
Investigation of Mixed Layer Depth
through the lens of Artificial

Intelligence

A thesis submitted to

Indian Institute of Science Education and Research, Pune
in partial fulfilment of the requirements for the

BS-MS Dual Degree Programme

Submitted by

Ankit Bhaskar
Indian Institute of Science Education and Research, Pune

Under the supervision of

Dr. Bipin Kumar (IITM Pune)
Co-Supervisor: Dr. Bishakhdatta Gayen (University of Melbourne)

Co-Supervisor: Dr. Manmeet Singh (IITM Pune)
TAC Member: Dr. Anupam Kumar Singh (IISER Pune)





This thesis is dedicated to my Mother
I pray for her joyful and healthy life ahead.

ii



Declaration

I hereby declare that the matter embodied in the report entitled Investiga-
tion of Mixed Layer Depth through the lens of Artificial Intelligence
is the result of the work carried out by me at the Indian Institute of Tropical
Meteorology, Pune and the University of Melbourne under the supervision of
Dr. Bipin Kumar, Dr. Bishakhdatta Gayen and Dr. Manmeet Singh and the
same has not been submitted elsewhere for any other degree.

Ankit Bhaskar

iii



Acknowledgments

I would like to express my sincere gratitude to Dr. Bipin Kumar, Scientist
’E’, IITM Pune for providing me with the opportunity to take up this project
and most importantly, for his precious guidance and motivation, which helped
me to conquer the difficulties in research and development of this project. I
would like to thank him for going unconventional ways for helping me out
throughout my thesis and for having patience with me.
Further, I am very grateful to Dr. Bishakhdatta Gayen, Lecturer, University
of Melbourne, for conceptualising this project and guiding me throughout
the journey. I would also like to thank Dr. Manmeet Singh, Scientist ’C’,
IITM Pune, for being available all the time and providing me with his expert
support whenever needed.
Additionally, I would like to thank Dr Anupam Kumar Singh for always
showing a keen interest in the project and giving valuable suggestions and
comments.
Next, I would to acknowledge my friends Rithvika, Kaustubh, Vaisakh, and
everyone whose name I have not mentioned for having my back. I owe them
a debt of gratitude for taking care and looking after me in my tough times.
I wish you all the best in all your future endeavours.

iv



Abstract

Predicting the various oceanic parameters responsible for air-sea coupling is
crucial to understanding how the climate and weather systems can affect the
ecosphere. One of the most important among these oceanic parameters is the
Mixed Layer.
In this study, the convolutional long short-term memory(ConvLSTM) based
Neural Network(NN) architecture is used for monthly forecasting of Mixed
Layer Depth(MLD) in the Bay of Bengal(BOB) region. The study uses multi-
variables corresponding to other prominent ocean surface phenomena as input
and the AI model is used to learn and understand the link between these input
variables and the output variable MLD. This study forecasts the MLD with
a correlation better than the operational dynamical Hindcast model and the
ablation study suggests a decline in performance when any of these 5 input
variables were removed from the training. The study not only deciphers
the relationship between these variables and the MLD but also opens an
interesting field to explore the forecasting of other ocean phenomena which
directly or indirectly depend on the MLD.
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Chapter 1

Introduction

1.1 Overview

In recent years, climate science and meteorology have become highly signif-
icant as it has a wide range of effects on all living things, the evidence of
which we can see in floods and heat waves prevailing in the current time. As
a result, it is critical to study meteorological conditions, and more accurate
forecasting plays a significant role in averting extreme weather and disasters.
Current Numerical weather prediction models(NWP) are prone to significant
error levels and even though We will not be able to completely eliminate this
error range, it should be lowered in order to improve forecasts [4].
With the effective use of data, learning algorithms, and sensing devices, Arti-
ficial Intelligence (AI) is a disruptive paradigm that has increased the ability
to analyze, anticipate and reduce the danger of climate change. These algo-
rithms are known to decipher the non-linear patterns when predicting any
phenomenon and it has enabled the prediction of MLD values in the study [5].
Machine Learning algorithms have a lot of potential applications in climatol-
ogy as it does calculations, forecasts, and takes decisions to help reduce the
effects of climate change. AI helps us better comprehend the effects of climate
change across different geographical places by generating effective models for
weather forecasting and environmental monitoring. It analyses climatic data
and forecasts weather occurrences, extreme weather conditions, and other
socioeconomic consequences of climate change and precipitation [6][7]. From
a technological standpoint, AI improves climate projections, demonstrates
the effects of extreme weather, identifies the true source of carbon emissions,
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CHAPTER 1. INTRODUCTION

and makes countless other useful contributions. This empowers policymakers
to be conscious of increasing sea levels, natural catastrophes, storms, cli-
mate change, habitat degradation, and species extinction. Nonetheless, the
scientific community and specialists have begun to concentrate on climate
informatics utilizing AI paradigms[8]. Machine Learning, a subclass of AI,
has progressed to the point that it is being used to discover anomalies, as
reported by more than 200 articles since 2000[9]. Deep Learning is known as
a data-hungry approach since it requires a huge dataset to analyze and learn
the mapping between input and target variables. This technique can also be
applied to forecasting. Open-source frameworks like TensorFlow, Keras, and
others, together with high-performance computers, have decreased the barri-
ers to sophisticated calculations. We can now import greater datasets than
ever before because of high-performance computers and parallel processing.

1.2 Definition

Mixed Layer is the uppermost part of the marine surface waters that is char-
acterized by its homogenous density (temperature/salinity) distribution. It
also directly impacts other essential air-sea variables like Surface Sea Tem-
perature (SST) and Surface Air Temperature [10]. It regulates the air-sea
interactions (heat, moisture, CO2, etc.). Throughout the world’s oceans, the
depth of this mixed layer is maintained/controlled by various processes such
as Langmuir turbulence, shear wind-driven mixing, and upper ocean buoy-
ancy fluxes[11][12]. The MLD or depth of turbulent mixing is very sensitive
to density and temperature stratification and can change with the seasons
and small climatic perturbations. Further, although the diminution of the
mixed layer due to turbulent mixing is more rapid with a decrease in turbu-
lent mixing when compared with the influence of temperature and density
factors, data shows that the value of MLD is not consistent with the value of
MLD derived from such mixing when the wind is weak. It is a fact that direct
observation is a good way to obtain MLD values and so Bhaskar et al.[13]
inferred MLD variation in the western Indian Ocean by Argo observations.
Another definition proposed by Monterey et al.[14] suggests that MLD is the
depth of a layer which has a certain density calculated based on salinity and
temperature profiles and temperature is taken to be 0.5°C lower than the
surface temperature. We can find different definitions of MLD but they sug-
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CHAPTER 1. INTRODUCTION

gest similar spatial distribution. The estimated MLD from these definitions
is mostly consistent irrespective of the definitions being seasonal or spatial.
An important purpose of this report is to analyze the playing factors that
impact the formation of the mixed layer. Some of the studies seen in the
articles like Fan et al.[15] suggests that the MLD is the most sensitive to Sea
Surface Wind Stress. The absence of net sea surface heat flux forcing and
evaporation/precipitation difference can further change the MLD by 13% and
2%. However, a study to determine the effect of all the phenomena at the sea
surface is absent and this project would try to fill the gap. Figure 1.1 shows
the trend of MLD values at the point 7.5°N and 83°E in the central region of
BOB.

