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Abstract

The following thesis attempts to study the e↵ects of inhomogeneity in matter distribution

on the average expansion of the universe. The toy models in literature are modified in the

direction of generality by inducing a notion of proximity and interaction through shared

mass.
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Introduction

The FRW model in cosmology that attempts to model a dynamical universe is based on

three fundamental assumptions: 1. The cosmological principle (a statement of homogeneity

and isotropy), 2. Ordinary matter (with non-negative pressure) and 3. Ordinary gravity

(the Einstein-Hilbert action). While the model successfully describes an expanding universe,

it fails to account for an accelerated expansion; contrariwise, it predicts a deceleration.

This failure is remedied by the insertion of a cosmological constant, which is tantamount

to relaxing the second and third assumptions. This corresponds to adding a term to the

matter/source side (as dark energy), or the geometric side of the Einstein field equations (as

a cosmological constant), respectively. The e↵ects on spacetime in either case are identical

and cannot be distinguished by observation. The FRW universe with a cosmological constant

(FLRW) is currently the Standard Model of cosmology.

The e↵ect of this addition serves only to change the way the scale factor in the FRW met-

ric evolves, and given the lack of direct observation and theoretical estimate of value, it is

pertinent to assume that any other model that similarly modifies the scale factor evolution

must be equally valid. The objective of this thesis is to explore alternatives to the FLRW

paradigm.

In particular, the thesis aims to study the e↵ects of inhomogeneous cosmologies. As the

name suggests, this involves relaxing the first assumption made above while leaving the

other two unmodified. There is su�cient evidence for the universe being inhomogeneous in

galaxy clusters and voids. The FLRW paradigm averages away the inhomogeneities over a

homogeneity scale and evolves the averaged quantities via the Einstein field equations. The

evolution of inhomogeneities was first dealt with via linear perturbations to the FRW model.

This approach falls short in two regards: first that perturbations soon enter a non-linear

regime (the linear density contrast of inhomogeneities reaches order unity), and second that

linear perturbations do not couple with the net scale factor by construction and hence do
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not a↵ect the average expansion. The approach adopted in the thesis are expounded in

references [BR12] and [Mag12]; they assume the existence of a homogeneity scale and define

a meaningful method for averaging over spacelike hypersurfaces in a covariant manner. The

upshot of their argument is that the process of averaging in space and evolving through time

do not commute, owing to the non-linearity of the Einstein field equations. The more correct

way of dealing with structures would be to time evolve the inhomogeneities and then average

over space at every constant-time hypersurface. The e↵ect of the non-commutativity on the

expansion in observable, and is termed backreation.

References [Räs06a] and [Räs08b] propose toy models which, while somewhat idealistic, prove

that inhomogeneities can indeed cause a net accelerated expansion. This approach is more

grounded in observable reality, and is hence more promising. This thesis attempts to develop

the existing toy models in the direction of generality.

The thesis is structured as follows: Chapter 1 summarizes relevant aspects of the theory

of general relativity and introduces the 3+1 Covariant formalism with respect to a set of

fundamental observers. A brief mention is made of the various cosmological models and

their key results. The main purpose of Chapter 1 is to act as a reservoir of important the-

orems to be cited later. Chapter 2 covers the FLRW paradigm, discussing its scope and

shortcomings. The Friedmann equations are presented with the 3+1 covariant split for easy

comparison later. Chapter 3 introduces the Buchert averaging formalism, the Buchert equa-

tions that serve to replace the Friedmann equations, and the toy models that make use of

these equations to check for an accelerated expansion. Chapter 4 presents improvements to

the toy models, and Chapter 5 discusses the results and future work. The thesis is supple-

mented with appendices to clarify auxiliary concepts and present more involved derivations

for completeness.
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Chapter 1

Summary of General Relativity

1.1 Introduction and Motivation

Our objective in cosmology is to describe the evolution of the universe as a whole; our

endeavour in this regard is through Einstein’s theory of General Relativity. Spacetime is a

3+1 dimensional manifold armed with a Lorentzian metric, the intrinsic curvature of which

manifests as gravity. The relation between curvature and its source (matter and energy) is

governed locally by the Einstein Field Equations (EFEs) (1.1), which is a system of coupled,

second order non-linear di↵erential equations of the metric tensor:

Gµ⌫ ⌘ Rµ⌫ �
1

2
Rgµ⌫ = 8⇡GTµ⌫ . (1.1)

The left hand side of the EFEs is geometric, in that it is a measure of curvature, while the

right hand side is the source term, consisting of the Energy-Momentum tensor multiplied by

a prefactor that ensures Bohr’s correspondence principle in the Newtonian limit. All metrics

in the thesis will maintain a (�,+,+,+) convention.

Curvature: the Riemann, Ricci and Weyl tensors

Intrinsic curvature in a manifold results in an ambiguity in the comparison of vectors and

tensors at di↵erent points. The transport of a vector from one point to another is path de-

pendent; the extent to which a vector changes in a simple closed path from a point to itself

is captured by the Riemann tensor, and this serves as a measure of intrinsic curvature.
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Mathematically it is computed as the deviation from commutativity of two covariant deriva-

tives. When working with torsion-free, metric compatible (Christo↵el) connections, the

Riemann tensor is given by:

R⇢
�µ⌫ = @µ�

⇢
⌫� � @⌫�

⇢
µ� + �⇢

µ��
�
v� � �⇢

⌫��
�
µ�. (1.2)

The Riemann tensor with a lowered index (R⇢�µ⌫) is antisymmetric under ⇢ $ � and µ $ ⌫,

symmetric under ⇢� $ µ⌫, and has a vanishing cyclic permutation on the last three indices.

The number of independent components of the Riemann tensor in light of these symmetries

is given by 1
12n

2(n2 � 1) where n is the dimensionality of the space. In 3+1 dimensional

space, the Riemann tensor has 20 independent components.

Analogous to a rank-two tensor being split into a trace and trace-free component, the rank-

four Riemann tensor is split into a 2-index ‘trace’ (Ricci tensor and Ricci scalar) and a

4-index ‘trace-free’ (Weyl tensor) part. The contraction of the Riemann tensor is achieved

uniquely with the Christo↵el connection, and the Ricci tensor is then given by:

Rµ⌫ = R�
µ�⌫ . (1.3)

The trace of the Ricci tensor is the Ricci scalar. Together, these two terms contain all

information about contractions of the Riemann tensor. The Weyl tensor captures all the

trace-free parts of the Riemann tensor, while still obeying its symmetries. Physically, the

Ricci tensor measures the change in volume of a space (relative to Minkowski) due to intrinsic

curvature, while the Weyl tensor is a measure of the volume-preserving distortions (shear

and rotations) due to intrinsic curvature.

An interesting point to note is that while the 20-component Riemann tensor fully specifies

intrinsic curvature, the source in the EFEs govern only 10 — the Ricci tensor component — of

it. That begs the question of whether the Weyl tensor remains unspecified, and whether the

intrinsic curvature (and hence gravity) is fully specified. Indeed that isn’t the case; however,

the Weyl tensor to GR is what electromagnetic radiation is to the theory of electrodynamics.

Much like how Maxwell’s equations with a source and appropriate boundary conditions can

only specify the electric field in the region up to freely propagating electromagnetic radiation,

the curvature of spacetime is specified by the EFEs up to the existence of gravitational
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radiation as specified by the Weyl tensor.

1.2 3 + 1 Covariant Formalism

The theory of General Relativity is di↵eomorphism invariant, which is a high-brow way of

saying that GR (unlike Newtonian gravity) is free of prior geometry. The metric (and hence

the connection and volume element) appear in the field equations dynamically, and there

is no geometry given to us ahead of time on which a preferred set of coordinates might be

chosen. However, the symmetries of the system usually render the use of a particular set of

coordinates useful by making the field equations more tractable.

Cosmological systems are usually described with respect to a set of well-behaved1 observers

whose time is assumed to measure the cosmic time. The world lines of the observers thread

spacetime, and it is convenient to express coordinates relative to these fundamental world

lines. Generalized bases of the vector spaces Tp(M) at a point o↵er alternatives to the

conventional coordinate basis, and have the advantage of being adapted to the system being

studied by representing preferred velocities and observers. In a spacetime, such a basis is

called a tetrad. In order to specify a tetrad with respect to the world lines generated by the

fundamental velocity fields ua, we split our 4-dimensional spacetime into a 3-dimensional

spacelike hypersurface perpendicular to ua and a timelike direction along ua (since they are

timelike vectors). The hypersurface then defines the space of observables for each of these

observers. This is in practice achieved by:

1. Choosing a 3-dimensional surface S that intersects every world line exactly once, and

labelling each world line at its intersection in S with 3 coordinates yi.

2. Maintaining the same label for the world lines even after leaving the surface S. These

constitute comoving coordinates.

3. Defining a time coordinate along the fundamental world lines that increase monotoni-

cally along their flow.

Such a choice of hypersurface might not always be possible; we require the ‘vorticity’ of the

world lines to vanish, as will be discussed later. In the event of such a possibility, the tetrad

(t, yi) represent comoving coordinates adapted to the fundamental world lines. The choice

1see subsection (1.2.3)
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of the initial surface S and time coordinate are not unique. As a result, the constant time

hypersurfaces need not be locally orthogonal to every fundamental world line. There are

classes of transformations that preserve the comoving form of coordinates; they correspond

to changing the initial choice of constant time hypersurface (t0 = t0(t, yi), yi
0
= yi) or

changing the labeling of world lines on the given hypersurface (t0 = t, yi
0
= yi

0
(yi)). The

first transformation corresponds to ‘tilting’ the hypersurface with respect to the fundamental

world lines while still satisfying condition (1) above, while the second transformation involves

retaining the orientation of the hypersurface and relabeling the points.

A particularly useful choice of time coordinate is the proper time ⌧ as measured along each

fundamental world line. If we take s0 to denote the time on the initial surface S, then

s = s0+⌧ is called the normalized time and the coordinates are then normalized coordinates.

Having fixed the time coordinate, the only freedom left to us is to choose the initial surface

S, which is achieved by s0 = s+ f(yi). The choice of comoving coordinates is equivalent to

the choice of Lagrangian coordinates in fluid mechanics; fixed coordinates similar to Eulerian

coordinates may be constructed as well.

Coordinates adapted to preferred matter motion implies a preferred 4-velocity at each point.

In the local coordinate basis xµ (as opposed to yi) measured in proper time, the preferred

4-velocity is a normalized timelike vector:

uµ =
dxµ

d⌧
; uµu

µ = �1. (1.4)

In normalized coordinates (s, yi), we have:

uµ = �µ0 ;
ds

d⌧
= 1,

dyi

d⌧
= 0. (1.5)

1.2.1 Some useful definitions:

The following formulae are motivated rigorously in [EMM12], and are summarized here for

completeness.

Projection tensors:

In order to achieve projection parallel and perpendicular to ua, we need to define projection
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tensors. This is done by constructing the tensor operators Ua
b and hab, respectively, as:

Ua
b := �uaub,

hab = gab + uaub,
(1.6)

with the obvious contractions:

Ua
bU

b
c = Ua

c, Ua
a = 1, Ua

bu
b = ua;

ha
bh

b
c = ha

c; ha
a = 3; ha

bu
b = 0.

(1.7)

Here, gab is the local 3+1 D metric for a particular world line. The tensor projection along

ua can be used to define the time derivative of a tensor along the fluid flow lines:

Ṡa···
b... = ucrcS

a···
b... =

d

d⌧
Sa···

b... + Sc···
b...�

a

cd
ud + · · ·� Sa···

c...�
c

bd
ud � · · · . (1.8)

This amounts to a usual directional derivative with respect to the proper time ⌧ with the

requisite correction terms to make the derivative covariant. In particular, the acceleration

vector is given by:

u̇a = ubrbu
a ) u̇aua = 0, (1.9)

which vanishes i↵ the flow lines are geodesic, which is usually the case when the observers

move under the influence of gravity alone in the absence of other forces such as viscosity.

The orthogonal projection tensor hab is interpreted as the instantaneous rest frame for each

observer at a point and hence defines local surfaces of simultaneity. It is also the metric

tensor for the instantaneous rest space of the observers; it serves to define distances and

inner products:

Xaua = 0 = Y bub ) X ·Y = XagabY
b = XahabY

b. (1.10)

Finally, the Projected Symmetric Trace-Free parts (PTSF) of tensors are obtained from the

orthogonal projection tensor as:
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Vhai = hb
aVb, Shabi =

⇢
hc

(ah
d

b) �
1

3
habh

cd

�
Scd. (1.11)

Since our coordinates are adapted to the world lines of fundamental observers, the kinematics

of these fundamental world lines would describe the expansions and distortions of the space-

like hypersurface of simultaneity. In order to study this, we must first define 3-dimensional

derivative operators that project onto the hypersurface orthogonal to observers:

rcS
a···

b... = hc
fha

d · · ·hb
e · · ·rfS

d···
e···, (1.12)

where each of the indices have been projected by an orthogonal projection tensor of their

own. From this we can define:

div V = ra

Va, (div S)a = rb

Sab;

curlVa = ⌘abcr
b

V c, curlSab = ⌘cd(ar
c

Sb)
d.

(1.13)

In general, these are operators only in the tangent hyperplane at each point and not neces-

sarily in all of the 3-dimensional manifold. The latter holds only when the ‘vorticity’ of the

fundamental velocity vanishes.

From these definitions, the covariant derivative of the fundamental 4-velocity itself can be

split as:

rbua = ha
chb

drduc + Ua
cUb

drduc = rbua � u̇aub. (1.14)

1.2.2 Deriving a generalized Hubble law

With all the artillery developed so far, we can define relative positions and velocities on the

hypersurface.

In comoving coordinates (s, yi) consider a curve yi = yi(v) on the surface S(s = s0) that

links a set of fundamental world lines on S. Since the coordinates are comoving, the curve

will continue to link the same fundamental world lines at later times as well. The curve yi(v)

is dragged along in time by the world lines. The tangent vector to the curve �a = (0, �yi) =

(0, dy
i

dv
�v) will be similarly dragged, and will hence always connect the same pair of world
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lines. These tangents are hence called connecting vectors. This means an observer O will at

see the displacement vector �a point to the same galaxy’s world line at all times.

