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 Abstract 

 Navigating  the  world  requires  an  animal  to  make  choices  in  a  dynamic  and  uncertain 

 world.  Therefore,  animals  can  benefit  by  adapting  their  behavior  to  past  experiences, 

 but  the  exact  nature  of  the  computations  performed  and  their  neural  implementations 

 are  currently  unclear.  Extensive  prior  knowledge  about  fruit  flies  (  D.  melanogaster  ) 

 provides  a  unique  opportunity  to  explore  the  mechanistic  basis  of  cognitive  factors 

 underlying  decision-making.  However,  to  disentangle  between  different  mechanisms, 

 we  require  a  large  number  of  choice  trajectories  from  single  flies.  We,  therefore, 

 scale-up  a  Y-maze  olfactory  choice  assay  to  run  16  flies  in  parallel  to  allow  us  to 

 build  and  test  better  models  using  behavioral  perturbation  methods  such  as  choice 

 engineering.  We  take  two  complementary  approaches  to  explore  various  learning 

 rules  that  the  fly  may  use  -  a  model-fitting  approach  and  a  novel  de-novo  learning 

 rule  synthesis  approach.  Firstly,  we  fit  increasingly  complex  reinforcement  learning 

 rules  to  explain  choice.  We  find  that  approximating  perseverance/habits  explains  and 

 predicts  individual  choice  outcomes.  Next,  we  develop  a  flexible  framework  using 

 small  neural  networks  to  infer  learning  rules  and  predict  choices.  We  find  that  small 

 neural  networks  with  less  than  <  5  neurons  trained  to  estimate  odor  values  can 

 accurately  predict  decisions  across  flies  better  than  the  best  reinforcement  learning 

 models.  We  analyze  the  functioning  of  these  networks  to  reveal  underlying  dynamics 

 that  reiterate  the  presence  of  perseverance  behavior.  We  successfully  reproduce 

 most  of  our  observations  across  different  behavioral  setups.  Our  results  suggest  that 

 habit-forming tendencies beyond naive reward-seeking may influence flies’ choices. 
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 Introduction 

 Navigating  the  world  often  requires  an  animal  to  choose  between  different  available 

 actions  or  stimuli,  such  as  foraging  between  different  patches  of  food  with  varying 

 levels  of  reward  (Kamil,  1985;  Shettleworth,  1985)  .  This  choice  is  further  complicated 

 because  rewards  are  not  always  certain,  and  the  environment  also  changes  over 

 time  (Anselme  &  Güntürkün,  2019;  Kilpatrick  et  al.,  2021)  .  In  such  situations,  animals 

 must  also  learn  to  adapt  to  changed  conditions  by  accumulating  information  from 

 their  past  experiences  to  guide  their  behavior  (Dickinson,  2012;  Dukas,  2008;  Krebs 

 &  Inman,  2015;  Mery,  2008)  .  The  nature  of  the  computation  that  animals  perform 

 based  on  their  reward  and  choice  history  is  a  field  of  active  study  across  humans, 

 non-human  primates,  and  rodents  (Gadziola  et  al.,  2020;  Lak  et  al.,  2020;  Rushworth 

 &  Behrens,  2008;  Schultz,  2016;  Sul  et  al.,  2010)  .  However,  due  to  the  scale  and 

 inherent  complexity  of  vertebrate  brains,  most  studies  can  only  suggest  functional 

 similarities  between  cognitive  computations  and  broad  neuronal  populations,  thus 

 creating  a  significant  divide  between  the  study  of  neuroscience  at  the  systems  level 

 and  the  study  of  cognitive  principles  (Premack,  2007)  .  In  contrast,  fruit  flies 

 (  Drosophila  melanogaster  )  have  an  extensive  array  of  genetic  tools  for  monitoring 

 and  manipulating  single-neuron  and  population  activity  (Hales  et  al.,  2015;  Owald  et 

 al.,  2015;  Simpson  &  Looger,  2018)  .  Further,  despite  having  relatively  smaller  brains, 

 they  have  been  shown  to  exhibit  a  variety  of  complex  behaviors,  such  as 

 multisensory  learning,  decision-making,  and  navigation  (Guo  &  Guo,  2005; 

 Haberkern  &  Jayaraman,  2016;  Yagi  et  al.,  2016)  .  This,  combined  with  the  detailed 

 connectomics  knowledge  (Li  et  al.,  2020)  ,  allows  us  to  map  cognitive  function  to 

 neuronal circuitry mechanistically. 

 The  fruitfly  mushroom  body  (MB)  (  Figure 1.  A)  has  been  well-characterized  to 

 encode  odor  valence  dynamically  via  dopamine-modulated  synaptic  plasticity  (Aso  & 

 Rubin,  2016;  Heisenberg,  2003;  Hige  et  al.,  2015)  .  Odor  is  represented  as  a  sparse 

 combinatorial  code  in  the  ~2000  Kenyon  cells  (KCs)  and  activates  the  downstream 

 mushroom-body  output  neurons  (MBONs)  that  have  been  shown  to  trigger  upwind 

 walking  or  turning  at  odor  boundaries  (Aso  et  al.,  2014)  (  Figure 1.  B).  The  strength  of 

 the  synapses  between  KCs  and  MBONs  is  mediated  by  dopamine  released  by 

 dopaminergic  neurons  (DANs)  that  receive  input  from  reward  (e.g.,  sugar)  or 

 punishment  (e.g.,  bitter/shock)  sensory  neurons.  Dopamine  released  by  the  DANs 
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 either  depresses  or  potentiates  the  KC  to  MBON  synapses  depending  on  the  timing 

 of  the  release  relative  to  KC  activity  (Handler  et  al.,  2019)  therefore  modifying  the 

 tendency  to  walk  upwind  (appetitive  behavior)  or  turn  (aversive  behavior)  when  the 

 KCs  are  activated  by  odor  stimulus.  Reward-sensitive  DANs  are  paired  with  aversive 

 behavior-inducing  MBONs  and  vice-versa.  When  KC  activation  (i.e.,  odor  encounter) 

 precedes  dopamine  release  (i.e.,  odor  outcome),  KC-MBON  synapses  are 

 depressed,  and  when  the  order  of  KC  activation  and  dopamine  release  is  reversed 

 KC-MBON  synapses  are  potentiated.  Therefore,  reward  exposure  reduces  aversive 

 behavior, and punishment decreases appetitive behavior. 

 Beyond  the  above  highly  simplified  description,  however,  MBONs  provide  direct 

 feedback  to  other  MBONs  and  connect  to  DANs  directly  and  indirectly  via 

 downstream  interneurons.  These  feedback  connections  can  potentially  be  used  to 

 perform  complex  computations  that  can  regulate  the  amount  of  dopamine  released 

 in  an  atypical  non-linear  fashion  and  update  the  learned  behavioral  response  to  odor 

 encounters.  Therefore,  the  fruit  fly  mushroom  body  is  a  potential  site  for 

 implementing complex behavioral foraging strategies. 
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 Figure 1.  Mushroom Body of the Fruit fly (  Drosophila  melanogaster  ). 

 The  three  main  neuronal  cell  types  of  the  fruit  fly  mushroom  body:  i.  Kenyon  cells 

 receive  input  from  upstream  odor  circuits  at  the  calyx;  ii.  Mushroom  body  output 

 neurons  that  receive  input  from  the  Kenyon  Cells;  iii.  Dopaminergic  neurons 

 (typically  reward-sensitive  PAM  cluster  and  punishment-sensitive  PPL1  cluster)  that 

 modulate KC-MBON synapses. 

 (A)  3D  neuron  reconstruction  of  mushroom  body  neurons  from  Hemibrain  v1.2.1 

 electron microscopy dataset rendered using navis 1.3.1 and plotly. 

 (B)  A  simplified  circuit  schematic  for  the  fruit  fly  mushroom  body.  Yellow:  Inactive 

 KCs;  Orange:  Odor-activated  KCs;  Purple:  Reward/Punishment  sensing  neurons; 

 Pink:  Reward/Punishment  sensitive  dopaminergic  neurons;  Blue:  Aversive/Appetitive 

 MBONs;  Grey:  Direct/Indirect  feedback  connections.  Note  that  each  “neuron”  in  the 

 schematic represents a population on neurons shown in subfigure A. 

 15  Rishika Mohanta, IISER Pune 



 In  contrast  to  the  detailed  knowledge  about  the  MB  anatomical  structure,  few  studies 

 (Rajagopalan  et  al.,  2022;  Seidenbecher  et  al.,  2020)  have  investigated  the  scope  of 

 cognitive  processes  that  underlie  the  olfactory  choice  behavior  of  fruit  flies  in 

 dynamic  probabilistic  contexts.  Rajagopalan  et  al.,  2022  established  a  general 

 foraging  assay  in  flies  using  a  two-alternative  forced  choice  (2AFC)  task,  which  has 

 ethological  significance  across  animal  taxa  (  Figure 2.  A–C).  The  authors  show  that 

 fruit  flies,  when  faced  with  probabilistic  rewards  that  change  with  time,  show  operant 

 matching  behavior  much  like  pigeons,  monkeys,  and  honeybees  (Greggers  & 

 Menzel,  1993;  Herrnstein,  1961;  Lau  &  Glimcher,  2005;  Sugrue  et  al.,  2004) 

 (  Figure 2.  C).  This  observation  suggests  that  the  fundamental  strategies  for  foraging 

 are  likely  to  be  broadly  conserved  across  the  animal  kingdom.  Therefore,  insight  into 

 how  the  fly  behaves  can  give  us  a  valuable  understanding  of  fundamental 

 computations  underlying  foraging  behavior.  Since  the  neural  anatomy  and 

 mechanism  of  synaptic  plasticity  are  relatively  well  understood  and  experimentally 

 tractable  in  flies,  such  insight  will  allow  us  to  bridge  the  current  gap  between  what  we 

 know  about  memory  formation  through  plasticity  and  how  the  learned  associations 

 are utilized during behavior, i.e., the ‘learning rules’. 

 While  Rajagopalan  et  al.,  2022  shows  that  a  reward  expectation-based  learning  rule 

 is  necessary  to  produce  any  operant  matching  behavior  in  fruit  flies,  many  other 

 different  factors  can  contribute  to  the  learning  rules  that  a  fly  utilizes.  These  include 

 but  are  not  limited  to  an  increase  in  valence  on  reward  association  (Rescorla  & 

 Holland,  1982)  ,  forgetting  older  experiences  (Davis  &  Zhong,  2017;  Gonzalez  et  al., 

 1967)  ,  and  either  persistence  or  increased  exploration  following  reward  omission 

 (Beckmann  &  Chow,  2015;  Beron  et  al.,  2022;  Costa  et  al.,  2016; 

 Hermoso-Mendizabal  et  al.,  2020)  .  Furthermore,  operant  matching  as  a  ‘strategy’  is 

 a  very  low-dimensional  statistic  to  describe  the  behavior  that  throws  away 

 information  about  short-term  variations  in  choice.  Figure 2.  D  illustrates  a  toy  example 

 where  two  fundamentally  different  strategies  show  the  same  operant  matching 

 outcome  (  Figure 2.  D;  rows).  Fly  1  &  2  both  continue  to  choose  an  odor  as  long  as  it 

 is  rewarded;  however,  Fly  2  switches  the  preferred  odor  every  time  the  expected 

 reward  is  not  delivered  (omission-averse  strategy).  Fly  1  continues  to  choose  the 

 odor  after  the  first  reward  omission  and  switches  at  the  second  omission 

 (persevering  strategy)  (  Figure 2.  D;  red  arrows).  While  both  flies  produce  different 
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 choice  sequences  (  Figure 2.  D;  column  2,  rows  2  and  3)  for  the  same  reward 

 sequence  (  Figure 2.  D;  column  2,  row  1),  the  choice  ratio  and  reward  ratios  are 

 approximately  equal  for  both  flies.  Thus,  the  matching  law  fails  to  capture  the 

 intricacies  of  the  behavior,  warranting  the  need  for  a  more  nuanced  theoretical 

 framework to understand the foraging behavior in flies. 

 Reinforcement  Learning  (RL)  (Sutton  &  Barto,  2018)  presents  one  such  flexible 

 theoretical  framework  to  understand  foraging  behavior.  The  RL  framework  divides 

 the  world  into  two  elements:  the  Agent  and  the  Environment,  which  interact  using 

 actions,  observable  states,  and  rewards  (  Figure 3.  A).  Under  the  RL  framework,  the 

 agent’s  goal  is  to  use  the  observed  states  and  past  experiences  to  find  the  best 

 actions  to  maximize  rewards.  Animals  can  be  seen  as  analogous  to  RL  agents, 

 where  in  foraging  settings,  maximizing  rewards  provides  a  survival  advantage.  Over 

 the  last  decade,  there  have  been  many  attempts  to  use  various  different 

 Reinforcement  Learning  (RL)  algorithms  that  incorporate  different  cognitive  factors  to 

 explain  choice  behavior  across  animal  taxa.  Such  model  comparison  approaches 

 have  helped  identify  possible  underlying  processes  (Niv,  2009;  Shteingart  & 

 Loewenstein,  2014;  Zhang  et  al.,  2019)  .  Algorithms  that  learn  by  iteratively  updating 

 the  state-action  values  (Q)  (which  we  refer  to  as  ‘Value  Learning’)  (Sutton  &  Barto, 

 2018,  Chapter  6)  provide  a  particularly  exciting  approach  that  can  directly  be 

 mapped  to  the  circuitry  of  the  fruit  fly  mushroom  body  (  Figure 3.  B–D;  see  caption). 

 We  explore  different  variations  of  value  learning  rules  (  Figure 3.  E)  to  explore  how 

 fruit  flies  behave  in  the  foraging  task  described  in  Rajagopalan  et  al.,  2022  using  a 

 model-comparison  approach.  We  also  develop  a  novel  method  that  exploits  the 

 universal  function  approximation  property  of  neural  networks  to  estimate  the 

 Q-update rule directly from the behavior. 
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 Figure 2.  Foraging as a 2AFC Task and the limitations  of the Matching Law. 

 (A)  Humans  face  foraging  challenges  in  daily  life.  Consider  someone  looking  for 

 fresh  fruits  but  have  two  comparable  options  for  grocery  stores  that  they  can  visit, 

 but  the  two  stores  restock  supplies  at  a  different  (unknown)  frequency.  Therefore,  the 

 probability  of  finding  fresh  fruits  will  differ  between  the  two  stores  and  can  be 

 estimated  by  the  person  after  a  few  visits  allowing  them  to  make  better  decisions 

 about  which  store  to  visit.  However,  the  restocking  frequency  might  change  after  a 

 few weeks, and the person has to update their estimates to make the best choices. 

 (B)  Flies,  too,  can  face  dynamically  changing  reward  probabilities  during  foraging  as 

 they  might  have  to  compete  with  other  individuals  for  limited  resources.  For  example, 
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 consider  a  fly  with  two  possible  food  sources:  lemons  and  blueberries.  A  naive  fly 

 (dotted  line)  visits  the  lemons  to  find  many  competitors  and  receives  a  reward  with 

 low  probability.  Then,  on  finding  the  blueberries  learns  that  the  blueberries  have 

 fewer  competitors  and  more  probability  of  reward  (solid  line).  As  more  flies  do  the 

 same,  the  distribution  of  competitors  changes,  and  the  fly  must  learn  to  switch  to  the 

 lemons for more reward. 

 (C)  The  decision-making  process  underlying  foraging  can  be  replicated  in  an  artificial 

 Y-maze  with  two  odorized  and  one  clean-air  arm.  Each  trial  is  completed  when  the 

 decision  boundary  on  an  odorized  arm  is  crossed.  The  relative  orientations  of  the 

 odor  arms  are  randomized  to  ensure  flies  do  not  learn  directional  associations.  A 

 probabilistic  reward  is  delivered  through  optogenetic  activation  of  sugar-sensing 

 neurons. 

 (D)  Flies  show  operant  matching  behavior.  Operant  matching  law  is  an  optimal 

 strategy  for  foraging  where  the  choices  closely  follow  the  same  ratio  as  the  rewards 

 received  for  the  different  choices  (right).  Figure  reproduced  with  data  from 

 Rajagopalan  et  al.,  2022  ,  with  permission.  Orange  and  Blue  dots  in  the  reward 

 schedule  represent  choosing  Odor  1  and  2,  respectively.  Filled  and  empty  dots 

 represent  the  rewarded  choice  and  unrewarded  choices,  respectively.  The  lines 

 represent  the  reward  and  choice  ratios  calculated  for  10  trials  till  the  current  trial 

 (including the current trial). 

 (E)  A  toy  example  of  the  limitation  of  the  matching  law.  See  main  text.  Column  2 

 provides  the  reward  and  choice  sequence  between  odor  1  (orange)  and  odor  2 

 (blue).  Column  3  shows  the  estimate  of  choice  and  reward  ratios.  Red  arrows 

 highlight transitions in chosen odors. 
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 Figure 3.  Reinforcement Learning in the Fly Brain  through Value Learning. 

 (A)  The  Reinforcement  Learning  (RL)  Framework.  The  agent  receives  information 

 from  the  environment  in  the  form  of  the  outcomes  for  past  actions  (reward  r;  can  be 

 +ve  or  -ve)  and  the  world's  current  condition  (state  s;  can  be  a  high  dimensional 

 input).  Using  this  information,  the  agent  chooses  the  best  action  (a)  to  perform  in 

 order  to  maximize  its  reward.  In  turn,  the  environment  receives  the  action,  updates 

 the state, and gives the appropriate reward to the agent. 

 (B)  Value  learning  is  a  type  of  RL  framework  that  involves  three  major  elements:  i. 

 Value  (Q)  -  a  measure  of  how  much  reward  an  animal  expects  given  the  state  and 

 action;  ii.  Policy  (π(Q))  -  a  function  that  transforms  the  value  to  a  probability  of  taking 

 any  action  and  determines  the  action  taken  by  the  animal;  iii.  Q-update 

 Reinforcement  Learning  Algorithm  that  updates  the  value  of  the  state  and  action, 

 given the information from the environment. 

 (C)  Mapping  action  value  learning  to  the  fruit  fly  MB.  MBON  activity  during  odor 

 exposure  encodes  stimulus  valence  and,  therefore,  can  represent  the  action  value  of 

 choosing  an  odor  (Q).  The  KC  →  MBON  synaptic  weights  are  updated  bidirectionally 

 by  DANs,  allowing  value  updation  (δQ).  DANs  receive  reward/punishment  signals 

 (R)  from  sugar/bitter/shock-sensing  neurons.  MB-intrinsic  and  MB-extrinsic 

 interneuronal  circuits  can  provide  complex  feedback  (F(Q))  from  the  MBONs  to  the 

 DANs.  Thus,  DANs  can  integrate  reward  signals  and  feedback  to  implement 

 complex  learning  rules.  The  downstream  circuitry  then  transforms  the  value  code  to 
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 behavioral  patterns  such  as  upwind  walking  and  turning  that  result  in  the  choice 

 outcome, i.e., the policy (π(Q)). 

 (D)  Functional  form  of  the  value  learning  framework  for  odor  preference.  The  first 

 equation  represents  how  past  choices  and  reward  history  is  integrated  with  the  past 

 value  to  get  the  new  updated  value.  The  second  equation  represents  how  the  policy 

 transforms the value into choice distribution. 

 (E)  Variations  of  value  learning.  Q-Learning  is  the  most  common  form  of  value 

 learning.  Over  the  last  two  decades,  many  variations  of  Q-learning  have  been 

 developed  to  explain  animal  behavior.  We  divide  them  into  two  categories:  i. 

 classical  Q-learning;  ii.  habit-value  arbiter  Q-learning.  We  also  develop  a  novel 

 modeling  framework  to  infer  learning  rules  from  behavior  which  we  call  Q-update 

 approximation. 

 However,  while  models  can  be  used  to  explain  the  variance  in  the  flies’  observed 

 decisions,  these  models  may  not  reflect  the  actual  computations  underlying  the  fly 

 behavior.  Therefore,  a  robust  experimental  paradigm  is  required  for  testing  models 

 that  predict  the  dynamics  of  choice.  An  often-used  method  for  model  identification, 

 especially  in  systems  biology,  is  to  find  ways  to  perturb  or  ‘break’  the  normal 

 functioning  of  a  system  in  a  predictable  fashion  using  the  understanding  from  a 

 model  and  observe  what  happens  when  the  same  perturbation  is  replicated  in  the 

 natural  system  (Markowetz,  2010)  .  Taking  inspiration,  we  can  translate  this  principle 

 to  the  study  of  cognitive  processes  by  designing  experiments  capable  of  predictably 

 perturbing  a  given  model  and  compare  this  to  whether  the  same  experiment  also 

 perturbs  the  behavior  in  actual  flies.  For  this  purpose,  we  utilize  “choice  engineering” 

 (  Figure 4.  ).  In  this  computational  framework,  the  goal  is  to  test  how  to  maximally  bias 

 preference  between  two  alternatives  in  a  2AFC  task  while  keeping  the  total  amount 

 of  reward  the  same  for  the  two  choices  (Dan  &  Loewenstein,  2019;  Dezfouli  et  al., 

 2020)  . 

 Next,  to  improve  the  quality  of  our  analysis  and  enable  the  testing  of  more  complex 

 cognitive  principles,  we  design  and  develop  a  high  throughput  experimental  Y-Maze 

 assay  that  allows  the  testing  of  16  fruit  flies  simultaneously.  We  design  the  rig  to  be 
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 highly  flexible,  allowing  for  easy  exploration  of  the  space  of  choice  tasks  and 

 providing  a  deeper  understanding  of  the  cognitive  principles  underlying  foraging 

 decision-making  in  fruit  flies.  We  explore  the  behavioral  basis  of  the  observed 

 choices  using  the  kinematics  of  the  observed  fruit  fly  behavior  and  find  the  optimal 

 experimental  conditions  (such  as  level  of  starvation,  odor  combinations,  etc.)  for 

 testing  dynamic  choice  behavior  in  fruit  flies.  With  this  assay,  we  then  collect  a  richer 

 dataset  of  fruit  fly  behavior  in  a  randomized  sample  of  the  space  of  possible  tasks. 

 We  manage  to  reproduce  the  results  of  the  previous  experiments,  thus  providing  us 

 with solid evidence of habitual behavior in fruit flies. 

 Figure 4.  Choice Engineering Paradigm. 

 A  reward  schedule  is  a  series  of 

 choice-reward  outcomes  for  both  odors  that 

 the  fly  can  choose.  The’  optimal’  reward 

 schedule  for  choice  engineering  is  the 

 series  of  odor-reward  associations  that 

 maximizes  the  number  of  choices  made 

 towards  a  preferred  side,  providing  a 

 predictable  behavioral  perturbation  that  can 

 be  tested  on  fruit  flies.  We  sample  the 

 space  of  the  reward  structures  using 

 stochastic  optimization  techniques  to  find 

 the optimal reward schedule. 

 22  Rishika Mohanta, IISER Pune 



 Methods 

 Fly Strains and Rearing 

 All  Drosophila  melanogaster  used  for  the  experiments  (  Table 1  )  were  reared  at 

 Janelia  in  plastic  vials  containing  standard  cornmeal  media  supplemented  with  0.2 

 mM  (1:500)  all-trans-retinal.  The  vials  were  stored  in  incubators  and  kept  in  complete 

 darkness  at  21°C  and  60%  relative  humidity.  The  following  crosses  were  set  up  for 

 the experiment: 

 Genotype  Expression Target  Reference 

 w; Gr64f-Gal4/CyO; 

 Gr64f-Gal4/TM3 x 

 20XUAS-CsChrimson-mVenus 

 attp18 

 Channelrhodopsin CsChrimson 

 expressed in sucrose-sensitive 

 Gr64f neurons for optogenetic 

 reward delivery 

 (Haberkern et al., 2019) 

 Table 1.  Fly Genotypes used for the experiments  . 

 Fly  crosses  were  flipped  every  2-3  days  for  three  weeks  to  prevent  vials  from 

 becoming  overcrowded.  Within  24  hrs  of  eclosion,  the  progeny  were  transferred  to 

 fresh  vials  with  cornmeal  media  supplemented  with  0.4  mM  (1:250)  all-trans-retinal 

 for  2-4  days.  The  progeny  were  then  sorted  to  identify  the  correct  phenotypes  by 

 cold  anesthesia  of  around  1-3°C  on  a  cold  plate,  and  females  of  the  appropriate 

 genotype  were  transferred  to  starvation  vials.  Starvation  vials  contained  nutrient  free 

 1%  agarose  to  prevent  desiccation.  Flies  were  starved  between  4-13  hrs  /  13-28  hrs 

 /  28-37  hrs  /  51-64  hrs  before  being  aspirated  into  the  Y-arena  for  experiments. 

 Cornmeal  food  (10l)  was  prepared  by  boiling  a  solution  of  59.66  g  agar  (fly  agar,  Tic 

 Gums  Inc,  Belcamp,  MD,  USA)  in  7.23  l  water.  A  cornmeal  and  yeast  mixture  was 

 then  prepared  using  664.84  g  cornmeal  (Quaker  Yellow  Corn  Meal,  Quaker  Oats 

 Company,  Chicago,  IL,  USA)  and  160.68  g  yeast  (inactive  dry  yeast,  Genesee 

 Scientific,  San  Diego,  CA,  USA)  added  to  1.59  l  of  water,  which  was  then  was  added 

 to  the  boiling  agar.  0.4  l  of  molasses  was  added  and  allowed  to  simmer.  After 

 cooling,  42  ml  of  Propionic  acid,  79.55  ml  Tegosept  antifungal  agent  (Genesee 

 Scientific,  San  Diego,  CA,  USA),  and  diluted  amounts  of  100mM  all-trans-retinal  (in 

 ethanol)  stock  were  added  to  the  required  concentration  for  different  retinal 

 concentrations in the food. 
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 Odor Preparation 

 The following odors were prepared and used for the single-fly Y-Maze experiments: 

 1.  4-Methyl-cyclo-hexanol (MCH) [Sigma-Aldrich 153095] diluted in paraffin oil 

 [Sigma-Aldrich 18512] at a 1:500 (v/v) concentration and then air-diluted to a 

 fourth of this concentration. 

 2.  3-Octanol (OCT) [Sigma-Aldrich 218405] diluted in paraffin oil [Sigma-Aldrich 

 18512] at a 1:500 concentration and then air-diluted to a fourth of this 

 concentration. 

 Both odors were replaced with freshly prepared odor solutions every ten days. 

 The  following  odors  were  prepared  and  used  for  the  high-throughput  Y-Maze 

 experiments: 

 1.  4-Methyl-cyclo-hexanol (MCH) [Sigma-Aldrich 153095] diluted in paraffin oil 

 [Sigma-Aldrich 18512] at a 1:500 (v/v) and 1:250 (v/v) concentration. (Both 

 concentrations are replaced once a week.) 

 2.  3-Octanol (OCT) [Sigma-Aldrich 218405] diluted in paraffin oil [Sigma-Aldrich 

 18512] at a 1:500 (v/v) and 1:1000 (v/v) concentration. (Both concentrations 

 are replaced once a week) 

 3.  Pentyl Acetate (PA) [Sigma Aldrich 109584] diluted in paraffin oil 

 [Sigma-Aldrich 18512] at a 1:10000 (v/v) concentration. (Replaced every day) 

 4.  (–)-Ethyl Lactate (EL) [Sigma Aldrich E34102] diluted in paraffin oil 

 [Sigma-Aldrich 18512] at a 1:10000 (v/v) concentration. (Replaced every day) 

 5.  Hexanal (HAL) [Sigma Aldrich 115606] diluted in paraffin oil [Sigma-Aldrich 

 18512] at a 1:1000 (v/v) concentration. (Replaced every two days) 

 6-Methyl-5-hepten-2-one  (MHO)  [Sigma  Aldrich  M48805]  diluted  in  paraffin  oil 

 [Sigma-Aldrich 18512] at a 1:1000 (v/v) concentration. (Replaced every two days) 
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 Behavior 

 All  data  used  in  this  thesis  were  collected  using  two  different  behavioral  rigs.  Data 

 from  a  single  fly  Y-maze  rig  (Rajagopalan  et  al.,  2022)  was  used  for  the  model  fitting 

 and  reward  schedule  testing.  A  high-throughput  16-fly  Y-maze  rig  was  developed 

 and  calibrated  during  the  period  of  this  thesis.  It  was  then  used  for  the  rest  of  the 

 experiments.  Both  rigs  were  designed  and  fabricated  by  the  Janelia  Experimental 

 Team  (jET,  HHMI  Janelia  Research  Campus)  with  the  guidance  of  Adithya 

 Rajagopalan  (Ph.D.  Candidate,  Turner  Lab,  HHMI  Janelia  Research  Campus)  and 

 Rishika  Mohanta  (Research  Technician,  Turner  Lab,  HHMI  Janelia  Research 

 Campus).  All  experiments  are  done  with  no  light  source  present  to  avoid  the 

 influence of visual place learning. 

 Baiting/”Reward-Hold” as a model of naturalistic foraging 

 In  all  our  behavioral  experiments,  the  reward  delivery  utilizes  ‘baiting’  or 

 ‘reward-hold’,  i.e.,  if  a  reward  is  randomly  drawn  for  one  odor  on  a  particular  trial,  the 

 reward  persists  for  that  odor  until  it  is  chosen.  Intuitively,  baiting  provides  a  model  of 

 foraging  where  the  probability  of  reward  depends  on  the  animal’s  choices.  Baiting 

 ensures  that  the  effective  reward  probability  on  the  unchosen  arm  increases  over 

 time.  If  the  animal  continues  to  exploit  a  single  choice,  it  forgoes  a  higher  chance  of 

 reward  on  the  other  odor,  even  if  the  other  odor  is  not  as  frequently  rewarding.  Thus, 

 baiting  promotes  exploration  as  a  better  strategy  (Bari  et  al.,  2019;  Sugrue  et  al., 

 2004)  . 