Figure 1.1: The figure shows the MLD values for the year 2018 (left) and for years 1979-2018
(right) for 7.5°N and 83°E

1.3 Thesis structure

The thesis is organised as follows: Chapter 2 provides the theoretical back-
ground of the DL algorithms and metrics which are used in this study. Chap-
ter 3 discusses the details of the data with their sourcing and pre-processing
steps. Chapter 4 highlights the model architecture and the steps in its train-
ing and testing. Chapter 5 discusses the result and ablation studies done on
the model with further validations. Finally, Chapter 6 provides the conclu-
sion of our work and ho this study creates a future impact.
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Chapter 2

Theoretical Background

2.1 NN Fundamentals

Artificial Intelligence (AI) is the utilization of machines to perform complex
computational tasks. Previously, during the age of Symbolic AI, problems
were first solved by humans before being converted to machine-readable code,
in essence, “teaching’ the machine to solve the problem. This was done
primarily because the popular opinion of the time was that people would
need to painstakingly hand-write a detailed, extensive and expansive set of
rules which would dictate how a machine would behave.
What soon followed was a method by which a set of data (supervised input
and output) would be provided to the program and encoded with updated
parameters to calculate a new output when given new input. This was a
drastic shift as previously in Symbolic AI, the original instructions could
only be changed by the programmer. Currently, machine learning involves
the use of computational algorithms that teach the machine a set of rules of
a problem and solve it when a set of data is supplied, i.e., machine learning
from a data-driven approach. This section will primarily explain the types of
neural networks and the framework of machine learning algorithms used in
this experiment
Machine Learning models based on how an algorithm learns a pattern as
simply categorized as:

• Supervised
• Unsupervised

4



CHAPTER 2. THEORETICAL BACKGROUND

• Semi-supervised
• Reinforcement Learning

The model used in this work is a supervised machine learning model and uses
pre-labelled meteorological data in training. The input data is of (Xi−Xn, Y )
structure in this supervised learning. A function f that can transform X to Y
via representational learning will be found. Y plays an important role in the
working of the model as f keeps getting updated through back-propagation
of gradient-based loss function defined by L(Y, f(X)) taking into account
the optimizers and evaluation metrics. The model used is a supervised deep
machine learning model for non-linear time series regression, it is referred to
as “deep” because of the use of multiple layers of neural networks.

Figure 2.1: Flowchart of a DL algorithm

Deep learning models have recently become popular as they have been shown
to be universal nonlinear function approximations [5]. There have also been
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CHAPTER 2. THEORETICAL BACKGROUND

significant advances in computational efficiency to train such large models.
These models are expected to learn meaningful representations of the high-
dimensional input through successive layers of transformations.
Figure 2.1 shows the general workflow of a supervised deep learning model. It
depicts how the supervised deep learning algorithm loops through the process
under a conditional statement. This statement can be as simple as a certain
fixed number of loops, i.e., Epochs or could be a continuous loop till a certain
metric of interest has stopped improving after a certain number of epochs,
such as the loss value or a scalar function.

2.2 NN Layers

Neural networks are made from layers which perform transformations on the
inputs to the layer to make it into a higher or lower dimensional represen-
tation. Layer transformation can be mathematically represented as, for a
given n-dimensional input matrix X ∈ Rj1−jn & an m-dimensional weight
matrix w ∈ Rl1−lm, the layers perform optimization o : Rj1−jn → Rl1−lm that
transforms X to a p-dimensional output matrix X̄.
Here, the operation, o, can be an iterative or single-step function working to
feed the activation function (ReLU in this study). The layers can be of several
kinds as per the user and are followed by a linear or non-linear activation
function on Y, the output matrix, in-built a layer or forming a separate
layer. Moreover, hyperparameters are pre-defined during the compilation of
the layer and are responsible for deciding the learning rate.

6
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2.3 Convolutional Layer

Figure 2.2: Deconvolution (Image taken from Jia, Chao[1])

As the name sounds, the layer does the convolutional operation on its inputs.
A conv2D or conv3D layer can be used depending on the dimension of the
data in the study. In its initial step, a m×n input matrix is taken, given a
k×k kernel matrix that moves over the input matrix referred by ’stride’. It
takes the element viz dot product with the element of the input matrix and
itself ’s’ times to return (m−k)/(s+1)×(n−k)/(s+1) output matrix as shown
in figure 2.2. The dataset is usually padded with data for the functioning
of the kernel on the edges and this is a common practice in computer vision
problems. Similarly, there is an option of padding by default in the deep
learning system
It is important to note that in order to incorporate the RGB images, a conv2D
layer has three 2D matrices considering each channel that describes image.
Similarly, for our dataset, each of the three channels was filled in with latitude,
longitude and time parameter. When the multiple lead time prediction is to
be calculated, more than 3 channels are required and for such cases, conv3D
layer, capable of incorporating up to 5 channels, is used.

7
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2.4 Recurrence Layer

These layers are used in the transformation of the sequential data and their
simplest form is 2D matrix with sample and feature as the dimensions. These
are generally delineated by 2 components including single transformation
cell and a function to repeat this transformation further in every time step
with remembering some information in the distant run in the form of weight
matrices.
Hochreiter et al.[16] introduced LSTM or ’Long Short-Term Memory’ with
multiple advantages on RNNS and will be used in this study in a modified
form. LSTM not only contains specific memory cell matrices which are carried
till the end of learning but also helps in remembering middle-distant temporal
patterns.
The single-time step transformation into any LSTM cell is represented by the
following equations.

Assumptions:
• xt ∈ Ra is a 1-D vector with input length ‘a’, to the LSTM
• ht ∈ Rb is the hidden-state vector with ’b’ hidden units
• it ∈ Rb is the activation vector at input gate
• ft ∈ Rb is the activation vector at forget gate
• ot ∈ Rb is the activation vector at output gate
• c̄t ∈ Rb is the activation vector at memory cell input
• ct ∈ Rb is the memory cell state vector
• b ∈ Rb and w ∈ Ra∗b/Rb∗b based on multiplication with xt or ht

• σ : R → R represents sigmoid activation function (for reference)
• σh : R → R represents the hyperbolic activation function (default)
• ◦ : R × R → R represents the Hadamard product

Equation:
it = σ(wixxt + wihht + bi) (2.1)

8
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ft = σ(wfxxt + wfhht + bf) (2.2)
ot = σ(woxxt + wohht + bo) (2.3)
c̄ = σh(wcxxt + wchht + bc) (2.4)

ct = ft ◦ ct1 + it ◦ c̄t (2.5)
ht = ot ◦ σh(ct) (2.6)

Consequently, an RNN can be customized to perform a transformation on
more complex input matrices by using cells suitable for such inputs. We next
present one such layer architecture which takes 5-dimensional inputs of the
type (samples, timesteps, height, width, channels)

2.5 Convolutional Recurrence Layer or ConvLSTM

Figure 2.3: Inner structure of a ConvLSTM layer (Figure taken from Yuan et al.[2]
)

The model used in our study was first introduced by Shi et al.[17] and showed
the implementation of the ConvLSTM2D layer. This model functions like
LSTM networks and has images in time series. Their transformation equa-
tion is similar to LSTMs discussed in the previous section and the convolu-
tional operation is used instead of the matrix multiplication when extracting
spatial features. Figure 2.1 shows the structure of a single ConvLSTM2D

9
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layer. The mathematical representation of the operations happening inside a
ConvLSTM2D cell with the variable description being the same as described
in LSTMs section 2.4 unless specified are as follows:

it = σ(wix ∗ xt + wih ∗ ht + bi) (2.7)

ft = σ(wfx ∗ xt + wfh ∗ ht + bf) (2.8)
ot = σ(wox ∗ xt + woh ∗ ht + bo) (2.9)

c̄ = σh(wcxxt + wchht + bc) (2.10)
ct = ft ◦ ct1 + it ◦ c̄t (2.11)

ht = ot ◦ σh(ct) (2.12)

Assumptions: The symbol ′∗′ indicates the convolutional operation instead
plain matrix multiplication as in LSTMs case. Other considerations different
that LSTMs are as follows:

• x takes 5D input corresponding to samples, timesteps, height, width and
channels

• ht and ct are 4D matrices and is zero by default
• w are convolutional filters (k, k).