Now, what we want is a displacement which represents an instantaneous spatial displacement

as measured in O’s rest frame, and so is orthogonal to the ua. The displacement we have is not

always orthogonal to the fluid flow lines; it may contain an incremental time displacement

as well, depending on the surface S(s = s0). The requisite displacement is obtained by

projecting �a orthogonal to ua, i.e., by taking its PTSF part. So, the relative position vector

in the instantaneous rest frame of the observer O is given by:

�hai = �lea (1.15)

where �l is the magnitude or distance, and ea the unit direction vectors in the instantaneous

rest frame of O obeying:

eaea = 1, eaua = 0 ) �hai�hai = (�l)2. (1.16)

The relative velocity vector is obtained by first taking the time derivative of the PTSF

connecting vector, and then projecting this derivative orthogonal to ua. So:

va = vhai = ha
bu

drd

�
hb

c�
c
�
= �̇hai. (1.17)

Since the vector �a is dragged along by the fundamental 4-velocities, its Lie bracket with ua

vanishes. This gives us:

[u,�]a = ua
,b�

b � �a
,bu

b = 0 ) �brbu
a = ubrb�

a. (1.18)

Substituting this relation in eq. (1.17) gives:

va = V a
b�

hbi, (1.19)

where
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Vab := ha
chb

drduc = rbua. (1.20)

The formula in eq. (1.19) is reminiscent of Hubble’s law, indeed, it may be interpreted as a

generalized Hubble law!

The covariant derivative of the fundamental 4-velocity can be used to study the kinematics

of the relative position. This is done by splitting the projected covariant derivative of ua

into its irreducible parts under rotations. Since Vab is a rank two tensor, it can first be split

as a symmetric and anti-symmetric part. The symmetric part can further be split as a trace

and trace-free component.

Vab = V(ab) + V[ab] = ⇥ab + !ab = ⇥habi +
1

3
⇥c

chab + !ab ⌘ �ab +
1

3
⇥hab + !ab. (1.21)

So:

Vab =
1

3
⇥hab + �ab + !ab. (1.22)

Before understanding the individual physical relevance of the terms, we can, from equations

(1.19) and (1.20), derive an explicit generalized Hubble law:

�̇l

�l
= ⇥abe

aeb =
1

3
⇥+ �abe

aeb, (1.23)

ėhai = !abe
b + �abe

b �
�
�cde

ced
�
ea. (1.24)

The first equation tells us that the rate of distance is directly proportional to the magnitude

of the distance; the constant of proportionality is in general dependent on the direction due

to a shear (�ab) contribution (explained below). The second equation is the rate of change

of direction as measured with respect to a non-rotating local inertial reference frame, deter-

mined by local dynamical experiments. Both the above equations are observable directly.

The derivation will be correct provided the continuum (fluid) approximation is a good de-

scription of the matter distribution and velocities in the universe. In order to understand
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the physics of the individual contributions, consider setting them to zero pairwise.

The case !ab = 0 = �ab is one of pure expansion, since the rate of change of relative

distance becomes �̇l

�l
= ⇥

3 (independent of direction), while the rate of change of direction

becomes zero. Hence we have a distortion-free expansion without any rotation.

Setting !ab = 0 = ⇥ corresponds to pure shear. Since the shear tensor is symmetric and

trace-free, we can choose an orthonormal basis of shear eigenvectors in which it is diagonal

with trace zero. A vanishing trace tells us that an expansion in any one direction will result

in a contraction in at least one other direction. Hence we have a pure distortion, without

rotation or change of volume.

Finally, �ab = 0 = ⇥ is the case of pure vorticity, since the rate of change of relative dis-

tance is zero and only the direction changes. Since this preserves all distances, it represents

a pure rotation, without distortion or expansion.

In a general fluid flow, all these quantities will be non-zero, so a combination of e↵ects will

occur. However, there will always be two instantaneous fixed points in the sky, where the

galaxy directions for a given celestial sphere of galaxies remain constant; this follows from

the fixed point theorem for vector fields on the 2-sphere.

We can define:

H =
�̇l

�l
=

1

3
⇥, (1.25)

which serves as a generalized Hubble parameter. The value at the present time is the Hubble

constant.

Before we move to the important question of whether a global spacelike hypersurface can

be defined at all, let us take a moment to appreciate what we have derived so far. All we

have done is define a coordinate system adapted to a set of preferred observers, without yet

assigning properties to these observers (fluid particles). Our ignorance of their dynamical

interaction notwithstanding, it appears we have arrived at a generalized Hubble law! This is

an artefact of our choice of coordinates; the comoving coordinates on the spacelike hypersur-

face do not represent physical distances. In order to do so, it becomes necessary to multiply

all coordinates by a prefactor that in general will depend on both the time coordinate as
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well as the position in comoving space. This was tacitly assumed in assigning a ‘length’ (�l)

to the position vector �a. By doing this, we are e↵ectively separating the time dependent

aspect of the distance from the distance itself, thus giving us a magnitude of velocity that

is proportional to the magnitude of the physical distance.

1.2.3 Vorticity and cosmic time

To finally address the elephant in the room, we determine under what conditions a set of

observers can have a common surface of simultaneity (and hence a cosmic time). Consider

the following heuristic argument that illustrates a way in which a common hypersurface

cannot be constructed.

Take two observers in a 2+1 dimensional space whose world lines form a double helix about

some common axis. The perpendicular two dimensional surface defined locally at each point

on an observers world line is their local surface of simultaneity. If the two observers are

close enough, it is easy to see that the surface of simultaneity at an instant of time of one

observer will intersect the surface of simultaneity of the observer at some other instant of

time, leading to a surface of simultaneity that intersects itself. This is purely due to the fact

that the two observers are ‘rotating’ about an axis; their surfaces of observables cannot be

smoothly patched together. As long as this rotation vanishes, a shear or volume expansion

cannot cause this e↵ect. This idea can be formalized mathematically as follows.

The vorticity vector !a can be written as the curl of the fundamental 4-velocity (!a =

�1
2 curlua), and so a vanishing vorticity necessarily means that ua can be written as the

gradient of a scalar potential; in particular,

!a = 0 ⌘ there exist functions (r, t) such that ua = �rt,a, (1.26)

where the comma before the function t represents a gradient (the covariant derivative of a

scalar reduces to the regular partial derivative). This means that ua is orthogonal to the

surfaces t = constant. At each point the tangent plane orthogonal to ua is spanned by hab ,

but in general these surface elements do not mesh together to form a surface in spacetime.

The orthogonal tangent planes are instantaneous rest spaces for observers moving with 4-

velocity ua; these fit together coherently if and only if !a = 0. This is the condition for the

existence of a cosmic time for the fundamental observers. This allows fundamental observers
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to synchronise their clocks.

The potential function t will not measure proper time; the time derivative of t with respect

to ⌧ is

ṫ = uarat = uat,a = �1

r
uau

a =
1

r
. (1.27)

This can be set to 1 if r ⇠ r(t) (r is a function of time only), whence we may simply re-scale

our time coordinate t. Physically, this corresponds to ensuring that ua has zero vorticity and

that the flow lines are geodesic. For example, the time coordinate in the FLRW universe is

a fundamental cosmic time that measures proper time along each world line. The standard

time coordinate in a Schwarzschild solution is a cosmic time for static observers, but does

not measure proper time along their world lines because their acceleration is non-zero.

1.3 Cosmological Models

With just a set of coordinates and observers, we have arrived at a generalized expansion

law. For the exact functional dependence of the velocity of expansion to distance, we need

the time evolution of the scaling prefactor that relates the comoving distances to physical

distances. This involves specifying the distribution and thermodynamic properties of the

matter that fills the universe, and this entire process constitutes constructing a cosmological

model.

A cosmological model consists of a spacetime with well-defined, physically realistic, matter

and radiation content alongside a uniquely defined family of fundamental observers whose

world lines are expanding away from each other in some universe domain, resulting in a

well-defined set of observational predictions for that domain.

These models must first match the observations we have at present to some time domain

in its evolution, and the predictions it makes must be on theoretically sound ground with

observations that can physically be made. The Standard Model in Cosmology is the ⇤CDM

paradigm that makes use of the FRW metric with an assumption of dark matter and dark

energy, both of which can be viewed as ad hoc solutions to the discrepancies of the Standard

Model. The underlying principle of the ⇤CDM model is that of statistical homogeneity
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and isotropy, which is mathematically implemented as an exact homogeneity and isotropy.

There are myriad cosmological models with analytic solutions that break this symmetry;

these include models that break homogeneity and models that break isotropy while retaining

homogeneity. The exact details of these models can be found in most modern textbooks of

relativistic cosmology; the interested reader may look at Relativistic Cosmology by George

F.R. Ellis et. al. ([EMM12]) for a detailed review. This thesis considers the most general

possible model that breaks both homogeneity and isotropy, as developed by Thomas Buchert

et. al. ([BR12], [BC08] and references therein).
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Chapter 2

The FRW Universe

2.1 The metric

Solutions to the EFEs are usually inferred through the symmetries of the problem; in cos-

mology the corresponding assumption is of statistical homogeneity and isotropy in the dis-

tribution of matter. Known as the cosmological principle, it is often stated as the existence

of (fundamental) observers who see a homogeneous and isotropic universe, and whose time

is taken to be the cosmic time. This translates to assuming a maximally symmetric space

(not spacetime), which fixes the metric up to a dimensionless arbitrary function (the scale

factor a(t)) and a constant (the curvature constant ). The metric has the form:

ds2 = �dt2 + a(t)2�ijdx
idxj = �dt2 + a(t)2

✓
d�2

1� �2
+ �2d⌦2

2

◆
, (2.1)

where �ij is a maximally symmetric spatial metric and d⌦2
2 = d✓2 + sin2✓d�2 is the metric

of a 2-sphere. The metric is called the Friedmann-Robertson-Walker (FRW) metric, and

is written in units of c = 1. The curvature constant  takes values in the domain of Real

numbers; negative, vanishing and positive values representing hyperbolic, flat and spherical

space, respectively. It is important to note that the Einstein equations are local, and so the

metric is valid only at a point and does not dictate global curvature. The latter is inferred

and restricted by the requirement of maximal symmetry in space.

The FRWmetric is expressed in comoving coordinates �, and so physical distances r are given

by r(t) = a(t)�. From the metric and this relation alone, we can infer the Hubble expansion

law v(t) = ȧ

a
r(t) := H(t)r(t), where H(t) is the Hubble parameter that is a constant at
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every instant of time. The velocity is hence proportional to the physical distance; the exact

functional dependence requires knowledge of a(t). It is important to note that this is not

a physical velocity, in that it is not the velocity as perceived by an observer locally. This

is the ‘velocity’ imparted to the fluid element that is stitched to space through comoving

coordinates. Notice also, that owing to the high degree of symmetry (the highest possible

on space, in fact), the scale factor a(t) describes both the local distances and velocities, as

well as their global counterpart. This is a point we will address again in Chapter (3).

2.2 The Friedmann Equations

Substituting the above metric in the EFEs, with a reasonable assumption of source, will yield

evolution equations for the scale factor a(t) in terms of the curvature constant . In the

comoving frame of fundamental observers, a convenient choice of source is that of an ideal

fluid with energy density ⇢, isotropic pressure p and equation of state of the form p = !⇢.

The proportionality constant ! can be interpreted as the enthalpy of the fluid if the flow is

isentropic, as is usually the case1. The Energy-Momentum tensor Tµ⌫ is then diag(⇢, p, p, p)

and the equations of motion for a(t) are2:

3
ä

a
= �4⇡G(⇢+ 3p), (2.2)

3

✓
ȧ

a

◆2

= 8⇡G⇢� 3

a2
. (2.3)

Equation (2.2) is known in literature as the Raychaudhuri equation, and eq. (2.3) the

Hamiltonian constraint. A few interesting observations are that the curvature constant does

not appear in the former, while the pressure does not influence the Hubble parameter as in

the latter. This is closely related to the point made in footnote 2 and references therein.

There is an interesting question to be asked at this junction. Given any arbitrary metric

1For a general flow, we have d! = TdS + (1/⇢)dP , where 1/⇢ is the specific volume. Setting dS to zero
gives us our equation of state. Note that this requires only the lesser condition of an adiabatic flow; an
isentropic flow is a more strict condition.

2The astute reader might recognise that the first equation is nothing but the Newtonian force law (if
p = 0), while the second is a first integral of motion corresponding to Energy conservation if the curvature
term were imparted an interpretation of total energy. This is indeed the case, and there has been a long-
standing debate on the relevance of Newtonian relativity in cosmology. See [Mil00], [MM00] and [Nor92]
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gµ⌫ , can we solve the EFEs in reverse to find the matter distribution? Put di↵erently, can

we always find a suitable matter distribution to e↵ect a curvature of our choice? A blind

substitution to the left hand side of the EFEs would seem to suggest so. However, the

corresponding stress-energy tensor obtained may not be one that is physically realisable in

our universe. In order to preserve physicality, we are required to impose conditions on the

stress-energy tensor by hand. Most such energy conditions boil down to a generalization

of the idea that the energy density as observed by a timelike (or null) vector must be non-

negative. The energy density is just the T00 term, but conditions on all the components of

Tµ⌫ correspond to imposing additional requirements on pressure, for example. The exact

energy condition that our universe satisfies is yet to be known, but for our purposes, we

would like to impose the condition that ‘matter gravitates towards matter’. Referred to as

the Strong Energy Condition, it stipulates that for every timelike vector field ~X, the trace

of the tidal tensor3 measured by the corresponding observers is always non-negative:

✓
Tab �

1

2
Tgab

◆
XaXb � 0. (2.4)

For our particular stress-energy tensor, this condition boils down to ⇢+ p � 0, ⇢+ 3p � 0.

The consequence of this condition is that the acceleration of the scale factor (eq. 2.2) is

always negative, meaning that if the universe is initially given a positive ‘velocity’ ȧ initially,

it evolves in a decelerating fashion. It is occasionally useful to speak in terms of Hubble

parameters H = ȧ

a
and dimensionless deceleration parameters q = � 1

H2
ä

a
. So, the strong

energy condition insists that q > 0.

Observations, however, indicate that the universe is currently expanding at an accelerated

rate. To reconcile with this discrepancy, the consensus is to include a positive ⇤ term to

the right hand side of the two equations. Noting that the EFEs (1.1) depend on the stress-

energy tensor and not its derivatives, we see that gravity sees the absolute value of energy,

and not just a di↵erence in energies. We therefore are at liberty to fix a ground state energy.

Interpreting the cosmological constant ⇤ as a vacuum energy is tantamount to adding a ⇤gµ⌫

term to the left hand side of the EFEs. This corresponds to modifying the Einstein Hilbert

action R. Alternatively, we could have subtracted the same term from the right hand side

of the EFEs, in which case the cosmological constant is interpreted as a dark energy with

3The tidal tensor represents the relative acceleration due to gravity of two test masses separated by an
infinitesimal distance.
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equation of state p = �⇢. The e↵ect of such an inclusion is identical in either case, and the

interpretations therefore have no physical distinctions through observation. The inclusion

of such a term in the EFEs results in the Lemaitre equations, which are identical to the

Friedmann equations but for an additional ⇤ term:

3
ä

a
= �4⇡G(⇢+ 3p) + ⇤,

3

✓
ȧ

a

◆2

= 8⇡G⇢� 3

a2
+ ⇤.