 Suppose  the  animal  has  a  reliable  estimate  of  the  probabilities  of  reward  delivery  for 

 all  options  without  baiting.  In  that  case,  the  optimal  solution  is  probability 

 maximization  (also  known  as  overmatching),  where  the  animal  continues  to  exploit 

 the  best  option.  However,  probability  maximization  is  rarely  observed  in  animals 

 including  in  supposedly  “rational”  humans.  Under  a  baiting  paradigm,  the  optimal 

 strategy  is  known  to  be  more  widely  observed  probability  matching.  In  nature,  such  a 

 scenario  may  be  observed  by  a  fruit  fly  where  the  rewards  become  ready  at  different 

 rates,  such  as  fruits  (beneficial  as  food/oviposition)  falling  from  trees  at  different  rates 

 that remain available for the fly until exploited. 
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 Rajagopalan (2022) "Fixed Block" Dataset 

 The  dataset  consists  of  the  reward  and  choice  history  of  21  flies  for  ~240  trials 

 divided  into  three  blocks.  The  number  trials  in  each  block  was  kept  fixed  at  80  trials 

 for  all  experiments.  Across  each  block,  the  more  rewarded  odor  is  switched.  The 

 reward  baiting  probabilities  are  varied  such  that  the  total  probability  (reward  gain) 

 across  the  odors  is  always  equal  to  1  (10  flies)  or  0.5  (8  flies)  (  Table 2  ).  The  dataset 

 was  then  divided  into  a  training  dataset  (18  flies)  and  a  test  dataset  (3  flies).  The 

 training  dataset  was  truncated  to  200  trials  to  ensure  an  equal  number  of  observed 

 trials for all flies. 

 High-Throughput Behavioral Rig 

 To  expand  on  the  Y-Maze  foraging  experiments  described  in  Rajagopalan  et  al., 

 2022  ,  we  developed  a  high  throughput  experimental  rig  that  scales  up,  parallelizes, 

 and  expands  on  the  range  of  possible  experiments  for  the  single-fly  Y-maze  assay  to 

 16  simultaneous  fly  experiments.  The  setup  of  the  experimental  rig  is  described  in 

 Figure 5.  A breakdown of the different labeled parts  is provided below. 

 FlyID  Block 1  Block 2  Block 3  FlyID  Block 1  Block 2  Block 3 

 0  0.89/0.11  0.11/0.89  0.67/0.33  11  0.06/0.45  0.45/0.06  0.25/0.25 

 1  0.80/0.20  0.11/0.89  0.89/0.11  12  0.45/0.06  0.06/0.45  0.33/0.17 

 2  0.20/0.80  0.80/0.20  0.33/0.67  13  0.40/0.10  0.06/0.45  0.45/0.06 

 3  0.50/0.50  0.89/0.11  0.20/0.80  14  0.33/0.17  0.17/0.33  0.45/0.06 

 4  0.20/0.80  0.80/0.20  0.89/0.11  15  0.45/0.06  0.10/0.40  0.25/0.25 

 5  0.67/0.33  0.33/0.67  0.89/0.11  16  0.25/0.25  0.45/0.06  0.10/0.40 

 6  0.50/0.50  0.67/0.33  0.20/0.80  17  0.40/0.10  0.17/0.33  0.33/0.17 

 7  0.33/0.67  0.50/0.50  0.67/0.33  18  0.2/0.8  0.8/0.2  0.33/0.67 

 8  0.20/0.80  0.67/0.33  0.80/0.20  19  0.33/67  0.5/0.5  0.67/0.33 

 9  0.67/0.33  0.20/0.80  0.50/0.50  20  0.4/0.1  0.06/0.45  0.46/0.06 

 10  0.50/0.50  0.89/0.11  0.33/0.67 

 Table 2.  Baiting Probabilities for the Rajagopalan  (2022) "Fixed Block" dataset. 
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 The  two  numbers  represent  the  baiting  probabilities  for  OCT  and  MCH  choices.  The 

 probabilities in bold are for the holdout test data, and the rest are used for training. 

 Part-by-Part Rig Breakdown 

 (1)  MFC  Assembly:  A  single  5  liters  per  minute  (LPM)  clean  airstream  is  equally 

 split  into  16  parallel  streams  and  injected  into  16  Whisper-series  MCW  Mass  Flow 

 Controllers  (MFC)  (Alicat  Scientific,  Arizona,  USA)  with  a  0.3  liters  per  minute  (LPM) 

 outflow.  Using  a  serial  connection,  the  MFCs  were  connected  to  the  rig  workstation 

 using  two  daisy-chained  Alicat  BB9  multi-drop  breakout  boxes  (Alicat  Scientific, 

 Arizona, USA). 

 (2)  Humidifier  Bottle:  Each  0.3  LPM  airstream  out  of  the  MFCs  is  injected  into  a 

 100  ml  PYREX  media  bottle  (Cole-Parmer,  Illinois,  USA)  with  an  airtight  2-Port 

 GL-45  Cap  (CP  Lab  Safety,  California,  USA)  filled  with  50  ml  distilled  water  to 

 humidify the air. 

 (3)  Odor  Vial  Assembly:  The  ejected  air  from  the  humidifier  bottle  is  split  into  three 

 equal  airstreams  using  an  IDEX  7-port  1/4-28  Low-Pressure  Manifold  Assembly  with 

 alternate  outflow  blocked  using  IDEX  1/4-28  Port  Plugs  (Cole-Parmer,  Illinois,  USA). 

 The  three  airstreams  were  injected  into  40ml  National  Scientific  28X95,  24-400, 

 Amber  Vials  (Analytics  Shop,  Georgia,  USA)  with  custom-designed  PFTE  vial  caps 

 (Tru-Plastics,  Wisconsin,  USA)  placed  in  an  in-house  custom  3D-printed  12-vial 

 olfactometer assembly. 

 See:  https://github.com/neurorishika/TurnerLab-4Y-ODA-2022 

 (4)  Olfactometer:  A  custom  Arduino-based  olfactometer  is  used  to  redirect  airflow 

 from  the  three  odor  vials  to  any  combination  of  downstream  arms  of  a  given  Y-arena 

 using  a  nine  electromagnetic  valve  assembly  for  each  set  of  three  odor  vials.  Sixteen 

 olfactometers  (one  for  each  Y-arena)  interface  with  a  Raspberry  Pi  4  Model  B  that,  in 

 turn, communicates with the rig workstation via a local ethernet connection. 

 See:  https://janelia-kicad.github.io/y_arena_odor_controller/ 

 (5)  Y-Arena  Chambers  and  LED  Panel:  (a)  A  custom-built  airtight  Y-arena  chamber 

 made  of  opaque  white  plastic  is  used  to  hold  the  flies  during  the  experiment.  (b)  A 

 transparent  airtight,  depressurized  3D  printed  chamber.  (c)  A  custom-built 

 4-quadrant  Arduino-based  RGB-IR  LED  Panel  is  placed  below  it  to  provide  a 
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 constant  outflow  of  air  and  a  continuous  IR  backlight  to  observe  the  flies  in  4  arenas 

 simultaneously.  The  same  LED  panel  is  used  to  provide  red  (625nm  typical 

 wavelength),  blue  (465nm  typical  wavelength)  or  green  (525nm  typical  wavelength), 

 or  a  mixture  of  optogenetic  stimulation  in  any  predefined  temporal  pattern.  The  LED 

 panel  is  separated  from  the  Y-arena  by  a  diffuser  material.  Four  LED  panels  for  a 

 total of sixteen arenas connect to the rig workstation using a serial connection. 

 See:  https://janelia-experimental-technology.github.io/y-arena/ 

 (6)  Flowmeter  with  Valve:  Four  depressurized  chambers  from  four  Y-arenas  are 

 combined  and  connected  to  a  hard  vacuum  outlet  through  an  OMEGA  FL-2012 

 Variable  Area  Flowmeter  with  the  flow  rate  adjusted  to  1.5  liters  per  minute  (which  is 

 1.25x  times  the  total  inflow  to  ensure  a  drop  in  pressure  in  the  depressurized 

 chamber despite any leaks) 

 (7)  IR  Camera  Assembly:  A  single  FLIR  BFS-U3-13Y3M-C  USB  3.1  Blackfly  S 

 Monochrome  Camera  with  a  Navitar  NMV-8M1  8mm  F/1.4  lens  and  a  55mm  GF-X 

 IR72055  720  nm  IR  long-pass  filter  (Edmund  Optics,  New  Jersey,  USA)  were  used  to 

 image  all  16Y  arenas  simultaneously  with  a  100  Hz  clock.  The  camera  was 

 connected  to  the  rig  workstation  via  USB  4.0,  and  frames  were  acquired  to  Python 

 using FLIR SpinView API. 

 (8)  Workstation:  A  Dell  Precision  5820  Tower  with  16-core  3.7  GHz  Intel  Xeon 

 W-1245  CPU,  64  GB  RAM,  and  48  GB  Nvidia  Quadro  A6000  GPU  was  used  to 

 interface with the high-throughput rig. 
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 Figure 5.  High-level  schematic  of  the  16Y  high-throughput  Y-maze  behavioral 
 rig. 

 (A)  Overall  schematic  of  the  16Y  assembly.  Four  Humidifier  bottles  (1  per  arena)  and 

 12  (3  per  arena)  were  combined  as  a  single  ‘Odor  Distribution  Assembly’.  Four 

 Olfactometers  and  a  single  LED  Panel  are  combined  with  four  Y-arena  chambers  to 

 form  a  single  ‘4Y  Module’.  Four  identical  4Y-Modules  and  Odor  Distribution 

 Assemblies combine to form the entire 16Y experimental rig. 
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 (B)  Exploded  View  of  an  Odor  Distribution  Assembly.  (2)  represents  the  four 

 Humidifier  bottles  and  Holders  that  supply  humidified  air  for  four  arenas;  (3) 

 represents  the  Odor  Vial  Assembly  that  splits  the  humidified  airstream  to  create 

 three  parallel  air  streams  that  can  be  odorized.  Rishika  Mohanta  (Turner  Lab,  HHMI 

 Janelia Research Campus, Virginia, USA) designed all parts of the module parts. 

 (C)  Overall  Arrangement  of  the  4Y  Module  and  Camera  for  the  16Y  Setup.  The 

 camera  (7)  is  placed  on  a  3D  micromanipulator  using  support  beams  over  the  4Y 

 Modules.  The  placement  is  made  such  that  all  16  Arenas  are  in  a  common  field  of 

 view. 

 (D)  Exploded  View  of  the  4Y  Module.  (4)  represents  the  four  olfactometers  for  the 

 four  Y-arenas;  (5)  represents  the  four  combined  Y-Arena  chambers  (a,b)  and  LED 

 Panels  (c).  All  module  parts  were  designed  at  jET  (Janelia  Experimental  Team, 

 Virginia, USA). 

 Versilon  SE  200  1/8”  OD  x  1/16”  ID  and  1/4”  OD  x  1/8”  ID  (McMaster  Carr,  Illinois, 

 USA)  tubing  were  used  to  direct  airflow  at  all  points.  The  entire  rig  is  placed  inside  a 

 dark,  thermally  insulated  box  in  a  temperature-controlled  room.  All  experiments  are 

 done at 24-26°C. 
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 Experiment Structure 

 Each  experiment  is  defined  using  a  trial  structure  during  which  the  odors  in  different 

 arms  are  kept  fixed.  Each  trial  is  defined  using  17  variables  described  in  Table 3  .  The 

 trial  variables  are  provided  to  the  closed-loop  controller  (see  section  below)  as  a 

 predefined  CSV  file  or  as  a  Python  function  that  takes  in  the  trial,  choice,  and  reward 

 history and returns the variables for the subsequent trial. 

 Typically  for  two-alternative  forced  choice  (2AFC)  experiments,  the  arm  in  which  the 

 fly  started  the  trial  is  filled  with  clean  air,  and  the  other  two  arms  have  two  different 

 odors. 

 Trial Variable  Description 

 Trial#  Trial number being described 

 P(R|Air), P(R|O1), 
 P(R|O1) 

 (baited/unbaited) reward probability on choosing the air arm, odor 1 arm or 
 odor 2 arm respectively 

 Odor(Start), 
 Odor(Left), Odor(Right) 

 odor provided in the trial start arm, left arm and right arm respectively 

 CStim(Air), CStim(O1), 
 CStim(O2) 

 reward stimulus file (*.stim [JSON format]) for air reward, odor 1 reward and 
 odor 2 reward respectively (see documentation for  sixteeny  package) 

 StayTime(Air), 
 StayTime(O1), 
 StayTime(O2) 

 how long the fly has to stay in the air arm, odor 1 arm or odor 2 arm to qualify 
 as a reward ( in seconds) 

 Baited  whether or not the trial is baited (1 = baited) (see section on baiting below) 

 Timed  whether the trial ends after a fixed time (0 = not timed, >0 = trial duration in 
 seconds) 

 OdorDelay  delay between trial start and flipping odor valve (in seconds) 

 UStim  reward stimulus file (*.stim [JSON Format]) if the trial is timed (see 
 documentation for  sixteeny  package) 

 Table 3.  Variables used to define each trial for any  experiment. 
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 Closed-Loop Image Processing 

 A  custom  GPU-accelerated  hardware-software  interface  package,  sixteeny  was 

 written  in  Python  3.9  for  running  any  arbitrary  experiment  on  the  high-throughput  16Y 

 rig.  Each  experiment  is  divided  into  a  trial  structure.  Trials  change  after  fixed  time 

 intervals  or  at  the  end  of  each  choice.  A  choice  is  defined  as  walking  into  an  arm  for 

 more  than  a  predefined  fraction  (f  =  0.8  for  experiments)  of  the  arm  length,  therefore, 

 entering  the  ‘reward  zone’.  The  main  operational  flow  for  running  any  experiment  is 

 described in  Figure 6.  A. 

 On  starting  an  experiment  using  the  16Y-Experimenter  GUI  (not  shown),  the  Python 

 script  main.py  is  executed.  All  hardware  interfaces  (MFC,  Odor  Valves,  LED  Panel, 

 and  Camera)  are  initialized,  and  the  airflow  rate  is  verified  to  ensure  within  range, 

 after  which  clean  air  is  allowed  to  enter  all  the  arms.  The  sudden  airflow  start 

 typically  startles  the  flies,  causing  them  to  explore  the  arena,  allowing  us  to 

 effectively  calculate  a  background  image  by  averaging  frames  over  30  seconds.  We 

 do  this  after  the  flies  are  introduced  into  the  arenas  to  ensure  that  the  tracking  is 

 insensitive  to  small  variations  in  lid  placement  before  and  after  loading.  The  saved 

 masks  generated  using  16Y  Mask  Designer  GUI  (not  shown)  are  loaded  (  Figure 6. 

 B)  and  are  overlaid  on  the  captured  background  for  the  experimenter  to  verify  before 

 starting  the  experiment.  All  utility  objects  (  Experimenter  and  ArenaTracker  )  are 

 initialized  for  every  fly  experiment.  Experimenter  objects  are  used  to  determine  the 

 subsequent  trials  based  on  CSV  files  or  Python  script-based  experiments. 

 ArenaTracker  objects  are  used  to  track  current  and  past  experimental  states.  The 

 code  then  starts  multiple  queues  on  parallel  threads  to  send  email  notifications  and 

 save  frames  to  disk  asynchronously.  The  main  thread  operates  using  three  different 

 memory  devices.  On  the  camera  memory,  frames  are  continuously  acquired  at  100 

 FPS.  For  every  processing  tick,  the  latest  image  is  fetched  to  the  GPU  memory  and 

 processed  using  NVIDIA  GPU-accelerated  CuCIM  scikit-image  package  to  find  each 

 detected  blip  of  activity,  which  is  then  passed  onto  the  CPU  memory.  Using  the 

 masks,  the  most  significant  blip  in  each  arena  is  identified  and  located  in  different 

 arms  and  reward  regions  (  Figure 6.  B).  The  experimental  states  are  updated  using 

 the  fly's  location,  corresponding  rewards  are  accumulated  and  executed  for  all 

 arenas  at  once,  and  trials  are  started  by  changing  valve  configurations.  As 

 experiments  are  completed,  an  email  notification  is  sent,  and  after  the  last 
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 experiment  is  over,  all  experiment  variables  are  saved  (see  Table 4  );  then,  the 

 control flow waits till all queues are complete and finally exits. 

 Figure 6.  Schematic of closed-loop control for running  parallel experiments. 

 (A)  Operational  loop  for  running  an  experiment  using  the  main.py  Python  script  in  the 

 sixteeny  Python  package.  Gray  represents  preparatory  steps,  Orange  represents 

 hardware  interfacing  steps,  Purple  represents  image  data  in  the  memory,  and  Pink 

 represents  closed-loop  control  steps.  For  a  summary  of  the  control  flow,  see  the 

 main text. 
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 (B)  Schematic  of  Mask-based  Filtering  and  Localization.  To  quickly  find  the  current 

 position  of  every  fly  in  different  arms  and  reward  zones,  we  use  a  system  of  96 

 masks  (48  for  reward  regions  with  one  per  reward  zone  on  each  of  three  arms  on  16 

 arenas  &  48  for  each  of  three  arms  on  sixteen  arenas).  A  combined  mask  (left)  can 

 be  used  to  filter  activity  on  the  processed  frame  (right).  Looking  for  overlap  between 

 each  detected  blip  and  the  Arm  and  Reward  Region  masks  (center)  allows  us  to 

 efficiently  identify  the  location  and  reward  zone  status  (whether  the  fly  is  in  a  reward 

 zone). 

 Code Available at:  https://github.com/neurorishika/TurnerLab_Opto2AFC_16Y 
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 Data Variable  Description 

 fly_positions  centroid of the fly (w.r.t. the frame coordinates) in every frame 

 frame_times  ISO timestamp for the frame 

 current_arms  arm in which the fly is at every frame 

 current_trial  trial number for the fly at every frame 

 current_reward_zone_st 
 atus 

 whether or not the fly is in a reward zone in every frame 

 chosen_arms  relative arm chosen in each trial (1 = left, 2 = right) 

 chosen_odor  odor chosen in each trial (1 = odor 1, 2 = odor 2) 

 reward_delivered  whether or not a reward was delivered in each trial (1 = yes) 

 trial_start_times  ISO timestamp for trial start 

 trial_end_times  ISO timestamp for trial end 

 trial_odor_start_delay  how much delay between trial start and flipping odor valve 

 time_spent_in_reward_z 
 one 

 how much time was spent in reward zone before reward delivery 

 length_of_trials  time between start and end of trial 

 odor_vectors  valve configuration sent to rig for each trial 

 trial_baited  whether or not the trial was ‘baited’ 

 reward_states  whether or not a reward is available after each trial 

 start_arms  which absolute arm number the trial started in 

 n_trials  total number of trials to be completed 

 max_frame_count  maximum frames allowed to be captured 

 trial_count  total number of trials actually completed 

 experiment_states  all trial definition variables for the experiment 

 Table 4.  All  saved  variables  from  each  fly  experiment  on  the  high-throughput 
 rig. 
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 Post-hoc Data Processing 

 The  saved  data  is  then  processed  using  a  custom  16Y-Data-Processor  GUI  (not 

 shown)  to  generate  many  additional  variables  to  facilitate  the  analysis  of  run 

 experiments. The processed variables are described in  Table 5  and  Figure 7. 

 Figure 7.  Post-hoc processed variables for high-throughput  Y-maze data. 

 (A)  Calculation  of  a  reference  coordinate  system.  Each  arena  is  characterized  using 

 six  key  points:  3  points  at  the  intersection  of  the  arms  and  the  three  ends  of  the  arms 

 (left).  These  key  points  can  be  used  to  generate  an  affine  transform  to  a  reference 

 coordinate  system  (middle).  In  the  reference  coordinate  system,  different  kinematic 

 variables  can  be  calculated  from  the  reference  trajectories  (right),  such  as  speed  (v), 

 the  direction  of  motion  (θ),  upwind  speed  (u),  upwind  motion  direction  (μ)  by  using 

 the information about the change in position (x  t  ).  See  Table 5  for more details. 

 (B)  Encounters  boundaries  are  defined  as  every  time  a  fly  experiences  a  different 

 odor  condition  (including  air).  Boundaries  can  happen  at  the  end  of  a  trial  (right; 

 Encounter  “Acceptance”)  or  if  a  fly  enters  and  leaves  with  the  trial  not  being 

 completed (left; Encounter “Rejection”). 

 (C)  Reference  coordinate  systems  can  be  reoriented  to  align  them  with  respect  to 

 the start arms and odor positions for easier comparison between trials. 
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 Data Variable  Description 

 reference_fly_positions  Position of the fly affine transformed into a reference arena layout in every frame 
 (see  Figure 7.  A). Any missing values where the fly  was not visible are linearly 
 interpolated between the last known locations (in inches) 

 instantaneous_speed  Magnitude of the instantaneous velocity of each fly between frames (in inch/sec) (see 
 ‘v’ in  Figure 7.  A). 

 Calculated as  where  is the euclidean norm, 

 instantaneous_motion_dir 
 ection 

 Absolute direction of motion in the reference coordinate system between every frame 
 (in radians) (see ‘θ’ in  Figure 7.  A) 

 Calculated as 

 instantaneous_upwind_mo 
 tion_direction 

 Direction of motion with respect to the upwind direction between every frame (in 
 radians) (see ‘μ’ in  Figure 7.  A) 
 Calculated as  where  if fly is in Arm 0,  if fly 
 is in Arm 1,  if fly is in arm 2. (+ve values = right  of wind; -ve values = 
 left of wind) 

 instantaneous_upwind_sp 
 eed 

 Speed of motion in the upwind direction between every frame (in inch/sec) (see ‘u’ in 
 Figure 7.A) 
 Calculated as 

 current_odor  Current odor that the fly is in every frame (0,1 or 2 depending on the odor 
 configuration) 

 encounter_trial_number  Running count of the encounter that the fly is in (see  Figure 7.  B for the definition of 
 an encounter) 

 encounter_odor  Odor that the fly experienced in an encounter (0,1 or 2 depending on the odor 
 configuration) 

 encounter_durations  Duration of an encounter (in seconds) 

 encounter_decisions  Whether or not the fly accepted or rejected an odor (see  Figure 7.  B) (1=acceptance, 
 0=rejection) 

 encounter_rewards  Whether or not the fly was rewarded when accepting an odor (1=rewarded, 
 0=unrewarded) 

 encounter_start_time  ISO timestamp of encounter start 

 trial_odor_residence_time 
 s 

 Length of time the fly spend in each odor during a trial (in seconds) 

 rewarded_frames  Whether or not a frame was rewarded (1=rewarded, 0=unrewarded) 

 trial_oriented_position  Fly coordinates repositioned such that the arm in which the fly starts is always at the 
 bottom (see  Figure 7.  C) 

 odor_oriented_position  Fly coordinates repositioned such that the arm in which the fly starts is always at the 
 bottom and odor 1 and odor 2 are to the left and right respectively (see  Figure 7.  C) 

 Table 5.  All processed variables from each fly experiment  on the 16Y rig. 
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 Calibrating the Rig 

 In  order  to  ensure  the  high  throughout  rig  is  functional  and  comparable  to  the  single 

 Y-maze  assay,  we  checked  the  red  (625nm)  LED  stimulation  intensity  at  different 

 power  levels  (%  maximum  input  to  the  LED  panel)  using  a  PM100D  Compact  Power 

 and  Energy  Meter  Console  (Thorlabs  Inc.,  NJ,  USA)  (  Figure 8.  ).  We  also  checked 

 the  airflow  into  every  arm  when  the  valve  was  left  open  using  a  handheld 

 FLDA3225C  Direct  Read  Flowmeter  (Omega  Engineering,  CT,  USA)  to  make  sure 

 that  the  inflow  was  roughly  equal  to  what  was  expected  (data  not  shown). 

 Closed-loop  tracking,  valve  switching  and  LED  activation  was  initially  checked  by 

 manually  introducing  obstructions  over  the  reward  regions  in  the  arenas.  Further, 

 flies  were  introduced  and  observed  during  the  experiment  to  see  if  the  LEDs  were 

 appropriately  triggered  when  the  flies  reach  the  reward  zone.  Finally,  learning 

 experiments were run on the rig to verify the functionality of the Rig. 

 Figure 8.  LED and Camera Calibration of the 4 Y-arenas  used for experiments 

 (A)  LED  Power-Intensity  log-log  calibration  curve  comparison  across  4  Y-arenas 

 fitted with a linear fit (p=4.6e-32, 2.6e-31,1.29e-30, 5.35e-30). 

 (B) Frame rate statistics for the experiments for rewarded and unrewarded frames. 

 (C) Histogram of the time of the day when experiments were run. 

 (D) Histogram of the duration of each experiment. 
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 Learning Experiments 

 For  the  OCT  vs.  MCH  experiments,  initially,  OCT  and  MCH  were  prepared  at  1:500 

 (v/v),  but  the  choices  were  found  to  have  a  strong  bias  towards  MCH  in  naive  trials 

 (data  not  shown).  Since  odors  are  anecdotally  known  to  be  aversive  at  higher 

 concentrations,  we  tried  to  balance  innate  preference  by  using  OCT  at  1:1000  (v/v) 

 and  1:250  (v/v)  concentrations.  All  these  experiments  were  performed  with  24  hr 

 starved  flies,  all  sixteen  Y-arenas  active.  However,  some  arenas  were  found  to  have 

 leaks  in  the  air  supply,  and  the  data  was  subsequently  discarded.  Rewards  were 

 administered with a 500ms red LED pulse at 25% power (1.35 mW/cm2). 

 All  further  experiments  were  run  with  a  different  pair  of  odors  on  4  Y-arena  that  were 

 verified  to  be  air-sealed,  linear  with  respect  to  LED  power,  and  fully  functional  (Figure 

 8).  For  PA  vs.  EL  experiments,  the  odors  were  at  1:1000  (v/v)  concentration. 

 Rewards  were  administered  with  a  weaker  and  shorter  250ms  red  LED  pulse  at  5% 

 power  (0.242  mW/cm2)  to  reduce  the  strength  of  learned  association  in  order  to 

 promote  dynamic  behavior.  For  MHO  vs.  HAL  choices,  we  used  the  same 

 concentration  (both  at  1:1000  (v/v)  concentration)  and  the  same  reward  configuration 

 as  the  PA  vs.  EL  experiments  but  at  three  different  levels  of  starvation:  4-13  hours, 

 28-37 hours, and 51-64 hours. 

 Sample Experiment 

 A  processed  video  of  the  sample  experiment  run  on  the  16Y  High-Throughput  Rig 

 can be found here:  https://www.youtube.com/watch?v=KypBN_mJscM 

 Video  was  generated  in  Python  3.9.2  using  Pillow  9.2.0  and  edited  by  Francesca 

 O’Hop (Freelance Video Editor, VA, USA). 
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 Mohanta (2022) “Variable Block” Behavioral Dataset 

 While  simple  associative  learning  and  reversal  experiments  can  inform  the 

 underlying  basis  of  behavior,  they  constrain  behavior  to  a  remain  somewhat  stable 

 within  each  block  and  showing  flexibility  in  preference  only  at  the  sparse  number  of 

 boundaries  between  two  blocks.  As  a  result,  any  modeling  analysis  that  might  be 

 done  to  understand  this  behavior  will  be  biased  toward  these  relatively  simple 

 dynamics.  Therefore,  to  effectively  sample  the  space  of  reward  environments  that 

 flies  can  navigate,  we  need  to  provide  them  with  a  choice  environment  where  reward 

 associations  are  uncertain  and  changes  happen  at  range  of  frequencies,  much  like 

 naturalistic  environments.  For  this  purpose,  we  design  a  series  of  Variable  Block 

 experiments (  Figure 9.  ) to sample this space systematically. 

 We  initially  ran  1:250  (v/v)  OCT  vs.  1:1000  (v/v)  MCH  and  1:1000  (v/v)  and  PA  vs. 

 1:1000  (v/v)  EL  “Variable  Block”  experiments  at  different  reward  conditions  and 

 starvation  states.  However,  we  were  faced  with  strong  bias  effects  toward  one  of  the 

 odors  that  prevented  dynamic  learning,  i.e.,  MCH  and  EL,  respectively  (data  not 

 shown).  We  subsequently  ran  a  set  of  “Variable  Block”  1:1000  (v/v)  MHO  vs.  1:1000 

 (v/v)  HAL  experiments  along  with  their  reciprocals  (experiments  with  the  odor-reward 

 associations  flipped  between  the  two  odors)  with  multiple  replicates  for  a  single 

 experiment.  Rewards  were  delivered  with  a  250ms  red  LED  pulse  at  5%  power 

 (0.242 mW/cm2). 

 40  Rishika Mohanta, IISER Pune 



 Figure 9.  Design  of  “Variable  Block”  2  Alternative  Forced  Choice  (2AFC) 
 experiments. 

 (A)  State  transitions  in  the  Variable  Block  experiments.  The  state  defines  the 

 reward-baiting  probability  for  both  odors.  Markov-state  updates  happen  at  the  end  of 

 each  trial.  Transitions  to  the  next  state  (S  i  to  S  i+1  )  happen  with  a  probability  of  h 

 (referred  to  as  the  hazard  rate).  Alternatively,  the  experiment  remains  in  the  same 

 state  with  a  probability  of  1-h.  A  block  is  defined  as  the  trials  where  the  state  is 

 conserved.  Therefore,  the  length  of  a  block  is  a  geometric  distribution.  The  odor 

 associated  with  a  greater  reward  baiting  probability  is  always  switched  between  the 

 two  states.  Further,  we  rounded  off  the  sampled  block  lengths  to  the  nearest  5th  trial. 

 Within each state, the rewards are baited (see the section on Baiting above). 

 (B)  Each  state  is  characterized  by  two  values:  reward  gain  (g)  and  reward  contrast 

 (c)  which  scale  the  average  reward  rate  and  separation  of  value,  respectively.  The 

 quantities together define the baiting probabilities for both odors. 

 (C)  All  experiments  are  sampled  from  the  space  of  reward  gain,  reward  contrast,  and 

 hazard  rate.  The  hazard  rate  is  kept  constant  for  a  session,  but  the  reward  gain  and 

 contrast  are  sampled  independently  for  each  block  of  trials.  Reward  gain  is  chosen 

 to  be  either  0.5,  0.25  or  0.125;  reward  contrast  is  chosen  to  either  1.0,  0.8,  and  0.6; 

 Hazard rate is chosen to be 0.02, 0.035, 0.05. 
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 Analysis 

 Behavioral Data analysis and modelling 

 Cognitive Q-Learning Models for predicting future choices 

 The  2AFC  task  is  modeled  as  a  1-State  Markov  Decision  Process  (MDP)  using 

 OpenAI  Gym  0.22.0  (Brockman  et  al.,  2016)  and  Python  3.9.7.  We  create  an 

 extensive  library  of  value-learning  RL  models  that  combine  a  diverse  set  of  cognitive 

 principles  into  the  Q-learning  framework.  The  first  class  of  Q-learning  rules  we 

 consider  are  the  classical  Q-learning  equations  that  have  the  following  general 

 functional form: 

 where  is  the  “value”  of  the  odor  i.e.,  the  expected  amount  of  reward,  after  the  trial 

 t,  and  is  the  reward  recieved  in  trial  t.  The  update  terms  include  (1)  an 

 associative  increase  in  value  on  reward  pairing  (learning  rate:  );  (2)  reward 

 prediction  error  strength  (error  strength:  );  (3)  sensitivity  to  future  expectation  of 

 reward  (discount  rate:  )  (Hayden,  2016;  Sutton  &  Barto,  2018)  ;  (4)  forgetting  of 

 learned  odor-value  over  time  that  may  or  may  not  be  independent  from  the  learning 

 rate  (forgetting  rate:  )  (Ito  &  Doya,  2009)  ;  (5)  aversion/perseverance  on 

 reward-omission  (omission  sensitivity:  )  (Ito  &  Doya,  2009;  López-Yépez  et  al., 

 2021;  Miller  et  al.,  2021)  (6)  independent  time-scales  for  response  extinction 

 (extinction rate:  )  (Goodman & Packard, 2019)  . 