2.6 Activation Functions

As it sounds, the activation function decides whether a neuron will be acti-
vated or not with its sole purpose being the addition of non-linearity to the
NN. In every forward propagation, these activation functions add an extra
step which when absent, the layers will give out a linear out independent of
their numbers and the model would essentially behave like a linear regression
model. The activation function can be divided into Binary Step Function,
Linear Step Function and Non-Linear Activation functions as discussed be-
low.

2.6.1 Binary Step Function

The binary step function is reliant on a predefined threshold value which
determines whether or not a neuron should be engaged. If the input given

10
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to the activation function is greater than a specific threshold, the neuron is
activated; otherwise, it is deactivated, which means that its output is not
transmitted onto the following hidden layer. It can be represented mathe-
matically as

f(x) =
0 for x < 0

1 for x ≥ 0
(2.13)

However, the binary function has many limitations such as it is not useful if
multi-class classification as it can only return 2 values. Further, it cannot be
used for the backpropagation process as the gradient of the step is zero.

2.6.2 Linear Activation Function

Linear Activation Function does contribute to the weighted input sum and
returns the input value directly making it insignificant as an activation func-
tion. It can be simply represented mathematically as:

f(x) = x (2.14)

As trivial as it looks, it cannot be used in most of the deep learning cases
as neither can it be used in the backpropagation cases nor it returns any
difference in forward propagation as all layers will return the same output
making the NN collapse and behave like a single layer.

2.6.3 Non-Linear Activation Function

The non-linear Activation function forms the base of any deep earning model
and can create any desired complex mappings throughout the input and
output of NN layers. In this case, not only backpropagation but also stacking
of the NN makes sense as their non-linear combinations could give out a
functional output. There are numerous non-linear activation functions used
in deep learning models and some prominent among them are mentioned
here.

Sigmoid/Logistic Activation Function

The sigmoid or logistic functions return output between 1.0 and 0.0 with any
input in the range between 0 to 1 in a directly proportional relation. The
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mathematical representation of the function is as follows:

f(x) = 1
1 + e−x

This activation function is mostly used in the cases where we need probability
value and as these provide a smooth gradient, it prevents jumps in the output
values. However, the sigmoid activation functions suffer from the vanishing
gradient problem and so their use is subject to the case in the picture.

Hyperbolic Tangent Function (Tanh)

The functions shares similarity with the sigmoid function and the shape re-
sembles ‘S’ like the former with output ranging between -1 to 1. The function
returns a value closer to 1 when the output is larger and vice versa. The
mathematical representation is as follows:

f(x) = ex − e−x

ex + e−x

Similar to the sigmoid activation function, this too faces the problem of van-
ishing gradient as when the input gets towards extremes, the output becomes
relatively flat. However, as it returns values between -1 to 1, the mean of the
layers lies near 0 and data is centred making it easy for the learning process
of the next layer.

Rectified Linear Unit

Rectified linear Unit or ReLU does give an imprint of linear function but is
differentiable and supports backpropagation. The function activates when the
linear transformation gives an output greater than 0. It can be represented
mathematically as:

f(x) = max(0, x)
Like every model, even though ReLU is very efficient owing to the fact that
it does not activate in every case saving computational burden, it has a
limitation as it tends to miss weights and biases of some neurons in the back-
propagation process leading to dead neurons. This limitation is commonly
known as the dying ReLU problem.

12
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Parametric ReLU

With the aim of solving the dying ReLU problem and preventing the gradient
to become zero for sub-zero input, the function’s slope of the negative part is
transformed into an argument, say a. The value of ‘a’ is learnt in the process
of backpropagation.

f(x) = max(ax, x)

While performing better than ReLU in tackling the dying ReLU problem, it
still fails to solve it. In certain cases, the slope parameter ‘a’ is not necessarily
passed accurately.

Exponential Linear Units

ELU or Exponential Linear Unit work similar to ReLU but has different
functioning in the negative part as it modifies the slope. ELU utilizes an
exponential function on the negative side of the input function. It can be
represented mathematically as:

f(x) =
x for x ≥ 0

α(ex − 1) for x < 0
(2.15)

Even though it should perform better than ReLU in remembering the weights,
it is computationally heavy as a new operation of the exponential function
is exploited at every layer and when compared to Parametric ReLU, it does
not learn the value of ‘a’ and has a fixed function.
Conventionally, Tanh and sigmoid were more prominently used in NN until
recently when ReLU was found to converge faster than the two. This study
will also work with ReLU as the activation function. A comparison was done
with the ‘sigmoid’ activation function and ReLU not only converges faster
but also gave better results [18].

2.7 Loss Function

With every iterative epoch in a deep learning run, a model aims to minimize
its loss function. The value of this loss function is always scalar irrespective
of the complexity of the data. There is an option to provide multiple loss
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functions and the model averages the scoring to optimize the model unless
specified otherwise.
An essential consideration while defining the loss metric is to take into account
the characteristic to be minimised and to consider if the neural network could
perform accidental optimisations, not explicitly directed to be performed.
For example, if we consider two important metrics to measure the efficacy
of time series weather predictions, RMSE and ACC (Anomaly Correlation
Coefficient). If we put a condition that the model is only allowed to increase
ACC ( the model by default reduces scalar computed by a loss function,
we input I’=1 ACC), it will lower pattern correlation between predicted and
actual values but it will ignore large disparities of the magnitude of difference
between these values. Thus, MSE or RMSE are preferred as loss functions in
model training which will teach the model superior transformation than only
correlation metrics. Hence, deciding the loss function to be used is essential
to enable the model to focus on the characteristics to be minimised, i.e.,
pushes the model to learn a specific skill

2.8 Performance Metric

Apart from loss, we can look for certain other evaluation metrics to be calcu-
lated to check if the model is improving in an intended way or not improving
in an unintended way at the end of each epoch such as accuracy, mean abso-
lute error and RMSE/MSE, Pearson Correlation Coefficient, ACC etc.
For the crux of this study, Pearson Correlation Coefficient is used. It repre-
sents the relationship between the correlation coefficient matrix, R, and the
covariance matrix, C as:

Rij = Cij√
CiiCjj

(2.16)

The Covariance indicates the level to which two variables have a linear re-
lationship. The correlation value of 1 indicates that that two datasets are
moving together and the value of 0 suggests that they move independently.
There is no hard and fast rule that says a certain level of
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2.9 Types of Climate forecasting Models

2.9.1 Dynamical Models

These are also referred to as a dynamical model which relies on General Cir-
culation Models (GCMs). These models are basically complex groups of for-
mulas simulating the physics and chemistry of the atmospheric state. In most
of the cases, it contains partial differential equations solved mathematically
depending on the thermodynamic properties of the simulated atmospheric
processes. (Bauer et al. (2015)) shows that over time, the predictions by
these NWP have improved and all the weather forecasts which are in op-
eration come from these models. Even though these dynamical models are
quite successful there is a huge scope for improvement as some of the limita-
tions exist such as complexities at the poles. In the forecasting of phenomena
like precipitation and lightning, these models are extensively used but deep
learning has proved to be beneficial in further improvement.