(2.5)

The first of the above equations now allows for an acceleration if ⇤ is su�ciently large.

Since we are dealing with fluids, we additionally require an energy continuity (conservation)

equation:

⇢̇ = 3
ȧ

a
(⇢+ p). (2.6)

This equation is readily obtained from taking the 0-0 component of the covariant derivative

of the stress-energy tensor upon substituting the metric (2.1). Equations (2.5) and (2.6)

govern the dynamics of the scale factor, and constitute the Standard Model.

2.3 3+1 Split for the FRW Universe

The assumption made in arriving at the FRW metric was of statistical homogeneity and

isotropy, which stipulates that at the largest scales, the universe can be represented by aver-

aged quantities that are invariant under translation or rotation beyond a homogeneity scale.

In practice, this was implemented as an exact homogeneity and isotropy. In the jargon of

formalism developed in Chapter 1, this assumption would correspond to a set of fundamental

observers whose world lines had no shear and vorticity. This would result in a convenient

foliation of spacetime in which maximally symmetric spacelike hypersurfaces can be stacked

up congruently, with a cosmic time parameter that is always orthonormal to the hypersur-

faces. Each observer would measure the same cosmic time coordinate in such a foliation;

this will not coincide with the epoch assigned by an observer to a particular event. Maximal

symmetry will ensure, however, that if one observer assigns an epoch to the observation of

another observer, the second observer will assign the same epoch to the first.
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Before presenting the Friedmann equations in a covariant fashion, it helps to know what we

are doing di↵erently here. There are two ways to decompose and solve the EFEs (and fix co-

ordinates in a 3+1 dimensional spacetime); we can either use the symmetries of the system to

foliate our spacetime into hypersurfaces on which we fix a metric, or we can thread our space-

time with fundamental trajectories and define a set of coordinates adapted to them. These

are then used to define locally orthogonal hypersurfaces that must be smoothly patched to-

gether. The two approaches should ultimately lead to the same physics for a given system.

In order to e↵ect the latter approach, we begin by projecting the stress-energy tensor or-

thogonal to the worldlines as:

T↵� = ⇢u↵u� + q↵u� + q�u↵ + ph↵� + ⇡↵�, (2.7)

where ⇢ = T↵�u↵u� is the total energy density, p = 1
3T↵�h↵� is the isotropic pressure,

⇡↵� = T��h�
h↵h�

�i is the anisotropic stress, and q↵ = �T��u�h�↵ is the relativistic momentum

density. These satisfy the properties:

⇡↵� = ⇡(↵�), ⇡↵
↵ = 0, ⇡↵�u

↵ = 0. (2.8)

The relativistic momentum density is spacelike, meaning q↵u↵ = 0.

The evolution of spacetime can now be obtained from the definition of the Riemann tensor

that makes use of vectors: 2r[↵r�]u� = R�
↵��u�, and the twice contracted Bianchi identity

on the Riemann tensor: r↵R↵
� = 1

2r�R. This decomposes the left hand side of the EFEs.

The resultant equations are obtained by projection and equating to the stress-energy tensor;

the equations can be split as scalar, vector and tensors based on their transformation under

rotation. The scalar equations4 read:

⇥̇+
1

3
⇥2 = �4⇡G(⇢+ 3p)� 2�2 + 2!2 +r↵u̇

↵ + u̇↵u̇↵ + ⇤,

1

3
⇥2 = 8⇡G⇢� 1

2
(3)R + �2 � !2 + ⇤,

⇢̇+⇥(⇢+ p) = �r↵q↵ � 2u̇↵q↵ � �↵�⇡
↵�.

(2.9)

4To see the projection in all its tensor glory, read [Mag12]. Masochists who wish to derive these equations
rigorously may find helpful tricks in [EMM12], and for a complete derivation may contact the author of this
thesis.
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When considering an ideal fluid, we put the anisotropic stress to zero; the relativistic mo-

mentum density vanishes in the local rest frame of the observers. This leaves us with the

total energy density and isotropic pressure. The equations now read:

⇥̇+
1

3
⇥2 = �4⇡GN⇢� 2�2 + 2!2 + ⇤,

1

3
⇥2 = 8⇡GN⇢�

1

2
(3)R + �2 � !2 + ⇤,

⇢̇+⇥⇢ = 0.

(2.10)

While homogeneity and isotropy would also require the shear and vorticity terms to go to

zero, we leave them in the equations until the very end for generality. However, in their

absence, it is clear that the first two equations above are generalizations of the Friedmann

equations, while the third is the continuity equation. These equations are local, since the

projection tensors employed pertain to the local surface of simultaneity of a particular ob-

server. In the absence of vorticity, we can smoothly patch these surfaces together on which

the original Friedmann equations hold. We have thus obtained the same physics, but using

a di↵erent approach to coordinates. This approach has the benefit of being covariant, since

we are performing all contractions using projection operators that make use of vector fields.
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Chapter 3

Inhomogeneous Cosmologies

At the heart of the discrepancy observed on the sign of q in section (2.2) is potentially the

fact that a statistical cosmological principle is being implemented as an exact, local symme-

try. The EFEs are manifestly non-linear equations; it is fair to suppose that the process of

evolving quantities (like the densities, scale factors etc) in time should not commute with

averaging them over a spacelike hypersurface at some instant of time. Put more explicitly,

the time evolution of an average quantity should not display the same dynamics as explicitly

evolving each local quantity in time, and then at every instant asking what its average value

is. The FRW formalism evidently takes the former approach; the density is assumed to have

the same value at every point and every length scale, and the Friedmann equations (2.5)

model the evolution of these average quantities. The scale factor is assumed to depict the

dynamics of both the local as well as global hypersurface. In the presence of such symmetry,

the commutator of the two operations vanishes trivially1.

The deviation from this exact homogeneity and isotropy and structure formation is tradi-

tionally e↵ected via linear perturbations to the FRW metric. This corresponds to the regime

in which the deviation of the density from its average value (often referred to as the density

contrast ; � := ⇢

⇢
� 1) is lesser than unity. A detailed and very insightful review of the sub-

ject can be found in [MFB92]. The key point to note is that for � < 1, the perturbations

decouple from the dynamics of the scale factor on average, by construction. Therefore, the

non-commutativity mentioned above makes no appearance here.

The formation of non-linear structures (� & 1) is modelled numerically via either one of

1See discussion after equation 3.7
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Newtonian mechanics or N-body simulations. In both approaches, an underlying, tacit as-

sumption is made on the validity of the ⇤CDM paradigm in choosing a cosmic time, and

the interactions that are imposed identically on each individual region or particle. The

Buchert formalism summarized below makes no such assumption, and gives the problem a

most general treatment from the linear regime itself. Idealizations that are expedient for the

formulation of toy models are explicitly stated and imposed only at the very end. This model

is not without its drawbacks; these (somewhat debilitating) shortcomings are discussed in

detail at the end of the chapter.

3.1 Introduction to the Buchert Formalism

In order to model inhomogeneities in all their glory, we must work with the covariant for-

malism developed in section (1.2). Under this paradigm, we have already obtained the local

dynamical equations for a cosmological system (eq. (2.10)). This makes no reference to

the cosmological principle; and no symmetries have been imposed except for a vanishing

momentum density and viscosity (ideal fluid in its local rest frame). To compute the value

of the averages at each instant of time, we must define a consistent averaging procedure. The

one outlined below was introduced by Buchert et. al. ([BR12]).

We must now enforce the additional constraint that the individual observers have a vanishing

vorticity at every instant of time in order to meaningfully develop an averaging procedure on

each spacelike hypersurface. This assumption, while absolutely necessary for the formalism,

is also one of its most serious drawbacks: vorticity is the predominant stabilizing force in

collapsing structures; virialization is achieved in galaxies and other clusters only in the pres-

ence of angular perturbations. We shall, nevertheless, proceed to see where this formalism

takes us.

3.1.1 Averaging procedure

Consider a foliation of spacetime into spacelike hypersurfaces that have been constructed to

be locally orthogonal to each observer. The average value of a scalar field f on this foliation

can then be defined as:

hfi(t) :=
R
t
f"R
t
"
, (3.1)
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where

" :=
q

|(3)g|dx1 ^ dx2 ^ dx3 (3.2)

is the volume element on the hypersurface, and
R
t
" is the volume of some domain in the

hypersurface at time t. The scale factor can immediately be defined by:

a(t) :=

 R
t
"R

t0
"

!1/3

, (3.3)

or the cube root of the volume at time t, normalized by the volume at some initial origin of

time. Since the left hand side of the Friedmann equations are kinematic, we first perform

an average of the volume expansion term ⇥:

h⇥i(t) .
=

R
t
⇥"R
t
"

=
@t
R
t
"R

t
"

= 3
ȧ

a
. (3.4)

In going from the second to the third expression, we make use of the fact that we’re using

comoving coordinates adapted to our fundamental four-velocities. The derivation is summa-

rized here for completeness. The volume expansion is the trace of the covariant derivative of

the fundamental velocity: ⇥ = r↵u↵ = @↵u↵ + �↵

↵�
u�. Since we are in the local rest frame

of our observers, the only non-zero component of the four-velocity is the time-component,

which has a value of c. Thus, the partial derivative term vanishes identically. In units of

c = 1, the second term is simply �↵

↵0. Generally, the once ‘contracted’ Christo↵el can be

expressed as:

�↵

↵�
=

1

2
g↵µ(@↵gµ� + @�g↵µ � @µg↵�) =

1

2
g↵µ@�g↵µ =

1

2
tr(g�1@�g). (3.5)

The last equality follows from the definition of trace for a symmetric matrix. In order to

bring the trace into a more useful form, we make use of the identity: log(det g) = tr(log g),

which holds for any matrix g. A quick proof is seen easily for symmetric matrices like the

metric: in its eigenbasis, g is diagonal, and log(g) has eigenvalues log(�i) if the matrix g

has eigenvalues �i. Thus, tr(log g) =
P

i
log(�i) =

Q
i
�i = log(det(g)). Since the theorem
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involved determinants and traces that are independent of basis, it holds true in general. The

Christo↵el hence reduces to �↵

↵�
= @� log

p
| det g|.

Therefore, our expression for the volume expansion reduces to ⇥ = @t log
p

| det g|. Relating
this to the measure that appears in the expression for the volume element (3.2) gives us the

expression for the average volume expansion.

This mathematical digression aside, we have arrived at a nifty result! The average volume

expansion can be interpreted as an e↵ective Hubble parameter for the domain that is being

averaged over. Before averaging the projected Friedmann equations, we must perform one

final act of mathematical acrobatics: the spatial average of the time derivative of ⇥, i.e.,

h⇥̇i. We approach this in a more general fashion, to derive explicitly the extent of non-

commutativity of time evolution and spatial averaging of a general scalar field f . Consider:

@thfi = @t

R
t
f"R
t
"

=
@t
R
t
f"R

t
"

�
✓R

t
f"R
t
"

◆✓
@t
R
t
"R

t
"

◆

=

R
t
@t(f)"R
t
"

+

R
t
f@t(")R
t
"

� hfih⇥i

= hḟi+ hf⇥i � hfih⇥i.

(3.6)

Therefore,

@thfi � hḟi = hf⇥i � hfih⇥i. (3.7)

The commutator of time evolution and spatial averaging of a scalar field f is therefore its

covariance with the volume expansion. This is not surprising! The leading term first averages

the scalar field at some instant of time, and asks how that average varies in time. This is

the FRW paradigm. The second begins by finding the variation of f in time (on a particular

spacelike hypersurface) at every point in space, and asks what its average value is. Since

the average of f is defined relative to the volume element, it is not surprising that ⇥ (which

in a way, measures the change in volume) appears on the right hand side. The change in

the average value of f in time is due to two e↵ects: the average of the change in f itself, as

given by hḟi, and the change due to the average volume of the spacelike hypersurface. The
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latter is what decouples as a covariance. There are two ways in which the right hand side

can vanish: firstly (and trivially), if ⇥ = 0 identically, which corresponds to there being no

volume expansion. This makes sense, for then the change in the average value of f is due

only to the average change in f . The second way is for the fields f and ⇥ to be independent,

making their covariance vanish non-trivially. This can happen in many ways, but in the

specific case of the FRW paradigm, it is due to the maximal symmetry corresponding to a

vanishing shear (and vorticity) everywhere. This makes the volume expansion rate constant,

and hence the covariance above zero. For a general fundamental velocity field, however, the

commutation is non-zero. The average of ⇥̇ is then @th⇥i � var(⇥).

3.1.2 3+1 Split under averaging

We now proceed to average eqs. (2.10), taken with ⇤ and ! set to 0. The equations obtained

are2:

3
ä

a
= �4⇡GNh⇢i+Q,

3

✓
ȧ

a

◆2

= 8⇡GNh⇢i �
1

2

⌦
(3)R

↵
� 1

2
Q,

Q ⌘ 2

3

�⌦
⇥2
↵
� h⇥i2

�
� 2

⌦
�2
↵
.

(3.8)

This is promising! Comparing the above equations with (2.10), we see that we have now ob-

tained an additional term Q, called the backreaction, in the Raychaudhuri equation. Notice

that the backreaction term is expressed as the variance of ⇥, a term that goes to zero along

with the shear term, returning us to the FRW paradigm in the regime of high (and exact)

symmetry. Also, the above equations hold across all regimes, linear or otherwise. The value

of Q is small in the linear regime, and has a dominating e↵ect only in the non-linear regime.

In light of these equations, we could hope that if the shear is small, and the variance in the

volume expansion is large enough, then we may explain an accelerated expansion from the

presence of inhomogeneities alone. Of course, we can always include the ⇤ term and share

the cause of acceleration between them both. We shall, however, attempt to isolate the e↵ect

2The averaging procedure is quite trivial when one substitutes for ⇥ in terms of the scale factor a as
derived above; in order to find h⇥̇i, we make use of the commutation rule. Again, a troubled reader may
contact the author of the thesis for a detailed derivation.
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of the former by setting ⇤ to zero, and ask how far inhomogeneities alone can take us.

The above equations are formidably intractable; we not only need to specify an inhomoge-

neous distribution of matter, but also explicitly construct our smoothly patched foliation to

perform concrete averages and calculations. To simplify our problem and make any quan-

titative progress, we are forced to begin with absurdly pedestrian toy models. Unphysical

as they seem, they go a long way in helping us isolate the various e↵ects at play in the

contribution of Q.