 We  also  test  variants  of  habit-value  arbiter  models  (Miller  et  al.,  2019)  that  combine 

 estimates  of  repeated  action  (habits)  by  integrating  an  “Action  Prediction  Error” 

 (Greenstreet  et  al.,  2022)  and  estimates  of  associated  reward  (value)  by  integrating 

 a  “Reward  Prediction  Error”  to  form  a  combined  Q-estimate  with  the  following 

 function form: 
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 The update equations for this class of models have different learning terms (Table 6 

 and  ) and forgetting terms (  and  ) for updating  stimulus association (V) 

 and habits (H) which are then weighted based on a linear combination of the 

 estimates of variation (Mean Absolute Deviation MAD(x); chosen for numerical 

 stability in Theano) combined with an absolute strength for each variable (  and 

 ) to determine the final action value (Q). This class of models therefore allow not only 

 reward driven computations but dynamically shifting between goal-directed and 

 habit-driven behavior using complex cognitive variables such as reward and action 

 variability. 

 We finally describe 24 Q-learning variants that combine the different terms in the 

 Q-learning equations that are summarized in Table 6 which together span a space of 

 8 cognitive features summarized in Table 7 (Figure 9). 

 Figure 10.  Map of Cognitive Feature to Model Identity.  For a description of 

 models and cognitive features take a look at  Table 6  and  Table 7  . 
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 Accept-Reject: A novel policy function inspired by sequential behavior 

 There  are  also  multiple  ways  to  model  the  policy  that  converts  the  resultant  odor 

 values  into  odor  choices.  In  our  Y-Maze  arena,  flies  can  only  experience  one  odor  at 

 a  time.  Our  current  understanding  of  the  drosophila  mushroom  body  suggests,  that 

 while  the  memories  are  stored  in  the  KC-MBON  synapses  consistently,  they  can  only 

 be  retrieved  by  odor  exposure  triggering  KC  activation.  This  implies  that  during 

 behavior  memories  are  retrieved  in  a  sequential  fashion  with  each  memory 

 depending  on  the  current  odor.  Therefore,  their  choice  behavior  is  better  described 

 as  a  series  of  accept-reject  decisions  rather  than  a  single  binary  choice 

 (Hall-McMaster  &  Luyckx,  2019;  Hayden,  2016)  .  As  a  result,  some  randomness  in 

 the  final  choice  outcome  emerges  purely  based  on  which  odor  the  fly  encountered 

 first. 

 However,  this  makes  modeling  exploration  behavior  using  traditional  policy 

 definitions  such  as  epsilon-greedy,  softmax  (Abbott  &  Dayan,  2001;  Sutton  &  Barto, 

 2018)  ,  or  epsilon-softmax  (Shteingart  et  al.,  2013)  prone  to  inflated  estimates  of 

 exploration.  This  is  because  these  models  often  assume  a  linear  relationship 

 between  value  and  final  probability  of  choosing  an  odor.  As  a  result,  when  the  policy 

 parameters  are  inferred  from  behavior  that  might  be  resulting  from  a  non-linear 

 response  function  resulting  from  sequential  behavior  in  a  task  where  the  values  are 

 constantly  changing,  a  linear  approximation  gets  constrained  to  the  average 

 behavior.  As  a  result,  the  parameters  might  not  capture  strong  changes  in  in 

 preferences,  and  thus  provide  inflated  estimates  of  exploration.  Thus,  to  go  from 

 odor  value  to  odor  choice,  we  designed  a  novel  policy  function  which  we  call  the 

 Accept-Reject  Policy.  The  policy  function  predicts  the  probability  of  ̀accepting'  an 

 odor,  i.e.,  the  probability  that  the  fly  will  walk  to  the  decision  boundary  after 

 encountering  an  odor.  It  uses  a  linearly  scaled  sigmoid  transform  of  the  odor  value 

 estimated  using  the  Q-learning  equations  and  then  transforms  it  to  a  binary  decision 

 outcome. 

 If  ,  and  are  the  probabilities  of  the  fly  accepting  Odor  1  given  it  is  in  the 

 air  arm,  Odor  1  arm  or  Odor  2  arm  respectively,  we  can  write  the  following  equations 

 from the possible state transitions (  Figure 11.  A,  B): 
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 Solving  these  equations  for  (since  all  trials  start  in  air),  we  can  arrive  at 

 the Accept-Reject policy function defined as follows: 
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 Figure 11.  Derivation and Characterization of the  Accept-Reject Policy. 

 (A)  At  any  point  in  time,  the  fly  can  be  in  one  of  4  areas  of  the  Y-Maze,  which  we 

 define  as  fly  “states,”  i.e.,  the  air  arm  (  ),  the  odor  1  arm  (  ),  the  odor  2  arm  (  ) 

 or  at  the  decision  boundary  (  ).  Further,  a  trial  only  terminates  with  a  choice  state 

 where odor 1 is chosen (  ) or odor 2 is chosen (  ). 

 (B)  Let  be  the  probability  that  odor  i  =  1  or  2  is  accepted.  Assuming  that  once  the 

 fly  reaches  the  decision  boundary,  it  will  necessarily  enter  one  of  the  two  other  arms 

 with  equal  probability,  we  can  define  all  possible  transitions  starting  from  any  of  the 

 arms.  Circles  represent  the  arm  in  which  the  fly  is.  Square  represents  a  choice  that 

 leads to the termination of the trial. 

 (C)  A  3D  plot  of  the  odor  1  choice  probability  (  ;  i  =  1)  in  terms  of  the 

 acceptance  probability  of  the  two  odors  (  and  ).  Note  the  non-linear  response 

 of  the  function  that  allows  for  both  exploratory  behavior  (choice  probability  close  to 

 0.5)  and  greedy  behavior  (choice  probability  close  to  1)  with  small  changes  in 

 acceptance probability. 

 (D)  A  cross-section  of  the  policy  function  at  different  odor  2  valences.  (q<0.5  = 

 Aversive, q>0.5 = Appetitive) 
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 Bayesian Inference of model parameters 

 We  then  fitted  these  models  to  the  experimental  data.  Bayesian  model-fitting  was 

 done  using  a  Hamiltonian  Monte-Carlo  (HMC)  based  Bayesian  sampling  NUTS 

 Sampling  with  non-informative  (  Beta  (1,1))  or  weakly-informative  priors 

 (  HalfNormal  (0,10))  on  PyMC3  3.11.4  (Wiecki  et  al.,  2022)  .  We  sampled  all 

 parameters  for  20000  samples  (5000  samples  across  four  parallel  chains)  with  5000 

 burn-in  iterations  for  each  chain.  Convergence  across  four  parallel  MCMC  chains 

 and  effective  sample  sizes  were  evaluated  for  all  parameters  to  ensure  most  values 

 are  fully  converged  (>1.1)  and  have  a  high  effective  sample  size  (>3000  samples). 

 We  then  assessed  the  model  quality  of  fit  using  the  deviance-scaled 

 Watanabe-Akaike  Information  Criteria  (WAIC),  which  accounts  for  the  effective 

 number  of  parameters  in  the  model.  WAIC  typically  converges  to  Leave-One-Out 

 Cross  Validation  (LOOCV)  score,  making  it  very  useful  for  bayesian  model 

 comparison  (McElreath, 2016; Vehtari et al., 2017)  . 

 Estimation of Smoothed Choice Probabilities for visualization 

 We often need to visualize models' predictions and compare them to the observed 

 behavior. However, it is not intuitive to guess the fit quality by looking at actual 

 choices and comparing them to probabilities. Therefore to help visualize it, we pad 

 the choice probabilities (for odor 2) and the choice sequences (0 = odor 1 and 1 = 

 odor 2) at the start with 0.5 and take a 10-trial sliding window average such that each 

 average value gives us the number of times odor 2 was chosen/expected to be 

 chosen in the past ten trials (including the current trial). This running mean allows us 

 to visualize the average choice probability at every trial. Note that this assumes that 

 changes in probabilities are smooth and not rapid. At the same time, this 

 visualization can help make the results more intuitive; therefore, it should not be 

 used for any calculations as it forces smooth local variability. 
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 Analysis of Cognitive Q-learning models 

 We  tested  the  goodness  of  fit  on  training  data  and  predictive  power  of  the  models  on 

 held-out  test  flies  using  Normalized  Likelihood  (Miller  et  al.,  2021)  ,  which  is  defined 

 as: 

 where  T  is  the  number  of  trials,  is  the  observed  choice  (1  =  odor  1,  0  =  odor  2), 

 and  is the predicted probability of choosing odor  1. 

 We  also  compared  other  experimental  observations,  such  as  operant  matching,  by 

 comparing  blockwise  log  choice  odds  and  log  reward  odds  (Sugrue  et  al.,  2004; 

 Todorov  et  al.,  1983)  to  estimate  matching  strength  s  and  bias  b  based  on  the 

 following formula: 

 where  C  1  and  C  2  are  the  number  of  times  in  a  single  block  (trials  with  the  same 

 probability)  where  odors  1  and  2  are  chosen,  respectively;  further,  R  1  and  R  2  are  the 

 numbers  of  rewards  associated  with  each  odor  within  the  same  block.  We  simulated 

 50  replicates  of  the  experiments  described  in  Table 1  using  the  fitted  models.  We 

 then  estimated  the  blockwise  log  choice  and  reward  odds  from  the  simulated  data 

 and  fitted  them  using  a  bootstrapped  linear  model  (n=1000  bootstraps)  to  estimate 

 the confidence intervals for matching strength (s) and the bias (b) using SciPy 1.7.1. 

 In  order  to  explore  the  dynamic  computations  underlying  the  different  models,  we 

 observed  the  choice  probabilities  and  underlying  acceptance  probabilities  for  the  two 

 odors  (estimated  by  applying  the  fitted  logistic  transform  on  the  value  predictions). 

 We  simulate  1000  replicates  of  a  single  random  “Variable  Block”  experiment  (see  the 

 section  on  “Variable  Block”  experiments).  To  systematically  look  at  the  local  variance 

 in  the  acceptance  probabilities  across  models,  we  simulated  1000  different  “Variable 

 Block”  experiments  for  every  model,  quantified  a  running  standard  deviation  for  a 

 ten-trial window, and took the average for the entire session using NumPy 1.22.3. 
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 Constrained Matching Law models for predicting future choices 

 To  understand  how  well  matching  law  can  predict  the  behavior,  we  use  a  model  with 

 four  parameters  inspired  by  the  generalized  matching  law:  history  size  (H),  matching 

 strength  (s)  and  matching  bias  (b)  and  maximum  certainty  (l  max  ).  In  this  model,  we  try 

 to  predict  the  the  future  choice  using  the  estimated  reward  odds  over  a  past  time 

 window  of  size  H  (i.e.,  log(R  1,t-H:t  /R  2,t-H:t  )  ),  however  since  the  log  reward  odds  can 

 easily  explode  to  -ve  or  +ve  infinity  if  only  one  side  is  rewarded  in  the  past,  which 

 would  lead  to  certain  predictions  for  the  choice  and  also  lead  to  numerical  instability. 

 Further  it  would  fail  to  model  any  inherent  randomness  in  the  behavior  at  extreme  log 

 reward  odds,  so  we  limit  the  predicted  log  odds  to  [-l  max  ,l  max  ].  And  therefore  the  choice 

 probabilities are given by: 

 We fit the models to the “Variable Block” training dataset by setting H ∈ 

 {5,10,15,30,60} trials and optimizing the other variables by minimizing negative log 

 likelihood on the data using Neadler Mead optimization in SciPy 1.7.1 and use 

 Normalized Likelihood (see earlier section) for model evaluation and comparison. 
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 Logistic Kernel Regression models for predicting future choices 

 In  the  logistic  kernel  regression  model  for  choice,  we  try  to  predict  the  future  choice 

 as  a  logistic  regression  on  the  choice  and  reward  history  of  the  animal.  For  this,  we 

 create  a  design  matrix  with  a  sliding  window  of  size  H  (history  size)  over  the  choice 

 (C;  can  be  -1s  or  1s)  and  reward  (R;  can  be  1s  or  0s)  sequence  and  also  their 

 product  (interaction  term  R·C;  can  be  -1s,  0s  or  1s).  We  pad  the  sequences  with 

 zeros  at  the  beginning  such  that  each  window  only  has  the  history  before  the  trial 

 given  by  the  window  number.  The  three  windows  are  joined  next  to  each  other  in 

 different  combinations  (C  +  R  +  R·C  or  R  +  C  or  R  +  R·C  or  C+  R·C  ).  Therefore,  the 

 values  along  the  windows  become  the  independent  variables  used  to  regress  the 

 next  choice  at  trial  t  (given  by  the  window  number).  The  different  models  can  be 

 formalized as follows: 

 R + C + R·C model 

 R + R·C model 

 C + R·C model 

 R + C model 

 where H is the history size, b is the bias, and K  X,t  are the regression coefficients for 

 the term X at time t, and σ is the sigmoid function. The models are fit using logistic 

 regression with L2 regularization (optimized using cross-validation) in scikit-learn 

 1.0.2. The models fits are evaluated using Normalized Likelihood (see above 

 section). 
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 Q-Approximation using artificial neural networks 

 We  train  artificial  neural  networks  to  mimic  fly  behavioral  data.  We  train  two  classes 

 of  neural  networks.  Firstly,  we  design  a  simple  recurrent  network  which  we  call  the 

 Recurrent  q-Network  (RqN),  that  takes  in  a  2-dimensional  sequence  of  past  rewards 

 (0  for  unrewarded  or  1  for  rewarded)  and  choices  (-1  for  odor  1,  +1  for  odor  2).  The 

 neural  network  then  tries  to  predict  the  acceptance  probabilities  for  two  odors  (see 

 above  section  on  Accept-Reject  policy)  in  the  subsequent  trial,  which  is 

 representative  of  an  estimate  of  odor  value.  This  value  is  then  transformed  into 

 choice  probabilities  using  a  differentiable  version  of  the  Accept-Reject  policy 

 described  earlier.  Our  RqN  is  composed  of  a  reservoir  R(.)  of  NR  recurrently 

 connected  neurons  that  receive  the  sequence  of  t  trials  of  past  choices  (  C  1:t  )  and 

 (  R  1:t  ).  A  single-layer  decoder  d(.)  takes  as  input  the  hidden  dynamics  of  the  reservoir 

 R(.).  It  is  then  transformed  to  the  acceptance  probabilities  q  after  passing  it  through  a 

 special  “hard-soft”  sigmoid  nonlinearity  σhs,  which  are  transformed  into  action 

 probabilities using the Accept-Reject policy  π(Q)  . 

 Sigmoid  nonlinearities  have  a  diminishing  gradient  closer  to  the  limits  of  its  range 

 (0,1);  it  becomes  difficult  to  learn  very  strong  or  weak  predictions  of  acceptance 

 probabilities.  On  the  other  hand,  piecewise  linear  nonlinearities  are  either  unbounded 

 (  ReLU  )  or  have  the  “dying  nonlinearity”  problem  where  the  gradient  becomes  zero 

 (  ReLU  or  hardsigmoid  ).  Therefore,  we  design  and  use  a  mixed  nonlinearity 

 dominated  by  a  linear  function  (  hardsigmoid  )  between  the  range  [0.01,0.99]  and 

 dominated  by  a  saturating  sigmoid  beyond  those  values,  weakening  the  effect  of 

 both  challenges  and  facilitating  the  learning  of  strong  probabilities.  We  try  out 

 different  sizes  R  ∈  {2,  3,  5,  10,  100,  200}  hidden  neurons  for  the  reservoir,  including 

 networks  with  a  minimal  number  of  neurons,  to  look  for  the  most  parsimonious 

 behavioral models. 

 However,  this  method  of  using  an  RNN  to  learn  the  value  dynamics  has  a  significant 

 limitation  in  interpretability  as  we  do  not  know  how  the  change  in  value  is  integrated 
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 over  history.  All  the  past  choices  and  rewards  can  potentially  influence  the  change  in 

 value  at  every  next  trial.  In  order  to  deal  with  this  limitation,  we  develop  an  alternate 

 formulation  of  a  recurrent  computation  by  developing  a  Feedforward  q-Network 

 (FFqN)  that  takes  in  only  four  inputs  at  every  trial.  Using  the  choice  and  reward  in  the 

 prior  trial  (  C  t  and  R  t  ,  respectively)  and  the  predicted  acceptance  probabilities  in  the 

 last  trial  (  q  1 
 t  and  q  2 

 t  ),  the  FFqN  predicts  the  updated  acceptance  probabilities  for  the 

 next  trial.  The  network  is  composed  of  a  series  of  feedforward  hidden  layers  h  1  , 

 h  2  …h  d  ,  where  d  is  the  depth  of  the  network  with  intermediate  ReLU  nonlinearities, 

 and  each  layer  has  n  neurons.  The  choice  probability  at  any  arbitrary  trial  can  be 

 found  by  recursively  passing  the  choice  and  reward  history  to  the  FFqN  while 

 feeding  the  output  of  the  last  iteration  as  the  input  to  the  next.  We  try  different  depths 

 and  widths  for  the  hidden  layers  of  the  feedforward  network  with  (h,n)  =  {(1,2),  (2,2), 

 (1,5), (2,5), (1,10), (2,10), (3,10), (2,100), (3,100)}. 

 While  this  architecture  has  the  limitation  that  it  has  only  two  dimensions  of  memory, 

 i.e.,  q  1  and  q  2  ,  and  each  step  of  the  update  is  only  dependent  on  the  choice  and 

 outcome  of  a  single  trial,  it  provides  us  an  easily  interpretable  framework  to 

 understand  the  behavior  by  systematically  dissecting  the  learned  function  F(x)  which 

 updates  two  variables  [q  1  ,q  2  ]  using  only  2  binary  variables  [C  t  ,  R  t  ]  and  therefore  have 

 only  four  possible  combinations:  (a)  Odor  1  chosen  and  rewarded  (C-R+),  (b)  Odor  2 

 chosen  (C+R+)  and  rewarded,  (c)  Odor  1  chosen  and  not  rewarded  (C-R-)  (d)  Odor 

 2  chosen  and  not  rewarded  (C+R-).  The  update  in  the  acceptance  probabilities  can 

 therefore  be  fully  characterized  as  a  vector  field  over  [0,1]×[0,1]  under  the  four 

 different  conditions  and  studied  as  a  conditional  first-order  discrete  dynamical 

 system  with  typical  methods  used  in  studies  of  non-linear  dynamics  and  dynamical 

 systems theory such as attractor analysis. 
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 However,  there  is  one  major  drawback  with  both  the  proposed  models.  As  a  result  of 

 their  flexibility,  these  network  architectures  are  susceptible  to  even  slight  differences 

 in  the  preference  or  learning  rate  between  odors  that  might  present  in  the  behavior. 

 Since  there  is  a  large  variability  between  different  individuals,  there  is  potentially  a 

 chance  that  the  networks  get  stuck  in  minima  with  strong  asymmetric  behavior.  The 

 observed  dynamics  are  thus  linked  to  the  odor  identity  making  them  less 

 generalizable  and  informative  of  fly  behavior.  While  one  solution  would  be  to  perform 

 data  augmentation  to  symmetrize  the  dataset  to  make  it  more  balanced,  this  would 

 increase  the  biological  variability  that,  combined  with  the  small  dataset  size,  might 

 drastically  reduce  the  chances  of  discovering  the  general  underlying  learning  rule. 

 Therefore  we  introduce  a  new  symmetrization  technique  that  we  refer  to  as 

 q-Network Output Symmetrization (qNOS) (  Figure 12.  ). 

 We  build  and  train  the  networks  in  PyTorch  1.11.0  by  minimizing  the  Cross-Entropy 

 loss  between  the  predicted  choice  probabilities  and  the  actual  binary  choice  behavior 

 observed  in  the  flies.  The  predicted  choice  probabilities  are  calculated  using  the 

 Accept-Reject  policy  function  on  the  network  output.  We  minimize  the  loss  using 

 Stochastic  Gradient  Descent  with  an  adaptive  moment  estimation  (Adam)  optimizer. 

 Weight  decay  (L2  regularization)  was  set  to  1e-5  and  the  learning  rate  to  5e-4.  We 

 train  the  25  replicates  of  each  network  architecture  to  produce  an  ensemble  of 

 trained  networks  to  help  find  the  generalized  learning  rule  used  by  the  flies  rather 

 than  being  dependent  on  the  inferred  values  for  one  well-fit  model.  The  training 

 dataset  was  randomly  split  in  an  80:20  ratio  to  training  and  validation  sets  for  each 

 ensemble  fit.  The  validation  set  was  used  to  implement  early  stopping.  For  the 

 overall  training,  patience  was  set  to  2500  epochs,  and  training  was  done  for  a 

 maximum of 10000 epochs. 

 56  Rishika Mohanta, IISER Pune 



 Figure 12.  Schematic of q-Network Output Symmetrization  (qNOS) 

 qNOS  modifies  the  architecture  of  the  network  in  other  to  ensure  that  the  network’s 

 output  is  always  symmetric,  i.e.,  if  the  identities  of  the  odors  were  flipped,  the 

 predicted  acceptance  probabilities  would  also  be  exactly  flipped.  We  do  this  by 

 creating  a  copy  of  the  choice  input,  flipping  the  odor  identities,  and  passing  it  into  a 

 copy  of  the  network.  The  outputs  of  the  copies  of  the  network  (q’  1  ,q’  2  ,  and  ’  1  ,  ’  2  𝑞  𝑞 

 respectively)  are  cross-averaged  between  the  two  copies  of  the  network,  i.e.,  q’1  is 

 mixed  with  ’  2  to  get  the  final  output  q  1  and  vice  versa.  While  this  effectively  𝑞 

 increases  the  number  of  independent  neurons  in  the  network,  we  retain  the  same 

 number  of  parameters  by  coupling  networks’  activities  through  shared  weights.  This 

 symmetrization  ensures  that  learning  both  possible  directions  of  odor  choice-reward 

 association happens simultaneously. 
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 Quality Control and Analysis of trained q-Networks 

 To  validate  that  the  models  are  performing  realistically,  we  simulate  two  sets  of 

 experiments:  i)  Reward  paired  with  odor  1  for  100  trials  (exp  1)  and  ii)  Reward  paired 

 with odor 2 for 100 trials (exp 2). We then calculated two scores as follows: 

 Learning Score = E[Odor 2 is chosen in exp 2] + E[Odor 1 is chosen in exp 1] - 1 

 Asymmetry Score = | E[Odor 1 is chosen in exp 1] - E[Odor 2 is chosen in exp 2] | 

 The  learning  score  is  always  between  -1  and  1,  where  -1  corresponds  to  perfectly 

 learning  a  negative  association  and  1  is  perfectly  learning  a  perfect  positive 

 association.  The  asymmetry  score  lies  between  0  and  1,  where  zero  means  it  learns 

 equal  associations  on  both  odors  irrespective  of  magnitude  and  1  when  the 

 associations  are  biased  in  the  same  direction  despite  opposite  reward  pairing.  We 

 filter  out  trained  networks  with  low  learning  scores  <0.75  and  high  asymmetry  scores 

 >0.25. 

 In  order  to  analyse  the  trained  FFqN,  we  evaluated  the  output  of  the  network  at 

 100x100  linearly  spaced  grid  points  on  acceptance  probabilities  q  1  ×q  2  =  [0,1]×[0,1] 

 for  the  four  conditions  C×R  =  {-1,1}×{1,0}  (alternatively  referred  to  as 

 C-R+,C-R-,C+R+  and  C+R-).  We  subtract  the  original  acceptance  probabilities  from 

 the  final  output  to  find  the  update  vectors,  which  we  map  onto  the  space.  We 

 visualize  the  generated  vector  field  as  a  stream  plot.  In  order  to  find  the  attractors  in 

 the  network,  we  randomly  choose  a  starting  point  and  simulate  the  update  under  the 

 same  condition  repeatedly  for  a  maximum  of  1000  trials  and  check  if  the  update  has 

 converged  to  a  stable  value.  We  do  this  across  multiple  initial  conditions  to  find 

 multiple  fixed  point  attractors  if  present.  We  quantify  the  predicted  choice  probability 

 at  each  point  in  the  space  by  applying  the  Accept-Reject  policy  (see  the  previous 

 section) to the acceptance probabilities. 

 To  characterize  the  nature  of  the  fixed  point  attractors,  we  look  at  the  choice 

 probability at the attractor and transform it to an asymptotic choice index as follows: 

 Asymptotic Choice Index = 2 P(Choosing Odor 2) - 1 

 For  analyzing  the  trained  symmetric  RqNs,  we  pass  all  the  training  data  (we  use  the 

 training  data  since  we  only  have  a  small  test  dataset)  through  the  RqN  to  get  the 
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 dynamics  of  the  preference.  However,  we  extract  the  dynamics  of  the  hidden 

 reservoir  neurons  and  apply  PCA  across  the  neuron  identity  axis  on  the  hidden 

 dynamics  of  all  the  training  data.  Since  PCA  is  unique  up  to  the  sign  of  the  PC  axis, 

 we  need  to  make  the  different  trained  models  comparable.  We  infer  the  axis  sign  by 

 flipping  the  sign  on  the  PCs  and  comparing  it  to  the  set  of  predicted  PCs  for  the  first 

 ensemble  as  a  reference  using  the  sign  of  Pearson's  correlation  between  PCs  as  a 

 criterion.  The  sign  information  was  then  used  to  visualize  PCs  and  later  to  look  at  the 

 trained  kernels.  We  reconstructed  the  hidden  dynamics  from  the  PCs  using  different 

 numbers  of  principle  components  and  compared  the  prediction  by  passing  the  input 

 through  the  decoder  d(.)  (see  section  earlier)  using  Normalized  Likelihood  (see 

 section  earlier).  We  calculate  the  autocorrelation  on  each  PC  and  find  the  lag  at 

 which the autocorrelation is at half its initial maximum to compute the half-life. 

 For  Kernel  Regression  Analysis  for  the  PCs,  we  create  a  design  matrix  with  a  sliding 

 window  of  80  trials  over  the  choice  (C;  can  be  -1s  or  1s)  and  reward  (R;  can  be  1s  or 

 0s)  sequence  and  also  their  product  (interaction  term  R·C;  can  be  -1s,  0s  or  1s).  The 

 values  are  padded  with  zeros  at  the  beginning  such  that  each  window  has  the  history 

 before  the  trial  given  by  the  window  number.  The  three  windows  are  joined  next  to 

 each  other,  and  the  values  along  the  windows  become  the  independent  variables 

 used  to  regress  the  future  PCs.  The  quality  of  the  fit  was  estimated  with  an  R2  score, 

 and the predictions were compared using Normalized Likelihood. 

 59  Rishika Mohanta, IISER Pune 



 Choice Engineering using Q-Learning Models 

 As  defined  earlier,  a  reward  schedule  is  a  series  of  deterministic  choice-reward 

 outcomes  for  both  odors  that  the  fly  can  choose  in  every  trial.  We  develop  two 

 stochastic  optimization  methods  for  finding  reward  schedules  that  maximize  the  bias 

 for  different  models:  (a)  Genetic  Optimization  (Yang,  2014)  and  (b)  Thermal 

 Annealing  (Dan  &  Loewenstein,  2019)  (  Figure 13.  ).  To  find  the  maximally-biasing 

 schedules,  we  start  from  either  a  random  reward  schedule  or  a  naive  best  guess, 

 i.e.,  a  ‘primacy’  schedule  where  all  the  rewards  for  the  target  odor  are  localized  at 

 the  start  and  the  end  of  the  session  for  the  distractor  (non-target)  odor.  The  idea  here 

 is  that  if  there  is  a  strong  primacy  effect,  the  first  experienced  reward  association  will 

 have the best retained preference. 

 The  optimization  is  repeated  ten  times  for  each  algorithm/initialization  pair,  and  the 

 ‘best’  (maximally-biasing  schedules)  are  chosen  after  a  maximum  of  200  generations 

 of  optimization.  We  also  implement  an  early  stopping  paradigm  for  optimization 

 where  the  optimization  is  terminated  if  no  better  schedules  are  found  over  ten 

 generations.  We  optimized  the  reward  schedules  for  five  representative  models 

 across  the  spectrum  of  model  fits  (RF-QL,  LT-QL,  F-RF-QL,  DF-LT-QL,  and 

 DF-LT-OS-QL). All algorithms were implemented in Python 3.9.7 using custom code. 

 To  find  the  best  schedules  for  experimental  testing,  all  the  top  reward  schedules  from 

 each  initialization/algorithm  pair  were  re-evaluated  for  bias  using  1000  independent 

 agents  of  the  model  being  tested.  The  top  10  schedules  were  identified.  The  bias 

 distribution  of  the  top-ranking  schedule  was  compared  with  the  other  nine  schedules, 

 and  only  ones  that  were  not  significantly  lower  (p>0.05;  Mann-Witney  U  Test)  were 

 kept.  Eight  schedules  were  randomly  sampled  (with  replacement)  from  this  set.  Two 

 reward  sequences  were  generated,  each  with  one  of  the  two  odors  as  the  target 

 odor,  to  ensure  that  the  results  were  not  biased  by  choice  of  the  target  odor  and  run 

 on  the  single  fly  Y-maze  described  in  Rajagopalan  et  al.,  2022  .  OCT  (1:500  v/v  with 

 1:10  air  dilution)  and  MCH  (1:500  v/v  with  1:10  air  dilution)  were  used  as  the  target 

 and distractor odors. 
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 Figure 13.  Open-loop  choice  engineering  using  stochastic  optimization 
 techniques 

 (A)  Genetic  Algorithm  approach:  A  population  of  N  =  100  reward  schedules  is 

 initialized.  In  every  generation,  there  are  three  steps:  i)  Evaluation:  1000  agents  of 

 the  RL  model  being  tested  are  simulated  for  each  schedule;  ii)  Selection:  The  top  f  = 

 20%  schedules  with  the  maximum  average  bias  (%  choices  where  the  target  odor 

 was  chosen)  are  kept,  and  the  rest  are  discarded.  iii)  Mating  (see  inset):  From  the 

 surviving  population,  pairs  of  parents  are  randomly  selected  (with  replacement)  to 

 generate  the  new  population.  New  children  are  created  from  the  parents  by 

 swapping  blocks  of  rewards  between  parents  defined  by  n+1  “crossover”  points 

 along  the  session  where  n  ∼  Poisson(0.25).  New  mutations  are  added  by  randomly 

 shuffling  5%  of  the  trials  for  each  odor  independently.  Further,  a  repair  process 
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 randomly  removes  excess  rewards  or  compensates  for  reward  deficits  to  ensure  the 

 number of rewards remains constant. 