2.9.2 AI Models

The weather forecasting problem can be seen as a classical machine learning
problem where we can get test and training data from the existing atmo-
spheric state, however, the traditional machine learning algorithms related
to regression could not prove many benefits in this case. The recent progress
in deep learning algorithms especially computer vision has made it possible
to learn from the atmospheric data using CNNs and developments in RNNS
and LSTMs have improved the lead time predictions as in Natural Language
Processing.
Only lately have there been studies towards emulating GCMs or developing
complete trainable models for solely data-driven predictions utilizing machine
learning, notably NNs, for such issues. Models are classified into three major
categories:

1. Direct: A unique model is trained for each subsequent prediction time
step ( eg.: monthly in our study). The model does not differ in the NN
architecture but the data fed in is different and as a result for every
time step forecasting step, Y is altered in any supervised training model
f(X,Y) accordingly.
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2. Iterative: These models are more complex than direct models and there
is an option to keep variable ’t’ time steps. They can predict future
time steps with n or multiples of n lead times depending on the problem.
These models are tougher to train and demonstrate less proficiency than
direct models.

3. Continuous: Time is employed as an extra input in this sort of model,
and a fixed model is trained to create all prediction lead times[19].
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Data Insights

3.1 Climate data format

NetCDF or Network Common Data Form is the most commonly used format
for climate models. It is saved with extension ‘.nc’ and stores array-oriented
scientific data. The depth of the detail stored in the data can be seen in the
figure 3.1

Figure 3.1: The figure shows the details NetCDF datafile holds

The documentation of the NetCDF data format can be referred to view all
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the variables stored in it with the most important being the dimension name,
dimension sizes, variable name, fill values, missing values brief and many
more. The coordinate variables are mostly latitude, longitude and time,
however, we can rename them as per requirement. The main variable, say,
MLD in our case is saved as MLD (latitude, longitude, time). Some of the
benefits of using the NetCDF data format are that it is self-describing in
nature as it contains all metadata information. The dataset is scalable as
any part of the data can be easily accessed and modified as per requirement.
The dataset is easily appendable as new data can be replaced or added to
the existing.
Even though the NetCDF package in Python has a modification option, ’Xar-
ray’, an open source package in Python, is commonly used due to its extensive
customization option. This package is entirely based on NumPy and even has
similar commands. Xarray makes processing and manipulation of labelled
multi-dimensional data efficient and straightforward. Apart from Numpy,
Xarray borrows its features from Pandas, especially for Tabular data. When
it comes to parallel computing for large-sized data, it incorporates Dask very
well making it one of the most popular packages in Python for climate data.

Figure 3.2: The figure shows data description using xarray

Figure 3.2 can be referred to understand the data description displayed by
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Xarray. The data variable and coordinate variables with their sample data
points can be seen. xr.open dataset function is designated for reading single
file and to display the data description with variables, coordinate variables
and attributes, the ’ds.attrs’ and ds.coords functions are used.

3.2 Climate data types

Figure 3.3: The figure shows the range for which different data types exist

Climate data are can be classified into 3 types based on their sources. All
the meteorological data comes under Observational, Reanalysis or data by
climate models. Figure 3.3 shows the range at which these sources return the
meteorological data.

3.2.1 Observational Data

In this category, in-situ observations refer to the data which are directly gen-
erated by meteorological stations at/near the earth’s surface or inputs from
ships, mooring or stationary platforms kept across seas. Indirect observa-
tional data refers to the estimates from satellites, RADAR and investigations
of ice cores, boreholes temperature profiles and coral reefs which are not accu-
rate but they give insights into historical climate variables. However, inputs
from satellites are equally crucial as direct observations. Satellites contain
imaging from infrared to the visible spectrum and have sound sensors using
which meteorological variables can be determined. AI is also used to under-
stand satellite inputs after correcting interferences from the atmosphere.
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3.2.2 Data from Climate models:

The climate model is referred to as the numerical depiction of the ocean
and climate system derived from the physics, chemistry and biology of the
environment enclosed by it, their exchanges and feedback. These models are,
in layman’s terms, systems of mathematical(differential) equations that follow
the laws of chemistry and physics. The climate model further bifurcates into
the weather model which deals with predictions ranging from minutes to a
month and a general climate model which can give out data in the range of
decades. So if we are looking into the weather of Pune for tomorrow, the
weather model would make more sense as the climate model deals with gross
data of a higher range.

3.2.3 Re-analysis data

A meteorological re-analysis data is generated by the combination of climate
models and observations and it gives the most accurate description of cli-
mate variables. It contains the estimation from all varieties of atmospheric
variables like pressure, temperature, wind and surface parameters like precip-
itation, evaporation and further in-sea profiles like MLD. A global re-analysis
data contains the outputs when global model data and observations are fed
to get the data and can range back by decades.

3.3 Data Source

3.3.1 ERA5

ERA5 is the most popular repository for referring to meteorological datasets.
These data are derived from the Copernicus satellite and they provide hourly
to monthly estimates of a huge collection of land, oceanic and atmospheric
meteorological variables. This repository contains monthly dataset since 1959
and is updated every quarter in real-time. The initial daily updates are up-
loaded 6 times a month. As described in the re-analysis section, ERA5 uses
a huge amount of historical observational data along with climate modelling
to give out the re-analysis data. The parameters namely monthly averaged
reanalysis Evaporation, Mean surface latent heat flux, Mean surface net long-
wave radiation flux, Mean surface sensible heat flux, Sea surface temperature
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and Total precipitation were downloaded from ERA5. The dataset was al-
ready in 0.25° resolution and was used as it is.

3.3.2 ORAS5

ORAS5 dataset is the sea-ice and global ocean data ensemble reanalysis re-
leased by the Ocean Reanalysis System 5 or ORAS5 and this dataset is es-
sentially the monthly mean. It provides historical data since 1979 [20]. The
parameters Potential temperature, Salinity, Mixed Layer Depth and Net Up-
ward Water Flux were downloaded from ORAS5 Reanalysis data. Potential
temperature and Salinity are 3d variables varying with depth (Leviation) and
they denote the stratification of the ocean surface. The combined data size
ended up being around 200MB. The TropFlux provides surface heat and mo-
mentum flux data of tropical oceans (30°N-30°S) between January 1979 and
September 2011.

3.3.3 Tropflux

The TropFlux provides Surface Heat and Momentum Flux data of tropical
oceans (30°N - 30°S) since January 1979 [21]. The parameter wind stress
magnitude was downloaded from the Tropflux dataset. This dataset is con-
sidered to be the most reliable for flux-related modelling.