Before that, however, there are few interesting conclusions we can draw from the general

equations themselves. Notice that the Hamiltonian constraint above has a negative contri-

bution from the backreaction, as opposed to the positive e↵ect that ⇤ had. This means

that the e↵ect of inhomogeneities is to increase the acceleration, but reduce the value of

the ‘velocity’, as measured by the square of the Hubble parameter. This potentially implies

an upper bound on the value of the dimensionless Hubble parameter Ht; this is indeed the

case, as has been shown in [Räs06b]. The paper also proves the existence of a lower bound

on q, the dimensionless deceleration parameter. The arguments are summarized here for

completeness.

The Raychaudhuri equation in the absence of vorticity (2.5) can be read as an inequality

⇥̇+
1

3
⇥2  0, (3.9)

since the right hand side is always negative. The left hand side is essentially the projected

local acceleration rate; so the local acceleration at every point in spacetime is non-positive.

The averaged equation (3.8), however, has a backreaction term that allows the average

acceleration to be positive. Recall that the origin of the positive backreaction term post

averaging is the non-commutativity of time evolution and spatial averaging. More precisely,

@th⇥i = h⇥̇i + h⇥2i � h⇥i2 > h⇥̇i. This can be interpreted as the growth in the volume of

a hypersurface of constant time compensating for the decrease in the local expansion rate.

Despite the acceleration now taking positive values, there will still be upper bounds on both

Ht and q. The exact local Raychaudhuri equation can be viewed as an inequality (3.9) and

integrated to give:

26



1

⇥(t,x)
� 1

⇥(ti,x)
� 1

3
(t� ti), (3.10)

where ti is some initial time. Recall that ⇥ is the local volume expansion rate given by the

tracing the covariant derivative of the fundamental 4-velocity. The volume expansion rate

can be either positive, negative or zero; inequality (3.10) holds separately when it is positive

and negative, but not when it passes through zero since it is not defined at that point. The

intial time can be chosen as the Big Bang (ti = 0), and the volume expansion rate at this

origin ⇥(ti,x) taken positive instantaneously. This results in the upper bound:

⇥(t,x)  3

t
⌘ ⇥max(t). (3.11)

A few remarks: (i) The inequality as suggested by the Raychaudhuri equation (3.9) holds

true only for matter satisfying the strong energy condition (⇢+3p > 0). (ii) The inequality is

on the value of ⇥(t,x), not on its absolute value. The upper bound (3.11) holds trivially for

negative values of ⇥(t,x) as well; this corresponds to the fact that the rate of collapse is not

bounded from below. (iii) By assuming that the initial volume expansion rate is positive, we

assume that the volume expansion rate is always positive, since we cannot a↵ord ⇥ changing

sign through zero. The upper bound is hence only for the expansion rate, and not for the

rate of collapse. The collapse rate is not bounded from below, and can cause rapid change

in Ht. In the actual simulation of the system, since the overdense are taken to virialize at

half the radius of turnaround, the net Ht is bound by 1 from above. If not for virialization,

q can become arbitrarily negative; it can diverge to negative infinity in finite time as well.

(iv) The maximum value of ⇥(t,x) depends only on the global time, and not on the position

on the hypersurface of constant time. As a result, the (spatial) average value of ⇥(t,x) is

also bounded by the same number:

H ⌘ 1

3
h⇥i  1

3
⇥max =

1

t
. (3.12)

The above relation gives us net the Hubble parameter in terms of the age of the universe.

The above upper bound on the net Hubble parameter implies that the acceleration ä cannot

be forever increasing; indeed, it cannot be a constant positive value for an arbitrarily long

time either. It must asymptotically go to zero, become negative, or oscillate about zero or
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some negative number. A more precise bound on the deceleration parameter can be obtained

by considering the rearranged average Raychaudhuri equation3 (3.23) as an inequality:

q � 2� 2

9

h⇥2i
H2

� 2� 2

9

(⇥max)2

H2
= 2� 2

(Ht)2
. (3.13)

Here, in going through the second inequality, we make use of (3.11). This holds only if ⇥ is

nowhere negative; recall that the bound is not on the absolute value. Regions of negative ⇥

correspond to gravitational collapse, an intrinsically unstable process if not for virialization,

at which point the above equations break down anyway. So, regions of collapse will have to

be neglected in the estimate of lower bound for q.

To summarise [Räs06b], the dimensionless Hubble parameter is bounded above by 1 and the

deceleration parameter can take arbitrarily negative values in the presence of gravitational

collapse. It is interesting to see how this stacks up against the FLRW model constraints. In

the FLRW model, Ht can grow without limit since dark energy violates the strong energy

condition with ! = �1. However, the deceleration parameter is bounded below by �1;

q < �1 violates the null-energy condition.

The question naturally is if, in finding candidates for present time t0 in a toy model, it is fair

to simply equate the values of the Hubble parameter. The Hubble parameter is an observed

(measured) quantity; and if the value of the observed (dimensionless) Hubble parameter is

greater than 1, it is fair to suppose that the averaging formalism developed is not accurate.

The possible values of H0 from Type 1a Supernovae range between 55 and 75 km/sec/Mpc.

Expressed in units of time inverse (Gyr�1), H0 ranges between 0.0562 and 0.07664.

One final remark is in order before we finally get to the toy models: What behaviour does this

universe on average obey in terms of curvature? The observations today seem to indicate

that the universe on average has zero curvature; is this predicted by the inhomogeneous

universe as well? Without going into any detail5, the answer is no; the averaging formalism

suggests that the universe on average in the non-linear regime evolves like a universe with a

slightly negative curvature. This is not a problem perse; the arguments made in the cited

3Sincere apologies for the causality-violating cross-referencing of equations; this particular rearrangement
is, however, trivial.

4Phew!
5Readers interested in the details may look into [BC08].
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review put ⇤ to zero, and so there is a modelling discrepancy in the way data is interpreted

and fitted.

3.2 Toy Models

We now proceed to summarize the toy models that have already been constructed in lit-

erature ([Räs06a], [Räs08a]). The models are more elaborately motivated, justified and

quantitatively studied than in the afore cited manuscripts. Their drawbacks are discussed,

and a minor modification in the direction of generality is attempted in the next chapter.

3.2.1 2-region model

Formulation

This model was first introduced in [Räs06a]. The universe is considered a union of disjoint,

spherically symmetric top-hat density perturbations about an EdS background. Disjoint

implies that the spherical regions are isolated from each other (they do not share mass or come

in contact at any point); the universe being a union of these perturbations means they aren’t

embedded in a ‘background’ universe: the universe is the set of spherical perturbations. The

cosmic time parameter that determines the foliation is the time as measured by an observer

in an EdS universe; we account for the explicit orientation of our foliation via an o↵set time,

as will be elaborated on in section 3.2.1 and Appendix 6.

Isolation implies that the volumes are additive, and the Hubble parameter and deceleration

parameter are calculated for the 2-region model as:

r = (r31 + r32)
1/3, (3.14)

H =
ṙ

r
=

r31
r31 + r32

H1 +
r32

r31 + r32
H2 ⌘ H1(1� v + vh), (3.15)

q = � 1

H2

r̈

r
= q1

1� v

(1� v + hv)2
+ q2

vh2

(1� v + hv)2
� 2

v(1� v)(1� h)2

(1� v + hv)2
, (3.16)

where v = r
3
2

r
3
1+r

3
2
is the volume fraction of the overdense region, and h = H2

H1
is the Hubble

parameter of the overdense region relative to the underdense one, and the additional term
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at the end of (3.16) is the desired backreaction term; it relates directly to the backreaction

term from the Buchert equations (derived explicitly later). These can be readily generalized

for an n-region model as:

r =

 
nX

i

r3
i

!1/3

, (3.17)

H =
nX

i

viHi, (3.18)

q = 2 +
1

H2

nX

i

viH
2
i
(qi � 2), (3.19)

where

Hi =
ṙi
ri
, qi = � 1

H2
i

r̈i
ri
, vi =

r3
iP
n

j
r3
j

The above equations (3.17 - 3.19) reduce to (3.14 - 3.16) when n = 2. It remains to show

how the backreaction term in the Buchert equations corresponds exactly to the additional

term in the deceleration parameter above. Besides, the theoretical existence of a positive

term does not imply that the specific implementation in the toy model is the same! The

projected Friedmann equations for the FRW metric in the absence of vorticity read:

⇥̇+
1

3
⇥2 = �2

2
⇢� 2�2,

1

3
⇥2 = 2⇢� 1

2
(3)R + �2,

(3.20)

where 2 = 8⇡GN, GN is the Newtonian Gravitational constant. The left hand side of the

first equation of (3.20) is precisely 3 ä

a
, so we have

ä

a
= �1

3

✓
2

2
⇢+ 2�2

◆
. (3.21)

Since these equations have not been averaged yet, they hold in each of the individual spher-

ical perturbations which evolve according to the spherical collapse model6 (individual FRW

6See next subsection and Appendix 6 for a detailed exposition.
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universes embedded in an EdS background). Now, averaging equations (3.20) gives us:

3
ä

a
= �2

2
h⇢i+Q,

3

✓
ȧ

a

◆2

= 2h⇢i � 1

2

⌦
(3)R

↵
� 1

2
Q,

Q ⌘ 2

3

�⌦
⇥2
↵
� h⇥i2

�
� 2

⌦
�2
↵
.

(3.22)

Consider the first equation in (3.22) with the backreaction term expanded:

3
ä

a
= �2

2
h⇢i+ 2

3

�⌦
⇥2
↵
� h⇥i2

�
� 2

⌦
�2
↵
,

=) 3
ä

a
= �2

2
h⇢i+ 2

3

⌦
⇥2
↵
� 6H2 � 2

⌦
�2
↵
,

=) q = 2� 2

9

h⇥2i
H2

+
1

3

✓
2

2
h⇢i+ 2

3

h�2i
H2

◆
,

(3.23)

where in going from the first to second step we rewrite the average of ⇥ as 3H, and in going

to the third step we divide both sides by �3H2 to get the deceleration parameter on the left

hand side. Compare this form of the averaged equation to the averaged equation obtained

in the n-patch toy model (3.19) rearranged for convenience:

q = 2� 2
1

H2

nX

i

viH
2
i
+

1

H2

nX

i

viH
2
i
qi, (3.24)

where the H2 in the denominator is the averaged Hubble parameter, while the Hi are the

non-averaged, local Hubble parameters within each region. Hi can be replaced by the volume

expansion rate within each of the spherical perturbations as Hi = ⇥i/3. Then the second

term is the volume-weighted sum of ⇥2
i
(in some sense, an averaging in the toy model), which

is the second term of the final form in equation (3.23). Now, the third term in equation (3.24)

can be simplified by rewriting H2
i
qi as � ä

a
. This, for an FRW universe, is precisely (3.21).

A similar argument can be made for the expression for the Hubble parameter; the local

patches obey the second of equation (3.20), while the average obeys the second of (3.22).

Expanding the latter gives us:
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1

3
h⇥i2.

(3.25)

In the toy model, this can be rewritten as:

3

✓
ȧ

a

◆2

=
X

i

vi

✓
2⇢� 1

2
(3)R + �2

◆
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3

⌦
⇥2
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+
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✓
ȧ
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3

X

i
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2
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� 1

3

⌦
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↵
+

1

3
h⇥i2,

=)
✓
ȧ

a

◆2

=
1

9
h⇥i2.

(3.26)

Squaring equation (3.18) gives us the same. With this equivalence, we have matched the

toy model (3.19) to the averaged Buchert equations (3.22), thus confirming the origin of the

backreaction term. Note that this term arises precisely because of the non-commutativity of

time-evolution and spatial averaging. We can now proceed to characterize the evolution in

each of the regions.

The spherical collapse model

The toy model above gives us the dynamics of the universe in terms of the dynamics within

the individual regions. We must, hence provide a formalism for the evolution of these ‘isolated

regions’. The key formulae are summarized below, the notation borrowed from [SV04]. For

rigorous justification and derivations, see the Appendix 6 of the thesis.

For the considerations of our toy model, we shall assume an EdS background, corresponding

to ⌦b = 1. All the trajectories are parameterized by a development angle, and the quantities

of relevance to our numerical simulations are summarized here for completeness. The physical

distance and time7 are related as:

7The time coordinate t is the background EdS cosmic time that foliates our spacetime; the o↵set time T
determines the ‘orientation’ of our foliation (see section 1.2) by fixing the state of the perturbation at each
value of the cosmic time. All these considerations are subject to a vanishing vorticity that allows for such a
foliation in the first place.

32



r (�) =

8
<

:

ri
2

1+�ci
�ci

(1� cos�) �ci > 0,
ri
2

1+�ci
(��ci)

(cosh �̃� 1) �ci < 0.
(3.27)

t(�) + T =

8
<

:

1
2Hb

1+�ci

(�ci)
3/2 (�� sin�) �ci > 0,

1
2Hb

1+�ai

(��ci)
3/2 (sinh �̃� �̃) �ci < 0,

(3.28)

The remaining quantities are given by:

H�+ =
sin�(�� sin�)

B(1� cos�)2
,

s�+ ⌘
a3
�+

a3EdS
=

2(1� cos�)3

9(�� sin�� T

B
)2
,

q�+ =
1� cos�

sin2�
,

H�� =
sinh �̃(sinh �̃� �̃)

B(cosh �̃� 1)2
,

s�� ⌘
a3
��

a3EdS
=

2(cosh �̃� 1)3

9(sinh �̃� �̃� T

B
)2
,

q�� =
cosh�̃� 1

sinh2�̃
.

Here, �ci is the initial density contrast of the perturbation relative to the critical density,

not the average density as usually performed. �+ corresponds to an overdense region (which

is also what the condition �ci > 0 is), while �� is an underdense region. The multiplication

with factors of t is performed to make the relevent quantities dimensionless. Finally, notice

the symmetry under trigonometric $ hyperbolic functions that leads to the dynamics of

over and under dense regions. The development angles are labelled di↵erently to signify the

di↵erence in domain of values that they can take. The trajectory of an overdense region is

that of a cycloid, and so � takes values in [0, 2⇡]; the underdense trajectories by virtue of

being hyperbolic have �̃ range from [0,1). The trajectory of an overdense region is bounded;

the underdense region expands ‘out to infinity’. The critical density profile has radial motion

that obeys:

r(t) =

⇢
3

2
Hi (1 + �ci)

1/2 t

�2/3

, �ci = 0. (3.29)

The remaining quantities are given by:

HEdSt =
2

3
, s�0 = 1,

⌦
(3)R

↵
�0

= 0, �0 = 0. (3.30)
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Numerical analysis

There are three parameters that can be varied in the above model: the combination of

densities (sign and magnitude), the volume fractions the regions occupy at some particular

time, and the time of seeding of these volume fractions. This is characterized in detail in

Appendix (6). The key conclusions and results are listed below.