 (B)  Thermal  Annealing  approach:  A  single  schedule  is  taken,  and  its  rewards  are 

 randomly  shuffled  to  generate  a  population  of  100  new  schedules,  keeping  a  copy  of 

 the  original  schedule  in  the  population.  The  number  of  shuffles  is  randomly  chosen 

 uniformly  between  2  and  T  where  the  temperature  T  =  ⌈A  −  g/B⌉  where  A  =  100,  B  = 

 2,  and  g  is  the  generation  number.  We  simulate  1000  agents  of  the  model  being 

 tested  on  each  schedule,  and  the  ‘best’  option  is  kept,  and  the  entire  process  is 

 repeated. 
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 High-Throughput Y-Maze Experiments 

 Quantifying Preference and Learning 

 To  evaluate  the  strength  of  preference  in  an  experimental  phase,  we  used  the  choice 

 index defined below: 

 Choice Index  = (2 ⨯ fC  2  ) -1 

 Where  fC  2  is  the  fraction  of  trials  where  odor  2  is  chosen  during  an  experimental 

 phase. 

 Since  the  choice  index  is  always  bounded  between  -1  and  1,  any  measure  of  a 

 difference  between  choice  indices  is  subject  to  edge  effects.  Since  the  choice  index 

 measures  the  probability  of  choosing  an  odor,  we  use  a  logit  transform  on  the 

 fraction  of  times  odor  2  was  chosen  to  recover  the  underlying  strength  of  preference. 

 However,  the  logit  is  not  defined  if  the  fraction  of  trials  where  odor  2  was  chosen  is  1 

 or  0.  Therefore,  the  value  of  the  fraction  was  bounded  between  [1/N,1-1/N],  where  N 

 is  the  number  of  trials,  as  any  probability  higher  than  1-1/N  or  lower  than  1/N  will  be 

 indistinguishable.  The  change  in  this  score  between  experimental  phases 

 determines the strength of learning. We call this the learning index: 

 Learning index  B-A  = logit(max(min(fC  2  B  ,1-1/N),1/N))  -  logit(max(min(fC  2  A  ,1-1/N),1/N)) 

 where  fC  2X  is  the  fraction  of  trials  where  odor  2  is  chosen  during  an  experimental 

 phase X. 

 Quantifying fly kinematics 

 All variables used for the analysis are defined in  Table 4  and  Table 5  . 

 We  calculate  the  average  instantaneous  speed  for  a  trial  by  filtering  the 

 instantaneous  speeds  by  the  current  trial  number  and  averaging  all  frames. 

 Residence  densities  are  calculated  by  summing  up  and  normalizing  all  the 

 odor-oriented  positions  for  all  trials  in  the  subdivision  of  the  experiments.  The 

 difference  in  odor  residence  times  is  compared  by  directly  subtracting  the  trial  odor 

 residence  times  from  each  other.  The  difference  in  odor  rejections  is  counted  by 

 looking  at  the  number  of  encounters  in  a  trial  where  the  encounter  decision 

 outcomes  are  rejections  further  filtered  by  the  identity  of  the  odor  and  then 
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 subtracted  from  each  other.  Instantaneous  speeds  were  filtered  by  current  odor  and 

 averaged  per  trial,  and  the  difference  was  taken  to  calculate  the  speed  difference  in 

 odor.  Preference  was  calculated  by  looking  at  the  identity  of  the  encounter  odors, 

 looking at the fraction of encounters per odor, and taking the difference. 
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 Statistics 

 All  statistics  were  performed  in  Python  3.9.7  using  the  SciPy  1.7.1  and  statsmodels 

 0.12.2. All statistical tables are summarized in the  Statistical Results  section. 

 For  any  statistics  on  simulated/bootstrapped  estimates,  to  prevent  inflated  estimates 

 of  statistical  significance,  we  use  an  m-out-of-n  bootstrap-based  sample-size 

 correction  for  all  statistical  tests  with  m  =  number  of  flies  the  data  was  collected  on 

 and  n  =  number  of  simulated/bootstrap  samples  or  ensembles.  Under  this  paradigm, 

 we  perform  the  statistical  test  between  randomly  subsampled  sets  of  m  data  points 

 out  of  n  data  points  (either  paired  or  unpaired  across  simulations/ensembles).  We 

 then  estimate  the  95%  percentile  p-value  or  5%  effect  size  to  make  claims  about 

 statistical  significance/effect  with  95%  certainty  based  on  this  value,  provided  the 

 underlying distribution is well-behaved for bootstrapping. 

 Symbol conventions are maintained throughout the thesis. 

 Statistical Significance is symbolized using stars. 

 ns : not significant,  * : <0.05, ** <0.01, *** : <0.001, **** : <0.0001; 

 Effect Sizes are represented using carets. 

 For  Cohen’s  d,  neg  :  <0.2  =  negligible,  ̂   :  <0.5  =  small,  ̂ ^  :  <0.8  =  medium,  ̂ ^^  : 

 >0.474  =  large;  For  Cliff’s  δ,  neg  :  <0.142  =  negligible,  ̂   :  <0.33  =  small,  ̂ ^  :  <0.474 

 =  medium,  ̂ ^^  :  >0.474  =  large;  For  Matched-pair  Rank-Biserial  Correlation  :  <0.1  : 

 negligible, <0.3 : small, <0.4 : medium, >0.4: large. 

 Code and Data Availability 

 All Q-Learning models and neural network models developed as a part of this project 

 are available for public use as a Reinforcement Learning package for Python at: 

 https://github.com/neurorishika/FlYMazeR  L. Analysis  code for all experiments are 

 available at  https://github.com/neurorishika/FlYMazeRL_Analysis  and 

 https://github.com/neurorishika/FlYMazeRL_ChoiceEngg  .  Experimental datasets 

 from the 16Y assay will be made public in the future. 
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 Results 

 This  section  divided  into  two  sub-sections  for  logical  consistency:  (1)  Analysis  of 

 Rajagopalan  (2022)  “Fixed  Block”  Dataset,  and  (2)  High-Throughput  Y-Maze 

 Experiments. 

 Analysis of Rajagopalan (2022) "Fixed Block" dataset 

 Value learning rules for fruit fly behavior 

 Cognitive  Q-Learning  models  that  include  forgetting  and  perseverance  are  needed  to 

 better explain fly behavior 

 We  developed  a  Python-based  computational  framework  (FlYMazeRL)  for  the 

 simulation  and  bayesian  model-fitting  of  various  Reinforcement  Learning  models 

 performing  a  2AFC  task.  We  fit  24  Q-Learning  Models  incorporating  different 

 cognitive  features  (  Figure 14.  ;  see  Table 6  and  Table 7  for  details  on  cognitive 

 features)  on  data  collected  from  21  flies  in  a  dynamic  reward  learning  task 

 (Rajagopalan  et  al.,  2022;  see  methods  for  details  on  the  dataset).  We  find  that  most 

 models  reliably  converge  (close  to  1)  and  are  well  sampled  (Effective  sample  size  > 

 3000);  however,  some  parameters  in  the  more  complex  models  need  further 

 sampling  for  more  reliable  estimates  (  Table 8  and  Table 9  ).  We  also  find  that  some  of 

 the  cognitive  variables  in  the  models  have  a  substantial  impact  on  the  values  of  the 

 parameters (  Table 14  ; ANOVA Test). 

 We  find  that  the  differences  in  estimates  of  predictive  accuracy  using  Normalized 

 Likelihood  [Test]  between  models  are  limited  by  the  number  of  test  data  points  (n  =  3 

 flies).  As  a  result,  the  other  models  are  not  significantly  different  from  the  best 

 predictive  model  (DF-LT-QL)  and  have  a  small  effect  size.  The  quality  of  fit  estimate 

 (deviance-scaled  WAIC)  shows  that  models  that  include  learning-independent 

 forgetting,  temporal  discounting,  and  perseverance  (in  the  form  of 

 omission-sensitivity  or  action  prediction  errors,  i.e.,  DF-LT-OS-QL  and  DF-LT-HV-QL) 

 perform  significantly  better  compared  to  all  other  models  (  Table 13  ;  z-test  and 

 Cohen’s d effect size). 

 We  visualize  the  predictions  of  the  models  from  the  test  set  flies  using  smoothed 

 choice  probabilities  from  both  the  data  and  the  model  fits  (  Figure 15.  A–E).  We  find 
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 that  all  models  successfully  change  their  preferences  in  one  direction.  However, 

 RF-QL  models  fail  to  change  their  preference  in  the  opposing  direction.  All  other 

 models  can  dynamically  track  and  predict  the  changing  preferences  bidirectionally. 

 Simple  models  (such  as  LT-QL)  can  only  produce  small  perturbations  in  the 

 probability  and  do  not  predict  substantial  preference  changes.  The  better  models 

 show  similar  but  sharper  predictions  (i.e.,  closer  to  0  or  1).  It  is  essential  to  note  that 

 the  predicted  probabilities  are  closer  to  0.5  (alternatively,  ‘softer’)  than  the  smoothed 

 choice probabilities across trials estimated from the data. 
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 Figure 14.  Q-Learning  Models  of  Rajagopalan  (2022)  "Fixed  Block"  dataset 
 reveals  that  including  learning-independent  forgetting,  perseverance,  and 
 temporal  discounting  in  the  value  update  improves  the  model’s  explanatory 
 power. 

 The  goodness  of  fit  is  estimated  using  the  deviance-scaled  Watanabe-Akaike 

 Information  Criterion  (WAIC;  blue),  which  is  a  bayesian  posterior  estimate  of 

 parameter  count  adjusted  deviance.  The  difference  of  each  model’s  WAIC  relative  to 

 the  best  model  is  compared  using  a  two-sided  z-test  (stars  for  statistical  significance; 

 see  methods)  and  Cohen’s  d  (carets  for  effect  size).  Predictive  accuracy  estimated 

 using  Normalized  Likelihood  [Test]  (yellow)  is  compared  relative  to  the  best  model 

 using  a  bootstrap-corrected  two-sided  paired  samples  t-test  (m=3  flies,  n=1000 

 bootstraps;  see  methods)  (stars  for  statistical  significance)  and  paired  Cohen’s  d 

 (carets  for  effect  size).  The  ‘+’  and  ‘-’  symbols  at  the  bottom  signify  which  cognitive 

 features  (see  Figure 10.  and  Table 7  )  are  included  in  the  model.  Error  bars  show 

 Standard  Error  for  WAIC  and  Normalized  Likelihood  [Test].  See  Table 13  for 

 statistics, p-values, and effect sizes. 
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 Figure 15.  Predicted  choice  probabilities  for  different  models  show 
 diminishing differences with more complex models. 

 (A–E)  Smoothed  predicted  choice  probabilities  with  95%  confidence  interval 

 estimated  from  1000  simulations  of  5  representative  models  across  the  spectrum  of 

 model  fits  for  three  flies  that  were  not  trained  on  the  data  overlaid  on  smoothed 

 choice probabilities estimated from the data with a ten-trial window (see methods). 
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 Cognitive  Q-Learning  Models  cannot  fully  explain  the  degree  of  matching  observed 

 in the experiments 

 We  simulate  multiple  replicates  of  the  experiments  from  which  the  data  was  collected 

 (  Table 2  )  to  see  if  the  models  can  capture  the  same  phenomenological  behavior  of 

 operant  matching  observed  in  Rajagopalan  et  al.,  2022  .  We  find  that  most  models 

 other  than  the  RF-QL  model  show  operant  matching  behavior  with  undermatching 

 (i.e.,  options  are  chosen  at  a  lower  frequency  than  the  reward  probability)  (  Figure 16. 

 A).  Intriguingly,  the  strength  of  observed  matching  is  even  weaker  than  the  observed 

 data  for  all  models  (  Figure 16.  B;  Table 15  ).  The  DE-LT-QL  model  is  the  only 

 exception  that  shows  more  substantial  matching  than  the  observed  data.  Further,  we 

 observe  that  the  model  behavior  is  unbiased  (b≈0)  while  the  observed  data  is  not 

 (  Figure 16.  C;  Table 15  ). 
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 Figure 16.  Q-Learning  Models  preserve  the  matching  behavior  observed  in 
 behavior. 

 (A)  Generalized  matching  law  observed  as  a  linear  function  between  log(choice 

 odds)  vs.  log(reward  odds)  within  each  block  of  trials  with  static  baiting  probabilities 

 for  the  experimental  data  and  simulations  of  50  repeats  of  the  18  experiments  for  the 

 different  models.  Five  representative  models  along  the  spectrum  of  the  model  fits  are 

 visualized.  Linear  fit,  correlation  coefficient  R,  and  associated  p-value  are  plotted  and 

 reported. 
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 (B–C)  Matching  strength  and  bias  (see  methods)  for  the  data  and  the  model 

 simulations  with  bootstrapped  95%  CI.  The  grey  band  represents  the  95% 

 confidence  interval  for  the  observed  data.  Model  behavior  is  compared  to  the 

 experimental  data  using  bootstrap-corrected  Mann-Whitney  test  (m=18  flies,  n=1000 

 simulations,  1000  random  bootstraps;  see  methods)  (stars  for  statistical  significance) 

 and  Cliff’s  delta  effect  size  (caret  for  effect  size).  See  Table 15  for  statistics,  p-values, 

 and effect sizes. 

 Cognitive  Q-Learning  models  differ  in  the  dynamics  of  the  value  despite  similar 

 average behavior 

 Since  the  behavior  for  the  different  models  that  performed  better  than  the  RF-QL 

 models  had  very  similar  predictions  and  behavior,  we  sought  to  understand  the 

 differences  in  the  underlying  computations  between  different  models.  For  this,  we 

 looked  at  the  dynamics  of  the  estimated  value.  We  do  so  by  looking  at  how  the 

 acceptance  probabilities  for  the  two  odors  predicted  by  each  model  change  over 

 time.  We  simulate  a  random  “Variable  Block”  experiment  (  Figure 17.  A;  see  methods) 

 in  response  to  which  a  simulated  fly  can  replicate  a  matching  behavior  (  Figure 17.  B) 

 and  then  look  at  the  underlying  value  code  of  the  models.  It  reveals  that  the  RF-QL 

 fails  to  dynamically  change  its  preference  as  it  first  learns  to  accept  the  rewarded 

 odor  and  then  learns  to  accept  the  other  odor  but  cannot  “forget”  this  learned 

 association.  Therefore,  it  learns  to  prefer  an  odor  and  then  balance  its  preference 

 with another odor but fails to choose beyond them further (  Figure 17.  C). 

 Beyond  the  RF-QL  model,  all  models  start  to  have  very  similar  average  dynamics  in 

 terms  of  the  observed  preference  and  acceptance  probabilities;  however,  looking  at 

 the  trajectories  of  a  single  session  does  reveal  apparent  differences  in  the  dynamics 

 (  Figure 17.  D–G).  In  the  better  models,  we  observe  much  faster  dynamics  that  allow 

 rapid  changes  in  acceptance  probabilities  and  preference.  This  local  variance  is 

 quantified  and  is  found  to  be  present  in  all  models  with  forgetting  (  Figure 17.  H; 

 Table 16  ) 
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 Figure 17.  The  dynamics  of  value  underlying  different  models  reveal 
 differences in local variance. 

 (A)  An  example  of  a  single  random  “Variable  Block”  experiment  generated  by 

 simulating a simple Markov chain (see methods). 

 (B)  Behavioral  trajectory  of  a  simulated  fly  using  the  best  model  (DF-LT-OS-QL)  on 

 the  example  Variable  Block  experiment  that  shows  a  matching  between  running 

 reward ratio and choice ratio. 

 (C–G)  Underlying  preference  dynamics  for  five  representative  models  across  the 

 spectrum  of  model  fits  visualized  using  i)  choice  probability  P  c  (Odor  2)  =  the 
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 probability  of  choosing  odor  2;  ii)  acceptance  probability  P  a  (Odor  1  or  Odor  2)  =  the 

 probability  of  choosing  odor  1  or  odor  2  (representative  of  its  value)  along  with  its 

 95%  confidence  interval  (shaded  area)  calculated  with  1000  independent 

 trajectories.  Five  sample  trajectories  from  the  simulated  data  are  shown  overlaid  on 

 the data. 

 (H)  Quantification  of  the  local  variance  across  a  single  session  for  different  models. 

 The  shaded  area  represents  the  95%  confidence  interval  of  the  best  model. 

 Differences  from  the  best  model  are  quantified  using  bootstrap-corrected 

 Mann-Whitney  U  test  (m=18  flies,  n=1000  simulations;  unpaired  data  was  sampled 

 using  1000  bootstraps;  see  methods)  (stars  for  statistical  significance)  and  Cliff’s 

 delta effect size (carets for effect size). See  Table 16  for p-values and effect sizes. 
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 De-novo value learning rule estimation using artificial neural networks 

 Our  Q-learning  approach  is  faced  with  the  limitation  that  if  there  are  features  that  a 

 fly  utilizes  in  its  learning  process  that  we  do  not  include  in  our  analysis,  we  will  be 

 unable  to  discover  the  importance  of  these  features.  We  might  be  missing  out  on  a 

 large  class  of  algorithms  because  we  are  only  sampling  a  small  fraction  of  the  space 

 of  all  value  learning  rules,  a  fraction  of  which  are  likely  to  be  utilized  by  the  fly. 

 (  Figure 18.  A)  Therefore,  there  is  a  need  for  an  unbiased  framework  to  understand 

 and  model  the  learning  rule  used  by  a  fly.  For  this  purpose,  we  look  to  artificial  neural 

 networks,  which  are  known  to  be  “universal  function  approximators”  (Schäfer  & 

 Zimmermann,  2006;  Sonoda  &  Murata,  2017)  to  try  and  create  a  “universal  value 

 approximator”  by  incorporating  a  neural  network  into  the  reinforcement  learning 

 framework  (  Figure 18.  B).  Instead  of  optimizing  the  neural  network  to  perform  the 

 same  task  as  the  flies  optimally,  we  use  an  imitation  learning  framework  to  infer  the 

 trajectory of value updates (  Figure 18.  B). 

 In  order  to  infer  the  dynamics  of  value  underlying  the  behavior  we  observe  in  flies, 

 we  train  an  ensemble  of  two  major  classes  of  neural  networks:  Feedforward 

 q-Networks  (FFqN)  and  Recurrent  q-Networks  (RqN)  (  Figure 18.  C).  Both  types  of 

 networks  are  trained  to  predict  the  value  (defined  as  the  probability  of  accepting 

 each  odor)  given  the  sequence  of  past  choices  and  rewards.  We  try  two  variants  for 

 each  class  of  neural  network:  asymmetric  and  symmetric.  Symmetric  variants  are 

 constrained  to  produce  the  exact  flipped  preferences  if  the  identity  of  the  input  odors 

 is  flipped.  In  contrast,  asymmetric  variants  are  allowed  to  respond  to  two  odors  with 

 different learning rules. 
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 Figure 18.  Neural  networks  can  flexibly  estimate  the  value  learning  rules  via 
 imitation learning. 

 (A)  Venn  Diagram  of  how  we  think  the  space  of  value  learning  rules  are  organized. 

 The  space  of  value  learning  is  much  bigger  than  the  space  we  sample  using  our 

 cognitive  feature  Q-learning  models  and  is  constrained  by  many  assumptions.  The 

 actual  space  of  learning  rules  that  the  fly  uses  may  only  partially  overlap  with  our 

 models; therefore, we need a way to sample the space with minimal assumptions. 

 (B)  Our  framework  of  value  learning  essentially  needs  a  black  box  Universal  Value 

 (Q)  Approximator  (pink)  that  is  capable  of  taking  all  of  the  histories  and  using  it  to 

 predict  the  acceptance  probabilities  (q  1  and  q  2  ;  representative  of  odor  value).  These 

 probabilities  are  then  transformed  by  the  Accept-Reject  policy  (see  methods)  and 

 sampled  to  give  the  choices.  The  choices  are  then  associated  with  rewards  from  the 

 environment.  In  order  to  find  what  this  black  box  does,  we  can  use  a  Neural  Network 
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 to  try  and  imitate  the  behavior  observed  constrained  by  the  same  value  learning 

 framework. 

 (C)  We  can  use  many  different  architectures  for  the  neural  network  to  approximate 

 the  behavior.  However,  the  two  leading  types  of  artificial  neural  networks  (ANNs) 

 used  by  Machine-Learning  (ML)  researchers  are  Recurrent  Neural  Networks  (RNNs) 

 and  Feedforward  Neural  Networks  (FFNNs).  We  use  these  ANNs  to  create  two 

 different  classes  of  value  estimation  networks.  Recurrent  q-Networks  (RqNs)  take  in 

 the  entire  sequence  of  past  histories  to  predict  the  acceptance  probabilities  in  the 

 subsequent  trial.  Feedforward  q-Networks  take  only  the  acceptance  probabilities  of 

 the  last  trial  and  update  them  using  the  choice  and  reward  from  the  current  trial  to 

 update the acceptance probabilities for the subsequent trial. 
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 Small  Neural  Networks  can  approximate  Q-update  functions,  often  better  than 

 Q-learning models 

 We  look  at  how  well  different  architectures  (ranging  from  small  to  large  networks)  of 

 neural  networks  fit  and  predict  behavior  (  Figure 19.  A–B).  We  find  that  even  small 

 RqNs  with  reservoirs  of  less  than  five  neurons  are  good  at  both  fitting  and  predicting 

 the  behavior,  with  the  best  overall  model  being  the  symmetric  RqN  (i.e.,  symRqN(3) 

 with  a  reservoir  with  six  effective,  hidden  neurons)  performing  even  better  than  the 

 best  Q-learning  model  (  Figure 19.  A;  right).  The  relatively  simpler  FFqNs  also 

 manage  to  capture  and  predict  the  model  but  fail  to  perform  as  well  as  the  best 

 Q-learning  models  (  Figure 19.  A;  left).  We  visualize  the  quality  of  the  predictions  by 

 looking  at  the  smoothed  choice  probabilities  predicted  by  the  data  and  the  neural 

 networks  and  find  that  all  of  the  best  models  from  network  class-variant  pairs  capture 

 the  dynamics  of  the  preference  quite  well.  However,  the  differences  between  model 

 quality are minimal and are hard to observe after smoothening (  Figure 19.  B). 
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 Figure 19.  Small  neural  networks  can  explain  fly  behavior  by  estimating  the 
 dynamics of changing value of odors. 

 (A)  Comparison  of  the  goodness  of  fit  and  predictive  power  estimated  using 

 Normalized  Likelihood  on  training  data  and  testing  data,  respectively,  for  different 

 architectures  of  neural  networks  trained  to  estimate  value  from  data  and  predict  the 

 choices.  Light  and  dark  error  bars  represent  the  mean  and  standard  error  of  training 

 and  test  Normalized  Likelihood,  respectively.  Test  Normalized  Likelihood  of  each  of 

 the  models  is  compared  to  the  best  model  (symRqN(3))  using  a  bootstrap-corrected 

 two-sided  paired  samples  t-test  (stars  for  statistical  significance)  and 

 bootstrap-corrected  paired  cohen’s  d  effect  size  (carets  for  effect  size)  (m=3  flies, 

 n=25  ensembles  for  bootstrap  correction;  see  methods).  See  Table 17  for  p-values 
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 and  effect  sizes,  including  a  comparison  of  training  Normalized  Likelihood  using  the 

 same statistical measures. 

 (B)  Smoothed  predicted  choice  probabilities  for  3  test  flies  with  a  95%  confidence 

 interval  estimated  from  25  ensemble  models  for  the  best  network  architectures  from 

 each  network  class/variant  overlaid  on  smoothed  choice  probabilities  estimated  from 

 the data with a ten trial window (see methods). 
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 Feedforward q-Networks reveal perseverance behavior 

 While  both  classes  of  neural  networks  manage  to  capture  aspects  of  the  preference 

 behavior,  we  next  try  to  dissect  the  behavior  of  the  neural  networks  to  understand 

 the  underlying  learning  rule.  For  this  purpose,  the  Feedforward  q-Network  is  much 

 more  tractable  as  it  can  be  analyzed  as  a  first-order  discrete  dynamical  system.  Four 

 vector  fields  uniquely  describe  the  entire  estimated  value  approximation  function.  We 

 can  characterize  the  learning  rule  by  looking  at  the  fixed  point  attractors  of  the  vector 

 fields across ensembles of trained neural networks (  Figure 20.  ). 

 Doing  this  for  the  asymmetric  FFqNs  reveals  a  set  of  vector  fields  that  are  highly 

 variable  between  the  trained  neural  networks  in  the  ensemble.  However,  they  shared 

 a  common  feature  of  a  single  unique  fixed  point  attractor  for  every  condition 

 (  Figure 21.  A).  We  noticed  that  some  of  the  trained  neural  networks  failed  to  produce 

 a  value  update  that  allows  any  form  of  associative  learning.  These  fits  failed  to 

 associate  rewards  with  any  odors  (traces  not  shown).  Therefore  we  simulated  two 

 simple  100-trial  learning  experiments  100  times,  with  each  odor  always  being  paired 

 with  odor,  and  filtered  out  trained  networks  with  asymmetric  learning  or  weak 

 learning  (  Figure 21.  B).  We  notice  that  the  four  fixed  point  attractors  for  the  four 

 conditions  always  correspond  with  a  set  of  acceptance  probabilities  that  are 

 associated  with  an  increased  preference  towards  the  choice,  irrespective  of  the  odor 

 (  Figure 21.  C).  We  quantified  the  predicted  choice  probabilities  at  the  fixed  point 

 attractors  for  the  four  conditions;  we  found  that  except  for  the  C+R-  condition  (Odor  2 

 chosen  but  not  rewarded),  future  choices  were  asymptotically  biased  toward 

 continuing  to  choose  the  same  odor  irrespective  of  reward.  That  is,  there  is  a 

 tendency to persevere toward the last action (  Figure 21.  .  D). 

 We  replicate  this  analysis  for  the  symmetric  FFqN  and  find  that  not  only  do  the 

 vector  flows  look  more  reliable,  but  also  the  learning  score  and  the  position  of  the 

 fixed  point  attractors  across  trained  networks  from  the  ensemble  appear  to  be  more 

 reliable  (  Figure 22.  A–C).  When  we  quantify  the  predicted  asymptotic  choice  index, 

 we find that the networks show reliable and robust perseverance (  Figure 22.  D). 
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 Figure 20.  Understanding FFqNs as a conditional first-order  discrete 

 dynamical system. 

 Consider an example sequence of choices and rewards starting at trial 1. The value 

 of the two odors initially can be anywhere on the space of q  1  and q  2  ; say it is at the 

 point marked by the asterisk. In the first trial, where odor 1 is chosen and rewarded, 

 the acceptance probability of odor 1 increases, and odor 2 remains the same (See 

 arrow 1 in the C-R+ space). Since the change in probability only depends on the 

 initial position and the (C, R) condition, the vector update is always uniquely defined 

 for every point in the space. Similarly, in the subsequent trial, the update continues 

 on the same condition C-R+, but this time the acceptance probability of odor 2 might 

 reduce at this new point in the space. In the subsequent trial, the condition changes 

 to C-R- where an independent vector field is defined, which leads to a decrease in 

 the acceptance probability of odor 1 and an increase in odor 2. This vector continues 

 over different (C, R) conditions over successive trials resulting in the overall 

 behavior. However, any trajectory is fully defined by the four vector fields for the four 

 conditions, the sequence of (C, R) conditions, and the initial conditions. 
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 Figure 21.  Dynamical  systems  analysis  of  an  asymmetric  FFqN  reveals  a 
 system of unreliable attractors with weak perseverance. 

 (A)  Vector  fields  for  the  acceptance  probability  update  under  the  four  Choice-Reward 

 conditions  represented  as  flows  with  the  final  choice  probability  represented  as  a 

 heatmap  with  the  simulated  fixed  points  (from  100  independent  initializations) 

 marked  with  a  cross.  The  estimated  vector  fields  for  three  independent  trained 

 networks from the ensemble are shown. 

 (B)  Histograms  of  learning  and  asymmetry  scores  for  all  the  trained  networks  from 

 the ensemble (for an explanation of scores, see methods). 

 (C)  Position  of  all  the  fixed  point  attractors  across  the  trained  and  filtered  ensemble 

 of  asymmetric  FFqNs  marked  on  the  space  of  acceptance  probabilities  with  a  black 

 dot. 

 (D)  Predicted  preference  of  odors  at  the  fixed  point  attractors  of  the  different 

 choice-reward  conditions  for  all  trained  and  filtered  asymmetric  FFqNs  of  the 

 ensemble  compared  from  zero  using  a  two-sided  bootstrap  test  (stars  for 

 significance; p=0.000 for all values other than C+R- where p=0.176). 
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 Figure 22.  Dynamical  systems  analysis  of  a  symmetric  FFqN  reveals  a  system 
 of reliable attractors with stronger perseverance. 

 (A)  Vector  fields  for  the  acceptance  probability  update  under  the  four  Choice-Reward 

 conditions  represented  as  flows  with  the  final  choice  probability  represented  as  a 

 heatmap  with  the  simulated  fixed  points  attractors  (from  100  independent 

 initializations)  marked  with  a  cross.  The  estimated  vector  fields  for  three  independent 

 trained networks from the ensembles are shown. 

 (B)  Histograms  of  quantified  learning  and  asymmetry  scores  for  all  the  trained 

 networks from the ensemble. Same as  Figure 21.  . 

 (C)  Position  of  all  the  fixed  point  attractors  across  the  trained  and  filtered  ensemble 

 of  symmetric  FFqNs  marked  on  the  space  of  acceptance  probabilities  with  a  black 

 dot. 