3.4 Data Overview

All the datasets were downloaded for the Bay of Bengal region. The grid for
the dataset was 5 °N to 25 °N latitudes and 78 °E to 96 °E longitudes. The
Surface Heat and Momentum Flux from Tropflux could only be downloaded
for the complete ocean and so it was cropped using the NCO package. One
dataset from each of the repositories is discussed with figures plotted using
Panoply [22].
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3.4.1 Training Data: Net non-solar heat flux

Figure 3.4: net non-solar in Jan 1979 in the BOB region and the histogram (right-top) shows
the data distribution for the whole dataset

The Net Non-Solar data had no missing values and showed a very uneven
distribution of values. These refer to the heat released by the ocean’s surface
and was calculated by summing the Mean surface latent heat flux, Mean
surface net long-wave radiation flux and Mean surface sensible heat flux using
an in-house script. The initial impression of the data for the month Jan 1979
has been shown in the figure 3.4. The dataset has 40.2% missing values
corresponding to the land area enclosed in the rectangular grid cropped for
the BOB region. The right-top corner of the figure 3.4 shows the distribution
of the data sample. This distribution is shown in every variable discussed
further. The maximum and minimum values of the dataset were 394.2 and
38.1. These datasets were also downloaded from the ERA5 repository for the
selected BOB region and had a resolution of 0.25°.
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3.4.2 Training Data: Total Precipitation

Figure 3.5: Total precipitation in Jan 1979 in the BOB region and the histogram (right-top)
shows the distribution of whole the dataset

Precipitation data was downloaded from the ERA5 repository and had a
resolution of 0.25°. Figure 3.5 shows how the data looks for Jan 1979. [23]
shows how precipitation can influence the Mixed Layer Depth and hence has
been included in this study. The dataset has no missing value as the data for
precipitation is available for both land and sea.
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3.4.3 Training Data: Wind stress Magnitude

Figure 3.6: Wind stress magnitude in Jan 1979 in the BOB region and the histogram (right-
top) shows the distribution of the whole dataset

Wind Stress magnitude denotes the impact of wind mixing on the Mixed
Layer Depth. This data was downloaded from the Tropflux repository and
was in the resolution of 1°. Figure 3.6 shows how the data looks for Jan 1979.
The dataset was then interpolated with a linear interpolation method using
in-house python script. The dataset had minimum and maximum values of
0.0058 and 0.2544. and contains 40.2% missing values corresponding to the
land enclosed.
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3.4.4 Training Data: Evaporation

Figure 3.7: evaporation in Jan 1979 in the BOB region and the histogram (right-top) shows
the distribution of the whole dataset

The data from ERA5 had 0.25° resolution by default and was used as it
is.Figure 3.7 shows how the data looks for Jan 1979. The data were negative
denoting the amount of water lost due to evaporation. The data would be
normalised for training purpose. The data had no missing value as land
surface also contributes to evaporation.
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3.4.5 Training data: Sea surface Temperature

Figure 3.8: Sea surface temperature in Jan 1979 in the BOB region and the histogram (right-
top) shows the distribution of the whole dataset

The surface temperature is a direct measure of heat content in the Mixed
Layer of any ocean. Figure 3.8 shows how the data looks for Jan 1979.
This data was downloaded from the ERA5 dataset and was present in 0.25°
resolution. The dataset had 37.2% missing values corresponding to the land
surface enclosed in the BOB rectangular grid. The data ranged from 292.78
to 305.16.
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3.4.6 Testing Data: Mixed Layer Depth

Figure 3.9: Mixed Layer Depth in Jan 1979 in the BOB region and the histogram (right-top)
shows the distribution of the whole dataset

Mixed Layer Depth is the main phenomenon this study revolves around. As
mentioned earlier, the study will aim to show how the parameters influence it
in a data-driven approach. The monthly averaged reanalysis data of MLD was
downloaded from the ORAS5 repository. The data was in 0.25° resolution
and was used directly after cropping it into our required grid. The MLD
dataset had 44.9% missing values of which the major component should be
from the land surface. It is also possible that, as this data is taken from
the ORAS5 repository the data stored treats more part of the map as land
surface compared to ERA5. They ranged from 6.08m to 83.55m metres. The
higher value of MLD corresponds to the central part of the BOB during the
winter season. Figure 3.9 shows the MLD in the geographical plot for Jan
1979.
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3.5 Data Pre-processing

For any AI model, it becomes important to input the data in a machine-
readable format and compensate for missing values or outliers. The below
figure 3.10 shows the flow chart for the data processing pipeline described in
the next subsection.

Figure 3.10: Flow chart showing pre-processing steps
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3.5.1 Pre-processing pipeline

1. All the datasets were cropped using ’Xarray’ to the bay of Bengal re-
gion(5°N to 25.5° & 78.5°E to 95.5°E) which is the focused region in this
study.

2. The dataset was then checked for resolution and regrid to 0.25° using
Xarray. In our case, MLD was at 1° resolution and the rest at 0.25°
resolution. Now every dataset had a shape of 81x69.

3. The dataset was then viewed in python and evaporation data which was
fully negative was converted to non-negative.

4. All non-missing values were stored separately from missing and treated
further.

5. In our study, all the variables were non-negative and were then normal-
ized using min-max scaling.

6. Using the formula:
z = X − Xmin

Xmax − Xmin
(3.1)

where z represents the normalized value, the dataset will always be in
the range of -1 to 1 (0 to 1 in our study)

7. The real dataset was then converted into e7 exponential space and the
missing values were changed to 0. This is to nullify the biasing of the
missing values on model prediction. Especially, in our study, most of
the variables are limited to the ocean and contain huge missing values
corresponding to land. This dataset was then sent to the train-test
pipeline for further editing as discussed in Chapter 2
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Methodology

4.1 Insights into ConvLSTM model

Figure 4.1: Model architecture

Current advances in deep mastering, in particular, recurrent neural network
(RNN) and Long short-term memory (LSTM) model, as mentioned in the
papers by Alex Graves[24] and Hochreiter et al.[25], shows that these mod-
els are highly effective. According to the philosophy underlying the deep
studying technique, if we’ve got sufficient data to train it, we are close to
resolving the problem. Our study satisfies the data problem as it was easy
to acquire a large amount of radar echo information continuously and com-
bined with the climate model and Argo observations, a re-analysis data was
formed. Now the requirement is an appropriate version of end-to-end learn-
ing. The original LSTM encoder-decoder framework proposed in the article
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Sutskever et al.[26] gives a well-defined framework for sequence-to-sequence
learning problem by training temporally joined LSTMs, one each for input
and output sequence. The article Ranzato et al.[27] shows that RNN based
model on visual data of words obtained by studying the image patches can
do the interpolation of intermediate frames and prediction of future video
frames. LSTMs, one for the input sequence and the other for the output
series. This model could predict only one frame ahead as the size of the
convolutional kernel for transitioning from state to state is restricted to 1. In
the article Srivastava et al.[28], the latter work is followed up by focusing on
the importance of multi-step prediction. Their model which reconstructs the
input sequence and predicts the future sequence simultaneously can be used
for our purpose but it lacks the use of spatiotemporal correlation. This issue
is solved in Shi et al.[17] where a novel convLSTM network is proposed for
precipitation nowcasting. The idea of C-LSTM is extended to ConvLSTM by
adding convolutional layers in both input-to-state and state-to-to transitions.
Similarly, By stacking multiple Convolutional LSTM layers and forming an
encoding-forecasting structure, an end-to-end trainable model can be built
for Mixed Layer prediction forecasting and understanding of the dynamics.
Figure 4.1 shows our model architecture, the details of which are shown in the
summary of the model in section 4.5. Further, Figure 4.2 shows the flowchart
for the progress of the study.
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Figure 4.2: Flow Chart for the MLD forecasting using the AI model

4.2 Model Training

The dataset used for the model training consisted of 380 months from each of
the input and output variables. The input variables were further converted in
the sliding window of 15 months. In the model, we feed 15 months of data to
the ConvLSTM model and predict the 1 lead month and the sliding window,
as explained below.
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4.2.1 The Sliding Window

The concept of a sliding window to initialize the training data as shown in
figure 4.3 is described in the following points:

• For the training, a dataset containing 395 months starting Jan 1979 to
Nov 2011 was used

• A deep learning model uses the target variable throughout the training
for validation.