A note on setting volume fractions as a free parameter: our spherical collapse model as in

Appendix 6 gives us the physical radius of a spherical perturbation in term of the initial

radius; the value of ri itself is not predetermined. We do know that as the global EdS time

goes to zero, we require all radii to go to zero, but this is accounted for by the o↵set time

T . We are therefore at liberty to fix ri for each region; this amounts to fixing the relative

volumes of the regions at some global time of convenience.

Summary

The key e↵ects of each of the variable parameters is summarized below:

1. The system accelerates if and only if there is an underdense region matched with

an overdense region. Once this condition is met, the qualitative profile of the graph

remains unchanged.

2. The overdense regions dictate how long the deceleration parameter remains negative,

and in the cases of lower volume fractions, the time at which the minima is attained.

Lesser the overdensity, more the time it takes to achieve qmin.

3. The overdensities, irrespective of volume fraction, have no e↵ect on the value of qmin

if the other region is empty. Greater the volume fraction imparted to the overdense

region, greater the maximum acceleration observed.

4. As we move towards a less underdense region, the e↵ect of the overdense region becomes

more pronounced; a greater acceleration is observed for a more overdense region.

5. Irrespective of the volume fractions imparted, the value of the underdensity has a

greater e↵ect on the acceleration than an overdensity; lesser the underdensity, greater

the acceleration.
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6. Volume fractions have by far the greatest e↵ect on the quantitative profile of the graph;

a higher acceleration is seen if a smaller volume fraction is given to the underdense

regions.

7. Volume fractions also determine whether or not the value of qmin is dictated by the

virialization of overdense regions; a greater volume fraction imparted to the overdense

regions pulls the minima to a time before virialization.

To summarize the summary, if we want a greater, prolonged acceleration, assign a smaller

overdensity (for having an acceleration for longer) and a lesser underdensity, while imparting

a smaller volume fraction to the underdensity. If we do not require the acceleration to be

prolonged, then retain all the above parameters while making the overdense region more

overdense.

Heuristic justification:

Observing acceleration due to inhomogeneity can intuitively be explained by the increase

in volume fraction of underdense regions (that expand forever albeit at a decelerating rate)

relative to overdense regions that either collapse to a singularity or virialize to form structures

(thus e↵ectively halting their time). In light of this hand-wavy explanation, it is interesting

to ask how the above observations may be interpreted to a↵ect the volume fractions.

Clearly, the volume fraction of an underdense region can contribute significantly only if

the other region begins shrinking and eventually stops growing in time. Therefore, two

underdense regions can never show an acceleration. In the presence of two overdense regions,

there technically can be a period of acceleration if one overdense region is significantly more

overdense than the other, if the more overdense region begins to collapse while the other

region still expands. However, the deceleration parameter diverges quickly to a positive value

before a brief period of acceleration, which quickly dies out to a positive value of q again. A

lower overdensity means that it takes longer for the region to virialize after turnaround, so

the the volume of the overdense region decreases for a longer period of time. So, the e↵ect

it has on increasing the volume fraction of the underdense region is more prolonged. This

explains observations 1 and 2.

Now, the volume fraction of say, an empty and overdense region go as:

35



vo =
�o(ri)3o(t

2/3 � t4/3)

�0(ri)3o(t
2/3 � t4/3) + (ri)3et

3
, ve =

(ri)3et
3

�o(ri)3o(t
2/3 � t4/3) + (ri)3et

3
, (3.31)

where the scale factor for the empty region goes as t3, and to the two leading terms for the

overdense region goes as �o(t2/3 � t4/3). For an underdense region, the analogous approxi-

mation would be �u(t2/3 + t4/3). Here, since t3 grows much faster than the scale factor, the

value of the overdensity doesn’t at all a↵ect the dynamics of volume fractions. However, the

perceived growth of an underdense region increases if the contribution in the denominator

from �o is greater. This is why in general for an underdense region, the maximum accelera-

tion increases for a more overdense partner. A similar argument can be made for the choice

of volume fractions. If the volume fraction of the overdense region is greater, then the de-

nominator can be dominated by the overdense term, which is why any incremental increase

in the volume fraction of an underdense or empty region appears greater. Conversely, if a

low volume fraction is allotted to the overdense region, the denominator is dominated by

the underdense or empty term, and so the volume fraction does not increase as much for the

same increment in the numerator. These rough arguments could explain observations 3 to

5. Finally, the reason volume fractions have the greatest e↵ect is because they appear as a

r3
i
, as opposed to the densities, that appear as a linear �. Assigning a smaller initial radius

to the overdense region has a smaller e↵ect on the denominator during collapse; it is the

contrast of the relative magnitudes of the initial radii of the two regions that makes volume

fraction of the underdense region rise rapidly post-turnaround. This explains observations 6

and 7.

3.2.2 Gaussian-random distribution

The 2-region model is quite successful in qualitatively accounting for an accelerated ex-

pansion, but is not physically realistic in its distribution of initial distribution of density

perturbations. Ideally, we would like to put the backreaction model to test on the perturba-

tion profile of the Cosmic Microwave Background (CMB), whose power spectrum we know

to very high precision. This was done in [Räs08a], where the authors attempted to formulate

a multi-region extension of the 2-region model, while drawing the distribution of densities

from a Gaussian random distribution.

The key arguments and results are summarized here. The universe is still considered a union
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of isolated, spherically symmetric regions with linear density contrast �. The initial density

perturbation profile is assumed to have a Gaussian spectrum with homogeneity scale R. In

order to perform constant time averages as before, we require a notion of volume fractions.

This is given by:

v�(t) =

R
t,�
✏

R
t
✏
, (3.32)

where the numerator is the volume of the region of density contrast �. Assuming we start with

perfect homogeneity and isotropy, we may assume that each region at some time represents

a particular stage of collapse. This is tantamount to making a 1-1 correspondence of the

linear density contrast � with the average expansion rate of the region. The net Hubble

parameter is then, again, the sum of volume weighted Hubble parameters of the individual

regions, now expressed as an integral:

H(t) =

Z 1

�1

v�(t)H�(t)d� =

R1
�1 s�f(�, t)H�(t)d�R1

�1 s�f(�, t)d�
. (3.33)

Here, the volume fraction is split in two parts: s� being the ration of the cubes of the

scale factors within the region and the EdS background, and f(�, t) being the initial volume

fractions at the time of seeding. For Gaussian random perturbations, we have an analytic

expression for the number densities (n(⌫, R); ⌫ ⌘ �/�0(t, R)) of peaks of a particular value of

density contrast. This quantity can be used as the number density of isolated regions having

that linear density contrast. This then can be used to quantify the mass enclosed within all

overdensities of that density contrast, which then under the assumption of a smooth universe

initially, can be converted to a volume fraction.

We have now related the initial volume fractions to the number density of peaks of the

initial Gaussian random profile. In order to relate this to later times, they make use of

a transfer function that relates the initial power spectrum of density perturbations to the

one observed at present. A detailed quantitative analysis is presented in the paper; the

result when finally implemented was a universe that neither accelerated, nor decelerated.

The deceleration parameter fell monotonically to zero, despite the dimensionless Hubble

parameter increasing at all times. There were a number of reasons cited for this apparent

failure to show an accelerated expansion, one being that the overdensities were not prominent
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enough to initially bring the Hubble parameter down before having it increase. Since the

deceleration parameter is a measure of the rate of change of H, an increase in the Hubble

after an initial decrease results in a contrast that makes q negative. This, and other factors

are further elaborated on in the next section.

3.3 Drawbacks

The task of working within the formalism of General Relativity without any local symmetries

is a formidable one; indeed, in the presence of inhomogeneity and anisotropy, we no longer

have a metric that is valid locally at every point. This is what motivated our approaching

the EFEs through a spacetime threaded by fundamental worldlines, as opposed to a foliation

that reflected symmetries that could be imposed on a metric.

There are two classes of drawbacks that need to be addressed: those on the formalism itself,

and the ones on the toy models. Perhaps the most glaring issue with the averaging formalism

is the fact that all averages and calculations (scale factors, densities etc) are performed on a

surface of global simultaneity, and not on the hypersurface that is causally connected. This

means that all predictions made cannot be tested against observable data. There really is

only one way to rectify this, and that is to define a light-cone average that takes into con-

sideration the actual path of a ray of light. This task is daunting, and perhaps impossible

to implement without a statistical treatment of the distribution of inhomogeneities. We will

be required to introduce an embedding of the regions in a background, and account for a

di↵erential evolution in the regions as a result of the finitude of c. All is not lost, however.

One way to motivate our considering this formalism at all is to think of an acceleration in a

hypersurface of global simultaneity as a sure-shot check of whether any acceleration can be

perceived. If the volume (of global simultaneity) an every instant of time truly accelerates,

then there must be a perceived acceleration in the path of light as well. However, to check

the extent to which a backreaction term can account for an acceleration, we must introduce

a light cone average to make any comparisons.

The second drawback to the formalism (also mentioned earlier) is the requirement of a van-

ishing vorticity on every observer. Vorticity is perhaps the greatest contributing factor to

stabilizing the collapse of overdense regions via virialization; thermalization and radiation

being two prominent others. There is a treatment that can be imparted to small vorticities,

see [Mag12] for a description of the same. However, this too is just band-aid over cancer; a

38



smooth foliation is simply impossible in the presence of vorticity.

Toy models, by virtue of being idealizations, are rife with scope for improvement. Their

significant insights notwithstanding, they must be brought closer to reality for the formalism

of inhomogeneities to hold water. The two-region model while showing remarkable likeness

to the results from the ⇤CDM model, does not account for the way the regions are embed-

ded in a background, and as a result makes no comments on the dynamics the background.

The spherical collapse model tacitly assumes the background to have an EdS profile, and

the toy model makes no reference to a background expansion at all. Further, an explicit

embedding will enforce a measure of separation between the regions, and so care must be

taken to model the overlap of the two regions and the transfer of mass. This in fact brings

to light another issue, which is that the regions are taken to be non-interacting. In the phys-

ical universe, overdense regions become more dense with time by accreting matter from a

neighbouring underdense region. This could, potentially, increase the acceleration perceived

in the toy model, and so in that sense, a non-interacting formalism acts as a lower bound to

the acceleration. Other idealizations include setting the shear to zero (which is addressed in

[BC08]) and considering a pressure-free dust that does away with thermalization. Note that

the presence of shear has a diminishing e↵ect on the magnitude of the backreaction, and so

this particular idealization represents a best-case scenario.

The model that inputs Gaussian random perturbations from the CMB, while starting out

with a more realistic density profile, still considers its individual regions as isolated and

makes no mention of an embedding. Further, as mentioned by the authors themselves, a

major contributing factor to acceleration could be the formation of structure (modelled as

groups of overdensities and underdensities within a particular region; the universe being a

union of such regions).

Structure formation cannot be modelled by grouping regions together and recursively apply-

ing the equations (3.17 - 3.19). Consider n isolated regions, each of which are a collection

of di↵erent regions themselves. Since equations (3.17 - 3.19) are constructed for a general

number of patches, we may assume that they apply both within each of the n regions, and

to the n regions as a whole as well. So, we have:
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and
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2
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where the volume fractions vi are weighted against the volume of the entire system, but

the volume fractions �i0 are weighted against the volume of the respective smaller regions

that they are a part of. We thus have the trivial relations: vi = vi
P

�i0 and vi�i0 = vi0 .

The above equations can be applied recursively for as many groupings we wish to perform;

the substitution is performed once only for demonstration. The Hubble parameter being

volume-weighted means that the form doesn’t change upon recursion. The same goes for

scale factor. The deceleration parameter is now calculated as:
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(3.36)

Since the functional form of the deceleration parameter is the same irrespective of grouping,

the interpretation of structure formation within regions cannot be imparted to the n-region

model. The qualitative results obtained before can therefore be extended to any possible

grouping of the regions. This is an artefact of the fact that the deceleration parameter

of the individual regions enter the equation linearly when calculating the net deceleration
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parameter, which in turn is because the regions are isolated from each other (that is, they

do not see each other). This tells us that the only way to model structure formation is by

introducing an interaction between regions.

The afore considerations are what motivate the following infinitesimal improvement to the

toy models. The next chapter documents our attempt to introduce an interaction between

(and hence an embedding of) regions to model structure formation through a mass-transfer

across regions.
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Chapter 4

Improved Model

4.1 Inducing interactions

In section 3.3, one of the drawbacks mentioned was the lack of explicit embedding in a

background, and the fact that the regions were taken to be isolated. We also showed how

‘grouping‘ isolated regions cannot be used to recursively impart an interpretation of struc-

ture formation. A group of regions can be thought of forming a ‘structure’ if they interact

with each other gravitationally, but not as strongly with another group of similarly inter-

acting regions. In order to define such a system, we must define a notion of interaction and

proximity.

The method adopted here is to consider two regions as interacting if they are open rela-

tive to each other, i.e., they share a common boundary and can thus exchange mass. This

is implemented in the following way: we initialize our universe with two regions, say one

overdense and the other underdense (relative to an EdS background). These two spheri-

cal perturbations are initially in contact with each other tangentially. During their initial

evolution over some discretized time step, they both expand slightly as they are dragged

along with the background flow. This results in the two regions sharing a small volume

of overlap. Since the overdense region has an expansion rate that is slightly smaller than

the underdense region, the mass in the underdense region corresponding to the overlapping

volume is considered completely transferred to the overdense region, distributed evenly in

its volume at the updated time step. The overdense region retains any mass it had in the

volume of overlap. The two regions then separate by the same amount that they overlap,

thus making them tangential again. We then rinse and repeat until the overdense region
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virializes, at which point it stops accreting mass. This is depicted visually below, where the

smaller region is overdense while the larger one, underdense.

. . . .
s s

. .s0 > s

Okay! There is a lot to be justified and accounted for here. Firstly, despite the existence of

a background flow, we do not (at least as a first approximation) account for the separation

of the centres of the regions due to this flow. The two centres should ideally move apart

slightly due to an EdS expansion in the time step considered. We neglect this because it

would suggest that despite the existence of non-linear density perturbations at late-time, the

universe on average continues to behave like an EdS one, which is exactly what we hoped to

disprove. In shifting the centres by exactly the extent of overlap, we induce a background

expansion by an amount that is dictated by the evolution of our regions alone.

