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Abstract

We discuss several aspects of Bianchi groups, particularly from a computational point of

view, in an attempt to gain acumen around the Bergeron-Venkatesh conjecture. To get there,

we come across a variety of concepts and problems from the fields of modular forms, group

theory and hyperbolic geometry.

xi



xii



Contents

Abstract xi

0.1 Original Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

0.2 Notations and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1 Preliminaries 5

1.1 The Projective Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Hyperbolic models and Modular Forms . . . . . . . . . . . . . . . . . . . . . 7

1.3 Fundamental Domains for Modular Forms . . . . . . . . . . . . . . . . . . . 18

1.4 Kleinian Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.5 Fundamental Polyhedrons and relevant notations . . . . . . . . . . . . . . . 22

1.6 Constructing Kleinian Groups from Quaternion Algebra . . . . . . . . . . . . 23

1.7 Bianchi Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Fundamental domain and presentation for Bianchi Groups 27

2.1 Swan’s method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Applying the method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 The numerator - Abelianization 33

3.1 Abelianization of a group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

xiii



4 The denominator - Volume 35

4.1 Using Swan’s fundamental polyhedron . . . . . . . . . . . . . . . . . . . . . 35

4.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Computations 38

5.1 Fundamental domains of classical Modular Forms . . . . . . . . . . . . . . . 38

5.2 Torsion in Bianchi Groups and certain subgroups . . . . . . . . . . . . . . . 48

5.3 Covolume computation using fundamental domains . . . . . . . . . . . . . . 54

5.4 The conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

xiv



Introduction

The thesis describes a journey - A journey attempting to explore the relatively unexplored

study of the geometric and number theoretic aspects of a certain class of arithmetic groups,

the Bianchi groups.

Luigi Bianchi, an Italian mathematician from the late 19th and early 20th century, no-

ticed that the projective groups over the ring of integers of imaginary number fields acted

rather nicely on the three-dimensional hyperbolic space. In 1892[BL1], he computed the fun-

damental domains of some small groups of that kind, hence giving them the name, Bianchi

Groups.

Bianchi Groups are an important subclass of the larger Kleinian Groups which have been

studied regularly since the 1960s, driven by the exploration into generalized modular forms by

Serre. But the next breakthrough in the study of Bianchi Groups came through Swan[RS1]

in 1971. Swan provided a geometric method of finding the fundamental domains and finite

presentations for most Bianchi Groups. Swan’s method is still in use for the exploration of

such groups, and plays a very important role in this thesis too.

Since then, the study of Galois representations and (co)homologies of these groups have

been an important part of the study of certain aspects of the Langlands program.
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Unfortunately, most of the fundamental questions of the area still remain conjectures.

A lack of theoretical development has driven computational research in the field. The de-

velopment has been extensive but the work by Cremona and Sengun particularly stands

out.

The work done on the abelianization of the groups by Sengun[MHS1] has converged into

the study of torsion in the homology of arithmetic groups. It is a topic of interest that has

been gaining traction lately and it’s driven by Bergeron and Venkatesh.

A conjecture by Bergeron and Venkatesh suggests that, for Bianchi groups and congruence

subgroups, torsion in the homology should grow exponentially with respect to the volume,

and there have been a variety of ways of presenting it.

We are looking at a particular expression of looking at this growth given as -

log
∣∣(Γab

n

)
tor

∣∣
vol (Γn\H)

Bergeron and Venketesh conjecture that the following holds true -

Conjecture 0.0.1. Let {Γn}n be a sequence of finite index congruence subgroups of some

fixed Bianchi group. Then

lim
n→∞

log
∣∣(Γab

n

)
tor

∣∣
vol (Γn\H)

=
1

6π

The thesis can be roughly divided into three sections -

• In the first part, we provide the theoretical background covered during the project,

omitting most of the proofs involved.

• In the second part, we introduce the methods studied during the project and the

algorithms used.

• In the third part, we give examples of the computations performed under the project
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with the implementation of these methods, alongside visualizations to provide insight

to the reader.

The project primarily used [EGM] and [MR] as the references and the books should cover

all the theoretical aspects mentioned in the thesis.

0.1 Original Work

The field still remains fairly undiscovered and that leads to a lot of scope of original work. The

thesis provides an algorithm and the computation of the covolume of congruence subgroups

of Bianchi groups, which still lack a closed-form version. Using that, we test the Bergeron-

Venkatesh conjecture for a new class of groups. On top of this, we provide a variety of

illustrations relevant to the field previously absent in the literature.

0.2 Notations and Definitions

• We interchangeably use H for two-dimensional and three-dimensional hyperbolic space,

given the context. There is no conflict between the overlapping notation in this thesis.

• We interchangeably refer to PSL(2,C) and SL(2,C) as the modular group, given the

context. There is no conflict between the overlapping notation in this thesis.

• P n−1(F ) is the projective space associated with the vector space F n over F, where F

is a field.

• H refers to the space of quaternion defined as {a + bi + cj + dk|a, b, c, d ∈ R} along

with the standard multiplication rules.
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• Cn refers to the cyclic group of order n.

• If G,H are groups, then G ∗H refers to the free product of the groups G and H.

• M(n,R) refers to the ring of n× n matrices taking entries from a ring R.

• If G is a group, then G = ⟨X | R⟩ refers to the presentation of the group G.

X ⊂ G refers to the generators of the group and R is the set of equations between the

elements of X.

• The Riemann-Zeta function ζ(s) is defined as ζ(s) =
∑∞

n=1
1
ns , where s ∈ C and

Re(s) > 1.

• Let K be a number field. f : K → C is called an embedding of K if f is a field

homomorphism. If f can be restricted to R, then it is a real embedding. Otherwise,

it’s a complex embedding.

• A conjugate pair of complex embeddings is called a complex place while every real

embedding is referred to as a real place of a number field.

• Let L be an extension of a number field K. We say that a prime ideal in the ring of

integers of K is ramified in L if the image of the prime ideal in the ring of integers in

L factorizes into prime ideals non-trivially.

• If i is an ideal in the ring of integers in a number field OK , the norm of the ideal i is

defined as N(i) =
∣∣OK/i

∣∣.
If p is a prime ideal, then the norm of the ideal is a prime power pn, where p is a prime

ideal lying over p.
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Chapter 1

Preliminaries

This chapter deals with the preliminaries needed for the thesis. We start off by describing

the well-known theory of two-dimensional and three-dimensional hyperbolic spaces, followed

by an introduction to modular forms. That’ll precede an introduction to Kleinian groups,

and the particular case of Bianchi Groups.

1.1 The Projective Groups

The section contains an introduction to projective groups and their actions relevant to our

study.

When GL(n, F ) and SL(n, F ) are quotiented by their respective centres, we get the
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projective linear group and projective special linear group.

PGL(n, F ) =
GL(n, F )

Z(GL(n, F ))
=

GL(n, F )

F×

PSL(n, F ) =
SL(n, F )

Z(SL(n, F ))
=

SL(n, F )

{α ∈ F× | αn = 1}

Theorem 1.1.1. PGL(n, F ) and PSL(n, F ) are isomorphic iff every element of F has an

nth root in F .

Proof. The determinant map from PGL(n, F ) into the scalers of F splits in the following

fashion -

PSL(n, F ) ↪→ PGL(n, F )→ F×/
(
F×)n

The split sequence gives rise to the following isomorphism

PSL(n, F )⋊ F×/
(
F×)n ∼= PGL(n, F )

This isomorphism is enough to prove our assertion.