• As seen in the figure 4.3, the 1st window consists of 15 months of training
variables, i.e., Evaporation, precipitation, sea surface temperature, wind
stress magnitude and net non-solar heat flux and the 16th month MLD
value as predicted and validation data.

• the 1st data point, say, Input1 has months 1-15 as input, Input2 has
Months 2-16 as input and Input 380 has months 380-394 as input and
accordingly month 16, month 17 and month 394 as predictions and val-
idation data.

• Hence the input data has a dimension of 380 x 15 x 81 x 69 x 5 [no. of
data points, x depth of sliding window x latitude x longitude x no. of
channels] and the prediction has a dimension of 380 x 1 x 81 x 69 in the
same schema.

Figure 4.3: Iterative sliding window taking 15 months as input data and 16th month as
validation data
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4.2.2 Schematics

The data downloaded from the mentioned sources (Section 3) were passed
through preprocessing stages. As we have our target variables, it ends up
to a supervised learning problem for which we split our data into train and
test data in the ratio of 380:85 with the numbers representing the number of
months in each set. The deep learning model by default will split the training
data further in training and validation sets throughout the training loops.
The deep learning model iterates over the data to create multiple splits such
that all parts of the data are used for training and validation. Each of these
data points has values of 15 months corresponding to each variable or channel
and MLD as test data. The data is then sent into the described (Section 4.1)
AI model for training. The ConvLSTM model is designed to incorporate
multiple channels or variables in the input. This regression model is able to
identify the non-linear trend and the relations between the input and target
variables, MLD in this case. The training data contains 380 datasets and the
test data contains 85 datasets as mentioned. Each dataset contains 15 months
of data with 14 months overlapping with the next set. This makes the total
months used in the study as 480(380+15+85). Hence, data from the period
Jan 1979 to Nov 2011 is used for training and data from the period Dec 2011
to Dec 2018 is used for the testing. Further, in the ablation study, multiple
models with varying input variables will be trained and due to a large number
of training sets, the models were trained on 3 GPU’s namely, Nvidia v100 and
Intel Silverlake from Gadi supercomputer under NCI Australia, Nvidia A100
in Pratyush HPC in IITM Pune and XC50 in the Pratyush HPC in IITM
Pune. Each of the models was run for 1000 epochs. The training time for
each epoch varied from 20 seconds to 70 seconds depending on the number
of variables and GPU used. The models were trained parallelly on multiple
GPUs to save time and the best model with the least validation loss was
saved to avoid overfitting.
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Figure 4.4: Learning curve

The learning curve in figure 4.3 suggests that the model converged before the
completion of 1000 epochs and the model saved the system saved the model
corresponding to the least ’validation loss’. This trend of converging at around
500 epoch was seen in nearly all subsequent models in the ablation study. The
model corresponding to the least validation loss in every combination of input
variables was then used to predict the MLD in the test data range and was
then compared with ground truth, MLD from re-analysis data.

4.3 Model Testing

The trained model saved in the hierarchical Data format(H5) was loaded
and used on the test data to get the prediction and was scored to get the
performance measure. The testing was also done with data in the sliding
window format as shown in figure 4.4. The test data contained 85 data
points and the input variables 100 months of data starting Sep 2010 in the
set of 15 months. The target and predicted values were from Dec 2011 to
Dec 2018. The predicted values and the ground truth were used for scoring
the performance of the model.
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Figure 4.5: Iterative sliding window taking 15 months as input data and returning16th month
as prediction

4.4 Model Parameters

• Data Variables: Evaporation, precipitation, sea surface temperature,
wind stress magnitude and net non-solar heat flux (Multi-variable input).

• Data Frequency: Monthly
• Data Resolution: 0.25◦ spatial resolution data enclosed by 78.5E to 95.5

E and 5.5N to 25.5N
• Data Pre-processing: As described in Chapter 3
• I/O Sequence: 15 input time steps corresponding to 15 input days for 5

variables, and 1 successive day of MLD as lead day for output.
• Train/Validation Split: Jan 1979 to Sep 2011 for model training and

validation in the ratio 70:30 iteratively over whole data
• Test Set: The last 85 data samples were used as the test set and used

in the final model performance evaluation.
• Models: Direct forecasting using convolutional LSTM-based layers, fol-

lowed by Conv2D layer for 2D output.
• Architecture: As shown in figure 4.1
• Loss: Mean Squared Error
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• Optimizer: Adam with 0.0001 learning rate.
• Activation: ReLU
• Epochs: Fixed 1000 epochs (from the learning curve it was seen that the

validation loss was minimum near 500 epoch)
• Evaluation Metrics: Pearson Correlation Coefficient
• Results: Chapter 5

4.5 Model Summary

Figure 4.6: Summary of the ConvLSTM model

Figure 4.6 shows the summary of the model used for training our initial set.
The Output shape shows how the data looks at every layer output. It can
be noticed that in 1st 5 layers, upscaling is taking place and the number of
output filters is increased up to 16.
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Figure 4.7: Description of the input/output shape

These upscaling layers have 5 dimensions, as seen in Figure 4.6 and Figure 4.7,
of which 2nd dimension denotes the sliding window length or ’data depth’,
3rd dimension denoted the latitude, 4th denotes the longitude and the last
dimension denotes the number of output filters in every layer. As evident in
Figure 4.6, the final output has a structure of a single image with a single
output filter and can be directly plotted into a geographical map.

4.6 Evaluation Metric

Figure 4.8: The data structure used to feed the correlation matrix

The evaluation metric used in this study is the Pearson correlation coefficient.
The correlation is computed for the time series predictions of the input and
output samples at all locations as shown in figure 4.8. As the predictions are
themselves 2-D spatial images, the correlation coefficient is computed for the
corresponding time series for each spatial point, i.e., corresponding to each
coordinate in the geographical map, across the samples and is represented
as a correlation matrix of the same shape as the input grid shape. In order
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to understand improvements in the correlation over various model testing,
we compare the respective correlation density distributions of the matrix
produced.