Secondly, by making the two regions tangential at each time step, we are further insisting

that our discretized timescale of evolution is large enough for the transferred mass to equi-

librate uniformly within the overdense region, and for the underdense region to recover its

loss by redistributing its remaining mass and attenuate its distortion to become spherical

again.

Thirdly, the assumption of virialized structures halting accretion is not strictly true; over-

dense structures that have stabilized do accrete mass from neighbouring underdensities, but

44



at significantly greater timescales than when they haven’t virialized. We shall therefore as-

sume that our physics is relevant only up to the timescale of virialization, at which point we

only evolve our universe for a small interval of time after.

Fourthly, the mass is always assumed to transfer from an underdense to an overdense region.

The rationale here is that the underdense region has a greater outward velocity than the

overdense region. A similar argument is to be made when we couple two underdense regions

close to each other: the more underdense region will transfer mass to the less underdense

region.

We must, finally, address the thorny issue of when virial equilibrium is achieved in the over-

dense region. Recall from Appendix 6 that this was fixed at half the radius of turnaround

by finding the point at which the kinetic energy is equal to half the potential energy. The

issue here is that since our system is open, we no longer conserve energy. The condition for

virial equilibrium is hence ill-defined, apriori. There are two ways to deal with this, which

are heuristically fleshed out below. In our implementation, we adopt the first approach, with

the aim of studying the second later.

The first way to force a virialization is to simply insist that our overdensity stabilizes at

a development angle of 3⇡/2. This condition is borrowed blindly from the case where the

energy was conserved with absolutely no justification, really. The second way is to at every

point after turnaround, check if the radius for the particular value of density contrast at

that instant happens to be half the theoretical maximum it should have been, had it started

out with that value of density contrast. This latter approach is based on the fact that the

coe�cient of our trajectories are determined completely by the value of the initial density

contrast and background Hubble parameter.

There is a small point to be made on the way the model is being implemented. Recall

that the spherical collapse model is defined for systems with conserved mass (and hence

energy). The correct method would be to obtain a corresponding di↵erential equation for

a variable-mass gravitational system, and implement it as an alternative to the spherical

collapse model. There have been numerous attempts in that direction, an interesting one is

explored in [CL90]. What we are doing here is to employ the more expedient approach of

infinitesimally redefining our initial conditions on the spherical collapse model at each time

step to correspond to the present radius, present Hubble parameter value, and the updated
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density contrast with the gained (lost) mass.

4.2 Spherical Collapse revisited

In order to implement a modified spherical collapse model, we begin by altering the constant-

mass algorithm to account for updated initial conditions. Recall that the entire trajectory

was obtained from the initial density contrast �i, initial background Hubble expansion Hb(ti),

and the initial radius ri. The density contrast, however, changes with time. This is because

while the mass within the boundary of (say) the overdense region remains the same, the

region itself expands more slowly than the background EdS universe. As a result, the density

inside does not dilute as fast as that outside. Its contrast with respect to the background

hence increases. When measured relative to the background, an overdense region becomes

more overdense, while the underdense more underdense.

We may, therefore, attempt to implement the same spherical collapse by at every discretized

time step, updating our density contrast to the new one at that instant, while simultaneously

updating the initial radius and background Hubble parameter as well. There is one issue

we are overlooking here: that at late-times in the evolution of the region, the velocity of

the perturbation will vary significantly from that of the background Hubble expansion. This

must be accounted for, and the trajectories appropriately modified. Put di↵erently, our

cycloid trajecotry is determined completely by the initial radius (ri), the initial velocity of

our perturbation (which we assumed to equal the background Hubble rate Hi), and the

density contrast. An appreciable peculiar velocity in the expansion of our perturbation can

be accounted for in an overdense region, as follows.

Our objective is to go from a solution of the form

r = Ai(1� cos ✓), t+ T = Bi(✓ � sin ✓); A3
i
= GMB2

i
, (4.1)

to one of the form:

rt+�t = At(1� cos ✓), t+ �t+ T = Bt(✓ � sin ✓); A3
t
= GMB2

t
. (4.2)

This requires our determining the functional form of our updated coe�cients. The kinetic
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energy of the perturbation is no longer ṙ2
i
= Hb(ti)2r2i , but is Kt =

1
2 ṙ

2
t
= 1

2H
2
t
r2
t
at some

time t, where Ht =
ṙt
rt

is the Hubble expansion of the region. The potential energy is then:

Ut = �GM

rt
= �G

rt

✓
⇢
4⇡

3
r3
t

◆✓
⇢b
⇢b

◆✓
H2

b

H2
b

◆
,

where ⇢b and Hb are taken at time t. This can be rearranged to give:

Ut = �1

2
H2

b
⌦b(t)r

2
t
(1 + �t) = �H2

b

H2
t

Kt⌦b(t)(1 + �t). (4.3)

Here, ⌦b is the dimensionless density parameter of the background relative to an EdS uni-

verse; � the density contrast of the perturbation with respect to the background. For an EdS

background, ⌦b = 1. The total energy is then given by:

E = Kt⌦b(t)


⌦�1

b
(t)� H2

b

H2
t

(1 + �t)

�
, (4.4)

and the condition for collapse (E < 0) in an EdS background is �t >
H

2
t

H
2
b
� 1. The updated

coe�cients at every instant are obtained by comparing the total energy to the energy at

turnaround for that particular density contrast, where the kinetic term goes to zero. At

turnaround,

E = �GM

rm
= � rt

rm

GM

rt
= � rt

rm

H2
b

H2
t

Kt⌦b(t)(1 + �t). (4.5)

Equating this to the total energy gives us a ratio between the updated initial radius rt and

the maximum radius rm = 2At, which can then be used to find the coe�cient At (and hence

also Bt:

At =
rt
2

(1 + �t)⇣
1 + �t � H

2
t

H
2
b

⌘ , Bt =
1

2Hb(t)

(1 + �t)
⇣
1 + �t � H

2
t

H
2
b

⌘3/2 . (4.6)

There will be a modification to the calculation of successive density contrasts as well. We

have ⇢t =
3M

4⇡A3
t (1�cos ✓)3

and ⇢b =
1

6⇡Gt2
= 1

6⇡G(Bt(✓�sin ✓)�T )2 , where we recognise that the EdS

background time must account for the o↵set time T that our overdense region measures.

Then:
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⇢t
⇢b

� 1 = �t =
9

2

(✓ � sin ✓ � T/Bt)2

(1� cos ✓)3
� 1, (4.7)

where we have made use of A3
t
= GMB2

t
. The underdense regions have:

At =
rt
2

(1 + �t)⇣
H

2
t

H
2
b
� (1 + �t)

⌘ , Bt =
1

2Hb(t)

(1 + �t)
⇣

H
2
t

H
2
b
� (1 + �t)

⌘3/2 , (4.8)

and:

rt+�t = At(cosh ✓ � 1), t+ �t+ T = Bt(sinh ✓ � ✓); (4.9)

�t =
9

2

(sinh ✓ � ✓ � T/Bt)2

(cosh ✓ � 1)3
� 1. (4.10)

It can easily be checked that both formulations when evolved numerically result in identical

physics. Now that we have this implementation of the spherical collapse model, all that

remains for us to do is quantify the amount of mass that gets transferred from the underdense

to overdense region, and add that additional mass to �t at each time step!

The first calculation we perform is to calculate the volume of overlap at each time step.

When initialized, the centres of the two spherical regions are separated by a distance of

st = rt1+ rt2, where we shall henceforth always subscript the overdense region with 1 and the

underdense one as 2. At t + �t, the radii evolve according to the equations above to rt+�t

1

and rt+�t

2 , while the centres remain at the same separation st. To find the volume of overlap,

it is useful to define a few variables as in the diagram below:

st
rt+�t

2rt+�t

1

✓1 ✓2
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The angles ✓1 and ✓2 are calculated from:

rt+�t

1 sin ✓1 = rt+�t

2 sin ✓2

rt+�t

1 cos ✓1 + rt+�t

2 cos ✓2 = st;
(4.11)

the solution to which is:

✓1 = cos�1

✓
(rt+�t

1 )2 � (rt+�t

2 )2 + (st)2

2strt+�t

1

◆

✓2 = sin�1

✓
rt+�t

1

rt+�t

2

sin ✓1

◆
.

(4.12)

The volume of overlap is obtained by dividing it into two regions as defined by a vertical

plane that is depicted as the vertical line above. Each of the two regions is obtained by

subtracting the volume of the cone from the corresponding solid sector of the sphere, given

that we have the angles ✓i. The volume of overlap is then given by:

V t+�t

ov =
X

i

⇡(rt+�t

i
)3

3
(2� 2 cos ✓i � sin2 ✓i cos ✓i). (4.13)

The mass from the underdense region enclosed within the volume of overlap is given by

�m = Vov⇢
t+�t

2 , and so the density in the overdense region changes by:

⇢1(t+ �t) = ⇢t+�t

1 +
Vov⇢

t+�t

2

V t+�t

1

. (4.14)

We now substitute: ⇢t+�t

i
= ⇢b(1 + �t+�t

i
) to get:

�1(t+ �t) = �t+�t

1 + (1 + �t+�t

2 )
Vov

V t+�t

1

�2(t+ �t) = �t+�t

2 � (1 + �t+�t

2 )
Vov

V t+�t

2

.
(4.15)

These density contrasts will now be used to update our coe�cients, thus e↵ecting a variable

mass system of equations that conserve mass across both regions, but not individually.
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4.3 Preliminary Results

Before looking at what our simulations actually yield, we can place our bets on what we

may expect. When pairing two overdense regions, we transfer mass from the less dense

region to the more overdense one. As long as they both remain ‘overdense’ relative to the

background, the results should not di↵er qualitatively from the isolated 2-region model. If

the less dense one were to lose mass to the extent of becoming underdense over time, then we

could potentially see an accelerated expansion for a brief period of time, provided the other

overdense region hasn’t virialized already. This situation is unlikely, however, as will be seen

shortly. The collapse and virialization of the accreting region will happen much before a

change in curvature could manifest in the other region.

When pairing an overdense region with an underdense one, the overdense region gets more

dense, while the underdense region gets emptier with time. Since the acceleration is as a

result of the collapse of the overdense region and the resultant interplay between volume

fractions, we should expect our system to begin accelerating earlier, but also expect the

acceleration to die out quickly owing to a faster virialization.

Finally, we could pair two underdense regions together and ask if the less underdense one

could accrete enough mass to flip its curvature around and begin to collapse. This, unlike

the overdense duo, should happen if the system is evolved long enough.

When evolving the system numerically, a very small discretized time interval would not

result in an appreciable mass being transferred across regions, and the outcome wouldn’t

di↵er much from the isolated model. However, selecting too large a time-step could also

lead to numerical di�culties. There is hence a Goldilocks’s zone that gives us a perceivable

change, while still being numerically tractable. Notice that since we haven’t fixed explicit

units for our time, we have a little freedom in the choice of our time interval of mass-transfer.

4.3.1 �1 > 0, �2 < 0

There are two e↵ects that are potentially at play here: the time-step (as mentioned before),

and the density contrast of the underdense region. If the underdense region has �1 . � < 0,

it will grow much faster leading to a greater volume of overlap, but hold too dilute a mass

concentration to transfer a substantial amount of it, independent of the size of the time step.

This is demonstrated below, where we hold the overdense region constant at a contrast of
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0.5, while pairing it with an underdensity of �0.4 and �0.9.

Figure 4.1: Graph of the deceleration parameter for two possible underdensities against the
same overdensity; compared with the isolated region model. The volume fractions correspond
to (0.3, 0.7) at the time of turnaround of the overdense region. The time step is taken
identically for all three simulations.

There is negligible di↵erence between the isolated region model and the open system model

when the underdensity is close to being empty. There is also much to be noted from the first

graph above: the existence of an interaction pulls q to a negative value more quickly, but

q begins to approach 0 asymptotically much sooner as well. This is because the overdense

region virializes (reaches a development angle of 3⇡/2) faster. The radius of the overdense

region, dimensionless Hubble parameter and densitiy contrasts are compared for the isolated

and interacting model below, for the pair (0.5, -0.4):

Figure 4.2: Graph of the radius and dimensionless Hubble parameter for (0.5, -0.4); compared
with the isolated region model with the same pair. The volume fractions correspond to (0.3,
0.7) at the time of turnaround of the overdense region.
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The density contrast increases (falls) more steeply for the overdense (underdense) region, as

seen:

Figure 4.3: Graph of the density contrast of over and under dense regions; compared with
the isolated region model. The volume fractions correspond to (0.3, 0.7) at the time of
turnaround of the overdense region.

The density contrast of the overdense region is seen to plateau upon virialization. This is

strictly not true; as the background keeps expanding, the density contrast should ideally

increase slowly as well. This was not implemented out of numerical expedience; the precise

approach, however, would lead to the same results in the time domain of interest (which in

our case, is the time up to virialization). We now keep the underdensity fixed at �0.4 and

vary the overdensity:

Figure 4.4: Graph of the deceleration parameter for two possible underdensities against the
same overdensity; compared with the isolated region model. The volume fractions correspond
to (0.3, 0.7) at the time of turnaround of the overdense region. The time step is taken
identically for all three simulations.

The above plot makes corroborates our theory of the e↵ect of an increasing overdensity; the

faster our region collapses, the more it diminishes both the deceleration and acceleration.
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4.3.2 �1, �2 < 0

This is where things could get interesting! Recall that two underdense regions never accel-

erate in the isolated region model. The question is, can we accrete enough mass and flip our

curvature fast enough to result in an accelerated expansion? Well, no1.

Two isolated underdensities have a deceleration parameter that asymptotically approaches

zero from a positive value. In order to break away from this behaviour, we need a rapid

change in the smaller underdensity to reverse curvature and achieve a collapse. There are

two competing e↵ects at play: the denser underdensity has a contrast that reduces in time

owing to its own expansion relative to the background, and an increase in contrast from the

mass it accretes from its partner. Therefore, the increase from the mass accreted needs to

outweigh reduction from its own expansion. This cannot happen unless we assign a greater

volume fraction to the emptier region. However, recall from the isolated region model, that

an overdensity must have a greater volume fraction to significantly contribute to the denomi-

nator of volume-weighted quantities. This, it appears, means that two underdensities with a

mass transfer still show an asymptotic fall of q to zero from a positive value, but just faster.

This is shown in the graph below.

Figure 4.5: Graph of two underdense regions; compared with the isolated region model. The
initial radii are around (0.11, 0.04). The time step is taken identically for all simulations.

The above figures assign a greater volume fraction to the less dense region. The densities

contrasts evolve as below in Fig. 4.8. Notice that while the contrast of the more dense region

initially increases, it drops again.