So, we can conclude that PSL(2,C) ∼= PGL(2,C). This group is called the Mobius group

and will have a canonical action on the hyperbolic space. These groups act on the n − 1

dimensional projective space P n−1(F ) using

Lemma 1.1.2. Every element of P n−1(F ) is stabilized by the multiples of In in GL(n, F )

and by no other member of the group.

Here, P n−1(F ) represents the set of one-dimensional subspaces of F n. Now, we know that

the scalars are exactly the centre of GL(n,F), so this lemma ends up inducing a faithful
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action by PGL(n,F) onto the projective space.

Definition 1.1.1. The action of a group G on a set X is called doubly transitive if G acts

transitively on the set of all ordered pairs of distinct elements of X. In other words, given

any x1, x2, y1, y2 ∈ X so that x1 ̸= x2 and y1 ̸= y2 there is a g ∈ G so that gxi = yi for

i = 1, 2.

Lemma 1.1.3. If n ≥ 2, the action of SL(n, F ) and thus of PSL(n, F ) on projective space

is doubly transitive.

Proof. Please refer to the first section in Chapter 1 in [EGM].

1.2 Hyperbolic models and Modular Forms

1.2.1 The Upper Half-Space Model

The upper half-space H provides an intuitive model of 3-dimensional hyperbolic space as

the model has a variety of properties analogous to the upper half-plane as a model of plane

hyperbolic geometry.

It is defined as -

H := {(x, y, r) | x, y, r ∈ R, r > 0}

For the sake of ease of computation, this space H can be considered a subset of the

quaternion space H. Under the usual R-basis of H, we can consider the elements of H as -

P = (z, r) = (x, y, r) = z + rj ,

where z = x+ iy and j = (0, 0, 1)
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There exists a generalized Riemannian Metric for H as well. It is defined as -

ds2 =
∑
µ,ν

gµνdx
µdxν

There’s a generalization of the Laplace operator, Laplace–Beltrami operator

∆ =
1
√
g

∑
µ,ν

∂

∂xµ

√
ggµν

∂

∂xν
, where g = det (gµν) and (gµν) = (gµν)

−1 .

defined as ∆ = r2
(

∂2

∂x2 +
∂2

∂y2
+ ∂2

∂r2

)
− r ∂

∂r

Theorem 1.2.1. The following are the equivalent definitions of the Riemann Sphere -

• The complex projective line P 1(C) i.e. All the one dimensional subspaces of C2.

• The extended complex numbers C ∪ {∞}

• S2 = {(x1, x2, x3) | x2
1 + x2

2 + x2
3 = 1} sitting in R3

Proof. This is a standard result in geometry and they follow each other using the natural

projection map and treating one-dimensional subspaces as the scalars of the field.

Using the second definition, it is clear to see how the Riemann Sphere sits inside the

upper half space model. In fact, the Riemann square acts like the border of the upper half

space model.

The actions of mathrmPSL(2,C) on H and on its boundary P1C can be described by simple

formulas.

Definition 1.2.1 (Poincaré action). If γ = ( a b
c d ) ∈ GL(2,C), we define the γ acting on H

8



as γ · (z, ζ) = (z′, ζ ′), where

ζ ′ =
| det γ|ζ

|cz − d|2 + ζ2|c|2
,

z′ =
(d− cz)(az − b)− ζ2c̄a

|cz − d|2 + ζ2|c|2
.

Theorem 1.2.2. The Hyperbolic Metric defined using the standard line element is PSL(2,C)-

invariant. So, the hyperbolic volume and distance are invariant under action from PSL(2,C)

as well.

Theorem 1.2.3. There exists an isomorphism between PSL(2,C)⋊Z/2Z and the group of

isometries of H, Iso(H). The non-zero element of Z/2Z takes elements of PSL(2,C) to their

complex conjugation.

Hyperbolic Distance

Definition 1.2.2. For P = z+rj, P ′ = z′+r′j (z, z′ ∈ C, r, r′ > 0) the hyperbolic distance

d (P, P ′) is given by -

cosh d (P, P ′) = δ (P, P ′)

where δ (P, P ′) := |z−z′|2+r2+r′2

2rr′

1.2.2 The Unit Ball Model

The aforementioned model is mainly used in the context of linear fractional transformations

which are merely the translation maps where the fixed point is mapped to infinity. But when

queries concerning rotational symmetry are examined, the unit ball model of hyperbolic

9



geometry is suitable. Consider the unit ball and the line element

B =
{
u = u0 + u1i+ u2j ∈ H | ∥u∥2 < 1

}
ds2 = 4 · du2

0 + du2
1 + du2

2

(1− u2
0 − u2

1 − u2
2)

2

The space with the metric(from the line element) defines the unit ball model.

The distance of point u from the origin is -

d(0, u) = 2

∫ ρ

0

dt

1− t2
= log

1 + ρ

1− ρ

where ρ is the norm of u.

Theorem 1.2.4. For P ∈ H the quaternion −jP + 1 has an inverse such that (P − j) ·

(−jP + 1)−1 ∈ B. The map η0 : H→ B, η0(P ) := (P − j) · (−jP + 1)−1 is an isometry.

Proof. Please refer to the section on The Unit Ball Model in [EGM], Chapter 1.

Definition 1.2.3. We define the matrix group SB(2,H) as -

SB(2,H) :=

{(
a b

c d

)
∈M(2,H) | d = a′, b = c′, aā− cc̄ = 1

}

Theorem 1.2.5. The following relationships between SB(2,H), SL(2,C) and Iso +(B) hold

-

1. Consider g := 1√
2
·
(
1 j
j 1

)
. Then the function η : A 7→ ḡ · A · g can be used to make a

isomorphism between the groups η : SL(2,C)→ SB(2,H).

2. Take u ∈ B and f =
(
a c′

c a′

)
∈ SB(2,H), we know that the quaternion cu + a′ has an

inverse by definition.

10



Now, the maps defined as f · u := (au+ c′) · (cu+ a′)−1 lead to isometries of B. We

can, hence, describe an action of SB(2,H) on B.

3. The action defined in the aforementioned list leads to the following natural exact se-

quence

1→ {1,−1} → SB(2,H)→ Iso+(B)→ 1

Proof. The proof is described in Chapter 1 of [EGM], in the Unit Ball Model section.

1.2.3 Modular Forms over the Modular Group

Definition 1.2.4 (Modular Group).

SL(2,Z) =

{(
a b

c d

)
∈ M(2,Z) : ad− bc = 1

}
.

By exploiting the condition of the elementary Bezout’s lemma, we can just pick a pair of

co-prime numbers (a, b) to get a corresponding pair of (−c, d) that satisfies ad− bc = 1

Theorem 1.2.6. The matrices S = ( 0 −1
1 0 ) and T = ( 1 1

0 1 ) generate SL(2,Z).

Proof. The first chapter of [FD] provides a neat algebraic proof of the assertion.

Using Theorem 1.2.6, we can conclude

SL(2,Z) ∼=
〈
S, T | S2 = I, (ST )3 = I

〉
Now, that condition implies that we’ve got two torsion-free presentation rules for the group,

suggesting that the group is isomorphic to C2 ∗ C3.

11



Definition 1.2.5 (Modular Form of weight k over the Modular Group). Let k ∈ Z. A

modular form of weight k for SL(2,Z) is a function f : H→ C such that -

• f is holomorphic on H

• f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ) for all

(
a b
c d

)
∈ SL(2,Z) and all τ ∈ H

• the values f(τ) are bounded as Im τ →∞.

The second condition is called the modularity condition of Modular forms.

Clearly, the zero(trivial) map can be considered a modular form regardless of the weight.

1.2.4 Exploiting the Modularity Condition

We can get 3 crucial properties of Modular Forms by applying simple elements from SL(2,Z)

onto the Modularity Condition.