39



Chapter 5

Results

5.1 Preliminary Result

Figure 5.1: geographical plot showing correlation between predictions from the AI and the
ground truth (left), and density vs correlation plot for the same (right)

As backed by the ocean dynamics theory, MLD is influenced by several
forcings including evaporation, precipitation, sea surface temperature, wind
stress on the surface and heat transfers across the surface. This made the
base for using these forcings as variables for training the AI model. The
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parameters used for the compilation and training of the model is described
in Chapter 4. Figure 5.1 shows the correlation value when plotted in the
geographical map of the Bay of Bengal, and the density vs correlation plot.
It is to be noted that correlation value is not a direct performance measure as
there is no cut-off to judge the performance of the model. However, further,
the model will be subject to ablation study and validation studies using the
correlation to be a comparison metric to grade the performance. In each of
these plots, as described in section 4.6, the correlation of the predicted data,
be it from AI or dynamical model, for every point with a specific latitude-
longitude, is calculated and plotted in the geographical map of the Bay of
Bengal.

5.2 Ablation Study

The model with all 5 variables as input was then used for the ablation study.
The term ‘Ablation’ originated in the late 19th century in the field of practical
neuropsychology where the fragments of the animal brain were surgically
dissected to study behavioural change. In the world of machine learning
and more specifically complex AI, this term is being reused to demonstrate
a practice of altering certain parts of the neural network or modifying the
hyperparameters with the aim to get a better understanding or in our case
better result from the model. In our study, three sets of experiments have
been conducted in the purview of the ablation study. The logic used to work
on the layer ablation shares similarity with the Leave one Component out
(LOCO) rule that suggests specifying a series of components to be removed
or added one by one from the initial system. It is an unusual practice in the
academic community to pursue ablation study which turns out to be crucial
in validating results before publishing in a repository [29]. Likewise, reporting
a good-performing deep learning model could be a blessed coincidence but
an ablation study like this study give an opportunity to justify the choice of
the model and parallelly suggests the crucial contributing component in the
success of the model. It is unfortunate that scientists tend to avoid ablation
study as it is time and energy-consuming.
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5.2.1 Feature Ablation

Figure 5.2: Feature ablation: Ablation of 1 channel from input data

The idea of Feature ablation is inspired by the study by Molinari, A.[30] where
MAGGY ablator was used in Pytorch to process. Feature ablation refers to
the ablation or addition of data type as shown in figure 5.2. In this study,
with the aim of understanding the forcing on MLD, different combinations
of the forcings were taken as input for the AI model and predictions were
noted. Since the total number of input data was 5 and so we ended up with
31 combinations given by simple combination-

5∑
i=1

= C5
i = 31 (5.1)

The AI model was run with the same hyperparameters as the initial model
for 1000 epochs. The predictions were plotted on the Bay of Bengal geo-
graphical plot as done in section 5.1. The average Pearson correlation value
was considered to choose the best-performing model. The ablation was done
for 4 variations removing 1 feature every time.

Ablation of 1 variable

Figure 5.3: Correlation values of the predictions from the model with 3 input variables
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In this test, single variable was removed and the model was trained with the
remaining 4 variables as input. As given by C5

4 = 5, we get 5 different combi-
nations of model inputs. Table 5.3 shows the Pearson Correlation Coefficient
value as a performance metric for the AI model predictions with 4 variables
as input. The corresponding figure 5.4 shows the correlation values for each
of the combinations of 4 variables in the Bay of Bengal map.

Figure 5.4: geographical plots showing correlation between predictions from the AI model
and the ground truth for 4 input variables

The best performance we can get from this experiment was Pearson cor-
relation coefficient of 0.665 which is lower than our actual model. Other
hyperparameters and model training conditions were kept the same as the
initial model. This shows that the model seems to learn better when 5 vari-
ables were used as the input of the model when compared to 4 variables being
used.
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Ablation of 2 variables

Figure 5.5: Correlation values of the predictions from model with 3 input variables

In this test, 2 variables were removed and the model was trained with the
remaining 3 variables as input. As given by C5

3 = 10, we get 10 different
combinations of model inputs. Table 5.5 shows the Pearson Correlation Co-
efficient value as a performance metric for the AI model predictions with 3
variables as input. The corresponding figure 5.6 shows the correlation values
for each of the combinations of 3 variables in the Bay of Bengal map.
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Figure 5.6: geographical plots showing correlation between predictions from the AI model
and the ground truth for 3 input variables
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As evident in the above figures, the model with input variables as evapora-
tion, sea surface temperature and net non-solar heat flux performed the best
among the models with 3 variables with a correlation value of 0.655. This
suggests that this combination of forcings is more prevalent than the oth-
ers. However, it can be noticed that the Pearson correlation coefficient value
for this combination is still less than the original model with all 5 variables,
making it irrelevant for our use in forecasting.

Ablation of 3 variables

Figure 5.7: Correlation values of the predictions from model with 2 input variables

In this test, 3 variables were removed and the model was trained with the
remaining 2 variables as input. As given by C5

2 = 10, we get 10 different
combinations of model inputs. Table 5.7 shows the Pearson Correlation Co-
efficient value as a performance metric for the AI model predictions with 2
variables as input. The corresponding 5.8 shows the correlation values for
each of the combinations of 2 variables in the Bay of Bengal map.
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Figure 5.8: geographical plots showing correlation between predictions from the AI model
and the ground truth for 2 input variables
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As evident in the above-mentioned figures, the model with input variables as
Evaporation and Precipitation performed the best among the models with 2
variables with a correlation value of 0.653. This suggests that this combina-
tion of forcings is more prevalent than the others. However, it can be noticed
that the Pearson correlation coefficient value for this combination is still less
than the original model with all 5 variables, making it irrelevant for our use
in forecasting.

Ablation of 4 variables

Figure 5.9: Correlation values of the predictions from the model with single input variables

In this test, 4 variables were removed and the model was trained with the
remaining 1 variable as input. As given by C5

4 = 5, we get 5 different combi-
nations of model inputs. Table 5.9 shows the Pearson Correlation Coefficient
value as a performance metric for the AI model predictions with a single
variable as input. The corresponding 5.4 shows the correlation values for a
single input variable in the Bay of Bengal map.
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Figure 5.10: geographical plots showing correlation between predictions from the AI model
and the ground truth for single input variables

As evident in the figures 5.9 and 5.10, the model with input variable Pre-
cipitation performed the best among the models with single input with a
correlation value of 0.641. This suggests that the forcing Precipitation when
acted separately is more prevalent in predicting MLD than the others. How-
ever, it can be noticed that the Pearson correlation coefficient value for this
is still less than the original model with all 5 variables, making it irrelevant
for our use in forecasting.

5.3 Layer Ablation

Layer ablation refers to the removal or addition of neural architecture with
the activation function associated with it. The original model contains four
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Up-sampling layers and in two separate perturbations we compare the result.