 (D)  Predicted  preference  of  odors  at  the  fixed  point  attractors  of  the  different 

 choice-reward  conditions  for  all  trained  and  filtered  symmetric  FFqNs  of  the 

 ensemble  compared  from  zero  using  a  two-sided  bootstrap  test  (stars  for 

 significance; p=0.000 for all values). 
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 Recurrent  q-Networks  likely  have  a  separation  of  timescales  that  drives  stronger 

 changes in preference. 

 Due  to  its  architecture,  we  can  easily  interpret  the  dynamics  of  the  FFqN.  However,  it 

 fails  to  capture  choice  behavior  even  as  well  as  the  best  Q-learning  models. 

 Therefore,  there  is  a  need  to  understand  how  and  why  the  RqN  manages  to  explain 

 the  behavior  better.  For  this  purpose,  we  look  at  the  hidden  dynamics  of  the  RqN 

 underlying  the  choice  behavior  of  the  flies.  For  simplicity,  we  limit  ourselves  to  the 

 symmetric RQNs. 

 In  order  to  be  able  to  make  a  comparison  between  different  trained  networks  from 

 the  ensemble,  we  needed  a  projection  of  the  dynamics  to  a  common  space. 

 Therefore  we  looked  at  the  principal  components  (PCs)  of  the  hidden  reservoir 

 dynamics  for  the  best  symmetric  RqN  during  the  choice-reward  trajectories  observed 

 in  the  original  training  dataset.  We  find  that  the  first  PC  seems  to  strongly  capture  the 

 trend  observed  in  preference  dynamics  (  Figure 23.  A).  The  first  PC  seems  only  to 

 capture  60%  of  the  variability  (  Figure 23.  B).  To  test  whether  the  additional  variability 

 is  essential  to  explain  the  behavior,  we  successively  removed  the  later  PCs  one  after 

 the  other.  We  then  used  the  reconstructed  hidden  dynamics  to  predict  the  final 

 choice  and  compared  the  Normalized  Likelihood.  We  find  that  removing  the  last  two 

 PCs  affects  the  prediction  quality  considerably;  but,  removing  the  second  PC  has  a 

 much stronger effect (  Figure 23.  C). 

 To  understand  the  changes  in  the  predictions,  we  look  at  the  examples  where  the 

 difference  is  the  largest.  While  the  last  two  PCs  seem  to  modulate  the  strength  of 

 change  in  response  to  the  outcomes  of  choices,  the  second  PC  seems  to  introduce 

 faster  timescale  perturbations  that  modify  the  choice  preference  (  Figure 23.  D).  To 

 quantify  this,  we  look  at  the  autocorrelation  of  the  PCs  (  Figure 23.  E).  While  the 

 differences  are  not  significant  after  correcting  for  sample  size,  there  is  a  large 

 decrease  in  the  half-life  in  the  later  PCs  suggesting  faster  timescale  dynamics  that 

 influence the choice dynamics. 
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 Figure 23.  Dissecting  the  symmetric  RqN  reveals  a  possible  separation  of 
 timescales that improves the performance of the RqN. 

 (A)  Four  Principal  Components  (PCs)  of  the  hidden  dynamics  of  the  best  symmetric 

 RqN  (symRqN(2)  with  four  effective,  hidden  neurons)  recovered  using  Principal 

 Component  Analysis  (PCA)  over  the  time  axis.  A  95%  confidence  interval  (shaded 

 area)  was  estimated  from  25  trained  networks  from  the  ensemble  shown  alongside 

 the  smoothed  choice  probabilities  from  the  data  (black)  and  the  prediction  (red) 

 (bottom;  see  methods).  PCs  were  aligned  by  maximizing  the  correlation  between 
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 different  trained  networks  to  account  for  sign  degeneracy  in  PCA  methods.  Data  is 

 shown for three flies from the training data (see subfigure D). 

 (B)  Cumulative  variance  explained  by  the  principal  components  with  95%  confidence 

 estimated over 25 trained networks from the ensemble. 

 (C)  Contribution  of  each  principle  component  was  explored  using  a  reconstruction 

 Normalized  Likelihood  calculated  by  sequentially  removing  the  PCs  with  the  least 

 contribution  and  then  reconstructing  the  hidden  dynamics  fed  to  the  decoder  and 

 policy  to  generate  predictions  for  choice  probabilities.  Reconstructed  normalized 

 likelihood  compared  to  log  likelihood  where  all  PCs  are  preserved  using 

 bootstrap-corrected  two-sided  Mann-Whitney-Wilcoxon  test  (stars  for  statistical 

 significance;  p=0.0397,  0.0131,  7.62e-6  respectively)  and  bootstrap-corrected 

 matched-pairs  rank  biserial  correlation  effect  size  (carets  for  effect  size;  r  =  0.837, 

 0.805,  0.665  respectively)  (m=18  flies,  n=25  ensembles  for  bootstrap  correction;  see 

 methods) 

 (D)  Effect  of  removing  principal  components  on  the  smoothed  predicted  choice 

 probabilities  for  the  three  most  affected  flies  in  the  ensemble  most  affected  by 

 removing  the  last  three  principal  components.  Color  of  the  lines  represent  the 

 different removed components described in subfigure C 

 (E)  Autocorrelation  plot  of  the  different  PCs  with  a  95%  confidence  interval  estimated 

 with 18 flies across 25 ensembles. 

 (F)  Halflife  of  the  autocorrelation  lag  quantified  for  the  different  PCs.  Black  bars 

 represent  a  95%  confidence  interval  calculated  using  18  flies  across  25  ensembles. 

 Lag  for  the  first  PC  is  compared  to  the  rest  using  two-sided  Mann-Whitney-Wilcoxon 

 test  (stars  for  statistical  significance;  p=0.5011,  0.4044,  0.1682  respectively)  and 

 bootstrap-corrected  matched-pairs  rank  biserial  correlation  effect  size  (carets  for 

 effect  size;  r  =  0.861,  0.933,  0.932  respectively)  (m=18  flies,  n=25  ensembles  for 

 bootstrap correction; see methods) 
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 Kernel  regression  analysis  on  the  PCs  of  RqNs  suggest  perseverance  but  fail  to 

 capture the sharp transitions 

 In  order  to  understand  what  the  PCs  of  the  hidden  dynamics  were  capturing,  we  tried 

 to  fit  a  simple  linear  kernel  regressor  from  the  past  choices,  rewards,  and  interaction 

 term  to  the  PCs  of  the  hidden  dynamics  (  Figure 24.  A).  We  found  by  looking  at  the 

 learned  kernels  that  the  first  PC  seems  strongly  influenced  by  the  interaction  term. 

 There  is  a  weak  influence  of  the  most  recent  choices,  yet  again  suggesting 

 perseverance  behavior  (  Figure 24.  B).  However,  the  linear  models  fail  to  capture 

 much  of  the  variation  in  the  latter  PCs  (  Figure 24.  B–D).  As  a  result,  we  see  that 

 when  we  use  the  hidden  dynamics  from  the  PCs  (  Figure 24.  E)  predicted  by  the 

 linear model, the quality of prediction sharply drops (  Figure 24.  F) 
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 Figure 24.  Kernel  regression  analysis  to  predict  the  principle  components 
 (PCs)  of  the  hidden  dynamics  reveals  the  role  of  nonlinearity  in  the 
 non-dominant PCs and suggests perseverance behavior. 

 (A)  Kernel  regression  analysis  applies  convolutions  with  learned  kernels  on  past  time 

 windows  of  choice,  reward,  and  the  interaction  term  (choice⨯reward).  It  sums  them 

 together  to  predict  the  future  value  of  a  PC  of  the  hidden  dynamics  for  the  best 

 symmetric RqN (symRqN(2)). 

 (B)  Learnt  kernels  for  the  choice,  reward,  and  interaction  term  to  predict  the  values  of 

 different  PCs  with  a  95%  confidence  interval  estimated  from  25  trained  networks 

 from the ensemble. 

 (C)  Predicted  (colored)  and  actual  values  (black)  of  the  principle  components 

 predicted by a linear model for the same flies as  Figure 23. 
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 (D)  Coefficient  of  determination  (R2)  for  the  linear  fits  for  the  four  different  PCs  with 

 the  95%  confidence  interval.  The  first  PC  is  compared  to  the  rest  using  two-sided 

 Mann-Whitney-Wilcoxon  test  (stars  for  statistical  significance;  p=1.78e-7,  5.96e-8, 

 5.960e-8  respectively)  and  bootstrap-corrected  matched-pairs  rank  biserial 

 correlation  effect  size  (carets  for  effect  size;  r  =  0.987,  1.0,  1.0  respectively)  (m=18 

 flies, n=25 ensembles for bootstrap correction; see methods) 

 (E)  Predicted  (colored)  and  actual  (black)  hidden  dynamics  for  the  four  hidden 

 neurons  shown  alongside  the  true  (black)  and  predicted  (red)  trial-wise  choice 

 probabilities. Rec. stands for reconstruction. 

 (F)  Reconstruction  Normalized  Likelihoods  compared  between  a  prediction  with  the 

 actual  PCs  and  the  linear  regression  reconstructed  PCs  compared  using  a  two-sided 

 Mann-Whitney-Wilcoxon  test  (stars  for  statistical  significance;  p=7.629e-6 

 respectively)  and  bootstrap-corrected  matched-pairs  rank  biserial  correlation  effect 

 size  (carets  for  effect  size;  r  =  1.0  respectively)  (m=18  flies,  n=25  ensembles  for 

 bootstrap correction; see methods) 
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 Choice engineering for Fruit flies 

 Open-Loop choice engineering is prone to degeneracy 

 In  order  to  experimentally  test  how  well  the  Cognitive  Q-learning  models  explain  the 

 behavior,  we  wanted  to  design  experiments  that  would  help  us  distinguish  between 

 models.  For  this  purpose,  we  attempted  to  utilize  a  “choice  engineering”  paradigm 

 developed  by  Dan  &  Loewenstein,  2019  .  The  goal  of  choice  engineering  is  to  find  a 

 sequence  of  rewards  such  that  the  animal  maximally  chooses  a  target  odor  (and  not 

 a  distractor  odor)  even  when  the  total  number  of  rewards  associated  with  the 

 different  options  is  a  constant  (Dan  &  Loewenstein,  2019;  Dezfouli  et  al.,  2020)  .  We 

 use  an  open-loop  paradigm  where  we  search  for  a  fixed  sequence  of  100  trials  of 

 reward-odor  choice  associations  (where  the  reward  delivered  does  not  depend  on 

 the history of choices made by the animals; see methods). 

 Since  the  number  of  ways  of  organizing  an  equal  number  of  rewards  for  two  options 

 (referred  to  as  “reward  schedules”’)  is  astronomical  (approximately  1058  for  50% 

 reward  probabilities  across  just  100  trials),  it  becomes  impossible  to  test  every 

 possibility  on  behaving  animals.  However,  the  same  space  can  be  sampled 

 computationally  using  stochastic  optimization  methods  on  models  fitted  to  mimic  flies 

 with  different  value-learning  rules,  as  described  earlier.  We  do  this  for  5  of  the  fitted 

 models  using  different  stochastic  optimization  from  random  or  structured  initial 

 conditions.  We  see  that  the  population  of  optimized  reward  schedules  has  an 

 increased  bias  that  saturates  over  multiple  generations  (  Figure 25.  A).  Different 

 models  saturate  at  different  levels  that  often  depend  on  the  specific  model  being 

 optimized  and  the  schedule  initialization  with  ‘Primed’  initialization  (see  methods), 

 typically  showing  higher  bias  (  Figure 25.  B–F).  We  see  that  for  some  of  the  ‘Primed’ 

 initialization  optimization  trajectories,  the  schedules  sometimes  get  worse.  This  is 

 becuase  the  fitness  is  estimated  using  a  limited  number  of  simulations  and  therefore 

 is  susceptible  to  stochastic  variability  in  fitness  even  for  the  same  schedule. 

 Therefore,  often  there  can  be  a  small  reduction  in  fitness  by  chance  and  the  best 

 schedule  is  only  unique  upto  a  certain  amount  of  variability  constrained  by  the 

 number of simulations. 

 We  look  at  the  top  ranking  schedules  for  each  of  the  models  optimized  along  with  the 

 distribution  of  biases  for  1000  agents  of  the  tested  model  (  Figure 26.  ).  We  find  that 
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 simpler  models  (RF-QL  and  LT-QL)  are  more  strongly  biased  than  the  better  models 

 (F-RF-QL,  DF-LT-QL,  and  DF-LT-OS-QL),  which  have  a  smaller  maximum  bias.  A 

 simple  ‘primacy’-like  schedule  is  the  maximally  biasing  schedule  for  the  simpler 

 models  (  Figure 26.  A,  C).  For  better  models,  it  is  harder  to  recognize  a  clear 

 structure  in  the  best-ranking  schedules.  The  F-RF-QL  model  appears  to  show  a 

 stronger  bias  for  ‘primacy'-like  schedules  where  the  rewards  are  concentrated  in  two 

 blocks  with  the  target  odor  rewarded  first  (  Figure 26.  E).  On  the  other  hand, 

 DF-LT-OS-QL  has  a  stronger  bias  for  more  ‘smeared’  schedules  where  the  rewards 

 are  more  sparsely  distributed  over  time  rather  than  concentrated  into  blocks 

 (  Figure 26.  I).  The  intermediate  DF-LT-QL  model  appears  to  have  a  strong  bias  for 

 schedules  where  the  rewards  are  distributed  in  smeared  schedules  which  roughly 

 appear to be organized in alternating blocks (  Figure 26.  G). 
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 Figure 25.  Optimization of choice engineering reward  schedules. 
 (A)  Example  of  a  single  stochastic  optimization  process  for  the  DF-LT-OS-QL  model 

 using  a  genetic  algorithm  with  the  range  of  biases  (shaded  area),  average  bias 

 (dotted line), and best bias (solid line) for the population of reward schedules. 

 (B–F)  Traces  of  the  best  bias  across  multiple  generations  of  stochastic  optimization 

 for  five  representative  models.  Replicates  of  different  initializations  (primed  and 

 random;  see  methods)  and  different  optimization  techniques  are  visualized.  GA 

 represents  the  Genetic  Algorithm  (left);  TA  represents  Thermal  Annealing  (right)). 

 Stars mark the final “best” discovered schedule for each initialization. 
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 Figure 26.  Choice  Engineering  provides  candidate  reward  schedules  for 
 testing learning rules. 
 (A,C,E,G,I)  Comparison  of  the  top  3  maximally  biasing  reward  schedules  for  five 

 representative  models.  The  top  three  schedules  for  each  representative  model  are 

 plotted.  Dots  represent  the  reward  schedule  i.e.,  rewards  for  the  distractor  and  target 

 odors  for  each  trial.  Absence  of  a  dot  represents  the  omission  of  reward  on  choice. 

 Dotted  lines  represent  no  preference,  and  colored  lines  represent  trial-wise  bias  for 

 1000 simulated agents. 

 (B,D,F,H,J)  Distribution  of  overall  biases  over  a  100  trial  session  for  1000  simulated 

 agents  for  the  top  3  maximally  biasing  schedules  for  five  representative  models 

 compared  to  a  schedule  when  equally  spaced  rewards  are  given  identically  on  both 

 odors (in gray). 
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 Open-Loop choice engineering lacks statistical separation at low sample sizes 

 In  order  to  see  if  the  predicted  reward  schedules  are  capable  of  actually  biasing  fly 

 behavior,  we  run  experiments  on  the  single  fly  Y-maze  described  in  Rajagopalan  et 

 al.,  2022  .  We  use  the  optimized  reward  schedules  for  two  models:  F-RF-QL  and 

 DF-LT-OS-QL,  which  have  very  similar  average  dynamics  but  have  a  fundamental 

 difference in that the former does not implement a reward prediction error (RPE). 

 We  observe  that  the  schedules  for  F-RF-QL  show  robust  trial-averaged  learning  with 

 time,  with  the  preference  shifting  strongly  toward  the  target  odor  and  then  reversing 

 after  the  reward  associations  transition  to  the  distractor  odor  (  Figure 27.  A).  On  the 

 other  hand,  the  schedules  for  the  DF-LT-OS-QL  show  a  weaker  trial  averaged 

 learning,  but  the  preference  persists  for  longer  (  Figure 27.  B).  However,  when  we 

 look  at  the  distribution  of  the  bias  for  each  fly  and  compare  them  between  the  two 

 models,  we  find  a  small  effect  towards  a  higher  bias  in  the  optimally  biasing 

 schedules  predicted  by  the  DF-LT-OS-QL  model,  but  at  the  small  sample  size,  the 

 result  is  subject  to  the  large  behavioral  variability  and  therefore  is  not  statistically 

 significant  (  Figure 27.  C).  Therefore,  we  see  a  need  to  scale  up  our  ability  to  run 

 single  fly  choice  experiments.  Surprisingly,  we  note  that  the  bias  observed  was 

 stronger than what was predicted by the model optimizations (  Figure 26.  F, J) 
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 Figure 27.  Optimal  schedules  predicted  by  DF-LT-OS-QL  models  only  show  a 
 weak increase in bias than those predicted by F-RL-QL models. 
 (A–B)  Reward  (dark)  and  choice  (light)  sequences  for  16  flies  tested  in  a  single  fly 

 Y-maze  for  reward  schedules  predicted  by  both  F-RL-QL  and  DF-LT-OS-QL  models. 

 For  each  set  of  schedules,  eight  flies  were  run  with  MCH  at  the  target  and  eight  with 

 OCT as the target. The trial-wise average preference is visualized in the middle. 

 (C)  Bias  of  each  fly  (%  target  chosen  over  a  100  trial  session)  for  the  two  sets  of 

 schedules  are  found  to  be  statistically  non-significant  but  show  a  slight  increase  in 

 bias  (p  =  0.2994;  Mann  Whitney  U  Test;  δ  =  0.2188;  Cliff’s  delta  effect  size)  for  16 

 flies for each set of schedules. 
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 High-Throughput Y-Maze Experiments 

 In  order  to  expand  our  ability  to  collect  experimental  data  from  flies  performing 

 dynamics  choice  experiments  described  in  Rajagopalan  et  al.,  2022  ,  we  designed  a 

 high-throughput  behavioral  rig  capable  of  running  16  simultaneous  experiments  (see 

 methods for details). 

 Optimizing the 16Y experimental setup 

 In  order  to  test  whether  the  flies  can  learn  in  the  16  Y-Arena,  we  ran  a  simple  set  of 

 learning  and  reversal  experiments  with  Octanol  (OCT)  and  Methylcyclohexanol 

 (MCH),  which  are  considered  the  standard  for  fruit  fly  olfaction  experiments.  The  flies 

 were  allowed  to  choose  between  OCT  and  MCH,  present  in  two  arms.  No  rewards 

 were  administered  for  the  first  40  trials  (Naive  Phase),  after  which  either  OCT  or 

 MCH  was  rewarded  for  the  subsequent  60  trials  (Training  Phase).  After  60  trials  of 

 OCT/MCH  rewards,  the  rewarded  odor  was  switched  for  the  subsequent  60  trials  to 

 evaluate  whether  the  fly  could  forget  a  previous  association  and  switch  preference 

 over time (Reversal Phase). 

 Strong  learning,  slow  reversal  and  asymmetric  preference  is  observed  in  typical  OCT 

 vs. MCH choice experiments 

 In  our  experiments,  we  observe  that,  as  expected,  starved  flies  can  learn 

 associations  between  the  odor  (OCT  or  MCH)  and  fictive  sugar  reward  and  then 

 subsequently  unlearn  the  association  to  reverse  the  preference  toward  a  different 

 odor  in  both  possible  directions  (  Figure 28.  A–B).  However,  we  find  that  for  the  OCT 

 vs.  MCH  choice,  there  is  a  strong  naive  preference  for  the  high-throughput 

 behavioral  rig  (  Figure 28.  C;  right),  and  the  strong  initial  bias  leads  to  a  strong 

 preference  for  MCH  (  Figure 28.  C;  left).  After  adjusting  for  the  inherent  non-linearity 

 of  the  measure,  we  find  that  the  training  phase  has  a  more  substantial  effect  than  the 

 reversal  phase  across  the  two  odors  (  Figure 28.  D).  The  interaction  of  odor  and 

 order  has  the  most  evident  effect  on  learning  (ANOVA  test;  see  Table 21  ).  These 

 results  suggest  that  the  first-odor  reward  pairing  block  has  a  much  stronger  effect  on 

 learning and is not easily reversed. 
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 Figure 28.  Strong  Learning  and  asymmetric  preference  are  observed  for  24  hr 
 starved flies in a high-throughput behavioral rig. 

 (A–B)  Cumulative  choices  of  OCT  and  MCH  over  time  in  experiments  with  40 

 unrewarded  trials  (Naive)  followed  by  60  trials  of  pairing  OCT(A)/MCH(B)  with 

 reward  (Training),  followed  by  60  trials  of  pairing  the  opposite  odor,  i.e.,, 

 MCH(A)/OCT(B)  with  certain  reward  (Reversal).  The  slope  of  the  curve  gives 

 instantaneous preference. 

 (C)  Choice  index  (+ve  is  MCH  preference,  -ve  is  OCT  preference;  see  methods) 

 quantified  across  the  three  phases  (left).  Values  are  compared  using  two-sided 

 paired  samples  Mann-Whitney-Wilcoxon  test  (stars  for  statistical  significance;  see 

 Table 19  ).  Overall  naive  preference  with  a  95%  confidence  interval  (right)  compared 

 to  zero  with  a  two-sided  one-sample  t-test  (stars  for  statistical  significance;  p  = 

 9.99e-04). 

 (D)  Learning  index  (+ve  is  reward  association  for  the  paired  odor;  see  methods) 

 quantified  for  the  two  odors  under  the  training  and  reversal  condition  compared  using 

 two-sided Mann-Whitney U test (stars for statistical significance; see  Table 20  ) 
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 Unexpected  dynamics  of  choice  times  for  OCT  vs.  MCH  can  be  explained  using  fly 

 kinematics 

 While  we  found  that  the  flies  were  capable  of  learning  odor  associations  that  biased 

 their  behavior,  we  found,  contrary  to  the  results  from  Rajagopalan  et  al.,  2022  ,  that 

 the  duration  of  the  trials  increased  after  training,  followed  by  a  decrease  at  the  start 

 of the reversal phase (Figure 29. A). 

 To  understand  the  basis  of  this  unexpected  deviation,  we  looked  at  the  processed 

 kinematic  variables  extracted  from  the  behavior  (see  methods).  We  find  that  the 

 increase  in  choice  time  is  accompanied  by  a  significant  decrease  in  the  average 

 instantaneous  speed  of  the  fly  throughout  the  trial  at  the  start  of  the  training  phase 

 and  an  increase  in  the  reversal  phase  (Figure  29.  B).  Similarly,  this  is  accompanied 

 by  a  significant  increase  in  the  time  spent  in  the  air  arm  at  the  start  of  the  training 

 phase.  Note  that  this  is  where  the  animal  was  previously  rewarded.  A  substantial 

 decrease  in  the  same  at  the  start  of  the  reversal  is  also  observed  (Figure  29.  C).  We 

 find  that  both  variables,  log(speed)  and  air  residence  time,  are  negatively  correlated 

 with  the  log(length  of  the  trials)  and  the  length  of  the  trials  (Figure  29.  D)  together, 

 explaining the choice times. 
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 Figure 29.  Slower  choices  on  reward  learning  are  explained  by  slower 
 movement and residence in the last rewarded arm. 

 (A)  Duration  of  each  trial  across  all  14  experimental  flies  for  the  two  learning 

 experiments.  Plotted  along  with  the  mean  for  each  experiment  (black)  (top).  Binned 

 average  trial  times  for  flies  across  20-trial  subdivisions  of  the  experimental  phases 

 (bottom)  compared  using  two-sided  paired  samples  Mann-Whitney-Wilcoxon  test 

 (stars for statistical significance; see  Table 18  ) 
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 (B)  Average  instantaneous  speed  in  a  trial  across  all  14  experimental  flies  for  each  of 

 the  two  learning  experiments.  Plotted  along  with  the  mean  for  each  experiment 

 (black)  (top).  Binned  average  speeds  for  flies  across  20-trial  subdivisions  of  the 

 experimental  phases  (bottom)  compared  using  two-sided  paired  samples 

 Mann-Whitney-Wilcoxon test (stars for statistical significance; see  Table 18  ) 

 (C)  Average  time  spent  in  the  air  arm  for  a  trial  across  all  14  experimental  flies  for 

 the  two  learning  experiments.  Plotted  along  with  the  mean  for  each  experiment 

 (black)  (top).  Binned  average  time  spent  in  the  air  arm  for  flies  across  20-trial 

 subdivisions  of  the  experimental  phases  (bottom)  compared  using  two-sided  paired 

 samples Mann-Whitney-Wilcoxon test (stars for statistical significance; see  Table 18  ) 

 (D)  Log  of  trial  duration  compared  to  a  log  of  average  instantaneous  speed  (left)  and 

 trial  duration  compared  to  time  spent  in  the  air  arm  (right)  for  every  trial  across  14 

 flies  for  each  experiment  using  Pearson's  correlation  (p=1.51e-182,  0.0,  2.37e-299, 

 0.0 from left to right). 

 EN:  Early  Naive  Phase;  LN:  Late  Naive  Phase;  ET:  Early  Training  Phase;  MT:  Mid 

 Training  Phase;  LT:  Late  Training  Phase;  ER:  Early  Reversal  Phase;  MR:  Mid 

 Reversal Phase; LR: Late Reversal Phase. 
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 Multiple kinematic factors underlie observed choice dynamics 

 However,  next,  we  wanted  to  understand  what  factors  influence  the  actual  choices 

 made  by  the  flies,  for  which  we  looked  at  how  the  residence  of  the  fly  in  the  odorized 

 arms changes over time (  Figure 30.  A). 

 We  can  see  that  in  the  initial  naive  trials,  the  flies  have  a  slightly  higher  density  at  the 

 ends  of  the  MCH  arm  suggesting  the  flies  move  further  into  the  arm  with  MCH.  Still, 

 with  training,  the  density  in  the  arm  with  the  unrewarded  odor  goes  down.  However, 

 it  is  faster  when  MCH  is  being  trained  first.  Further,  this  effect  is  reversed  when  the 

 reversal  phase  starts.  The  density  in  the  new  unrewarded  arm  reduced  much  less 

 with  the  same  number  of  trials  for  both  odors  but  appeared  to  be  more  when  MCH  is 

 rewarded  (  Figure 30.  A).  Quantifying  these  results  we  do  see  that  with  time,  the  flies 

 spend  more  time  in  the  arms  that  paired  with  the  reward  (  Figure 30.  B).  This  could 

 be  because  of  multiple  possible  reasons:  (a)  the  fly  could  be  avoiding  the  other  arms, 

 (b)  the  fly  has  a  stronger  drive  to  move  in  the  rewarded  odor  (c)  the  fly  has  a 

 stronger  preference  to  enter  the  arm.  When  we  quantify  these  factors,  we  find  that  all 

 of  these  are  true  and  influence  behavior  (  Figure 30.  C–E).  The  fly  rapidly  prefers  the 

 arm  with  the  odor  paired  with  the  reward  and  moves  faster  in  the  same  arm 

 (  Figure 30.  D–E).  Over  training,  this  effect  becomes  more  robust  and  is 

 accompanied  by  an  increase  in  the  number  of  times  it  rejects  the  odor  that  is  not 

 paired  with  reward  (  Figure 30.  C).  All  these  trends  are  then  flipped  during  the 

 reversal  phase.  The  effects  are  more  substantial  when  the  reversal  phase  pairs  MCH 

 with reward. 

 Subsequently,  we  tested  different  pairs  of  odors  to  find  the  right  experimental 

 conditions  to  study  the  dynamics  of  choice  in  the  high-throughput  rig.  Firstly,  we  try 

 PA  (pentyl  acetate)  and  EL  (ethyl  lactate),  which,  other  than  OCT  and  MCH,  are 

 typically  also  used  as  standard  odors  in  fruit  fly  olfaction  experiments  (Campbell  et 

 al., 2013)  . 
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 Figure 30.  Change  in  odor  preference  as  a  function  of  reward  history  is  a 
 consequence of multiple kinematic factors. 

 (A)  Residence  of  flies  in  the  Y-arena  (oriented  to  odor  identity;  left  arm  is  OCT,  the 

 right  arm  is  MCH;  bottom  is  air)  across  each  subdivision  of  the  experimental  phases 

 in both experiments. 

 (B)  Difference  in  the  time  spent  in  the  MCH  arm  and  the  OCT  arm  in  every  trial 

 across  all  14  experimental  flies  for  each  of  the  two  learning  experiments.  Plotted 
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 along  with  the  mean  for  each  experiment  (black)  (top).  The  binned  difference  for  flies 

 across  20  trial  subdivisions  of  the  experimental  phases  (bottom)  compared  using 

 two-sided  paired  samples  Mann-Whitney-Wilcoxon  test  (stars  for  statistical 

 significance; see  Table 18  ) 

 (C)  Difference  in  the  number  of  times  MCH  is  rejected  and  OCT  is  rejected  in  every 

 trial  across  all  14  experimental  flies  for  each  of  the  two  learning  experiments.  Plotted 

 along  with  the  mean  for  each  experiment  (black)  (top).  The  binned  difference  for  flies 

 across  20  trial  subdivisions  of  the  experimental  phases  (bottom)  compared  using 

 two-sided  paired  samples  Mann-Whitney-Wilcoxon  test  (stars  for  statistical 

 significance; see  Table 18  ) 

 (D)  Difference  in  the  average  instantaneous  speed  in  the  MCH  arm  and  the  OCT 

 arm  in  every  trial  across  all  14  experimental  flies  for  each  of  the  two  learning 

 experiments,  along  with  the  mean  for  each  experiment  (black)  (top).  The  binned 

 difference  for  flies  across  20  trial  subdivisions  of  the  experimental  phases  (bottom) 

 compared  using  two-sided  paired  samples  Mann-Whitney-Wilcoxon  test  (stars  for 

 statistical significance; see  Table 18  ) 

 (E)  Difference  in  the  fraction  of  times  the  MCH  arm  is  entered,  and  the  OCT  arm  is 

 entered  in  every  trial  across  all  14  experimental  flies  for  each  of  the  two  learning 

 experiments.  Plotted  along  with  the  mean  for  each  experiment  (black)  (top).  The 

 binned  difference  for  flies  across  20  trial  subdivisions  of  the  experimental  phases 

 (bottom)  compared  using  two-sided  paired  samples  Mann-Whitney-Wilcoxon  test 

 (stars for statistical significance; see  Table 18  ) 

 EN:  Early  Naive  Phase;  LN:  Late  Naive  Phase;  ET:  Early  Training  Phase;  MT:  Mid 

 Training  Phase;  LT:  Late  Training  Phase;  ER:  Early  Reversal  Phase;  MR:  Mid 

 Reversal Phase; LR: Late Reversal Phase. 
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 Asymmetric  naive  preference  and  asymmetric  non-specific  Learning  is  observed  in 

 PA vs. EL choice experiments across different reward probabilities 

 PA  (pentyl  acetate)  vs.  EL  (ethyl  lactate)  choices  were  tested  under  a  shorter 

 training/reversal  experiment  with  10  naive  phase  trials,  45  training  phase  trials,  and 

 45  reversal  phase  trials  to  speed  up  the  experimental  throughput.  Different  reward 

 probabilities  during  the  training/reversal  phase  were  tested  to  verify  that  flies  can 

 distinguish  between  different  reward  uncertainties.  We  observe  that  while  flies  can 

 learn  strong  PA  vs.  EL  associations  at  high  reward  probabilities,  the  learning 

 becomes  asymmetric.  Especially  at  low  reward  probabilities,  the  flies  seem  to  learn 

 stronger  associations  (  Figure 31.  A,  C,  D),  and  the  effect  is  strengthened  when 

 paired with rewards first (  Figure 31.  D). 