The Periodicity Property For the matrix ( 1 1
0 1 ) ∈ SL(2,Z), the modularity condition

suggests f(τ + 1) = f(τ) ∀ τ ∈ H. Notice that there is no relevance of the weight k here.

Second Property For the matrix ( 0 −1
1 0 ) ∈ SL(2,Z), we can use the condition to show

that f(−1/τ) = τ kf(τ) ∀ τ ∈ H. In this property, there is a prominent presence of the

weight k.

Third Property For the matrix
( −1 0

0 −1

)
∈ SL(2,Z), we can use the condition to show

that f(τ) = (−1)kf(τ) ∀ τ ∈ H. Now, whenever k is odd, we can conclude that f is zero.

12



Hence, the sole modular form for any weight k = 2m + 1 for SL(2,Z) is equivalent to the

zero map.

Definition 1.2.6 (Linear Fractional Transformations ). For τ in H and ( a b
c d ) in GL+(2,R),

we define the group action - (
a b

c d

)
τ :=

aτ + b

cτ + d

1.2.5 Computation of Modular Forms

Eisenstein Series

Definition 1.2.7 (Weight k Eisenstein Series). We define the weight k Eisenstein series as

Gk(τ) :=
∑

(m,n)∈Z2
(m,n)̸=(0,0)

1

(mτ + n)k

Theorem 1.2.7. The Eisenstein series Gk is always a modular form over SL(2,Z), having

weight k, if k ≥ 4 and k is even,

Proof. The only non-trivial verification of the three properties needed is the holomorphicity,

which requires absolute convergence of the series. The verification has been covered in [FD],

Chapter 1.

Of course, the theorem is true for odd weight as well, but it’ll end up being the zero

function anyway.

13



Periodicity Condition and Standard Form

We previously saw that every modular form satisfies the periodicity condition. The function

f(τ) = e2πiτ also satisfies f(τ + 1) = f(τ). We use this to define a formal style of describing

modular forms via a power series in e2πiτ .

Lemma 1.2.8 (Power Series lemma). If a function f : H → C satisfies the following

conditions -

• f is holomorphic

• f(τ + 1) = f(τ) ∀ τ

• As τ →∞, f must be bounded

then there are complex coefficients an ∈ C for n ≥ 0 such that

f(τ) =
∑
n≥0

ane
2πinτ

∀ τ ∈ H. We also know that, as τ → i∞, f(τ) has a limit.

Proof. Please refer to [FD], chapter 1.

Q-Expansion

Definition 1.2.8. The q-expansion of any m.f. f(τ) is defined as
∑

n≥0 anq
n for which

f(τ) =
∑

n≥0 ane
2πinτ .

The complex coefficients an ∈ C in the q-expansion are colloquially known as the Fourier

coefficients of f .

14



Now, we must note that q-expansion is more than just some abstract entity: the ex-

pression f(τ) =
∑

n≥0 ane
2πinτ is, in fact, analytic on LHS and RHS, with the RHS being

convergent regardless of the element τ ∈ H.

If we are describing any modular form f(τ) with its q-expansion, it is a standard abuse

of notation to describe the map as f(q), where f is being carried over from the original

definition and the changed domain input is q = e2πiτ .

Q-expansion of an Eisenstein Series

Definition 1.2.9 (Cusp Form). Let f : H −→ C be a modular form of weight k. Now, f is

a cusp form if a0 = 0 in the Fourier expansion of f [α]k for all α ∈ SL(2,Z),

Theorem 1.2.9. For even k ≥ 4, the q-expansion of Gk(τ) is

Gk(τ) = 2
∑
n≥1

1/nk +
2(2πi)k

(k − 1)!

∑
n≥1

σk−1(n)q
n

where σk−1(n) =
∑

d|n d
k−1

Proof. The result is a consequence of the Power Series Lemma, and an application of Poisson

Summation of the series. The proof is covered in the section on Fourier Analysis and Poisson

Summation in the 4th chapter of [?, FD]

In the previous theorem, we’ve seen that the zero-degree term in the series is 2
∑

n≥1 1/n
k,

which means that the constant term of Gk(τ) is 2ζ(k). We already know that the zeta

function is really nice for even positive integers, being a normalized multiple of πk

15



Bernoulli numbers form

This is the Euler formula for Zeta function for positive, even integers

ζ(k) =
(2π)k(−1)k/2+1

k!

Bk

2
= − (2πi)k

(k − 1)!

Bk

2k

where Bk is the kth Bernoulli number.

Definition 1.2.10 (Bernoulli number). We define Bk, the kth Bernoulli number, as the

coefficient of xk in the following series.

x

ex − 1
=
∑
k≥0

Bk

k!
xk = 1− 1

2
x+

1

12
x2 − 1

720
x4 + · · ·

Plugging it into the last theorem, we get -

Gk(τ) = 2ζ(k)− 4kζ(k)

Bk

∑
n≥1

σk−1(n)q
n.

We realize that a normalized version of the Eisenstein Series(constant term 1) can be com-

puted just with the knowledge of Bernoulli Numbers.

1.2.6 Congruence Subgroups of SL(2,Z)

Definition 1.2.11 (Principle Congruence Subgroup).

Γ(N) =

{(
a b

c d

)
≡

(
1 0

0 1

)
mod N

}
.

is called the principle congruence subgroup of level N.
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Definition 1.2.12 (Congruence Subgroup of level N). A congruence subgroup is defined as

a subgroup Γ of SL(2,Z) such that Γ(N) ⊂ Γ for a particular N ∈ Z+.

Based on the value of N , we say that Γ is a congruence subgroup of level N .

Special subgroups

Γ0(N) =

{[
a b

c d

]
∈ SL(2,Z) :

[
a b

c d

]
≡

[
∗ ∗
0 ∗

]
(modN)

}

Γ1(N) =

{[
a b

c d

]
∈ SL(2,Z) :

[
a b

c d

]
≡

[
1 ∗
0 1

]
(modN)

}

Clearly, Γ0(N) is just the elements of Γ(N) with c = 0 mod N .

Γ1(N) is just the elements of Γ0(N) with a, d = 1 mod N .

Γ(N) is just the elements of Γ1(N) with b = 0 mod N .

We get -

Γ(N) ⊆ Γ1(N) ⊆ Γ0(N) ⊆ SL(2,Z)

This is called the chain of standard congruence groups.

Theorem 1.2.10. Γ(N) has a finite index in SL(2,Z)

Proof. Please refer to [FD], chapter 1.

Modular Forms wrt congruence groups

Definition 1.2.13 (Factor of automorphy). For γ = ( a b
c d ) ∈ SL(2,Z) and τ ∈ H, we define

a factor of automorphy as -

j(γ, τ) = cτ + d
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Definition 1.2.14 (Weight k operator). For γ ∈ SL(2,Z) and any integer k, weight- k

operator [γ]k on functions f : H −→ C is defined as -

(f [γ]k) (τ) = j(γ, τ)−kf(γ(τ)), τ ∈ H.

Definition 1.2.15 (Modular Form wrt a congruence group). Pick a congruence subgroup

of SL(2,Z) and call it Γ. Now we define a modular form of weight k with respect to Γ as a

function f : H −→ C if

• f is holomorphic,

• f is weight-k invariant under Γ,

• f [α]k is holomorphic at ∞ for all α ∈ SL(2,Z).

1.3 Fundamental Domains for Modular Forms

Definition 1.3.1 (Fundamental Domain for congruence groups). We pick a congruence

subgroup Γ to define the fundamental domain for. We call a closed subset of H a fundamental

domain F if -

• every element of H can be taken to a point in F by acting an element of Γ onto the

point.