The same quantities are plotted by assigning a greater volume fraction to the emptier region,

below. This time, we see that the more dense region attains a positive density contrast, but

1Sigh! To quote the great philosopher Mick Jagger, “You can’t always get what you want,” and no matter
how hard you try, you sometimes can’t get what you need, either.
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Figure 4.6: Graph of density contrasts of two underdense regions; The initial radii are around
(0.11, 0.04). The time step is taken identically for all three simulations.

doesn’t have any e↵ect on the dynamics of the net deceleration parameter.

Figure 4.7: Graph of two underdense regions; compared with the isolated region model. The
initial radii are around (0.11, 0.4). The time step is taken identically for all simulations.

Figure 4.8: Graph of density contrasts of two underdense regions; The initial radii are around
(0.11, 0.4). The time step is taken identically for all three simulations.
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Chapter 5

Discussion and Future Work

Alright! Let us first summarize all that has been achieved so far. We started by recognising

that the formation of structure in the non-linear regime from linear density perturbations

should not be well-represented by the averaged equations, i.e., the FLRW paradigm, owing

to the non-linear nature of the Einstein Field Equations. In order to study the e↵ect of

inhomogeneity on the average expansion of the universe, we shifted our approach to the

formalism from a foliation to a threading on which we defined local surfaces that had to

be patched together. We then met the Buchert averaging procedure and studied a few toy

models that attempted to qualify the extent to which the resultant backreaction term could

e↵ect an accelerated expansion in the universe.

Building on extant literature, we introduced an explicit embedding of regions and defined a

notion of proximity, both of which were absent in the toy models. We saw that the transfer

of mass across regions under some constraints could result in a quicker and more pronounced

acceleration in the spatial domain of interest, and even flip the sign of the curvature under

certain conditions, albeit not to the extent that we would have liked.

There is much work to be done at this juncture! Now that our regions are no longer iso-

lated, we can impart a notion of structure formation by grouping a finite number of regions

together that share mass, and study the net acceleration perceived in a system of relatively

isolated regions that have this nested structure. Recall (from section 3.3) that such an in-

terpretation could not be imparted to isolated regions alone. This formulation should hence

give qualitatively di↵erent results from before. Another e↵ect to be tested is the e↵ect of the

time of virialization of the overdense regions; this was briefly mentioned in the formulation
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of mass leak.

Also, we can now check if the mass leak as defined above can lead to an acceleration in

the Gaussian model that failed to accelerate. This will, however, require an embedding of

multiple regions, and a well-defined notion of nearest neighbours for more than two regions.

Ideally, we should embed the spheres in three dimensional space with more than one nearest

neighbour. However, the requirement of our spheres being tangential at each time step could

induce a vorticity in the displacement of the centres, which would break our global foliation.

One way to deal with this would be to consider regions over the homogeneity scale, and

embed spheres along a straight line on grounds of statistical isotropy. This would reduce our

problem, as a first-approximation, to just each region having two nearest neighbours.

A directed e↵ort must also be made towards formulating a model of mass leak that begins

by altering the di↵erential equation itself. It is pertinent to ask when a di↵erential equation

with a time-dependent parameter would lead to the same solution as the original di↵erential

equation that holds the parameter constant, but updates its initial conditions and parame-

ters at every time step. The two approaches should coincide to a good approximation if the

time-variation of the parameter is small enough so as to be held constant in the interval over

which we employ the old di↵erential equation. However, this does not tell us what happens

when the parameter varies appreciably over any infinitesimal time step.

There is much that can be derived from the notion of proximity that we have defined, in the

direction of achieving the coveted light-cone average. The objective would be to quantify

the redshift that light experiences as it travels from an emitter to an observer who are sepa-

rated by some physical distance at the time of emission. Since we haven’t an exact profile of

densities between two points, we must resort to an ensemble average of all possible density

perturbations that the light could pass through in that separation. One way to model this

average would be to define a time-dependent probability distribution of the density contrasts

and physical radii as the light enters a particular region of space, that is to be employed each

time the light successfully traverses that spherical region. This would require the embedding

and proximity that we have defined above; the transfer of mass and separation of the two

chosen observers being accounted for in the time dependence of our probability distribution

function for density, thus replacing a time evolution by an ensemble average. These condi-

tions, and their explicit formulation, would be the ultimate goal of the extension developed

in the present thesis. The above heuristic proposition is based on the fact that under the
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assumption of spherical collapse as being the model of time-evolution, the state of a density

perturbation is defined completely by the density contrast at a particular, specified value of

the global EdS time, and the physical radius at that instant of time. This would allow us to

calculate a redshift that can then be matched to observations, potentially lending weight to

the formalism of inhomogeneity.
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Chapter 6

Appendix

A1: The Spherical Collapse Model

The toy models discussed before give us the dynamics of the universe in terms of the dy-

namics within the individual regions. We must, hence provide a formalism for the evolution

of these ‘isolated regions’. This is extensively expounded in literature under the jargon of

spherical collapse; a painfully rigorous treatment can be found in the appendix of [SV04]; a

well-motivated and insightful one in [Pad93]. The key formulae are motivated and summa-

rized below, the narrative largely borrowed from [Pad93].

A spherical top-hat1 perturbation is a spherical region in space that has a uniform den-

sity that di↵ers from that of the background. The background is typically taken to be

an Einstein-deSitter (EdS) universe2, corresponding to a universe with zero curvature and

hence, the critical density. Note that the background can actually be any uniform density,

not just the critical one. The arguments that follow only make use of a uniform density

background until explicitly specified.

Density perturbations in the linear regime are traditionally fourier transformed to obtain

corresponding fourier modes of density contrast, the rationale being that the fourier modes

of Gaussian random perturbations evolve independently in the linear regime. This conve-

nience is lost in the non-linear regime, and so it is best to deal with the density contrast

1the name derives from the shape the plot of density vs radial distance takes – that of an old-timey top
hat.

2Not to be confused with the Anti-deSitter Universe, the Einstein Universe, the Einstein Static Universe,
or the deSitter Universe, all of which are actual paradigms.
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in position space itself. Now, the average density in the background will determine the dy-

namics displayed within the regions of perturbations. This is characterized by the density

contrast � := ⇢(x,t)

⇢b(t)
� 1, which measures the linear deviation of the perturbation from the

average value in the background. An overdense (underdense) region has � > 0 (< 0); � = 0

corresponds to a spherical region with matching density, and � = �1 is an empty region.

The background density is assumed to obey the Friedmann dynamics, which is dictated by

whether the dimensionless density parameter ⌦b is <,> or = 1, corresponding to being lesser

than, greater than or equal to the critical density. The critical density evolves as a universe

with zero curvature. These follow trajectories of a hyperbola, cycloid, or a t2/3 escape ve-

locity profile3, respectively. Note again, that we are so far describing the possible dynamics

of the background. A uniform universe with density greater than the critical density will

always collapse, as will a universe with lesser than the critical density always remain open.

A spherical perturbation withing this region, in the linear regime, will be dragged along with

the background behaviour to an extent, but will deviate from the background expansion at

a rate that depends on its density contrast. Heuristically speaking, we’d expect a region

that is overdense with respect to the background to collapse with respect to the background,

independent of the value of the background density. This is because it should evolve at a

slower rate than the background, thus ‘collapsing’ relative to its coordinates, despite being

initially dragged along with it. Of course, this perturbation need not collapse gravitation-

ally; that would depend on its value relative to the critical density and not the background.

These considerations will be made more mathematically precise shortly.

In order to make the formalism analytically tractable, we make use of spherical perturbations

in a uniform background. Owing to the spherical symmetry of the region, the dynamics is

determined completely by the mass contained with the spherical volume and not the mass

outside. The density perturbation at some initial time in coordinates with origin at the

centre of the sphere is given by:

⇢(r, ti) = ⇢b(ti) + �⇢(r, ti) ⌘ ⇢b(ti)(1 + �i(r)), (6.1)

where the subscript i on � denotes the initial time. If the physical size of the perturbation

is significantly smaller than the size of the Hubble radius of the background, it turns out

3See footnote addressing equation 2.2
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that the dynamics of the perturbation are very well approximated by Newtonian equations.

To see why this is the case, consider the FRW metric in flat space (the argument holds

identically in closed and open spaces as well):

ds2 = �c2dt2 + a(t)2(dx2 + dy2 + dz2).

Consider an observer at some point that we shall denote the origin. Then, it is easy to

construct a set of locally inertial coordinates with respect to that observer, as opposed to

the global comoving coordinates of the spacelike hypersurface. When the metric is expressed

in such a form, it is said to take on the FRW normal coordinates. The coordinates are

constructed by observing that (i) the observer is freely falling (i.e., the observer is a geodesic),

and (ii) the cosmological time t coincides with the observer proper time ⌧ . This can then be

used to define a change in basis by considering a light signal emitted by the observer, to be

reflected by a mirror at some normal coordinate x and received by the observer again. This

is then related to the globally comoving coordinate � of the mirror. A derivation of this

thought experiment can be found here. When this coordinate transformation is expanded in

powers of c, we choose to retain terms only upto order c2 in the denominator. Under such

an approximation (which corresponds physically to considering perturbations or distances

much smaller than the Hubble radius), the metric takes the form:

ds2 ⇡ �c2
✓
1 +

2�b(r, t)

c2

◆
dt2 + (dx2 + dy2 + dz2), (6.2)

where

�b(r, t) = �1

2

ä

a
r2; r(t) = a(t)�.

Notice how this change of coordinates alongside the truncated approximation on powers of c

allows for a natural weak-field limit approximation. Therefore, to the lowest non-trivial or-

der, we may treat �b(r, t) as an e↵ective Newtonian potential due to the background density.

We thus import from the Friedmann equation a relation between the background expansion

factor and the value of the background density. This then gives us the e↵ective Newtonian

potential in terms of the background density.
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Okay! This somewhat lengthy digression aside, we have arrived at a nifty and expedient

result: for perturbations of small physical size relative to the Hubble radius, our problem

reduces to solving a Newtonian gravitational potential problem for radial motion, that de-

pends only on the value of the density inside the region relative to the critical density. In

particular, we may write:

�tot(r, t) = �b(r, t) + ��(r, t) = �1

2

ä

a
r2 + ��(r, t) =

2⇡

3
G⇢br

2 + ��(r, t). (6.3)

Here, ��(r, t) is the extra potential generated by the density perturbation �⇢(r, t). We may

now write down Newton’s second law naively, to obtain:

d2r

dt2
= �r�tot = �4⇡G⇢b

3
r �r(��) = �GMb

r3
r � G�M(r, t)

r3
r = �GMtot

r2
. (6.4)

The equalities above hold irrespective of whether our perturbation profile is uniform or not.

In going to the last expression, we made use of Gauss’ law for inverse-square-law fields to

substitute the total mass contained in the perturbation, independent of its arrangement

inside. Of course, our considerations are restricted to top-hat perturbation profiles, and so

the statement holds more trivially.

It is well known that the trajectory in time for a body travelling at a velocity equal to,

greater than, or lesser than the escape velocity is that of a parabola, hyperbola and ellipse,

respectively. In the absence of angular velocity (as is the case in the absence of shear

and vorticity), the trajectory is purely radial, and the trajectories have a profile of t2/3, a

hyperboloid and a cycloid, respectively. The conditions for each of the trajectories is more

rigorously obtained from the first integral of motion:

1

2

✓
dr

dt

◆2

� GM

r
= E.

This gives us a natural segregation with respect to the sign of E. We need only to explicitly

find its functional form in terms of the density contrast to make concrete the statements that

were hand-wavily made at the beginning of this section. In order to evaluate E, we recognise

that at any instant of time, the mass within the perturbation remains constant, and so the
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potential energy can be evaluated at any time. At some initial time ti, if the perturbation

is small, we have the added benefit that the velocity in the kinetic term coincides with the

expansion of the background. This allows us to express the kinetic term in terms of the

background expansion velocity alone, neglecting to a good enough approximation the radial

peculiar velocity due to the additional mass inside. Subscripting all quantities at the initial

time by i, we obtain ṙi = Hiri, and so

Ki =
1

2
H2

i
r2
i
.

and

Ui = �GMtot

ri
= �G

4⇡

3
⇢b(ti)r

2
i
(1 + �i) = �1

2
H2

i
r2
i
⌦i(1 + �i) = �Ki⌦i(1 + �i),

where ⌦i is the dimensionless density parameter of the background universe relative to the

critical value. The total energy is hence given by:

E = Ki⌦i[⌦
�1
i

� (1 + �i)]. (6.5)

The condition for collapse then becomes E < 0, or �i > (⌦�1
i

�1). Recall that � is the dimen-

sionless density contrast of the perturbation relative to the average value of the background,

while ⌦ is the dimensionless density parameter of the background relative to the critical

EdS universe. For a background that is either critical or closed (⌦i � 1), any overdensity

� measured relative to the background will collapse. If the background is open (⌦i < 1),

then an overdensity � measured relative to the background must cross a further threshold

(�crit = ⌦�1
i

� 1) to achieve a negative energy, and hence collapse. This threshold value just

ensures that the absolute value of the density within the region of consideration is greater

than the EdS critical density, as our intuition would suggest.

For the considerations of our toy model, we shall assume an EdS background, corresponding

to ⌦i = 1. All the trajectories are parametrized by a development angle. The dependence

of the radial component on time is obtained by integrating the equations of motion (EOM);

the following arguments are made for an overdense region, the formulae for their underdense
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counterpart are obtained by switching out all trigonometric functions for corresponding hy-

perbolic ones. The EOM for E < 0 integrate to give:

r = A(1� cos ✓), t+ T = B(✓ � sin ✓); A3 = GMB2, (6.6)

where A and B are constants that depend on the initial density contrast. The coordinate

r here is the physical radius of our perturbation, not the comoving one. The time o↵set T

is our freedom to choose an initial condition; it can be used to set the initial radius ri at

some t = ti. This is done by inverting the equation of r to obtain ✓i as a function of ri, and

then substituting it in the equation for t with the known ti to get T . Notice that to have an

initial radius at the zero of our time, we must o↵set our time’s origin, because the equations

impose the condition that at the global origin of time, all radii go to zero. The reason for this

is that at an early enough time, the region of perturbation must coincide with the average

density of the background; and since we begin with a universe that is maximally symmetric

with perturbations seeded by quantum fluctuations, the perturbations and distances must

all go to zero at the global origin of time. The e↵ect of an o↵set is seen easily below:

Figure 6.1: Physical radius of region vs cosmic time t plotted for an overdensity of � = 0.6.
The initial conditions were ri = 0.11 at ti = 0.001; the calculated o↵set was T = �0.0966.
Note that the trajectory is simply shifted.