5.3.1 Trial 1: Removal of 1 layer

Figure 5.11: geographical plot showing correlation between predictions from the model with
an ablated layer and the ground truth

One of the layers of the neural network Architecture is removed and the AI
model is trained with 5 variables as input for 1000 epochs. Other hyperpa-
rameters remain same with the maximum number of Output filters (filters =
8) in the convolution layer being 8. The performance of the model is com-
pared using the Pearson’s correlation coefficient which gave the correlation
value of 0.614. This suggests the AI model does not gain in learning when
the layer was removed. Figure 5.12 shows the Pearson correlation coefficient
matrix on geographical plot.
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5.3.2 Trial 2: Addition of 1 layer

Figure 5.12: geographical plot showing correlation between predictions from the model with
an added layer and the ground truth

In this perturbation, a ConvLSTM layer is added and similarly, all other
hyperparameters were kept the same. The maximum number of the output
filters in the interior layer defined by ‘filters=32’ was 32. A downsampling
layer was also added corresponding to the upsampling layer. The performance
of the model measured y Pearson Correlation Coefficient was 0.576 and this
again suggests that our initial model performed better and should be used
for further studies.
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5.4 Trial with Skip Connections

Figure 5.13: mechanism of skip connection in an AI model (Image taken from Michal et
al.[3])

In current times, skip connection is a commonly used module in CNN ar-
chitectures. The skip connection provides a substitute path for the layer
gradients. It is often seen that adding additional paths in the architecture
benefits the convergence of the model. Trivially skip connections skip some
layers in the neural network architecture and feed the input of a layer with
the output of any distant previous layers instead of just the adjacent previ-
ous layer. The central idea in this process is to backpropagate through the
identity function, which is done by just adding a simple vector. This process
can be seen in Residual networks or ResNet, which stack up skip connections
together, and the gradient gets multiplied by 1 for each such skip connection
maintaining the values across layers and countering the vanishing gradient
problem.
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Figure 5.14: geographical plot showing correlation between predictions from the model with
skip connect and the ground truth

The model with the 2 skip connections as shown in the figure 5.14 returned
a Pearson Correlation Coefficient of 0.648 and hence in this study, it could
not provide any benefit to the model. The Geographical plot shows its per-
formance at the regional level.
The ablation study proved that interestingly, our initial model turned out to
be the best one and will hence be used for further validation studies in this
chapter.

5.5 Validation with observational Data

This is the first study which has tried to forecast MLD in the Bay of Bengal
region and has used so many forcings for predictions. The idea of using
forcing is to confirm that all these forcing collectively impacts the formation
of MLD and even removing a single forcing impact the predictions.
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Figure 5.15: geographical plot showing correlation between predictions from the argo product
data and the ground truth (top), and density vs correlation plot for the same (bottom)

The predictions from our AI model were compared to observational data ob-
tained from the observation station, referred as gridded Argo data and is
downloaded from the ERDDAP sever. The Pearson correlation coefficient of
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the Argodata vs Oras5 Reanalysis data was calculated and plotted in the ge-
ographical map in the figure 5.15. The correlation value obtained was 0.582
which is quite less when compared to the correlation between AI model pre-
dictions and reanalysis data. Even though it is not very healthy to compare
a prediction to direct observation but still for the crux of the comparison,
this suggests that our model is performing better than the direct observation
data. This trend could be because Reanalysis data is made by taking into
account the observational data and input from dynamical models, and our
model learns directly from the reanalysis data.
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5.6 Validation with Hindcast model forecast

Figure 5.16: geographical plot showing correlation between predictions from the hindcast
model prediction and the ground truth (top), and density vs correlation plot for the same
(bottom)
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Hindcast is a numerical weather prediction model (physics-based model run-
ning on partial differential equations) which is started from the exact obser-
vational date. The outputs from these models are presently used as forecasts,
which go to the public. Hindcast has been running for the past many years.
Also, the data is daily CMIP6 (the Sixth Phase of the Coupled Model In-
tercomparison Project) data averages to get the monthly data. Currently,
all weather predictions are being done using some sort of dynamical model,
especially in India. For basic phenomena prediction like rainfall, dynamical
model seems to be performing well with some scope for improvement but
when it came to prediction using a complex system like in our case, it seems
to be not doing well. MLD is not a very popular phenomenon and research
needs to be done in dynamical models and AI-based model to get a better
result. In this comparison, our AI model seems to be doing much better than
the Hindcast model as the latter gave a correlation score of 0.326 vs the 0.673
of the AI model.
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5.7 Final Result

Figure 5.17: density vs correlation plot for the correlation values of AI model, Hindcast
forecasts and the argo product data

Figure 5.17 shows that the AI model with all 5 input variables performed
better than the most commonly used physics-based dynamical model. The
AI model was put into an ablation study and after an extensive comparison
with the perturbations, the same AI model came out to be the best performer
and is to be used in future problems.
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Conclusion

This study used the ConvLSTM to forecasting MLD over the Bay of Bengal
region. The crux of forecasting was to find and validate the influence of
various forcings on MLD and multiple models were trained to get that return.
The qualitative studies suggest that MLD formation is dependent on Sea
Surface Temperature, Wind mixing, Heat flux, evaporation and precipitation
but there is no study which tries to validate this using data. In our novel
approach, we showed that all these variables combined gave us the best result
when forecasting and when forcing were ablated, the performance differed
with none being better than the initial. Apart from realizing how and which
variable impacts MLD the most, this study also gives us a novel approach to
look into forecasting Cyclones, Heat waves and other ocean surface-induced
phenomena.
Currently, prominent weather forecasting agencies like Indian Meteorological
Department (IMD) essentially use dynamical models like the Hindcast. The
dynamical models often have discrepancies in predictions, for example, it does
not rain even after IMD predicts, on a certain day. It makes the basis for us to
focus on the AI model for improving real-time learning and predictions, and
it needs to be incorporated into the government system. The idea is to use
AI to assist the current model and eventually transform the current way of
weather predictions. This study showed that predictions from the Hindcast
model gave a correlation coefficient of 0.32 whereas our AI model gave 0.673
and hence suggesting the importance of extensive research in this area.
Our future work includes studying MLD in the whole of the Indian Ocean
and parts of the Pacific Ocean which are known to impact weather in India.
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Further, the forecast could be mapped with other ocean variables such as
cyclone incidents and the model could be used in predicting its prediction.
This study deals with monthly data and so would be beneficial in predicting
such events with sufficient time for evacuation and safety measures to prevent
damages from such cyclonic events.
An important area to look into will be training the model using daily or
weekly data to get more accurate predictions when we are dealing with a
short-time phenomenon such as lightning which develops fast and probably
could not be caught with monthly data. Another crucial aspect is to do a
qualitative analysis of the correlation plot. It is evident that in some cases
even though the model did not perform well overall looking into Pearson Cor-
relation Coefficient, it did well with a correlation value of greater than 0.8 in
particular regions in the Bay of Bengal. An attempt to use this regional re-
sult could use a geographical ensemble of multiple regional models to forecast
MLD across the whole BOB region.
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Code Availability and Data Source

The source codes along with all the helper modules used in this study can
be found on https://github.com/githubwasmyidea/msthesis as jupyter
notebook source format.
The dataset used in the study were downloaded from multiple sources as
follows:

• Evaporation, Sea surface temperature, Precipitation, Mean surface la-
tent heat flux, Mean surface net long-wave radiation flux and Mean
surface sensible heat flux were downloaded from the ERA5 repository-
https://shorturl.at/pAW16

• Wind stress magnitude was downloaded from the Tropflux repository-
https://incois.gov.in/tropflux/DataHome.jsp

• Mixed Layer Depth data was downloaded from ORAS5(ERDDAP) repository-
http://apdrc.soest.hawaii.edu/erddap/search/index.html?page=
1&itemsPerPage=1000&searchFor=oras5

• The argo gridded data was also downloaded from ERDDAP repository-
http://apdrc.soest.hawaii.edu/erddap/griddap/hawaii_soest_4daf_
fed7_948a.html
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