• no two points in the interior of F can go to the same point under an action from an

element of Γ

There is a classical fundamental domain of SL(2,Z) is given by -
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F =

{
z : z ∈ H and |z| ≥ 1 and |Re(z)| ≤ 1

2

}

Figure 1.1: The classical fundamental domain for the Modular Group made using tikz

We use this domain to create fundamental domains for congruence groups in the following

fashion -

Theorem 1.3.1. Take Γ as a congruence subgroup of SL(2,Z) and write the full group as a

union of the various cosets of the congruence subgroup

SL(2,Z) =
n∐

i=1

αiΓ

Now, one appropriate fundamental domain for Γ can be given by FΓ :=
∐n

i=1 α
−1
i F

Cusps on a Congruence Group

Definition 1.3.2. Extension of the two-dimensional hyperbolic space

H = H ∪ {i∞} ∪Q
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Figure 1.2: Fundamental domain for Γ0(11) made using Faray Symbols in SageMath

Definition 1.3.3. The points added through the extension are distributed into the equivalence

classes by Γ and the representatives of those classes are called the cusps of Γ.

SL(2,Z) has a unique cusp. We previously saw how we can create an element of SL(2,Z)

with any lowest form fraction a
c
. This gives us a map from i∞ to each element in Q, making

the cusp unique.

Intuitively, we can say that the cusps are the points of intersection between the newly-

added boundary of H and the boundary of a fundamental domain of the group.

1.4 Kleinian Groups

1.4.1 PSL(2,C) and its subgroups.

Definition 1.4.1. If all the elements of a group Γ have a shared fixed point in their action

on the Riemann Sphere, the the group is called reducible.
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Otherwise, the group is irreducible.

Definition 1.4.2. A discrete subgroup of PSL(2,R) is called a Fuchisian group.

Definition 1.4.3. If a group Γ has a finite orbit in its action on H and its boundary(i.e.

the Riemann Sphere), then the group is called elementary .

If not, the group is considered non-elementary.

Definition 1.4.4. A discrete subgroup of PSL(2,C) is called a Kleinian group.

Classification of elements of a Kleinian group

Definition 1.4.5. If γ ∈ PSL(2.C), γ ̸= ±I we call γ

• γ is elliptic if tr(γ) ∈ R and | tr(γ) |< 2.

• γ is parabolic if tr γ = ±2.

• If γ is neither elliptic or parabolic, it is called loxodromic.

• If γ is loxodromic and the trace of γ is real, then γ is called hyperbolic.

Definition 1.4.6. We call a Kleinian group Γ finite covolumed if it has a fundamental

domain F having a finite hyperbolic volume. The covolume of Γ is given by

Covol(Γ) =

∫
F

dV

Theorem 1.4.1. Any two domains of finite covolume groups will have the same hyperbolic

volume.

Proof. The proof is covered by [MR] in Section 1.2 of Chapter 1.

21



Definition 1.4.7. If Γ1,Γ2 ⊂ PSL(2,C), we call the pair of subgroups directly commensu-

rable if their intersection has got a finite index in Γ1 and Γ2.

Definition 1.4.8. We say that the pair are commensurable if Γ1 and a conjugate of Γ2 are

directly commensurable.

1.5 Fundamental Polyhedrons and relevant notations

Definition 1.5.1. Elements (µ, λ) ∈ O2
F are called unimodular if µOF + λOF = OF

Definition 1.5.2. We define a polygon P ⊂ H as a closed connected subset of a plane of H

such that -

• The boundary of P can be written as a countable union of si ∩ H. Here, si are the

hyperbolic segments in the extended H space.

• The family {si ∩H} is locally finite.

The sets si ∩H are called the edges of the polygon.

The finite endpoints of these edges are called the vertices of the polygon.

Definition 1.5.3. We define a polyhedron F ∈ H as a connected open set such that -

• The boundary of the polyhedron F can be written as a countable union of polygons.

These polygons are called the faces of F .

• The intersection of any two faces can be fit in a hyperbolic geodesic and the family of

the faces is locally finite.
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Definition 1.5.4. We define a fundamental polyhedron for any subgroup of PSL(2,C) as a

fundamental domain for the said subgroup that also satisfies the conditions of a polyhedron

that we’ve defined above.

Definition 1.5.5 (Pairing transformations). If F is a polyhedron, and F is the set of faces

of the polyhedron F , we define a face pairing of the polyhedron as a function

∗ × g : F → F × PSL(2,C) such that

(a) g(f) · f = f ∗

(b) ·∗ : F → F is an involution map

(c) Each f has a neighborhood V which satisfies (g(f) · (V ∩ F)) ∩ F = ∅.

where f ∗ is the final face and g(f) ∈ PSL(2,C) is the map used for the transformation.

The elements of PSL(2,C) that take f to f ∗ are called pairing transformations.

Definition 1.5.6 (Complete Polyhedron). Given a face pairing, F gets partitioned into

equivalence classes by a given pairing transformation.

Call it F∗ = F/ ∼, with the natural map π : F → F∗.

Pick any two x, y ∈ F∗, and define d∗(x, y) = inf
∑n

i=1 d (zi, wi) where we find the infimum

over (zi, wi)i of F such that π (z1) = x, zi+1 ∼ wi and π (wn) = y.

Now, we say that the polyhedron is complete if

(a) for every x ∈ F , π−1(x) is finite, in which case d∗ is a metric on F∗, and

(b) F∗ is complete for this metric.

1.6 Constructing Kleinian Groups from Quaternion Al-

gebra

Throughout this section, F will be a field with char ̸= 2 unless stated otherwise.
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Definition 1.6.1 (Quaternion Algebra). Let a, b ∈ F×.

H =
〈
i, j | i2 = a, j2 = b, ij = −ji

〉
We call it H a quaternion algebra over F and denote it by

(
a,b
F

)
.

Example 1. The 2 × 2 Matrix ring over a field F is a quaternion algebra over F with the

follwoing notation

M(2, F ) ∼=
(
1, 1

F

)
The algebra is generated by ( 1 0

0 −1 ) as i and ( 0 1
1 0 ) as j.

Definition 1.6.2 (Quasi-totally Real Field, Kleinian Quaternion Algebra). Let F be a num-

ber field. F is considered a quasi-totally real field or QTR if the field has exactly two conjugate

complex embeddings or exactly one complex place. We define a Kleinian quaternion algebra

as a quaternion algebra over a quasi-totally real number field, which is ramified at every real

place.

Every quadratic imaginary number field is QTR.

Definition 1.6.3 (Order). Let ZF be the ring of integers of a number field F . An Order in

B, an algebra in F, is an f.g. ZF -submodule O ⊂ B and B = FO.

Definition 1.6.4. Define O×
1 = {x ∈ O× | xx̄ = 1}.

Definition 1.6.5. Choose a Kleinian group Γ. We define the group as arithmetic if it

is commensurable with some Pρ
(
O×

1

)
, where O is an order in a quaternion algebra over

F , ramified at every real place of a QTR number field F , and ρ is a discrete embedding

ρ : O×
1 ↪→ SL(2,C).

Theorem 1.6.1. Let F be a QTR number field of degree n,B a Kleinian quaternion algebra

over F , and O an order in B. Let Γ = Pρ
(
O×

1

)
where ρ is a discrete embedding ρ : O×

1 ↪→

SL(2,C). Then Γ has finite covolume.
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Proof. The theorem is covered in the 11th Chapter of [MR] in detail.

