, even after the animals have learnt and perform at a very 

high average accuracy, tend to show this peculiar behaviour of lick spikes (mostly 1-

2 licks) and these are filtered out at the end known as the reversal trials.   
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Fig 22 shows a collection of all such trials accumulated from a single animal in one of 

the data acquisition steps. It is clear that a major chunk of the final peak that is arrived 

at is due to these individual lick responses registered by the animals. To emphasise 

the point this particular pattern has been seen repeatedly. Fig 18 shows a summary 

of RTWs from different experiments done in the lab previously. Although the questions 

that being addressed were very different in each of these experiments, the presence 

of decision reversal trials, the pattern of confined decision reversals yielding in the 

window formation and the factor of RTWs still holds true.  

 

Figure 23: Compilation of RTW bar graphs across different experimental groups 

Similarly, if we pool in data from all these previous experiments and plot a correlation 

matrix between the RTs and the RTWs to get a generalisation of all the decision 

reversal windows and the number RTs and corresponding RTWs for individual 

animals, we get a correlation plot as shown in Fig 24. It shows a very high correlation 

with a Pearson’s r value of 0.95 and an R squared value of 0.90. This data is from 

over 20 different odor discrimination experiments involving decision reversal data from 

more than 140 animals with majority lying within the range of 10-30 trials. Although 

the data spreads out quite a bit as it goes past 60 RTs, the pattern of correlation still 

holds. 
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Figure 24: Correlation plot of all animals across different experimental groups pooled 

together to look at RTs at a population level  

Another recurring feature in these reversal plots was that it always represented a 

lognormal distribution, some of them fit with a squared value of 0.80 or above. A 

lognormal distribution, according to probability theory is one in which the data 

represents a continuous probability distribution of a random variable whose natural 

logarithm is naturally distributed. For example, if ‘X’ is log-normally distributed, then 

‘Y=ln(X)’ has a normal distribution. It is generally used in engineering and medicine to 

represent a distribution that is skewed to the right, has a smaller mean and a high 

variance. Interestingly, occurrence of log-normal distribution is not new in biological 

scenarios. In neuroscience itself, distribution of neuron firing rates across a given 

population is log-normal in nature and so is the distribution of synaptic weights. With 

intervention at the right time causing its adequate control, a highly communicable 

epidemic also shows properties of lognormal distributions in the hospitalised cases.  

 

For example, the amount of time spent by an individual on an online 
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advertisement/articles follows a lognormal distribution and so does the average length 

of a chess game as shown in Fig 25. 

 

Figure 25: Example of log-normal distribution (x-axis has length of moves before 

check-mate and y-axis has number of games recorded) 

 

It was also observed from the RT analysis from experiments done in the lab before is 

the consistent window range. Fig 26 shows the initial and final points of the reversal 

window obtained by doing the t-test on the average of the lick states for the RTs. The 

average values are 352ms and 861ms respectively, with a high variance for the 

window out value.  
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Figure 26: Depicts the duration of reversal window over all animal groups across 

different experiments (W_in and W_out are for window begin and window end) 

 

The ending of the window based solely on the p-curve could be inconclusive at times, 

which is quite intuitive since the post-peak decay period is highly prone to have noise 

and that could mess up with the p-curve derived value to represent the window ending. 

Hence, many a times, when the average of the RT licks was noisy enough to not yield 

a window range that was realistic in terms of the window ending, a default value of 

1000ms (1 second) was considered as that was a good approximation for the (avg. + 

2*SD) value. 

 

By performing various odor discrimination experiments, it was also observed that the 

absence of odor in the non-rewarded trial turned the task more complex i.e. animals 

found it more confusing to have to distinguish between an odor mixed with an 

apparently odor-less solvent (or odor-diluent) rather than discriminating between 2 

different odors altogether (respectively mixed in solvent). A possible explanation for 

this behaviour is that, since there is no odor present in the solution, there is a 

distinctive lowering in the attention, hence the occurrence of the errors/decision 

reversals are more spread out throughout the response window mimicking somewhat 

of a random distribution rather than a confined window formation.  

 

Another interesting point to note here is that, although the parameters of the curve 

remain mostly uniform, recent experiments performed in the lab have shown that the 

number of reversal trials are affected by the complexity of the task. Fig 22 shows how 

with increasing the complexity of the experiments progressively, the number of RTs 

tends to increase progressively which makes sense since, more complex the task in 

hand, higher would be the frequency of getting confused. This opens up further means 

for explaining the nature of these reversal trials. We can hence aim at modulating the 

nature of this behaviour by playing around with different parameters in a standard odor 

discrimination task, to begin with: complexity of the experiment. 

 

Thus, as a part of the thesis, an attempt was made to establish a robust behavioural 
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parameter towards non-rewarded trials and its attributes such as the average lick 

states, curve characteristics, window duration, and reversal trials in the window. It 

signifies the presence of an odor stimulus in the context of non-rewarded trials and 

how the pattern of RTs changes once the stimulus is devoid of odor. The general 

property of reversal trials is consistent across different experimental conditions 

however, different characteristics of this behavioural phenomena could be altered by 

modifying stimulus properties i.e. increase/decrease in stimulus complexity/duration. 

This study opens up avenues for further investigation in the domains of decision 

reversals in an olfactory discrimination context. Moreover, currently running 

experiments in lab are trying to look at how this behaviour is influenced by the 

introducing a delay in reward period, increasing the stimulus complexities further in 

wild type as well as in stress and disease models of mice. 
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