 There  is  also  a  robust  naive  preference  for  EL  (  Figure 31.  C).  Moreover,  we  also 

 observe  non-specific  learning  where  a  fly  learns  a  positive  association  with  the 

 unrewarded  odor  (-ve  learning  index),  which  appears  to  happen  more  often  when  EL 

 is  the  unrewarded  odor  (  Figure 31.  D).  We  see  that  all  three  factors:  odor  identity, 

 order  of  training,  and  reward  probability,  strongly  affect  the  learning  (ANOVA  test; 

 see  Table 22  ). 

 Therefore,  we  needed  a  different  odor  combination  with  more  balanced  learning 

 between  the  two  odors.  Since  Hexanal  (HAL)  and  6-Methyl-5-hepten-2-one  (MHO) 

 are  known  to  show  similar  levels  of  Kenyon  cell  activity  on  odor  exposure  (Honegger 

 et al., 2011)  , we next attempted to pair HAL and MHO  with rewards. 

 108  Rishika Mohanta, IISER Pune 

https://www.zotero.org/google-docs/?s9w8pw
https://www.zotero.org/google-docs/?s9w8pw


 Figure 31.  PA  vs.  EL  choices  show  asymmetric,  non-specific  learning, 
 especially  at  low  reward  probabilities,  and  a  naive  preference  toward  EL  in  24 
 hr-starved flies. 

 (A)  Cumulative  choices  of  PA  and  EL  over  time  in  experiments  with  10  unrewarded 

 trials  (Naive)  followed  by  45  trials  of  pairing  EL/PA  with  reward  (Training),  followed  by 

 45  trials  of  pairing  the  opposite  odor,  i.e.,  PA/EL  with  reward  (Reversal).  The  reward 

 pairing  is  varied  to  have  different  reward  P(R)  probabilities  =0.125,  0.25,  0.5,  and  1. 

 The slope of the curve gives instantaneous preference. 

 109  Rishika Mohanta, IISER Pune 



 (B)  Overall  naive  preference  with  95%  confidence  interval  compared  to  zero  with  a 

 two-sided  one-sample  t-test  (p  =  0.00)  quantified  using  choice  index  (+ve  is  EL 

 preference, -ve is PA preference; see methods). 

 (C)  Choice  index  quantified  across  the  three  experimental  phases  and  reward 

 probabilities  compared  using  two-sided  paired  samples  Mann-Whitney-Wilcoxon  test 

 (stars for statistical significance; see  Table 19  ). 

 (D)  Learning  index  (+ve  is  reward  association  for  the  paired  odor;  see  methods) 

 quantified  for  the  two  odors  under  the  training  and  reversal  condition  for  different 

 reward  probabilities  compared  using  two-sided  Mann-Whitney  U  test  (stars  for 

 statistical significance; see  Table 20  ) 
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 Symmetric  Learning  is  observed  MHO  vs.  HAL  choice  experiments  across  starvation 

 states 

 To  test  the  effect  of  starvation  on  the  learning  behavior,  we  also  tested  MHO  vs.  HAL 

 choices  in  a  10  naive  phase,  45  training  phase,  and  45  reversal  phase  experiment 

 done  at  three  different  starvation  conditions:  4-13  hours  of  starvation,  28-37  hours  of 

 starvation and 51-64 hours of starvation. 

 We  find  that  the  flies  can  form  a  weak  association  with  both  odors  at  low  starvation 

 levels.  However,  at  higher  levels  of  starvation,  the  learning  effect  becomes  apparent 

 (  Figure 32.  A–B).  We  also  see  no  significant  difference  between  the  learning  of 

 different  odors  or  the  order  in  which  they  are  learned  (  Figure 32.  C).  The  only 

 significant  effect  is  starvation  (ANOVA  test;  see  Table 23  ).  We  see  a  significant  naive 

 preference  toward  HAL  at  lower  starvation  levels,  but  it  disappears  at  very  high 

 starvation  levels  (  Figure 32.  D).  Since  we  require  moderate  learning  effects,  we  use 

 HAL and MHO for the rest of our experiments at 13-30 hours of starvation. 
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 Figure 32.  MHO  vs.  HAL  choices  show  symmetric  learning  across  starvation 
 states with starvation-sensitive naive preference. 
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 (A)  Cumulative  choices  of  HAL  and  MHO  over  time  in  experiments  with  10 

 unrewarded  trials  (Naive)  followed  by  45  trials  of  pairing  HAL/MHO  with  certain 

 reward  (Training),  followed  by  45  trials  of  pairing  the  opposite  odor,  i.e.,  MHO/HAL 

 with  reward  (Reversal).  The  experiments  were  performed  at  different  levels  of 

 starvation. The slope of the curve gives instantaneous preference. 

 (B)  Choice  index  (+ve  is  HAL  preference,  -ve  is  MHO  preference;  see  methods) 

 quantified  across  the  three  experimental  phases  and  levels  of  starvation.  Values  are 

 compared  using  two-sided  paired  samples  Mann-Whitney-Wilcoxon  test  (stars  for 

 statistical significance; see  Table 19  ). 

 (D)  Learning  index  (+ve  is  reward  association  for  the  paired  odor;  see  methods) 

 quantified  for  the  two  odors  under  the  training  and  reversal  condition  for  different 

 probabilities  compared  using  two-sided  Mann-Whitney  U  test  (stars  for  statistical 

 significance; see  Table 20  ) 

 (B)  Overall  naive  preference  with  95%  confidence  interval  across  starvation  levels 

 compared  to  zero  with  a  two-sided  one-sample  t-test  using  choice  index  (+ve  is  EL 

 preference, -ve is PA preference; see methods). 
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 Mohanta (2022) “Variable Block” dataset 

 In  order  to  build  an  in-depth  model  of  fly  behavior,  we  needed  data  from  tasks  that 

 broadly  samples  the  space  of  choice  behavior  that  we  can  observe  in  a  fruitfly.  For 

 this  purpose,  we  collect  data  and  analyze  a  dataset  of  132  flies  performing  22 

 different  “Variable  Block”  experiments  (see  methods)  (  Figure 33.  A)  with  six  flies  for 

 each  experiment  with  three  flies  for  each  possible  pairing  of  odor  with  reward  (HAL 

 rewarded  first,  i.e.,  ‘forward’  experiments/  MHO  rewarded  first,  i.e.,  ‘reciprocal’ 

 experiments). 

 We  observe  that  the  flies  seem  to  replicate  the  result  of  operant  matching  in  the 

 experiments  with  previously  observed  undermatching.  Further,  more  robust  matching 

 appears  to  be  concentrated  in  the  longer  blocks  (warm  color;  Figure 33.  B).  Further, 

 the  dataset  also  contains  examples  of  strong  and  fast  learning  (Fly  74  vs.  41; 

 Figure 33.  C),  broadly  samples  the  task  space  (see  methods),  and  somewhat 

 uniformly  spans  data  from  different  transitions  in  odor-associated  baiting 

 probabilities.  We  then  divide  the  data  into  two  sets:  a)  training  data:  2  randomly 

 chosen  flies  from  each  “forward”  and  “reciprocal”  experiments;  b)  test  data:  rest  of 

 the flies, i.e., one random fly from each “forward” and “reciprocal experiment”. 
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 Figure 33.  Mohanta  (2022)  “Variable  Block”  dataset  shows  probability 
 matching  across  a  broad  sample  of  the  space  of  dynamic  baited-reward 
 2-alternative forced choice tasks. 

 (A)  Set  of  baiting  probabilities  for  22  “forward”  experiments  that  were  run  on  three 

 different  flies  each,  along  with  three  flies  on  “reciprocal”  experiments  where  the  odor 

 identities were flipped. 

 (B)  Blockwise  reward  ratios  and  Blockwise  choice  ratios  are  compared  for  the 

 dataset colored by the length of the block in which the ratio is calculated. 

 (C)  Three  random  example  choice  trajectories  (left)  from  the  data  with  the  associated 

 baiting  probabilities  (right).  Orange  and  Blue  dots  in  the  reward  schedule  represent 

 choosing  Odor  1  and  2,  respectively.  Filled  and  empty  dots  represent  the  rewarded 

 choice  and  unrewarded  choices,  respectively.  The  red  and  purple  lines  represent  the 

 reward  and  choice  ratios  calculated  for  10  trials  before  the  current  trial  (including  the 

 current trial). 
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 (D)  Histograms  of  the  length  of  the  blocks  along  with  the  95%  confidence  interval 

 (left)  and  the  change  in  baiting  probabilities  of  an  odor  between  two  successive 

 blocks. 

 (E)  Points  of  the  task  space  (see  methods)  defined  by  reward  gain,  reward  contrast, 

 and  estimated  hazard  rates  sampled  in  the  experiments  with  hazard  rate  estimated 

 by  looking  at  the  reciprocal  of  the  length  of  blocks  observed  in  an  experiment  under 

 each condition. 

 Constrained matching law models can explain the observed behavior 

 In  order  to  set  a  baseline  on  how  well  a  simple  operant  matching  strategy  can 

 explain  the  behavior,  we  fit  the  training  data  on  simple  constrained  matching  law 

 models  with  different  windows  of  integration  (see  methods).  We  find  that  the  model 

 which  uses  the  last  five  trials  to  predict  the  subsequent  choice  fits  and  predicts  the 

 data  the  best  (  Figure 34.  A).  Most  matching  models  seem  to  capture  aspects  of  the 

 behavior,  but  with  longer  integration  windows,  the  predictions  fail  to  capture  the 

 short-term dynamics of choice (  Figure 34.  B) 

 We  also  find  that  the  fit  parameters  for  all  the  matching  law  models  suggest  a 

 matching  bias  of  0.22  (  Table 10  ),  which  implies  a  stronger  preference  for  HAL, 

 consistent  with  our  previous  experiments.  We  also  see  that  the  best  constrained 

 matching  law  model  predicts  a  strong  tendency  to  match  based  on  recent  reward 

 and choice ratio estimates since the matching strength (s = 0.92) is close to 1. 

 Model  Matching Bias (b; +ve is HAL)  Matching Strength (s)  l  max 

 matching(5)  0.22 (0.12–0.33)  0.92 (0.79–1.04)  1.48 (1.26–1.73) 

 matching(10)  0.22 (0.12–0.32)  0.70 (0.63–0.79)  1.90 (1.62–2.20) 

 matching(15)  0.22 (0.12–0.31)  0.64 (0.57–0.71)  2.28 (1.95–2.67) 

 matching(30)  0.20 (0.12–0.28)  0.55 (0.49–0.62)  3.31 (2.75–3.92) 

 matching(60)  0.18 (0.10–0.26)  0.66 (0.58–0.75)  2.92 (2.36–3.53) 

 Table 10.  Parameters for constrained matching law  models 
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 Figure 34.  Constrained  matching  law  models  can  predict  future  behavior  with 
 small integration windows. 

 (A)  Comparison  of  the  goodness  of  fit  and  predictive  power  estimated  using 

 Normalized  Likelihood  on  training  data  and  testing  data,  respectively,  for  different  fits 

 of  the  constrained  matched  law  models  (see  methods)  with  different  sizes  of 

 integration  windows.  Light  and  dark  error  bars  represent  the  mean  and  standard 

 error  of  training  and  test  Normalized  Likelihood  fitted  using  1000  bootstrapped 

 samples  on  the  training  dataset.  Test  Normalized  Likelihood  of  each  of  the  models  is 

 compared  to  the  best  model  (matching(5)  -  constrained  matching  law  model  with  an 

 integration  time  window  of  5  trials)  using  a  bootstrap-corrected  two-sided  paired 

 samples  Mann-Whitney-Wilcoxon  test  (stars  for  statistical  significance)  and 

 bootstrap-corrected  matched-pairs  rank  biserial  correlation  effect  size  (carets  for 

 effect  size)  (m=44  flies,  n=1000  bootstraps;  see  methods).  See  Table 24  for  p-values 

 and  effect  sizes,  including  a  comparison  of  training  Normalized  Likelihood  using  the 

 same statistical measures. 
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 (B)  Smoothed  predicted  choice  probabilities  for  ten  random  test  flies  with  95% 

 confidence  interval  estimated  from  1000  bootstrap  fits  overlaid  on  smoothed  choice 

 probabilities  estimated  from  the  data  with  a  10  trial  window  (see  methods)  for  the  five 

 matching models. 

 Logistic  kernel  regression  models  can  capture  the  dynamics  of  the  behavior  through 

 leaky integration 

 While  matching  law  gives  us  an  intuitive  model  of  integrating  over  history,  it  is  a 

 heuristic  that  might  explain  the  data  well.  It  may  only  correlate  with  the  computation 

 the  fly  uses  to  choose  between  odors.  Further,  we  needed  to  set  a  bound  on  how 

 well  we  could  explain  fly  behavior  using  direct  linear  integration  of  past  information. 

 We,  therefore,  look  at  how  well  an  overparameterized  logistic  kernel  regression 

 model  explains  this  behavior,  an  approach  also  previously  used  in  Rajagopalan  et 

 al., 2022  . 

 We  find  that  while  the  model  that  considers  the  reward,  choice,  and  choice-reward 

 interaction  for  the  last  60  trials  fits  the  data  the  best,  the  model  that  considers  the 

 choice  and  the  choice-reward  interaction  for  the  last  30  trials  overall  predicts  the 

 behavior  in  the  test  data  the  best.  Nevertheless,  the  fit  is  not  significantly  different 

 from  the  best  matching  model  (  Figure 35.  A).  Further,  the  models  that  include  the 

 interaction  term  track  and  predict  the  preferences'  changes  decently  well  (  Figure 35. 

 B). 

 Looking  at  the  kernel  regression  coefficients,  we  see  that  the  influence  of  the 

 interaction  term  is  essential  with  greater  weights  for  recent  history  that  decays 

 exponentially  into  the  past  across  all  models  (  Figure 35.  C).  Whenever  the  choice 

 terms  are  included,  there  appears  to  be  some  positive  influence  from  the  choice 

 (peaking  at  around  five  trials,  i.e.,  the  resolution  of  defined  blocks).  However,  it  does 

 not appear to be a very strong effect (  Figure 35.  C;  Table 26  ,  Table 27  ,  Table 29  ). 
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 Figure 35.  Logistic  kernel  regression  models  perform  only  as  well  as  the  best 
 matching models 

 (A)  Comparison  of  the  goodness  of  fit  and  predictive  power  estimated  using 

 Normalized  Likelihood  on  training  data  and  testing  data,  respectively,  for  different 

 logistic  kernel  regression  models  (see  methods)  with  different  sizes  of  integration 

 windows.  Light  and  dark  error  bars  represent  the  mean  and  standard  error  of  training 

 and  test  Normalized  Likelihood  fitted  using  1000  bootstrapped  samples  on  the 

 training  dataset.  Test  Normalized  Likelihood  of  each  of  the  models  is  compared  to 

 the  best  model  (C  +  R·C  (30)  Model  with  a  30  trial  integration  window)  using  a 

 bootstrap-corrected  two-sided  paired  samples  Mann-Whitney-Wilcoxon  test  (stars  for 

 statistical  significance)  and  bootstrap-corrected  matched-pairs  rank  biserial 

 correlation  effect  size  (carets  for  effect  size)  (m=44  flies,  n=1000  bootstraps;  see 
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 methods).  See  Table 25  for  p-values  and  effect  sizes,  including  a  comparison  of 

 training Normalized Likelihood using the same statistical measures. 

 (B)  Smoothed  predicted  choice  probabilities  for  ten  random  test  flies  with  a  95% 

 confidence  interval  estimated  from  1000  bootstrap  fits  overlaid  on  smoothed  choice 

 probabilities  estimated  from  the  data  with  a  10-trial  window  (see  methods)  for  the 

 four models with a 30-trial integration window. 

 (C)  Kernel  Regression  Coefficients  (K  X:t  ;  see  methods)  for  different  terms  estimated 

 for  the  four  models  with  a  30-trial  integration  window  across  1000  bootstrap  fits 

 compared  from  zero  using  a  two-sided  bootstrap  test  (stars  for  significance).  See 

 Table 25  ,  Table 26  ,  Table 27  ,  Table 28  ,  Table 29  for  the  values  of  the  coefficients  and 

 associated statistics. 
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 Q-Learning  models  reliably  capture  the  dynamics  of  choice  with  a  small  number  of 

 parameters, however the effect of adding cognitive features is non-trivial 

 Next,  we  tried  replicating  the  analysis  we  did  with  the  Rajagopalan  (2022)  "Fixed 

 Block"  dataset  to  try  and  model  the  behavior  using  Q-learning  models  with  increasing 

 cognitive  complexity.  We  find  that  similar  to  the  previous  results,  while  there  is  large 

 variability  in  the  quality  of  the  prediction,  models  that  include  temporal  discounting 

 and  perseverance  implemented  through  action  prediction  error  or  omission 

 sensitivity,  seem  to  explain  and  predict  the  data  better  than  the  other  models 

 (  Figure 36.  A).  There  are  a  few  differences  that  we  observe.  Firstly,  the  best  model 

 differs  from  the  previous  fits  with  a  habit-value  arbiter  q-learning  model  without 

 forgetting  (LT-HV-QL)  explaining  the  data  better  than  other  models.  However,  there  is 

 a  large  degree  of  variability.  The  best  model  is  not  significantly  different  from  the  next 

 best,  which  includes  perseverance  and  forgetting  at  an  independent  timescale  from 

 learning  (  Figure 36.  A).  We  also  observe  that  the  model  with  just 

 learning-independent  forgetting  and  temporal  discounting  (DF-LT-QL)  is  the  third 

 best  model  (after  adjusting  for  the  number  of  parameters)  and  is  not  statistically 

 different  from  the  best  models.  Suggesting  the  explanatory  power  of  perseverance  is 

 not very strong. 

 We  also  observe  that  with  the  increasing  cognitive  complexity,  the  models  appear  to 

 improve  somewhat  at  tracking  preference  dynamics  (  Figure 36.  B–G)  with 

 diminishing  returns,  as  previously  seen  in  the  Rajagopalan  (2022)  "Fixed  Block" 

 dataset.  It  is  important  to  note  that  the  best  q-learning  models  predict  data 

 (Normalized  Likelihood  =  0.5756  ±  0.0169  SE)  only  slightly  better  than  the  best  linear 

 model  (Normalized  Likelihood  =  0.5673  ±  0.0159  SE)  and  do  not  appear  to  be  very 

 different.  Next,  we  wanted  to  see  where  the  difference  lies  between  the  estimated 

 parameters  of  the  models  trained  on  the  Rajagopalan  (2022)  "Fixed  Block"  dataset 

 (  Table 8  ,  Table 9  )  and  the  Mohanta  (2022)  "Variable  Block"  dataset  (  Table 11  , 

 Table 12  ).  We  find  that  most  of  the  significant  differences  are  in  the  policy 

 parameters  (weights  and  intercepts  to  transform  value/habits  to  acceptance 

 probabilities),  with  minor  changes  to  other  parameters  scattered  around  the  space  of 

 models  (  Figure 37.  ).  Also,  we  see  that  cognitive  features  seem  to  have  a  more 

 substantial  explanatory  power  in  the  variation  observed  in  the  parameters  than 

 observed in the previous dataset (ANOVA Test;  Table 31  ). 
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 Figure 36.  Results  from  fitting  Q-learning  models  on  Mohanta  (2022)  “Variable 
 Block”  dataset  roughly  reproduces  the  results  from  Rajagopalan  “Fixed 
 Block” (2022) dataset. 

 (A)  Goodness  of  fit  is  estimated  using  the  deviance-scaled  Watanabe-Akaike 

 Information  Criterion  (WAIC;  blue).  The  difference  of  each  model’s  WAIC  relative  to 

 the  best  model  is  compared  using  a  two-sided  z-test  (stars  for  statistical  significance; 

 see  methods)  and  Cohen’s  d  (carets  for  effect  size).  Predictive  accuracy  estimated 

 using  Normalized  Likelihood  [Test]  (yellow)  is  compared  relative  to  the  best  model 

 using  a  bootstrap-corrected  two-sided  paired  samples  t-test  (m=44  flies,  n=100 
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 bootstraps;  see  methods)  (stars  for  statistical  significance  and  paired  Cohen’s  d 

 (carets  for  effect  size).  The  ‘+’  and  ‘-’  symbols  at  the  bottom  signify  which  cognitive 

 features  (see  Table 7  )  are  included  in  the  model.  Error  bars  show  Standard  Error  for 

 WAIC  and  Normalized  Likelihood  [Test].  See  Table 30  for  statistics,  p-values,  and 

 effect sizes. 

 (B–G)  Smoothed  predicted  choice  probabilities  for  ten  random  test  flies  with  a  95% 

 confidence  interval  estimated  from  100  bootstrap  fits  overlaid  on  smoothed  choice 

 probabilities  estimated  from  the  data  with  a  10-trial  window  (see  methods)  for  the  six 

 representative models from the dataset. 
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 Figure 37.  Difference  between  the  parameter  estimates  from  the  Mohanta 
 (2022) and Rajagopalan (2022) "Fixed Block" datasets. 

 Heatmap  of  the  difference  in  the  means  of  parameter  estimates  from  the  two 

 datasets  and  the  difference  is  tested  using  a  simple  z  test  (stars  for  statistical 

 significance). 
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 Recurrent  q-networks  capture  the  behavior  well  and  Feedforward  q-networks  show 

 perseverance behavior 

 We  replicate  the  neural  network-based  de-novo  model  synthesis  approach  on  the 

 Mohanta  (2022)  "Variable  Block"  dataset.  We  find  that  yet  again  that  while  small 

 FFqN  manages  to  capture  the  behavior  of  the  flies,  RqNs  perform  the  best  in 

 explaining  the  behavior  well,  better  than  any  other  model  (  Figure 38.  A).  However, 

 one  difference  is  that  the  best  model  is  the  asymmetric  RqN  with  100  reservoir 

 neurons  (asymRqN(100)).  The  performance  is  not  significantly  different  from  the 

 asymmetric model with 2 reservoir neurons (asymRqN(2)) (  Figure 38.  A). 

 On  symmetrization,  the  best  model  is  the  one  with  4  effective  neurons  (symRqN(2)). 

 While  all  q-networks  manage  to  track  and  predict  the  changing  preference,  the  RqNs 

 do  it  better  than  all  previous  models  (  Figure 38.  B–E).  In  order  to  validate  our  past 

 results  of  finding  perseverance  in  FFqNs,  we  find  reliable  preservative  attractors 

 under  the  no-reward  condition  for  both  symmetric  and  asymmetric  FFqNs  (  Figure 38. 

 B–E) reproducing what we saw with the Rajagopalan (2022) "Fixed Block" dataset. 
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 Figure 38.  Results  from  fitting  neural  networks  to  the  Mohanta  (2022)  "Variable 
 Block"  dataset  also  roughly  reproduces  the  observations  from  Rajagopalan 
 (2022) "Fixed Block" dataset. 

 (A)  Comparison  of  the  goodness  of  fit  and  predictive  power  estimated  using 

 Normalized  Likelihood  on  training  data  and  testing  data,  respectively,  for  different 

 neural  network  architectures  trained  to  estimate  value  from  data  and  predict  the 

 choices.  Light  and  dark  error  bars  represent  the  mean  and  standard  error  of  training 
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 and  test  Normalized  Likelihood,  respectively.  Test  Normalized  Likelihood  of  each  of 

 the  models  is  compared  to  the  best  model  (asymRqN(100))  using  a 

 bootstrap-corrected  two-sided  paired  samples  t-test  (stars  for  statistical  significance) 

 and  bootstrap-corrected  paired  cohen’s  d  effect  size  (carets  for  effect  size)  (m=44 

 flies,  n=25  ensembles  for  bootstrap  correction;  see  methods).  See  Table 22  for 

 p-values  and  effect  sizes,  including  a  comparison  of  training  Normalized  Likelihood 

 using the same statistical measures. 

 (B–E)  Smoothed  predicted  choice  probabilities  for  ten  random  test  flies  with  a  95% 

 confidence  interval  estimated  from  25  ensemble  models  for  the  best  network 

 architectures  from  each  network  class/variant  overlaid  on  smoothed  choice 

 probabilities estimated from the data with a 10-trial window (see methods). 

 (F)  Position  of  all  the  fixed  point  attractors  across  the  trained  and  filtered  ensemble 

 of  asymmetric  FFqNs  marked  on  the  space  of  acceptance  probabilities  with  black 

 dots  (left).  Predicted  preference  of  odors  at  the  fixed  point  attractors  of  the  different 

 choice-reward  conditions  for  all  trained  and  filtered  asymmetric  FFqNs  of  the 

 ensemble  compared  from  zero  using  a  two-sided  bootstrap  test  (stars  for 

 significance; p=0.000 for all values). 

 (G)  Position  of  all  the  fixed  point  attractors  across  the  trained  and  filtered  ensemble 

 of  symmetric  FFqNs  marked  on  the  space  of  acceptance  probabilities  with  black  dots 

 (left).  Predicted  preference  of  odors  at  the  fixed  point  attractors  of  the  different 

 choice-reward  conditions  for  all  trained  and  filtered  symmetric  FFqNs  of  the 

 ensemble  compared  from  zero  using  a  two-sided  bootstrap  test  (stars  for 

 significance; p=0.000 for all values). 
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 Discussion 

 Foraging  by  continually  making  choices,  i.e.,  investing  energetic  or  cognitive 

 resources  towards  one  of  many  alternative  options  available,  is  a  behavior  that  is 

 fundamental  to  animal  life.  In  a  complex  dynamic  environment,  different  strategies  to 

 collect  rewards  (or  avoid  punishments)  can  be  used  to  improve  the  performance  of 

 an  animal,  possibly  impacting  its  survival.  In  this  work,  we  first  use  past  observations 

 from  choice  experiments  in  a  dynamic  reward  environment  (Rajagopalan  et  al., 

 2022)  to  understand  how  fruit  fly  behavior  can  be  understood  and  explained  from  a 

 Reinforcement  Learning  perspective.  Notably,  we  explore  the  framework  of  Value 

 Learning which can be directly mapped to the known circuitry of the fly. 

 Simple  Q-Learning  models  have  been  used  to  understand  the  behavior  of  flies 

 before  (Rajagopalan  et  al.,  2022;  Seidenbecher  et  al.,  2020)  and  can  predict 

 behavior  decently.  However,  the  models  perform  much  better  when  we  add 

 additional  cognitive  considerations  about  forgetting  and  long-term  discounting 

 (Figure  14).  Particularly  of  note  is  the  inclusion  of  the  idea  of  “habits”  or 

 “perseverance”,  defined  as  a  tendency  to  keep  doing  the  same  thing  independent  of 

 the  associated  reward.  Including  “habits”  through  multiple  phenomenological 

 strategies  improves  how  well  we  can  explain  the  Rajagopalan  (2022)  "Fixed  Block" 

 dataset.  But,  with  the  small  sample  size,  it  is  hard  to  claim  strong  predictive  power. 

 Distinguishing  models  becomes  particularly  hard  since  all  “good”  behavioral  models 

 perform very similarly (  Figure 15.  and  Figure 17.  ). 

 Further,  we  observe  that,  strangely,  while  these  models  can  show  us  the  operant 

 matching  behavior  observed  in  the  experimental  data,  the  strength  of  the  matching  is 

 found  to  be  significantly  weaker  (  Figure 16.  ).  While  the  zero  bias  in  matching  is  a 

 consequence  of  our  modeling  assuming  that  the  learning  is  symmetric,  the  problem 

 of  “soft”  predictions  (close  to  random  change  probability  i.e.,  0.5,  for  choosing  any 

 odor)  and  undermatching  can  also  be  seen  in  the  predicted  probabilities  of  choosing 

 odors  (  Figure 15.  ).  Multiple  possible  reasons  might  explain  this.  Firstly,  this  may  be  a 

 consequence  of  our  model  assumptions  of  symmetry.  The  models  assume  symmetry 

 in  the  model  parameters  and  initial  values  for  both  odors  and  across  flies  but  are 

 fitted  on  a  dataset  that  is  inherently  asymmetrical  and  highly  variable.  As  a  result,  the 

 inferred  strength  of  learning  is  an  intermediate  value  between  the  strength  of 
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 independently  learning  associations  with  the  two  odors  and  across  flies,  thus 

 resulting  in  intermediate  “soft”  predictions.  This  problem  can  be  mitigated  by  allowing 

 different  initial  conditions  and  parameter  values  for  the  two  odors  and  across  flies 

 which  can  be  implemented  using  bayesian  hierarchical  models  (Albert  &  Hu,  2019, 

 Chapter  10)  .  We  implemented  hierarchical  cognitive  Q-learning  in  our  FlYMazeRL 

 framework,  which  performs  better  at  explaining  behavior  than  the  models  explored  in 

 this  work  (data  not  shown);  however,  it  requires  more  analysis  to  understand  how 

 they do so. 

 Nonetheless,  this  will  likely  not  solve  the  problem  of  “soft”  predictions,  as  suggested 

 by  our  results  from  de-novo  value  learning  rule  estimation  using  neural  networks 

 (  Figure 19.  ).  In  this  approach,  asymmetric  networks  are  allowed  to  have  different 

 behavior  for  the  two  odors,  while  symmetric  networks  are  not.  Nevertheless,  we  do 

 not  observe  any  apparent  differences  in  how  well  they  explain  or  predict  behavior. 