1.7 Bianchi Groups

Definition 1.7.1 (Bianchi Group). Let F be an imaginary quadratic field Q[
√
−d] and OF

be its ring of integers. A Kleinian group PSL (2,OF ) is called a Bianchi group.

Theorem 1.7.1.
OF = Z[ω] = {a+ bω | a, b ∈ Z},

where ω =

{
−1+

√
−d

2
, if d ≡ 3(mod4);√

−d, otherwise.

Definition 1.7.2 (Principal Congruent Subgroup). Suppose i ̸= 0 is an ideal in OF .

Γ(i) := {γ ∈ PSL (2,OF ) : γ ≡ 1 mod i}

is called the principal congruent subgroup of PSL (2,OF ) of level i.

Definition 1.7.3 (Congruence subgroup). A finite index subgroup of PSL (2,OF ) containing

a principal congruent subgroup is called a congruent subgroup.

Definition 1.7.4. Let n be an ideal in PSL (2,OF ), we define

Γ0(n) = {( a b
c d ) ∈ Γ | c ∈ n}

We need the following Proposition to assure us that the class of groups in question

throughout the thesis are finite indexed and we can use that to our advantage.

Proposition 1.7.2. The index of Γ0(a) in PSL (2,OK) is given by the multiplicative func-
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tion, where N is the ideal norm in the ring of integers.

ι(a) = N(a)
∏
p|a

(
1 +

1

N(p)

)
.

Proof. The proof is covered in Chapter 7 by [EGM].
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Chapter 2

Fundamental domain and

presentation for Bianchi Groups

This section deals with the method devised by Swan[RS1] in 1971. Swan provided a geometric

technique for finding the fundamental domains and finite presentations for most Bianchi

Groups. The fundamental domain evaluation will be crucial to our study of the covolume of

the Bianchi groups in question.

2.1 Swan’s method

Definition 2.1.1. Sµ,λ ⊂ H is the hemisphere satisfying |µz−λ|2 + |µ|2ζ2 = 1, where (µ, λ)

is a given unimodular pair. We define B := {(z, ζ) ∈ H : |µz − λ|2 + |µ|2ζ2 ⩾ 1 is satisfied

for all u.p. (µ, λ) ∈ O2 with µ ̸= 0}.

Lemma 2.1.1 (Swan). B includes at least one representative from the orbits of all the points

given the natural action of SL(2,O) on H.
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Consider the stabiliser group Γ∞ of the point at infinity ∈ ∂H. Then,

Γ∞ =

{
±

(
1 λ

0 1

)
| λ ∈ O

}
,

Proposition 2.1.2. A fundamental domain for Γ∞ in the complex plane is given by

D0 :=

{a+ b
√
−m ∈ C | 0 ⩽ a ⩽ 1, 0 ⩽ b ⩽ 1}, m ≡ 1 or 2 mod 4,{

a+ b
√
−m ∈ C | −1

2
⩽ a ⩽ 1

2
, 0 ⩽ b ⩽ 1

2

}
, m ≡ 3 mod 4.

And a fundamental domain for Γ∞ in H is given by

D∞ := {(z, ζ) ∈ H | z ∈ D0}

Definition 2.1.2. The Bianchi fundamental polyhedron

D := D∞ ∩B.

From Lemma 2.1.1, we get Γ ·B = H, and as Γ∞ ·D∞ = H implies Γ∞ ·D = B, we get that

Γ ·D = H.

Swan showed that there are only finitely many u.p (λ, µ) where the intersection of Sµ,λ

with the B.F.P is non-empty. From this, we can infer that there are only finitely many points

on the border of the polyhedron.

Another corollary was the fact that there are only finitely more matrices that meet the

polyhedron non-trivially.

Picking the polyhedron While B was picked from infinitely many elements, we need to

ensure that we get a good approximate by using finitely many pairs. Swan came up with a

criterion that ensures precise calculation of B using finitely many elements. The approach
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goes as follows -

Make a selection of n hemispheres, where the i-th hemisphere is given by S (αi), where αi is

its centre, αi =
λi

µi
in the number field F . Here, we require the ideal (λi, µi) to be the whole

ring of integers O.

Definition 2.1.3. Define B (α1, . . . , αn) := {(z, ζ) ∈ H : The inequality |µz−λ|2+|µ|2ζ2 ⩾ 1

is true for all u.p (µ, λ) ∈ O2 with λ
µ
= αi + γ, for some γ ∈ O}. Then B (α1, . . . , αn) is the

set of all points in H lying above all hemispheres S (αi + γ); for any γ ∈ O.

Claim 1. B (α1, . . . , αn) ∩D∞ with the fundamental domain D∞ for the translation group

Γ∞, is equal to the Bianchi fundamental polyhedron.

Definition 2.1.4. The hemisphere Sµ,λ is considered strictly below the hemisphere Sβ,α at a

point z ∈ C if the following inequality is satisfied:

∣∣∣∣z − α

β

∣∣∣∣2 − 1

|β|2
<

∣∣∣∣z − λ

µ

∣∣∣∣2 − 1

|µ|2

2.1.1 Dealing with cusps

It is well known that a given cusp λ
µ
is in the SL2(O)-orbit of another cusp λ′

µ′ , iff the ideals

(λ′, µ′) and (λ, µ) are members of the same ideal class. Clearly, the point at infinity represents

the principal ideals. We use this result by Swan, to find representatives of non-principal ideals

-

Lemma 2.1.3 (Swan). The singular points of F mod O are

p(r +
√
−m)

s

Where -
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• If m ≡ 1 or 2 mod 4, s ̸= 1, s | r2 + m, the numbers p and s are coprime, and p is

modulo mods;

• - if m ≡ 3 mod 4, s is even, s ̸= 2, 2s | r2 +m, the numbers p and s
2
are coprime; p is

modulo s
2
.

• p, r, s ∈ Z, s > 0, −s
2
< r ⩽ s

2
, s2 ⩽ r2 +m,

Definition 2.1.5. L
(

α
β
, λ
µ

)
is the set of z ∈ C over which neither Sβ,α is strictly below Sµ,λ

nor vice versa.

This set can either be the entirety of C or a line trisecting the space into two open

half-planes.

Theorem 2.1.4. (Swan criterion) B (α1, . . . , αn) = B iff no vertex of ∂B (α1, . . . , αn) can

be strictly below any hemisphere Sµ,λ.

This shows that it’s enough to compute the endpoints of the polyhedron, to get the funda-

mental domain.

2.2 Applying the method

Definition 2.2.1. Sµ,λ is everywhere below Sβ,α when:

∣∣∣∣λµ − α

β

∣∣∣∣ ⩽ 1

|β|
− 1

|µ|

Theorem 2.2.1. Let S (αn) be everywhere below S (αi), where i ∈ {1, . . . , n − 1}. Then

B (α1, . . . , αn) = B (α1, . . . , αn−1).
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Proof. Using the definition 2.1.3, we need to prove -

Given |µz − λ|2 + |µ|2ζ2 < 1 holds, |τz − θ|2 + |τ |2ζ2 < 1 is true.

This is a simple consequence of triangular inequality after dividing both sides of the said

inequality by |µ|2. √∣∣∣∣z − θ

τ

∣∣∣∣2 + ζ2 <

∣∣∣∣λµ − θ

τ

∣∣∣∣+
√∣∣∣∣z − λ

µ

∣∣∣∣2 + ζ2

Now, from Definition 2.2.1, we know
∣∣∣λµ − θ

τ

∣∣∣+ 1
|µ| ≤

1
|τ |

Plugging that into the inequality and squaring, we get the desired result

∣∣∣∣z − θ

τ

∣∣∣∣2 + ζ2 <
1

|τ |2

Initialization We initialize the process by picking an element such that the norm of µ ∈ O

can take the minimum value, namely 1. Hence, µ is a unit in O, and for any λ ∈ O, it forms

a u.p. We thus obtain unit hemispheres (of radius 1), centred at the integers λ ∈ O. We

choose the centre points which reside in the Bianchi fundamental polyhedron for the action

of Γ∞ on the complex plane.