The trajectory described above is the parametrized equation of a cycloid4. The radius of

turnaround is the maximum radius rm, which is at ✓ = ⇡. The kinetic energy at turnaround

4Technically, a cycloid has the same coe�cient in the parametrizing equation for both r and t. Think of
this as a distorted cycloid.
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is zero, and so the total energy is only the potential energy. Taking the ratio of the potential

energy at turnaround to the total energy gives us:

rm
ri

=
1 + �i

�i � (⌦�1
i

� 1)
. (6.7)

Clearly, rm > ri, and greater the overdensity, the lesser the radius of turnaround and the

faster it is obtained, as our intuition would suggest. Recognising that rm = 2A, we find that:

A =
ri
2

1 + �i
�i � (⌦�1

i
� 1)

; B =
1

2Hi⌦
1/2
i

1 + �i
[�i � (⌦�1

i
� 1)]3/2

. (6.8)

The expression for B is obtained from its relation to A above. For an EdS background, we

have A = ri
2

1+�i
�i

, and B = 1
2Hi

1+�i

�
3/2
i

. The equations finally read:

r =
ri
2

1 + �i
�i

(1� cos ✓), t+ T =
1

2Hi

1 + �i

�3/2
i

(✓ � sin ✓) (6.9)

for an overdense region, and

r =
ri
2

1 + �i
(��i)

(cosh ✓ � 1), t+ T =
1

2Hi

1 + �i
(��i)3/2

(sinh ✓ � ✓) (6.10)

for an underdense one. Note that for an underdense region relative to an EdS background,

�i < 0. All other quantities are obtained by taking the relevant derivatives via a repeated

application of the chain rule on the development angle.

One final comment on the evolution of overdense regions: since these regions reach a maxi-

mum radius and then begin to collapse, their inevitable fate as suggested by the parametrized

equation above seems to be to collapse to a singularity in finite time. This, however, is not

the observed outcome of the clusters that we see in the night sky. Most overdense struc-

tures stabilize to a finite radius post-turnaround. The precise mechanism depends largely

on the properties of the matter that our overdensity is composed of: the matter could get

thermalized and exert a pressure owing to its newly acquired temperature, or could even

radiate energy that contributes to an outward balance to the gravitational collapse. A pop-

ular explanation is the phenomenon of shell-crossing in the so-called collisionless cold dark

matter, which through a process of ‘violent relaxation’ results in a ‘dark matter halo’ that
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virializes5 at half the radius of turnaround6. This then provides a counter potential that

allows the baryonic matter to follow suit and virialize close to the same radius. All these

arguments require, crucially, the existence of angular perturbations that induce a vorticity

that can further o↵er an outward centrifugal force. The true stabilizing force can be any

combination of the above factors to varying degrees.

Therefore, to preface all the conclusions drawn henceforth in the toy models, the evolution in

the individual regions is assumed to be via the spherical collapse model, which (to my best

knowledge so far) has no rigorous justification beyond the turnaround of overdense regions.

The common consensus is that after turnaround, there is some voodoo dark magic that re-

sults in the virialization at half the radius of turnaround. The precise explanation depends

on the system being studied, and your choice of religion; numerically, the simulations impose

a hard cut-o↵ at � = 3⇡/2 which results in the graph not being di↵erentiable. A smoother

transition can be achieved if there is a smooth asymptotic approach to virialization.

A2: The 2-region model

The following section explores the full scope and implications of the 2-region model that was

formulated in [Räs06a] and summarized in Section (3.2.1).

There are three parameters that can be varied in the model: the combination of densities

(sign and magnitude), the volume fractions the regions occupy at some particular time, and

the time of seeding of these volume fractions.

Also, the following excruciatingly detailed description can be skipped to subsection 3.2.1

where the results are succinctly summarized, and an explanation is attempted.

Varying density

In the following data set, the volume fractions are fixed to a particular value and are seeded

at the time of turnaround of the overdense region (when � = ⇡). Three possible volume

fractions are considered: (0.3, 0.7), (0.5, 0.5) and (0.7, 0.3), which correspond to allocating a

5Dark matter doesn’t truly virialize, however, the time scale of its variation is purported to be significantly
greater than that of the physics we hope to study that relies on the existence of the halo.

6The half radius of turnaround condition is obtained by finding the point at which the kinetic energy is
half the potential energy: the condition for virial equilibrium in inverse-square-law forces
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greater, equal or lesser volume fraction at turnaround to the underdense region relative to

the overdense one. The numerical code calculates the deceleration parameter against cosmic

time.

(0.3, 0.7)

These graphs have a volume fraction of 0.7 for the underdense and 0.3 for the overdense

region. The first case has the underdense value fixed at -1, that is, it is taken to be empty.

Figure 6.2: Deceleration parameter vs cosmic time t plotted for increasing overdensity and
underdensity versus an empty region. The empty region has a volume fraction 0.7 while the
underdense and overdense regions have 0.3.

Figure 6.3: Simultaneous plot of over and underdensities, and a graph of the minima obtained
vs density pair. In the second graph, as the x-axis increases, we move from under to over
densities.

A cursory glance at Figure (6.2) tells us that first, the deceleration parameter takes on neg-

ative values only when we pair an overdensity with the empty region; two underdensities do

not show an acceleration. Even a critical density value does not show an acceleration. Sec-

ondly, the qualitative profile of the deceleration parameter is the same for all overdensities,
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in that they first increase to a maximum (deceleration) and then take on negative values.

Thirdly, q’s maximum and minimum value is largely una↵ected by the value of the overden-

sity. The numerical value of the minima is around -0.459. Underdensities with an empty

region are everywhere decelerating and tend to zero asymptotically; the critical density dies

out the fastest. This fact, along with a combined plot of overdensity with underdensity for

a sense of scale is shown in Fig. (6.3).

As it turns out, the minima is reached at the time of virialization (the abrupt halt in devel-

opment angle is why the graph is not di↵erentiable), and so the only way the overdensity

a↵ects the deceleration parameter is by dictating the time at which the minima is attained.

As a result of the non-di↵erentiability of the deceleration parameter, the value of the min-

ima cannot be obtained analytically by di↵erentiation. As expected, a less overdense region

takes longer to virialize than a more overdense one, and so q takes longer to attain the same

minimum. Note that it is quite possible that the graph has a true minima later; the fact

that the overdense regions virialize at � = 3⇡/2 forces the minima at virialization. We shall

return to this point later.

Now consider the underdensity fixed at a value of -0.9 and the other region increasing from

critical to overdense.

Figure 6.4: Deceleration parameter vs cosmic time t plotted for increasing overdensity and
underdensity versus an underdense (-0.9) region.

The first two observations carry over from the previous case of an empty region; here the

minimum value of deceleration sees a relatively larger variation with the value of overdensity:

a larger acceleration (lower value of q) is seen for a greater overdensity as opposed to a lower

overdensity. The variation, however, is still very weak (with a range of 0.06) as compared to
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Figure 6.5: Graph of the minima obtained vs density pair. As the x-axis increases, we move
from under to over densities.

the e↵ect an underdensity has on the minima of q (as will be demonstrated shortly).

In the next data set, the value of the underdensity is fixed at -0.1 with the same variation

e↵ected on the second region. Since the combination of two underdense regions shows the

same qualitative behaviour of not accelerating and asymptotically approaching zero, the

graph is omitted here.

Figure 6.6: The first graph plots the deceleration parameter vs cosmic time t for increasing
overdensity versus an underdense (-0.1) region. The second graph is that of the minima
obtained vs density pair. As the x-axis increases, we move from less to more overdensities.

All observations carry forward again; the range of minima in this case is 0.4. This is the

maximum possible underdensity that can be held constant. The first data point in the graph

of minima corresponds to the critical density, which is omitted from the range because it

shows no acceleration. Once again, the minima is forced by virialization.

Finally, we study the case of a fixed overdense region with volume fraction 0.3 and a variation

in the other region, once again from underdense to overdense.
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Figure 6.7: Deceleration parameter vs cosmic time t plotted for increasing overdensity and
underdensity versus an overdense (1) region.

Figure 6.8: Graph of the minima obtained vs density pair. As the x-axis increases, we move
from underdense to empty.

Here (Fig.: 6.7, 6.8) we see some variation. Once again, the only combination that leads to

an acceleration is when we have an overdense region paired up with an underdense region.

Overdensities tend to have divergent positive deceleration parameter values, and so the simu-

lation is carried out for a shorter time value than for the others. The deceleration parameter

takes on strictly positive values for two overdense regions. The qualitative profiles are again

the same, but now we see that a greater variation in minima is obtained by changing the

value of the underdensity by the same increment of 0.1 than for a similar increase in over-

density; the range here is 0.9, which is of order 1. Interestingly, smaller the underdensity,

greater the value of the acceleration. q in the cases of higher underdensity becomes positive

once more after attaining a minima, but then asymptotically dies out to zero at later times.

(0.5, 0.5)
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All the plots above were generated assuming that the underdensity had a dominant volume

fraction. The same plots are now generated with an equal volume fraction at the time of

seeding, as compiled below.

Figure 6.9: Deceleration parameter vs cosmic time t plotted for increasing overdensity and
underdensity versus an empty region. The empty and under/overdense regions both have a
volume fraction of 0.5.

Figure 6.10: Graph of the minima obtained vs density pair. As the x-axis increases, we move
from under to over densities.

The conclusions are identical to the empty case before; the minima is per value of over-

density is attained at the same time (since the minima is forced by virialization, which is

independent of volume fraction). The minima is constant at -1.2, which is lower than the

corresponding minima of -0.459 in the 0.3-0.7 case.

As before, the results do not change qualitatively when the empty region is substituted for a

constant underdense one. The e↵ect of the value of overdensities is again more pronounced

when the underdensity is lower, but this time, the range is significantly higher.
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Figure 6.11: Graph of the minima obtained vs density pair. As the x-axis increases, we move
from under to over densities. The first graph is for an underdensity of -0.9, while the second
for -0.1

Clearly, assigning a greater volume fraction to the overdense region gives it a greater handle

over the maximum acceleration obtained. The range of maximum accelerations are 0.2 for

an underdensity of -0.9 and 2.2 for an underdensity of -0.1. The acceleration is greater for a

more overdense and less underdense region.

Keeping the overdensity fixed at 1, varying the underdensity in the other region gives us

Fig.: (6.12).

Figure 6.12: q vs t plotted for increasing underdensity versus an overdense region. The
second graph is that of the minima obtained vs density pair. As the x-axis increases, we
move from less to more underdensities.

The over densities are not plotted against the fixed overdensity because they show no new

results (q is everywhere positive). Despite being allocated a lesser volume fraction, the un-

derdense region still has a greater e↵ect on the maximum acceleration than the overdense
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regions. The range of qmin here is 4.8.

(0.7, 0.3)

The same analysis is carried out by giving the overdense region a greater volume fraction of

0.7 and the other region a volume fraction of 0.3. The graph is plotted in Fig.: (6.13).

Figure 6.13: q vs t plotted for an empty region and an under/overdense region. The second
graph is that of the minima obtained vs density pair. As the x-axis increases, we move from
under to overdense regions.

Despite the overdensities being given the dominant volume fraction, we still see an accel-

eration; the maximum acceleration is a constant at -4.25. Notice here that the minima

is attained before virialization! So, assigning a greater volume fraction to the overdense

regions revokes the command that virialization has over the value of the minima. When

plotted against a constant underdensity, the maximum acceleration varies as in Fig.: (6.14).

This is interesting! There is a considerable e↵ect on the value of the overdensity if we

give it a greater volume fraction. The range in the second graph of qmin is a staggering 90.3,

as opposed to a range of 1 for the first. Note again that the overdensity has a greater e↵ect

for a lesser underdensity. When keeping the overdense region fixed at 1, the underdense

regions a↵ect the maximum value as in Fig.: (6.15).

Here, the range is 98.6, so while it is still greater than the variation due to overdense regions,

the magnitudes are now comparable. Thus, assigning a dominant volume fraction to over-

dense regions gives them a significant command over the maximum acceleration attainable.
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Figure 6.14: Graph of the minima obtained vs density pair. As the x-axis increases, we move
from under to over densities. The first graph is for an underdensity of -0.9, while the second
for -0.1

Figure 6.15: q vs t plotted for increasing underdensity versus an overdense region. The
second graph is that of the minima obtained vs density pair. As the x-axis increases, we
move from less to more underdensities.

Varying volume fractions

In this data set, the volume fraction is varied while keeping the density pairs fixed; the

volume fractions are seeded at the time of turnaround of the more overdense region. Five

possible density pairs are considered: overdense and empty (1, -1), overdense and underdense

(1, -0.9), overdense and less underdense (1, -0.1), overdense and less overdense (1, 0.5) and

less underdense and underdense (-0.5, -0.8). The graphs along with the the variation in qmin

are displayed below from Fig.: (6.16 - 6.20).

In all the plots below, the volume fractions (v1, v2) for density contrast values of (�1, �2) cor-

respond to assigning v1 to �1 and v2 to �2. We see right o↵ the bat that two overdense and two

underdense regions can never show an acceleration irrespective of the volume fractions they

are imparted. Further, the variation in qmin due to changes in volume fraction is significantly

greater than any variation seen in the value of densities. In each of the cases, the maximum

74



acceleration is achieved when a greater volume fraction is imparted to the overdense region.

This was also observed in the graphs that varied density values. One interesting trend to

note is that as the volume fraction imparted to the overdensities increases, q attains the

minima sooner, i.e., before virialization. This was noted in the previous section as well, and

is seen more clearly here.

Figure 6.16: q vs t plotted for volume fractions for a density pair of (1, -1). The second
graph is that of the minima obtained vs density pair.

Figure 6.17: q vs t plotted for volume fractions for a density pair of (1, -0.9).

Figure 6.18: q vs t plotted for volume fractions for a density pair of (1, -0.1).
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Figure 6.19: q vs t plotted for volume fractions for a density pair of (1, 0.5).

Figure 6.20: q vs t plotted for volume fractions for a density pair of (-0.8, -0.5).

Varying time of seeding

This parameter is explored better in the n region model in section 3; the objective is to

study the e↵ect of imposing the volume fractions at the turnaround of the least (vs) most

overdense regions. The rationale behind this is that while the most underdense region’s point

of turnaround defines the time up to which the inversion of development angle from time

remains injective, the least underdense region dictates when all the overdense regions as a

whole virialize. After the least underdense region has virialized, all the overdense regions

stop a↵ecting the system and e↵ectively freeze in time, leaving the simulation at the mercy

of the underdense regions only. This e↵ect can only be studied in the presence of more that

one overdensity, which can only be imposed when there are more than 2 regions.
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