 We  can  see  that  both  variants  of  neural  networks  are  capable  of  “strong”  predictions, 

 but  the  FFqNs  do  not  generalize  well  enough  to  make  better  predictions  than  the 

 Q-Learning framework. 

 This  observation  brings  us  to  the  alternative  hypothesis  that  a  fly’s  behavior  results 

 from  a  different  temporal  integration  rule  or  non-linearity  than  the  one  proposed  by 

 the  Q-learning  framework.  It  is  also  possible  that,  unlike  our  model  assumptions,  the 

 parameters  (such  as  the  learning  rate,  forgetting  rate,  omission  sensitivity,  etc.)  may 

 change  dynamically  over  time  or  have  multiple  overlapping  timescales  i.e.,  the 

 underlying  dynamics  of  the  learning  might  have  changes  that  happen  over  a  few 

 trials  and  changes  that  happen  over  a  large  number  of  trials  simultaneously.  As  a 

 result,  our  model  inference  averages  out  the  timescales  giving  us  “soft”  predictions. 

 The RqN results provide evidence for this hypothesis. 

 RqNs  seem  to  allow  a  separation  of  timescales  (possibly  through  activity  on 

 orthogonal  subspaces  within  the  network)  which  is  likely  contributing  to  the  better 

 predictive  power  of  the  method  (  Figure 20.  ).  This  might  also  explain  why  FFqNs  do 

 not  explain  the  data  well  despite  giving  “strong”  predictions.  FFqNs  can  only  perform 

 instantaneous  value  updates  but  are  not  constrained  by  the  smooth  updates  of  the 

 Q-learning  framework.  Therefore,  they  might  reflect  the  sharp  non-linear  changes  in 

 dynamics  but  are  forced  into  a  single  timescale,  limiting  how  well  they  perform  while 
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 still  showing  robust  changes  in  preference.  However,  it  is  essential  to  note  that  the 

 faster  timescale  components  of  the  activity  that  modulate  the  choice  preferences  are 

 not  explained  by  linear  regression  over  past  experiences  (  Figure 21.  ).  This  implies 

 that  there  is  likely  some  “meta-computation”  that  the  RNNs  can  perform  on  its  hidden 

 dynamics to modulate the behavior, a direction that has not yet been explored. 

 Taking  a  deeper  look  at  the  results  from  fitting  neural  networks,  we  observe  that  our 

 performance  reduces  rather  than  improves  with  more  complex  models  with  more 

 parameters.  This  result  is  especially  evident  for  the  FFqN  models  (  Figure 19.  ).  Most 

 likely,  this  is  because  of  the  vanishing  gradient  problem  that  has  plagued  recursive 

 models  throughout  their  history  (Pascanu  et  al.,  2013)  .  While  the  network  we  are 

 learning  is  feedforward,  each  update  on  a  single  trial  depends  on  the  network’s 

 output  on  the  previous  trial;  therefore,  the  errors  need  to  be  propagated  to  the  start 

 of  the  first  trial  to  learn  the  shared  parameters  simultaneously.  Further,  the  vanishing 

 gradient  problem  is  exacerbated  since  there  is  a  bottleneck  with  only  two  variables 

 (q1  and  q2)  between  trials  through  which  errors  must  be  propagated.  Despite  these 

 issues, we can train networks capable of predicting behavior. 

 With  our  analysis  of  simple  FFqNs  and  RNNs  with  a  minimal  number  of  neurons,  we 

 again  see  the  presence  of  a  tendency  to  “persevere”  emerges.  Using  dynamical 

 systems  analysis  on  the  behavior  of  symmetric  and  asymmetric  variants  of  FFqNs 

 and  linear  approximations  on  the  behavior  of  the  RqNs,  we  can  discover  a  positive 

 influence  of  past  choice  on  the  value  of  future  iterations  of  the  same  choice,  even 

 when  the  choice  is  not  reinforced.  This  converging  result  from  the  Q-learning 

 approach suggests a role of habits in the fly’s behavior. 

 This  brings  us  to  our  attempt  to  test  these  models  through  behavioral  perturbations 

 through  “choice  engineering”.  We  find  the  most  biasing  open-loop  reward  schedules 

 for  five  representative  cognitive  Q-learning  models.  We  see  that  the  differences 

 between  the  predicted  most  biasing  open-loop  rewards  schedules  are  very  minute 

 but  are  possibly  due  to  minor  differences  in  the  cognitive  basis  underlying  the 

 behavior  of  the  models  (  Figure 26.  ).  For  example,  the  models  with  no  forgetting 

 (RF-QL/LT-QL)  or  no  extinction  (F-RF-QL/RF-QL)  are  likely  to  learn  strong 

 associations.  If  there  is  a  strong  pairing  of  rewards  for  one  odor,  these  models  can 

 only  slowly  change  their  preference.  As  a  result,  the  most  biasing  schedules  show  a 
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 stronger  ‘primacy’-like  block  structure.  Alternatively,  suppose  the  behavior  is  more 

 influenced  by  perseverance  (DF-LT-OS-QL).  In  that  case,  lower  reward  probabilities 

 can  still  drive  strong  preference,  allowing  the  choice  engineer  to  ‘sneak  in’  more 

 reward  on  the  distractor  odor.  We  experimentally  test  the  reward  schedules  for  two 

 models:  F-RF-QL  (which  does  not  have  a  reward  prediction  error)  and  DF-LT-OS-QL, 

 which  combines  all  the  different  cognitive  features  that  explain  the  behavior  well. 

 Surprisingly,  in  the  experiments,  we  observed  a  stronger  bias  in  the  behavior  than 

 was  predicted  by  the  models.  This  effect  is  possibly  due  to  the  same  reasons  as  the 

 “soft”  predictions  made  by  the  models,  as  the  same  effect  would  also  result  in  more 

 intermediate  values  of  bias  than  the  actual  flies.  However,  due  to  the  high  biological 

 variability  in  the  experiments,  we  cannot  see  more  than  a  small  effect  of  increased 

 bias  toward  the  schedules  predicted  by  the  DF-LT-OS-QL.  This  result  was  not 

 surprising  to  us  as  the  models  have  very  similar  average  behavior  (  Figure 15.  and 

 Figure 17.  ).  It  is  also  possible,  that  the  choice  engineered  experiments  are 

 “out-of-sample”  tasks,  i.e.  the  experiments  represent  a  space  of  tasks  that  were 

 never  included  in  the  training  set.  Therefore,  to  test  any  model  via  behavioral 

 perturbations,  we  either  needed  an  alternate  method  for  designing  or  providing 

 perturbations  or  a  way  to  improve  the  throughput  of  the  experimental  assay  in  order 

 to more broadly sample the space of tasks. 

 A  possible  line  of  experiments  would  be  to  try  and  exploit  the  differences  in  the 

 dynamics  of  value  for  each  individual  (  Figure 17.  )  by  using  a  closed-loop  adversary 

 such  as  the  one  used  in  Dezfouli  et  al.,  2020  .  Such  a  method  might  provide  greater 

 contrast  between  models.  Further,  one  could  also  optimize  the  closed-loop  adversary 

 to  drive  the  maximal  separation  between  models  instead  of  maximizing  bias.  This 

 method  would  allow  for  pairwise  comparison  between  any  two  models  by  looking  at 

 the final behavior of a fly and comparing it to the behavior observed in a fly. 

 Nevertheless,  we  recognized  a  need  for  a  high  throughput  Y-maze  assay  to  account 

 for  the  relatively  small  sample  size  from  single  fly  experiments  compared  to 

 population  assays  such  as  the  classic  T-maze  (Tempel  et  al.,  1983)  or  Circular  Arena 

 assay  (Aso  et  al.,  2014)  .  Therefore  we  developed  a  high-throughput  16-fly  Y-Maze 

 assay  that  allowed  us  to  expand  our  experimental  throughput  massively  (  Figure 5.  ). 

 We  developed  the  assay  to  be  as  flexible  as  possible  and  capable  of  running  virtually 

 any  form  of  closed-loop  or  open-loop  olfactory  forced-choice  assay  or  pavlovian 
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 conditioning  assay  that  requires  up  to  2  odors  in  parallel.  The  high-throughput  rig 

 allows  us  to  perform  massive  genetic  screens  with  minimal  effort  and  test  various 

 hypotheses  about  fruit  fly  behavior,  including  but  not  limited  to  risky  choice 

 experiments  (Cavagnaro  et  al.,  2013;  Pachur  et  al.,  2013)  and  large  scale 

 world-state  inference  experiments  discovered  through  task  enumeration  (Ma  & 

 Hermundstad,  2022)  ,  which  would  allow  us  to  test  the  cognitive  limits  of  the  behavior 

 with minimal time investment. 

 Further,  the  accompanying  data  analysis  pipeline  also  gives  us  any  kinematic 

 variables  that  can  be  extracted  from  the  behavior  to  help  further  guide  our  analysis. 

 Using  this  information,  we  can  explain  the  unexpected  dynamics  of  choice  times  and 

 the  underlying  kinematic  factors  that  influence  the  choice  (  Figure 29.  and  Figure 30.  ). 

 The  most  exciting  result  from  this  analysis  was  that  we  observed  more  extended 

 residence  in  the  odor  paired  with  reward,  higher  movement  in  the  same  odor,  and 

 more  robust  rejection  of  the  other  odor.  These  observations  suggest  a  greater 

 motivational  drive  in  the  odor  with  greater  value  and  more  frequent  rejection  in  the 

 arm  with  less  value,  which  is  what  we  would  expect  based  on  our  model  of  value 

 learning (  Figure 3.  ). 

 We  also  see  a  strong  preference  to  enter  the  arm  with  the  odor,  which  is  not  entirely 

 consistent  with  our  behavioral  policy,  which  is  dependent  on  the  rejection  of  an  odor 

 after  entering  it  as  the  primary  driver  for  preference.  However,  we  do  not  see  it  as  a 

 significant  issue.  It  is  possible  that  due  to  the  miniaturization  of  the  original  single-fly 

 Y-maze  used  in  Rajagopalan  et  al.,  2022,  our  odor  boundaries  are  not  very  sharp. 

 Consequently,  the  fly  can  experience  an  odor  before  entering  the  marked  boundaries 

 of  an  arm.  Upto  an  approximation,  such  behavior  can  also  be  effectively  seen  a  rapid 

 rejection  of  the  other  odor.  Therefore,  one  way  to  improve  our  modeling  efforts  would 

 be  to  use  all  of  the  information  about  the  trajectories  available  to  create  a  cognitive 

 model  that  predicts  the  actual  movement  of  a  fly  and  use  it  to  build  an  accurate 

 kinematic  model  of  the  decision-making  process  underlying  the  behavior  of  a  fly. 

 However,  alternatively,  the  fly  could  be  experiencing  both  odors  at  the  boundary 

 either  as  a  well-mixed  combination  or  a  intermittent  sequences  of  two  odors  at 

 different  frequencies,  which  is  a  level  of  behavioral  resolution  we  are  current  not 

 capable of capturing or including in our models. 
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 We  discover  some  interesting  behaviors  through  our  process  of  optimizing  the 

 combination  of  odors  for  the  high  throughput  maze.  We  see  strong  biased 

 preferences  for  OCT  vs.  MCH  choice,  which  are  typically  considered  a  comparable 

 pair  of  odors  in  the  field  of  fruit  fly  olfaction  (  Figure 28.  ).  We  believe  this  is  because 

 of  the  reduced  choice  cost  in  the  miniaturized  Y-maze,  as  the  fly  needs  to  move  for  a 

 shorter  distance  to  make  a  choice.  As  a  result,  the  rig  can  accentuate  even  slight 

 differences in innate preferences or learning. 

 For  PA  vs.  EL  choices,  we  consistently  see  learning  of  EL  at  low  probabilities  of 

 reward  even  when  PA  is  paired  with  a  reward  (  Figure 31.  ).  The  simplest  explanation 

 would  be  that  some  residual  odor  leads  to  cross-contamination  of  learning  effects. 

 However,  this  effect  seems  to  become  much  rarer  at  higher  reward  probabilities 

 suggesting  that  this  is  likely  not  the  case.  Further,  since  experiments  were 

 interleaved  on  the  same  day,  it  is  unlikely  to  be  due  to  differences  between  fly 

 populations.  An  alternate  explanation  is  that  since  the  time  between  successive  odor 

 exposures  is  relatively  short,  there  may  be  some  trace  conditioning,  especially  for 

 EL,  which  is  known  to  have  a  much  broader  Kenyon  cell  activation  (Honegger  et  al., 

 2011)  .  With  more  frequent  reward  pairing,  it  is  possible  that  the  activation  of  the 

 PA-related  populations  becomes  more  predictive  of  the  reward  and  therefore  triggers 

 the  appropriate  learning  behavior.  A  mechanism  for  such  plasticity  is  currently 

 unknown.  Further,  we  see  a  significant  primacy  effect  for  OCT  vs.  MCH  and  PA  vs. 

 EL.  choices  even  at  low  starvation  levels  where  the  fly  is  barely  motivated  to  seek 

 reward (  Figure 28.  and  Figure 31.  ). 

 We  finally  establish  MHO  vs.  HAL  as  the  best  comparable  odors  without  a  significant 

 odor-sensitivity  or  order-sensitivity  (primacy)  in  behavior  (  Figure 32.  ).  The  only  effect 

 that  significantly  influences  learning  is  related  to  starvation  level.  We  then  use  these 

 odors  to  create  a  large  dataset  to  sample  the  space  of  dynamic  choice  behavior  and 

 create  a  new  dataset  of  2AFC  experiments  in  flies.  This  new  dataset  also  shows 

 operant  matching  behavior  observed  in  Rajagopalan  et  al.,  2022  ,  therefore  validating 

 that  flies  reproducibly  show  matching  behavior  across  different  experimental  setups. 

 We  establish  that  a  matching  model  with  a  short-term  integration  of  5  trials  and  a 

 finite  maximum  choice  probability  can  explain  the  behavior  well  and  performs  as  well 

 as  the  best  linear  regression  model  (  Figure 33.  and  Figure 34.  ).  The  linear  model’s 

 behavior  is  primarily  driven  by  the  reward-choice  association  (interaction  term).  We 
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 see  some  spurious  positive  influence  of  past  choices  on  the  behavior,  which  seems 

 to  suggest  a  weak  influence  of  habits  contrary  to  the  stronger  history  dependence 

 observed  by  Rajagopalan  et  al.,  2022  .  In  both  these  results,  the  time  window  with 

 which  integration  happens  seems  to  be  sensitive  to  5-trial  histories  (for  both 

 matching  and  choice  integration),  which  is  peculiar  as  it  is  the  resolution  of  the  block 

 switching  in  our  experiments  (see  methods).  It  is  possible  that  the  flies  are  somehow 

 sensitive to the block switch at this resolution. 

 Further,  replicating  the  model  fitting  on  the  Mohanta  (2022)  "Variable  Block"  dataset 

 reveals  that  the  significant  differences  between  the  models  are  with  the  policy 

 parameters,  which  transform  the  value  to  choice.  This  observation  is  not  surprising 

 because  the  changes  in  the  size  of  the  experimental  setup  and  odor  pair  will  likely 

 drive  changes  in  these  parameters  as  the  energetic  costs  and  innate  motivational 

 drives  will  be  different.  Further,  perseverance  seems  to  improve  the  model  fit  and 

 predictions,  but  the  results  are  not  as  trivial  as  expected  from  the  previous  analysis. 

 Some  models  without  perseverance  also  seem  to  perform  as  well  as  ones  without  it 

 (  Figure 36.  ).  However,  our  analysis  of  the  trained  FFqNs  reveals  robust 

 perseverance (  Figure 37.  ). 

 Consequently,  we  can  only  claim  that  there  is  a  weak  habit-forming  tendency  under 

 the  new  experimental  conditions.  This  behavioral  change  may  be  due  to  the 

 differences  in  the  experimental  rig  and  task  structure.  Firstly,  we  use  odors  optimized 

 for  maximal  symmetry  and  high  degrees  of  exploration  and,  as  a  result,  may  have  a 

 low  persistence  of  preference  between  blocks  and,  therefore,  within  blocks.  Further, 

 it  is  possible  that  at  the  concentration  of  the  odors  used,  the  odor  representation  is 

 only  strong  enough  to  drive  direct  reward  learning  and  not  habitual  behavior. 

 Alternatively,  it  is  possible  that  since  the  new  experiments  are  a  lot  more  dynamic 

 (average  block  size  =  ~  30  trials  in  Mohanta  (2022)  "Variable  Block"  dataset  vs.  80  in 

 Rajagopalan  (2022)  "Fixed  Block"  dataset),  and  therefore  the  effect  of  habit  learning 

 appears  to  be  stronger.  Further  data  analysis  might  reveal  more  evident  effects  of 

 habit  learning  on  a  subset  of  the  data  with  more  extended  block  sizes.  Lastly, 

 another  reason  for  not  observing  habits  as  strongly  would  be  that  habits  are  sensitive 

 to  the  evolutionary  significance  of  the  odors  itself,  however  this  is  high  unlikely  as 

 there  is  very  little  evidence  that  the  identity  of  the  odor  is  reflected  in  the  activation  of 

 the  fruit  fly  MB.  That  means  while  one  can  distinguish  between  two  odors  A  and  B 
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 given  the  activation  of  the  KCs,  it  is  unlikely  that  one  can  identify  which  was  odor  A 

 or  which  was  odor  B.  As  a  result  all  computations  implemented  in  the  MB  and  direct 

 feedback  are  likely  independent  of  the  identity.  However,  it  is  entirely  possible  that 

 computations  mediated  by  indirect  feedback  can  receive  input  from  the  lateral  horn 

 (LH) and as a result might sensitive to odor identity. 

 Habits  in  behavior  seem  counterintuitive  because  they  would  force  an  animal  to  keep 

 doing  the  same  thing  repeatedly;  nevertheless,  it  must  be  noted  that  it  is  typically  not 

 the  case.  One  hypothesis  to  explain  this  is  that  on  account  of  the  complex  nature  of 

 the  animal’s  biology,  behavior  is  rarely  fully  deterministic  but  rather  stochastic  with 

 weak  or  strong  biases  towards  specific  outcomes.  Therefore,  as  long  as  no 

 pathological  influence  overrides  the  inherent  randomness  of  behavior,  animals  will 

 likely  not  entirely  fall  into  purely  habit-driven  attractors.  In  recent  days,  multiple  lines 

 of  evidence  seem  to  suggest  the  existence  of  similar  habitual  behavior  during 

 foraging  experiments  in  mice  and  rats  (Beron  et  al.,  2022;  Greenstreet  et  al.,  2022; 

 Miller  et  al.,  2019)  .  Therefore,  habits  appear  to  be  a  convergent  strategy  across  the 

 animal  kingdom.  However,  it  is  not  clear  how  or  why  habits  may  have  emerged. 

 Many  possible  theories  about  habit  formation  suggest  that  habits  reduce  cognitive 

 load  on  the  animal  (Beron  et  al.,  2022;  Wood  et  al.,  2014)  or  are  more  stable  during 

 learning  (Kim  et  al.,  2015)  .  It  is  also  possible  that  habits  are  only  optimal  when 

 considering  the  risks  associated  with  exploration  (e.g.,  in  the  presence  of  a  threat, 

 exploration  may  have  a  much  greater  cost  by  exposing  the  animal  to  an  uncertain 

 outcome). 

 In  any  case,  there  is  increasing  interest  in  understanding  the  neural  underpinnings  of 

 habitual  behavior,  and  the  dopaminergic  system  has  been  implicated  in  this  system 

 across  mammalian  systems  from  mice  and  rats  (Bogacz,  2020;  Greenstreet  et  al., 

 2022)  to  humans  where  deficits  in  habit  formation  have  a  pathological  significance  in 

 Parkinson’s  disorder  (Bannard  et  al.,  2019;  F.  Hernandez  et  al.,  2015)  .  Due  to  the 

 highly  conserved  nature  of  this  behavior,  the  fruit  fly  provides  us  with  an  opportunity 

 to  explore  the  mechanistic  underpinnings  of  habitual  behavior.  Under  our  value 

 learning  framework  of  the  mushroom  body,  habits  are  likely  implemented  through 

 (direct  or  indirect)  feedback  connections  from  MBONs  to  the  DANs.  Recently,  it  was 

 shown  that  MBONs  from  one  compartment  could  drive  learning  across  other 

 compartments  via  interneurons  enabling  second-order  conditioning  (Yamada  et  al., 
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 2022)  .  Furthermore,  there  is  evidence  that  some  of  these  interneurons  directly 

 influence  upwind  walking  behavior  (unpublished  data;  Mohanta  et  al.,  2019)  and  that 

 activity  in  dopaminergic  neurons  is  sensitive  to  context-dependent  motion  signals 

 (Zolin  et  al.,  2021)  .  All  of  these  together  suggest  the  existence  of  a  possible  pathway 

 by  which  odor-gated  signals  can  drive  plasticity  in  the  mushroom  body  and  therefore 

 strengthen  upwind  walking  behavior  through  repeated  action  even  in  the  absence  of 

 reward.  Alternatively,  feedback  from  multisensory  odor  and  wind-sensitive  circuits 

 further  downstream  of  the  mushroom  body  in  the  fan-shaped  body  (Matheson  et  al., 

 2022)  may also provide an action learning signal to  the dopaminergic neurons. 

 On  a  different  note,  as  mentioned  earlier,  we  do  not  fully  understand  why  the  RNNs 

 perform  so  much  better.  The  task  structure  may  confound  the  argument  for  the 

 separation  of  timescales  since  the  first  PC  of  the  hidden  dynamics  for  RqNs  trained 

 on  Rajagopalan  (2022)  "Fixed  Block"  dataset  seem  to  have  an  autocorrelation 

 dropoff  of  ~80  trials  which  is  equal  to  the  size  of  the  block.  However,  in  the  analysis 

 of  RqNs  trained  on  Mohanta  (2022),  we  do  not  see  such  a  clear  separation  (data  not 

 shown)  and  therefore  needs  more  analysis.  Further  dissection  of  the  non-linearity 

 and  temporal  dynamics  underlying  these  neural  network-based  models  may  give 

 further insight into their function. 

 Multiple  possible  directions  might  be  helpful  to  pursue.  Firstly,  one  can  attempt  to 

 condense  the  underlying  non-linearities  of  the  network  using  methods  for  equation 

 discovery  typically  utilized  in  physics.  One  such  strategy,  known  as  Sparse 

 Identification  Nonlinear  Dynamics  (SINDy),  can  be  directly  applied  to  the  behavior  of 

 the  neural  networks  to  derive  phenomenological  equations  that  describe  the 

 non-linearity  of  value  update  using  a  form  of  lasso  regression  analysis  (Brunton  et 

 al.,  2016)  .  We  attempted  to  apply  this  to  the  trained  FFqN  vector  fields;  however,  the 

 resulting  equations  that  explained  the  dynamics  were  not  readily  interpretable  (data 

 not  shown).  Nevertheless,  further  bootstrapped  reliability  analysis  on  the  discovered 

 terms  can  potentially  reveal  valuable  insight  into  the  dynamics.  Similarly,  Symbolic 

 Regression  (SR)  techniques  such  as  AI  Feynman  (Udrescu  &  Tegmark,  2020)  might 

 also  reveal  interesting  dynamical  rules  to  understand  the  behavior  of  the  networks.  A 

 potential  probabilistic  formulation  of  equation  discovery  methods  can  be  directly 

 applied to behavioral data. 

 139  Rishika Mohanta, IISER Pune 

https://www.zotero.org/google-docs/?zo5Yp6
https://www.zotero.org/google-docs/?4we900
https://www.zotero.org/google-docs/?J57vTI
https://www.zotero.org/google-docs/?ph0P3C
https://www.zotero.org/google-docs/?ph0P3C
https://www.zotero.org/google-docs/?m4cjij
https://www.zotero.org/google-docs/?m4cjij
https://www.zotero.org/google-docs/?9QZrh5


 Alternatively,  the  improved  network  assumptions  can  be  directly  incorporated  into  the 

 neural  network  architectures.  Diverse  RNN  architectures  have  been  explored  in  the 

 past  to  be  able  to  sustain  dynamics  across  multiple  timescales  (Alpay  et  al.,  2016)  , 

 of  which  clockwork  RNNs  (CW-RNNs)  (Koutník  et  al.,  2014)  provide  a  simple 

 interpretable  way  to  incorporate  multiple  timescales  of  dynamics  into  independent 

 modules  to  try  and  understand  the  dynamics.  Alternatively,  more  robust  architectures 

 such  as  LSTMs  (already  implemented  in  FlYMazeRL)  can  be  explored,  or  variational 

 implementations  of  RNNs  can  be  used  to  recover  probabilistic  generative  rules  to 

 understand  the  behavior.  These  modifications,  combined  with  other  strategies  to 

 improve  the  training  of  the  RNNs  (Hafner,  2017)  ,  might  reveal  even  more  powerful 

 learning rules with much better explanatory and predictive power. 

 Therefore,  our  cognitive  modeling,  experimental  design,  and  observations  open  up 

 multiple  new  directions  to  explore  the  computational  limits  of  the  fruit  fly’s  brain, 

 giving  us  a  unique  opportunity  to  find  the  neural  mechanistic  underpinnings  of 

 cognitive behavior through future experiments. 

 140  Rishika Mohanta, IISER Pune 

https://www.zotero.org/google-docs/?PGkmcU
https://www.zotero.org/google-docs/?LwQv0K
https://www.zotero.org/google-docs/?G2aQ32


 Statistical Tables 

 Abbreviations: 

 NL : Normalized Likelihood 

 SE : Standard Error 

 WAIC : Watanabe Akaike Information Criteria 

 pWAIC: Bayesian effective number of parameters 

 CI : Confidence Interval 

 d: Cohen’s d 

 r: Matched-pair Rank Biserial Correlation 

 df: degree of freedom 
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 Model  Matching Strength 
 p-value 

 Matching Strength 
 Effect Size 

 Bias p-value  Bias Effect Size 

 RF-QL  3.8E-07  -1.00  2.8E-05  -0.93 

 F-RF-QL  2.0E-04  -0.88  3.6E-06  -0.97 

 I-QL  3.6E-06  -0.98  3.1E-06  -0.97 

 LT-QL  2.0E-04  -0.87  4.8E-06  -0.97 

 F-I-QL  3.8E-03  -0.77  2.2E-06  -0.98 

 F-LT-QL  1.8E-04  -0.89  3.6E-06  -0.97 

 DF-I-QL  1.8E-03  -0.80  4.2E-06  -0.97 

 DF-LT-QL  6.0E-04  -0.83  1.9E-06  -0.98 

 DE-I-QL  6.5E-06  -0.96  2.6E-06  -0.98 

 DE-LT-QL  1.7E-01  0.53  1.2E-05  -0.95 

 I-OS-QL  2.6E-04  -0.86  6.5E-06  -0.96 

 LT-OS-QL  8.2E-03  -0.72  1.6E-06  -0.98 

 F-I-OS-QL  9.5E-04  -0.83  5.6E-06  -0.96 

 F-LT-OS-QL  4.2E-04  -0.85  3.1E-06  -0.97 

 DF-I-OS-QL  2.0E-02  -0.69  4.2E-06  -0.97 

 DF-LT-OS-QL  1.5E-03  -0.80  3.6E-06  -0.97 

 SARSA  2.2E-06  -0.98  1.0E-06  -0.99 

 ESARSA  4.8E-05  -0.91  1.0E-06  -0.99 

 I-HV-QL  6.3E-05  -0.91  1.9E-06  -0.98 

 F-I-HV-QL  1.2E-04  -0.89  3.6E-06  -0.97 

 DF-I-HV-QL  6.7E-04  -0.84  3.1E-06  -0.97 

 LT-HV-QL  2.9E-04  -0.87  1.6E-06  -0.98 

 F-LT-HV-QL  4.2E-05  -0.92  8.8E-06  -0.95 

 DF-LT-HV-QL  1.4E-04  -0.89  1.8E-05  -0.93 

 Table 15.  Matching  law  statistics  for  the  Rajagopalan  (2022)  "Fixed  Block"  dataset 

 models. 