Increasing the norm Iterate through a finite set of µ with increasing norm, and a finite

set of τ for each µ while ensuring -

• λ
µ
lies in the fundamental rectangle.

• Ideal sum of µ and τ gives the whole ring.

• The hemisphere formed is not strictly lower than the preceding hemisphere.
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Fulfilling the criteron and terminating the algorithm Calculate L
(

α
β
, λ
µ

)
for all the

Sβ,α, Sµ,λ in the list which touch one another. Then, for every Sβ,α present, we find the

intersection of all such lines L
(

α
β
, λ
µ

)
and L

(
α
β
, θ
τ

)
referring to α

β
.

We erase the intersection points at which Sβ,α is strictly below another hemisphere in the

list.

Next, we remove the ones from our list, for which two or fewer intersection points exist.

Now, the vertices of B (α1, . . . , αn) ∩D∞ are the lifts of the remaining intersection points.

Check for the termination criterion now, by choosing the lowest value ζ > 0 for which

(z, ζ) ∈ H is the lift of a remaining intersection point z.

If ζ ⩾ 1
|µ| , the criterion is satisfied and we have found the Bianchi fundamental polyhedron.

Otherwise, set ζ as the updated expected value for 1
|µ| .

Repeat Increasing the norm until |µ| reaches 1
ζ
and then proceed with termination again.
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Chapter 3

The numerator - Abelianization

3.1 Abelianization of a group

Definition 3.1.1 (Commutator subgroup). Let G be a group and a, b ∈ G. Choose M =

{aba−1b−1 : a, b ∈ G} and denote [G,G] as the subgroup of G generated by M . [G,G] is called

the commutator subgroup of G.

Definition 3.1.2. The commutator subgroup is a normal subgroup and the associated quo-

tient group is called the abelianization of G.

3.1.1 Dirichlet Domain

Definition 3.1.3. Choose a point p ∈ B such that its stabilizer is trivial in Γ. We define

the Dirichlet domain centered at p as

Dp(Γ) = {x ∈ B | for all γ ∈ Γ\{1}, d(x, p) < d(γx, p)}
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Theorem 3.1.1. Let Dp(Γ) be a Dirichlet Domain. Then the domain meets the conditions

of a fundamental domain for Γ. In fact, the domain is a convex fundamental polyhedron.

Proof. The proof is described in Section 3.5 in [AM].

Theorem 3.1.2. If a Kleinian group Γ is finite covolumed, then any associated Dirichlet

Domain to the group will have only finitely many faces.

Proof. The proof is described in Section 3.5 in [AM].

Definition 3.1.4. We define a Kleinian group Γ to be geometrically finite if any Dirichlet

domain associated with the group has got only finitely many faces.

Theorem 3.1.3 (Presentation). Take a Dirichlet domain of a Kleinian group Γ where it is

centred around 0 and the group geometrically finite.

Then the group can be presented using the face pairing transformations of the group Γ, with

the rules derived from the cyclic and reflective relations of the transformations.

Proof. This is the main theorem of Section 3.5 from [AM] and the presentation of the group is

derived explicitly and in detail. We request the reader to refer to the book for the proof.

We can use the said presentation to get the generators of the group through a Reidemeister-

Schreier Rewriting Process.

In our case, we were generously provided with a more effective algorithm for abelianization

calculations.
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Chapter 4

The denominator - Volume

4.1 Using Swan’s fundamental polyhedron

Proposition 4.1.1. The integral

−
∫ θ

0

ln |2 sinu|du

converges for θ ∈ R\πZ and admits a continuous extension to R, which is odd and periodic

with period π.

Definition 4.1.1. The aforementioned extension is called the Lobachevsky function L(θ).

Proposition 4.1.2. The Lobachevsky function admits a power series expansion:

L(θ) = θ

(
1− ln(2θ) +

∞∑
n=1

22n |B2n|
2n(2n+ 1)!

θ2n

)

where the Bn are the Bernoulli numbers.
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Theorem 4.1.3 (Uniqueness of tetrahedron and volume approximation ). Let Tα,γ be the

tetrahedron in H where 1 of the vertices is at infinity and the rest P,Q,R are on the hemi-

sphere of radius one such that they project vertically onto P ′, Q′, R′ in C with P ′ = 0 to form

a Euclidean triangle, with angles π
2
at Q′ with and α and γ as the other angles. Then Tα,γ

is unique up to isometry and

Vol (Tα,γ) =
1

4

[
L(α + γ) + L(α− γ) + 2L

(π
2
− α

)]
.

Proof. Please refer to [MR], chapter 11.

4.2 Algorithm

The algorithm was implemented in SageMath[SGM] using the vertices derived through

Swan’s Method.

It was designed to partition the fundamental polyhedron into a finite set of tetrahedrons

with one point at infinity and the other three on the unit sphere of the hyperbolic space.

Using Theorem 4.1.3, we know that the tetrahedrons described are pullbacks of triangles

in the complex plane and we create the tetrahedrons by splitting the vertices into triangles

recovered from Swan’s method.

The volume for each tetrahedron is approximated using the power series mentioned in

Proposition 4.1.2, picking a cutoff of 0.01 between consecutive terms. The finite termination

of Swan’s Method alongside this cutoff ensures that the algorithm is feasible for actual

calculations.
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Algorithm 1 Volume of the Fundamental Polyhedron

Input: Vertices recovered from Swan’s Method = F
Output: Vol(F)
0← V ol(F ) ▷ Initialize Volume
[]← Tetra ▷ Initialize Set of Tetrahedrons
[]← Triangle ▷ Initialize Set of Triangles

f0 = 0 ▷ Pick the point at infinity
for f1 ∈ F do

for f2 ∈ F do

append (f1, f2, f0) to Triangle

for t ∈ Triangle do

append pullback(t) to Tetra ▷ Tetra is now the set of all the polyhedrons

[]← UnitTetra
▷ Initialize Set of Tetrahedrons at Unit Sphere

for t ∈ Tetra do

if t is on the unit sphere then
append t to UnitTetra

for t ∈ UnitTetra do
Fix a point P
if The first vertex is not P then

remove t from UnitTetra ▷ Fix one vertex of UnitTetra
for t ∈ UnitTetra do

Compute the angles of the triangles between the vertices not at infinity.
if There isn’t a right angle on the side angles then

remove t from UnitTetra ▷ Fix right angle triangles

We now have a partition of the polyhedron and we have a volume approximation for each
of them.

for t in UnitTetra do
Vol(F) = Vol(F) + Vol(t)

return Vol(F)
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Chapter 5

Computations

This section contains the various computation results acquired during the project. While

most of the results in sections 5.1 and 5.2 are present in the literature already[MHS1][SGM][AP],

we believe that certain computations in sections 5.4 and 5.5 are original and absent from

any literature.

5.1 Fundamental domains of classical Modular Forms

5.1.1 Farey Symbols and the computational algorithm

In 1991, Ravi Kulkarni[RK1] presented a compututationally feasible method for finding

the fundamental domains of certain subgroups of PSL2(Z). The method used the classi-

cal sequence of reduced fractions between 0 and 1, and was hence named Farey Symbols.

The method revolved around describing the an arithmetic subgroup of PSL2(Z) using cor-

rosponding elements of a Farey sequence and joining these elements in the two-dimensional
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hyperbolic space. The theory can be further explored from [RK1].

5.1.2 Farey Sequence

We define a generalized Farey Sequence here as follows -

Definition 5.1.1.

S =

{
−1
0
, t0, . . . , tn,

1

0

}
We say that a set S is a Farey Sequence if -

• Each ti is a rational number and denote them as ti =
pi
qi

in their reduced form.

• If we let p−1 = −1, q−1 = 0, pn+1 = 1, and qn+1 = 0 then

pi+1qi − piqi+1 = 1

for each 0 ≤ i ≤ n

• ti = 0 for some 0 ≤ i ≤ n

For the sake of completion of the definition, we call the first and last term as t−1 and

tn+1.

Now, Farey Symbols are a special subclass of Farey Sequences with further conditions on

the adjacent pair of elements of the sequences.

The Farey Symbols provide us with the following information about the group.

• Minimal generators of the group.
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• Index and level of the group in PSL2(Z).

• Coset representatives of the group in PSL2(Z).

• Number of cusps of the group in PSL2(Z).

• Genus of the surface Γ\H.

• Fundamental Domain of the group.

5.1.3 Examples and limitations

We used Farey Symbols to compute all the aforementioned features of the group for the

three well-known classes of congruence subgroups - Γ0(n), Γ1(n) and Γ(n). The following

three subsections cover the data generated.

Γ0(n)

Figure 5.1: Fundamental domain for Γ0(11) made using Faray Symbols in SageMath
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(a) Fundamental domain for Γ0(12) (b) Fundamental domain for Γ0(18)

n Generators Farey Symbols

1
(
0 −1
1 0

)
,
(
0 −1
1 −1

)
[0]

2
(
1 1
0 1

)
,
(
1 −1
2 −1

)
[0, 1]

3
(
1 1
0 1

)
,
(
1 −1
3 −2

)
[0, 1]

4
(
1 1
0 1

)
,
(
3 −1
4 −1

)
,
( −1 0

0 −1

)
[0, 1/2, 1]

5
(
1 1
0 1

)
,
(
2 −1
5 −2

)
,
(
3 −2
5 −3

)
[0, 1/2, 1]
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n Number of generators Index Number of Cusps Genus
1 2 1 1 0
2 2 3 2 0
3 2 4 2 0
4 3 6 3 0
5 3 6 2 0
6 4 12 4 0
7 3 8 2 0
8 4 12 4 0
9 4 12 4 0
10 5 18 4 0
11 4 12 2 1
12 6 24 6 0
13 5 14 2 0
14 6 24 4 1
15 6 24 4 1
16 6 24 6 0
17 5 18 2 1
18 8 36 8 0
19 5 20 2 1
20 8 36 6 1
21 7 32 4 1
22 8 36 4 2
23 6 24 2 2
24 10 48 8 1
25 7 30 6 0
26 9 42 4 2
27 8 36 6 1
28 10 48 6 2
29 7 30 2 2
30 14 72 8 3
31 7 32 2 2
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Γ1(n)

Figure 5.3: Fundamental domain for Γ1(11) made using Faray Symbols in SageMath

n Generators Farey Symbols

1
(
0 −1
1 0

)
,
(
0 −1
1 −1

)
[0]

2
(
1 1
0 1

)
,
(
1 −1
2 −1

)
[0, 1]

3
(
1 1
0 1

)
,
(
1 −1
3 −2

)
[0, 1]

4
(
1 1
0 1

)
,
( −3 1
−4 1

)
[0, 1/2, 1]

5
(
1 1
0 1

)
,
( −4 1
−5 1

)
,
(
11 −4
25 −9

)
[0, 1/3, 2/5, 1/2, 1]

(a) Fundamental domain for Γ1(12) (b) Fundamental domain for Γ1(18)
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n Number of generators Index Cusp Size Genus
1 2 1 1 0
2 2 3 2 0
3 2 4 2 0
4 2 6 3 0
5 3 12 4 0
6 3 12 4 0
7 5 24 6 0
8 5 24 6 0
9 7 36 8 0
10 7 36 8 0
11 11 60 10 1
12 9 48 10 0
13 15 84 12 2
14 13 72 12 1
15 17 96 16 1
16 17 96 14 2
17 25 144 16 5
18 19 108 16 2
19 31 180 18 7
20 25 144 20 3
21 33 192 24 5
22 31 180 20 6
23 45 264 22 12
24 33 192 24 5
25 51 300 28 12
26 43 252 24 10
27 55 324 30 13
28 49 288 30 10
29 71 420 28 22
30 49 288 32 9
31 81 480 30 26
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Γ(n)

Figure 5.5: Fundamental domain for Γ(6) made using Faray Symbols in SageMath

n Generators Farey Symbols

1
(
0 −1
1 0

)
,
(
0 −1
1 −1

)
[0]

2
(
1 1
0 1

)
,
(
1 −1
2 −1

)
[0, 1]

3
(
1 1
0 1

)
,
(
1 −1
3 −2

)
[0, 1]

4
(
1 1
0 1

)
,
(
3 −1
4 −1

)
,
( −1 0

0 −1

)
[0, 1/2, 1]

5
(
1 1
0 1

)
,
(
2 −1
5 −2

)
,
(
3 −2
5 −3

)
[0, 1/2, 1]

(a) Fundamental domain for Γ(2) (b) Fundamental domain for Γ(4)
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n Number of generators Index Number of Cusps Genus
1 2 1 1 0
2 2 3 2 0
3 2 4 2 0
4 3 6 3 0
5 3 6 2 0
6 4 12 4 0
7 3 8 2 0
8 4 12 4 0
9 4 12 4 0
10 5 18 4 0
11 4 12 2 1
12 6 24 6 0
13 5 14 2 0
14 6 24 4 1
15 6 24 4 1
16 6 24 6 0
17 5 18 2 1
18 8 36 8 0
19 5 20 2 1
20 8 36 6 1
21 7 32 4 1
22 8 36 4 2
23 6 24 2 2
24 10 48 8 1
25 7 30 6 0
26 9 42 4 2
27 8 36 6 1
28 10 48 6 2
29 7 30 2 2
30 14 72 8 3
31 7 32 2 2
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Limitations The main limitation of the method is that it is only applicable on finite index

subgroups of the Modular group.
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5.2 Torsion in Bianchi Groups and certain subgroups

Pick S = {pn}n as a sequence of prime ideals in Od. Then we look at various Γ0(pn) for 4

different values of d. We define the torsion as the product of the abelian invariants of Γ0(pn).

The next 3 subsections cover those computations.

5.2.1 Case 1

For the first case, we consider the zeroth example of a quadratic number field i.e. K = Q(i),

with the congruence groups constructed by prime ideals p in the ring of integers of the field

i.e. Gaussian integers or Z[i]. The norm of the prime ideals p is given by p.

In the table on the following page, we are comparing the norm of the ideals with the logarithm

of the torsion rather than the torsion itself.