 144  Rishika Mohanta, IISER Pune 



 Model  Mean  95% CI  p-value  d 

 RF-QL  0.0005  (0.0003–0.0010)  0.141238  0.577484 

 I-QL  0.0002  (0.0000–0.0006)  4.17E-05  0.912213 

 DE-I-QL  0.0001  (0.0000–0.0005)  1.81E-05  0.937707 

 SARSA  0.0001  (0.0000–0.0008)  2.40E-05  0.923446 

 ESARSA  0.0002  (0.0000–0.0008)  6.27E-05  0.891955 

 I-OS-QL  0.0001  (0.0000–0.0005)  1.36E-05  0.939428 

 DE-LT-QL  0.0001  (0.0000–0.0011)  2.76E-05  0.926866 

 LT-QL  0.0002  (0.0000–0.0008)  5.49E-05  0.894374 

 F-I-QL  0.0008  (0.0000–0.0026)  0.558337  0.385367 

 LT-OS-QL  0.0002  (0.0000–0.0006)  3.64E-05  0.916433 

 F-RF-QL  0.0024  (0.0002–0.0079)  0.715975  -0.32058 

 DF-I-QL  0.0007  (0.0000–0.0029)  0.2114  0.486076 

 F-LT-QL  0.0015  (0.0001–0.0041)  0.962143  -0.08805 

 F-LT-OS-QL  0.0012  (0.0001–0.0035)  0.962148  0.118275 

 DF-LT-QL  0.0018  (0.0002–0.0044)  0.763745  -0.30735 

 F-I-OS-QL  0.001  (0.0001–0.0029)  0.911826  0.215011 

 F-I-HV-QL  0.0011  (0.0001–0.0036)  0.936956  0.156868 

 F-LT-HV-QL  0.0016  (0.0001–0.0050)  0.962148  -0.05367 

 DF-I-HV-QL  0.001  (0.0001–0.0033)  0.861856  0.2284 

 I-HV-QL  0.0005  (0.0000–0.0016)  0.069126  0.595963 

 LT-HV-QL  0.0008  (0.0001–0.0028)  0.669291  0.344591 

 DF-I-OS-QL  0.0011  (0.0001–0.0030)  0.962148  0.083189 

 DF-LT-HV-QL  0.002  (0.0002–0.0059)  0.812432  -0.29785 

 DF-LT-OS-QL  0.0013  (0.0001–0.0033)  -  - 

 Table 16.  Local  value  variance  statistics  for  the  Rajagopalan  (2022)  "Fixed  Block" 

 dataset 

 145  Rishika Mohanta, IISER Pune 



 Model  Test NL  Test 
 SE 

 Test 
 p-value 

 Test d  Training 
 NL 

 Training 
 SE 

 Training 
 p-value 

 Training 
 d 

 asymFFqN(2)  0.5057  0.0558  0.0475  2.5550  0.4628  0.0115  0.0000  4.2982 

 asymFFqN(2x2)  0.5145  0.0535  0.0483  2.5332  0.4720  0.0110  0.0000  3.9339 

 asymFFqN(5)  0.4720  0.0692  0.0448  2.6366  0.4233  0.0156  0.0000  4.5587 

 asymFFqN(5x5)  0.4288  0.0689  0.0340  3.0529  0.3821  0.0196  0.0000  4.4857 

 asymFFqN(10)  0.4531  0.0628  0.0344  3.0344  0.4170  0.0152  0.0000  4.6629 

 asymFFqN(10x10)  0.4501  0.0646  0.0345  3.0490  0.4118  0.0153  0.0000  4.4897 

 asymFFqN(10x10x10)  0.4192  0.0701  0.0328  3.1105  0.3686  0.0182  0.0000  4.6684 

 asymFFqN(100x100)  0.3927  0.0708  0.0302  3.2496  0.3447  0.0198  0.0000  3.9427 

 asymFFqN(100x100x100)  0.3347  0.0673  0.0240  3.6697  0.2889  0.0203  0.0000  4.2239 

 symFFqN(2)  0.5091  0.0616  0.0326  3.1193  0.4623  0.0106  0.0000  4.6030 

 symFFqN(2x2)  0.5043  0.0609  0.0486  2.5311  0.4627  0.0115  0.0000  4.0740 

 symFFqN(5)  0.4734  0.0692  0.0424  2.7298  0.4257  0.0160  0.0000  4.4325 

 symFFqN(5x5)  0.4383  0.0703  0.0313  3.1861  0.3921  0.0155  0.0000  4.3800 

 symFFqN(10)  0.4657  0.0729  0.0398  2.8066  0.4214  0.0160  0.0000  4.3241 

 symFFqN(10x10)  0.4424  0.0715  0.0283  3.3622  0.3961  0.0185  0.0000  3.7497 

 symFFqN(10x10x10)  0.4618  0.0702  0.0354  2.9964  0.4127  0.0153  0.0000  4.2232 

 symFFqN(100x100)  0.4094  0.0744  0.0467  2.5807  0.3644  0.0189  0.0000  4.4033 

 symFFqN(100x100x100)  0.4141  0.0768  0.0377  2.8944  0.3647  0.0203  0.0000  3.8594 

 asymRqN(2)  0.7251  0.0405  0.8673  0.1094  0.6820  0.0100  0.5301  0.1514 

 asymRqN(3)  0.7290  0.0411  -  -  0.6855  0.0103  -  - 

 asymRqN(5)  0.7198  0.0451  0.8204  0.1505  0.6791  0.0094  0.4599  0.1782 

 asymRqN(10)  0.7178  0.0436  0.8597  0.1158  0.6805  0.0108  0.6648  0.1044 

 asymRqN(100)  0.7131  0.0408  0.7155  0.2456  0.6842  0.0120  0.2083  0.3083 

 asymRqN(200)  0.6694  0.0570  0.8547  0.1199  0.6615  0.0180  0.6032  0.1259 

 symRqN(2)  0.7267  0.0469  0.8200  0.1496  0.6846  0.0097  0.6464  0.1101 

 symRqN(3)  0.7245  0.0453  0.8775  0.1023  0.6806  0.0096  0.3561  0.2237 

 symRqN(5)  0.7081  0.0487  0.6832  0.2729  0.6685  0.0117  0.6841  0.0976 

 symRqN(10)  0.7178  0.0470  0.8260  0.1443  0.6770  0.0109  0.3525  0.2255 

 symRqN(100)  0.6964  0.0659  0.7101  0.2482  0.6519  0.0239  0.4438  0.1921 

 symRqN(200)  0.7162  0.0403  0.9411  0.0482  0.6790  0.0126  0.7457  0.0787 

 Table 17.  Statistics  for  the  comparison  of  neural  networks  trained  on  the  Rajagopalan 

 (2022) "Fixed Block" dataset . 

 146  Rishika Mohanta, IISER Pune 



 Experiment  Kinematic Variable  EN vs. LN  LN vs. ET  ET vs. LT  LT vs. ER  ER vs. LR 

 OCT->MCH  Trial Length  0.5016  0.0009  0.0012  0.0031  0.0012 

 MCH->OCT  Trial Length  0.0134  0.0001  0.0001  0.0001  0.0040 

 OCT->MCH  Time in Air  0.0245  0.0023  0.0001  0.1040  0.0001 

 MCH->OCT  Time in Air  0.0017  0.0001  0.0001  0.0001  0.0009 

 OCT->MCH  Average Speed  0.6257  0.0001  0.0001  0.8077  0.0001 

 MCH->OCT  Average Speed  0.0580  0.0001  0.0001  0.0052  0.0017 

 OCT->MCH  ΔT(MCH-OCT)  0.5416  0.0004  0.0031  0.2958  0.0001 

 MCH->OCT  ΔT(MCH-OCT)  0.9032  0.0001  0.0017  0.0353  0.0002 

 OCT->MCH  Preference(MCH-OCT)  0.3910  0.0004  0.0134  0.0023  0.0001 

 MCH->OCT  Preference(MCH-OCT)  0.8077  0.0001  0.0134  0.5416  0.0012 

 OCT->MCH  ΔSpeed(MCH-OCT)  0.8552  0.0002  0.8552  0.0067  0.0001 

 MCH->OCT  ΔSpeed(MCH-OCT)  0.0676  0.0012  0.2958  0.5016  0.0040 

 OCT->MCH  Δ#Reject(MCH-OCT)  0.3910  0.8552  0.9165  0.0245  0.0002 

 MCH->OCT  Δ#Reject(MCH-OCT)  0.3046  0.6999  0.9164  0.0121  0.5830 

 Table 18.  Statistics for the Fly Kinematics. 

 Experiment  Naïve vs. Training  Training vs. Reversal  Naïve vs. Reversal 

 OCT->MCH Training  0.0001  0.0001  0.0040 

 MCH->OCT Training  0.0001  0.0015  0.0031 

 PA->EL P(R)= 0.125  0.0244  0.0108  0.0069 

 EL->PA P(R)= 0.125  0.1232  0.0059  0.4316 

 PA->EL P(R)= 0.25  0.9528  0.0020  0.0059 

 EL->PA P(R)= 0.25  0.0020  0.0438  0.0208 

 PA->EL P(R)= 0.5  0.0977  0.0039  0.0391 

 EL->PA P(R)= 0.5  0.0020  0.0840  0.0645 

 PA->EL P(R)= 1  0.0020  0.0039  0.5566 

 EL->PA P(R)= 1  0.0137  0.0209  0.1230 

 MHO->HAL 4-13 hrs  0.0030  0.0001  0.3575 

 HAL->MHO 4-13 hrs  0.1465  0.0002  0.0134 

 MHO->HAL 28-37 hrs  0.0039  0.0039  0.5703 

 HAL->MHO 28-37 hrs  0.0020  0.0020  0.6953 

 MHO->HAL 51-64 hrs  0.0078  0.0039  0.5281 

 HAL->MHO 51-64 hrs  0.0020  0.0371  0.0488 

 Table 19.  Statistics for the Choice Index. 
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 Comparison  Within Odor 1  Within Odor 2  Within training odor  Within reversal odor 

 OCT vs. MCH  0.0016  0.0326  0.9817  0.1478 

 PA vs. EL R=1.0  0.9097  0.7337  0.2896  0.4274 

 PA vs. EL R=0.5  0.8382  0.0373  0.0160  0.5401 

 PA vs. EL R=0.25  0.1508  0.0451  0.0013  0.4727 

 PA vs. EL R=0.125  0.0028  0.8601  0.0265  0.1051 

 MHO vs. HAL 4-13 hrs  0.8651  0.3198  0.1262  0.7159 

 MHO vs. HAL 28-37 hrs  0.4377  0.7133  0.6534  0.7132 

 MHO vs. HAL 51-64 hrs  0.1113  0.3074  0.5956  0.1530 

 Table 20.  Statistics for the Learning Index 

 df  sum_sq  mean_sq  F  PR(>F)  Significance 

 C(Order)  1  0.741423  0.741423  0.607563  0.43924  ns 

 C(Odor)  1  1.690672  1.690672  1.385429  0.244538  ns 

 C(Order):C(Odor)  1  21.39994  21.39994  17.53628  0.000109  *** 

 Residual  52  63.45683  1.220324 

 Table 21.  ANOVA for effect on learning rate for OCT  vs. MCH choices 

 df  sum_sq  mean_sq  F  PR(>F)  Significance 

 C(Order)  1  12.14906  12.14906  9.256622  0.002789  *** 

 C(Reward Probability)  3  30.97385  10.32462  7.866542  6.75E-05  **** 

 C(Odor)  1  25.65799  25.65799  19.54936  1.92E-05  *** 

 C(Order):C(Reward Probability)  3  5.816209  1.938736  1.477164  0.223271  ns 

 C(Order):C(Odor)  1  0.000113  0.000113  8.63E-05  0.9926  ns 

 C(Reward Probability):C(Odor)  3  7.864809  2.621603  1.997454  0.117021  ns 

 C(Order):C(Reward Probability):C(Odor)  3  7.125734  2.375245  1.809749  0.148031  ns 

 Residual  144  188.996  1.312472 

 Table 22.  ANOVA for effect on learning rate for PA  vs. EL choices 

 df  sum_sq  mean_sq  F  PR(>F)  Significance 

 C(Order)  1  0.778867  0.778867  0.552306  0.458854  ns 

 C(Starvation)  2  33.94385  16.97192  12.03505  1.75E-05  **** 

 C(Odor)  1  0.000505  0.000505  0.000358  0.984934  ns 

 C(Order):C(Starvation)  2  0.063699  0.03185  0.022585  0.977672  ns 

 C(Order):C(Odor)  1  2.101451  2.101451  1.490171  0.224624  ns 

 C(Starvation):C(Odor)  2  8.488852  4.244426  3.009786  0.053102  ns 

 C(Order):C(Starvation):C(Odor)  2  6.355494  3.177747  2.253388  0.109545  ns 

 Residual  118  166.4046  1.410209 

 Table 23.  ANOVA for effect on learning rate for MHO  vs. HAL choice. 
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 Model  Test NL  Test NL 
 SE 

 Test 
 p-value 

 Test r  Training 
 NL 

 Training 
 NL SE 

 Training 
 p-value 

 Training r 

 matching(5)  0.5637  0.0100  0.5720  0.0072  -  -  -  - 

 matching(10)  0.5547  0.0112  0.5653  0.0075  0.0051  0.4847  0.0008  0.4137 

 matching(15)  0.5568  0.0121  0.5656  0.0081  0.0378  0.3596  0.0057  0.3396 

 matching(30)  0.5589  0.0141  0.5676  0.0095  0.2385  0.2040  0.0835  0.2124 

 matching(60)  0.5525  0.0142  0.5622  0.0098  0.0619  0.3232  0.0074  0.3289 

 Table 24.  Statistics  for  the  constrained  matching  law  model  fits  for  the  Mohanta 

 (2022) "Variable Block" dataset 

 Model  Test 
 NL 

 Test NL 
 SE 

 Test 
 p-value 

 Test r  Training 
 NL 

 Training 
 NL SE 

 Training 
 p-value 

 Training 
 r 

 Best Matching Model  0.5637  0.0100  0.5674  0.0990  0.5720  0.0072  0.9436  0.0087 

 R+C+R.C (5)  0.5528  0.0130  0.0229  0.3938  0.5591  0.0090  0.8842  0.0179 

 R+C+R.C (10)  0.5623  0.0149  0.2628  0.1938  0.5720  0.0104  0.9502  0.0077 

 R+C+R.C (15)  0.5659  0.0155  0.9628  0.0081  0.5754  0.0107  0.9372  0.0097 

 R+C+R.C (30)  0.5672  0.0161  0.9535  0.0101  0.5788  0.0108  0.9502  0.0077 

 R+C+R.C (60)  0.5648  0.0165  0.7620  0.0524  0.5830  0.0108  0.9469  0.0082 

 R+R.C (5)  0.5455  0.0115  0.0411  0.3535  0.5534  0.0079  0.8191  0.0281 

 R+R.C (10)  0.5508  0.0128  0.1126  0.2746  0.5614  0.0087  0.9206  0.0122 

 R+R.C (15)  0.5564  0.0138  0.4915  0.1191  0.5670  0.0094  0.9372  0.0097 

 R+R.C (30)  0.5601  0.0150  0.4989  0.1171  0.5712  0.0100  0.9535  0.0072 

 R+R.C (60)  0.5597  0.0159  0.2432  0.2020  0.5762  0.0104  0.9502  0.0077 

 R+C (5)  0.5316  0.0075  0.0075  0.4626  0.5354  0.0056  0.3162  0.1230 

 R+C (10)  0.5416  0.0096  0.0138  0.4263  0.5465  0.0071  0.7553  0.0383 

 R+C (15)  0.5466  0.0106  0.0259  0.3858  0.5509  0.0077  0.8384  0.0250 

 R+C (30)  0.5540  0.0131  0.0184  0.4081  0.5604  0.0094  0.9107  0.0138 

 R+C (60)  0.5554  0.0144  0.0068  0.4686  0.5667  0.0101  0.9271  0.0112 

 C+R.C (5)  0.5512  0.0125  0.0282  0.3798  0.5570  0.0087  0.9008  0.0153 

 C+R.C (10)  0.5617  0.0147  0.2294  0.2081  0.5705  0.0102  0.9403  0.0092 

 C+R.C (15)  0.5658  0.0154  0.9446  0.0120  0.5736  0.0106  0.9337  0.0102 

 C+R.C (30)  0.5673  0.0159  -  -  0.5767  0.0108  -  - 

 C+R.C (60)  0.5653  0.0163  0.8159  0.0403  0.5805  0.0109  0.9436  0.0087 

 Table 25.  Statistics  for  Linear  Kernel  Regression  Models  for  the  Mohanta  (2022) 

 "Variable Block" dataset 
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 Lag  Mean(95% CI) [C]  p-value [C]  Mean(95% CI) [R.C]  p-value [R.C] 

 t-30  0.027 (-0.024–0.082)  0.027 (ns)  -0.040 (-0.129–0.041)  -0.040 (ns) 

 t-29  0.050 (-0.008–0.113)  0.050 (*)  -0.033 (-0.124–0.059)  -0.033 (ns) 

 t-28  0.033 (-0.016–0.080)  0.033 (ns)  -0.010 (-0.096–0.080)  -0.010 (ns) 

 t-27  0.074 (0.014–0.137)  0.074 (**)  0.004 (-0.085–0.088)  0.004 (ns) 

 t-26  -0.006 (-0.069–0.055)  -0.006 (ns)  0.062 (-0.020–0.155)  0.062 (ns) 

 t-25  0.071 (0.013–0.132)  0.071 (**)  -0.001 (-0.093–0.091)  -0.001 (ns) 

 t-24  0.014 (-0.052–0.076)  0.014 (ns)  0.015 (-0.079–0.109)  0.015 (ns) 

 t-23  0.043 (-0.012–0.104)  0.043 (ns)  -0.046 (-0.132–0.035)  -0.046 (ns) 

 t-22  0.038 (-0.025–0.103)  0.038 (ns)  0.003 (-0.096–0.109)  0.003 (ns) 

 t-21  -0.009 (-0.064–0.042)  -0.009 (ns)  0.096 (0.006–0.199)  0.096 (*) 

 t-20  0.033 (-0.027–0.086)  0.033 (ns)  0.001 (-0.091–0.088)  0.001 (ns) 

 t-19  0.013 (-0.049–0.074)  0.013 (ns)  0.012 (-0.067–0.098)  0.012 (ns) 

 t-18  0.016 (-0.032–0.065)  0.016 (ns)  0.024 (-0.067–0.113)  0.024 (ns) 

 t-17  0.047 (-0.005–0.097)  0.047 (*)  0.060 (-0.022–0.142)  0.060 (ns) 

 t-16  0.043 (-0.015–0.102)  0.043 (ns)  0.040 (-0.042–0.121)  0.040 (ns) 

 t-15  -0.010 (-0.063–0.038)  -0.010 (ns)  0.046 (-0.033–0.133)  0.046 (ns) 

 t-14  0.069 (0.020–0.121)  0.069 (**)  -0.019 (-0.108–0.067)  -0.019 (ns) 

 t-13  0.001 (-0.064–0.057)  0.001 (ns)  0.077 (-0.016–0.169)  0.077 (*) 

 t-12  0.071 (0.023–0.123)  0.071 (**)  0.040 (-0.045–0.124)  0.040 (ns) 

 t-11  0.016 (-0.034–0.066)  0.016 (ns)  0.052 (-0.020–0.129)  0.052 (ns) 

 t-10  0.047 (-0.003–0.096)  0.047 (*)  0.015 (-0.074–0.099)  0.015 (ns) 

 t-9  0.065 (0.010–0.118)  0.065 (**)  0.044 (-0.038–0.133)  0.044 (ns) 

 t-8  0.031 (-0.022–0.086)  0.031 (ns)  0.099 (0.007–0.188)  0.099 (*) 

 t-7  0.059 (0.008–0.110)  0.059 (**)  0.125 (0.051–0.203)  0.125 (**) 

 t-6  0.038 (-0.022–0.092)  0.038 (ns)  0.186 (0.102–0.277)  0.186 (****) 

 t-5  0.090 (0.039–0.140)  0.090 (**)  0.159 (0.079–0.240)  0.159 (**) 

 t-4  0.075 (0.030–0.124)  0.075 (**)  0.159 (0.073–0.247)  0.159 (****) 

 t-3  0.040 (-0.009–0.086)  0.040 (*)  0.238 (0.130–0.340)  0.238 (****) 

 t-2  0.004 (-0.052–0.068)  0.004 (ns)  0.314 (0.152–0.421)  0.314 (****) 

 t-1  0.065 (0.001–0.125)  0.065 (*)  0.308 (0.157–0.412)  0.308 (****) 

 Table 26.  Parameters  and  Statistics  for  C  +  R.C  (30)  regression  model  for  the  Mohanta 
 (2022) "Variable Block" dataset 
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 Lag  Mean(95% CI) [C]  p-value [C]  Mean(95% CI) [R]  p-value [R] 

 t-30  0.015 (-0.030–0.053)  0.015 (ns)  -0.008 (-0.090–0.066)  -0.008 (ns) 

 t-29  0.027 (-0.013–0.068)  0.027 (ns)  -0.009 (-0.087–0.060)  -0.009 (ns) 

 t-28  0.018 (-0.026–0.057)  0.018 (ns)  -0.053 (-0.165–0.005)  -0.053 (ns) 

 t-27  0.054 (0.020–0.104)  0.054 (**)  0.002 (-0.081–0.084)  0.002 (ns) 

 t-26  0.015 (-0.031–0.053)  0.015 (ns)  0.061 (-0.002–0.163)  0.061 (ns) 

 t-25  0.056 (0.023–0.105)  0.056 (**)  0.028 (-0.034–0.118)  0.028 (ns) 

 t-24  0.020 (-0.019–0.056)  0.020 (ns)  -0.023 (-0.109–0.039)  -0.023 (ns) 

 t-23  0.018 (-0.022–0.051)  0.018 (ns)  -0.008 (-0.091–0.069)  -0.008 (ns) 

 t-22  0.029 (-0.016–0.071)  0.029 (ns)  -0.019 (-0.090–0.037)  -0.019 (ns) 

 t-21  0.024 (-0.020–0.060)  0.024 (ns)  0.028 (-0.035–0.122)  0.028 (ns) 

 t-20  0.035 (-0.003–0.077)  0.035 (*)  0.020 (-0.046–0.109)  0.020 (ns) 

 t-19  0.023 (-0.024–0.063)  0.023 (ns)  -0.024 (-0.113–0.049)  -0.024 (ns) 

 t-18  0.023 (-0.016–0.057)  0.023 (ns)  -0.014 (-0.105–0.064)  -0.014 (ns) 

 t-17  0.058 (0.032–0.095)  0.058 (****)  -0.006 (-0.077–0.066)  -0.006 (ns) 

 t-16  0.056 (0.024–0.104)  0.056 (**)  0.003 (-0.060–0.074)  0.003 (ns) 

 t-15  0.023 (-0.012–0.050)  0.023 (ns)  0.019 (-0.053–0.112)  0.019 (ns) 

 t-14  0.057 (0.027–0.099)  0.057 (**)  -0.021 (-0.103–0.044)  -0.021 (ns) 

 t-13  0.039 (-0.004–0.083)  0.039 (*)  -0.060 (-0.159–-0.002)  -0.060 (*) 

 t-12  0.084 (0.040–0.136)  0.084 (****)  0.025 (-0.025–0.105)  0.025 (ns) 

 t-11  0.049 (0.014–0.085)  0.049 (**)  -0.016 (-0.095–0.050)  -0.016 (ns) 

 t-10  0.061 (0.031–0.101)  0.061 (****)  -0.000 (-0.076–0.072)  -0.000 (ns) 

 t-9  0.077 (0.042–0.122)  0.077 (****)  0.000 (-0.063–0.065)  0.000 (ns) 

 t-8  0.070 (0.038–0.118)  0.070 (**)  0.015 (-0.032–0.087)  0.015 (ns) 

 t-7  0.099 (0.050–0.150)  0.099 (****)  -0.002 (-0.071–0.069)  -0.002 (ns) 

 t-6  0.106 (0.051–0.165)  0.106 (****)  0.009 (-0.061–0.082)  0.009 (ns) 

 t-5  0.142 (0.061–0.209)  0.142 (****)  0.017 (-0.037–0.092)  0.017 (ns) 

 t-4  0.127 (0.056–0.192)  0.127 (****)  -0.009 (-0.092–0.068)  -0.009 (ns) 

 t-3  0.123 (0.057–0.181)  0.123 (****)  -0.014 (-0.094–0.045)  -0.014 (ns) 

 t-2  0.131 (0.057–0.199)  0.131 (****)  -0.020 (-0.098–0.051)  -0.020 (ns) 

 t-1  0.211 (0.074–0.305)  0.211 (****)  -0.017 (-0.090–0.043)  -0.017 (ns) 

 Table 27.  Parameters  and  Statistics  for  R  +  C  (30)  regression  model  for  the  Mohanta 
 (2022) "Variable Block" dataset 
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 Lag  Mean(95% CI) [R]  p-value [R]  Mean(95% CI) [R.C]  p-value [R.C] 

 t-30  -0.010 (-0.084–0.070)  -0.010 (ns)  0.045 (-0.025–0.112)  0.045 (ns) 

 t-29  -0.018 (-0.097–0.054)  -0.018 (ns)  0.057 (-0.007–0.118)  0.057 (*) 

 t-28  -0.061 (-0.166–0.009)  -0.061 (*)  0.056 (-0.007–0.129)  0.056 (*) 

 t-27  -0.004 (-0.091–0.087)  -0.004 (ns)  0.090 (0.040–0.162)  0.090 (****) 

 t-26  0.057 (-0.003–0.146)  0.057 (*)  0.069 (0.009–0.142)  0.069 (*) 

 t-25  0.011 (-0.059–0.091)  0.011 (ns)  0.083 (0.032–0.153)  0.083 (**) 

 t-24  -0.038 (-0.124–0.024)  -0.038 (ns)  0.048 (-0.003–0.097)  0.048 (*) 

 t-23  -0.027 (-0.107–0.038)  -0.027 (ns)  0.021 (-0.051–0.074)  0.021 (ns) 

 t-22  -0.036 (-0.110–0.023)  -0.036 (ns)  0.052 (-0.014–0.115)  0.052 (ns) 

 t-21  0.010 (-0.067–0.110)  0.010 (ns)  0.087 (0.026–0.168)  0.087 (**) 

 t-20  0.009 (-0.062–0.093)  0.009 (ns)  0.051 (-0.004–0.106)  0.051 (*) 

 t-19  -0.038 (-0.130–0.030)  -0.038 (ns)  0.048 (-0.011–0.102)  0.048 (ns) 

 t-18  -0.030 (-0.118–0.047)  -0.030 (ns)  0.061 (0.002–0.123)  0.061 (*) 

 t-17  -0.010 (-0.083–0.063)  -0.010 (ns)  0.110 (0.065–0.172)  0.110 (****) 

 t-16  -0.005 (-0.068–0.066)  -0.005 (ns)  0.084 (0.026–0.148)  0.084 (**) 

 t-15  0.013 (-0.055–0.093)  0.013 (ns)  0.053 (-0.006–0.103)  0.053 (*) 

 t-14  -0.033 (-0.110–0.030)  -0.033 (ns)  0.061 (-0.005–0.121)  0.061 (*) 

 t-13  -0.073 (-0.164–-0.015)  -0.073 (**)  0.087 (0.019–0.152)  0.087 (**) 

 t-12  0.015 (-0.040–0.076)  0.015 (ns)  0.110 (0.060–0.165)  0.110 (****) 

 t-11  -0.031 (-0.106–0.033)  -0.031 (ns)  0.076 (0.011–0.136)  0.076 (*) 

 t-10  -0.018 (-0.096–0.053)  -0.018 (ns)  0.073 (0.004–0.127)  0.073 (*) 

 t-9  -0.018 (-0.090–0.043)  -0.018 (ns)  0.105 (0.056–0.160)  0.105 (****) 

 t-8  0.001 (-0.056–0.059)  0.001 (ns)  0.117 (0.051–0.192)  0.117 (****) 

 t-7  -0.028 (-0.098–0.033)  -0.028 (ns)  0.163 (0.113–0.229)  0.163 (****) 

 t-6  -0.004 (-0.073–0.072)  -0.004 (ns)  0.193 (0.127–0.277)  0.193 (****) 

 t-5  0.003 (-0.047–0.069)  0.003 (ns)  0.209 (0.137–0.295)  0.209 (****) 

 t-4  -0.023 (-0.106–0.052)  -0.023 (ns)  0.180 (0.124–0.257)  0.180 (****) 

 t-3  -0.031 (-0.112–0.033)  -0.031 (ns)  0.212 (0.144–0.298)  0.212 (****) 

 t-2  -0.034 (-0.111–0.030)  -0.034 (ns)  0.253 (0.157–0.356)  0.253 (****) 

 t-1  -0.030 (-0.106–0.028)  -0.030 (ns)  0.297 (0.180–0.410)  0.297 (****) 

 Table 28.  Parameters  and  Statistics  for  R  +  R.C  (30)  regression  model  for  the  Mohanta 
 (2022) "Variable Block" dataset 
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 Model  Test 
 NL 

 Test SE  Test 
 p-value 

 Test d  Training 
 NL 

 Training 
 SE 

 Training 
 p-value 

 Training d 

 asymFFqN(2)  0.5252  0.0226  0.0000  1.6445  0.5345  0.0142  0.0000  1.9054 

 asymFFqN(2x2)  0.5175  0.0228  0.0000  1.6768  0.5264  0.0146  0.0000  1.9839 

 asymFFqN(5)  0.5100  0.0229  0.0000  1.6843  0.5171  0.0145  0.0000  1.9578 

 asymFFqN(5x5)  0.4857  0.0244  0.0000  1.6415  0.4928  0.0154  0.0000  1.8025 

 asymFFqN(10)  0.4943  0.0242  0.0000  1.7057  0.5011  0.0150  0.0000  1.8968 

 asymFFqN(10x10)  0.4694  0.0257  0.0000  1.7818  0.4750  0.0159  0.0000  2.1313 

 asymFFqN(10x10x10)  0.4647  0.0267  0.0000  1.6706  0.4694  0.0172  0.0000  1.8403 

 asymFFqN(100x100)  0.4542  0.0263  0.0000  1.7116  0.4587  0.0165  0.0000  2.0419 

 asymFFqN(100x100x100)  0.4166  0.0309  0.0000  1.6783  0.4166  0.0210  0.0000  1.8260 

 symFFqN(2)  0.5305  0.0212  0.0000  1.7848  0.5351  0.0139  0.0000  1.9348 

 symFFqN(2x2)  0.5133  0.0227  0.0000  1.6773  0.5177  0.0148  0.0000  1.7236 

 symFFqN(5)  0.5140  0.0225  0.0000  1.6475  0.5183  0.0145  0.0000  1.7996 

 symFFqN(5x5)  0.4832  0.0245  0.0000  1.6755  0.4852  0.0155  0.0000  1.7920 

 symFFqN(10)  0.5110  0.0228  0.0000  1.6839  0.5144  0.0147  0.0000  1.7893 

 symFFqN(10x10)  0.4900  0.0241  0.0000  1.6404  0.4929  0.0154  0.0000  1.7439 

 symFFqN(10x10x10)  0.4729  0.0262  0.0000  1.6736  0.4732  0.0174  0.0000  1.7120 

 symFFqN(100x100)  0.4815  0.0245  0.0000  1.7485  0.4842  0.0156  0.0000  1.7792 

 symFFqN(100x100x100)  0.4721  0.0263  0.0000  1.5523  0.4729  0.0170  0.0000  1.7536 

 asymRqN(2)  0.6216  0.0191  0.3099  0.1555  0.6309  0.0124  0.8907  0.0937 

 asymRqN(3)  0.6072  0.0194  0.0004  0.5762  0.6142  0.0125  0.2185  0.5718 

 asymRqN(5)  0.6024  0.0198  0.0457  0.5059  0.6137  0.0127  0.4126  0.3680 

 asymRqN(10)  0.6075  0.0197  0.1483  0.2315  0.6200  0.0125  0.8554  0.1043 

 asymRqN(100)  0.6500  0.0166  -  -  0.6561  0.0116  1.0000  - 

 symRqN(2)  0.6411  0.0171  0.7946  0.0398  0.6470  0.0117  0.9129  0.0656 

 symRqN(3)  0.6277  0.0175  0.6315  0.0731  0.6343  0.0118  0.7191  0.2028 

 symRqN(5)  0.6210  0.0178  0.3256  0.1517  0.6280  0.0119  0.8454  0.0975 

 symRqN(10)  0.6133  0.0176  0.0053  0.5302  0.6198  0.0117  0.2811  0.5232 

 symRqN(100)  0.6371  0.0169  0.7549  0.0480  0.6421  0.0115  0.8975  0.0675 

 Table 32.  Statistics  for  the  comparison  of  neural  networks  for  the  Mohanta  (2022) 

 "Variable Block" dataset. 
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