This is a statement of the growth of torsion in the sequence of groups, as we increase the

norm associated with the prime ideals.
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p log(Tor) p log(Tor) p log(Tor)
13 3.17 277 10.80 601 14.68
17 3.46 281 13.46 613 14.15
29 5.12 293 11.12 617 14.23
37 4.27 313 12.67 641 21.13
41 5.07 317 9.93 653 16.16
53 4.64 337 12.34 661 19.28
61 4.78 349 11.36 673 13.70
73 4.96 353 13.47 677 13.90
89 7.56 373 14.20 701 19.28
97 6.86 389 12.92 709 15.30
101 8.12 397 11.22 733 21.29
109 5.37 401 15.98 757 15.31
113 6.79 409 13.91 761 19.09
137 7.10 421 11.28 769 22.47
149 7.63 433 11.58 773 15.21
157 8.22 449 15.84 797 19.82
173 7.44 457 11.57 809 18.74
181 10.41 461 13.16 821 20.20
193 8.71 509 12.36 829 21.14
197 9.26 521 19.41 853 13.74
229 12.35 541 15.78 857 23.38
233 8.21 557 16.10 877 21.32
241 9.11 569 17.56 881 24.39
257 7.68 577 16.36 929 16.52
269 11.44 593 18.87 937 22.86
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5.2.2 Case 2

This case is concerned with the number field K = Q(
√
−2) and the corresponding prime

ideals p of O−2 with norm p.

On the table on the following table, notice how the torsion growth is not only astronomical

with respect to the norm but also orders of magnitude higher than the case of Gaussian

Integers.
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p log(Tor) p log(Tor) p log(Tor)
3 1.10 257 19.63 571 31.05
11 1.61 281 18.19 577 42.03
17 2.77 283 16.99 587 30.26
89 7.56 401 17.46 673 41.14
97 12.20 409 24.19 683 44.92
19 3.29 307 16.41 593 35.82
41 3.69 313 22.08 601 33.85
43 4.14 331 21.03 617 39.13
59 3.36 337 21.22 619 28.65
67 7.07 347 16.89 641 35.25
73 9.01 353 18.17 643 42.20
83 7.17 379 27.08 659 38.2
107 3.97 419 19.78 691 40.53
113 8.87 433 25.72 739 46.61
131 5.78 443 30.25 761 40.88
137 11.14 449 31.65 769 48.86
139 10.49 457 31.25 787 44.64
163 13.01 467 21.89 809 37.28
179 9.01 491 22.69 811 52.93
193 18.14 499 32.95 827 44.22
211 12.20 521 26.74 857 48.97
227 13.47 523 30.29 859 38.67
233 15.91 547 35.94 881 53.28
241 16.66 563 32.02 883 52.90
251 18.39 569 31.77 907 53.42
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5.2.3 Case 3

This is the case of the number field K = Q(
√
−3). The ring of integers associated with the

field K are the famous Eisenstein Integers i.e.

Z[
−1 + i

√
3

2
]

The notation follows from the last two cases and the growth rate is still rapid, but notice

that the torsion is significantly smaller than the last case and slightly smaller than case 1.

One reason that can be conjectured for the observation is that the torsion growth has a

correlation with the absolute value of the discriminant of the number field.

We know that the discriminant for K = Q(
√
−3) is −3, while the discriminant for Q(

√
−2)

and Q(i) are -8 and -4 respectively.
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p log(Tor) p log(Tor) p log(Tor)
3 2.20 241 4.50 577 7.68
7 2.20 271 9.30 601 10.82
13 2.89 277 10.46 607 12.81
19 3.29 283 7.84 613 9.67
31 3.81 307 9.62 619 12.14
37 3.99 313 9.24 631 11.68
43 4.14 331 6.20 643 13.11
61 4.50 337 7.61 661 8.50
67 6.20 349 10.40 673 10.38
73 2.89 367 9.08 691 11.97
79 4.76 373 12.04 709 11.47
97 5.66 379 7.72 727 11.00
103 6.41 397 11.75 733 16.60
109 5.09 409 10.57 739 12.96
127 5.24 421 11.61 751 13.22
139 6.43 433 11.32 757 9.11
151 5.41 439 11.01 769 15.28
157 8.23 457 8.60 787 12.42
163 7.89 463 10.30 811 10.39
181 5.60 487 10.60 823 12.28
193 7.05 499 10.17 829 13.45
199 6.79 523 8.74 853 16.86
211 5.75 541 10.77 859 14.88
223 7.75 547 12.51 877 15.32
229 5.83 571 12.95 883 13.72
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5.3 Covolume computation using fundamental domains

We compute the volume for the congruence subgroups using the algorithm defined in Section

4. We also learnt that the covolume of the space is identical to the volume of the fundamental

polyhedron and we exploit that fact to our advantage. We’ll use these volume computations

in Section 5.4 to study the conjecture for the class of subgroups discussed.

5.3.1 Case 1

The case corresponds to the first case from the torsion calculation with K = Q(−i) and

groups constructed from prime ideals from the Gaussian Integers.

Figure 5.7: Growth in the covolume
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5.3.2 Case 2

In this case, we estimate the covolume for the congruent subgroups defined as Γ0(p) where

d = −2 and p are prime ideals of Od

Figure 5.8: Growth in the covolume

5.3.3 Case 3

This case corresponds to the case of K = Q(
√
−3) and the Eisenstein Integers as their ring

of integers. The covolume of the quotient space vol (Γ0(p)\H) is plotted against the norm of

prime ideals p.
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Figure 5.9: Growth in the covolume
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5.4 The conjecture

In Section 5.2, we observed that, for Bianchi groups and congruence subgroups, torsion in

the integral homology i.e. the abelianization should grow exponentially with respect to the

norm, and in Section(5.3), we observe that volume roughly grows linearly with the norm.

We are looking at a particular expression of looking at this growth given as -

log
∣∣(Γab

n

)
tor

∣∣
vol (Γn\H)

Bergeron and Venketesh conjecture that the following holds true -

Conjecture 5.4.1. Let {Γn}n be a sequence of finite index congruence subgroups of some

fixed Bianchi group. Then

lim
n→∞

log
∣∣(Γab

n

)
tor

∣∣
vol (Γn\H)

=
1

6π

In the upcoming section, we attempt to verify the conjecture computationally for the

three cases mentioned in sections 5.2 and 5.3.

We are plotting the ratio
log
∣∣(Γ0(p)

ab
)
tor

∣∣
vol (Γ0(p\H)

against the norm of the ideal p

We describe the conjecture for each of the sequences below. For each of the cases, we hit

a cutoff of the maximum difference between consecutive terms of δ = 0.025.
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Case 1 -

Number Field Q(i)

Discriminant of the Field -4

Ring of Integers Z[i]

Ideals considered Prime ideals {pn}n lying over prime pn

Norm of the ideal N(pn) = pn

Groups constructed Γ0(pn) = {( a b
c d ) ∈ PSL(2, Z[i]) | c ∈ pn}

Case 2 -

Number Field Q(
√
−2)

Discriminant of the Field −8

Ring of Integers Z[
√
−2]

Ideals considered Prime ideals {pn}n lying over prime pn

Norm of the ideal N(pn) = pn

Groups constructed Γ0(pn) = {( a b
c d ) ∈ PSL(2, Z[i]) | c ∈ pn}

Case 3 -

Number Field Q(
√
−3)

Discriminant of the Field −3

Ring of Integers Z[
−1 + i

√
3

2
]

Ideals considered Prime ideals {pn}n lying over prime pn

Norm of the ideal N(pn) = pn

Groups constructed Γ0(pn) = {( a b
c d ) ∈ PSL(2, Z[i]) | c ∈ pn}
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5.4.1 Case 1

Figure 5.10: Convergence of the ratio plotted with y = 1
6π
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5.4.2 Case 2

Figure 5.11: Convergence of the ratio plotted with y = 1
6π
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5.4.3 Case 3

Figure 5.12: Convergence of the ratio plotted with y = 1
6π
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Limitations It has been observed that the torsion part of the group grows exponentially as

we increase the index of the subgroup of a Bianchi group and as we increase the discriminant

associated with the number field. That makes deriving any asymptotic conclusions from the

program a time-consuming, memory consuming and at times, computationally infeasible,

process.
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